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Chapter 1

Abstract

The Variational Quantum Eigensolver (VQE) is a leading hybrid quantum-
classical algorithm for finding ground states of quantum Hamiltonians on noisy
quantum devices. Traditional circuit-based VQE implementations use se-
quences of quantum gates, but these require deep circuits that are challenging
for current quantum hardware. An alternative approach is Measurement-
Based VQE (MB-VQE), which performs the same variational optimization
using single-qubit measurements on pre-prepared entangled resource states
(graph states) instead of gate operations. However, measurement-based
quantum computing requires deterministic computation, which is guaranteed
only when the underlying graph state satisfies the generalized flow (gflow)
condition - ensuring that the final output state is predictable despite the
inherent randomness of individual quantum measurements.

This work analyzes existing MB-VQE methods, particularly the edge-
decoration scheme, and identifies gflow violation in decorated graph states
that lead to non-deterministic quantum computation. We focus on stabilizer
Hamiltonians whose ground states are exactly known, and investigate how MB-
VQE performs when small perturbations are added, making the perturbed
ground state unknown and requiring variational approximation methods.
To address the determinism issue, we develop a modified edge-decoration
approach using dynamic qubit relabeling that preserves gflow conditions
throughout the measurement process by sequentially applying decorations
to qubit pairs while dynamically reassigning input/output roles to avoid
shared-vertex conflicts. Numerical simulations on perturbed Toric code,
linear cluster, and other graph-based stabilizer Hamiltonians demonstrate
that our deterministic MB-VQE approach successfully approximates the
perturbed ground states while maintaining computational reliability.
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Chapter 2

Introduction

Quantum computers process information using quantum mechanical phe-
nomena such as superposition and entanglement, enabling computational
approaches fundamentally different from classical methods. Celebrated algo-
rithms including Shor’s factoring algorithm [1] and Grover’s search speedup [2]
demonstrate exponential or quadratic quantum advantages for specific tasks.
However, current Noisy Intermediate-Scale Quantum (NISQ) devices [3] suffer
from high error rates and limited coherence times, preventing the execution
of these deep quantum algorithms.

Despite these limitations, quantum computers show promise for inves-
tigating problems in molecular structure, materials science, and condensed
matter physics, where even approximate quantum solutions could provide
valuable insights beyond classical capabilities. The Variational Quantum
Eigensolver (VQE) [4] has emerged as the leading algorithmic approach for
NISQ devices. VQE combines quantum hardware with classical optimization:
a parameterized quantum circuit, known as the ansatz, prepares trial quan-
tum states representing candidate solutions, the energy expectation value
is measured, and classical optimization adjusts the circuit parameters to
minimize this energy. This hybrid approach has been successfully applied to
diverse quantum systems, from small molecular systems such as H2 [4], LiH,
and BeH2 [5] to quantum many-body models and optimization problems.

However, VQE faces a fundamental scalability problem. Larger and more
complex quantum systems require deeper quantum circuits with more gate
operations to adequately represent their quantum states. Unfortunately,
deeper circuits accumulate more errors and require longer coherence times,
quickly exceeding the capabilities of NISQ devices. This creates a bottleneck
where the most computationally interesting quantum systems require circuits
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too deep for current quantum hardware.
Measurement-Based Quantum Computing (MBQC) [6] offers a funda-

mentally different approach that could potentially address this circuit depth
problem. Instead of applying sequences of quantum gates, MBQC performs
computation through adaptive single-qubit measurements on a highly entan-
gled resource state [7], specifically a graph state, where measurement results
on some qubits determine which measurements to perform on subsequent
qubits. Rather than building deep circuits gate-by-gate, MBQC requires
only the preparation of an entangled resource state followed by single-qubit
measurements, which are typically faster and less error-prone than two-qubit
gates.

However, MBQC introduces a new challenge: determinism. Quantum
measurements are inherently random, but computational output states must
be deterministic and reproducible. MBQC achieves determinism through
classical processing of measurement outcomes and adaptive corrections, but
this is only guaranteed when the graph state, the resource state of the compu-
tation, satisfies a mathematical condition called generalized flow (gflow) [8].
When gflow is violated, the computation becomes non-deterministic.

Recent work has begun exploring Measurement-Based VQE (MB-VQE),
which combines the variational approach of VQE with the measurement-
based paradigm of MBQC. Early proposals include the edge-decoration
scheme [9], which modifies graph states—quantum states represented as
networks where qubits are vertices and the edges represent the entanglement
between them—to encode variational parameters through measurement angles.
However, systematic comparison of these methods and understanding of their
gflow properties remains limited.

This work addresses these limitations by focusing on stabilizer Hamil-
tonians—quantum many-body systems whose ground states can be exactly
determined in their unperturbed form (such as cluster states or topological
codes like the Toric code model). When small perturbations are added to
these systems, the exact ground state is no longer known and must be approx-
imated. These systems are ideal testbeds for MB-VQE methods because the
unperturbed ground state provides a natural starting point for variational
optimization, while the underlying graph structure can be directly mapped
to MBQC resource states.

Our contributions include: systematic analysis of the existing edge-
decoration MB-VQE scheme; identification of gflow violations that compro-
mise deterministic computation; development of a modified edge-decoration
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approach using dynamic qubit relabeling to ensure determinism; and numeri-
cal validation on perturbed stabilizer Hamiltonians including Toric code and
linear cluster models.

These advances provide a viable solution for deterministic measurement-
based variational quantum algorithms and their application to quantum
many-body physics.

The thesis is structured as follows: Chapter 3 provides the theoretical
background, Chapter 4 presents the models of quantum computation, with
focus on MBQC, Chapter 5 presents the NISQ era and the variational quantum
algorithms framework, in particular the Variational Quantum Eigensolver.
Chapter 6 introduces Measurement-Based Variational Quantum Eigensolvers,
analyzes existing approaches including edge-wise and node-wise decoration
schemes, and identifies the determinism challenges that arise in edge-wise
decoration due to gflow violations. Chapter 7 provides a detailed analysis
of these determinism issues and proposes a novel solution using dynamic
qubit relabeling to ensure reliable computation, with numerical validation on
perturbed stabilizer Hamiltonians. Chapter 8 presents discussion, conclusions
and future directions.
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Chapter 3

Theoretical Background

This chapter provides the necessary quantum information foundation for
readers unfamiliar with the field. I introduce the principles that distinguish
quantum systems from classical ones, then develop the mathematical frame-
work of the stabilizer formalism, concepts essential for understanding the
quantum computing innovations presented in subsequent chapters [11].

3.1 Fundamentals of Quantum Information

Quantum information theory recasts information processing in terms of
quantum mechanics and is more than classical computation, relying on the
many unique quantum phenomena [11].

3.1.1 Quantum States and Operations

To understand quantum computation, we must first grasp how quantum
information differs fundamentally from classical information. While classical
bits are definitively either 0 or 1, quantum bits can exist in superpositions
of both states simultaneously. Quantum states live in Hilbert space (a
complex vector space with an inner product), which provides the mathematical
foundation for describing quantum mechanical phenomena. In Dirac notation
quantum states are denoted as kets |ψ⟩ and the corresponding dual bras ⟨ψ|.
Physical states are unit vectors (⟨ψ⟩ψ = 1), and states that differ by the
global phase (eiθ |ψ⟩) are physically equivalent, a property that makes sense
collectively, but has no classical analogy.

A quantum bit (qubit) inhabits a two-dimensional Hilbert space H = C2

with computational basis {|0⟩ , |1⟩}. Its general state is as follows:
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|ψ⟩ = α |0⟩+ β |1⟩ (3.1)

where α, β ∈ C satisfies |α|2 + |β|2 = 1. Unlike classical bits, which must
be either 0 or 1, qubits exist in a continuous space of possible superpositions
between these basis states. This superposition can be visualized geometrically
using the Bloch sphere, where every point on the surface represents a possible
qubit state. This geometric representation reveals that qubits don’t just have
"more" states than classical bits—they have a continuum of possible states.
The Bloch sphere 3.1 provides a geometric representation, parameterizing
any pure-qubit state as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (3.2)

where θ ∈ [0, π] represents the polar angle and ϕ ∈ [0, 2π) the azimuthal
angle on the sphere.

There are many ways in which a qubit can be realized physically: it can
be carried by a single atom, or a single electron, or a single photon.

Figure 3.1: Bloch Sphere

For n qubits, the state space grows exponentially as H(n) = (C2)⊗n with
dimension 2n, highlighting a fundamental advantage of quantum information:
the ability to represent complex amplitudes 2n with just n physical qubits.
A general n-qubit state takes the form:
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|ψ⟩ =
2n−1∑
i=0

αi |i⟩ (3.3)

where
∑

i |αi|2 = 1 and |i⟩ represents the computational basis state
corresponding to the binary representation of the integer i.

Quantum operations are implemented through three fundamental classes
of operators:

1. Unitary operators (U †U = UU † = I): Govern reversible evolution
of closed quantum systems, preserving state norms and superpositions. 2.
Hermitian operators (A = A†): Represent physical observables with real
eigenvalues. 3. Projection operators (P 2 = P, P = P †): Implement measure-
ments and filter quantum states, causing the nonunitary state collapse that
bridges quantum and classical domains.

Single-qubit operations include the Pauli gates:

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
(3.4)

The X gate acts as a quantum NOT operation, flipping |0⟩ to |1⟩ and vice
versa. The Z gate introduces a relative phase, leaving |0⟩ unchanged while
mapping |1⟩ to − |1⟩. The Y gate combines bit-flip and phase operations.
Together with the identity I, these four operators form a basis for all single-
qubit operations.

The Hadamard gate creates superpositions:

H =
1√
2

(
1 1

1 −1

)
(3.5)

It transforms |0⟩ to 1√
2
(|0⟩ + |1⟩) and |1⟩ to 1√

2
(|0⟩ − |1⟩), effectively

mapping between the computational bases (Z) and Hadamard (X).
Multi-qubit gates like the Controlled-NOT (CNOT) introduce entangle-

ment:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (3.6)

This gate flips the target qubit if and only if the control qubit is |1⟩.
When applied to |+⟩ |0⟩, it creates the Bell state 1√

2
(|00⟩+ |11⟩).
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3.1.2 Entanglement and Measurement

Entanglement represents a purely quantum correlation between subsystems
with no classical analog, what Einstein called spooky action at a distance.
For composite systems, an entangled state cannot be expressed as a tensor
product of individual subsystem states:

|ψ⟩ ≠ |ψA⟩ ⊗ |ψB⟩ ⊗ · · · (3.7)

The Bell state exemplifies two-qubit entanglement:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (3.8)

In this state, measuring one qubit instantly determines the state of the
other, regardless of spatial separation. This perfect correlation persists in any
measurement basis, leading to violations of Bell inequalities and confirming
the non-local nature of quantum mechanics.

For multi-qubit systems, more complex entangled states exist, such as
the GHZ state:

|GHZ⟩ = 1√
2
(|0⟩⊗n + |1⟩⊗n) (3.9)

and the W state:

|W ⟩ = 1√
n
(|10...0⟩+ |01...0⟩+ ...+ |00...1⟩) (3.10)

Measurement in quantum mechanics bridges quantum states and classical
outcomes, introducing fundamental randomness. Formally, measurements are
described by a set of operators {Mm} satisfying the completeness relation:∑

m

M †
mMm = I (3.11)

For a state |ψ⟩, the probability of obtaining outcome m is:

p(m) = ⟨ψ|M †
mMm |ψ⟩ (3.12)

After obtaining outcome m, the system collapses to:

|ψm⟩ = Mm |ψ⟩√
p(m)

(3.13)

This quantum state collapse represents a nonunitary, irreversible process
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fundamentally different from unitary evolution.
Projective measurements, the most common type, use orthogonal projec-

tors Pi corresponding to an observable’s eigenspaces. For an observable A
with spectral decomposition A =

∑
i λiPi, the measurement results are the

eigenvalues λi with probabilities determined by the projection of the state
onto each eigenspace. The expectation value is:

⟨A⟩ = ⟨ψ|A |ψ⟩ =
∑
i

λip(i) (3.14)

This measurement formalism explains both the probabilistic nature of
quantum mechanics and the extraction of classical information from quantum
systems.

3.2 Stabilizer Formalism

The stabilizer formalism, introduced by Gottesman [12], provides an efficient
way to describe certain quantum states without storing exponentially many
complex coefficients. Instead of characterizing an n-qubit state through 2n

amplitudes, this approach describes states using a polynomial number of
operators that leave the state invariant.

3.2.1 The Pauli Group and Stabilizer States

The key insight is to characterize quantum states through operators that fix
them. A stabilizer for a state |ψ⟩ is an operator S such that S |ψ⟩ = + |ψ⟩ —
the state is a +1 eigenstate of S. These operators literally "stabilize" the
state by leaving it unchanged.

The relevant operators come from the Pauli group Pn, which consists of
all tensor products of single-qubit Pauli matrices {I,X, Y, Z} with global
phases {±1,±i}:

Pn = {c · P1 ⊗ P2 ⊗ · · · ⊗ Pn |Pi ∈ {I,X, Y, Z}, c ∈ {±1,±i}} (3.15)

To uniquely specify a state, we need a complete set of commuting stabiliz-
ers. Since Pauli operators either commute or anticommute, we can find sets
of mutually commuting operators. A stabilizer group is such a commuting
set that generates enough constraints to uniquely determine the state. For n
qubits, we need exactly n independent stabilizing operators.
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For example, |0⟩ is stabilized by Z (since Z |0⟩ = + |0⟩), while the Bell
state |Φ+⟩ = 1√

2
(|00⟩+ |11⟩) is uniquely determined by the two commuting

stabilizers X ⊗X and Z ⊗ Z.
For the Bell state, for example. we can verify:

(X ⊗X) |Φ+⟩ = 1√
2
(X |0⟩ ⊗X |0⟩+X |1⟩ ⊗X |1⟩) (3.16)

=
1√
2
(|1⟩ ⊗ |1⟩+ |0⟩ ⊗ |0⟩) (3.17)

=
1√
2
(|11⟩+ |00⟩) = |Φ+⟩ (3.18)

Similarly, (Z ⊗ Z) |Φ+⟩ = |Φ+⟩.
The efficiency of the stabilizer formalism becomes clear in terms of storage:

instead of 2n complex amplitudes, we need only n Pauli operators. Each
operator requires O(n) bits to specify (2 bits per qubit for {I,X, Y, Z} plus
bits for the phase), giving total storage of O(n2) bits—exponentially better
than the standard O(n · 2n) representation.

Geometrically, k independent stabilizer constraints reduce the 2n-dimensional
Hilbert space to a 2n−k-dimensional subspace. Each constraint halves the
allowed space. This dimensional control enables quantum error correction by
encoding logical information in protected stabilized subspaces.

Clifford operations are quantum gates that preserve the Pauli group under
conjugation (CPnC

† = Pn), meaning they map Pauli operators to Pauli oper-
ators and consequently transform stabilizer states into stabilizer states. The
Gottesman-Knill theorem [12] demonstrates that quantum circuits restricted
to stabilizer state preparation, Clifford gates, and Pauli measurements can
be efficiently simulated on classical computers in polynomial time, estab-
lishing that non-Clifford resources are necessary for quantum computational
advantage.

3.2.2 Stabilizer Hamiltonians

Finding ground states of generic k-local Hamiltonians is computationally
challenging because the Hilbert space grows exponentially with system size;
the associated decision version—the k-local Hamiltonian problem—is QMA-
complete, i.e. hard even for quantum computers [13]. Classical approaches
include exact diagonalization for very small systems, Density-Matrix Renor-
malization Group (DMRG) for 1-D chains, tensor-network extensions (PEPS,
MERA) in higher dimensions, Quantum Monte Carlo (QMC) and Coupled-
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Cluster methods effective for weakly correlated molecules [14, 15]. Quantum
approaches comprise the Variational Quantum Eigensolver (VQE) for NISQ
hardware, Quantum Phase Estimation (QPE) on future fault-tolerant ma-
chines, and Adiabatic Quantum Computing (AQC) [16, 17].

