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Abstract
Metasurface antennas have emerged as a promising alternative to conventional reflec-

tors and phased arrays for high-gain, low-profile, beam-steerable applications in both
terrestrial and space-borne platforms. By sculpting electromagnetic wavefronts with
sub-wavelength surface patterns, they deliver unprecedented control over radiation char-
acteristics while minimizing volume, weight, and cost. In this thesis, we develop a
fully automated, physics-informed inverse-design framework capable of synthesizing three-
dimensional, fabrication-ready metasurface antenna architectures that meet stringent per-
formance and realizability constraints.
Building upon a surface-integral-equation formulation, our methodology directly optimizes
the equivalent surface current, which allows us to impose arbitrary far-field masks (e.g.,
beam-shaping and sidelobe suppression) while strictly enforcing passivity, losslessness,
and other physical realizability conditions on the synthesized surface impedance. To tame
the multiscale complexity and ill-conditioning inherent in large metasurface designs, we
introduce three complementary innovations: a hierarchical multiresolution RWG basis
that compresses the system’s degrees of freedom in early iterations without degrading
final accuracy; unit-flux diagonal preconditioning and Hessian-based diagonal gradient
scaling to equalize variable sensitivities and dramatically speed convergence; and the use
of modern adaptive optimizers (Adam and AdaHessian) drawn from the machine-learning
community, which further enhance robustness and iteration efficiency in highly nonconvex,
high-dimensional design landscapes.
The effectiveness of these strategies varies across different metasurface structures, each
requiring delicate tuning of involved parameters to balance accuracy, convergence, and
realizability. Among all, Unit-Flux Diagonal Preconditioning consistently demonstrates
stable results and a marked enhancement in convergence, making it a particularly reliable
component of the proposed framework.
The practical effectiveness of adaptive optimizers such as Adam and AdaHessian, how-
ever, depends strongly on careful hyperparameter tuning. Step sizes, and decay rates
must be balanced with respect to the physical characteristics of the design space, and
poorly chosen values can lead to stagnation or large fluctuations in convergence. This
sensitivity motivates the exploration of hybrid optimization strategies combining the fast
early progress of adaptive methods with the stability of classical techniques like conjugate
gradient which is proposed as a promising direction for future work.
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Introduction

1.1 State of the Art
Emerging platforms such as automotive radar, low-Earth-orbit satellite constellations,

ground terminals for high-throughput satellites, massive-MIMO 5G/6G base stations, and
radio-astronomy arrays all demand antennas that deliver high gain and beam shaping
within ever-tighter volume, weight, and power budgets. These requirements are especially
acute at millimeter-wave frequencies, where free-space attenuation is severe and each
additional decibel of aperture efficiency translates directly into longer link range or smaller
power amplifiers [23].
Classical high-directive apertures—parabolic reflectors and printed/slotted phased ar-
rays—each meet the gain requirement but introduce prohibitive trade-offs. Reflectors
achieve narrow beams by scaling their physical aperture. However, exceeding the gain of
25 dBi1 at centimeter wavelengths entails dishes tens of centimeters across, with bulky sup-
ports and mechanical gimbals for scanning, driving up weight, cost, and maintenance [6].
Conversely, phased arrays collapse the profile to a few millimeters and enable electronic
beam steering, yet each element requires a phase shifter, transmitter/receiver module, and
bias network. As element counts rise into the hundreds or thousands, the RF-front-end
bill of materials, ohmic losses, and DC power draw escalate, often dominating the link
budget at Ka-band and above [17, 20]. Together, these limitations leave a design gap
for apertures that are flat and low-cost like printed circuits yet capable of shaping and
steering beams without a forest of active components.
In recent years, metasurface antennas have emerged as a compelling high-gain alternative
that sits between bulky reflectors and complex phased arrays. Rather than relying on a
curved dish or thick lens, a metasurface antenna uses a single, ultrathin sheet patterned
with sub-wavelength metallic or dielectric elements. By carefully tuning each inclusion’s
geometry and arrangement, the flat panel collectively redirects and focuses incoming or
outgoing waves exactly as a curved reflector would—yet without any physical curvature
or added depth. This “flat form factor” not only reduces the antenna’s overall thickness
and weight, but also simplifies fabrication and integration into modern devices, enabling
high-performance beam shaping in a low-profile, easily manufactured package. Indeed,
metasurface-based reflectarray antennas are less bulky than parabolic dishes and can be
fabricated with standard printed-circuit techniques, leading to lower production costs [3].
Like phased arrays, they can achieve precise beam shaping and even beam steering, but
without needing discrete phase shifters at each element [21]. As a result, reflectarray-
type metasurface antennas can provide high gain, low loss, and low cross-polarization
levels, while remaining lightweight and conformal [21]. For example, planar metasurfaces
have demonstrated aperture efficiencies up to ∼ 70% and bandwidths around 30% in
experimental prototypes [8], approaching the performance of conventional antennas but
in a much flatter package. Moreover, metasurface antennas offer design flexibility: by
tailoring the pattern of sub-wavelength elements, one can convert an incoming wave into

1At centimeter wavelengths (e.g., 10 GHz), a 25 dBi gain corresponds to an aperture diameter of tens
of centimeters (approximately 30 cm), beyond which size, weight, and mechanical complexity become
impractical.
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Figure 1.1. Metasurface-antenna technologies: (a) square metallic patches with size
modulation, (b) circular patches with radius modulation, (c) metal or dielectric pillars
with height modulation, (d) perforated slots with radius modulation.

almost any desired radiation pattern.
Feeding schemes for metasurface antennas fall into two main classes. In the reflectarray
configuration, an external feed (horn or patch) illuminates the metasurface, which reflects
energy into a collimated or shaped beam. By contrast, leaky-wave or holographic meta-
surfaces launch a guided surface wave via an embedded feed; sub-wavelength elements
then continuously couple energy into free space, producing a directive radiation pattern
without any out-of-plane feed [15]. Both approaches exploit the metasurface’s ability to
locally tailor the boundary conditions and thereby sculpt the far-field pattern.

Figure 1.2. Multiscale structure of a 20λ-diameter metasurface antenna: (a) overall aper-
ture layout (macroscale), (b) periodic lattice arrangement (mesoscale), and (c) individual
scattering elements (microscale).
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Designing metasurface antennas is a challenging multi-scale problem. On the one hand,
the metasurface as a whole may span large wavelengths in size to achieve a high directivity
(for example, an aperture tens of wavelengths across is needed for a narrow beamwidth).
On the other hand, the constituent scatterers are sub-wavelength in size and spacing to
ensure a nearly continuous electromagnetic response is challenging. A brute-force elec-
tromagnetic simulation of the entire antenna, resolving every tiny element over a large
aperture, would involve an enormous number of unknowns and is generally impractical.
To make the problem tractable, homogenized surface models are used. In particular,
a metasurface can be modeled macroscopically by an equivalent surface impedance or
impedance boundary condition (IBC) that relates the tangential electric and magnetic
fields on the surface. Instead of simulating each element in detail, one treats the meta-
surface as a continuous sheet characterized by a position-dependent impedance Zs(x, y).
This impedance represents the aggregate effect of the sub-wavelength elements on the cur-
rents and fields, analogous to a “skin” covering the surface. The IBC model dramatically
reduces the computational complexity: the antenna can be analyzed with surface integral
equations or other methods using the unknown continuous impedance or the equivalent
surface current, rather than millions of element-level unknowns.

Figure 1.3. (a) Actual metasurface and (b) homogenized metasurface with the
surface impedance distribution.

This homogenization approach is valid when the metasurface elements are electrically
small and spaced sufficiently tightly to behave like a quasi-continuous sheet [11]. An
important constraint is that the synthesized impedance profile must be physically realiz-
able – in practice it should correspond to passive, lossless elements with reactance values
within achievable ranges. In other words, the macroscopic design must ultimately map to
actual meta-atom geometries (e.g. capacitor-loaded patches, variable-length resonators,
etc.) that can be fabricated. Ensuring the impedance stays within these bounds (no
extreme values that would require unrealizable materials) is part of the design challenge.
With homogenization in hand, modern metasurface design proceeds in two phases (see Fig-
ure 1.2). Phase 1 is the macroscopic synthesis of Zs(x, y) (or equivalently the continuous
surface current) to satisfy far-field objectives—mask-type gain constraints or prescribed
patterns—formulated as an inverse electromagnetic problem. Phase 2 is the unit-cell re-
alization, where each local impedance value is implemented by tailoring a meta-atom’s
geometry or loading under a local-periodicity assumption [8]. This separation allows one
to leverage high-level optimization for pattern synthesis, then apply standard full-wave or

10
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circuit-model methods to translate impedance into geometry.
Although early metasurface designs relied on closed-form wave-physics or holographic
rules, these analytical methods struggle with arbitrary field masks, broadband require-
ments, and fabrication limits. They typically assume idealized illumination and neglect
inter-element coupling and edge effects, making them unsuitable for complex coverage
specifications or conformal surfaces. In contrast, numerical inverse-design methods cast
metasurface synthesis as an optimization problem—minimizing pattern error or enforcing
mask constraints—using techniques [18, 27]. These advanced strategies can accommodate
2D vs 3D formulations, pattern-matching vs mask-type objectives, and multi-layer config-
urations, offering a powerful toolkit for crafting high-performance metasurface antennas.

1.2 Aim of the Thesis

The primary goal of this work is to enhance the performance of the fully automated,
three-dimensional inverse-design framework for metasurface antennas in computational ef-
ficiency. Building on recent advances in current-based synthesis, the scattering problem is
represented as a surface-integral equation in which the sole unknown is the equivalent elec-
tric current on the metasurface. By driving this current directly through an optimization
routine, one can enforce arbitrary mask-type constraints on the far-field pattern—such
as prescribed main-beam gain and sidelobe levels while simultaneously guaranteeing that
the resulting surface impedance remains passive, lossless, and within realistic fabrication
limits [27].
To accelerate convergence and manage electrically large apertures, our methodology inte-
grates three key numerical enhancements. First, developing a hierarchical Rao–Wilton–Glisson
(RWG) basis that captures both global and local current variations with fewer degrees of
freedom. Second, an edge-preconditioning scheme normalizes mesh edges to achieve unit
flux across the edges of the mesh, substantially improving the conditioning of the Method-
of-Moments matrix and yielding stable per-iteration performance. Third, we incorporate
advanced optimization algorithms—specifically adaptive first-order and and second-order
solvers (e.g. ADAM and AdaHessian) to exploit both gradient and curvature information,
aiming for accelerating convergence and enhancing robustness on ill-conditioned metasur-
face design problems.
Collectively, these contributions establish a general-purpose toolchain capable of trans-
lating high-level radiation specifications into physically realizable metasurface designs,
thereby bridging the gap between theoretical synthesis and practical antenna fabrication.

1.3 Thesis Outline

Chapter 1. This chapter outlines the motivation for metasurface antennas and the
limitations of conventional aperture technologies. It introduces metasurfaces as a flat,
efficient alternative and frames their design as a multi-scale inverse problem.

11
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Chapter 2. This chapter provides the theoretical and methodological foundations un-
derpinning the metasurface antenna design process. It begins by reviewing the principles
of metasurface antennas, including surface homogenization and impedance boundary con-
ditions. The chapter then introduces the surface integral equation (SIE) formulation and
its discretization using the Method of Moments. Next, it explores automated inverse-
design strategies, detailing geometric modeling and various constraint definitions such as
passivity, impedance bounds, and radiation pattern requirements. Finally, the chapter
outlines the current-based optimization framework, including algorithm formulation and
the enforcement of physical and performance constraints.

Chapter 3. This chapter presents advanced numerical methods that enhance the ef-
ficiency of metasurface antenna inverse design. It begins by introducing the MR-RWG
basis, which hierarchically captures surface currents across multiple scales using nested
mesh refinements and wavelet decompositions. This structure promises for faster conver-
gence and matrix sparsification without sacrificing accuracy. The chapter then explores
two complementary preconditioning strategies—unit edge-flux normalization to correct
for geometric imbalances, and Hessian-based diagonal gradient scaling to adapt step sizes
according to local curvature—both of which theoretically promise to accelerate iterative
solvers in large-scale, ill-conditioned design problems.

Chapter 4. This chapter presents advanced optimization strategies specifically designed
for large-scale, non-convex optimization problems. We begin by introducing the existing
optimization method for inverse-design problem that enforces both physical realizability
(passive, bounded impedance) and radiation-pattern masks—and highlight the numer-
ical challenges posed by its nonconvex, ill-conditioned landscape. We then introduce
two modern solver families first, the Adam optimizer, which combines momentum and
per-parameter adaptive learning rates to navigate rugged cost surfaces without costly
line searches; and second, AdaHessian, which augments Adam’s variance tracking with
lightweight Hessian-diagonal estimates (via Hutchinson’s method) to scale steps accord-
ing to local curvature. For each method we present the algorithmic updates, and explain
how these strategies could overcome the stiffness and anisotropy inherent in metasurface
design.

Chapter 5. This chapter presents a comprehensive evaluation of our numerical methods
on different metasurface geometries. First, we assess the multiresolution RWG basis by
comparing convergence rates, solve times, and far-field accuracy against the standard
RWG discretization on a prototypical small aperture. Next, we scale up to a full-aperture
design, analyzing how the hierarchical basis and preconditioners affect convergence, and
beam-forming performance. Finally, we asses the differences between three optimizer
strategies—nonlinear conjugate-gradient, Adam, and AdaHessian.

Chapter 6. This chapter outlines key avenues for further improving both the accuracy
and convergence efficiency of MTS inverse-design optimization.
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Background and Literature Review

2.1 Metasurface Antenna Fundamentals
Metasurface (MTS) antennas are a class of antennas formed by thin planar layers of

sub-wavelength scattering elements that collectively manipulate electromagnetic waves
as discussed in 1. They are essentially the two-dimensional analog of metamaterials,
engineered to transform an incident wave into a desired radiated wavefront. Figure1.1
illustrates several practical implementations of metasurfaces using different element tech-
nologies (e.g., printed metallic patches, dielectric posts, slots), all of which can be modeled
in a homogenized sense as continuous impedance sheets. The multi-scale nature of meta-
surface antennas1 makes direct full-wave design challenging. To enable tractable analysis
and design, a common approach is to replace the detailed array of elements with an equiv-
alent IBC defined on an abstract surface representing the metasurface. This impedance
boundary provides a macroscopic description of how the metasurface interacts with fields,
without modeling each unit cell in detail.

2.1.1 IBC & Surface Homogenization
When a metasurface is homogenized, it is modeled as a continuous surface characterized

by a position-dependent impedance Z(r). The impedance relates the tangential electric
field Etan to the discontinuity in the tangential magnetic field across the surface. In general
form, the IBC is expressed as:

Etan(r) = Z(r) ·
#
n̂×

!
H+ −H−

"$
(2.1)

for any point r on the metasurface. Here, n̂ is the unit normal to the surface2, and H+

and H− are the magnetic fields just above and just below the sheet, respectively. The
quantity n̂× (H+−H−) is effectively the surface electric current density J flowing on the
metasurface.3

Thus, in a simpler form, we may write:

Etan = Z J (2.2)

on the metasurface. The impedance Z can be a scalar for isotropic surfaces affecting
one polarization or a tensor for anisotropic metasurfaces that couple polarizations. This
IBC encapsulates the homogenized response of the myriad sub-wavelength elements—it
tells us that the metasurface imparts a position-dependent boundary condition relating
tangential fields, without needing to model each element individually.
Because the IBC is a macroscopic model, any impedance function Z(r) obtained from
design must correspond to a physically realizable arrangement of meta-atoms. In practice,
this means the impedance profile must be passive and lossless, and also within practical

1Involving fine-featured unit cells across electrically large apertures
2Oriented, say, from side − to side +
3by Maxwell’s surface boundary conditions
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Background and Literature Review

limits of achievable reactance values. A passive, lossless impedance surface is one that
does not generate or absorb net energy, it only stores and redirects electromagnetic energy.
In energetic terms, the time-average power absorbed by the metasurface must be zero
everywhere on the surface. This condition can be derived from the complex power density
at the surface.
The complex power per unit area associated with the fields on the sheet is given by:

p̃(r) = Etan(r) · J∗(r) (2.3)

where (·)∗ denotes the complex conjugate, and

J = n̂× (H+ −H−) (2.4)

For a passive, lossless metasurface, the real part of p̃ must vanish everywhere: ℜ{p̃(r)} =
0. In the simple case of a scalar impedance (Z = ZI), according to Equation (2.2) this
reduces to:

p̃ = ℜ
î
Z |J|2

ï
= |J|2ℜ{Z} = 0, (2.5)

which can only be satisfied for all nonzero currents J if ℜ{Z} = 0. In other words, the
impedance must be purely reactive (imaginary-valued). This is the fundamental require-
ment for a passive, lossless metasurface that the surface impedance at every point must
have zero real part.
Physically, this means the meta-elements store but do not dissipate energy and they do
not provide gain. For a general tensor impedance4, the passivity/losslessness conditions
are more involved. Essentially, each independent component of the impedance tensor must
be purely imaginary as well. In fact, it can be shown that for a 2 × 2 impedance tensor
(describing two orthogonal polarizations on the surface), all symmetric components must
have zero real part, and any antisymmetric coupling terms must also be purely imaginary
(or zero). The general form of a passive, lossless impedance tensor Z can be written as:

Z = jXII ûI ûI +RNN ûN ûN + jXKK ûK ûK + jXLL ûLûL, (2.6)

where {ûI , ûN , ûK , ûL} denote a suitable orthonormal basis for decomposing the ten-
sor—typically with I,K corresponding to polarization directions andN,L to cross-coupling
components.
In this expression, any term with a real coefficient (e.g., RNN ) represents instantaneous
energy exchange between orthogonal polarizations and is generally not desired. A nonzero
RNN corresponds to a bianisotropic response which couples electric and magnetic fields.
This kind of coupling complicates metasurface design and is beyond the scope.
Consequently, we restrict our designs to impedance surfaces with no resistive part and
no nonreciprocal coupling (RNN = 0). Under these conditions, the impedance at each
point can be treated as a purely imaginary scalar for single-polarization designs or a

4e.g. if the metasurface exhibits anisotropy or bianisotropy
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purely imaginary diagonal tensor for dual-polarized designs, which greatly simplifies both
analysis and implementation [26].
To summarize, through homogenization we replace the metasurface by an ideal continuous
boundary condition characterized by Z(r). This model is valid under the assumption that
the unit cells are electrically small and can be represented by an averaged response. It
allows us to perform analysis and design at the surface level.
However, any synthesized Z(r) must be checked against physical constraints: it must be
purely reactive everywhere (passive/lossless), and its reactance values X(r) = ℑ{Z(r)}
must lie within practical bounds determined by realizable unit-cell geometries. For exam-
ple, extremely large inductive or capacitive reactances might require unrealistically small
or large features to implement. Therefore, an upper and lower bound, Xmin and Xmax, is
typically imposed on the impedance profile.
The benefit of the IBC approach is that it provides a design parameter—the spatial
impedance distribution—that we can manipulate to achieve desired electromagnetic be-
havior, without explicitly dealing with the fine details of each meta-atom during the initial
design stage.

2.1.2 Surface Integral Equation (SIE) Formulation
With the impedance boundary condition established, we can formulate the electromag-

netic Surface Integral Equation (SIE) that governs the metasurface antenna. Essentially,
the SIE is a statement of Maxwell’s equations, specifically the appropriate form of the
Electric Field Integral Equation (EFIE) applied to the impedance boundary. It provides a
way to solve for the unknown surface currents or fields on the metasurface due to a given
excitation. Two main formulations exist for single-layer metasurfaces [26]:

Opaque impedance formulation. Assumes the metasurface is backed by a perfect
conductor or otherwise impenetrable, so fields exist only on one side of the surface. In
this case, any currents induced on the metasurface can be considered as living on that
illuminated side only (typical of, e.g., a reflectarray with a ground plane).

