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Abstract

Physics of Complex Systems

Generative Modeling: Hierarchical Feature Discovery in Undersampled
Structured Data

by Milo REPOSSI

Generative models are widely used in protein design but remain poorly understood
from a theoretical standpoint. This work aims to move beyond treating these models
as black boxes by studying their internal mechanisms and learning behavior. The sta-
tistical models typically used for inference in this area are formulated as inverse prob-
lems, drawing inspiration from statistical physics to understand complex biological
systems. To gain insight into how these models learn from data, we study a simplified
version based on Gaussian statistics, where the ground truth is explicitly known. Us-
ing a teacher-student setup, we simulate data from a known model and evaluate how
effectively another model can learn from it. This framework enables us to observe how
learning progresses as more data becomes available. By applying tools from Random
Matrix Theory, we uncover that features are learned in a hierarchical manner: higher-
variance modes are captured earlier, while lower-variance modes require more data
to be accurately inferred. This finding highlights a fundamental structure in how gen-
erative models process and prioritize information when faced with limited biological
data
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Chapter 1

Introduction

Proteins are essential biological macromolecules that perform a vast array of func-
tions within living cells, such as providing structural support, catalyzing chemical re-
actions, transmitting signals, and regulating genes. These molecules can be regarded
as complex dynamical systems as they have the ability of adapting to the environment
through evolution. One of the aims of quantitative biology is to understand how these
molecules fold to take their three-dimensional shape, and how they specialize to per-
form specific function. Approaches based on the mechanistic modeling of proteins,
like molecular dynamics (MD), often fall short due to the high number of coordinates
that should be tracked in order to simulate accurately these complex molecules.

In recent years, thanks to the rapid increase in sequence data availability, a statis-
tical approach to the study of proteins proved very promising. In this framework one
interprets a protein as a linear sequence of amino acids and tries to find the statistical
patterns inside the sequence that determine its biological properties, such as structure
and function. The formalism of statistical physics proves useful in this context, as it pro-
vides tools suited for the modeling of systems with a very large number of interacting
particles, even though the space of sequences lacks the symmetries and conservation
laws that typically simplify the discussion of physical systems.

More specifically, the statistical modeling of sequence data can be interpreted as
an inverse problem, that is the problem of inferring which model has generated the ob-
served data. This is the opposite of what is commonly done in physics, where one tries
to derive observable properties of a system starting from the fundamental, microscop-
ical rules that govern it. The problem of inferring statistical models is ubiquitous in
all areas of science, and the most modern approach to this problem is that of using
the techniques of machine learning, that is a branch of artificial intelligence that focuses
on algorithms that learn from data. The field of machine learning itself has a lot in
common with statistical physics, as models can often be interpreted as complex sys-
tems, allowing for the analysis of their internal mechanisms through the methods of
Disordered Systems and Random Matrix Theory.

The most prominent instantiation of physics-inspired modeling of protein sequence
data is DCA (Direct Coupling Analysis), which aims at fitting the available data to the
equilibrium distribution of a Potts model. This choice, as we will see, is equivalent to
assuming that the biologically relevant features of proteins are encoded in the single
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and pairwise frequencies of the observed data. This modeling scheme is appreciated
by the quantitative biology community as it provides a powerful, yet interpretable
framework both for understanding how proteins fold in their three-dimensional struc-
ture (Morcos et al., 2011) and to generate novel functional sequences (Russ et al., 2020).

Nevertheless, DCA is routinely applied in a drastically undersampled regime, that
is, the number of parameters that models are supposed to fit to data is much bigger
than the number of available data points. The practical solution to this problem is that
of using reqularization techniques that make it possible to compute a unique solution to
these otherwise under-constrained problems. Another problematic feature of protein
sequence data is that it is multi-scale, that is, relevant patterns might involve just a few
amino acids or they could involve large groups of cooperating units, or they could
include both. The former case is typical of contacts, that is spots of epistatic interaction,
while the latter refers to the presence of sectors (Halabi et al., 2009). All in all, when
working with protein data we have to deal with scarce, highly structured data, and the
main goal of this work is to understand how these two properties of data interplay
and affect the inference process.