However, stabilizer Hamiltonians of the form Hstab = −
∑

α Sα (where
Sα are stabilizer operators) can be solved efficiently on classical computers
due to the Gottesman-Knill theorem, as their eigenstates are stabilizer states.
Examples include the Toric Code and cluster state Hamiltonians. In contrast,
for instance, the transverse-field Ising model HTFIM = −J

∑
i ZiZi+1 −

h
∑

iXi is not a stabilizer Hamiltonian due to non-commuting terms, making
it computationally hard to simulate classically. In the folliwing subsection we
will present the Toric Code, whose Hamiltonian is a stabilizer Hamiltonian.

3.2.3 Toric Code

The toric code, introduced for the first time in the work [18], is both a
topological and a stabilizer quantum code. To understand the toric code,
we first need to understand what stabilizer and topological codes are. In
quantum error correction, we want to protect quantum information from noise
and errors by encoding the quantum information we actually care about - that
is stored into "logical qubits". into a larger space of "physical qubits" - the
actual quantum hardware components that can be manipulated and measured.
A stabilizer code is defined by a set of operators called stabilizers, which we
introduced in the theoretical background. A topological code stores logical
qubits in global properties of the entire system rather than in individual
components. In few words, this means that errors must affect large regions
of the system to corrupt the logical information, making it robust against
local perturbations. This was just a brief highlight for understaning the
importance of the toric code, we can focus on what we need for our specific
problem. The toric code is defined on a 2D square lattice L× L placed on
a torus surface 3.2. Physical qubits are placed on the edges of the square
lattice. 2L2 physical qubits are required to encode 2 logical qubits.

The code uses two types of stabilizer operators to detect errors: star
operators and plaquette operators. Star operators are defined at each vertex
s of the lattice:

Âs =
∏

i∈edges(s)

X̂i (3.19)

These are products of Pauli-X̂ operators on the four edges connected to
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Figure 3.2: Torus suface of the toric code

vertex s. Plaquette operators are defined on each square face p of the lattice:

B̂p =
∏

i∈boundary(p)

Ẑi (3.20)

These are products of Pauli-Ẑ operators on the four edges that form the
boundary of plaquette p. All stabilizer operators commute with each other:
[Âs, Âs′ ] = [B̂p, B̂p′ ] = [Âs, B̂p] = 0 for all vertices s, s′ and plaquettes p, p′.
The code space consists of all quantum states that are +1 eigenstates of
every stabilizer operator. Since the lattice is on a torus, periodic boundary

Figure 3.3: Toric code on a square lattice [9]. The star operator Âs acts on
the four edges adjacent to a vertex, while the plaquette operator B̂p acts on
the four edges forming plaquette p.

conditions are present on the lattice. In figure 3.3 the two-dimensional lattice
is illustrated where Nx is the number of rows of indipendent vertices and Ny

the number of columns of indipendent vertices on the lattice. From now on,
we will consider Nx = Ny = 2.

The toric code Hamiltonian is constructed from the stabilizer operators:

Ĥ = −
∑
s

Âs −
∑
p

B̂p (3.21)

14



This Hamiltonian describes a system where the ground state corresponds
to the error-free code space. According to the theory of quantum error
correction in which we don’t go into details, when all stabilizer operators
have eigenvalue +1, no errors are present and energy is minimized. Errors
flip some stabilizers to eigenvalue −1, increasing the energy and naturally
driving the system back toward the error-free ground state.

The Hamiltonian has four degenerate ground states |r, t⟩L with r, t = 0, 1,
called logical states. The reason of this four-fold degeneracy is related to
its encoding of 2 logical qubits. Since each logical qubit can be in states |0⟩
or |1⟩, the two logical qubits form four combinations: |0, 0⟩L, |0, 1⟩L, |1, 0⟩L,
and |1, 1⟩L. All four states are simultaneous eigenstates of every stabilizer
operator with eigenvalue +1:

Âs|r, t⟩L = |r, t⟩L ∀s (3.22)

B̂p|r, t⟩L = |r, t⟩L ∀p (3.23)

Therefore, they are degenerate eigenstates of the Hamiltonian Ĥ. Since the
stabilizer operators satisfy two constraints (

∏
s Âs =

∏
p B̂p = 1), there are

only 6 independent stabilizers (2NxNy−2) instead of 8. This is insufficient to
fully define the 8-qubit ground state, so two additional stabilizers are needed.

The standard choice is to add the logical operators X̂L1 , X̂L2 or ẐL1 , ẐL2

3.4 3.5. These commute with all plaquette and star operators, that is why
they are chosen to complete the stabilizer characterization of one of the four
degenerate ground states. Explicitly, ẐL,1 (ẐL,2) applies the Ẑ operator to all
horizontal (vertical) edges of an arbitrarily chosen column (row). Similarly,
X̂L,1 (X̂L,2) applies the X̂ operator to all horizontal (vertical) edges of an
arbitrarily chosen row (column) [9].

Figure 3.4: [9] X̂L1 and
X̂L2 logical operators. Blue
lines indicate the qubits on
which the operators act.

Figure 3.5: [9] ẐL1

and ẐL2 logical operators.
Orange lines indicate the
qubits on which the oper-
ators act.
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Chapter 4

Models of Quantum
Computation

The concept of quantum computation emerged in the early 1980s when
researchers like Benioff and Feynman recognized that quantum mechanics
could fundamentally enhance computational capabilities [19, 20]. This insight
led to the development of different computational models, each exploiting
quantum properties in distinct ways.

The circuit model, pioneered by Deutsch, became the dominant paradigm
through its intuitive gate-based approach [21]. Shor’s 1994 factoring algo-
rithm demonstrated the circuit model’s power for specific problems, leading
to widespread adoption in quantum algorithm development [?]. However,
the circuit model’s requirement for deep, sequential gate operations poses
significant challenges for noisy intermediate-scale quantum (NISQ) devices.

Alternative computational models emerged to address these limitations.
Measurement-based quantum computing exploits pre-prepared entangled
graph states and adaptive measurements, potentially reducing circuit depth
requirements. Adiabatic quantum computing leverages quantum annealing
principles, offering a different approach to optimization problems.

Understanding these different models is crucial because they offer comple-
mentary approaches to quantum algorithm design and hardware implementa-
tion. Each model presents unique trade-offs between algorithmic expressive-
ness, noise resilience, and physical realizability. This chapter examines the
mathematical foundations of these quantum paradigms.
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4.1 Circuit-Based Quantum Computation

Most current quantum processors adopt the gate-based (or circuit-based)
model, executing an algorithm as a time-ordered sequence of quantum gates
acting on qubits [11].

4.1.1 Fundamental Elements

A circuit diagram is a set of horizontal wires—one per qubit—that all begin
in the basis state |0⟩. Gates are drawn as boxes or symbols on the wires, and
time flows from left to right, so the left-most gate acts first. Single-qubit
gates such as Hadamard (H), Pauli-X (X), Pauli-Y (Y ), Pauli-Z (Z), phase
(S) and π/8 (T ) create and rotate superpositions on a single qubit.

|0⟩ H m1

Figure 4.1: A Hadamard gate prepares (|0⟩+ |1⟩)/
√
2; the final measurement

collapses the superposition to a classical bit m1.

Two-qubit gates are indispensable because they generate correlations that
single-qubit rotations cannot achieve. One example is the controlled-NOT
(CNOT), which flips the target qubit when the control is in |1⟩. A quantum
circuit represents a series of unitary operations applied to a quantum state.
For n qubits, the state is represented as a vector in a 2n-dimensional Hilbert
space. Each gate corresponds to a unitary matrix U satisfying U †U = I,
ensuring reversibility and conservation of probability in accordance with
quantum mechanics.

The evolution of a quantum state through a circuit is described by the
sequential application of unitary operators:

|ψfinal⟩ = Uk · · ·U2U1 |ψinit⟩

A finite family of quantum gates is called universal when any operation
allowed by quantum mechanics can be built out of them. Formally, for a
register of n qubits, every unitary matrix acting on the 2n-dimensional state
space can be approximated arbitrarily well by a finite sequence of gates chosen
only from that family.

A widely used universal set consists of just four blocks:

• the Hadamard gate, H,
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• the phase gate, S,

• the π/8 gate, T , and

• the two-qubit controlled-NOT (CNOT).

Because any quantum circuit can be rewritten in terms of these four gates, ex-
perimental platforms focus on implementing them (or an equivalent universal
set) with high fidelity.

4.1.2 Example: Bell State Preparation

Consider the preparation of a Bell state—a maximally entangled two-qubit
state.

1. Initialize two qubits in the computational basis state |00⟩.

2. Apply a Hadamard gate to the first qubit, creating the superposition
state 1√

2
(|00⟩+ |10⟩).

3. Apply a CNOT gate with the first qubit as control and the second as
target, resulting in the entangled state 1√

2
(|00⟩+ |11⟩).

4. Upon measurement, the system yields either 00 or 11 with equal proba-
bility.

|0⟩ H

|0⟩

4.1.3 Challenges and Limitations

Even though the circuit model is conceptually simple, today’s hardware
struggles with some problems:

1. Fragility to the environment (noise and decoherence).
A qubit keeps its quantum properties only for a short coherence time—from
a few microseconds in superconducting chips to a few seconds in trapped
ions. Two-qubit gates fail roughly once every 102–103 operations, so
long circuits quickly drown in errors.

2. Imperfect entangling gates.
Operations such as CNOT demand nanometre-level control of lasers or
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microwave pulses. Any mis-tuning spreads through the computation,
making algorithms that need thousands of CNOTs unfeasible on NISQ
(Noisy Intermediate-Scale Quantum) devices.

3. Error-correction overhead.
Protecting information requires many physical qubits for one reliable
logical qubit—typically 102–103. Shor’s algorithm on a 2048-bit RSA
key would need millions of physical qubits, whereas current prototypes
offer about 103.

4. Timing and connectivity constraints.
Qubits are not all-to-all connected; extra swap gates are needed to bring
distant qubits together, lengthening the circuit and adding further error
sources. All gates must also fit within the short coherence window.

4.2 Measurement-Based Quantum Computation

Measurement-based quantum computation (MBQC), also known as the
“one-way quantum computer”, is an universal model of quantum computation
introduced by Raussendorf and Briegel in 2001 [6]. Instead of executing the
quantum computation via a sequence of reversible unitary gates—as in the
circuit model—MBQC relies on preparing a single, highly entangled resource
state, and then performing the entire computation solely through sequential
single-qubit projective measurements on that state. This means that local
measurements on qubits are used to drive the computation.

In general, quantum mechanical systems can evolve in time in two ways:
via unitary evolution and via projective evolution.

Unitary evolution:
deterministic, reversible

Projective measurement:
probabilistic, irreversible

• Unitary evolution: Governed by the Schrödinger equation, producing
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continuous, deterministic, and reversible changes according to:

|ψ(t)⟩ = e−iĤt/ℏ|ψ(0)⟩ (4.1)

where Ĥ is the system Hamiltonian. For any later time, we will know
exactly what state we have, if we know the initial state. Moreover, if
we have the tools to change Ĥ o −Ĥ, then we can undo the evolution
and get back to where we started.

• Projective measurements: If we make a measurement on the system,
there is no way of knowing what we’re going to get, the outcome is
probabilistic: the projective measurements cause discontinuous and
probabilistic state collapse.

The framework of MBQC is known as the "one-way quantum computer"
since the measurements destructively consume the entanglement, rendering
the cluster state usable only once as a computational resource.

Despite the differences, both models are computationally equivalent—any
quantum algorithm efficiently implementable in one model can be imple-
mented efficiently in the other.

4.2.1 Graph States

A graph state is a special class of multi-qubit entangled state used as resource
states in MBQC. Formally, a graph state |G⟩ is determined by an undirected
graph G = (V,E), where V is the set of vertices that correspond to qubits and
E is the set of edges, where each edge represents the entanglement between
two qubits.

A graph state |G⟩ is prepared as follows:
All qubits are set to |+⟩, where |+⟩ = 1√

2
(|0⟩+ |1⟩), and then a Controlled-Z

(CZ) gate is applied between every pair of qubits connected by an edge of
the graph. Equivalently, |G⟩ can be defined via the stabilizer formalism as
the unique state which is the simultaneous +1 eigenstate of a commuting set
{Kv}, for each vertex v ∈ V , where the stabilizer operator is:

Kv = Xv

∏
w∈Nv

Zw (4.2)

where Nv denotes the neighborhood of the vertex v, that is, all vertices
connected to v by an edge.
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4.2.2 Cluster states

A cluster state [7] is a particular instance of graph states, where the underlying
graph is a connected subset of a d-dimensional lattice. Vertices are arranged
in a regular lattice (commonly a square lattice in 2D or a cubic lattice in 3D)
and connected by edges that connect nearest neighbors, so that the states
are generated in lattices of qubits with Ising-type interactions.
The 2D cluster state is a computationally universal "material", we can
implement any quantum computation on it, solely by local measurements.

On the experimental side, cluster states have been produced in different
quantum platforms, such as photonic qubits, trapped ions, and superconduct-
ing qubits.

A possible description of cluster states is based on the stabilizer formalism.
For example the 1D cluster being then just the unique quantum state with +1

eigenvalue to n independent operators {Si}ni=1 of the form Si = Zi−1XiZi+1.

Two-Qubit Cluster State

The simplest meaningful cluster state involves just two qubits:

|C2⟩ = CZ1,2|+⟩1|+⟩2 (4.3)

= CZ1,2

(
|0⟩1 + |1⟩1√

2

)(
|0⟩2 + |1⟩2√

2

)
(4.4)

=
1

2
(|0⟩1|0⟩2 + |0⟩1|1⟩2 + |1⟩1|0⟩2 − |1⟩1|1⟩2) (4.5)

=
|0+⟩1,2 + |1−⟩1,2√

2
(4.6)

This state is equivalent to a Bell pair (a maximally entangled state) if we
apply a Hadamard gate to the second qubit:

(I1 ⊗H2)|C2⟩ =
|00⟩1,2 + |11⟩1,2√

2
=: |Bell⟩ (4.7)

4.2.3 Single qubit unitary on a one dimensional cluster state

To understand how to translate a circuit-based single qubit unitary in the
measurement-based framework, consider a two-qubit chain where we measure
qubit 0 at angle θ in the XY plane. The measurement operator is

M0(θ) = cos(θ)X0 + sin(θ)Y0 with eigenstates |θ+⟩ = |0⟩ + eiθ|1⟩ and
|θ−⟩ = |0⟩ − eiθ|1⟩ (up to normalization). We measure qubit 0 in state
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|ψ⟩ = α|0⟩+ β|1⟩ while qubit 1 is in the |+⟩ state:

M0(θ)CZ01|ψ⟩0|+⟩1 =M0(θ)(α|00⟩+ α|01⟩+ β|10⟩ − β|11⟩)

There are two possible measurement outcomes: 0 or 1. If we obtain outcome
0, this means the state is projected onto the eigenstate |θ+⟩ = |0⟩+ eiθ|1⟩,
and the state of the system becomes:

M0
0CZ01|ψ⟩0|+⟩1 = (⟨0|+ eiθ⟨1|)(α|00⟩+ α|01⟩+ β|10⟩ − β|11⟩)

= α|0⟩+ α|1⟩+ βeiθ|0⟩ − βeiθ|1⟩
= α|+⟩+ βeiθ|−⟩
= HRz(−θ)|ψ⟩ (4.8)

If we obtain outcome 1, this means the state is projected onto the eigenstate
|θ−⟩ = |0⟩ − eiθ|1⟩, and the state of the system becomes:

M1
0CZ01|ψ⟩0|+⟩1 = (⟨0| − eiθ⟨1|)(α|00⟩+ α|01⟩+ β|10⟩ − β|11⟩)

= α|0⟩+ α|1⟩ − βeiθ|0⟩+ βeiθ|1⟩
= α|+⟩ − βeiθ|−⟩
= HRz(−θ)Z|ψ⟩ (4.9)

The only difference between equations (4.8) and (7.4) is that in the first case
there is no Z gate, while in the second case a Z gate appears. This Z is a so
called by-product operator, and it’s an undesired Pauli operator that comes
up when the measurement outcome is 1.