Transparent impedance formulation. Allows fields to exist on both sides of the
metasurface (the sheet is not a perfect conductor). This is the more general case, appro-
priate for a free-standing metasurface or one on a substrate without a continuous ground
plane [26]. Here, the metasurface may be illuminated from one side or excited by sources
embedded within the structure (e.g., a surface-wave feed), and it can radiate to both sides.
In this work, we adopt the transparent formulation, as it covers the broadest range of
scenarios including those where the source is on the metasurface itself. Under the trans-
parent formulation, we consider the metasurface to be a permeable interface in a back-
ground medium. The theoretical tool to handle this is the surface equivalence principle.
According to the equivalence theorem, the effect of the metasurface in an otherwise ho-
mogeneous domain can be modeled by placing equivalent currents on the surface that
reproduce the fields discontinuities. In particular, if we conceptually enclose the sources

16



Background and Literature Review

(feed) and any material interior in a volume and replace the actual metasurface with free
space, we can enforce the same external fields by introducing equivalent surface currents
on the boundary. For an impedance surface, the relevant equivalence conditions applied
on the surface SIBC are mentioned at Table 2.1
In electromagnetic scattering and boundary-integral formulations, we decompose the fields
into their “incident” and “scattered” parts so that the actual fields present are simply their
sum:

Etot(r) = Einc(r) + Es(r) (2.7)

Htot(r) = Hinc(r) + Hs(r). (2.8)

Here, Einc and Hinc are the known fields launched by the source (for example, a plane
wave or embedded feed) before any interaction, while Es and Hs are the fields scattered
by the object (antenna, metasurface, scatterer) in response to that illumination. The
superposition principle guarantees that a measurement at any point sees the total field,
which is exactly the sum of what was sent in and what has been scattered back or re-
radiated.

Table 2.1. Equivalent surface currents

Type Expression

Equivalent electric current Jeq = n̂×Htot
Equivalent magnetic current Meq = −n̂× Etot

These arise from enforcing the continuity of tangential fields except for the known jumps
(the impedance relation provides the jump condition for E in terms of H). In practice,
for a thin printed metasurface of conducting patches, there is negligible tangential E-field
discontinuity (no significant magnetic surface current), so one can often set Meq = 0 and
focus on the electric surface current Jeq. This is the case here, as the metasurface is
a single conducting layer with no magnetically active response; thus Meq = 0 and the
problem unknown reduces to the electric current J(r) flowing on the metasurface [10].
Using the above considerations, we can derive the electric field integral equation with
IBC (often called the EFIE-IBC). The total tangential electric field on the metasurface is
the sum of the incident field (due to the source excitation alone) and the scattered field
(radiated by the induced surface currents). By enforcing the IBC, we require that this
total field equals Z(r)J(r) at every point on SIBC . Mathematically:5

Einc(r) +
Ú

SIBC

GEJ(r, r′) · J(r′) dS′
6

tan
= Z(r) J(r), ∀ r ∈ SIBC . (2.9)

This is the surface integral equation for the metasurface [26]. In this expression, Einc is
the known incident field (for example, a surface wave launched by an embedded source
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or a plane wave illumination), and the integral term represents the scattered electric
field produced by the unknown current distribution J on the surface. GEJ(r, r′) is the
dyadic Green’s function that gives the electric field at observation point r due to a unit
electric current source at r′; it encapsulates the electromagnetic coupling between current
elements on the surface. In general, GEJ may be the free-space Green’s function or, if
the metasurface is on a layered medium (e.g., a substrate), a multilayer Green’s function
appropriate to that stackup [10]. The subscript ’tan’ indicates we take the component
tangent to the surface, since the IBC relates tangential fields.
Equation (III) enforces that the tangential electric field consistent with a given surface
current J (LHS of the equation) matches the required field dictated by the impedance
boundary (RHS). It is a single integral equation for the unknown current J(r) distributed
on the surface. In operator notation, one can write this compactly as:

(LJ)(r) + Einc
tan(r) = Z(r) J(r), (2.10)

where L is the electric field integral operator (EFIO) acting on J [10]. This formulation
is very powerful in the sense that it reduces the full 3D field problem to an equation on a
2D surface. Moreover, it is well-suited to numerical solution via the Method of Moments
(MoM), as will be discussed in the next section.
It’s worth noting that (III) is a second-kind integral equation5, which is generally well-
behaved for iterative solution.

2.1.3 Discretization via Method of Moments
The integral equation (III) generally does not admit a closed-form solution for arbi-

trary shapes and impedance profiles, so we resort to numerical solution. The Method
of Moments (MoM) is a well-established technique to solve such integral equations in
electromagnetics [10]. The MoM approach involves discretization of the continuous cur-
rent J(r) into a finite set of basis functions and testing the integral equation against a
corresponding set of testing functions. There are various numerical methods to choose
basis functions and testing functions. If testing functions is chosen to be the same as the
basis functions, this approach is called Galerkin method. This discretization converts the
continuous equation into a matrix equation that can be solved on a computer.
In practice, the metasurface surface SIBC is first meshed into small elements. These
elements are often chosen to be triangles to cover arbitrary shaped surfaces. Over this
mesh the unknown surface current is expanded as:

J(r) ≈
NØ

n=1
In Λn(r), (2.11)

5A “second-kind” Fredholm integral equation has the form ϕ(x)+
s

S
K(x, y) ϕ(y) dy = f(x), i.e. the

unknown ϕ appears both outside and inside the integral. Thanks to the identity term, the operator
I + K is better conditioned (it admits a convergent Neumann series for ∥K∥ < 1), so discretizations
lead to stable, efficiently solvable linear systems.
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where Λn are a set of known vector basis functions and In are the unknown expansion
coefficients to be determined [10]. A common choice for metallic surfaces is to use the
Rao-Wilton-Glisson (RWG) basis functions, defined on pairs of adjacent triangular mesh
elements, which ensure current continuity across the mesh and are divergence-conforming.
Each RWG basis Λn is associated with an interior edge of the mesh and represents a
linearly varying current distribution on the two triangles sharing that edge. Using such
bases, the surface current is fully described by the coefficients In on the mesh edges [10].
We can recast the continuous integral-differential equation (III)

L[f ](r) = g(r) (2.12)

where L is our linear boundary-integral operator, g is the known excitation (e.g. the
incident field), and f is the unknown surface current—into a finite, algebraic system by
expanding f in a suitable basis. Concretely, we write

f(r) =
NØ

n=1
In φn(r), (2.13)

where {φn}N
n=1 are chosen RWG basis functions, and the coefficients {In} become the

unknowns in our Method of Moments discretization. Substituting this expansion into
L[f ] = g and enforcing a testing procedure (Galerkin, collocation, etc.) then yields an
N ×N linear system for the vector I = [I1, . . . , IN ]T .
Substituting (2.13) into (2.12) and using linearity yields

NØ
n=1

In L[φn](r) ≈ g(r). (2.14)

We define the residual function as

R(r) = g(r)−
NØ

n=1
In L[φn](r), (2.15)

and require that the residual vanish in a weighted (weak) sense.
To enforce this, we introduce a set of test functions {wm(r)}N

m=1 and an inner product

⟨wm, φn⟩ =
Ú

D
wm(r) · φn(r) dD. (2.16)

Here, D denotes the common support over which both sets of functions live.

D = Df ∩Dw, (2.17)

where Df is the region on which the expansion basis {φn} is defined, and Dw is the region
on which the testing functions {wm} are defined. In practice this ensures that (2.16) only
integrates over points where both wm and φn are nonzero.
We then enforce

⟨wm, R⟩ = 0, m = 1, . . . , N, (2.18)
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substituting (2.18) into (2.15) gives the system of equations

NØ
n=1

In ⟨wm,L[φn]⟩ = ⟨wm, g⟩, m = 1, . . . , N. (2.19)

The equation (2.19) can be written in compact form as

Z I = V, (2.20)

thus, the generic EFIE can be discretized. In (2.20),

Z =


⟨w1, L(φ1)⟩ ⟨w1, L(φ2)⟩ · · · ⟨w1, L(φN )⟩
⟨w2, L(φ1)⟩ ⟨w2, L(φ2)⟩ · · · ⟨w2, L(φN )⟩

...
... . . . ...

⟨wN , L(φ1)⟩ ⟨wN , L(φ2)⟩ · · · ⟨wN , L(φN )⟩

 (2.21)

I =


I1
I2
...
IN

 (2.22)

V =


⟨w1, g⟩
⟨w2, g⟩

...
⟨wN , g⟩

 (2.23)

In a compact format we can write

Zmn = ⟨wm,L[φn]⟩, Vm = ⟨wm, g⟩, I = [I1, . . . , IN ]T , (2.24)

yielding the Method-of-Moments system indicated in (2.20).
In the Galerkin method, one sets wm = φm, resulting in a symmetric formulation where
the test and basis functions are the same.
In summary, through MoM discretization we obtain a tool to compute, for a given
impedance profile Z(r) (hence a given Z matrix), what surface current and radiated
fields will result. These analysis tools—the IBC modeling, SIE formulation, and MoM
solution—form the foundation upon which we can build an inverse design methodology,
as described next.
Before moving on, it is important to note that the accuracy of this model has been vali-
dated extensively in literature for metasurface antennas. By comparing MoM-IBC solu-
tions to full-wave simulations or measurements, one finds that a well-chosen homogenized
model can predict the antenna performance accurately while being far more computation-
ally efficient[16, 22]. These methods will be used not only to design the metasurface (in
inverse design context) but also later to verify the final design by a forward solve of the
EFIE-IBC system.
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2.2 Automated Inverse-Design Technique
With the analytical framework in place, we turn to the core topic of automated inverse

design for metasurface antennas. The goal of inverse design is essentially the reverse of
analysis: instead of determining the radiation from a given impedance profile, we seek
to find the impedance profile (or equivalently, the surface currents) that will produce a
desired radiation pattern, given a specified excitation. In other words, we want to solve
the "inverse problem" of metasurface synthesis—automatically computing the required
spatial impedance Z(r) (or J(r)) to meet design objectives.

2.2.1 Geometry

We first define the metasurface antenna geometry and the design specifications. The
techniques discussed are general, but for concreteness we consider a representative configu-
ration: a finite planar metasurface of radius/width d (on the order of several wavelengths)
that is excited by an integrated feed source. In many low-profile metasurface antennas,
the feed is a surface-wave source embedded at or near the metasurface plane [26]. For
example, the feed could be a small coaxially-fed monopole or a launch structure that
generates a cylindrical surface wave that propagates outward across the metasurface.
This in-plane source configuration is a distinguishing feature of metasurface antennas
compared to, say, conventional reflectarrays (which are illuminated by an external horn).
It enables very compact, low-profile designs but also introduces a strong coupling between
the source and the metasurface that must be accounted for [26].
For generality, we do not assume the presence of a perfectPerfect Electric Conductor
(PEC) ground plane immediately behind the metasurface, i.e., we allow a transparent
metasurface formulation (fields on both sides) as discussed in Section 2.1.2. In practice,
many designs do include a ground plane a short distance behind the metasurface (espe-
cially if using a dielectric substrate) to prevent backside radiation and to support the
surface wave. This effectively makes the metasurface opaque in terms of radiation. How-
ever, even such cases can be handled by the transparent formulation by including the
ground plane in the Green’s function of the background medium [26].
The important aspect of the geometry is that the metasurface is a single continuous sheet
(possibly backed by layers) on which we can impose an impedance profile. We partition
the metasurface aperture into a number of unit cells or subdomains for the purpose of
design. In a physical device, each unit cell corresponds to one metamaterial element
(e.g., one patch or one slot) whose geometry can be tuned to realize a specific impedance
value. For the inverse design algorithm, it is convenient to define these cells such that the
impedance is considered uniform within each cell. For instance, one might use a grid of
small identical shapes (pixels) or simply leverage the MoM mesh elements as "cells".
In our approach, we effectively use the MoM discretization itself as the canvas for design:
the surface is modeled by many small triangular patches and we can assign an impedance
value to each patch (or group of patches) [26]. Thus, the continuous function Z(r) is
expanded in a piecewise-constant manner:
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Figure 2.1. Example of geometry for a metasurface antenna layout: (a) 3D view showing
the configuration with an on-surface source for the incident field; (b) cross-sectional view
illustrating the equivalent surface current J.

Z(r) =
NcØ
ℓ=1

zℓ Ψℓ(r), (2.25)

where Nc is the number of chosen cells and Ψℓ(r) is 1 on cell ℓ and 0 elsewhere [26]. Each
coefficient zℓ represents the impedance value on cell ℓ. This expansion is analogous to
what we saw for currents in Eq. (2.11); here it is the impedance profile that is discretized.
In essence, the metasurface is divided into Nc elements, each assumed to have an approx-
imately uniform impedance that we need to determine. Typically, the cell size is on the
order of the unit cell period of the physical metasurface (often a small fraction of the
wavelength). By choosing Nc sufficiently large, one can approximate a smoothly vary-
ing ideal impedance profile. In many design cases, Nc will equal the number of physical
meta-elements. For example, if the metasurface uses a periodic lattice of patches, each
patch (or each cluster of sub-cells for fine resolution) would correspond to one impedance
variable.
It is important to note the coordinate system and polarization definitions in this geometry.
We consider the metasurface lying in the xy-plane (at z = 0 for instance). The radiation
pattern is observed in the far field characterized by spherical angles (θ, ϕ): θ is the polar
angle from broadside (+z axis) and ϕ the azimuth angle. For a single-feed design, we
often aim for an axial beam (along +z) or a shaped beam within some angular sector.
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Figure 2.2. Example of mesh employed in the design. Only the impedance surface is
discretized, and the effect of the grounded substrate (background medium) is taken into
account by the multilayer Green’s function.

The metasurface can be designed for a specific polarization of radiation (e.g., linear polar-
ization oriented along some axis, or circular polarization). For linearly polarized designs,
Z(r) can be considered a scalar or at most a diagonal tensor (one value for the electric field
component along the polarization direction of interest). For circularly polarized designs,
anisotropic impedance patterns might be required, or one may design two orthogonal lin-
ear polarization distributions with a quadrature phase difference to synthesize circular
polarization. In the scope of our discussion, we will focus on the impedance as a scalar
function, keeping in mind that extension to tensorial impedance is possible if needed for
polarization control.

2.2.2 Constraint Definition

Automating the design requires formalizing the design constraints and objectives. We
have already touched upon the critical physical constraint which is the impedance must
remain passive and lossless everywhere. Now we list all the major constraints that need
to be considered in the inverse design problem:

Passivity & Losslessness. As derived in Section 2.1.1, this means ℜ{Z(r)} = 0 for
all points (no resistive component) [26]. The metasurface cannot locally absorb power; all
incident power must be either re-radiated or guided away, and none can be lost as heat.
In practice, a small resistive part might be tolerated if one designs a deliberately lossy
matching layer, but here we focus on fully reactive surfaces (no intentional loss). This
condition ensures the designed surface can be realized with purely reactive elements like
metal patches and does not require active components or lumped loads that provide gain
or dissipation [26].
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Impedance Value Bounds. There are practical limits to the reactive impedance val-
ues that can be achieved by a meta-atom of given size and technology. Extremely high or
low reactances may correspond to geometries that are too small or too large to fab-
ricate, or they may push the homogenization assumption too far. We thus enforce
Xmin ≤ X(r) ≤ Xmax for the reactance at every point. For example, Xmin might be
related to a capacitance limit when patches approach touching, and Xmax might corre-
spond to an inductance limit when patches shrink to small dots. These bounds ensure the
synthesized impedance profile is realizable with actual structures. Typically, Xmin and
Xmax are determined either by prior full-wave simulations of unit cells or by experimental
considerations (such as avoiding element self-resonance frequency bands). In practice,
every metasurface implementation imposes a finite “reactance window” dictated by the
chosen unit-cell technology and substrate. For example, suppose our design uses printed
square-patch elements on a given dielectric—after simulating or measuring those patches
at the operating frequency, we find that the smallest feasible patch still exhibits about
+10 Ω of surface reactance, while the largest patch we can fit into a single unit cell pro-
vides up to +300 Ω. Any attempt to push below 10 Ω would require unrealistically large
patch areas (or vanishingly small gaps), and any attempt above 300 Ω would force features
so small and closely spaced that the etching process fails or losses become excessive.
Consequently, during optimization we impose a hard bound on the local reactance:

Xmin Ω ≤ X(r) ≤ Xmax Ω, ∀ r ∈ SIBC. (2.26)

By constraining X(r) to this interval, we guarantee that every synthesized impedance
value corresponds to a patch geometry that our fabrication process can actually produce.
In other words, the design algorithm never proposes X(r) outside [10, 300] Ω, because any-
thing beyond this range falls into “unrealizable” territory for our chosen patch-technology-
on-substrate.

Radiation Pattern Constraints: The raison d’être of the design is to meet certain
far-field radiation criteria. Usually, the specifications are given in terms of a desired
radiation pattern or a mask. A mask-type amplitude constraint means that at each angle
(θ, ϕ) in the far field, the radiated field amplitude F (θ, ϕ) should either exceed a minimum
value (in the main lobe region) or stay below a maximum value (in sidelobe or forbidden
regions) [26]. For example, a typical requirement might be: produce a pencil beam toward
boresight with gain G0, while ensuring sidelobe levels are at least 20 dB down in specified
angular regions. This can be translated into an upper mask F (θ, ϕ) ≤ Fmask(θ, ϕ) for those
angles (sidelobe region) and an equality or lower bound in the main beam direction. Other
pattern constraints might include null placement (forcing radiation to near-zero in certain
directions), symmetry constraints, or polarization purity (e.g., cross-polarization levels to
be kept low). For our formulation, we can denote the target far-field amplitude pattern as
Fd(θ, ϕ) (which could be piecewise defined by masks), and require |F (θ, ϕ)−Fd(θ, ϕ)| ≤ ϵ
or similar for all angles, where ϵ is a tolerance. In practice, one incorporates these pattern
requirements into the objective function to be minimized (as discussed in Section 2.3.1),
rather than as hard constraints, to allow some trade-offs.
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Surface-Wave Power Conservation: In the case of surface-wave-fed metasurface an-
tennas, there is an implicit constraint related to the guided wave: we want the incident
surface-wave power to be gradually converted to radiation with minimal back-reflection.
If the metasurface impedance profile is poorly designed, the surface wave may reflect sig-
nificantly (like encountering a mismatch), resulting in standing waves on the surface and
reduced efficiency. For a passive lossless surface, any local mismatch doesn’t cause absorp-
tion but does cause power to be reflected back toward the source. Thus, a design strategy
is to ensure local impedance matching between the surface wave and free-space radiation
at each point, a concept sometimes termed local impedance equalization [7]. In more
concrete terms, the impedance must be such that the forward traveling wave continuously
leaks power out without any portion needing to reflect backward. While this condition is
hard to enforce exactly in a global optimization, it can be encouraged by penalizing any
residual guided wave at the aperture edge or by using analytical guidance (e.g., choosing
an initial impedance profile that roughly follows the Marcuvitz leaky-wave solution for
a given illumination). In some state-of-the-art design methods, the introduction of care-
fully tuned auxiliary surface waves is used to redistribute power and achieve local power
conservation across the aperture [25, 4].
In our method, we will implicitly handle this by including the appropriate terms in the
cost function (for instance, a term representing un-radiated power or reflected power can
be minimized).
The above points can be summarized in Table 2.2 for clarity. These constraints must
all be kept in mind when setting up the inverse design algorithm. Some of them (like
passivity and impedance bounds) are hard constraints that must be satisfied in the final
design. Others (like pattern fidelity or minimized reflection) are typically handled as soft
constraints or objectives that the algorithm seeks to optimize.