This question was recently investigated by Kleeorin et al., 2023, where the authors
showed that undersampling causes the uneven representation of features at different
scales, manifesting through anomalous peaks in the magnitude of the inferred param-
eters for critical values of the dataset size. Still, a theory explaining the phenomenol-
ogy reported in this work is missing. Additionally, in the context of supervised learning
recent works have highlighted interestingly similar phenomenology, called double de-
scent (Rocks and Mehta, 2022) and multiple descent (Mel and Ganguli, 2021) where the
test error of supervised models diverges for critical values of the dataset size due to
overfitting.

The second goal of this work is to bridge the theory of supervised and unsuper-
vised models by isolating mechanisms that are typical of learning in general and don’t
depend on the specific model choice.

More in general, this work fits into the bigger picture of developing a theoretical
understanding of how generative models work internally, in order to go beyond black-
box predictions. This is a necessary achievement as quantitative biology is becoming
more and more a data driven discipline, and a solid theory of data and learning in a
biological context is still not available.



Chapter 2

Methods and Tools

2.1 Evolution and Multiple Sequence Alignments

As noted in the Introduction, proteins change over time as a result of evolution. These
changes are not random, as only those that respect the biological constraints imposed
by natural selection are accepted. This simple fact can be exploited as a way of identi-
fying relevant patterns for function and structure as those that are conserved by evo-
lution. In practice, what is commonly done is to consider families of sequences that
have evolved from a common ancestor, called homologs. These sequences might be
very different, but still have very similar three-dimensional structure and biological
functionality, which means that most of the changes induced by evolution can be re-
garded as noise. The task of computational biology, then, is to identify which of these
changes cannot be considered as such, and to unveil what information is encoded in
them.

Protein sequences of homologs are typically organized into Multiple Sequence Align-
ments (MSAs), which are N x L rectangular arrays

A=(AY, i=1,...,L a=1,..,N

where each of the N rows corresponds to a sequence of length L and each column to a
specific position along those sequences. Each entry A in the MSA is an element from
a finite alphabet of g = 20 amino acids, labeled by the standard one-letter amino acid
codes: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V. An addi-
tional symbol, typically a dash -, is used to denote alignment gaps, bringing the effec-
tive alphabet size to g = 21.

Now we can define the one-point frequencies f;(A) and the two-points frequencies
fij(A, B) for amino acids A and B

1 & 1 &
fild) = 21(5A,Ag i fif(AB) = Zl‘SA,A’i’éB,A;’
a= a=
where ¢ is the Kronecker delta symbol.

* The one-point frequencies f;(A) quantify the conservation of amino acid A on the
i-th site, that is, how often A appears in the i-th site in our data. As an example,
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FIGURE 2.1: Co-evolution of two sites in an MSA can mean that the

two sites are in contact in the three-dimensional structure of the protein.

The conservation of an amino acid in some position, instead, can mean

that the site is active in terms of the functionality of the molecule. This
image is taken from Cocco et al., 2018.

if one amino acid is crucial for the functionality of a protein in some specific
position, we expect its position to be conserved by evolution.

* The two-point frequencies f;;(A, B) quantify the phenomenon of coevolution, that
is when two sites evolve together. As an example, if two sites are in contact in
the folded state of the protein and the amino acid in one site changes due to a
mutation, also the other amino acid will likely change to maintain the ability to
form the bond. (see Figure 2.1).

It has been shown (Baldassi et al., 2014) that one and two-point frequencies are
sufficient to explain a lot of amino acid variability in protein data, therefore we will
use these two quantities as our main tool for extracting information from MSAs for
the rest of this document.

2.2 Direct Coupling Analysis

2.21 Inverse problems

Our goal is to extract relevant biological information from MSAs, which falls into the
very general context of statistical inference, that is, the art of going from raw data to
usable information. The field of statistical inference is strongly related to physics, as
many inference tasks can be recast as inverse statistical physics problems.