In more compact form we have:

M0(θ)CZ01|ψ⟩0|+⟩1 = HRz(−θ)Zm0 |ψ⟩

where m0 is the measurement outcome (0 or 1).
This process is called quantum half teleportation: the quantum infor-

mation from the first qubit moves to the second qubit, with a Hadamard
transformation applied and a possible Pauli-Z correction depending on what
we measured. When we store logical information in qubit 1 and then measure
it, you might expect that information to be lost forever since measurement is
normally irreversible. But surprisingly, the entanglement between the two
qubits allows the quantum information to completely transfer to the second
qubit, preserving it despite the measurement.
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We know that in circuit-based quantum computation a unitary can be
decomposed into a product of three rotations (Euler decomposition):

U = Rx(−θ1)Rz(−θ2)Rx(−θ3)

where Rx and Rz are the rotation matrices:

Rx(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
, Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]

Consider a one-dimensional cluster chain of 5 qubits where qubit 0 is the
input and qubit 4 is the output:

0 θ3 θ2 θ1 4

|ψ′⟩ =M3M2M1M0CZ34CZ23CZ12CZ01|ψ⟩0|+⟩1|+⟩2|+⟩3|+⟩4

Due to random measurement outcomes, MBQC requires adaptive mea-
surements. The measurement angles must be corrected based on previous
outcomes mj :

Qubit 0: 0 7→ 0

Qubit 1: θ1 7→ (−1)m0θ1

Qubit 2: θ2 7→ (−1)m1θ2

Qubit 3: θ3 7→ (−1)m0+m2θ3

The final result is:

|ψ′⟩ = Xm3+m1Zm2+m0U |ψ⟩

where U = Rx(−θ3)Rz(−θ2)Rx(−θ1) and Xm3+m1Zm2+m0 are the byproduct
operators.

4.2.4 Determinism in MBQC

As showed in the the previous examples, there are two key MBQC principles:

1. Deterministic computation requires adaptive measurements.

2. Adaptation of angles can be realized only up to byproduct operators.
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Byproduct Correction The byproduct operators that emerge from the
measurements must be corrected. In the framework of graph states, that we
recall being the resource states for MBQC, depending on the graph topology
we may not be able to eliminate the randomness. So, given a graph state,
we’re not always able to perform measurements on this state in such a way
that the determinism is guaranteed. The success of this correction strategy
depends crucially on the structure of the underlying graph state. This
introduces a fundamental constraint: the graph structure must satisfy specific
mathematical conditions to enable deterministic computation. A necessary
condition is known as flow [25].

Flow Condition

Given a graph state representation of an MBQC resource, we can identify
three types of qubits:

• Input qubits (I): where the computation begins

• Output qubits (O): where the final result is obtained

• Auxiliary qubits: all other qubits that are measured during compu-
tation

Definition 1 (Flow). An open graph state (G, I,O, λ) with measurements
in the (X,Y ) plane possesses a flow if there exists a function f : Oc → Ic

(mapping measured qubits to correction qubits) and a partial order > on
vertices such that for all measured qubits i ∈ Oc:

(F1) i ∼ f(i) (measured qubit is adjacent to its corrector)

(F2) i < f(i) (measured qubit is processed before its corrector)

(F3) ∀k ∈ NG(f(i)) \ {i}, i < k (neighbors of corrector are processed after
measured qubit)

Flow ensures both the temporal and causal measurement ordering re-
quired for adaptive measurements, and the geometric conditions necessary
for byproduct correction. Specifically: (1) each measured qubit has a desig-
nated "corrector" qubit connected to it, (2) measurements occur in a specific
temporal order that respects causality, and (3) byproduct propagation can
proceed without conflicts.
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Generalized Flow (Gflow)

The standard flow condition is sufficient but not necessary for deterministic
MBQC, and is restricted to (X,Y ) measurements with one-to-one correction
mapping. Generalized flow (gflow) extends this framework by:

• Allowing measurements in all three planes: (X,Y ), (X,Z), and (Y,Z)

• Permitting each measured qubit to have a set of correcting qubits rather
than just one

Definition 2 (Generalized Flow). An open graph state (G, I,O, λ) has gflow
if there exists a function g : Oc → P(Ic) (mapping measured qubits to
correction sets) and a partial order < satisfying:

• (G1) If j ∈ g(i) and i ̸= j, then i < j

• (G2) If j ≤ i and i ̸= j, then j /∈ Odd(g(i))

• (G3) If λ(i) = (X,Y ): i /∈ g(i) and i ∈ Odd(g(i))

• (G4) If λ(i) = (X,Z): i ∈ g(i) and i ∈ Odd(g(i))

• (G5) If λ(i) = (Y,Z): i ∈ g(i) and i /∈ Odd(g(i))

Here, Odd(K) = {u ∈ V | |NG(u) ∩K| ≡ 1 (mod 2)} denotes vertices
with an odd number of neighbors in set K.

The key insight is that gflow provides a necessary and sufficient condition
for deterministic MBQC: a graph state enables deterministic computation if
and only if it possesses gflow. This makes gflow the definitive criterion for
assessing whether both adaptive measurements and byproduct correction can
be successfully implemented on a given MBQC resource state.

In the framework of the stabilizer formalism, it becomes intuitive to
understand how the stabilizers of a graph state that admits gflow ensure
determinism by enabling byproduct correction.

As we saw, there are two types of byproduct operators that arise from
R(θ) measurements (rotations in the XY plane), each requiring different
correction strategies:

• X byproducts: Can be easily corrected by swapping measurement
bases R(θ) ↔ R(−θ) on the respective qubit through adaptive mea-
surements, since XR(θ)X = R(−θ).
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• Z byproducts: Require correction through the stabilizer structure of
the graph state by commuting them to neighboring unmeasured qubits.

Consider for example a 3-qubit linear cluster state:

0 1 2

input output

where qubit 0 is the input, qubit 2 is the output, and qubit 1 is measured
during computation.

When we measure qubit 0 and obtain outcome m0 = 1 (negative eigen-
state), a Z byproduct operator appears, as demonstrated in the two-qubit
chain example. This results in an unwanted Z0 operator acting on the state.

The correction mechanism exploits the stabilizer structure of the graph
state. For the 3-qubit linear cluster, the stabilizers are:

S0 = X0Z1 (4.10)

S1 = Z0X1Z2 (4.11)

S2 = Z1X2 (4.12)

To correct the unwanted Z0 byproduct, we observe that Z0 appears in the
stabilizer S1 = Z0X1Z2. Since stabilizers have eigenvalue +1 on the graph
state by definition, we can write:

S1|GS⟩ = Z0X1Z2|GS⟩ = |GS⟩

This means that applying Z0 to the graph state is equivalent to applying
X1Z2:

Z0|GS⟩ = X1Z2|GS⟩

Therefore, the unwanted Z0 byproduct is commuted through the stabilizer
relation to neighboring unmeasured qubits, transforming into X1Z2 byprod-
ucts. This is the general mechanism: Z byproducts from projections onto
negative eigenstates can be shifted to neighboring qubits using stabilizer rules.
Now we have two new byproducts to handle: X1 can be corrected by adaptive
measurements on qubit 1 (swapping R(θ1) → R(−θ1)), while Z2 appears on
the output qubit where it can be corrected through classical post-processing.

This stabilizer-based correction mechanism automatically reveals the
mathematical condition for determinism in MBQC: the flow condition.
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Through our example, we can see that flow captures two essential require-
ments:

Correction Sets: Each measured qubit must have designated "corrector"
qubits that can handle its byproducts. In our example: qubit 0 sends
corrections to qubit 1 (the X1 byproduct from the stabilizer transformation),
and qubit 1 sends corrections to qubit 2 (any further byproducts are pushed
to the output).

Measurement Order: There must be a specific temporal order that
ensures corrector qubits are available when needed. In our case: qubit 0 must
be measured before qubit 1. This is crucial because when qubit 0 produces
the X1 byproduct, qubit 1 must still be unmeasured so it can perform the
adaptive correction.

All these rules can be visualized pictorially in Figure 4.2.

Figure 4.2: Figure from [10], a graphical representation of MBQC and
byproduct corrections. Blue circles are the qubits
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Chapter 5

Variational Quantum
Algorithms

The term NISQ (Noisy Intermediate-Scale Quantum) was coined by John
Preskill in 2018 to define the current class of quantum computing platforms.
NISQ devices are characterized by two key limitations: they are noisy, refer-
ring to environmental influences such as thermal noise and electromagnetic
field noise that result in computation errors, and intermediate-scale, con-
taining 50 to a few hundred qubits—sufficient to exceed classical simulation
for specific tasks but inadequate for full-scale quantum error correction.

The NISQ era represents a transitional phase where devices begin perform-
ing certain tasks faster than classical machines, achieving quantum advantage
or quantum supremacy. Classical computers struggle particularly with sim-
ulating highly entangled many-particle quantum systems, making quantum
dynamics a promising area for quantum computational advantages.

Despite their potential, NISQ devices face fundamental challenges that
limit their computational capabilities and practical applications:

1. High Error Rates: Current quantum computers exhibit error rates
much higher than conventional electronics, with insufficient quantum
resources for powerful error correction protocols [26].

2. Short Coherence Times: Qubits spontaneously relax toward their
ground state in microseconds to milliseconds, limiting successful com-
putational operation windows.

3. Limited Qubit Numbers: Available qubits are insufficient for full-
fledged quantum error correction protocols required for fault-tolerant
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computation. Hundreds to thousands of physical qubits are still required
for each logical qubit.

4. Connectivity Constraints: In most architectures, qubits cannot inter-
act arbitrarily, limiting the complexity and efficiency of implementable
quantum circuits.

5. Measurement Errors: Read-out fidelities remain at 99–99.8% (mid-
circuit even lower), often dominating total error budgets [27].

6. Gate Calibration Drift: Quantum devices require frequent recali-
bration as gate parameters drift due to environmental fluctuations and
hardware aging.

7. Limited Circuit Depth: The combination of decoherence and gate
errors restricts quantum circuits to shallow depths, typically 10-100
gates before errors dominate computation.

Given these limitations, two primary approaches emerge for quantum
computing’s future. The first is implementing quantum error correction
(QEC), where many physical qubits constitute a single robust logical qubit.
The second approach accepts inherent noise and finds applications that survive
despite it. Variational Quantum Algorithms represent a prominent example
of this second strategy.

Building upon the NISQ era challenges, Variational Quantum Algorithms
(VQAs) emerge as practical approaches to extract computational value from
current quantum hardware. These hybrid algorithms leverage both classical
and quantum computing resources to find approximate solutions to optimiza-
tion and eigenvalue problems, with applications spanning physics, chemistry,
finance, and logistics.

VQAs serve as a bridge between classical algorithms and fault-tolerant
quantum algorithms of the future. While current NISQ devices lack the qubit
count, coherence times, and error rates needed for full-scale fault-tolerant
quantum algorithms, VQAs are specifically designed to work within these
constraints. The fundamental insight behind VQAs is offloading computa-
tionally intensive optimization to classical computers while using quantum
hardware for tasks it performs best: preparing and manipulating quantum
states difficult to simulate classically.

The theoretical foundation of VQAs rests on the variational principle, a
fundamental theorem in quantum mechanics providing mathematical guaran-
tees for their effectiveness. For any Hamiltonian Ĥ with ground state energy
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E0 and any normalized quantum state |ψ⟩, the variational principle states
that E0 ≤ ⟨ψ|Ĥ|ψ⟩. This inequality ensures that the expectation value of the
Hamiltonian in any trial state provides an upper bound to the true ground
state energy.

By parametrizing a family of quantum states |ψ(θ)⟩ and minimizing the
cost function C(θ) = ⟨ψ(θ)|Ĥ|ψ(θ)⟩, we systematically approach the ground
state energy from above. The optimal parameters θ∗ that minimize C(θ)
yield the best approximation to the ground state within the chosen parametric
family.

VQAs consist of four essential steps:

Figure 5.1: Schematic diagram of a Variational Quantum Algorithm (VQA)
[29]

1. Parameterized quantum circuit preparation: Start with a param-
eterized quantum circuit (ansatz) where parameters θ = (θ1, θ2, . . . , θn)

are rotation angles associated with quantum gates. This creates a
mapping θ 7→ |ψ(θ)⟩ = U(θ)|0⟩⊗n, where U(θ) is a sequence of param-
eterized unitary rotations.

2. Classical optimization: Optimize parameters θ using classical op-
timization algorithms to minimize a problem-specific cost function
C(θ) = ⟨ψ(θ)|Ĥ|ψ(θ)⟩, where Ĥ encodes the problem to be solved.

3. Convergence assessment: Monitor convergence through gradient
analysis ∇θC(θ) or cost function changes: |C(θi+1) − C(θi)| < ϵ for
tolerance ϵ.

4. Solution extraction: Use optimized parameters θ∗ to prepare the final
state |ψ(θ∗)⟩ and extract solutions through classical post-processing.
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Gradient computation requires special consideration for quantum circuits.
Unlike classical neural networks with automatic differentiation, quantum
circuits use the parameter shift rule. For a parameterized gate with parameter
θi, the gradient is:

∂

∂θi
⟨ψ(θ)|Ĥ|ψ(θ)⟩ = 1

2

[
⟨ψ(θ+)|Ĥ|ψ(θ+)⟩ − ⟨ψ(θ−)|Ĥ|ψ(θ−)⟩

]
where θ± = θ± π

2ei. Parameter updates follow: θ(k+1) = θ(k)−α∇θC(θ(k)),
where α is the learning rate.

The ansatz choice critically determines VQA performance by defining
the explorable quantum state space. An ansatz creates a mapping from
classical parameters to quantum states: |ψ(θ)⟩ = U(θ)|0⟩⊗n. Most ansätze
use layered structures: U(θ) = UL(θ

(L)) · UL−1(θ
(L−1)) · · ·U1(θ

(1)), where
each layer applies operations to all qubits systematically.

Effective ansatz design balances three requirements: expressivity (range
of representable quantum states), trainability (optimization landscape qual-
ity), and implementability (hardware compatibility with acceptable error
rates). Hardware-efficient ansätze maximize available quantum resources
while respecting device limitations, typically alternating single-qubit rotations
and entangling gates. A common structure is:

Uj(θ
(j)) = Uentangling

n∏
i=1

Ry(θ
(j)
i )Rz(ϕ

(j)
i )

The rotation gates Ry(θ) and Rz(ϕ) are fundamental single-qubit opera-
tions rotating qubit states around the Y and Z axes of the Bloch sphere:

Ry(θ) = exp

(
−iθ

2
σy

)
=

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
(5.1)

Rz(ϕ) = exp

(
−iϕ

2
σz

)
=

(
e−iϕ/2 0

0 eiϕ/2

)
(5.2)

Entangling layers create quantum correlations between qubits, typically
using CNOT gates between connected qubits. This combination generates
rich quantum state varieties while remaining implementable on near-term
devices.

Problem-inspired ansätze incorporate domain knowledge about problem
structure. For quantum chemistry, the Unitary Coupled Cluster (UCC)
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ansatz builds on established methods by applying excitation operators moving
electrons between orbitals. Hardware-efficient ansätze can be shallow and
noise-resilient but may require many parameters for complex states. Problem-
inspired ansätze often converge faster through domain knowledge but may
require deeper circuits more susceptible to noise.

However, VQAs face fundamental challenges. The most serious is barren
plateaus, where cost function gradients become exponentially small over large
parameter space regions. When gradient variance scales as Var

[
∂C
∂θi

]
∈ O

(
1
2n

)
,

gradient signals become indistinguishable from measurement noise, requiring
exponentially many measurements for progress. Additional challenges include
complex optimization landscapes with numerous local minima, shot noise
from quantum measurements, and hardware imperfections creating spurious
local minima.

The Variational Quantum Eigensolver (VQE), introduced by Peruzzo
et al. in 2014 [30], exemplifies VQA application to eigenvalue problems.
VQE determines ground state energies of many-body quantum systems by
combining the variational principle with parameterized quantum circuits.
The algorithm implements hybrid quantum-classical optimization leveraging
the insight that while classical computers struggle with exponential scaling
of quantum many-body problems, quantum hardware naturally represents
and manipulates these states.

Hamiltonians decompose into Pauli operators:

H =
∑
iα

hiασ
i
α +

∑
ijαβ

hijαβσ
i
ασ

j
β + . . .

where h are real coefficients, Roman indices identify subsystems, and Greek
indices identify Pauli operator types.