Table 2.2. Key design constraints for inverse metasurface synthesis.

Constraint Description
Passive & Lossless Surface The metasurface must not absorb or generate net power.

This requires a purely reactive local impedance: ℜ{Z(r)} =
0 for all r [26].

Impedance Bounds The local surface reactance X(r) = ℑ{Z(r)} must lie within
realizable bounds: Xmin ≤ X(r) ≤ Xmax. These limits re-
flect fabrication constraints and available meta-atom geome-
tries.

Radiation Pattern Mask The far-field pattern must meet design specifications, such
as achieving desired gain in the main lobe and suppress-
ing sidelobes. Constraints can be expressed via an ampli-
tude mask F (θ, ϕ) ≤ Fmask(θ, ϕ) in angular regions of inter-
est [26].

It is worth noting that satisfying all these constraints simultaneously is non-trivial.
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There is often a tension between pattern requirements and physical constraints. For
instance, extremely low sidelobes might only be achievable if the aperture illumination is
tapered, but a strong taper could imply regions of very low power flow which might conflict
with using only passive elements (as they cannot amplify). Or, ensuring a very broad
bandwidth might conflict with maintaining purely reactive impedance over frequency.
In this chapter, however, we focus on the single-frequency design problem (at the center
frequency of operation), and the constraints above apply at that design frequency.
Having established what needs to be enforced, the next step is to cast the design task
as a solvable mathematical problem—typically an optimization problem—and devise an
algorithm that navigates the design space to find an optimal solution that meets the above
criteria.

2.3 Current-based Optimization Algorithm
In this section, we describe in detail the proposed method for synthesizing metasur-

face antennas. The primary objective of the design procedure is to determine the spatial
variation of the surface impedance. However, rather than optimizing impedance values
directly, the algorithm is formulated to work exclusively with the equivalent surface cur-
rent. At the conclusion of the optimization, the optimized current distribution is used to
compute the corresponding impedance.
By focusing on the current instead of solving the forward problem at every iteration,
the method achieves significant reductions in computational complexity. This strategy
requires that the sought-after current can be constrained to correspond to a passive, loss-
less surface while also producing a radiated field that meets the specified performance
criteria. Additionally, bounds on the reactance implied by the current must respect prac-
tical realizability constraints, all without explicitly evaluating that reactance during the
optimization.

2.3.1 Algorithm Formulation
The optimal current is defined as the minimizer of an unconstrained cost function,

expressed purely in terms of the current coefficients:

I⋆ = arg min
I∈CN

f(I) . (2.27)

The total cost is split into two terms:

f(I) = frlz(I) + frad(I) , (2.28)

where frlz enforces physical realizability (e.g., passivity, reactance bounds), and frad en-
codes electromagnetic performance (e.g., pattern matching).
Whenever inequality-type constraints appear—such as field masks or bounds on the reac-
tance—we impose them using a ramp function:

r(x) = max(x, 0) . (2.29)
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For example, the condition a ≤ b is satisfied when r(a− b) = 0.
To improve numerical behavior and avoid local minima, each term in the cost is con-
structed as a fourth-degree polynomial in I, with ramp functions used for inequalities.
The general cost takes the form:

f(I) =
Ø

d

qd(I) sd(I) +
Ø

d

[r(td(I))]2 = qT (I) s(I) + rT (t(I)) r(t(I)) , (2.30)

where

q(I) = [q1(I) q2(I) · · · ]T , (2.31)
s(I) = [s1(I) s2(I) · · · ]T , (2.32)
t(I) = [t1(I) t2(I) · · · ]T . (2.33)

Each qd, sd, and td is a quadratic form in the current vector:

qd(I) = Φ I†AdI + I†bd + cd , Φ ∈ {ℜ,ℑ} , (2.34)

where Ad ∈ CN×N is positive-definite, bd ∈ CN , and cd ∈ C. Restricting to even-degree
polynomials guarantees boundedness below and ensures cost divergence as ∥I∥ → ∞.
The matrices Ad are chosen to allow efficient evaluation, often using sparse structures or
FFT-based matrix–vector products.
To minimize the cost (2.27), we employ a nonlinear Conjugate Gradient (CG) method, as
summarized in Algorithm 1. The algorithm leverages the efficiency of MoM-based field
evaluation and allows large problems to be solved with O(N logN) complexity and O(N)
memory.

Algorithm 1 Nonlinear Conjugate Gradient Method
Require: Initial guess I0
Ensure: Optimized current I⋆

1: Compute initial gradient: g0 ← ∇f(I0)
2: Set initial direction: p0 ← −g0
3: for k = 0 to Kmax − 1 do
4: Line search: find step size αk that minimizes f(Ik + αpk)
5: Update current: Ik+1 ← Ik + αk pk

6: Compute new gradient: gk+1 ← ∇f(Ik+1)
7: Compute CG coefficient: βk ← ∥gk+1∥2

∥gk∥2

8: Update search direction: pk+1 ← −gk+1 + βk pk

9: end forreturn I⋆ ← IKmax

A key step is the line search (step 4), which identifies the optimal step size αk along
the direction pk. Since each component of f(I) is a low-degree polynomial in I, we can
efficiently derive or bracket the optimal αk analytically, ensuring robust convergence.
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After convergence, one may apply smoothing to the current before converting to an
impedance distribution. However, in this work, no smoothing is applied so as to pre-
serve the native structure of the optimized solution. The impedance profile is directly
computed from the current using the inverse EFIE-IBC formula (Eq. (2.20)).
This formulation is somewhat hybrid, as it includes a condition that couples J and Z via
the EFIE. In practice, we do not explicitly enforce EFIE at every step of the optimization;
instead, we ensure that the J we work with is one that could exist on the surface for some
Z. One way to do this is to incorporate the EFIE into the objective function as a penalty
(ensuring J and E maintain consistency), or more directly, to always compute E from J
using the forward operator (which automatically satisfies Maxwell’s equations) and then
use E to derive Z.
The strategy we adopt is to allow J to freely vary (subject to some regularization) and
focus on matching the far-field pattern. The physical feasibility of J in terms of an
impedance will be enforced by post-processing or by separate penalty terms. In simpler
terms, our objective function can be written as a sum of terms:

• frad(J): quantifies error in the radiated field relative to the target pattern (e.g.,
mean square error in far-field amplitude where the pattern has to match, plus large
penalties if any sidelobe exceeds mask).

• frlz(J): penalizes any violation of impedance constraints and power constraints. This
could be further split into, for example, fact (penalizing any real part in the effective
impedance), fimpL and fimpU (penalizing if impedance needed falls below Xmin or
above Xmax), etc.

These can be combined into a single scalar cost function, for instance:

Ftotal(J) = frad + frlz = w1fpattern + w2fact + w3fimpL + w4fimpU + · · · (2.35)

where wi are weights that balance the relative importance of each term. This approach is
a penalized optimization or augmented Lagrangian method: rather than strictly enforcing
the constraints at every iteration, we guide the solution by making violations costly in the
objective [26]. In practice, we might start with certain weights and adjust them during
the optimization (this is sometimes done via a homotopy or continuation method, where
constraints are gradually enforced more strictly) [26].
For example, one could begin optimizing for the pattern with a relatively low penalty on
impedance reactance bounds to allow the algorithm freedom, then progressively increase
those penalties to push the solution into the feasible impedance range. The optimization is
performed over the space of possible current distributions J , which (after MoM discretiza-
tion) becomes an N -dimensional space of the current coefficients In. This is typically a
very high-dimensional space (thousands of unknowns or more). We therefore employ a
gradient-based optimization algorithm, which can handle high dimensions by using gra-
dient (first-order) information rather than brute-force search. In particular, methods like
nonlinear conjugate gradient (NLCG) or quasi-Newton (like L-BFGS) are suitable.
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In this work, a gradient-based iterative algorithm with line search is used [26]. Each
iteration involves computing the objective function and its gradient with respect to all
current coefficients, then updating the currents in a direction that reduces the cost.
A crucial part of this is the ability to compute the gradient efficiently. Fortunately, the
problem structure allows us to do so. The relationship between J and the radiated field
is linear (through the radiation integral or MoM matrix), and many of our constraints are
quadratic or at least differentiable with respect to J .
In essence, to find the sensitivity of the far-field pattern to changes in current, we can
simulate a back-propagation: for example, inject the field error in the far field as sources
and compute the resulting fields on the surface, which gives the gradient direction for
adjusting J .
The mathematical details aside, the end result is that we can obtain ∇Jfpattern with a
computational cost similar to one forward field computation. Likewise, the gradients of the
impedance penalty terms can be derived from the current and field values at the surface
(e.g., for the loss penalty, ∂floss/∂In ∝ ℜ{Z(r)} in the support of basis n, which in turn
relates to ℜ{Etan} if J is known). All these gradient computations are implemented in our
solver, allowing almost-linear complexity per iteration [26]. In fact, as noted earlier, using
fast methods for the forward problem, the entire objective and gradient can be evaluated
in O(N logN) time [26], which is critical for large N .
The optimization proceeds iteratively: starting from an initial guess for J(r), we compute
the gradient of Ftotal and move J in the negative gradient direction (or a conjugate direc-
tion) by a certain step size that is determined by a line search. A specialized line search
is employed to speed convergence: in our case, a polynomial approximation of the cost
along the search direction is built (using, say, a few samples) and minimized analytically
to find the optimal step [26]. This has been found to be faster than a simple backtracking
or fixed-step approach, because it uses curvature information of the cost function along
that line. In the implemented algorithm, a 4th-order polynomial fit to the objective is
constructed at each line search using consecutive iterations, and the minimum of that
polynomial is taken as the step [26]. This yields an efficient update without requiring
many trial evaluations.
To put it succinctly, the algorithm can be outlined as:

1. Initialize J(0): The starting current distribution. This could be, for example, the
current that would produce the target pattern if unconstrained (sometimes obtained
by solving an inverse source problem without the impedance constraint), or simply
the incident field distribution (as a trivial initial guess).

2. Evaluate cost and gradient: Compute Ftotal(J(k)) and ∇Ftotal(J(k)) using the
forward solver and adjoint techniques.

3. Update direction: Determine a search direction p(k) (for steepest descent, p(k) =
−∇F , for conjugate gradient, combine with previous gradient, etc.).

4. Line search: Find an optimal step α along p(k) that minimizes Ftotal(J(k) +αp(k)).
Use the polynomial approximation method to do this quickly [26].
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5. Update solution: J(k+1) = J(k) + αp(k).

6. Apply any intermediate constraints (optional): One might at this point en-
force any simple constraints. For example, if during the iterations we want to keep
things physical, we could project out any component of J that causes negative ra-
diation resistance, etc. However, in our approach we largely allow J to evolve freely
and only enforce constraints strictly at the end or via penalties.

7. Convergence check: If Ftotal is below a threshold or the change in J is small, stop.
Otherwise, increment k and repeat from step 2.

Because multiple terms are being optimized together, typically one monitors the individual
components of the cost as well. For instance, one might see the far-field error drop initially,
then as penalties ramp up, the impedance term gets addressed. In some implementations,
the weights wi are dynamically adjusted based on intermediate results (as was done in
the reference design, which re-weighted the penalties in stages) [26]. This ensures that
at the end, all constraints are satisfied without having excessively hindered the initial
convergence toward the desired pattern.

2.3.2 Constraints Enforcement
After (or during) the optimization, the design must be rendered physically feasible by
enforcing the constraints from Section 2.2.2 The primary constraints to enforce are the
passivity (ℜ{Z} = 0) and the impedance bounds. There are a couple of strategies to
achieve this.
One simple approach is to perform the optimization allowing Z (or J) to momentarily
violate the constraints if it helps find a good solution, and then project the solution onto
the feasible set at the end. For example, once an optimal current distribution Jopt(r) is
obtained, we calculate the corresponding unconstrained impedance profile:

Zopt(r) = Etan(r)
Jopt(r) (2.36)

Using the final fields and currents. This Zopt might have a small real part or some
values out of bounds. We then modify it as follows: set ℜ{Zopt(r)} = 0 everywhere
(simply drop the resistive part) and clip the imaginary part ℑ{Zopt(r)} to lie within
[Xmin, Xmax] [26]. The result is an adjusted impedance Zphys(r) that is strictly passive
and within limits. One can then do a final forward simulation (analysis) with Zphys to
verify how the pattern turned out. This approach is straightforward and guarantees the
final design meets the physical constraints, although it might slightly degrade the achieved
pattern if the adjustments were significant.
Alternatively, one can enforce the constraints at each iteration or as the solution pro-
gresses. For instance, after each update of J, we could compute the instantaneous required
Z(r) and immediately zero out its real part and clamp its values. However, naively doing
so can stall the optimization or make the problem non-differentiable. A smoother way
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is to include the constraint terms as penalties (as we did) and gradually increase their
weight. In the later iterations of the optimization, the algorithm naturally drives the so-
lution into the feasible region because any residual real part of impedance or out-of-range
reactance incurs a heavy cost. By the final iteration, ℜ{Z} is nearly zero and bounds
are almost satisfied; a final projection as described above then causes minimal change to
the solution [26]. This combined approach was effectively used in prior work and yielded
good results with only negligible adjustment needed at the end.
In addition to the local impedance values, we also want to ensure the solution does not
implicitly require non-passive behavior in terms of power. One check is to compute the
active power balance: the total power radiated by the metasurface should not exceed (or
fall too short of) the power provided by the source. If our solution for J implied that more
power is radiated than provided, it would mean the metasurface is acting as an antenna
with gain > 100% (impossible without active sources). Typically, including the passivity
constraint ℜ{Z} = 0 everywhere inherently prevents net power creation, but it is possible
for an intermediate solution to momentarily act like it would need amplification (if, say,
we heavily overweight pattern over power conservation).
In practice, we can monitor the active power functional

fact =
Ú

S
ℜ
)
p̃(r)

*
dS (2.37)

which should be zero for a passive lossless design, and include it in the cost or at least
verify that it approaches zero in the final design [26]. In the reference implementation,
this was indeed done: the functional fact was one of the terms tracked and its weight
wact was adjusted to drive it to nearly zero by the end of optimization, ensuring no active
power was needed.
The enforcement of constraints is thus a combination of analytic adjustments and optimization-
driven penalties. The end result of the current-based optimization algorithm is twofold:

1. an optimized current distribution Jopt(r) that yields the desired far-field pattern,
and

2. a synthesized impedance profile Zphys(r) derived from that current which is guaran-
teed to be passive and realizable.

The design process deliberately does not assume any specific initial shape for Z(r)—it is
discovered via the current synthesis. This is a key advantage: it avoids getting trapped in
suboptimal designs due to preconceived phase profiles or analytically guessed impedance
patterns. The algorithm can explore unconventional impedance variations that a human
designer might not anticipate, all while respecting Maxwell’s laws through the integral
equation framework.
Finally, it is worth emphasizing that after obtaining Zphys(r), a final verification is usually
performed. This involves plugging Zphys back into a full-wave solver or our MoM model
and analyzing the metasurface’s performance. In Chapter 4, we will see examples of this
verification step, where the EFIE-IBC is solved with the designed impedance to confirm
that the radiated pattern meets the mask and that the device operates as expected [26].
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The numerical results demonstrate that the proposed current-based inverse design strat-
egy is effective: it can handle complex pattern specifications and large apertures, pro-
ducing metasurface antenna designs with excellent performance (e.g., high directivity
and controlled sidelobes) while inherently satisfying the passivity and physicality require-
ments. Recent literature further validates this approach—for instance, Xu et al. achieved
near-100% aperture efficiency in a passive metasurface by optimizing the surface currents
and impedance profile with a similar integral-equation-based method, and Budhu et al.
demonstrated passive beamforming on conformal surfaces using a multi-phase current
and impedance optimization procedure. These successes underscore the power of compu-
tational inverse design in the metasurface realm, as it marries rigorous electromagnetic
modeling with modern optimization to push antenna performance to new heights.
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3.1 Multi-resolution RWG Basis
In this section we introduce Multiresolution Rao–Wilton–Glisson (MR-RWG) basis to

accelerate and stabilize large-scale Method of Moments (MoM) solves for metasurface an-
tennas by hierarchically capturing both global and local current variations. Starting from
a very coarse triangular mesh and repeatedly subdividing edges, we generate a nested
sequence of meshes whose finest “pixel” level recovers full accuracy, while intermediate
levels provide progressively coarser representations. At each level, we split the current
into solenoidal (loop) and non-solenoidal (edge) components: the coarsest-level loops (or
alternative tree-loop functions) serve as scaling functions, and the new loops and RWG
functions introduced by each refinement act as wavelets (detail functions). Crucially, ev-
ery MR-RWG function can be written as a sparse linear combination of the finest-level
RWGs via simple inter-mesh reconstruction relations, so that the method plugs directly
into existing MoM codes. By dramatically reducing the number of effective unknowns at
early iterations, improving the conditioning of the system matrix, and enabling aggressive
sparsification of negligible interactions, the MR-RWG scheme delivers orders-of-magnitude
speedups in iterative convergence while never compromising the final full-resolution solu-
tion.
In multiresolution analysis, we build a nested sequence of function spaces by successively
refining the mesh. Concretely, let

XRWGj (3.1)

denote the span of all RWG basis functions defined on the level-j mesh. Refining each
triangle1 produces a finer mesh whose RWG space contains the coarser one:

XRWGj ⊂ XRWGj+1 . (3.2)

This is the essence of equation (3.2).
Next, hierarchical decomposition theory tells us that the additional functions gained when
moving from level j to j + 1 themselves form a complementary “detail” subspace, which
we call

WRWGj . (3.3)

By construction, every function in the finer space can be uniquely split into a part that
lives in the coarser space plus a part in the detail space:

XRWGj+1 = XRWGj ⊕ WRWGj , (3.4)

as in equation (3.4). Here, the direct-sum symbol ⊕ indicates that XRWGj∩WRWGj = {0}.
Chaining these decompositions over all levels j = 0,1, . . . , L−1 yields the full multireso-
lution expansion of the finest-level space:

XRWGfinest = XRWG0 ⊕ WRWG0 ⊕ WRWG1 ⊕ · · · ⊕ WRWGL−1 , (3.5)

1e.g. by bisecting its edges.
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as in equation (3.5). Where L is the finest level.

By working directly in the multiresolution basis2 we can carry out the entire matrix solve
at reduced cost. Coarse-level scaling functions capture the bulk of the solution’s energy, so
the iterative solver converges quickly on those large-scale modes. Only the smaller wavelet
coefficients remain to be refined, and because they live in progressively smaller subspaces,
their contributions can be updated efficiently. Once the solver has found all scaling and
wavelet coefficients to the desired tolerance, the true full-resolution current distribution is
obtained simply by summing every component. It is exactly a linear combination—that
is, a weighted sum—of all the scaling and wavelet basis functions. If we denote by {ϕ(0)

i }
the scaling functions defined on the coarsest mesh level, with corresponding coefficients
c

(0)
i , and by {ψ(j)

k } the wavelet functions at refinement level j, with detail coefficients d(j)
k ,

then the full high-resolution current distribution is reconstructed as:

J(r) ≈
Ø

i

c
(0)
i ϕ

(0)
i (r) +

L−1Ø
j=0

Ø
k

d
(j)
k ψ

(j)
k (r). (3.6)

In matrix form, we can group all coarse-level coefficients into a vector C0, and detail
coefficients at level j into vectors Dj . The corresponding basis function matrices are Φ0
and Ψj . The full-resolution current vector is then given by:

I = Φ0 C0 +
L−1Ø
j=0

Ψj Dj . (3.7)

Because each of these sets of coefficients is computed in its own much smaller subspace,
the total solve remains computationally efficient. Yet the final answer—the complete
current distribution—is the same linear combination of basis functions that would have
been obtained by solving directly on the fine mesh.