In physics one has a model, usually some Hamiltonian #H describing the interac-
tions that rule a system, and then tries to derive the macroscopic, observable proper-
ties of that system. In contrast, inverse problems work in the opposite direction: given
empirical observations, the goal is to reconstruct the most likely model that could have
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generated them. This is precisely what is done in the Direct Coupling Analysis (DCA)
approach.

In DCA one assumes that the observed protein sequences are a sample of N i.i.d. !
draws from the equilibrium distribution of a Potts model, that is a Boltzmann distri-
bution of the type

1

P(Ay,...,AL) = Ee—H<I“1'~~~M“L>, 2.1)
where H is the Hamiltonian of the system, and Z is the partition function ensuring
normalization.
z= Y e~ H(AL-AL)
Ay, Ar
The Hamiltonian is given by
i

1<i<j<L

where h;(A;) are site-specific "fields" and J;;(A;, A;) are pairwise "coupling" pa-
rameters.

The Potts model

The Potts model is a generalization of the Ising model in statistical physics. The
Ising model describes systems of spins, that is binary variables that can be in one
of two states (e.g., £1). These spins can be subject to external magnetic fields
and to pairwise magnetic coupling with other spins. The Ising model provides
a simple description of ferromagnetism. The Potts model, instead, allows each
site to take on ¢ different states, while preserving the same type of pairwise
interactions plus external fields. The categorical nature of this model makes
it suitable for the modeling of biological data, for example Potts variables can
be amino acids when working with proteins , or nucleotides when modeling
genomes.

J

Now that we have enforced the mathematical form of the distribution underlying
the data, the task of learning such a distribution reduces to learning the numerical
value of the fields and the couplings in Equation 2.2.

If we can develop a strategy that allows for the learning of the true distribu-
tion from which our data was generated (which we will explain in detail in subsec-
tion 2.2.3), we could then sample such a distribution in order to obtain novel sequences
that were not in the original MSA. These sequences will hopefully capture the biolog-
ical properties of the training data, potentially providing a way of generating novel
sequences with a given functionality. This is the essence of generative modeling, which
falls within the realm of unsupervised learning.

1t should be noted that biological sequence data actually show a strong bias due phylogeny, that is
sequences are not actually independent draws from P, as they are all deriving from a common ancestor.
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Supervised and unsupervised learning

Supervised and unsupervised learning are two fundamental approaches in ma-
chine learning. Supervised learning involves training models on labeled data,
where the goal is to learn a relationship between inputs and known outputs.
Unsupervised learning, on the other hand, works with unlabeled data and fo-
cuses on uncovering hidden patterns or structures. Generative modeling is a
common unsupervised learning technique that aims to learn the underlying
distribution of the data in order to generate new, similar samples.

\. J

2.2.2 The undersampling problem

It should be noted that for a protein sequence of length L and an amino acid alpha-
bet of size g, in order to fully characterize the distribution in Equation 2.1 one should
learn °L? couplings J;j(A, B) and qL external fields h;(A). For a typical sequence of
length L ~ 100 this means that the total number of parameters of our model is ~ 10°.
Common sense suggests that in order to carry out the inference of these parameters
in a reliable way, one should observe all the possible combinations of sites and amino
acids at least once, that is, the number of data points should be at least as big as the
size of the parameter space. Unfortunately, typical MSAs have sizes that range from
a few hundreds to N &~ 10* in the luckiest scenarios. Additionally, when working
with MSAs we have no guarantee that sequence space is being sampled uniformly,
therefore the few samples that we have might be very concentrated in some regions,
making the undersampling problem even more dramatic. This means that many com-
binations will never be observed, and therefore the exact inference of the distribution
in Equation 2.1 is out of reach. Still, useful information is encoded in the data that we
have at our disposal, and even though we cannot capture its true distribution, we can
aim at estimating some other distribution that will hopefully capture the biologically
relevant features of the true one. One of the goals of this work is to understand which
of these features can be learned reliably when working with limited data, that it is in
the undersampled regime.