Exploiting observable linearity:

⟨H⟩ =
∑
iα

hiα⟨σiα⟩+
∑
ijαβ

hijαβ⟨σ
i
ασ

j
β⟩+ . . .

VQE handles diverse physical systems through polynomial-term Hamilto-
nians, including electronic structure Hamiltonians, quantum Ising models,
Heisenberg models, and k-sparse Hamiltonians. Quantum devices efficiently
compute expectation values for 2n×2n dimensional Hamiltonians, circumvent-
ing the computationally intractable N-representability problem (QMA-Hard
[31]). The algorithm shows promising results for small molecular systems
and continues developing with extensions for excited states, adaptive ansätze,
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and error mitigation techniques [32, 33].
Beyond VQE, several other VQAs address different problem classes. The

Quantum Approximate Optimization Algorithm (QAOA) targets combina-
torial optimization problems by alternating between problem and mixing
Hamiltonians. Variational Quantum Classifiers (VQC) apply VQA principles
to machine learning tasks, using quantum circuits as feature maps and cost
functions based on classification accuracy. These algorithms share the fun-
damental VQA structure while adapting to specific problem requirements,
demonstrating the framework’s versatility across domains.

Traditional VQAs rely on gate-based quantum circuits, but alterna-
tive computational models offer potential advantages for NISQ devices.
As discussed in the previous chapter on quantum computational models,
Measurement-Based Quantum Computation (MBQC) represents one such
alternative, using pre-prepared entangled states and adaptive measurements
instead of gate sequences. This paradigm shift from gates to measurements
opens new possibilities for variational algorithms, potentially addressing some
limitations of circuit-based approaches through reduced circuit depth require-
ments and improved noise resilience. The combination of VQA principles
with MBQC leads to Measurement-Based Variational Quantum Eigensolvers,
which will be explored in detail in the following chapter.
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Chapter 6

Measurement-Based Variational
Quantum Eigensolvers

Building upon the variational quantum algorithm framework established in
the previous chapter, this chapter explores an alternative implementation
approach that leverages measurement-based quantum computation (MBQC)
instead of traditional gate-based circuits. Measurement-Based Variational
Quantum Eigensolvers (MB-VQE) represent a paradigm shift in how varia-
tional algorithms can be realized on quantum hardware, offering potential
advantages for near-term devices while introducing new challenges related to
computational determinism.

As discussed in Chapter 4, MBQC provides a fundamentally different
approach to quantum computation compared to the gate-based circuit model.
Instead of applying sequences of unitary gates to manipulate quantum states,
MBQC leverages pre-prepared entangled resource states and performs com-
putation through adaptive single-qubit measurements. This approach can be
particularly advantageous for NISQ devices, as it moves the complexity from
temporal gate sequences to spatial resource state preparation.

Ferguson et al. [9] first introduced Measurement-Based Variational Quan-
tum Eigensolvers (MB-VQE), combining the variational optimization frame-
work of VQE with the measurement-based computational paradigm. Tradi-
tional VQE uses unitary gates to manipulate quantum states, while MB-VQE
uses measurements that consume auxiliary qubits to modify the remaining
quantum state. This approach offers several potential advantages for near-
term quantum devices and opens pathways to quantum states that may be
expensive to prepare with conventional circuits.

The key insight behind MB-VQE is that many quantum computations can
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be more efficiently realized through measurements on pre-prepared entangled
states rather than through sequential gate operations. This is particularly
relevant for NISQ devices, where gate errors accumulate over time and circuit
depth is severely limited. By moving computational complexity into the
resource state preparation phase, MB-VQE can potentially achieve the same
variational optimization objectives with reduced susceptibility to temporal
noise sources.

6.1 Edge Decoration Approach

Ferguson et al. introduced two complementary approaches for implementing
MB-VQE: edge decoration and direct circuit translation. Edge decoration
provides a direct method for constructing variational state families within the
measurement-based framework. This approach starts with an ansatz graph
state |ψa⟩ that approximates the target ground state of the Hamiltonian of
interest. The variational flexibility is introduced by decorating the edges
of this base graph with auxiliary qubits that are subsequently measured in
parameterized bases.

For each pair of connected qubits (m,n) in the original ansatz graph,
auxiliary qubits are added according to specific patterns. These auxiliary
qubits are connected through controlled-Z gates and then measured in rotated
bases R(θ) = {(|0⟩±eiθ|1⟩)/

√
2}. The angles θ serve as variational parameters

that can be optimized to minimize the energy expectation value.

Figure 6.1: MB-VQE edge decoration approach [9]

Edge decoration creates a tailored entangled state that allows exploration
of appropriate corners of the Hilbert space. The power of this decoration
lies in its ability to induce complex entanglement modifications that don’t
correspond to simple unitary operations. A single auxiliary qubit connected
to m output qubits can implement the operation eiθ/2Ẑ1⊗Ẑ2⊗···⊗Ẑm through
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one measurement. The equivalent circuit implementation would require O(m)

two-qubit gates.
The direct translation method converts existing circuit-based VQE into

equivalent MB-VQE by separating the original VQE circuit into Clifford gates
and parametric single-qubit gates. Clifford gates can be performed classically
according to the Gottesman-Knill theorem and are absorbed into the custom-
state preparation, while parametric gates transform into measurements of
auxiliary qubits in rotated bases.

MB-VQE offers several advantages over circuit-based VQE. Circuit depth
reduction is the primary benefit, as traditional VQE requires gate sequences
accumulating errors over time, while MB-VQE moves computation into
resource state preparation, often performed more efficiently. The measurement
phase requires only single-qubit operations, avoiding errors associated with
long gate sequences. Resource allocation differs between approaches: circuit-
based VQE trades time for space requiring sequential operations on the same
qubits, while MB-VQE trades space for time using more qubits to reduce
temporal complexity. Parallelization offers another advantage, as many MB-
VQE measurements can be performed simultaneously, unlike gate sequences
respecting causal ordering.

6.2 Determinism Challenges in Edge-Wise Decora-
tion

However, Ferguson’s edge decoration approach faces a critical limitation
related to flow conditions—mathematical structures ensuring deterministic
computation in MBQC despite measurement randomness. As established in
Chapter 4, measurement-based quantum computing requires that the under-
lying graph state satisfies generalized flow (gflow) conditions to guarantee
deterministic computation. When auxiliary qubits are added to graph edges
sharing common vertices, the resulting graph structure can violate these
conditions, breaking the deterministic guarantee fundamental to MBQC.

The problem manifests when decorating multiple edges that share common
vertices. While single-edge decoration maintains valid gflow conditions,
shared-vertex configurations create conflicts where byproduct corrections
from one decoration interfere with measurements from another decoration.
This leads to non-deterministic computation where the final quantum state
depends on random measurement outcomes rather than the chosen variational
parameters.
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Consider a three-qubit linear graph state where vertex 2 participates
in decorations for both edges 1-2 and 2-3. When measurement outcomes
create Z byproducts that must be corrected through stabilizer relations, the
correction pathways can conflict. A byproduct from measuring an auxiliary
qubit in one decoration may require correction through a qubit that has
already been measured in another decoration, violating the temporal ordering
required by gflow conditions.

This determinism issue represents a fundamental theoretical limitation
that prevents edge-wise decoration schemes from achieving the computational
equivalence with circuit-based models that MBQC requires. The violation
of gflow conditions means the algorithm cannot reliably reproduce the same
quantum state across multiple runs with identical parameters, undermining
the reliability essential for variational optimization.

6.3 Node-Wise Decoration Solution

Recent work by Schroeder et al. [10] addresses the determinism problem
in MB-VQE using a scheme called node-wise decoration. This approach
differs from edge-wise decoration by adding auxiliary qubits to vertices rather
than edges of the graph state, creating layered structures that preserve the
topological properties needed for flow conditions while maintaining variational
capabilities.

The node-wise decoration scheme takes the original ansatz graph G0 =

(V0, E0) and creates multiple identical copies arranged in layers. Each deco-
ration layer Gℓ maintains the same internal connectivity as G0 plus vertical
connections to layer (ℓ − 1). This construction ensures proper flow condi-
tions: for any measured qubit in layer ℓ, the correction function maps to the
corresponding qubit in layer (ℓ+ 1).

The byproduct correction mechanism operates through stabilizer relations
of the extended graph state. When measurements produce negative eigen-
states, they introduce Z byproducts that can be commuted to the next layer
using stabilizer equations. This systematic correction ensures deterministic
computation while preserving polynomial overhead characteristics.

For linear ansatz graphs with n vertices, node-wise decoration with L

layers creates (L+ 1)× n rectangular cluster states requiring (L+ 1)n total
qubits. Each decoration layer introduces n variational parameters, giving Ln
total parameters for optimization. The dimensional expansion represents the
price of determinism: one-dimensional ansatz graphs require two-dimensional
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cluster state resources, with direct implications for hardware implementation.
The comparison between edge-wise and node-wise approaches reveals

different trade-offs. Edge-wise decoration maintains original dimensionality
but faces exponential overhead due to postselection requirements when flow
conditions are violated. Node-wise decoration guarantees polynomial overhead
through systematic flow-based corrections but requires dimensional expansion.
For practical implementations, this makes node-wise the currently viable
approach for scalable deterministic MB-VQE.

6.4 Alternative Approaches and Future Directions

While node-wise decoration provides a working solution to the determinism
problem, it comes with the cost of dimensional expansion that may limit its
practical scalability. The requirement for higher-dimensional cluster states
increases both the number of required qubits and the complexity of resource
state preparation, potentially offsetting some of the advantages that MB-VQE
offers over circuit-based approaches.

This limitation motivates continued research into alternative approaches
that could maintain the benefits of edge-wise decoration while ensuring
deterministic computation. Potential directions include modified decoration
patterns that avoid shared-vertex conflicts, hybrid approaches combining
elements of both edge-wise and node-wise schemes, and novel correction
protocols that could restore determinism to edge-wise decorated graphs.

The development of deterministic MB-VQE algorithms represents a crucial
step toward making measurement-based quantum computation practically
viable for variational quantum algorithms. As quantum hardware continues
to evolve, the relative advantages of measurement-based versus gate-based
approaches may shift, making it essential to have robust implementations of
both paradigms available for quantum algorithm developers.

The exploration of these measurement-based approaches represents an
active frontier in quantum algorithm development, offering complementary
strategies for extracting computational value from near-term quantum devices
while working within current hardware constraints. The next chapter will
analyze these determinism issues in detail and propose novel solutions to
address the limitations of existing edge-wise decoration schemes.
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Chapter 7

Analysis

In this chapter, we analyze the existing edge-decoration scheme for MB-VQE
proposed by Ferguson et al. [9] in 2021. We first describe the scheme and
its components, then identify the flow violation that hinders deterministic
computation and develop a method to address this problem.

7.1 Edge-wise decoration scheme

Let us start by considering the edge-wise decoration scheme proposed in [9].
Consider two qubits m and n that are initially prepared in the |+⟩ state.
A controlled-Z gate is applied between them to create the edge, yielding
|G⟩ = CZ|+⟩m|+⟩n. This state |G⟩ is a graph state and represents the
simplest possible example of a graph state one can conceive, consisting of
two nodes connected by a single edge.

m n

m n

1

2

3

4

Figure 7.1: Edge-wise decoration applied to a single edge (m,n)

What the word decoration mean in this context? The decoration process
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involves adding auxiliary qubits to the original graph state. The decoration
(see Figure 7.1) introduces four auxiliary qubits, labeled i = 1, 2, 3, 4 (orange
circles), which are connected to the original output qubits m and n (white
circles). All auxiliary qubits are initialized in the |+⟩ state and connected
through CZ gates, transforming our simple two-qubit graph state into a
decorated structure of six qubits, that in [9] is called a custom state.

What is the role of the auxiliary qubits? Measuring auxiliary qubits in a
specific order and in rotated bases R(θ) with specific angles directly controls
the entanglement between qubits m and n.

Recalling that the rotated measurement basis is defined as:

R(θ) ≡
{
|0⟩ ± eiθ|1⟩√

2

}
we can consider two extremal cases:
Case 1: θ = 0 (X-basis measurements) Measuring all auxiliary

qubits with θ = 0 (that is in the basis R(0) = {|+⟩, |−⟩}) allows to recover
the original maximally entangled state, which is equivalent to applying no
decoration at all:

CZmn|+⟩m|+⟩n =
1

2
(|00⟩mn + |01⟩mn + |10⟩mn − |11⟩mn)

= |0⟩m|+⟩n + |1⟩m|−⟩n

Case 2: θ = π/2 (Y-basis measurements) Measuring all auxiliary
qubits with θ = π/2 (that is in the basis R(π/2) = {|+ i⟩, | − i⟩}) completely
disentangles the system, returning the separable state:

|+⟩m|+⟩n =
1

2
(|0⟩m + |1⟩m)⊗ (|0⟩n + |1⟩n)

By choosing intermediate values of θ, we can continuously interpolate
between these two extremes, controlling the entanglement between qubits m
and n.

To fully characterize this entanglement control, we analyzed the final
quantum state |ψm,n⟩ of the output qubits m and n after measuring all
auxiliary qubits in rotated bases by arbitrary angles θi (i = 1, . . . , 4) in the
XY plane.

The resulting state can be expressed in the computational basis as:

|ψm,n⟩ = C00|0m0n⟩+ C01|0m1n⟩+ C10|1m0n⟩+ C11|1m1n⟩
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The probability amplitudes are determined by the following analytical
expressions:

C00 = 1 + cos θ2 sin θ3 sin θ4 + cos θ4 sin θ1 sin θ2 + cos θ1 cos θ3 sin θ2 sin θ4

C01 =
1

2
(cos2 θ4 + cos θ4 − 1) + sin θ1 sin θ2 + i sin θ4(cos θ2 cos θ3 − cos θ1 sin θ2 sin θ3)

C10 = cos θ2 + sin θ3 sin θ4 + i sin θ2(cos θ1 cos θ4 − cos θ3 sin θ1 sin θ4)

C11 = − cos θ2 cos θ4 − i cos θ1 sin θ2 + sin θ4(sin θ1 sin θ2 sin θ3 − i cos θ3)

These expressions represent unnormalized probability amplitudes for each
computational basis state, with the physical quantum state obtained by
normalization: |ψm,n⟩norm = |ψm,n⟩/

√∑
ij |Cij |2.

7.2 Flow conditions in decoration schemes

A natural question arises: can we identify a valid gflow on this decorated
graph to ensure deterministic computation, as explained in the subsection
4.2.4?

Examining the decorated graph in Figure 7.1, we need to establish both
correction sets and a measurement order for the four auxiliary qubits. The
answer is yes—a valid gflow exists, as shown in Table 7.1.

Measured Qubit Correction Set
2 {1}
4 {3}
1 {m}
3 {n}

Table 7.1: Correction sets for single-edge decoration

The measurement order is: 2, 4 ≺ 1, 3, where qubits 2 and 4 are measured
first (in any order), followed by qubits 1 and 3 (in any order).

This confirms that the single-edge decoration operates deterministically.
In other words, we can measure the auxiliary qubits and guarantee that the
final output state is independent of the random measurement outcomes—the
hallmark of deterministic MBQC. However, the situation becomes significantly
different when we extend this approach to larger graphs where edges share
common vertices.
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Let’s consider the same decoration in 7.1. Instead of a single edge, we
now consider two edges that share a common vertex. Our initial ansatz graph
state consists of qubits 1, 2, and 3 connected by entangling gates, yielding
|G⟩ = CZ12CZ23|+⟩1|+⟩2|+⟩3. This is the graph state we will decorate.

As shown in Figure 7.2, vertex 2 participates in decorations for both edges
1-2 and 2-3. This means that each edge gets its own decoration gadget (four
auxiliary qubits each), but they must interact through the shared vertex 2.

1 2 3

4 5

6 7

89

1011

Figure 7.2: Output qubits 1–2–3 (orange) with decorations on edges 1-2 and
2-3 sharing vertex 2. The upper gadget (qubits 4,5,6,7) decorates edge 1-2,
while the lower gadget (qubits 8,9,10,11) decorates edge 2-3.