2Each unknown is either a coarse scaling coefficient or a finer wavelet detail coefficient.
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Figure 3.1. Example triangular mesh for a metallic surface. RWG basis functions are
supported on each pair of adjacent triangles.

Figure 3.2. Illustration of an RWG basis function on two adjacent triangles. Ar-
rows indicate the RWG basis with direction of surface current. (a) Coarse mesh
j = 0 (b) Refined mesh j = 1

Figure 3.2 (a) illustrates a single RWG basis function defined over two adjacent triangles,
where the arrow indicates the direction of current flow. Each RWG function is divergence-
conforming and spans a pair of triangles. In the hierarchical construction, scaling func-
tions are formed by combining multiple RWG functions over larger mesh patches. For
instance, a group of RWG functions around a loop can be summed to form a coarse-level
function, while subtracting adjacent basis functions results in a wavelet with zero mean.
This preserves the divergence-conforming (edge-continuity) property essential for physical
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accuracy.
Because the subspaces are nested (as in Equation (3.2)), the hierarchical transformation
introduces no new degrees of freedom beyond those of the finest mesh.3 These basis
functions can be constructed algorithmically via graph-based refinement or edge-merging
techniques.The key advantage of this approach is that it explicitly encodes multi-scale
features. Low-frequency (coarse) current modes reside in XRWG0 , while high-frequency
(fine) variations are captured by successive WRWGj spaces. The hierarchical basis often
exhibits vanishing-moment properties, meaning many off-diagonal entries in the MoM
matrix become negligible and can be truncated. As reported in literature, this wavelet-like
representation enables matrix sparsification with expected minimal impact on accuracy [2].

3.1.1 Construction of MR-RWG Basis
To build our MR-RWG basis, we start by generating a sequence of triangular surface

discretizations of the metasurface, each one a uniform refinement of the previous. At the
very coarsest level j = 0, the surface is represented by just a handful of large triangles; at
each subsequent level j = 1,2, . . . we split every triangle until, at level j = L, we recover
the finest “pixel” mesh used in the standard RWG Method-of-Moments.
On each level j, we collect all of the usual Rao–Wilton–Glisson basis functions defined on
that mesh into a single row vector:

φ(j) =
#
φ

(j)
1 , φ

(j)
2 , . . . , φ

(j)
Nj

$
. (3.8)

Here, Nj is the number of edges in the level-j mesh, and each φ
(j)
n lives on exactly two

adjacent triangles. The space of all possible currents that can be represented at resolution
j is therefore:

XRWGj = span
î
φ

(j)
1 , . . . , φ

(j)
Nj

ï
, (3.9)

meaning any surface-current distribution on that mesh can be written as a linear com-
bination of those Nj basis functions. As j increases, the mesh refines, Nj grows, and
XRWGj becomes a strictly larger subspace, eventually matching the full high-resolution
RWG space at j = L.
The construction of the multiresolution RWG (MR-RWG) basis proceeds in two tightly
coupled phases. First, in the inter-mesh reconstruction step, we compute a sequence of
sparse change-of-basis matrices C(j) that exactly express each level-j RWG basis function
as a linear combination of the finer level-(j + 1) RWGs. By chaining these matrices from
the coarsest mesh (j = 0) up to the finest “pixel” mesh (j = L), we obtain a single block-
triangular transformation matrix TMR←RWG that maps all MR-basis functions directly
into the standard fine-mesh RWG basis.
Second, in the scaling/wavelet decomposition step, we exploit the nested structure of
the RWG function spaces.

3It merely represents a change of basis in the same functional space.
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Inter-Mesh Reconstruction A fundamental property (see [24]) is that every level-j
RWG can be written exactly in the next finer space:

φ(j) = C(j) φ(j+1), j = 0,1, . . . , L− 1, (3.10)

where C(j) ∈ RNj×Nj+1 is sparse and encodes the exact linear combination of level-(j + 1)
RWGs that reproduces each coarser function. Each coarse-level basis can be expressed in
terms of the next finer-level basis via its own sparse matrix C(j). Symbolically,

φ(0) = C(0) φ(1), φ(1) = C(1) φ(2), . . . , φ(L−1) = C(L−1) φ(L). (3.11)

If we recursively substitute each equation into the one before it, we obtain a single
relation that expresses the coarsest-level basis directly in terms of the finest-level basis:

φ(0) =
1
C(0)C(1) · · ·C(L−1)

2
φ(L). (3.12)

So, by chaining these relations from j = 0 up to L− 1, one obtains a single MR-to-pixel
change-of-basis matrix

TMR←RWG =


I
C(0) I

C(0)C(1) C(1) I
...

... . . . . . .

 , (3.13)

which maps the full multiresolution basis—spanning all levels—into the pixel-level RWG
basis φ(L). Rather than applying each interpolation matrix C(j) step-by-step, this con-
struction allows us to apply their cumulative product in a single operation.

Scaling / Wavelet Decomposition Once the nested RWG spaces

XRWG0 ⊂ XRWG1 ⊂ · · · ⊂ XRWGL
(3.14)

have been established via inter-mesh reconstruction, each finer-level space splits into a
coarser “scaling” subspace and a complementary “detail” (wavelet) subspace as in equa-
tion (3.4).
Here, XRWGj denotes the span of RWG functions on mesh level j, capturing all current
modes that can be represented at that resolution. The detail space WRWGj supplies the
new, finer-scale features required to augment XRWGj up to XRWGj+1 .
Detailed functions can be constructed as a combination of two distinct types of wavelets.

Solenoidal (loop) wavelets. Each refinement introduces new interior nodes on the
mesh. Around each such node, one constructs a localized loop basis function supported
on the immediately surrounding triangle fan. These level-j loop functions lie entirely
in WRWGj and capture divergence-free (solenoidal) current patterns not representable at
coarser resolutions.

38



Multiscale Basis and Preconditioning for efficient MTS Inverse Design

Non-solenoidal (edge) wavelets. Simultaneously, every new edge4 gives rise to a
standard RWG basis function. Since refining a triangle pair introduces six new edges,
each such refinement produces six new non-solenoidal wavelets. Excluding any RWGs
inherited from the coarser level ensures these functions span the non-solenoidal portion of
WRWGj and, together with the loops, form a complete detail basis.

Figure 3.3. Detail functions at level j = 1. (a) Solenoidal loop function; (b)–(g)
non-solenoidal edge (RWG) functions[24].

Finally, by chaining together the inter-mesh expansions and the scaling–wavelet splits
across all levels, every MR-RWG basis function—whether a level-0 scaling function or
a level-j detail wavelet—admits an exact representation in terms of the finest (“pixel”)
RWGs. Collecting the level-0 scalings {ϕ(0)

i } and all detail wavelets {ψ(j)
k : 0 ≤ j < L}

into a single stacked vector,

ΦMR =



ϕ(0)

ψ(0)

ψ(1)

...
ψ(L−1)

 , (3.15)

and denoting by φ(L) the row-vector of the NL pixel-level RWGs, this change of basis is
expressed succinctly as

ΦMR = TMR←RWG φ(L), (3.16)

4Defined as an edge present on level j + 1 but absent from level j
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where TMR←RWG is a block-triangular matrix composed of the sparse inter-mesh recon-
struction matrices C(j) and identity blocks.
In practice, this means that once the Method–of–Moments system has been assembled and
solved for the MR-coefficients {c(0)

i , d
(j)
k }, the full high-resolution current (see Eq. (3.6))is

recovered via a single sparse matrix–vector product using TMR←RWG. No additional
fine–mesh solves are required, yet the resulting current lies exactly in the original pixel-
level RWG space.

3.1.2 Multilevel Optimization in the MR–RWG Basis
In the MR–RWG framework, multilevel optimization is implemented by recasting our

original fine-mesh design variables I ∈ RN into a hierarchy of coarse- and fine-scale
coordinates c ∈ RM , and then solving progressively richer subproblems in these nested
subspaces. Concretely, we start from the block-triangular change–of–basis matrix

TMR←RWG ∈ RM×N , (3.17)

whose rows collect all scaling and wavelet basis functions expressed in the fine-mesh RWG
basis. Denoting by I ∈ RN the vector of pixel-level currents and by

c =


c0

d0
...

dL−1

 ∈ RM (3.18)

the concatenated MR–RWG coefficient vector (with c0 in the coarsest scaling space and
each dj spanning the detail subspace WRWGj ), the forward and inverse transforms read

c = TMR←RWG I, I = T−1
MR←RWG c, (3.19)

where T−1 denotes the sparse inverse (or pseudoinverse if M = N).
We then rewrite our original objective f(I) in these coordinates as

åf(c) = f
!
T−1

MR←RWGc
"
, (3.20)

and minimize åf(c) not all at once but block by block. First, we restrict to the coarsest
subspace by holding every detail block dj at zero and optimizing only c0. The reduced
problem

c⋆
0 = arg min

c0

åf(c0,0, . . . ,0) (3.21)

lives in a very low-dimensional, well-conditioned space, and converges rapidly to c⋆
0. Next

we “unfreeze” the first detail block d0, keep all higher dj zero, and solve

d⋆
0 = arg min

d0

åf!c⋆
0, d0,0, . . . ,0

"
. (3.22)
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We continue level by level—at each stage introducing only the new detail coefficients
dj—until all blocks {c⋆

0, d
⋆
0, . . . , d

⋆
L−1} have been optimized. Finally, we map back to the

full fine-mesh solution via
I⋆ = T−1

MR←RWG c
⋆. (3.23)

This multilevel strategy delivers several additional benefits. By capturing the dominant
low-frequency current modes first, the coarse-level solve provides an excellent warm start
for subsequent refinements, reducing the total number of gradient iterations required.
Each detail subproblem involves only a few hundred variables at most, allowing per-level
preconditioning tailored to that scale—which further improves conditioning and reduces
function-evaluation cost. And since the inter-mesh transforms are sparse, the overhead
of switching between representations is negligible compared to the gains in convergence
speed. In practice, this approach can reduce overall runtime by one to two orders of
magnitude compared to a blind fine-mesh optimization, while guaranteeing that the final
full-resolution solution is identical to what one would obtain by solving directly on the
pixel mesh.

3.1.3 Optimization in MR–RWG Basis
We can “lift” the entire optimization into the MR–RWG coordinate system by changing

variables from the fine-mesh currents I to the multiresolution coefficients c. Concretely,
we can define

c = TMR←RWG I, I = T−1
MR←RWG c, (3.24)

and rewrite your objective f(I) as

åf(c) = f
!
T−1

MR←RWGc
"
. (3.25)

Then run your optimizer (NLCG, Adam, AdaHessian, . . . ) on the variable c, never
touching I directly. At each iteration:

1. Evaluate cost:
f = f

!
T−1

MR←RWGc
"
.

2. Compute gradient in I-space:

gI = ∇If
!
T−1

MR←RWGc
"
.

3. Push gradient into c-space:

gc = TMR←RWG gI .

Feed gc to your optimizer.

4. Take an update step:
c ← c+ α p(c, gc),

and if you ever need the physical currents, recover I = T−1
MR←RWGc.
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Because TMR←RWG is sparse and block-triangular, all these transforms cost onlyO(N). By
optimizing directly in c-space you retain full conjugacy and momentum across scales—no
repeated restarts—while still recovering the same fine-mesh solution I⋆ (often with faster
convergence than a one-shot fine-mesh solve).“‘

3.2 Preconditioning Strategies
The metasurface radiation operator is inherently dense in the far-field, the electric field

is given by an integral over the entire current distribution (e.g., via a Stratton–Chu or
Green’s function formulation), such that each basis-function current In contributes to the
field at all observation angles. see Equation (III). Equivalently, the Method of Moments
(MoM) matrix for an EFIE-IBC system is fully populated [1]. Thus, a change in a single
current coefficient alters every far-field and near-field residual. This global coupling means
the system is sensitive to any parameter disparity. For example, multiscale geometry
(mixtures of sub-wavelength and larger features) leads to a very wide range of element
sizes and reactances, causing ill-conditioned matrices. For example, multiscale geometry
(mixtures of sub-wavelength and larger features) leads to a very wide range of element
sizes and reactances, causing ill-conditioned matrices [14]. Similarly, reactive resonances
(elements operating near internal resonant frequencies) introduce nearly singular behavior:
at resonance the EFIE operator develops null-spaces (internal resonances) and the system
becomes ill-conditioned. Anisotropic sampling or weighting of the response—such as non-
uniform far-field angular sampling or highly disparate objective weights—results in certain
current variations producing large changes in the cost function, while others have negligible
effect. This imbalance stretches the optimization landscape into long, narrow “ravines,”
making convergence more difficult for gradient-based methods [9]. Additional factors
contributing to ill-conditioning include:

• Feed coupling: A strong dependence of many surface currents on the driven element
results in localized overexcitation and imbalanced influence across the system.

• Constraint ramping: Nonlinear “activation” of constraints during optimization—such
as gradually applied penalties or activation schedules—alters the local curvature of
the design space dynamically, often leading to abrupt changes in sensitivity.

• Finite-precision effects: Round-off errors and numerical cancellations become
significant in high-dynamic-range problems, particularly when matrix elements differ
by several orders of magnitude.

These mechanisms collectively produce Jacobian or Hessian matrices with extremely large
condition numbers, amplifying numerical instability and degrading both solver conver-
gence and optimization performance.
In the inverse design of a metasurface antenna, one must repeatedly solve the Method-of-
Moments (MoM) system (2.20). We can Interpret this formula as:

(Zd − L) I = Vinc, (3.26)
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where Zd = diag(jX1, . . . , jXN ) contains the individual element reactances, and L repre-
sents the mutual coupling matrix. When the layout includes both deeply sub-wavelength
inclusions (with small |Xn|) and larger phase-shifting elements (with large |Xn|), the diag-
onal entries of Zd can span several orders of magnitude. Meanwhile, L introduces strong
cross-scale interactions via its off-diagonal terms. This disparity drives the condition num-
ber κ(Zd −L) to very large values, which in turn slows down the convergence of iterative
solvers and amplifies the impact of finite-precision round-off errors. This motivates the
use of preconditioning strategies to accelerate convergence in metasurface (MTS) design
optimization, particularly in the presence of severe ill-conditioning.

3.2.1 Mesh-Level (Unit Edge-Flux) Preconditioning
In the RWG-based Method of Moments (MoM) formulation, each unknown current

coefficient In multiplies a basis function φn(r), which is defined over the two triangles
that share edge n. This edge has length ℓn, and the associated RWG function represents
a surface current whose total flux across the shared edge is proportional to In ℓn. In other
words, for fixed In, a longer edge injects more net current into the geometry than a shorter
one, due to the linear dependence of the RWG flux on edge length. The key point comes
directly from how the RWG basis functions are defined.
By construction, the RWG basis function φn(r) associated with edge n satisfies the integral
identity: ÚÚ

supp(φn)
φn(r) dS = ℓn, (3.27)

where ℓn is the length of the edge shared by the two supporting triangles.
When the total surface current is expressed as a linear combination of RWG functions:

J(r) =
Ø

n

In φn(r), (3.28)

the net current flux flowing across the shared edge n is given by:

Φn =
ÚÚ

J(r) · t̂n dS =
ÚÚ

In φn(r) dS = In ℓn, (3.29)

where t̂n is a unit tangent vector aligned with the direction of current flow across the
edge. Thus, for a fixed coefficient In, a longer edge length ℓn results in proportionally
larger total current flux across that edge. Each entry of the Method of Moments (MoM)
impedance matrix involves a double surface integral of the form:

Zmn ∝
ÚÚÚÚ

G(r, r′)φn(r′)φm(r) dS′ dS, (3.30)

where G(r, r′) is the Green’s function, and φn(r′), φm(r) are RWG basis and testing
functions, respectively5.

5Galerkin’s method
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Since each RWG basis function φn integrates to its associated edge length ℓn, the overall
magnitude of column Z:n in the impedance matrix (and similarly the corresponding column
in the far-field projection matrix) scales with ℓn.
Therefore, a longer edge effectively “injects” more current into all testing functions φm,
resulting in proportionally larger values in column n of the matrix.
We can interpret the coefficient In as a current per unit length only if it is scaled by 1/ℓn,
where ℓn is the length of the RWG edge. Without this scaling, a fixed value of In on a
longer edge results in more total charge movement—and therefore stronger radiated or
scattered fields—simply because a longer conductor supports more current flow. In other
words, the same amplitude In produces more physical current, and thus couples more
strongly into the integral equations, when the associated edge length ℓn is larger.
Because the columns of the system matrix grow in norm approximately proportional to
ℓn, the ratio

κ ∝ maxn ℓn

minn ℓn
(3.31)

directly contributes to the condition number of the resulting linear system.
Without compensating for this disparity—such as through unit-flux scaling—basis func-
tions on longer edges dominate the system behavior, leading to a badly unbalanced and
ill-conditioned matrix.
To enforce unit-flux per coefficient, we introduce a simple diagonal scaling. Let

ℓn = length of edge n, D = diag(ℓ1, ℓ2, . . . , ℓN ). (3.32)

We then rescale the RWG basis (or equivalently the unknowns) so that the new basis
functions

ψn(r) = φn(r)
ℓn

(3.33)

satisfy the unit-flux condition:ÚÚ
ψn(r) dS = 1

ℓn

ÚÚ
φn(r) dS = 1. (3.34)

Equivalently, if I collects the original coefficients in (3.28), we define scaled coefficients åI
by åI = D I, =⇒ J(r) =

Ø
n

åIn ψn(r). (3.35)

Substituting into the Method-of-Moments system Z I = V and multiplying both sides by
D, we obtain

DZD−1 åI = DV. (3.36)

Thus, the preconditioned matrix

åZ = DZD−1 (3.37)

has columns (and rows) with norms independent of edge length ℓn. We solve
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åZåI = DV (3.38)

and recover the original coefficients via

I = D−1åI. (3.39)

By enforcing unit edge-flux in this way, we eliminate the large dynamic range in column
norms (and in gradient components), thereby dramatically improving the conditioning
and convergence speed of both direct and gradient-based solvers.