In practice, we can temporarily sweep the undersampling problem under the car-
pet and infer the parameters in Equation 2.2 anyways by using a fundamental tech-
nique in machine learning called regularization.

2.2.3 Optimization with regularization

The problem of finding the true model underlying the data of a MSA is usually faced
by maximizing the log - likelihood of the model with respect to the model’s parameters,
which in our case are the fields /;(A) and the couplings J;;(A, B). By doing this, the
original problem of inference is recast as an optimization problem, that is finding the
maximum of a scalar function. Given N observations the log-likelihood of our model
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can be written as

L(h]|A)= N Y logP(A"|LJ), (2.3)
i|AteA
which corresponds to
£(h,]!A)——10gZ+Zh A)+ Y. Y Jii(A B)fij(A,B)
i<j, A,B

Now this cost function is maximized when the gradient is zero, which entails the
conditions

oL  JdlogZ ' . B
St = SIBE — f(A) = B(A| L)~ £i(4) =0 3
oL  dlogZ 24)

a]ij(a,b) - a]i]'(A,B) _fij(ArB) = Pij(A/B ‘ h/]) _fij(ArB) =0

meaning that the the log-likelihood is maximum when the single and two-point joint
probabilities predicted by the model match the empirical frequencies.

It should be noted that, as pointed out in the previous section, many of the em-
pirical frequencies that appear in the cost function Equation 2.2.3 will be 0 due to the
undersampling problem, meaning that the stationary condition in Equation 2.4 trans-
lates to (assuming f;(A) = 0 as an example)

P(A|h]J)=0

which can only be achieved by sending the model’s parameters to infinity due to the
exponential form of the statistical distribution in Equation 2.1. This is of course a prob-
lem as we don’t want the parameters of our model to diverge only because we have
insufficient data. A possible solution is to modify the original cost function Equa-
tion 2.3 by adding a penalty term proportional to the magnitude of the parameters,
therefore obtaining

LBY|A)= N > logP(A"[I]) = AR[L]] (25)
i|AleA

where R[I, ]| is some function of the model parameters and A is called regularization
strength. This will ensure that models with values of i and J that are too big will not
win the optimization problem.

There are many possible choices for the function R[4, J], the main two being L; and
L, regularization:

¢ with L; regularization one chooses a penalty that is proportional to the absolute
value of the parameters

R, [k,

0= 2 V(e B)]+ L Ihia

i<jab
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* with L, regularization, instead, the penalty is proportional to the square of the
parameters

Ri[ )] = Y [Ji(a,b)[* + L |hia)

i<jab

In order to solve this optimization problem we need to find the set of param-
eters that will maximise the Likelihood in Equation 2.5. This operation typically
cannot be done analytically and requires a numerical optimization technique called
gradient descent.

Gradient Descent

Gradient descent (GD) is an iterative optimization algorithm used to minimize
a differentiable function. Given a function f(#), the algorithm updates the pa-
rameters 6 in the direction of the negative gradient of the function at the current
point. The update rule is given by:

p(t+1) — g(t) _ thf(H(t)),

where & > 0 is the learning rate and V f(8(*)) is the gradient of f evaluated at
0(). This process is repeated until convergence. It should be noted that there
exist many variants of this algorithm. The version that we report here (which
is also the one that we will use in Appendix A) is its simplest version, often
referred as vanilla gradient descent.

Once gradient descent has converged, we are left with a set of parameters

(1)) = argmax {£ (k] | A)} (2.6)
which fully characterize the maximum-likelihood model that generated our data.

2.2.4 The teacher-student setting

As explained in section 2.2 the goal of protein sequence modeling is to learn the true
model that generated the observed data. When working with natural data, though,
we have to deal with two layers of uncertainty:

1. A ground truth model is not available. We are enforcing the functional form of the
distribution we wish to learn, but it might be the case that the distribution is not
expressive enough to capture the actual structure of the data.