We maintain the same measurement order of the auxiliary qubits as in the
single-edge case. In particular, as shown in Figure 7.2 (black arrows), qubits
6, 7, 11 and 10 are measured first, then qubits 4, 5, 9 and 8 are measured.

7.2.1 The gflow violation

Here is what goes wrong: as introduced in the theoretical framework (4.2.4),
when measuring auxiliary qubits, unfavorable outcomes (si = 1, corresponding
to projecting onto |θ−⟩) generate Z byproducts that must be corrected through
the stabilizer structure.

Suppose, looking at Figure 7.3, that a measurement on qubit 9 creates
byproduct Z9. To correct this, we must use a stabilizer of the graph state that
contains Z9. In our decorated graph, the relevant stabilizer is X2Z1Z3Z5Z9.
Applying this stabilizer eliminates Z9 but creates new byproducts on qubits
1, 3, and 5.

The crucial problem is that byproduct Z5 (in the upper gadget) cannot
be corrected without affecting already-processed measurements. According
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to the gflow conditions, we would need qubit 7 to be available for correction
(since the stabilizer for qubit 5 involves qubit 7), but qubit 7 was already
measured before qubit 5, violating the temporal ordering required by gflow.
This creates a cascade of corrections that cannot be resolved within the
prescribed measurement order.

1 2 3

4 5

6 7

8Z

1011

(a) Initial byproduct
Z9 requires correc-
tion

Z X Z

4 Z

6 7

89

1011

(b) Correction cre-
ates uncorrectable
cascade

Figure 7.3: Stabilizer correction creates byproduct Z5 that cannot be corrected
due to measurement order constraints.

To be more precise mathematically, let us demonstrate this failure of
determinism by examining all possible measurement outcomes for qubits 5
and 9.

Denote |G⟩ the initial resource state in Figure 7.2. After measuring qubits
5 and 9, we project onto the outcomes |θ±⟩5 and |θ±⟩9. These are defined as:

|θ+⟩i =
1√
2
(|0⟩i + eiθ|1⟩i) (measurement outcome “0”) (7.1)

|θ−⟩i =
1√
2
(|0⟩i − eiθ|1⟩i) (measurement outcome “1”) (7.2)

where i denotes the qubit index. The key point is that outcome “1” introduces
a Z byproduct that must be corrected using stabilizer relations.
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For outcomes (0, 0) and (1, 1) on qubits (9, 5):

⟨θ+|9⟨θ+|5|G⟩ = ⟨θ+|9⟨θ+|5|G⟩ (7.3)

⟨θ−|9⟨θ−|5|G⟩ = ⟨θ+|9⟨θ+|5Z9Z5|G⟩
= ⟨θ+|9⟨θ+|5X2Z1Z3|G⟩
= ⟨θ+|9⟨θ+|5|G⟩ (7.4)

For outcomes (1, 0) and (0, 1) on qubits (9, 5):

⟨θ−|9⟨θ+|5|G⟩ = ⟨θ+|9⟨θ+|5Z9|G⟩
= ⟨θ+|9⟨θ−|5X2Z1Z3|G⟩ (7.5)

⟨θ+|9⟨θ−|5|G⟩ = ⟨θ−|9⟨θ+|5X2Z1Z3|G⟩ (7.6)

The results show that outcomes (0, 0) and (1, 1) yield the same final
state, while outcomes (1, 0) and (0, 1) yield a different final state. Since
the final quantum state depends on the specific measurement outcomes, the
computation is no longer deterministic—this is the mathematical signature
of gflow violation.

This limitation of the edge-decoration scheme motivates the need for a
new approach that can handle shared vertices while maintaining deterministic
computation.

Just to verify this limitation and confirm that no alternative measurement
ordering could admit a valid gflow, we used the graphix library. This library
is particularly interesting and useful concerning computations in MBQC. In
particular, there is a function that constructs measurement patterns from
graph specifications which is called generate_from_graph and automatically
searches for gflow assignments. Testing the configuration in Figure 7.2
confirms that no valid gflow exists for this shared-vertex decoration scheme.
The small code is provided in Appendix A.2.

7.2.2 Node-wise decoration scheme

Now that we have a better understanding of the edge decoration scheme and
its limitations, it is worth noting that this same problem has already been
observed in the literature by [10], who addressed it with a technique called
the node-wise decoration scheme.

Let us examine this node-wise decoration approach to understand why
the solution proposed in [10] successfully preserves the gflow condition.
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The node-wise decoration scheme is illustrated in Figure 7.4. In this
approach, the decoration is organized in layers, where the first digit of each
white node represents its layer (e.g., nodes 10-12 belong to layer 1, nodes
20-22 to layer 2). The measurement order proceeds from bottom to top, as
indicated by the arrow.

Remarkably, this scheme addresses the same three-qubit linear graph as
in Figure 7.2, but the shared vertex in the middle (qubit 1) no longer causes
gflow violations. The key insight is that the layered structure ensures that
any Z byproduct can always be corrected using stabilizers from qubits in
subsequent measurement layers, creating a systematic correction pathway
that maintains determinism.

0 1 2

10 11 12

20 21 22

30 31 32

Figure 7.4: Node-wise decoration with 3 layers. Orange nodes are physical
output qubits, white nodes are decoration qubits measured from bottom to
top.

Figure 7.5 illustrates how byproduct corrections work in the node-wise
scheme. When a Z byproduct appears on qubit 11 (left panel), it can be
corrected by applying the appropriate stabilizer that involves qubit 1 in the
next layer (right panel). This correction mechanism always succeeds because
the layered structure ensures that correction qubits are always available in
subsequent layers.

To further illustrate the robustness of the layered approach, Figure 7.6
shows how byproducts appearing in deeper layers can be systematically
corrected. Even when a Z byproduct appears on qubit 21 in layer 2, it
can be corrected using the stabilizer of qubit 11 in layer 1, which then
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0 1 2

10 Z 12

20 21 22

30 31 32

(a) Z byproduct on qubit 11

Z X Z

10 11 12

20 21 22

30 31 32

(b) After correction using sta-
bilizer of qubit 1

Figure 7.5: Byproduct propagation in node-wise decoration: a Z byproduct on
qubit 11 is corrected by applying the stabilizer of qubit 1 in the neighboring
layer

propagates the correction upward to the physical qubits where it can be
handled appropriately.

In general, each Z byproduct is corrected using the stabilizer of the cor-
responding qubit in the subsequent measurement layer. This systematic
approach ensures that all byproducts can be handled deterministically, re-
gardless of which layer they originate from. This is why the layered approach
proposed by [10] is very promising.

However, there is one possible limitation: this decoration scheme differs
from the edge-wise one: the edge-wise scheme maintains a planar graph,
whereas the node-wise scheme requires an additional dimension for the graph.
For example, in Figure 7.2 the graph is linear, demanding the preparation
of a regular 2D cluster state as the resource state. For a 2D graph, a three-
dimensional cluster state becomes necessary, which may pose challenges for
experimental implementation.

In Appendix A.3 we provide a code that verifies determinism in this
approach. The implementation confirms that states remain equivalent across
multiple runs of the simulations. At each run the measurement outcomes are
obviously different since they are probabilistic, whereas the output state is
always the same validating the gflow properties.

7.2.3 Toward a solution for gflow violation

Having analyzed these two decoration schemes and their respective limitations,
we can now present our approach to solving the gflow violation problem in
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0 1 2

10 11 12

20 Z 22

30 31 32

(a) Z byproduct on qubit
21 (layer 2)

0 Z 2

Z X Z

20 21 22

30 31 32

(b) Correction using stabi-
lizer of qubit 11

X Z X

10 11 12

20 21 22

30 31 32

(c) Final correction using
stabilizers of qubits 0 and
2

Figure 7.6: Cascade correction in node-wise decoration: a Z byproduct in
layer 2 is systematically corrected by propagating through the layers
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edge-wise decoration.
Our initial solution was to apply the decorations sequentially, process-

ing each edge pattern separately while maintaining the original distinction
between qubit types: auxiliary qubits remain the measured qubits, and
the output qubits are always the qubits of the initial ansatz graph being
decorated.

However, as we will show, this sequential decoration approach based
on the decomposition of masurement patterns proved to be theoretically
inadequate.

This limitation motivated the development a different approach: the
proposed solution consists of dynamically updating the input and output
qubit assignments during the computation. Both the procedure will be
explained in the following sections.
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7.3 Pattern decomposition approach

To address the gflow violation problem in edge-wise decoration, we first con-
sidered a sequential approach: instead of decorating all edges simultaneously,
we decorate them one by one to avoid shared-vertex conflicts.

The idea is simple. Given a graph G = (V,E) in initial state |ψin⟩, we:

1. Select edge (a, b) ∈ E and apply the decorative gadget

2. Measure the auxiliary qubits according to the decoration pattern

3. Use the resulting state as input for the next decoration

4. Repeat until all edges are decorated

This can be made more efficient using graph coloring: edges of the same
color share no vertices, so we can process all edges of one color simultaneously
before moving to the next color.

However, this approach has a problem: after the first decoration, the
output qubits are no longer in a graph state.

When we measure auxiliary qubits, their random outcomes affect the
output qubits in a measurement-dependent way. This destroys the stabilizer
structure that defines graph states. The output qubits become an arbitrary
entangled state that cannot be described by stabilizer generators.

This is illustrated in Figure 7.7. Before measurement, qubits 1, 2, 3 form
a graph state with well-defined stabilizers. After measuring auxiliary qubits
4, 5, 6, 7, these qubits (1,2 and 3) are in a complex entangled state (shown
as a cloud) that no longer has the graph state structure.

1 2 3

4 5

6 7

Output:
1, 2, 3
(graph
state)

(a) Before measurement

1,2,3

4 5

6 7

Output:
1, 2, 3
(non-
graph)

(b) After measurement

Figure 7.7: First stage of pattern decomposition showing transition from
graph state to non-graph state after partial measurements.
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The problem becomes clear when we try to apply the second decoration
in Figure 7.8. The decoration pattern assumes the input is a graph state, but
our input is now an arbitrary entangled state.

1,2,3

8 9

10 11

Input:
1–2–3
(non-
graph)

(a) Before measurement

1,2,3

8 9

10 11

Output:
1–2–3
(non-
graph)

(b) After measurement

Figure 7.8: Second stage of pattern decomposition attempting to process
non-graph state input

The absence of stabilizers is the core issue. In graph states, each vertex
has a well-defined stabilizer operator that enables byproduct correction. For
example, in the initial graph state of Figure 7.7, qubit 2 has stabilizer X2Z1Z3.
If a measurement produces a Z byproduct on qubit 5, we can apply this
stabilizer to eliminate this byproduct.

However, once we measure the auxiliary qubits and transition to the
non-graph state shown in the cloud, these stabilizers no longer exist. The
state cannot be characterized by simple local stabilizer operators. If we need
to correct a Z byproduct on qubit 8 during the second decoration, we have
no stabilizer operator available to perform the correction.

This led us to develop a different approach that maintains the graph state
structure throughout the entire decoration process by dynamically reassigning
input and output qubits.

7.4 Edge decoration with dynamic qubit relabeling

Since the first approach could not be implemented, we now analyze a second
possible strategy to address the gflow problem in the edge decoration scheme.

The main idea is simple: instead of keeping fixed input and output qubits,
we dynamically update the qubit register at each decoration step. We start
with an initial qubit register V prepared in a stabilizer state, for example
a graph state |G⟩. At each step, we select two qubits from the register as
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inputs for the decoration. We apply the decoration gadget, measure the input
qubits and some ancilla qubits, and keep the remaining ancilla qubits as new
outputs that replace the inputs in the register.

This dynamic relabeling allows us to maintain the stabilizer structure
throughout the process. The selected input qubits can form an edge in the
initial graph or be isolated vertices—the procedure works in both cases.

The step-by-step procedure is as follows:
Initial condition: At step k = 0, we start with an initial stabilizer state

|ψ0⟩ defined on qubit register V0.

1. Setup and input selection: At step k ≥ 1, we have a quantum state
|ψk⟩ defined on qubit register Vk. We select any two qubits ak, bk ∈ Vk

and designate them as input qubits for the current decoration.

2. Decoration and measurement: We introduce four ancillary qubits
Ak = {a(k)1 , a

(k)
2 , a

(k)
3 , a

(k)
4 }, each initialized in |+⟩. A local Clifford

unitary Uk entangles the input qubits with all ancillae through CZ
and Hadamard gates. We then perform XY-plane measurements on
the input qubits ak, bk and the first two ancillae a(k)1 , a

(k)
2 , recording

outcomes as mk = (mak ,mbk ,ma
(k)
1

,m
a
(k)
2

).

3. Output correction and relabeling: The unmeasured ancillae a(k)3

and a(k)4 become our output qubits. We apply Pauli corrections based on
measurement outcomes and update the register as Vk = (Vk \ {ak, bk})∪
{a(k)3 , a

(k)
4 }. These outputs are available for selection in subsequent

decoration steps.

7.4.1 Example: 3-qubit Linear Graph State

We illustrate the dynamic qubit relabeling procedure on a simple three-qubit
linear graph state. We begin with V0 = {1, 2, 3} and initial state

|ψ0⟩ = CZ12CZ23 |+⟩⊗3,

representing edges 1–2 and 2–3.

Decoration step 1: We select qubits 1 and 2 as input qubits for our first
decoration. We add four ancillae A1 = {a(1)1 , a

(2)
1 , a

(3)
1 , a

(4)
1 }, all initialized in

|+⟩, and create the decorative gadget by introducing entanglement between
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Input qubits Output qubits Ancilla qubits Measured qubit

Figure 7.9: Sequential measurement and byproduct correction pattern for
decoration step 1.

the ancillary qubits and connecting qubits 1 and 2 to the gadget structure.
We then perform measurements on qubits 1, 2, a(1)1 , and a(2)1 in the XY-plane.

The key insight is that Pauli corrections are applied using only the
stabilizers of the decorative gadget structure. For byproducts on the measured
qubits, we use the following stabilizers:

• Byproduct on qubit 1: X
a
(1)
1

Z
a
(3)
1

Z
a
(2)
1

Z1

• Byproduct on qubit 2: X
a
(2)
1

Z
a
(4)
1

Z
a
(1)
1

Z2

• Byproduct on a(1)1 : X
a
(3)
1

Z
a
(1)
1

• Byproduct on a(2)1 : X
a
(4)
1

Z
a
(2)
1

Finally, we relabel the two output qubits as o1 := a
(3)
1 and o2 := a

(4)
1 ,

updating the register to V1 = {o1, o2, 3}.

Decoration step 2: We now select o2 (an output from step 1) together
with qubit 3 as our new input pair. The gray box represents the non-graph
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Figure 7.10: Sequential measurement and byproduct correction for decoration
step 2.

state resulting from the previous decoration. Crucially, we do not require
these qubits to form an edge in a graph state—they simply need to be part
of the current quantum state.

We add new ancillae A2 = {a(1)2 , a
(2)
2 , a

(3)
2 , a

(4)
2 } and create the gadget

structure by entangling them. After performing measurements on o2, 3, a(1)2 ,
and a

(2)
2 in the XY-plane, we apply Pauli corrections using the stabilizers

from the newly created decoration gadget:

• Byproduct on o2: Xa
(1)
2

Z
a
(3)
2

Z
a
(2)
2

Zo2

• Byproduct on qubit 3: X
a
(2)
2

Z
a
(4)
2

Z
a
(1)
2

Z3

• Byproduct on a(1)2 : X
a
(3)
2

Z
a
(1)
2

• Byproduct on a(2)2 : X
a
(4)
2

Z
a
(2)
2

We then relabel the output qubits as o3 := a
(3)
2 and o4 := a

(4)
2 , resulting

in the final register V2 = {o1, o3, o4}.
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This procedure can be extended to decorate all edges in the original graph.
While this example involves only two steps, the technique can be applied
systematically across any graph topology.

7.5 Analysis of Determinism in dynamic qubit rela-
beling

The dynamic qubit relabeling scheme guarantees deterministic computation
through a key insight: determinism in measurement-based quantum com-
puting does not require the input qubits to maintain specific graph state
structures, but rather depends on the local availability of correction stabilizers
within each decoration step.