3.2.2 Gradient Preconditioning via Hessian Diagonal
Previously we introduced unit-flux preconditioning to balance every current coefficient

by its edge length so that no basis function overpowers the update simply because it spans
a longer mesh edge. Building on that foundation, Hessian preconditioning goes a step
further by measuring how sharply the cost function curves along each current coefficient
and then rescaling every gradient component by the inverse of its own second derivative.
In practice we compute or approximate only the diagonal entries of the Hessian so that
sharp dimensions are automatically damped and flat dimensions receive larger nudges.
This per-coordinate scaling turns the long narrow “ravines” of the metasurface design
landscape into more uniform basins and unleashes much faster, more balanced progress
without ever assembling or inverting the full Hessian.
Because our metasurface-antenna objective function combines explicit quadratic power-
balance terms (see Section 2.3) with smooth ramp penalties, its second derivatives admit
closed-form expressions. Since the cost is a real-valued function of complex currents, we
employ Wirtinger (CR) calculus to compute its Hessian exactly [13].
A convenient way to define the complex Hessian for a real-valued function

f : CN → R, I → f(I), (3.40)

is via the Wirtinger-type second derivatives. In particular, by treating I and its complex
conjugate I∗ as independent variables, the complex Hessian is given as a 2N × 2N block
matrix of all second derivatives:

∇2
CRf(I) =

A
∂2f

∂I ∂I∗
∂2f

∂I ∂I
∂2f

∂I∗ ∂I∗
∂2f

∂I∗ ∂I

B
. (3.41)

Of the four second-derivative blocks in the complex Hessian, the block that directly cap-
tures the real curvature along each complex-coefficient direction is the mixed derivative

Hmixed = ∂2f

∂I ∂I∗
, (3.42)

which belongs to the upper-left part of the full complex Hessian matrix ∇2
CRf . This

block is Hermitian by construction and, for a real-valued cost function, it contains the
precise information about how small variations in each complex coefficient In influence
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the gradient norm. In practical implementations, we extract only the diagonal entries of
Hmixed to estimate local curvature. That is, we define

Hii = ∂2f

∂Ii ∂I∗i
, (3.43)

and use this diagonal as the foundation of our curvature-based preconditioner. This
Jacobi-style approximation is efficient, requiring only O(N) operations to compute and
store, and proves sufficient for rebalancing step sizes across the stiff and flat directions
encountered in metasurface optimization problems.
Hii reflects the sensitivity of the cost function to perturbations in the ith design variable.
Large variations in curvature across coordinates result in ill-conditioning, which hampers
the efficiency of gradient-based solvers. In another words:
In our inverse-design problem, the diagonal entry Hii of the Hessian quantifies how sharply
the cost function changes when the ith current coefficient Ii is perturbed. When these
diagonal curvatures vary significantly across coordinates, the resulting ill-conditioning
severely hampers the convergence rate of any gradient-based solver. Broadly, two limiting
regimes emerge:

Stiff directions (|Hii| ≫ 1). These are associated with basis functions whose currents
exert a disproportionately large influence on the far-field pattern—such as elements near
the main-beam steering zone or those operating near reactive resonances. If left unscaled,
these stiff directions force the global step size to be extremely small to maintain stability,
effectively stalling progress in all other directions. By dividing the update ∆Ii by |Hii|,
we attenuate these overly sensitive coordinates and allow a larger overall step size without
risking divergence.

Flat directions (|Hii| ≪ 1). These correspond to basis functions located in weakly
radiating zones, electromagnetically shadowed regions, or areas where penalties are inac-
tive. The gradient magnitudes here are small, so uniform step sizes result in negligible
updates—causing stagnation. Rescaling by 1/|Hii| boosts these directions, helping them
evolve on the same footing as the stiff components.
This simple Jacobi (diagonal) preconditioning therefore balances the effective step lengths
across all coordinates, significantly accelerating convergence in our non-convex metasurface-
antenna optimization landscape.
Using a single scalar step size η implicitly assumes that every design variable Ii experi-
ences the same local curvature and gradient scale. In practice, Some currents lie in stiff
regions—such as those near resonances or tightly coupled to the main lobe—where even
a small perturbation leads to a large change in the objective function. Others lie in flat
regions, where they are weakly radiating, masked out, or otherwise have little influence
on the cost. As a result, a single global step size η must be chosen small enough to ensure
stability in the stiffest direction, which effectively freezes progress along all flat directions.
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By introducing a diagonal preconditioner

P = diag(|H11|, . . . , |HNN |), (3.44)

Each update is then computed as:

∆Ii = −η gi

Pii
, (3.45)

is scaled inversely to its local curvature. Stiff directions (large Pii) are damped, while flat
directions (small Pii) are boosted.
This per-coordinate adaptation equalizes the effective step length across all variables,
allowing faster and more balanced convergence than a single global step size. In a non-
convex optimization landscape with many active ramp constraints and piecewise changes,
coordinate-wise scaling helps prevent the line-search from repeatedly backing off to satisfy
descent conditions in a few stiff directions. This saves numerous costly function and gra-
dient evaluations, improving overall efficiency. Each preconditioned step now respects the
underlying physics: currents that strongly influence the fields are adjusted conservatively,
while weakly coupled currents are still allowed to evolve meaningfully. Diagonal scal-
ing replaces an overly cautious, one-size-fits-all step size η with a locally calibrated step
for each basis function—dramatically accelerating convergence by exploiting the natural
curvature variations inherent in metasurface designs.
Unit-flux scaling and Hessian-based diagonal preconditioning each tackle a different root
cause of slow convergence in metasurface antenna design. First, normalizing every basis
coefficient so that a unit value always represents the same total current removes the
purely geometric bias that comes from uneven edge lengths. Once that imbalance is gone,
Hessian-informed scaling steps in to recognize which currents really drive rapid changes in
the cost and which barely move the needle, damping updates in highly sensitive directions
and amplifying those in nearly flat regions. Together these two strategies form a powerful
one-two punch: edge-length normalization lays a level playing field, and curvature-aware
adjustment then steers each update by true physical sensitivity rather than mesh quirks.
The result is an optimizer that can push boldly where it is safe and inch forward where
it must, all without wasting time on needless backtracking or tiny, one-size-fits-all step
sizes.
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4.1 Problem Formulation and Challenges

As detailed in Section 2.3.1, the optimization problem is narrowed down to find the
current coefficients minimizing the objective function.The optimal current is obtained by
solving the unconstrained optimization problem

I∗ = argmin
I∈N

f(I), (4.1)

where the cost function f is designed so that, for the minimizer Iopt, the resulting meta-
surface antenna satisfies all the constraints defined in Section 2.2.2. In particular,

f(I) = frlz(I) + frad(I), (4.2)

with the two terms defined below.

Impedance and passivity term. The first contribution in (4.2) is

frlz(I) =
NcØ
i=1

wact
i ρact

i (I) +
NcØ
i=1

wimp
Li ρimp

Li (I) +
NcØ
i=1

wimp
Ui ρimp

Ui (I) +
NcØ
i=1

wscal
i ρscal

i (I) (4.3)

ensuring that the current obtained from (4.1) yields a scalar impedance , a passive and
lossless structure , and a reactance that remains within the technological bounds. See
table 4.1.

Radiation mask term. The second contribution in (4.2),

frad(I) = wref ρref(I)+
NcØ
j=1

wco,L
j ρco,L

j (I)+
NcØ
j=1

wco,U
j ρco,U

j (I)+
NcØ
j=1

wcx
j ρcx

j (I)+
NcØ
j=1

wtot
j ρtot

j (I),

(4.4)
guarantees that the radiated field lies inside the prescribed masks (see Figure 5.1). See
table 4.2.
Equations (4.3) and (4.4) together make f(I) a scalar objective formed by the weighted
sum of all relevant penalties.
The general algebraic expression of the objective function is given by

f(I) =
Ø

i

qi(I) si(I) +
Ø

i

ramp2!ti(I)", (4.5)

where qi(I), si(I), and ti(I) are multivariable quadratic functions of the current coefficients
of the form:

qi(I) = ℜ
î

IHAiI + IHbi + ci

ï
, (4.6)

where Ai ∈ CN×N is a Hermitian matrix, bi ∈ CN , ci ∈ C, and I ∈ CN is the current
vector. The definition of the objective function and constraints are explained in the sec-
tion 2.3.1. The objective function (4.2) is minimized using Nonlinear Conjugate Gradient
algorithm.
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The current vector is updated iteratively according to

Ik+1 = Ik + αk pk, (4.7)

where Ik is the current iterate, pk is the search (update) direction, and αk is a scalar
step length to be determined. αk is obtained by a one-dimensional minimization of the
objective function along pk which is the so called line-search.

α∗ = argmin
α∈R

f
!
Ik + αpk

"
. (4.8)

Because f becomes a piece-wise fourth-degree polynomial when expressed solely as a
function of α (due to the ramp functions), its derivative is a cubic polynomial possessing
two local maxima and a single local minimum. These stationary points can be located
analytically, making the line-search relatively straightforward and inexpensive.
Although the fourth-order structure is computationally convenient, it renders the global
non-convex optimization . Indeed, fixing a starting current Ik and a direction pk turns
f into a sum of quartic terms, which is generally non-convex. Although the Nonlinear
Conjugate Gradient method with exact line search (NLCG + LS) has served as a reliable
baseline for current-based metasurface synthesis, it suffers from several inherent limita-
tions when applied to the non-convex and high-dimensional nature of our optimization
landscape.
Nonlinear conjugate-gradient with exact line-search remains attractive for metasurface-
antenna design because it requires minimal memory—storing only a handful of past search
directions—and its deterministic update rules guarantee descent and affine-invariance on
quadratic problems. However, in our highly ill-conditioned, nonconvex setting these
strengths become weaknesses: the method can stall in poor basins when its fixed con-
jugacy relations fail to navigate complex loss landscapes, and its multi-point line searches
dramatically increase per-iteration cost by repeatedly evaluating both the objective and
its gradient along each search direction. Moreover, beyond the implicit curvature captured
by conjugacy, NLCG does not adapt step sizes to local stiffness, so “stiff” directions force
tiny global steps while “flat” directions remain quasi-stationary. In contrast, first-order
methods like Adam eliminate line-search overhead by using momentum and adaptive per-
parameter rates, and second-order schemes such as AdaHessian further employ lightweight
Hessian-diagonal estimates to automatically rescale updates. These modern optimizers
thus deliver far fewer iterations, lower wall-clock time, and reduced risk of entrapment
compared to NLCG in challenging metasurface inverse-design problems.
For a strictly convex quadratic objective, the nonlinear conjugate–gradient (NLCG) method
converges in1

O
!
κ log(1/ε)

"
iterations, where κ denotes the condition number and ε the target relative error. In the
present ill-conditioned metasurface problem, we have

1See, e.g., [19, Eq. (8.12)].
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κ ∼ 106–108,

which implies hundreds of iterations to reach even moderate accuracy.2

Each NLCG step requires solving the one-dimensional stationarity condition

ϕ′(α) = 0,

along the search direction. Although the derivative is analytic, the procedure evaluates
the cost functional and its derivative at several trial points. If a single cost evaluation
(field solve + far-field penalty assembly) takes Tf , one line-search costs

O
!
mTf

"
, m ≈ 3−5,

yielding an overall per-iteration expense of

O
!
(1 +m)Tf

"
,

and further slowing convergence.
Nonlinear conjugate-gradient with exact line-search remains attractive for metasurface-
antenna design because its deterministic update rules guarantee descent and affine-invariance
on quadratic problems. However, in highly ill-conditioned, nonconvex setting, this strength
become weaknesses. The method can stall in poor basins when its fixed conjugacy relations
fail to navigate complex loss landscapes, and its multi-point line searches dramatically in-
crease per-iteration cost by repeatedly evaluating both the objective and its gradient along
each search direction. Moreover, beyond the implicit curvature captured by conjugacy,
NLCG does not adapt step sizes to local stiffness, so “stiff” directions force tiny global
steps while “flat” directions remain quasi-stationary. In contrast, first-order methods like
Adam eliminate line-search overhead by using momentum and adaptive per-parameter
rates, and second-order schemes such as AdaHessian further employ lightweight Hessian-
diagonal estimates to automatically rescale updates. These modern optimizers thus deliver
far fewer iterations, lower wall-clock time, and reduced risk of entrapment compared to
NLCG in challenging metasurface inverse-design problems.

4.2 First-Order: Adam Optimizer
The Adam optimizer sits at the intersection of momentum-based and adaptive-learning-

rate methods, maintaining two running averages at each iteration: a first moment (the
exponentially weighted mean of past gradients) and a second moment (the exponentially
weighted mean of past squared gradients). By bias-correcting these estimates, Adam

2This range was confirmed both by theoretical near-resonance behavior of the continuous EFIE
operator and by direct measurements using Matlab’s condest—a fast, iterative function for estimating
a matrix’s 1-norm condition number without explicit inversion—on discretized MoM matrices for
representative metasurface meshes, which consistently yielded values between 106 and 108.
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computes an update direction that both smooths noisy descent paths and automatically
scales each parameter’s step size according to its recent gradient variability. In effect,
“flat” directions (with small or erratic gradients) are allowed larger moves, while “stiff”
directions (with large, consistent gradients) are tamed to prevent overshoot—all without
any costly line-search or manual learning-rate schedule.

In the inverse design of metasurface antennas, Adam’s self-tuning behavior offers clear
benefits. The highly nonconvex, ill-conditioned landscape—where some current coeffi-
cients couple strongly to the fields and others barely at all—naturally produces gradient
magnitudes spanning many orders of magnitude. Adam’s per-parameter scaling auto-
matically compensates for these discrepancies, making early iterations both stable and
aggressive, and reducing the need for painstaking step-size tuning. By eliminating line
searches and gracefully handling noisy penalty ramps (from far-field mask constraints and
reactive-bounds enforcement), Adam accelerates convergence on large, finely discretized
metasurface grids, often slashing iteration counts by an order of magnitude compared to
conjugate-gradient methods and providing a robust foundation for further curvature-aware
refinements like those in AdaHessian.

4.2.1 Algorithm Overview and Update Rules

Adam tracks two exponential moving averages for each current coefficient. The first mo-
ment, mk, accumulates a decaying history of recent gradients and provides a momentum
effect that smooths out noisy fluctuations. The second moment, vk, accumulates a decay-
ing history of squared gradients and estimates the variance in each direction. To correct
the inherent bias from initializing both averages at zero, Adam computes

ãmk+1 = mk+1

1− βk+1
1

, âvk+1 = vk+1

1− βk+1
2

.

The actual parameter update then divides the bias-corrected momentum by the square
root of the bias-corrected variance (plus a small ε for numerical stability), yielding

Ik+1 = Ik − α
ãmk+1ðâvk+1 + ε

,

so that each coefficient receives its own adaptive step size.
Adam offers several key advantages in the context of metasurface optimization. First, it
requires only a single gradient evaluation per iteration, avoiding costly line searches and
reducing the computational burden compared to NLCG. Second, Adam applies automatic
per-parameter scaling: parameters in stiff directions (with consistently large gradients)
receive smaller steps, while those in flat directions (with small or erratic gradients) receive
larger ones. This property is essential when current-basis sensitivities vary by orders of
magnitude. Finally, Adam’s momentum averaging smooths out oscillations introduced by
non-smooth penalties such as squared-ramp far-field masks, improving stability in rugged,
nonconvex regions.
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Algorithm 2 Adam Optimizer
Require: Initial guess I0, learning rate α, decay rates 0 < β1 < 1, 0 < β2 < 1, stability

constant ε
Ensure: Optimized current I⋆

1: Initialize first moment m0 ← 0, second moment v0 ← 0
2: for k = 0 to Kmax − 1 do
3: Compute gradient: gk ← ∇f(Ik)
4: Update first moment:

mk+1 = β1 mk + (1− β1) gk

5: Update second moment:

vk+1 = β2 vk + (1− β2) g2
k

6: Compute bias-corrected moments:

ãmk+1 = mk+1

1− β k+1
1

, âvk+1 = vk+1

1− β k+1
2

7: Update parameters:
Ik+1 = Ik − α

ãmk+1ðâvk+1 + ε

8: end for
9: return I⋆ = IKmax

4.2.2 Adam : Choice of Hyperparameters
Adam has four primary hyperparameters indicated in table 4.3.

Table 4.3. Adam Hyperparameters

Hyperparameter Default Role in Optimization

α 10−3 (tuning is needed) Global learning rate
β1 0.9 (range [0.8, 0.99]) First-moment decay
β2 0.999 (tune 0.99–0.9999) Second-moment decay
ε 10−8 Numerical stabilizer

Global Learning Rate α is a single scalar that multiplies every parameter update and there-
fore controls the overall step size. If α is too large, Adam may overshoot steep regions
of the cost—such as near mask–violation ramps or resonant-reactance transitions—and
exhibit oscillations or outright divergence. If α is too small, progress along flat direc-
tions—like weakly coupled basis functions or inactive ramps—becomes vanishingly slow,
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stretching convergence times out by orders of magnitude. In metasurface inverse design,
where the cost landscape combines sharp cliffs and broad plateaus, starting at the con-
ventional α = 10−3 often works well. From there, one can refine via a logarithmic grid
search over [10−4, 10−2], or apply a “warm-up” schedule (ramping α from a small value)
followed by annealing to fine-tune convergence without sacrificing early stability.
First-Moment Decay β1 governs how quickly the exponential moving average of past gra-
dients “forgets” older information. Large values (0.9–0.99) impart strong momentum,
smoothing high-frequency noise and carrying the iterate through narrow ravines. How-
ever, in highly non-stationary regimes—such as when squared-ramp penalties suddenly
activate or deactivate—excessive momentum can “lock in” a poor direction and delay
recovery. Reducing β1 toward 0.8 makes the average more reactive to new gradient infor-
mation but also more sensitive to erratic variations.
Second-Moment Decay β2 controls how quickly the moving average of squared gradients
adapts to new curvature. High values (0.999–0.9999) produce stable per-parameter scal-
ings but may lag behind rapid changes in the loss landscape. Lowering β2 to around 0.99
or 0.9 makes the scaling more agile and responsive, but at the cost of increased variance
in the update magnitudes. Stabilizer ε, a small constant (typically ε = 10−8) added to the
denominator

√âvk + ε ensures numerical stability by preventing division by zero. If ε is
too small, then in regions with vanishing gradients the effective step size can become un-
bounded and destabilize updates. Conversely, if ε is too large, it acts as an artificial lower
bound on the denominator, capping all updates and slowing convergence. In practice, ε
may even be adapted dynamically—raised when âvk falls below a threshold, and lowered
again once gradient activity resumes—to maintain well-conditioned step sizes across the
wide curvature spectrum typical of metasurface inverse-design problems.

4.2.3 Convergence Behavior and Step-Size Control
Adam’s success lies in two key mechanisms: momentum and adaptive rescaling. The
momentum effect, captured by the bias-corrected first-moment estimate m̂t, acts as an ex-
ponential moving average of past gradients. By accumulating directional information over
multiple steps, momentum smooths out high-frequency noise—such as that introduced by
numerical errors in field solves or abrupt ramp activations—and builds “velocity” along
consistently descending directions. This enables the optimizer to push through shallow
local oscillations and maintain progress even when individual gradient evaluations fluc-
tuate. Meanwhile, the second-moment estimate v̂t tracks the uncentered variance of the
gradients. Dividing the step by

√
v̂t + ϵ automatically tempers updates in directions ex-

hibiting large or volatile gradients, effectively acting as a per-coordinate trust-region that
prevents overshooting in steep corners of the cost surface.
Over the course of optimization, as v̂t accumulates squared gradients, the effective step
size

α√
v̂t + ϵ

(4.9)

Naturally decays, providing an implicit learning-rate annealing that transitions from large
exploratory moves in the early stages to fine-grained adjustments near a minimum. This
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dynamic balance—bold exploration when gradients are uniformly small, cautious refine-
ment when gradients spike—allows Adam to navigate highly non-convex landscapes with
stiff directions. In contrast, traditional NLCG with line-search may spend many iter-
ations coping with ill-conditioning or may oscillate when faced with sudden curvature
changes. By self-regulating its per-parameter step sizes, Adam remains robust in the
presence of constraint-violating gradients (e.g., from squared-ramp penalties) and avoids
wasting evaluations on overly conservative global step-lengths [12, 5].
In the inverse design of metasurface antennas, the cost combines far-field mask penal-
ties—which can switch on and off sharply—and physical-realizability constraints that
create steep local ridges in the objective. These features yield a gradient landscape that is
both rugged (with many local minima from piecewise penalties) and anisotropic (exhibit-
ing stiff coupling near feeds and flat behavior in shadowed regions). Adam’s momentum
effectively carries the design out of small, shallow basins caused by inactive masks, while
its adaptive rescaling immediately dampens steps when a new mask ramp activates and
produces large gradient spikes. Consequently, the optimizer can traverse narrow feasible
corridors—such as those defining allowable sidelobe levels—without repeated line searches
or manual step-size tuning. Empirical tests on metasurface problems show that Adam con-
verges reliably to high-quality solutions in fewer wall-clock hours than NLCG, particularly
when constraints tighten dynamically during optimization.

4.3 Second-Order: Ada-Hessian

At its core, AdaHessian augments the familiar momentum-and-variance framework of
Adam with lightweight second-order (Hessian) information, yielding an optimizer that
dynamically adapts not only to the scale of recent gradients but also to the local curva-
ture of the objective. Rather than forming or inverting the full Hessian—which would
be prohibitive for the hundreds of thousands of current coefficients in a metasurface de-
sign—AdaHessian uses a single randomized Hessian–vector product (via a Hutchinson
estimator) per iteration to approximate the diagonal of the true Hessian. This diago-
nal is then smoothed both spatially (by averaging across small blocks of parameters that
share physical locality) and temporally (via an exponential moving average), producing
a per-parameter curvature estimate that automatically stretches or contracts the update
step in each direction. AdaHessian offers several key advantages for metasurface antenna
inverse design. It provides balanced steps in an ill-conditioned landscape, where the in-
fluence of basis coefficients on far-field constraints and boundary conditions may vary
by several orders of magnitude. By adapting its update size according to local curva-
ture, AdaHessian reduces steps in “stiff” directions (with large second derivatives) while
allowing larger progress in “flat” ones, avoiding the overshooting or stagnation typical
of standard first-order methods. Its robustness to penalty ramps and reactive singular-
ities is another critical benefit: the optimizer gracefully handles sharp “kinks” in the
loss landscape—introduced by squared-ramp penalties and reactive bounds—thanks to
momentum-based smoothing and a stable Hessian-diagonal approximation, thereby pre-
venting stalls near non-critical saddles.
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4.3.1 Algorithm Overview and Update Rules
AdaHessian extends the Adam optimizer by incorporating explicit curvature information
into each update step. At every iteration t, it begins by computing the gradient gt as
usual. Rather than a single probe vector, we can employ a mini-batch of Rademacher
vectors to build an accurate Hessian diagonal. Concretely, at iteration t we draw m
independent Rademacher vectors {z(i)}n

i=1v, with

nv ≈ 0.3N, (4.10)

In our implementation, the full Hessian H is available to compute analytically (or in a
sparse form), so we avoid any costly dense matrix–matrix operations by computing only
the required Hessian–vector products. Concretely, at iteration t we draw m ≈ 0.3N
independent Rademacher vectors {z(i)}m

i=1, where N is the number of degrees of freedom.
For each probe vector z(i), we perform the structured matrix–vector multiply H z(i). The
diagonal estimate is then formed as

dt ≈
1
m

mØ
i=1

z(i) ⊙
!
H z(i)", (4.11)

which converges to diag(H) with high precision once m reaches roughly 30% of N . Empir-
ically, this proportional sampling reproduces the true Hessian diagonal to within numeri-
cal tolerance, capturing essential curvature information without inflating the per-iteration
cost.
In practice, the raw Hutchinson estimate dt of the Hessian diagonal can be quite noisy,
both because each probe only captures partial information and because nearby parameters
often share similar curvature. To suppress this noise and improve stability, AdaHessian
filters dt in two ways. First, it performs spatial smoothing in which the entries of
dt are averaged over small contiguous blocks of size b 3. This yields a locally “flat”
version d

(s)
t whose values vary slowly across neighboring parameters, reflecting the fact

that nearby elements typically experience similar second-derivative behavior. Second, it
applies temporal smoothing via an exponential moving average: the smoothed diagonal
dt+1 is updated as

dt+1 = β2 dt + (1− β2)
!
d

(s)
t

"2
, (4.12)

When we initialize the temporal average d0 to zero, the early estimates dt are biased
low simply because they have “seen” fewer terms of the true sequence

!
d

(s)
0
"2
,
!
d

(s)
1
"2
, . . . .

Dividing by the factor
1− β t+1

2 (4.13)
corrects for that startup bias, guaranteeing that

âdt+1 = dt+1

1− β t+1
2

(4.14)

3e.g., grouping basis coefficients that occupy the same physical patch of the metasurface
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is an unbiased estimate of the exponentially weighted average of
!
d

(s)
i

"2.
By first smoothing each raw diagonal estimate dt across local spatial blocks of size b, and
then applying a bias-corrected exponential moving average in time, AdaHessian yields a
Hessian-diagonal approximation that is both locally coherent—reflecting the fact that
neighboring basis functions share similar curvature—and adaptively responsive to gen-
uine changes in the function landscape as the optimization proceeds.
Under our settings, we skip both temporal and spatial averaging and feed the raw Hutchin-
son estimate dt directly into the update. In other words, at each iteration we form equation
4.11 and use those per-parameter curvature estimates “as is” in the adaptive step-sizes.
Empirically we found that for our metasurface discretizations this avoids the extra cost
and delay of any explicit filtering yet still delivers stable, well-conditioned updates.
At the same time that AdaHessian gathers curvature information, it also tracks a running
“momentum” of the gradients exactly as Adam does. Concretely, the first-moment vector
mt+1 blends the previous momentum mt with the current gradient gt via

mt+1 = β1 mt + (1− β1) gt, (4.15)

where β1 (typically 0.9) controls how quickly old gradient information is “forgotten.”
Because m0 starts at zero, the early mt+1 values are biased toward zero. To correct for
this startup bias, AdaHessian divides by

!
1− β t+1

1
"
, yielding the unbiased estimate.

ãmt+1 = mt+1

1− β t+1
1

. (4.16)

This bias-corrected momentum ãmt+1 then serves as the numerator in the curvature-scaled
update, ensuring that the optimizer benefits from smooth, low-variance descent directions
from the very first iteration.
The final parameter update is given by

∆I = −α m̂t+11
d̂t+1

2k/2
+ ε

, (4.17)

where α is the global learning rate, ε is a small stabilizer to prevent division by zero, and
the exponent k ∈ [0,1] controls the degree of curvature influence. Setting k = 0 recovers
a momentum-like update, while k = 1 approximates Newton’s method.
This architecture yields several key benefits for metasurface antenna inverse design. First,
adaptive curvature scaling automatically balances stiff and flat directions in the ill-conditioned
optimization landscape, enabling AdaHessian to make near-Newton updates without costly
matrix factorizations. Second, spatial averaging reinforces physical coherence. Nearby
metasurface elements that experience similar boundary conditions produce harmonized
curvature estimates, promoting stability across the grid. Finally, because AdaHessian re-
quires only a few Hessian-vector product with respect to the full matrix-matrix product
per iteration, its total per-step complexity remains reasonable. This efficiency makes it
well-suited to large, high-resolution metasurface synthesis problems where full second-
order methods would be computationally intractable.
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4.3.2 AdaHessian : Choice of Hyperparameters
AdaHessian’s behavior hinges on seven key hyperparameters as summarized in Ta-

ble 4.4.
The global learning rate α uniformly scales each update, balancing convergence speed
against stability; the first-moment decay rate β1 controls how aggressively past gradients
are retained as momentum—higher β1 smooths noise but slows responsiveness, while lower
β1 adapts more quickly to changing descent directions; the Hessian-power exponent k ∈
[0,1] interpolates between first-order Adam-style steps (k = 0) and full Newton-style
curvature correction (k = 1); the spatial block size b controls how many neighboring
parameters share a single curvature estimate, smoothing out local noise; the number
of probes nv ≈ 0.3N determines how many randomized Hessian–vector products are
averaged to approximate the true diagonal; the decay rate β2 sets the temporal inertia for
the exponential moving average of squared, block-averaged curvature, filtering out rapid
fluctuations; and the stability constant ε prevents division by zero in very low-curvature
regions, capping the maximum per-parameter step to avoid runaway updates.

Algorithm 3 AdaHessian Optimizer (Raw Diagonal)
Require: Initial guess I0, base learning rate α, decay rate 0 < β1 < 1, Hessian power k,

number of probes m, stability constant ε
Ensure: Optimized current I⋆

1: Initialize momentum m0 ← 0
2: for t = 0 to T − 1 do
3: Draw m Rademacher probes z(i) ∼ {±1}N

4: Compute raw Hessian diagonal estimate:

dt = 1
m

mØ
i=1

z(i) ⊙
!
H z(i)"

5: Compute gradient gt ← ∇f(It)
6: Update first moment (momentum):

mt+1 = β1 mt + (1− β1) gt

7: Correct bias in momentum:

ãmt+1 = mt+1

1− β t+1
1

8: Update parameters with raw curvature scaling:

It+1 = It − α
ãmt+1

(dt) k/2 + ε

9: end for
10: return I⋆ = IT
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4.3.3 Hyperparameter Tuning
Because metasurface-antenna designs span a wide variety of geometries, frequency bands,
and far-field mask specifications, no single set of optimizer hyperparameters is universally
optimal. Systematic tuning is therefore essential: different structures demand different
values of α, β1,2, k, b, nv, and ε to achieve the fastest and most reliable convergence.
To minimize manual effort and ensure robust performance across varied metasurface struc-
tures, it is invaluable to embed automated hyperparameter search into the workflow:
Bayesian Optimization. This approach constructs a probabilistic surrogate model—often
a Gaussian process or Tree-structured Parzen Estimator—that predicts the optimizer’s
convergence metric (for example, final objective value or total iteration count) as a func-
tion of the hyperparameters. At each iteration, it uses an acquisition function (such as
Expected Improvement) to balance exploring poorly understood regions of the hyperpa-
rameter space against exploiting areas known to perform well. By iteratively updating this
model with real run results, Bayesian optimization typically finds near-optimal settings
in far fewer trials than grid or random search.
Population-Based Training (PBT). PBT maintains a cohort of parallel training runs,
each with its own hyperparameter configuration. Periodically—say every few hundred
iterations—it evaluates all members, replaces the worst performers with perturbed clones
of the best, and optionally mutates their hyperparameters (for instance, increasing α by
10% or toggling k). This evolutionary process allows both the model state (the current
vector) and the hyperparameters to co-adapt, quickly driving the entire population toward
robust regions of the search space while continuously refining promising candidates.
Hypergradient Methods. Here, one treats hyperparameters themselves (such as α,
β1, β2, k) as differentiable variables in an outer optimization loop. By unrolling a short
horizon of parameter updates and computing the gradient of the final loss with respect
to these hyperparameters, one can apply standard gradient-descent or Adam updates
to them directly. Though more complex to implement—requiring careful truncation or
checkpointing to manage memory—hypergradient techniques can adapt learning rates and
decay schedules on the fly, yielding finely tuned hyperparameter trajectories that evolve
alongside the current vector.
By layering these automated strategies—first isolating α, then refining decay rates, and
finally tuning curvature-specific parameters—practitioners can swiftly discover hyperpa-
rameter configurations that generalize across different metasurface geometries, frequency
bands, and far-field mask constraints, all while dramatically reducing the need for manual
experimentation.
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Table 4.4. AdaHessian Hyperparameters

Hyperparameter Default / Range Role

α 10−3 (tuning is needed) Global learning rate
β1 0.9 (range [0.8, 0.99]) First-moment (momentum) decay
k 0.5 (range [0, 1]) Curvature-scaling exponent
nv ≈ 0.3N Number of Hessian-vector probes
β2 0.999 (tune 0.99–0.9999) Temporal smoothing decay
ε 10−8 (optional 10−6) Numerical stability constant
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Chapter 5

Results and Analysis
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5.1 Simulation Setup
To initialize the optimization, we first solve the problem using only the far-field mask
constraints. In this stage, the only active penalty terms are those listed in Table 4.2. This
far-field–only initialization provides a well-conditioned starting point that satisfies the
radiation specifications before introducing the full set of physical realizability penalties.
The specifications of the masks for the radiation pattern are present in the Figure 5.1 .

Figure 5.1. Masks for radiation pattern

Table 5.1. Far-Field Mask Specifications

Specification Value (dB rel. to L0)

Co-polar upper bound, M co
U +3

Co-polar lower bound, M co
L −5

Cross-polar upper bound, M cx
U −20

Total-gain upper bound, M tot
U −25

For the pencil-beam target, we partition the elevation angle θ into several regions to
enforce our far-field and polarization constraints. We define the main-beam aperture as

|θ| ≤ 6◦,

over which we apply both the co-polarization mask Mco and the cross-polarization mask
Mcx to ensure the desired polarization purity. Outside the main beam, for

20◦ < |θ| ≤ 90◦,

we activate the total-gain upper mask Mtot to keep sidelobe levels below the prescribed
threshold. Additionally, we specify a narrow reference window

|θ| ≤ 1◦
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via the reference mask Mref , which serves as a calibration zone for phase and magnitude
alignment. By combining these angular masks, we achieve a narrow, high-purity pencil
beam with suppressed side lobes and a well-defined reference region for robust perfor-
mance. The polarization under test is circular.

Table 5.2. Angular Mask Regions for Pencil-Beam Design

Angular Region Active Masks Purpose

|θ| ≤ 1◦ Mref Reference window for phase/magnitude
calibration

|θ| ≤ 6◦ ML
co, M

U
cx Enforce co- and cross-polarization purity

over the main beam
6◦ < |θ| ≤ 20◦ — Transition region (no mask)
20◦ < |θ| ≤ 90◦ MU

tot Limit total sidelobe level outside main
beam

5.2 Mesh and Geometry Definition
The optimizations are done across various structure, the results in this section are reported
for the the two structure shown in Figure 5.2, and Figure 5.3.
The parameters of each geometry is indicated at Table 5.3.

Figure 5.2. Small Scale mesh Figure 5.3. Separated Square Mesh

The test structure here "Separated Square” consists of a grid of individual square patches.
RWG basis functions are defined on each square, while no RWGs span the gaps between
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Table 5.3. Geometric parameters of small-scale, and separated square metasurface antenna

Parameter Value for small-scale Value for separated-square

Operating frequency, f 23 GHz 23 GHz
Relative permittivity, εr 3 3.34
Relative permeability, µr 1 1
Substrate thickness, h 6.35× 10−4 m 5.08× 10−4 m
Maximum radius, Rmax 3λ 3λ
Maximum radius, Rmin λ/4 λ/6
Maximum mesh element size λ/6 λ/10
Number of mesh nodes 1176 25308
Number of mesh cells (triangles) 2240 22496
Number of RWG basis functions 3304 22496

adjacent patches.

5.2.1 Multi-Level Optimization in MR-RWG Basis
In this section, we use the small scale antenna for testing the multi-level optimization
using MR-RWG basis. We implement multiresolution by performing a sequence of nested
optimizations on progressively finer meshes. First, we optimize the current distribution
on a very coarse mesh, capturing the dominant, large-scale features. We then interpolate
those coarse-mesh currents as the initial guess for the next level of refinement, run a second
optimization there to resolve mid-scale details, and finally carry that solution forward
into the full–pixel-level mesh for a final, high-resolution optimization. At each stage the
solver focuses only on the new degrees of freedom introduced by refinement, so the large-
scale behavior remains intact while small-scale adjustments are efficiently learned. This
staged approach dramatically accelerates convergence and improves robustness compared
to optimizing directly on the finest mesh.

Figure 5.4. Coarse Mesh Figure 5.5. Mid-Level Mesh Figure 5.6. Fine Mesh
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The mesh information for each level is summarized in Table 5.4.
Despite the theoretical advantages and a sparse basis-change matrix that offers compu-
tational benefits, practical results in the context of inverse design of metasurface anten-
nas, showed limited improvements in convergence. We attribute this to a fundamental
mismatch between the multiresolution structure of the current representation and the
fine-scale enforcement of physical constraints. Specifically, although the surface current
is expanded hierarchically, the key constraints—such as local passivity, losslessness, and
impedance bounds—are evaluated on the finest mesh. This effectively nullifies the smooth-
ing and regularization benefits of coarser resolution levels, forcing the optimizer to respect
high-resolution constraints even during early iterations on the coarser mesh. As a result,
the optimizer cannot fully exploit the coarse-to-fine convergence acceleration that mul-
tiresolution methods typically enable in unconstrained problems.
One could further improve this approach by imposing distinct constraint sets at each res-
olution level, which would necessitate reformulating the underlying optimization problem
in multiresolution coordinates. Because our present focus is on accelerating convergence
within the existing formulation, we leave that extension to future work.

Table 5.4. Geometric parameters of mesh levels

Parameter Coarse Mesh Mid-Level Mesh Fine Mesh

Number of mesh nodes 84 308 1176
Number of mesh cells (triangles) 140 560 2240
Number of RWG basis functions 196 812 3304

Figure 5.7. Convergence Comparison : NLCG, ML-NLCG
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Figure 5.8. Current Optimized: NLCG Figure 5.9. Current Optimized: ML-NLCG

5.2.2 Effect of Unit Edge-Flux Preconditioning on Convergence

This method is tested on different structure and globally results in a better and smoother
convergence. In this section we presented and validated our unit-edge-flux preconditioning
strategy, which normalizes each RWG coefficient by its supporting edge length so that
every basis function contributes exactly one unit of total current flux across its edge.
NLCG runs the classic non-linear conjugate gradient optimizer while DP-NLCG runs the
optimization on preconditioned space. DP refers to as Diagonl Preconditioning. We can
see that as indicated in theory theory convergence is better in diagonal preconditioning
satisfying Unite Edge Flux condition.

Figure 5.11. Current Optimized: NLCG Figure 5.12. Directivity: NLCG
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Figure 5.10. Convergance Comparison : NLCG, DP-NLCG

Figure 5.13. Current Optimized: DP-NLCG Figure 5.14. Directivity: DP-NLCG

The test results shows improvement in both realized optimization of the current and the
convergence.
Under a common convergence threshold of 10−4, DP–NLCG reaches the stopping criterion
in approximately fifty fewer iterations than standard NLCG. In large-scale metasurface
optimizations, this reduction equates to a significant savings in total CPU-time and com-
putational cost.

69



Results and Analysis

5.2.3 MR-RWG Basis Change
In this test, the optimizer operates directly in the MR–RWG basis, which is expected to
yield faster convergence.

Figure 5.15. Convergence Comparison

Figure 5.16. Current Optimized: MR-NLCG Figure 5.17. Directivity: MR-NLCG

Although the MR-RWG basis accelerates convergence in the early iterations, the result-
ing optimized current exhibits rapid coefficient fluctuations, making it impractical for

70



Results and Analysis

fabrication.

The key lesson is that convergence remains highly sensitive to the choice of initial guess,
even though transforming into the MR-RWG space typically produces a smoother opti-
mization trajectory. This dependency arises from the highly non-convex landscape in-
trinsic to metasurface inverse-design problems, where multiple local minima can trap the
optimizer if not properly initialized. In practice, the effectiveness of both unit edge-flux
preconditioning and MR–RWG basis transforms varies with the underlying geometry and
mesh topology of a given metasurface.

5.3 Second Order Information

By injecting approximate second-order information into each update, the optimizer adapts
its step sizes precisely to the local curvature, yielding two key benefits for our meta-
surface design problems. First, “stiff” directions, coordinates where the cost landscape
curves sharply are automatically damped, preventing the optimizer from taking overly
aggressive steps that would otherwise force a conservative global learning rate. Second,
“flat” directions, coordinates with very gentle curvature are amplified, ensuring that even
weakly sensitive parameters continue to make meaningful progress rather than stagnating.
In practice, these curvature-scaled updates translate into considerably fewer line-search
backtracks, more consistent per iteration cost reductions, and a markedly smoother con-
vergence profile. Our Hutchinson-based diagonal Hessian estimates thus act as a low
overhead yet powerful preconditioner.