Consider the k-th decoration step applied to input qubits (ak, bk) with
auxiliary qubits Ak = {a(k)1 , a

(k)
2 , a

(k)
3 , a

(k)
4 }. The decoration operation creates

a local stabilizer group Sk through the Clifford unitary Uk that entangles the
input qubits with the auxiliary qubits according to the gadget structure. This
stabilizer group is completely determined by the local decoration topology
and is independent of the global structure of the input state |ψk⟩.

A crucial difference from standard edge-wise decoration is that we measure
not only the auxiliary qubits but also the two input qubits (ak, bk) that were
originally part of the ansatz graph or outputs from previous decorations. This
measurement strategy, combined with dynamic relabeling, is what enables
deterministic computation.

The stabilizer generators for the decoration gadget are:

Sk = ⟨X
a
(k)
1

ZakZa
(k)
3

Z
a
(k)
2

, (7.7)

X
a
(k)
2

ZbkZa
(k)
4

Z
a
(k)
1

, (7.8)

X
a
(k)
3

Z
a
(k)
1

, (7.9)

X
a
(k)
4

Z
a
(k)
2

⟩ (7.10)

Each measurement outcome mi ∈ {0, 1} on a measured qubit i potentially
introduces a Z byproduct Zmi

i that must be corrected. For each measured
qubit—including both input qubits and auxiliary qubits—there exists one
stabilizer generator in Sk that contains the corresponding Z operator, ensuring
a correction path. For instance, if measuring auxiliary qubit a(k)1 yields
outcome m1 = 1, the resulting Z byproduct Z

a
(k)
1

can be corrected using the
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stabilizer X
a
(k)
3

Z
a
(k)
1

, which transforms the byproduct into an X correction

on the output qubit a(k)3 .
This approach differs from the problematic shared-vertex configurations

in standard edge-wise decoration, where byproducts from one decoration can
propagate to qubits that are simultaneously involved in other decorations,
creating conflicts where correction stabilizers are not available.

By measuring the input qubits and dynamically reassigning the output
qubits, we maintain deterministic computation while avoiding the gflow
violations that plague the original edge-decoration scheme of [9].

There are some advantages of this procedure, in particular:

• Modularity: Each decoration acts locally and independently. Dec-
orations can be applied in any order to any pair of qubits, enabling
step-by-step construction of patterns.

• Efficient tracking: Since each step involves only a few qubits, mea-
surement results and corrections are easy to track.

• Circuit-like structure: Each decoration gadget acts as a two-qubit
quantum gate. We apply these "gates" sequentially to different qubit
pairs, mirroring the structure of gate-based quantum circuits, as shown
in Figure 7.11.

• Generality: The method applies to any local gadget operating on
qubit pairs with ancillae, so there is the possibility to generalize the
decorative gadget and choose more suitable ones.

The qubit relabeling approach can be visualized as a sequential cascade of
decoration gadgets viewed as quantum 2 qubit gates. Figure 7.11 illustrates
this process.

7.6 MB-VQE Simulation

We tested numerically the approach developed in section 7.4 using perturbed
stabilizer Hamiltonians as test cases. Stabilizer Hamiltonians provide ideal
benchmarks for validating our deterministic MB-VQE approach because: (1)
their unperturbed ground states are exactly known graph states, providing
natural ansätze for our decoration scheme; (2) small perturbations destroy
the stabilizer structure, requiring variational approximation; and (3) for
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Figure 7.11: Diagrammatic representation of sequential gadget decorations
with dynamic update of the role of the qubit for N qubits. Starting with
N input qubits q1, q2, . . . , qN , each gadget connects one output from the
previous decoration to the next original ansatz input qubit.

small number of qubits, exact solutions remain computationally tractable for
validation against our variational results.

We tested the dynamic qubit relabeling approach using as the first target
Hamiltonian the perturbed 8-qubit Toric Code Hamiltonian.

Recall that unperturbed 8-qubit Toric Code Hamiltonian Ĥ0 (described
in 3.2.3) is:

Ĥ0 = −
∑
s

Âs −
∑
p

B̂p (7.11)

Let us now consider a perturbation of this Hamiltonian:

Ĥ = Ĥ0 + λĤpert (7.12)

The perturbative Hamiltonian takes the form of a homogeneous longitudinal
magnetic field:

Ĥpert = −λ
8∑

i=1

Ẑi (7.13)

This term acts along the computational basis Ẑ-direction, directly favoring
the |1⟩ state for each qubit.

The total Hamiltonian interpolates between two distinct physical regimes:

• For λ = 0: The system is governed purely by the toric code Hamil-
tonian Ĥ0, and the ground-state manifold is four-fold degenerate:
{|00⟩L, |01⟩L, |10⟩L, |11⟩L}

• For λ ≫ 1: The perturbative term dominates and the ground state
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becomes the completely separable state |ψGS⟩ = |11 . . . 11⟩

The key insight of our MB-VQE approach is to use different initial graph
states depending on the perturbation strength. We identify a threshold λt
that determines which graph state to use as the initial ansatz:

• For λ < λt: We start with the graph state corresponding to the
unperturbed ground state |0, 0⟩L

• For λ > λt: We use isolated vertices representing the separable state
|1⟩⊗8

Implementation Details: For the 8-qubit toric code, we apply the dy-
namic qubit relabeling scheme by sequentially decorating the graph state
representation of |0, 0⟩L. The graph state is first extracted using the stim
library to convert stabilizer operators into the corresponding graph represen-
tation. We then apply edge decorations using our dynamic qubit relabeling
protocol, where each decoration step processes a pair of qubits and dynami-
cally updates the qubit register. The final ansatz uses 4 variational parameters
per decoration step plus 3 single-qubit rotation parameters (Rx(θ), Ry(ϕ),
and Rz(γ)) applied to each output qubit to increase expressivity.

For all our numerical simulations, we evaluate both energy accuracy and
state fidelity. To quantify how well our MB-VQE states approximate the true
ground states, we use the state fidelity:

F = |⟨ψexact|ψMB-VQE⟩|2 (7.14)

The fidelity measures the overlap between the exact ground state |ψexact⟩
and our optimized ansatz state |ψMB-VQE⟩, with F = 1 indicating perfect
agreement and F = 0 indicating orthogonal states. For practical analysis, we
often use the infidelity:

Infidelity = 1− F = 1− |⟨ψexact|ψMB-VQE⟩|2 (7.15)

which directly measures the "distance" between the quantum states, with
smaller values indicating better state preparation.

Figure 7.12 shows the initial ansatz graph for our decoration scheme in
the weak perturbation regime.

Figure 7.13 demonstrates why the adaptive threshold strategy is essential
for achieving good performance across different perturbation regimes.
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Figure 7.12: Graph state corresponding to the logical state |0, 0⟩L of the
2× 2 toric code. This graph serves as the initial ansatz for our dynamic qubit
relabeling decoration scheme in the weak perturbation regime (λ < λt). Each
vertex represents a physical qubit, and edges represent entangling CZ gates
in the graph state preparation.
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Figure 7.13: MB-VQE performance without threshold strategy, showing the
necessity of adaptive ansatz selection. The blue curve shows poor performance
for large λ values when using only the |0, 0⟩L graph state initialization
throughout the entire range. The performance plateaus for λ ≳ 0.9 because
the entangled ansatz cannot capture the separable nature of the ground state
in the strong perturbation regime.
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We systematically tested threshold values between 0.5 and 2.0, evaluating
the performance by computing the state fidelity for each λ. The optimal
threshold λt = 0.9 minimizes the maximum infidelity across the entire
perturbation range.

We test MB-VQE on the 2×2 toric code with 25 λ values from 0.01 to
10 (logarithmic spacing). For each λ, we run 3 optimization attempts using
L-BFGS-B and report the best result. The implementation uses the dynamic
qubit relabeling scheme with deterministic measurement outcome correction.

Energy Performance

Figure 7.14 compares the relative energy errors of three different approaches
across the full perturbation range.

Figure 7.14: Relative energy errors vs perturbation strength for the 2×2
toric code, demonstrating the effectiveness of adaptive threshold strategy.
The blue curve shows our MB-VQE approach with adaptive threshold, which
consistently outperforms both baselines: the unperturbed logical state |0, 0⟩L
(black curve) and the separable state |1⟩⊗8 (red curve).

The blue curve represents our MB-VQE performance:

εMB-VQE =
|EMB-VQE(λ)− Eexact(λ)|

|Eexact(λ)|
(7.16)

To demonstrate the effectiveness of our approach, we compare against
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two static baselines. The black curve shows the performance when using only
the unperturbed logical state |0, 0⟩L for all λ values:

εunpert =
|L⟨0, 0|H(λ)|0, 0⟩L − Eexact(λ)|

|Eexact(λ)|
(7.17)

The red curve shows the performance when using only the separable state
|1⟩⊗8 for all λ values:

εseparable =
|⟨1|⊗8H(λ)|1⟩⊗8 − Eexact(λ)|

|Eexact(λ)|
(7.18)

The results reveal several important insights. Our MB-VQE approach
outperforms both baselines throughout the perturbation range.

In the highly perturbative regime (λ > λt), we use as initial graph state
a set of isolated qubits with no entanglement between them. Figure 7.15
illustrates the decoration process for this regime using a simple 4-qubit
example, showing how the dynamic qubit relabeling method processes the
isolated vertices through sequential decoration steps. This procedure naturally
extends to larger systems, such as our 8-qubit toric code, by continuing the
sequential decoration process until all qubits have been incorporated.
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(a) Step 1: 2-qubit decoration process.
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(b) Step 2: 3-qubit decoration process.
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(c) Step 3: 4-qubit decoration process
(final step).

Input Output Measured

Figure 7.15: Sequential decoration process for isolated qubits in the strong
perturbation regime (λ > λt). This 4-qubit example illustrates the general
strategy that extends to larger systems. The dynamic qubit relabeling ensures
deterministic computation by maintaining proper byproduct correction path-
ways at each step. Dashed circles indicate qubits that have been measured
and removed from the active register, while orange and cyan circles show the
current input and output qubits respectively.

7.7 Linear Cluster Hamiltonian

To further validate the effectiveness of our MB-VQE approach with dynamic
qubit relabeling, we apply it to another stabilizer Hamiltonian: the 6-qubit
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transverse field cluster model with open boundary conditions. This system
provides an additional test case that enables us to assess the versatility of
our method across different quantum many-body systems.

The Hamiltonian is:

Ĥ(λ) = −
6∑

i=1

Zi−1Xi Zi+1 − λ

6∑
i=1

Zi (7.19)

We consider again a uniform perturbation controlled by the parameter
λ, where the perturbative term −λ

∑6
i=1 Zi applies a longitudinal magnetic

field to all qubits. This perturbation drives the system between two distinct
regimes: for λ = 0, the ground state is the cluster state defined by the
stabilizer generators, while for λ≫ 1, the ground state becomes the product
state |1⟩⊗6.

The stabilizer generators for the unperturbed cluster state are:

S1 = XZIIII S2 = ZXZIII (7.20)

S3 = IZXZII S4 = IIZXZI (7.21)

S5 = IIIZXZ S6 = IIIIZX (7.22)

These generators satisfy the eigenvalue equation Ŝi|C⟩ = |C⟩ for all i,
defining the unique cluster state (up to global phase) as their common +1
eigenstate.

1 2 3 4 5 6

Figure 7.16: Linear chain topology for the 6-qubit cluster Hamiltonian with
open boundary conditions. This one-dimensional arrangement serves as the
base graph for our dynamic qubit relabeling decoration scheme, providing a
simple yet non-trivial test case for validation.

We test our approach using 50 values of λ from 10−2 to 10 with logarithmic
spacing. For each value of λ, we optimize the MB-VQE ansatz using our
dynamic qubit relabeling scheme and compare both the energy and the
quantum state obtained with the exact results from full diagonalization.

Figure 7.17 shows that MB-VQE achieves good energy accuracy across
the entire parameter range. However, achieving the correct ground state
energy does not guarantee that the optimized quantum state is close to the
true ground state.

To assess the quality of the quantum states produced by our ansatz, we
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Figure 7.17: Relative energy error for the 6-qubit cluster Hamiltonian as
a function of perturbation strength λ, demonstrating excellent energetic
performance across all regimes. The blue curve shows ε = |EMB-VQE −
Eexact|/|Eexact| for each tested value of λ. MB-VQE maintains low relative
energy errors across the entire parameter range, demonstrating good energetic
accuracy from the cluster state regime (λ≪ 1) to the product state regime
(λ≫ 1).

analyze the infidelity between the exact ground state and our optimized
states:

The infidelity analysis in Figure 7.18 demonstrates that our MB-VQE
approach produces quantum states that are close to the true ground states
across most of the parameter range. The maximum infidelity occurs near
λ ≈ 1, which corresponds to the critical region where the ground state
structure changes rapidly.

7.7.1 Gaussian-Distributed Perturbations

We extended the analysis to include spatially inhomogeneous perturbations
with a different perturbation type. Instead of applying uniform Z-field
perturbations, we consider Gaussian-distributed X-field perturbations.

The modified Hamiltonian with X-field perturbations takes the form:

Ĥ({λi}) = −
6∑

i=1

Zi−1Xi Zi+1 −
6∑

i=1

λiXi (7.23)

For each qubit i, we sample individual perturbation strengths λi from a
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Figure 7.18: State infidelity as a function of perturbation strength λ for the
6-qubit cluster Hamiltonian, revealing the challenging nature of the quantum
phase transition region. The blue curve shows 1 − |⟨ψexact|ψMB-VQE⟩|2 for
each tested value of λ. The peak infidelity occurs around λ ≈ 1, which
corresponds to the critical region where the ground state structure changes
rapidly between the cluster state and product state phases.

Gaussian distribution:
λi ∼ N (λ, 0.1λ) (7.24)

where λ represents the mean perturbation strength and the standard
deviation is set to 0.1λ, introducing a 10% relative variation across qubits.

The X-field perturbation fundamentally changes the ground state struc-
ture. For large uniform X-fields (λi = λ ≫ 1), each qubit satisfies the
eigenvalue equation:

Xi|+⟩i = |+⟩i (7.25)

where |+⟩ = 1√
2
(|0⟩ + |1⟩) is the +1 eigenstate of the Pauli-X operator.

Therefore, the ground state in the strong X-field limit becomes the completely
separable state:

|ψGS⟩ =
6⊗

i=1

|+⟩i = |+⟩⊗6 (7.26)
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Figure 7.19: MB-VQE performance under Gaussian-distributed X-field per-
turbation strengths for the 6-qubit cluster Hamiltonian, demonstrating robust-
ness to disorder and different field orientations. The spatial inhomogeneity
and change in field direction (from Z to X) test the versatility of our dynamic
qubit relabeling approach beyond the standard uniform perturbations, show-
ing maintained performance quality across the transition from cluster state
to |+⟩⊗6 product state.

7.8 Star Graph Hamiltonians

We investigate the performance of the MB-VQE algorithm on star graph
topologies, characterized by a central hub qubit connected to multiple periph-
eral qubits. We examine systems with 6, 7, and 8 qubits to assess scalability
and performance trends as illustrated in Figure 7.20.

(a) 6-qubit star graph (b) 7-qubit star graph (c) 8-qubit star graph

Figure 7.20: Star graph topologies with central qubit q0 connected to periph-
eral qubits for different system sizes.

For the 6-qubit star graph, the stabilizer Hamiltonian adopts the charac-
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teristic form:

Ĥstar-6
0 = −X̂0Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5 − Ẑ0X̂1 − Ẑ0X̂2 − Ẑ0X̂3 − Ẑ0X̂4 − Ẑ0X̂5 (7.27)

The first term represents the central qubit stabilizer involving all pe-
ripheral qubits, while the subsequent terms correspond to the individual
peripheral qubit stabilizers. This structure creates a natural asymmetry
where the central qubit plays a coordinating role in the global stabilizer struc-
ture. The star graph state |S⟩ (denoting the stabilized star configuration) is
defined as the simultaneous +1 eigenstate of all stabilizer generators:

X̂0Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5|S⟩ = |S⟩ (7.28)

Ẑ0X̂j |S⟩ = |S⟩ for j = 1, 2, 3, 4, 5 (7.29)

For the 7-qubit and 8-qubit configurations, additional peripheral qubits
are incorporated following the same architectural principle, preserving the
star connectivity pattern.

We introduce perturbations through uniform magnetic fields Ĥpert =

−
∑

i Ẑi, constructing the interpolating Hamiltonians Ĥ(λ) = Ĥstar
0 + λĤpert

to study the transition from the star graph state to the paramagnetic phase.
In the strong perturbation limit (λ≫ 1), the ground state becomes:

|ψGS⟩ = |1⟩⊗N (7.30)

where N is the total number of qubits (6, 7, or 8).
The comparative analysis in Figures 7.21 and 7.22 shows that performance

remains essentially equivalent across the different system sizes. The 6, 7, and 8-
qubit star graphs exhibit similar energy errors and infidelity values, indicating
that adding peripheral qubits to the star structure does not significantly
impact the performance of our dynamic qubit relabeling approach in this size
range.

7.9 Complete Graph Hamiltonians

We examine complete graph topologies where every qubit maintains direct
connectivity with all other qubits, representing maximally entangled stabilizer
states.

We analyze 6-qubit and 8-qubit complete graphs as shown in Figure 7.23.
For the 6-qubit complete graph, the stabilizer Hamiltonian exhibits full
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Figure 7.21: Energy performance comparison for star graph configurations
with 6, 7, and 8 qubits as a function of perturbation strength λ. The three
curves show the relative energy error ε = |EMB-VQE−Eexact|/|Eexact| for each
system size. The performance remains essentially equivalent across different
system sizes, indicating that the hierarchical star structure does not show
significant scaling advantages in this size range.

permutation symmetry:

Ĥcomplete-6
0 = −X̂0Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5 − Ẑ0X̂1Ẑ2Ẑ3Ẑ4Ẑ5 − Ẑ0Ẑ1X̂2Ẑ3Ẑ4Ẑ5

− Ẑ0Ẑ1Ẑ2X̂3Ẑ4Ẑ5 − Ẑ0Ẑ1Ẑ2Ẑ3X̂4Ẑ5 − Ẑ0Ẑ1Ẑ2Ẑ3Ẑ4X̂5

(7.31)

Each stabilizer generator involves precisely one qubit in the X measure-
ment basis while all remaining qubits are measured in the Z basis. The
complete graph state |G⟩ (denoting the global complete graph configuration)
satisfies the eigenvalue equations:

Ŝj |G⟩ = |G⟩ for all j = 0, 1, 2, 3, 4, 5 (7.32)

where Ŝj represents the j-th stabilizer generator.
We apply identical perturbations Ĥpert = −

∑
i Ẑi, yielding the interpo-

lating Hamiltonians Ĥ(λ) = Ĥcomplete
0 + λĤpert. In the strong perturbation
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Figure 7.22: Infidelity comparison for star graph configurations with 6, 7,
and 8 qubits as a function of perturbation strength λ. The three curves show
the state infidelity 1− |⟨ψexact|ψMB-VQE⟩|2 for each system size, confirming
that performance remains consistent across different star graph sizes.

limit, the ground state becomes:

|ψGS⟩ = |1⟩⊗N (7.33)

where each qubit is in the Ẑ = +1 eigenstate.
The performance analysis in Figures 7.24 and 7.25 demonstrates lower

relative energy errors for small λ values compared to other graph topologies.
This improved performance can be attributed to the highly entangled nature
of the complete graph initial state, which provides a better starting point
for the variational optimization in the weak perturbation regime where the
ground state retains significant entanglement structure.
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(a) 6-qubit complete graph (b) 8-qubit complete graph

Figure 7.23: Complete graph topologies where every qubit is connected to
all other qubits, representing maximally entangled stabilizer states. This
architecture provides the richest possible entanglement structure within the
stabilizer formalism.

Figure 7.24: Energy performance comparison for complete graph configu-
rations with 6 and 8 qubits as a function of perturbation strength λ. The
two curves show lower relative energy errors for small λ values, reflecting the
advantage of starting from highly entangled initial graph states.
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Figure 7.25: Infidelity comparison for complete graph configurations with 6
and 8 qubits as a function of perturbation strength λ. The two curves show
the state infidelity 1− |⟨ψexact|ψMB-VQE⟩|2 for both system sizes, confirming
the improved performance for small perturbations.
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Chapter 8

Conclusions

This thesis addresses the determinism problem in edge-wise decoration scheme
for Measurement-Based Variational Quantum Eigensolvers (MB-VQE), a the-
oretical limitation that prevents this scheme from achieving the computational
equivalence with circuit-based models that MBQC requires.

The problem we addressed stems from a violation of generalized flow
(gflow) conditions in existing edge-wise decoration schemes. Just as circuit-
based quantum computation guarantees deterministic output states for given
input parameters, MBQC requires flow conditions on the resource graph to
ensure deterministic computation through measurement outcome correction.
When auxiliary qubits are added to edges sharing common vertices, the
resulting graph structure violates these conditions, breaking the deterministic
guarantee. This theoretical limitation means the algorithm cannot reliably
reproduce the same quantum state across multiple runs.

Our main contribution is a novel edge-wise decoration scheme with dy-
namic qubit relabeling that maintains deterministic computation while pre-
serving the advantages of the original approach. Unlike the node-wise decora-
tion solution by Schroeder et al., which requires additional spatial dimensions
and more complex resource states, our method maintains the original graph
dimensionality while ensuring gflow conditions through strategic qubit role
reassignment during the computation process. Input and output qubits are
dynamically updated at each decoration step, allowing byproduct corrections
to proceed systematically without violating flow conditions.

We implemented and validated this approach using 4 variational parame-
ters per edge decoration plus 3 single-qubit rotation parameters per output
qubit. Our method was tested on multiple stabilizer Hamiltonians including
the 8-qubit toric code, 6-qubit linear cluster, star graphs, and complete graphs.
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The numerical simulations demonstrate that our approach achieves relative
energy errors below 10−1 across different perturbation regimes, consistently
outperforming both unperturbed graph states in weak perturbation regimes
and purely perturbative ground states in strong perturbation regimes. These
results validate both the theoretical soundness of our deterministic scheme
and its practical effectiveness for ground state approximation.

Our validation was limited to systems with 6-8 qubits due to computational
constraints of exact diagonalization, and our current implementation focuses
on stabilizer Hamiltonians where the ground states can be represented as
graph states.

Several promising directions emerge for future research. The method
could be extended to larger quantum systems. Moreover, different decorative
subgraphs topologies could be explored to optimize the balance between vari-
ational expressivity and parameter efficiency. The most promising extension
involves applying our deterministic approach to non-stabilizer Hamiltoni-
ans. Following the methodology of Sun et al. [36], we could identify sets of
commuting stabilizers that approximate ground states of interacting models
like Ising and Heisenberg Hamiltonians. These would define graph states
serving as starting points for variational ansätze, potentially extending our
deterministic MB-VQE beyond stabilizer systems to capture perturbation
effects in quantum many-body physics.

This work provides a concrete solution to determinism issues in edge-
wise decoration scheme, opening a path toward reliable measurement-based
quantum algorithms. We developed and implemented simulation code using
the graphix library, contributing practical tools for the quantum computing
community.
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Appendix A

A.1 Qiskit implementation of Pauli exponential ex-
traction

This code verifies numerically that the circuit representation of the measure-
ment pattern of the edge-wise decoration [9] for a single edge, obtained in the
main text, is correct. The qubits 0 and 1 correspond to qubits m and n in
the main text. The initial CZ|++⟩ state is prepared using Hadamard gates
followed by a controlled-Z gate. Four Pauli evolution gates e−iθi/2·Pauli are
then applied to simulate the effect of measuring auxiliary qubits at angles
θ1, θ2, θ3, θ4.

The code verifies two extreme cases: setting all angles to 0 must yield
the unchanged CZ|++⟩ state (since zero-angle measurements leave the state
invariant), while setting all angles to π/2 must disentangle qubits 0 and
1 (since π/2-angle measurements eliminate entanglement between auxiliary
qubits).
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1 import numpy as np
2 import networkx as nx
3 from qiskit import QuantumCircuit
4 from qiskit.circuit import Parameter
5 from qiskit.quantum_info import Statevector , Pauli , SparsePauliOp
6 from qiskit.circuit.library import PauliEvolutionGate
7

8 # Create graph and prepare graph state
9 G = nx.Graph()

10 G.add_nodes_from ([0, 1])
11 G.add_edge(0, 1)
12 qc = QuantumCircuit (2)
13 qc.h([0, 1])
14 qc.cz(0, 1)
15

16 # Parameters and Pauli exponentials
17 v = [Parameter(f’theta_{i}’) for i in range (4)]
18

19 qc.append(PauliEvolutionGate(SparsePauliOp(Pauli(’X’)),v[0]/2) ,[0])
20

21 qc.append(PauliEvolutionGate(SparsePauliOp(Pauli(’X’)),v[1]/2) ,[1])
22

23 qc.append(PauliEvolutionGate(SparsePauliOp(Pauli(’XZ’)),v[2]/2) ,[0,1])
24

25 qc.append(PauliEvolutionGate(SparsePauliOp(Pauli(’XZ’)),v[3]/2) ,[1,0])

|0⟩ H e−iθ1X

e−iθ3X⊗Z e−iθ4Z⊗X

|0⟩ H e−iθ2X

Figure A.1: MBQC Circuit with parametric gates

The circuit implements the following sequence:

1. Prepare |++⟩ state using Hadamard gates on both qubits

2. Apply controlled-Z gate to create entanglement

3. Apply single-qubit X-rotations: e−iθ1X and e−iθ2X

4. Apply two-qubit parametric gates: e−iθ3X⊗Z and e−iθ4Z⊗X
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1 qc_test1 = qc.assign_parameters ({v[i]: 0 for i in range (4)})
2 output_state1 = Statevector.from_instruction(qc_test1)
3 fidelity1 = state_fidelity(output_state1 , cz_plus_state)
4

5 qc_test2 = qc.assign_parameters ({v[i]: np.pi/2 for i in range (4)})
6 output_state2 = Statevector.from_instruction(qc_test2)
7 fidelity2 = state_fidelity(output_state2 , plus_plus_state)
8

9 print(f"Fidelity (angles = 0): {fidelity1 :.6f}")
10 print(f"Fidelity (angles = pi/2): {fidelity2 :.6f}")

Fidelity (angles=0): 1.000
Fidelity (angles=π/2): 1.000
To verify that the obtained states are correct, I measured the fidelity

between the circuit output and the expected reference states. The fidelity
equals 1.000 for both extreme cases, confirming that the circuit representation
accurately the MBQC pattern described in the main text.
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A.2 Verification of gflow Existence edge-wise deco-
ration

1 import networkx as nx
2 from graphix.pattern import generate_from_graph
3 from graphix.flow import gflow_from_pattern
4

5 # 1) Build open graph and define I/O
6 G = nx.Graph()
7 G.add_edges_from ([(0 ,1), (1,2), (2,3), (2,9), (3,8), (9,10), (8,10),
8 (1,4), (2,5), (4,5), (4,6), (5,7)])
9

10 inputs , outputs = [], [1,2,3]
11 angles = {i: 0.5 for i in range (10)} # includes all nodes 0-9
12

13 # 2) Try to generate deterministic MBQC pattern
14 try:
15 pat = generate_from_graph(G, angles , inputs=inputs , outputs=outputs)
16

17 # 3) Extract gflow map and measurement layers
18 g_map , layers = gflow_from_pattern(pat)
19 print("gflow map:", g_map)
20 print("measurement layers:", layers)
21

22 except Exception as e:
23 print("Error: No gflow found for the specified graph structure.")
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A.3 Verification of gflow Existence node-wise deco-
ration

1 def verify_mbqc_determinism(base_nodes , num_layers =3, trials =10):
2 """ Verify MBQC determinism across multiple measurement runs."""
3 G = nx.Graph()
4 G.add_nodes_from(base_nodes)
5 G.add_edges_from ([( base_nodes[i], base_nodes[i+1]) for i in range(

len(base_nodes) -1)])
6

7 decoration_nodes = []
8 for layer in range(num_layers):
9 layer_nodes = [node + 10*( layer +1) for node in base_nodes]

10 decoration_nodes.extend(layer_nodes)
11 G.add_nodes_from(layer_nodes)
12 G.add_edges_from ([( layer_nodes[i], layer_nodes[i+1]) for i in

range(len(layer_nodes) -1)])
13 prev_layer = base_nodes if layer == 0 else [node + 10* layer for

node in base_nodes]
14 G.add_edges_from ([( prev_layer[i], layer_nodes[i]) for i in

range(len(layer_nodes))])
15

16 angles = {node: np.random.uniform(0, 2*np.pi) for node in
decoration_nodes}

17 pattern = generate_from_graph(G, angles , inputs =[], outputs=
base_nodes)

18 byproducts = extract_byproducts(pattern)
19 states = []
20 for i in range(trials):
21 sim = PatternSimulator(pattern , backend="statevector")
22 sim.run()
23 psi = sim.backend.state.psi.flatten ()
24 state = psi * np.exp(-1j * np.angle(psi[np.argmax(np.abs(psi))

]))
25 states.append(np.round(state , 6))
26 deterministic = all(np.allclose(states [0], s, atol=1e-12) for s in

states [1:])
27 return deterministic
28 base_nodes = [0, 1, 2]
29 verify_mbqc_determinism(base_nodes , num_layers =3, trials =5)

Physical nodes: [0, 1, 2] Decoration nodes: [10, 11, 12, 20, 21, 22, 30, 31, 32]
Node 32: X→[22], Z→[12, 21]
Node 30: X→[20], Z→[10, 21]
Node 31: X→[21], Z→[11, 20, 22]
Node 20: X→[10], Z→[0, 11]
Node 21: X→[11], Z→[1, 10, 12]
Node 22: X→[12], Z→[2, 11]
Node 10: X→[0], Z→[1]
Node 11: X→[1], Z→[0, 2]
Node 12: X→[2], Z→[1]
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A.4 Circuit Unitary Extraction

Although there are many methods for converting gate-based circuits into
measurement patterns, the reverse process, converting measurement patterns
into equivalent unitary gate sequences, is more challenging.

In the work of [35], a procedure is presented to extract the sequence of
unitary gates that implements the same linear transformation as a given
measurement pattern. Recall that a measurement pattern is a formal specifi-
cation describing how to perform quantum computation through sequential
measurements on a pre-prepared entangled state: (1) which qubits to measure,
(2) in what order, (3) the measurement basis for each qubit, and (4) how
measurement outcomes from previous qubits determine the basis choices for
subsequent measurements.

For technical details see [35]. The method relies on exploiting the stabilizer
formalism and the focused gflow of the graph state that serves as the resource
for the computation.

We now consider the graph in Figure 7.1 and apply the circuit extraction
procedure.

The first step is to identify the focused gflow in the graph state. For
this goal, it is needed to identify the correction set of each measured qubit,
and the partial order of the measurements. The correction sets, shown in
Table A.1, determine how the measurement outcomes in individual qubits
propagate corrections throughout the system.

v g(v)

2 {1, n}
4 {3,m}
1 {m}
3 {n}

Table A.1: Correction sets for the qubits in Figure 7.1

This focused gflow establishes the causal structure of the measurement
protocol: measuring qubit 2 implies corrections on qubits 1 and n, measuring
qubit 4 affects qubits 3 andm, and so forth. The partial ordering 2, 4 < 1, 3 [9]
specifies that qubits 2 and 4 must be measured before qubits 1 and 3.

The auxiliary qubits are measured in rotated bases in the XY plane. A
measurement at angle α in the XY plane can be decomposed as a rotation
followed by measurement in the computational basis.