5.3.1 Hutchinson’s Based Diagonal Estimation

In large-scale problems such as inverse design of metasurface antennas, exploiting full
second-order information is often infeasible due to the required dense matrix–matrix
products. The Method-of-Moments impedance matrix can reach dimensions of tens of
thousands, making explicit Hessian assembly and factorization prohibitively expensive.
By contrast, Hutchinson’s stochastic diagonal estimator replaces these operations with a
small number of Hessian–vector products, incurring a per-iteration cost that grows only
linearly with the number of probe vectors while still capturing essential curvature infor-
mation.
For optimization, it suffices to capture the overall curvature trends rather than the exact
Hessian diagonal. Consequently, we can use fewer probe vectors just enough to approxi-
mate these global variations effectively.

Figure 5.18 shows the accuracy of the diagonal estimation, and the Figure 5.19 repre-
sents how estimating the diagonal with different number of prob vectors can affect the
convergence.
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Figure 5.18. Diagonal Estimation

Figure 5.19. Convergence Comparison : NLCG vs Hutch-NLCG

5.4 New Optimizers

In this chapter, we also explore the potential of modern adaptive optimizers to accelerate
and stabilize our metasurface-antenna inverse-design workflow. These methods dynami-
cally adjust each parameter’s step size based on local gradient and curvature information,
offering a natural remedy for the highly nonconvex, scale-varying sensitivity landscape
that hinders plain gradient descent. We implement two state-of-the-art algorithms within
our MoM-based framework and benchmark them against our established schemes. By
evaluating not only the final antenna performance but also metrics such as convergence
rate, numerical stability, and robustness across multiple test geometries, we aim to identify
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when—and to what extent—off-the-shelf adaptive optimizers can yield practical improve-
ments for complex electromagnetic design problems.

5.4.1 Adam Optimizer
The test structure is Figure 5.3.

Figure 5.20. Convergence Comparison : NLCG vs Adam

Adam’s adaptive, momentum-driven updates give it a remarkable ability to explore the
optimization landscape broadly, automatically scaling each parameter’s step size to nego-
tiate both shallow and steep regions. This “global” search capability makes Adam far less
sensitive to a poor initialization—it can accelerate through wide plateaus, skirt around
shallow traps, and gradually home in on promising basins. By contrast, NLCG relies
strictly on local gradient directions and line-searches, so if its starting point lies near a
suboptimal valley its purely deterministic updates will often circle and stall there.
In practice, one can combine their strengths—first running a few Adam epochs to find
a robust “warm” initialization, then switching to NLCG (or DP-NLCG) for rapid local
convergence. Adam frees the optimizer from bad starting guesses, while NLCG then
exploits high-quality curvature information for efficient final polishing.

5.4.2 AdaHessian
The green trace shows AdaHessian with a fixed learning rate of 0.2. In the very early
iterations, AdaHessian descends more rapidly than the DP-NLCG baseline (blue), ben-
efitting from its per-parameter curvature scaling. Unlike plain Adam (orange), which
plunges quickly but then begins to oscillate wildly once it reaches very small residuals,
AdaHessian remains stable throughout—no sudden spikes or stalls—even as it continues
to make steady progress down toward 10−5. In other words, AdaHessian combines more
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aggressive early-stage descent than a first-order preconditioned CG with the long-run ro-
bustness of a curvature-aware method, avoiding both the sluggish tail of DP-NLCG and
the late-stage jitter of Adam.
That said, its ultimate rate of decay here is slower than Adam’s when Adam is well-
tuned, suggesting that the choice of learning rate (and possibly the curvature exponent k)
still has a significant impact. More in-depth investigations—especially into per-parameter
step-size schedules and richer Hessian-diagonal estimation strategies—will be essential to
unlock AdaHessian’s full potential in our metasurface-antenna optimizations.

Figure 5.21. Convergence Comparison : NLCG vs Adam

5.5 Results of the Impedance Realization for DP-
NLCG

The realized impedance confirms that unit-flux preconditioning is a reliable and effective
enhancement for the optimization process.

Separated Square iter f f/f0 gnorm step Total run time
NLCG 1000 2.4666e+04 1.2675e-06 3.79e+07 2.79e-06 19449 s
DP-NLCG 1000 1.6905e+04 1.827e-07 3.21e+04 3.30e-03 19062 s

Table 5.5. Comparison of optimization results NLCG, DP-NLCG
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Figure 5.22. Realization of Impedance for DP-NLCG
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Chapter 6

Conclusion and Future Works

76



Conclusion and Future Works

This work focused on improving the speed and robustness of a fully automated, current-
based inverse-design framework for 3D metasurface antennas. By modeling the unknowns
as surface currents within a Method-of-Moments (MoM) formulation, the framework en-
sures passive, lossless, and fabrication-ready solutions while meeting far-field constraints.
Three numerical strategies were explored. First, unit-flux preconditioning reduced gradi-
ent sensitivity and significantly improved convergence. Second, a multiresolution RWG
basis improved numerical behavior but showed limited practical benefit due to constraint
enforcement at full resolution, and the resulting currents were not ideal for fabrication.
Third, Hessian-diagonal estimation helped adjust optimization step sizes more effectively,
though integrating it fully into the solver remains a challenge.
Adaptive optimizers (Adam and AdaHessian) were also evaluated. Adam offered fast
early progress, while AdaHessian provided better stability at tighter tolerances. A hybrid
approach combining both was found to be promising.
Looking ahead, future work should explore hybrid solvers, automated hyperparameter tun-
ing, and multilevel constraint enforcement to better utilize MR–RWG structures. Overall,
the results show that combining unit-flux scaling and second-order information can sub-
stantially accelerate metasurface inverse design, and further integration with adaptive,
resolution-aware methods could bring the framework closer to practical, fabrication-ready
implementations.
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I Antenna Generalities

I.1 Field Polarization
In most applications, electromagnetic field sources have a sinusoidal waveform. There-

fore, in a linear, time-invariant medium the resulting fields are time-harmonic:
E(r, t) = ℜ{E(r) ejωt}, (1)
H(r, t) = ℜ{H(r) ejωt}, (2)

where r is position, ω the angular frequency, and E(r),H(r) are complex phasor fields.
Focusing on E, write

E = Ex x̂ + Ey ŷ + Ez ẑ,
with Ex, Ey, Ez ∈ C. Equivalently one may decompose

E = E′ + j E′′,

where E′,E′′ are real “in-phase” and “quadrature” vectors. In general the tip of E(t)
traces an ellipse, whose axes and sense (right- or left-handed) are determined by E′ and
E′′.
A polarization is

• linear if E′ × E′′ = 0;

• circular if ∥E′∥ = ∥E′′∥ and E′ · E′′ = 0.
We define the unit–polarization vector

p̂ = E
∥E∥

= E′ + j E′′ð
∥E′∥2 + ∥E′′∥2 = p̂′ + j p̂′′. (A.1)

Most simple wire antennas (e.g. dipoles) radiate a linearly polarized field. Circular po-
larization is obtained by feeding two orthogonal elements with a 90◦ phase shift (e.g.
turnstile).
The co– and cross– polarization components of an arbitrary field E (relative to nominal
polarization p̂) are

Eco = E · p̂∗, Ecx = E · q̂∗, (A.2)
where q̂ is a unit vector orthogonal to p̂.
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I.2 Directivity, Gain, and Efficiency

The time-average Poynting vector in the far field is

S(r, θ, ϕ) = 1
2ℜ{E×H∗} = 1

2η0
|E|2 r̂, (A.3)

since H = (1/η0) r̂× E and η0 is the free-space impedance.

The directivity pattern is

d(θ, ϕ) = S(r, θ, ϕ)
Sav(r) , Sav(r) = 1

4πr2

Ú
sphere

S dΣ = Prad

4πr2 , (A.4–A.5)

so

d(θ, ϕ) = S(r, θ, ϕ)
Prad/(4πr2) . (A.6)

The maximum directivity is
D = max

θ,ϕ
d(θ, ϕ). (A.7)

Define the ohmic (radiation) efficiency

η = Prad

Pin
< 1, (A.8)

then the gain pattern is

g(θ, ϕ) = S(r, θ, ϕ)
Pin/(4πr2) = η d(θ, ϕ), (A.9)

and the maximum gain
G = max

θ,ϕ
g(θ, ϕ). (A.10)

In receive mode, the effective area Aeff is defined by

Aeff = Pav

Sinc
, (A.11)

assuming perfect polarization match, |p̂tx · p̂rx|2 = 1. The aperture efficiency for an
aperture antenna of physical area Ageom is

ηap = Aeff

Ageom
. (A.12)
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Figure 1. Graphical representation of the RWG basis function.

II RWG Basis Definition
When dealing with scattering or radiation problems in three-dimensional space, it is a

very common practice to discretize the surface by dividing it into triangular cells. In this
way, it is possible to model surfaces of arbitrary shape and size. In this scenario, one of
the most common choices for addressing the problem is to use RWG basis functions, which
are local basis functions defined on pairs of triangles that share an edge. Considering two
adjacent triangles T+

n and T−n that share the common edge en of length ℓn, the RWG basis
function fn(r) associated with en is defined as

fn(r) =



ℓn

2A+
n

ρ+
n (r), r ∈ T+

n ,

− ℓn

2A−n
ρ−n (r), r ∈ T−n ,

0, otherwise,

where

• ℓn = |en| is the length of the common edge,

• A±n are the areas of triangles T±n ,

• ρ±n (r) = r− r±n is the vector from the free vertex r±n of triangle T±n to the field point
r.

By construction, fn(r) is divergence-conforming and ensures continuity of the normal
component of surface current across the shared edge en.
The RWG basis functions are widely used in three-dimensional electromagnetic problems
due to the following properties:

• The surface current has no component normal to boundary edges (edges not shared
by two triangles).
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• The normal component of the current across any internal edge is continuous.

• The tangential component of the current across any internal edge is discontinuous.

• The surface divergence of fn is given by

∇s · fn(r) =



ln
A+

n

, r ∈ T+
n ,

− ln
A−n

, r ∈ T−n ,

0, otherwise,

which makes the charge density constant on each triangle and ensures zero net charge
on the pair of adjacent triangles T+

n and T−n .

III Surface Equivalence Theorem
The uniqueness theorem in electromagnetics states that the solution to a field problem,

generated by sources within a region, is uniquely determined once the tangential compo-
nent of the electric or magnetic field is specified on the boundary of that region. From
this result follows the surface equivalence theorem: consider a homogeneous medium and
a closed surface S enclosing all true sources J,M. Denote the interior of S by V1 and the
exterior by V2. The actual sources in V1 radiate fields (E1,H1) everywhere.
The surface equivalence theorem asserts that one may replace the true sources by equiv-
alent surface currents on S, provided the fields satisfy the boundary conditions across S.
For arbitrary fields (E,H) in V1 and the radiated fields (E1,H1) in V2, continuity of the
tangential fields enforces

n̂×
!
H1 −H

"
= Jeq ,!

E1 − E
"
× n̂ = Meq ,

where n̂ is the outward normal on S. These equivalent currents Jeq,Meq then radiate into
the unbounded homogeneous region V2, and the resulting fields can be computed by the
usual radiation integrals.
A particularly convenient choice is to set the interior fields to zero, E = H = 0 in V1.
Equations (??)–(??) then simplify to

n̂×H1 = Jeq ,

E1 × n̂ = Meq .

Substituting these into the radiation integrals provides a complete solution for the fields
in V2, without regard to the interior region.
The equivalence theorem also applies when S is an actual closed surface separating two
media. Let V1 and V2 be volumes filled with material parameters ε1, µ1 and ε2, µ2, respec-
tively. In the unbounded region V2, an electromagnetic field exists—either due to sources
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Figure 2. Surface equivalence theorem illustration: (a) actual and (b) equivalent problem.

in V2 or an incident wave (e.g. a plane wave) in the absence of the obstacle in V1. The
total fields in V2 are then

Etot = Einc + Es,

Htot = Hinc + Hs.

Applying the surface equivalence theorem, we may set the fields inside V1 to zero and
replace the actual medium in V2 by the background medium. We then enforce equivalent
surface currents on S so that the fields in V2 remain unchanged:

n̂×Htot = Jeq,

Etot × n̂ = Meq.

These currents radiate into an unbounded homogeneous space, producing the scattered
fields Es(Jeq,Meq) and Hs(Jeq,Meq), computable via the free-space Green’s functions.
If we choose the equivalent magnetic current Meq = 0 (continuity of the tangential E-field
across S), then only Jeq remains. Denoting by B the boundary-condition operator and
by L the integral operator that produces the scattered field, we have on S:

Etot = B(Jeq),
Es = L(Jeq),
Etot = Einc + Es.

Combining these yields the electric field integral equation (EFIE)

B(Jeq) = L(Jeq) + Einc
--
S
.

In the special case of an infinitely extended PEC plane, B(Jeq) = 0 on S. For a meta-
surface, an impedance boundary condition replaces the PEC constraint, as detailed in
Chapter. Since Einc is known, (III) can be solved numerically for Jeq alone.
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IV Definition of the Complex Gradient
The complex gradient operator is introduced to generalize gradient-based optimiza-

tion methods to complex-valued functions without splitting them into real and imaginary
parts separately. This is particularly important because dealing with separate real and
imaginary components complicates analytical derivations.

The complex derivative of a function f(z) is defined as:

å∂f
∂z

= 1
2

3
∂f

∂x
+ j

∂f

∂y

4
,

where z = x+ jy is a complex number with x, y ∈ R.
For vector functions f(z) where z ∈ CN , the complex gradient operator is defined

as: å∇f(z) = 1
2 (∇xf(x, y) + j∇yf(x, y)) ,

where ∇x and ∇y are the real gradient operators acting on the real and imaginary parts
separately.

• Instead of handling gradients separately for real and imaginary parts (which intro-
duces unnecessary complexity), this definition provides a compact, algebraically
consistent way to define derivatives in the complex space.

• It simplifies optimization in applications involving complex variables, such as
current-based metasurface antenna optimization.

• It enables seamless integration with gradient-based optimizers such as AdaHes-
sian, which rely on efficient computation of derivatives.

For a vector-valued function f : CN → CM , the complex Jacobian is defined as:

å∇f(z) =
è å∇f1(z) å∇f2(z) . . . å∇fM (z)

é
,

where each column contains the gradient of the corresponding component.

• This is particularly relevant for multi-objective optimization, where the function
to be minimized consists of multiple objectives (e.g., minimizing reflection losses
while maximizing gain).

• The Jacobian provides a systematic way to compute the gradient across all
objectives, ensuring proper optimization of multi-parameter problems.

• It helps in applications where **different performance metrics (e.g., impedance
matching, radiation efficiency, or signal gain) must be optimized simultaneously**.

The document provides several key properties of the complex gradient that are useful in
optimization. Some important ones include:
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Linearity å∇(f + g) = å∇f + å∇gå∇(cf) = c å∇f, for c ∈ C

Product Rule å∇(fg) = f å∇g + g å∇f
Norm and Inner Product Ruleså∇|f(z)|2 = f∗(z) å∇f(z) + f(z) å∇f∗(z)

å∇Re(f(z)) = 1
2( å∇f(z) + å∇f∗(z))

å∇Im(f(z)) = 1
2j ( å∇f(z)− å∇f∗(z))

These properties make computing gradients much easier when dealing with loss functions
that involve power norms, inner products, or squared magnitudes.
The gradient of a Hermitian quadratic form zHMz is simply:å∇(zHMz) = Mz

This is crucial for implementing Hessian-based optimizers like AdaHessian, where second-
order curvature information is required.

V Power Objective, Gradient, and Hessian
The coefficient of the electric field in the RWG basis is given by

V = G−1 (Vinc + L I)

where the Gram matrix G has entries

(G)mn =
ÚÚ

SIBC

Λm(r) · Λn(r) dS.

The power-related quantities used in the penalty functions can be written in two equivalent
ways. If we average over each cell Si of area Ai, then

Pi = ℜ
î

1
Ai

ÚÚ
Si

E · J∗ dS
ï

= ℜ{ IH Γi I},

Qi = ℑ
î

1
Ai

ÚÚ
Si

E · J∗ dS
ï

= ℑ{ IH Γi I},

Ji = 1
Ai

ÚÚ
Si

|J|2 dS = IH Γi I,

Ei = 1
Ai

ÚÚ
Si

|E|2 dS = V H Γi V,
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where the cell-averaging matrix Γi has entries

(Γi)mn = 1
Ai

ÚÚ
Si

Λm(r) · Λn(r) dS.

Here, Ai is the area of the i-th cell Si. If the relevant quantities are sampled at the
centroid rc

i of each cell, then they may be defined as

Pi = ℜ
!
E(rc

i ) · J∗(rc
i )
"

= ℜ{ IH Γi V },

Qi = ℑ
!
E(rc

i ) · J∗(rc
i )
"

= ℑ{ IH Γi V },

Ji = |J(rc
i )|2 = IH Γi I,

Ei = |E(rc
i )|2 = V H Γi V.

where

(Γi)mn = Λm

!
rc

i

"
Λn

!
rc

i

"
.

Here, rc
i is the centroid of the i-th cell Si, defined as

rc
i = r1

i + r2
i + r3

i

3 ,

where r1
i , r

2
i , r

3
i are the position vectors of the three vertices of Si.

The gradients of the involved quantities are

∇̃I = 0, ∇̃I∗ = 1,

∇̃V = ∇̃
!
G−1Vinc +G−1L I

"
= 0, ∇̃V ∗ = ∇̃

!
G−1V ∗inc +G−1L∗ I∗

"
= LH G−1.

∇I = 1, ∇I∗ = 0,

∇V = ∇
!
G−1Vinc +G−1L I

"
= (G−1L)T , ∇V = ∇

!
G−1V ∗inc +G−1L∗ I∗

"
= 0.

By defining
Si = IHΓi V = Pi + j Qi,

we can find the gradient and mixed block hessian of the objective functions.

frlz =
Ø

i

wact
i ρact

i +
Ø

i

wimp
L,i ρ

imp
L,i +

Ø
i

wimp
U,i ρ

imp
U,i +

Ø
i

wscal
i ρscal

i +
Ø

i

wpec
i ρpec

i

+
Ø

i

w
s/o
i ρ

s/o
i +

Ø
i

wcur
i ρcur

i .
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where

ρact
i = P 2

i ,

ρimp
L,i = r2!Ψimp

L,i

"
, Ψimp

L,i = XL,i Ji −Qi,

ρimp
U,i = r2!Ψimp

U,i

"
, Ψimp

U,i = Qi −XU,i Ji,

ρscal
i = Ei Ji −

!
P 2

i +Q2
i

"
,

ρpec
i = E2

i ,

ρ
s/o
i = Ei Ji,

ρcur
i = r2!Ψcur

i

"
, Ψcur

i = Ji − JU .

The gradient of f is

å∇frlz =
Ø

i

wact
i
å∇ρact

i +
Ø

i

wimp
L,i

å∇ρimp
L,i +

Ø
i

wimp
U,i

å∇ρimp
U,i

+
Ø

i

wscal
i

å∇ρscal
i +

Ø
i

wpec
i

å∇ρpec
i +

Ø
i

w
s/o
i

å∇ρs/o
i +

Ø
i

wcur
i
å∇ρcur

i .