Let |±X⟩ = 1√
2
(|0⟩ ± |1⟩) denote the eigenstates of the Pauli-X operator
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with eigenvalues ±1. The measurement eigenstates are obtained by rotating
the X-basis states around the Z-axis:

|±XY,α⟩ = e−iα
2
Z |±X⟩

The corresponding projection operators are:

P̂±
X = |±X⟩⟨±X | = 1

2
(I±X)

P̂±
XY,α = |±XY,α⟩⟨±XY,α| = e−iα

2
Z P̂±

X e
iα
2
Z

Throughout this analysis, we use the compact notation Z(θ) = e−i θ
2
Z for

rotations around the Z-axis by angle θ.
Considering Figure 7.1 we define qubits 2 and 4 as input qubits, and we

measure qubits 2, 4, 1 and 3. The qubits m and n are output qubits and
therefore they are not measured. The stabilizers of the graph are:

S = ⟨X1ZmZ2Z3, X3Z1Z4Zn, XmZnZ1, XnZmZ3⟩

where the stabilizers of the input qubits are excluded for simplicity (they
are never involved during the extraction procedure) and inglobated into the
expression |ψ, S⟩, that is the initial input state.

Following the established measurement order, the complete measurement
sequence can be expressed as:∏
i∈{3,1,4,2}

P̂mi
Xi
Zi(θi)|ψ, S⟩ = P̂m3

X3
Z3(θ3)P̂

m1
X1
Z1(θ1)P̂

m4
X4
Z4(θ4)P̂

m2
X2
Z2(θ2)|ψ, S⟩

where |ψ, S⟩ represents the graph state stabilized by S, and P̂mi
Xi

= P̂+
Xi

if
mi = +1 and P̂mi

Xi
= P̂−

Xi
if mi = −1.

The insight for extracting equivalent unitary circuits lies in systematic
exploitation of stabilizer projectors. For each stabilizer generator Cj ∈ S,
the stabilizer projector is P̂Cj =

1
2(I+ Cj). By definition of stabilizer states,

this projector acts as the identity when applied to any state in the stabilizer
space: P̂Cj |ψ, S⟩ = |ψ, S⟩. This allows insertion of stabilizer projectors
into the measurement sequence without altering the final result, after which
they can be commuted through the measurement operators using algebraic
manipulation.

Consider the stabilizer Cj = XnZmZ3. Inserting its projector into the
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measurement sequence yields:

P̂m3
X3
Z3(θ3)P̂

m1
X1
Z1(θ1)P̂

m4
X4
Z4(θ4)P̂

m2
X2
Z2(θ2)P̂XnZmZ3 |ψ, S⟩

Since the stabilizer projector commutes with all measurement operators
acting on different qubits (due to the stabilizer property), it can be moved
forward to immediately follow the Z3(θ3) rotation:

P̂m3
X3
Z3(θ3)P̂XnZmZ3P̂

m1
X1
Z1(θ1)P̂

m4
X4
Z4(θ4)P̂

m2
X2
Z2(θ2)|ψ, S⟩

The crucial step involves applying the product rotation lemma [35], which
enables commutation of rotations through projectors via operator conjugation.
Specifically:

Z3(θ3)P̂XnZmZ3 = e−i
θ3
2
Z3P̂XnZmZ3

= e−i
θ3
2
Z3XnZmZ3P̂XnZmZ3

= e−i
θ3
2
XnZmP̂XnZmZ3

= [XnZm](θ3)P̂XnZmZ3

where the identity Z3XnZmZ3 = XnZm follows from the anticommutation
relation {Z3, Z3} = I. Since the extracted unitary [XnZm](θ3) acts exclusively
on qubits m and n while the measurement P̂m3

X3
acts on qubit 3, they commute,

yielding:

[XnZm](θ3)P̂
m3
X3
P̂m1
X1
Z1(θ1)P̂

m4
X4
Z4(θ4)P̂

m2
X2
Z2(θ2)|ψ, S⟩

Applying the same procedure to the stabilizer XmZnZ1 produces:

[XnZm](θ3)[XmZn](θ1)P̂
m3
X3
P̂m1
X1
P̂m4
X4
Z4(θ4)P̂

m2
X2
Z2(θ2)|ψ, S⟩

Now we should insert the projector of the stabilizer X3Z1Z4Zn, but we
encounter a complication: the presence of Z1 prevents direct commutation
through the measurement sequence. To resolve this, we multiply this stabilizer
with the previously inserted XmZnZ1 to eliminate the problematic Z1 terms:

X3Z1Z4Zn ·XmZnZ1 = X3Z4Xm

where we used the identity relations Z2
n = Z2

1 = I. Applying the rotation
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lemma with this combined stabilizer gives:

[XnZm](θ3)[XmZn](θ1)[Xm](θ4)P̂
m3
X3
P̂m1
X1
P̂m4
X4
P̂m2
X2
Z2(θ2)|ψ, S⟩

where the X3 factor has been absorbed into the measurement projector P̂m3
X3

due to the idempotent property of projection operators.
Finally, processing the remaining stabilizers X1ZmZ2Z3 and XnZmZ3

through multiplication:

X1ZmZ2Z3 ·XnZmZ3 = X1Z2Xn

where we again used Z2
m = Z2

3 = I. This yields the final result:

[XnZm](θ3)[XmZn](θ1)[Xm](θ4)[Xn](θ2)P̂
m3
X3
P̂m1
X1
P̂m4
X4
P̂m2
X2

|ψ, S⟩

Let us have a look on the single terms of this expression:

• [XnZm](θ3) and [XmZn](θ1): Two-qubit unitary operations on output
qubits n and m.

• [Xm](θ4) and [Xn](θ2): Single-qubit rotations on output qubits n and
m.

• P̂mi
Xi

: X-basis measurements on auxiliary qubits.

• |ψ, S⟩: Input quantum state, stabilized by the set of stabilizers S.

This procedure demonstrates that the MBQC computation can be rewrit-
ten as an equivalent gate-based circuit. The measurement pattern produces
the same quantum state as the unitary circuit operations applied to the state
of qubits m and n, that are initially in the state CZ|+⟩|+⟩,

U = [XnZm](θ3)[XmZn](θ1)[Xm](θ4)[Xn](θ2)

followed by projective X measurements on the auxiliary qubits.
A simple numerical implementation is demonstrated through quantum cir-

cuits that directly apply the extracted Pauli exponentials to the qubits m and
n. Using Qiskit’s PauliEvolutionGate class, each extracted unitary operator
[Pi](θj) can be implemented as a parametrized quantum gate Appendix A.1.
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Generalization to Arbitrary Graph Structures

The unitary extraction procedure can be extended to all graph topologies.
When the output vertices m,n are adjacent to extra vertices compared to
the minimal configuration, the resulting Pauli exponentials must be modified
to take into account the neighborhood of the qubits m and n :

Ugeneral =
[
Xn ZNn\{m}

]
(θ3) ·

[
Xm ZNm\{n}

]
(θ4) ·

[
Xn ZNn

]
(θ2) ·

[
Xm ZNm

]
(θ1)

where Nk = {i | (k, i) ∈ E} is the set of neighbours of vertex k in graph
G = (V,E).

The form of the correction sests for each measurement follows from the
focused gflow construction, as illustrated in Figure A.2.

m

X

X
Z

Z
3

2 4

p1

p2

(a) Measurement of qubit 2: X correc-
tions on qubits 1 and n, Z corrections
on neighbors of n excluding m (i.e.,
q1, q2).

n

X

X
Z

Z
1

2 4

q1

q2

(b) Measurement of qubit 4: X correc-
tions on qubits 3 and m, Z corrections
on neighbors of m excluding n (i.e.,
p1, p2).

X Z
Z

Z
1 3

2 4

q1

q2

(c) Measurement of qubit 1: X correc-
tion on m, Z corrections on all neigh-
bors of m (i.e., n, p1, p2).

XZ
Z

Z
1 3

2 4

p1

p2

(d) Measurement of qubit 3: X correc-
tion on n, Z corrections on all neigh-
bors of n (i.e., m, q1, q2).

Figure A.2: Pauli corrections applied after each sequential measurement,
illustrating the correction pattern determined by the focused gflow.

We have characterized this circuit extraction procedure, which will be
useful later for simulation. We now present the main problem we addressed.

If we consider the decoration procedure and apply it to larger graphs,
decorating each edge by attaching ancillary qubits, how does the graph
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property modify? Can we still identify the gflow on this larger structure? The
answer is no, and the absence of gflow prevents deterministic measurement-
based quantum computation.

While the single-edge case works smoothly, when we consider two (or more)
edges sharing a common vertex (or vertices) and we apply the decoration
procedure followed by auxiliary qubit measurements, gflow is not guaranteed.
This means that the measurement output states cannot be deterministic but
depend on individual measurement outcomes.

The entire purpose of having a resource state for MBQC is ensure a
deterministic measurement, the resource state must satisfy the necessary and
sufficient condition of gflow.

84



Bibliography

[1] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. arXiv:quant-ph/9508027

[2] L. K. Grover. A fast quantum mechanical algorithm for database search.
arXiv:quant-ph/9605043

[3] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum
2, 79 (2018). DOI: 10.22331/q-2018-08-06-79

[4] A. Peruzzo, J. McClean, P. Shadbolt, M.H. Yung, X.Q. Zhou, P.J. Love,
A. Aspuru-Guzik, J.L. O’Brien. A variational eigenvalue solver on a quan-
tum processor. Nature Communications 5, 4213 (2014). arXiv:1304.3061

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow,
J.M. Gambetta. Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets. Nature 549, 242–246 (2017).
DOI: 10.1038/nature23879

[6] R. Raussendorf, H. J. Briegel. A one-way quantum computer. Physical
Review Letters 86, 5188 (2001). DOI: 10.1103/PhysRevLett.86.5188

[7] H.J. Briegel, R. Raussendorf. Persistent Entanglement in Arrays of
Interacting Particles. Physical Review Letters 86, 910 (2001). DOI:
10.1103/PhysRevLett.86.910

[8] D.E. Browne, E. Kashefi, M. Mhalla, S. Perdrix. Generalized flow and
determinism in measurement-based quantum computation. New Journal
of Physics, 9, 250 (2007). DOI: 10.1088/1367-2630/9/8/250

[9] R. R. Ferguson, L. Dellantonio, K. Jansen, A. Al Balushi, W. Dür,
C. A. Muschik. A measurement-based variational quantum eigensolver.
Physical Review Letters 126, 220501 (2021). arXiv: 2010.13940

85

https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1304.3061
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1088/1367-2630/9/8/250
https://arxiv.org/abs/2010.13940


[10] A. Schroeder, M. Heller, and M. Gachechiladze. Deterministic An-
sätze for the Measurement-based Variational Quantum Eigensolver.
arXiv:2312.13241 (2023). DOI: 10.48550/arXiv.2312.13241

[11] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
(2010).

[12] D. Gottesman. Stabilizer Codes and Quantum Error Correction. Ph.D.
thesis, California Institute of Technology (1997).

[13] J. Kempe, A. Kitaev, O. Regev. The Complexity of the Local Hamiltonian
Problem. SIAM Journal on Computing, 35(5):1070-1097 (2006). DOI:
10.1137/S0097539704445226

[14] Steven R. White Density matrix formulation for quantum renormaliza-
tion groups. DOI: https://doi.org/10.1103/PhysRevLett.69.2863

[15] Wirawan Purwanto, Shiwei Zhang Quantum Monte Carlo method for
the ground state of many-boson systems. arXiv:physics/0403146

[16] A. Peruzzo, J. McClean, P. Shadbolt, et al. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5:4213
(2014). DOI: 10.1038/ncomms5213

[17] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda.
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances
of an NP-Complete Problem. Science, 292(5516):472-475 (2001). DOI:
10.1126/science.1057726

[18] A. Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals
of Physics 303, 2–30 (2003). DOI: 10.1016/S0003-4916(02)00018-0

[19] P. Benioff. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines. Journal of Statistical Physics 22, 563–591 (1980). DOI:
10.1007/BF01011339

[20] R. P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics 21, 467–488 (1982). DOI: 10.1007/BF02650179

[21] D. Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer. Proceedings of the Royal Society of London
A 400, 97–117 (1985). DOI: 10.1098/rspa.1985.0070

86

https://doi.org/10.48550/arXiv.2312.13241
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2863
https://arxiv.org/abs/physics/0403146
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1985.0070


[22] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang. Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance. Nature 414, 883–
887 (2001). DOI: 10.1038/414883a

[23] IBM Quantum Experience Team. IBM Quantum Experience: A new
online quantum simulator and hardware. IBM Research Blog (2016).
URL: https://research.ibm.com/blog/quantum-network

[24] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature
574, 505–510 (2019). DOI: 10.1038/s41586-019-1666-5

[25] V. Danos, E. Kashefi. Determinism in the one-way model. Physical
Review A, 74(5), 052310 (2006). arXiv: quant-ph/0506062

[26] T. Wellens, M. Lüdecke, W. P. Schleich. Noisy Intermediate-Scale
Quantum (NISQ) Computers—How They Work and What They Can
(Not) Do. arXiv preprint arXiv:2301.11739 (2023). arXiv:2301.11739

[27] C. Wang et al. 99.9%-fidelity in measuring a superconducting qubit.
arXiv:2412.13849 (2024).

[28] Quera. What is Variational Quantum Algorithm. Quera Glossary (2024).

[29] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K.
Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles.
Variational Quantum Algorithms. Nature Reviews Physics, 3(9), 625–644
(2021). arXiv:2012.09265

[30] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien. A variational eigenvalue
solver on a quantum processor. Nature Communications, 5:4213, (2014).

[31] Y.-K. Liu, M. Christandl, F. Verstraete. Quantum Computational Com-
plexity of the N -Representability Problem: QMA Complete. Physical
Review Letters 98, 110503 (2007). arXiv:quant-ph/0609125

[32] X. Gao, E. Barnes, S. Kais. The quantum generative adversarial network
in a variational quantum eigensolver for efficient simulations. New
Journal of Physics 24, 033032 (2022). arXiv:2107.12387

87

https://doi.org/10.1038/414883a
https://research.ibm.com/blog/quantum-network
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/quant-ph/0506062
https://arxiv.org/abs/2301.11739
https://arxiv.org/abs/2012.09265


[33] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L.
Wossnig, I. Rungger, G.H. Booth, J. Tennyson. The variational quantum
eigensolver: a review of methods and best practices. Physics Reports 986,
1-128 (2022). arXiv:2111.05176

[34] Anna Schroeder, Matthias Heller, Mariami Gachechiladze Deterministic
Ansätze for the Measurement-based Variational Quantum Eigensolver.
arXiv:2312.13241

[35] Will Simmons. Relating Measurement Patterns to Circuits via Pauli
Flow. arXiv:2109.05654

[36] Jiace Sun, Lixue Cheng, and Shi-Xin Zhang. Stabilizer ground states
for simulating quantum many-body physics: theory, algorithms, and
applications. arXiv:2403.08441v4 [quant-ph], 2024.

88

https://arxiv.org/abs/2312.13241
https://doi.org/10.48550/arXiv.2109.05654
https://doi.org/10.48550/arXiv.2403.08441

	Abstract
	Introduction
	Theoretical Background
	Fundamentals of Quantum Information
	Quantum States and Operations
	Entanglement and Measurement

	Stabilizer Formalism
	The Pauli Group and Stabilizer States
	Stabilizer Hamiltonians
	Toric Code


	Models of Quantum Computation
	Circuit-Based Quantum Computation
	Fundamental Elements
	Example: Bell State Preparation
	Challenges and Limitations

	Measurement-Based Quantum Computation
	Graph States
	Cluster states
	Single qubit unitary on a one dimensional cluster state
	Determinism in MBQC


	Variational Quantum Algorithms
	Measurement-Based Variational Quantum Eigensolvers
	Edge Decoration Approach
	Determinism Challenges in Edge-Wise Decoration
	Node-Wise Decoration Solution
	Alternative Approaches and Future Directions

	Analysis
	Edge-wise decoration scheme
	Flow conditions in decoration schemes
	The gflow violation
	Node-wise decoration scheme
	Toward a solution for gflow violation

	Pattern decomposition approach
	Edge decoration with dynamic qubit relabeling
	Example: 3-qubit Linear Graph State

	Analysis of Determinism in dynamic qubit relabeling
	MB-VQE Simulation
	Linear Cluster Hamiltonian
	Gaussian-Distributed Perturbations

	Star Graph Hamiltonians
	Complete Graph Hamiltonians

	Conclusions
	Qiskit implementation of Pauli exponential extraction
	Verification of gflow Existence edge-wise decoration
	Verification of gflow Existence node-wise decoration
	Circuit Unitary Extraction