å∇ρact
i = 2Pi

å∇Pi = Pi

!
νi +KHℓi

"
,

å∇ρimp
L,i = 2 r

!
Ψimp

L,i

"!
XL,i

å∇Ji − å∇Qi

"
= r

!
Ψimp

L,i

"!
2XL,i ℓi − iKHℓi + j νi

"
,

å∇ρimp
U,i = 2 r

!
Ψimp

U,i

"! å∇Qi −XU,i
å∇Ji

"
= r

!
Ψimp

U,i

"!
jKH − 2XU,i

"
ℓi − j νi

"
,

å∇ρscal
i = Ji

å∇Ei + Ei
å∇Ji − 2Pi

å∇Pi − 2Qi
å∇Qi

= Ji

!
KHνi

"
+ Ei ℓi − Pi

!
νi +KHℓi

"
+ jQi

!
νi −KHℓi

"
,

å∇ρpec
i = 2 Ei

å∇Ei = 2 Ei

!
KHνi

"
,

å∇ρs/o
i = Ji

å∇Ei + Ei
å∇Ji = Ji

!
KHνi

"
+ Ei ℓi,

å∇ρcur
i = 2 r

!
Ψcur

i

" å∇Ji = 2 r
!
Ψcur

i

"
ℓi.

The mixed term hessian of f is

∇( å∇frlz) =
Ø

i

wact
i ∇( å∇ρact

i ) +
Ø

i

wimp
L,i ∇( å∇ρimp

L,i ) +
Ø

i

wimp
U,i ∇( å∇ρimp

U,i )

+
Ø

i

wscal
i ∇( å∇ρscal

i ) +
Ø

i

wpec
i ∇( å∇ρpec

i ) +
Ø

i

w
s/o
i ∇( å∇ρs/o

i ) +
Ø

i

wcur
i ∇( å∇ρcur

i ).

∇
!
∇åρact

i

"
= 1

2
è
νi ν

H
i + 2ℜ

)
(KH

i νi) νH
i

*
+ Ki ℓ

H
i k
éT

+ ρi 2ℜ
)
KHΓi

*
.
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∇( å∇ρimp
L,i ) = 1

2 u
!
Ψimp

L,i

" è
4 jXL,iℜ{KHℓi ℓ

H
i } − 4 jXL,iℜ{ ℓi γ

H
i }+ 2ℜ{KHγH

i }

− KH ℓH
i K + 4XL,i ℓi ℓ

H
i − γi γ

H
i

éT
+ 2 r

!
Ψimp

L,i

" è
XL,i Γi + ℑ{KH Γi}

é
.

∇
!
∇åρact

i

"
= 1

2
è
νi ν

H
i + 2ℜ{(KH

i νi) νH
i }+Ki ℓ

H
i K

éT
+ ρi 2ℜ{KHΓi},

∇
!
∇åρimp

L,i

"
= 1

2 u(Ψimp
L,i )

è
4 jXL,iℜ{KHℓi ℓ

H
i } − 4 jXL,iℜ{ℓi γ

H
i }+ 2ℜ{KHγH

i }

− KH ℓH
i K + 4XL,i ℓi ℓ

H
i − γi γ

H
i

éT
+ 2 r(Ψimp

L,i )
#
XL,i Γi + ℑ{KHΓi}

$
,

∇
!
∇åρimp

U,i

"
= 1

2 u(Ψimp
U,i )

è
γi γ

H
i + 4XU,i ℓi ℓ

H
i + 4XU,iℑ{ℓi γ

H
i }+ 4XU,iℑ{KH ℓi ℓ

H
i }

+ 2ℜ{KH γH
i }+KH ℓH

i K
é
− 2 r(Ψimp

U,i )
#
ℑ{KHΓi}+XU,i Γi

$
,

∇
!
∇åρscal

i

"
= Ei Γi + Ji (KH Γi K)− 2Piℜ{KH Γi} − 2Qiℑ{KH Γi},

∇
!
∇åρpec

i

"
=
!
KH νi ν

H
i K

"T + 2 Ei (KH Γi K),

∇
! å∇ρs/o

i

"
= 2ℜ

!
(KH νi ℓ

H
i )T "+ Ei Γi − Ji (KH Γi K)

VI Far-Field Objective, Gradient, and Hessian
The far-field objective frad(I) measures compliance with radiation masks via squared

ramp penalties on the co- and cross-polarized far-field power. In explicit form:

å∇frad(I) = wref å∇ρref +
Ø

j

è
wco,L,j

å∇ρco,L,j + wco,U,j
å∇ρco,U,j + wcx,j

å∇ρcx,j + wtot,j å∇ρtot,j
é
.

ρref(I) = [r (M0 − Fref(I))]2 .

Fref(I) = F0 +
Ø

j

ζref,j Fco,j(I),

ρco,L,j(I) = [r (Mco,L,j − Fco,j(I))]2 .

ρco,U,j(I) = [r (Fco,j(I)−Mco,U,j)]2 .

ρcx,j(I) = [r (Fcx,j(I)−Mcx,j)]2 .
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ρtot,j(I) = [r (Ftot,j(I)−Mtot,j)]2 , with Ftot,j = Fco,j + Fcx,j .

Mco,U,j = σco,U,jFref, Mco,L,j = σco,L,jFref, Mcx,j = σcx,jFref, Mtot,j = σtot,jFref (2)

Eco(r̂, I) = (Eθ, Eϕ) · p̂∗(r̂), Fco(r̂, I) = |Eco|2.

Fco,j(I) =
---(RθI)j p̂

θ∗
j + (RϕI)j p̂

ϕ∗
j

---2 ,
Ecx(r̂, I) = (Eθ, Eϕ) · q̂∗(r̂), Fcx(r̂, I) = |Ecx|2.

In matrix form:

Fcx,j(I) =
---(RθI)j q̂

θ∗
j + (RϕI)j q̂

ϕ∗
j

---2 ,
The gradient of each objective function is:

å∇frad(I) = wref å∇ρref +
Ø

j

è
wco,L,j

å∇ρco,L,j + wco,U,j
å∇ρco,U,j + wcx,j

å∇ρcx,j + wtot,j å∇ρtot,j
é
.

å∇ρref = −2 r(Ψref) å∇Fref, where Ψref ≜M0 − Fref(I)

å∇ρco,L,j = 2 r(Ψco,L,j)
1
σco,L,j

å∇Fref − å∇Fco,j

2
å∇ρco,U,j = 2 r(Ψco,U,j)

1 å∇Fco,j − σco,U,j
å∇Fref

2
å∇ρcx,j = 2 r(Ψcx,j)

1 å∇Fcx,j − σcx,j
å∇Fref

2
å∇ρtot,j = 2 r(Ψtot,j)

1 å∇Ftot,j − σtot,j å∇Fref
2

The mixed-term hessian of each objective function is:

∇
! å∇frad(I)

"
= wref ∇

! å∇ρref
"

+
Ø

j

wco,L,j ∇
! å∇ρco,L,j

"
+
Ø

j

wco,U,j ∇
! å∇ρco,U,j

"
+
Ø

j

wcx,j ∇
! å∇ρcx,j

"
+
Ø

j

wtot,j ∇
! å∇ρtot,j

"
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∇
! å∇ρco,L,j

"
= 2 r′(Ψco,L,j)

!
σco,L,j ∇Fref −∇Fco,j

"!
σco,L,j

å∇Fref − å∇Fco,j

"H
+ 2 r(Ψco,L,j)

!
σco,L,j ∇( å∇Fref)−∇( å∇Fco,j)

"
,

∇
! å∇ρref

"
= 2 r′(Ψref)∇Fref å∇FH

ref − 2 r(Ψref)∇
! å∇Fref

"
,

∇
! å∇ρco,U,j

"
= 2 r′(Ψco,U,j)

!
∇Fco,j − σco,U,j ∇Fref

"! å∇Fco,j − σco,U,j
å∇Fref

"H
+ 2 r(Ψco,U,j)

!
∇( å∇Fco,j)− σco,U,j ∇( å∇Fref)

"
,

∇
! å∇ρcx,j

"
= 2 r′(Ψcx,j)

!
∇Fcx,j − σcx,j ∇Fref

"! å∇Fcx,j − σcx,j
å∇Fref

"H
+ 2 r(Ψcx,j)

!
∇( å∇Fcx,j)− σcx,j ∇( å∇Fref)

"
,

∇
! å∇ρtot,j

"
= 2 r′(Ψtot,j)

!
∇Fco,j +∇Fcx,j − σtot,j ∇Fref

"! å∇Fco,j + å∇Fcx,j − σtot,j å∇Fref
"H

+ 2 r(Ψtot,j)
!
∇( å∇Fco,j) +∇( å∇Fcx,j)− σtot,j ∇( å∇Fref)

"
.

For a given j, the Hessians of the power quantities can be compactly expressed:

∇
! å∇Fco,j) = WH

co,jWco,j where Wco,j ≜ p̂θ
j [Rθ]j,: + p̂ϕ

j [Rϕ]j,:

∇
! å∇Fco,j) = RH

coΩjRco, ∇
! å∇Fcx,j) = RH

cxΩjRcx

∇
! å∇Fref) =

Ø
m

ζref,mW
H
co,mWco,m = RH

co diag(ζref)Rco

where:

• Ωj = eje
T
j selects the jth direction,

• Rco ≜ diag(p̂θ)Rθ + diag(p̂ϕ)Rϕ

• Rcx ≜ diag(q̂θ)Rθ + diag(q̂ϕ)Rϕ

Combining all contributions (and including the weight factors w from Eq. (1)), we obtain
an expression for the mixed Hessian matrix of frad. It can be written as a sum over
directions of outer-product terms and Hessian-of-F terms as in Eqs. (4)–(7) above. For
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compactness, we present the result grouped by each category of cost term:

∇I(∇I∗frad(I)) = 2wref
è
u
!
Ψref

"
∇IFref (∇I∗Fref)T − r

!
Ψref

"
∇I(∇I∗Fref)

é
+ 2

Ø
j

wco,L,j

è
u
!
Ψco,L,j

"
(σco,L,j ∇IFref −∇IFco,j) (σco,L,j ∇I∗Fref −∇I∗Fco,j)T

+ r
!
Ψco,L,j

"
(σco,L,j ∇I(∇I∗Fref)−∇I(∇I∗Fco,j))

é
+ 2

Ø
j

wco,U,j

è
u
!
Ψco,U,j

"
(∇IFco,j − σco,U,j ∇IFref) (∇I∗Fco,j − σco,U,j ∇I∗Fref)T

+ r
!
Ψco,U,j

"
(∇I(∇I∗Fco,j)− σco,U,j ∇I(∇I∗Fref))

é
+ 2

Ø
j

wcx,j

è
u
!
Ψcx,j

"
(∇IFcx,j − σcx,j ∇IFref) (∇I∗Fcx,j − σcx,j ∇I∗Fref)T

+ r
!
Ψcx,j

"
(∇I(∇I∗Fcx,j)− σcx,j ∇I(∇I∗Fref))

é
+ 2

Ø
j

wtot,j
è
u
!
Ψtot,j

"
(∇IFco,j +∇IFcx,j − σtot,j ∇IFref)

× (∇I∗Fco,j +∇I∗Fcx,j − σtot,j ∇I∗Fref)T

+ r
!
Ψtot,j

"
(∇I(∇I∗Fco,j) +∇I(∇I∗(Fcx,j)− σtot,j ∇I(∇I∗Fref))

é
.

List of the unknowns:

Symbol Description Type
∇IFref Gradient of reference intensity CN

∇I∗Fref Conjugate gradient of reference intensity CN

∇IFco,j Gradient of co-pol power (direction j) CN

∇I∗Fco,j Conjugate gradient of co-pol power CN

∇IFcx,j Gradient of cross-pol power (direction j) CN

∇I∗Fcx,j Conjugate gradient of cross-pol power CN

∇I (∇I∗Fref) Mixed Hessian of reference intensity CN×N

∇I (∇I∗Fco,j) Mixed Hessian of co-pol power (direction j) CN×N

∇I (∇I∗Fcx,j) Mixed Hessian of cross-pol power (direction j) CN×N

Table 1. List of unique gradient and mixed Hessian terms appearing in HI,I∗ [frad].

∇I (∇I∗Fref) =

RH
co

Ø
j

ζref
j Ωj

Rco

∗ .
[∇IFref] [∇I∗Fref]⊤ =

1
RH

co

1
ζref ⊙ Eco

22∗ 1
RH

co

1
ζref ⊙ Eco

22⊤
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[∇IFref] [∇I∗Fco,j ]⊤ =
1
RH

co

1
ζref ⊙ Eco

22∗ 1
RH

coΩjE
co
2⊤

[∇IFco,j ] [∇I∗Fref]⊤ =
1
RH

co Ωj E
co
2∗ 1

RH
co

1
ζref ⊙ Eco

22⊤

[∇IFco,j ] [∇I∗Fco,j ]⊤ =
1
RH

co Ωj E
co
2∗ 1

RH
co Ωj E

co
2⊤

∇I (∇I∗Fco,j) =
1
RH

coΩjRco
2∗

[∇IFcx,j ] [∇I∗Fcx,j ]⊤ =
1
RH

cx Ωj E
cx
2∗ 1

RH
cx Ωj E

cx
2⊤

[∇IFref] [∇I∗Fcx,j ]⊤ =
1
RH

co

1
ζref ⊙ Eco

22∗ 1
RH

cxΩjE
cx
2⊤

[∇IFcx,j ] [∇I∗Fref]⊤ =
1
RH

cx Ωj E
cx
2∗ 1

RH
co

1
ζref ⊙ Eco

22⊤

∇I (∇I∗Fcx,j) =
1
RH

cx Ωj Rcx
2∗

We define the co-polarized and cross-polarized radiation operators as follows:

Rco = diag(p̂∗θ)Rθ + diag(p̂∗ϕ)Rϕ,

Rcx = diag(q̂∗θ)Rθ + diag(q̂∗ϕ)Rϕ.

Here:

• p̂θ, p̂ϕ are the co-polarization unit vectors (complex).

• q̂θ, q̂ϕ are the cross-polarization unit vectors.

• Rθ, Rϕ are the radiation operators in the θ and ϕ components.

The directional projector onto sample j is given by:

Ωj = eje
⊤
j ,

where ej is the canonical unit vector selecting the jth far-field direction.
Calculating the full statement substituting the unknowns.
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∇I(∇I∗frad(I)) =

RH
co

51
ζref ⊙ Eco

2 1
ζref ⊙ Eco

2H
wA −

1
ζref ⊙ Eco

2
(WB ⊙ Eco)H

+ (WC ⊙ Eco)
1
ζref ⊙ Eco

2H
+ Diag(WD ⊙ (Eco ⊙ Eco)) + Diag(WE) + Diag(WF )

6
Rco

−RH
co

è1
ζref ⊙ Eco

2
(WI ⊙ Ecx)H

é
Rcx

−RH
cx

5
(WH ⊙ Ecx)

1
ζref ⊙ Eco

2H
6
Rco

+RH
cx [Diag (WG ⊙ (Ecx ⊙ Ecx)) + Diag(WJ)]Rcx

where

wA =
Ø

i

2wco,L,i u(Ψco,L,i) (δco,L,i)2

WB,j = 2wco,L,j u
!
Ψco,L,j

"
δco,L,j + 2wco,U,j u

!
Ψco,U,j

"
δco,U,j + 2wtot,j u

!
Ψtot,j

"
δtot,j

WC,j = WB,j

WD,j = 2wco,L,j u (Ψco,L,j) + 2wco,U,j u (Ψco,U,j) + 2wtot,j u (Ψtot,j)

WE,j = 2wco,L,j r (Ψco,L,j) δco,L,j − 2wco,U,j r (Ψco,U,j) δco,U,j − 2wcx,j r (Ψcx,j) δcx,j − 2wtot,j r (Ψtot,j) δtot,j

WF,j = −2wco,L,j r (Ψco,L,j) + 2wco,U,j r (Ψco,U,j) + 2wtot,j r (Ψtot,j)

WG,j = 2wcx,j u (Ψcx,j) + 2wtot,j u (Ψtot,j)

WH,j = 2wcx,j u (Ψcx,j) δcx,j + 2wtot,j u (Ψtot,j) δtot,j

WI,j = 2wcx,j u (Ψcx,j) δcx,j + 2wtot,j u (Ψtot,j) δtot,j

WJ,j = 2wcx,j r (Ψcx,j) δcx,j + 2wtot,j r (Ψtot,j) δtot,j

Finally we can write:

∇I(∇I∗frad(I)) = RH
coM1Rco −RH

coM2Rcx −RH
cxM2Rco +RH

cxM3Rcx

You can collect all 16 of the little “θ/ϕ” terms into the single block-matrix form

H =
è
RH

θ RH
ϕ

é CAθθ Aθϕ

Aϕθ Aϕϕ

D C
Rθ

Rϕ

D

where the four Nf ×Nf diagonal blocks are
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Aθθ = diag(pθ)M1 diag(p∗θ)− diag(pθ)M2 diag(q∗θ)− diag(qθ)M2 diag(p∗θ) + diag(qθ)M3 diag(q∗θ),

Aθϕ = diag(pθ)M1 diag(p∗ϕ)− diag(pθ)M2 diag(q∗ϕ)− diag(qθ)M2 diag(p∗ϕ) + diag(qθ)M3 diag(q∗ϕ),

Aϕθ = diag(pϕ)M1 diag(p∗θ)− diag(pϕ)M2 diag(q∗θ)− diag(qϕ)M2 diag(p∗θ) + diag(qϕ)M3 diag(q∗θ),

Aϕϕ = diag(pϕ)M1 diag(p∗ϕ)− diag(pϕ)M2 diag(q∗ϕ)− diag(qϕ)M2 diag(p∗ϕ) + diag(qϕ)M3 diag(q∗ϕ).

where

M1 =
1
ζref ⊙ Eco

2 1
ζref ⊙ Eco

2H
wA −

1
ζref ⊙ Eco

2
(WB ⊙ Eco)H

+ (WC ⊙ Eco)
1
ζref ⊙ Eco

2H
+ Diag (WD ⊙ (Eco ⊙ Eco)) + Diag(WE) + Diag(WF )

M2 =
1
ζref ⊙ Eco

2
(WI ⊙ Ecx)H

M3 = [Diag (WG ⊙ (Ecx ⊙ Ecx)) + Diag(WJ)]

Equivalently,

H = RH
θ AθθRθ +RH

θ AθϕRϕ +RH
ϕ AϕθRθ +RH

ϕ AϕϕRϕ.

That is the final Hessian block, written only in terms of Rθ, Rϕ and their Hermitians.

!
wref ∇

!
∇̃ρref""∗ = RH

θ

è
2wref u(Ψref)

!
ζref⊙ Eco

θ

"!
ζref⊙ Eco

θ

"H − 2wref r(Ψref)
!
ζref⊙ |p̂θ|2

"é
Rθ

+ RH
θ

è
2wref u(Ψref)

!
ζref⊙ Eco

θ

"!
ζref⊙ Eco

ϕ

"H − 2wref r(Ψref)
!
ζref⊙ (p̂θ ⊙ p̂∗ϕ)

"é
Rϕ

+ RH
ϕ

è
2wref u(Ψref)

!
ζref⊙ Eco

ϕ

"!
ζref⊙ Eco

θ

"H − 2wref r(Ψref)
!
ζref⊙ (p̂ϕ ⊙ p̂∗θ)

"é
Rθ

+ RH
ϕ

è
2wref u(Ψref)

!
ζref⊙ Eco

ϕ

"!
ζref⊙ Eco

ϕ

"H − 2wref r(Ψref)
!
ζref⊙ |p̂ϕ|2

"é
Rϕ .
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