2. The undersampling problem described in subsection 2.2.2 prevents the exact
learning of such a distribution, which might not be correct in the first place.

We want to understand the influence of undersampling on learning, therefore it is
desirable to isolate its effects by working in a scenario in which at least we know the
ground truth distribution, thus mitigating the problematics related to (1). The most
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common way to do this is to use the teacher-student framework. In this framework one
has two models, called respectively teacher and student, then produces data by sam-
pling the teacher model, and then has the student model trying to infer the parame-
ters of the teacher model from the generated data. This framework works well for our
goal as it will allow us to decide how much data is given to the student model (which
means we can "tune" the amount of undersampling) while knowing the ground truth
distribution of the generated data, allowing us to

1. Quantify how wrong the student model is with respect to the teacher.

2. Be sure that the student model is able to learn the teacher model, when given
enough data, as the two models have the same functional form.

2.2.5 Limited data with structure - a small literature review

In subsection 2.2.2 we have discussed how DCA is normally deployed in a strongly
undersampled regime, that is the number of data points is usually much smaller than
the number of parameters to be inferred. Still, DCA proves powerful in predicting
some features of natural sequence data despite this limitation, for example by predict-
ing accurately the presence of contacts (see Morcos et al., 2011). This suggests that the
influence of undersampling is not uniformly distributed across features, but seems to
impact some more than others for a given MSA size N. A systematic exploration of
the uneven representation of features was carried out by Kleeorin et al., 2023 by using
DCA in a teacher-student setting. The authors chose a teacher model that presented
different types of structures in its true couplings matrix J. More in detail, as it can be
seen in Figure 2.2:

* 3 contacts, that is isolated spots of pairwise interaction. In biological terms these
structures can be thought of as sites of epistatic interaction,

* asmall sector, that is a small collective of coupled neighboring sites,
* abigger sector.

The authors show that the value of the inferred parameters j through DCA with
regularization exhibit anomalous peaks as a function of the MSA size N. The positions
of these peaks depend on the considered structure, as well as their sharpness (see
Figure 2.2). More in particular, these peaks show up in a hierarchical way: the first
one to appear is associated to contacts, followed by the small sector, in turn followed
by the big sector.

This work constitutes important evidence of the fact that structure in the input data
impacts in some non-trivial way how well models learn different features for a given size
of the training dataset.

The phenomenology described above in context of DCA models shows some sim-
ilarities with a well known phenomena in supervised learning called double descent.
This phenomenon consists of the emergence of a peak in the test error of supervised
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FIGURE 2.2: Anomalous peaks in the inference of three different struc-

tures in the input data. On the left: the matrix of couplings of teacher

model. On the right: the value Frobenius norm of the inferred cou-

plings || J;j || as a function of the MSA size N, for two different values

of regularization strength A = 1073, A = 107°. Lower regularization

makes the peaks sharper and the separation of their positions more dra-
matic. These pictures are taken from Kleeorin et al., 2023.

models in correspondence of the critical value of « = % = 1 where N is the number

of data points the model is fed, and P is the complexity of the model.

This phenomena was studied by Rocks and Mehta, 2022 through the lens of statis-
tical physics by using the Cavity Method of disordered systems, and is well understood
as an instance of overfitting, that is when models interpolate noise in the training data
therefore losing the ability to generalize well. The authors use a simple supervised
task called Ridge regression as a playground, and assume that the input data the model
is fed is distributed according to an isotropic Gaussian distribution.
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Ridge Regression

Linear regression is a method used to model the relationship between a depen-
dent variable and a set of independent variables by fitting a linear equation to
observed data. The model assumes a linear form:

p
§ = wo+ ) xjj
j=1
where 7 is the predicted value, x; are the input features, and @; are the learned
coefficients. Ridge regression extends linear regression by adding L, regulariza-
tion. The optimal weight vector w that minimizes the prediction error is given
by the normal equation:

w = (X"X+AI) "Xy

where A is the regularization strength, X is our data array, and y is the vector of
labels.

\. J

Recently, Mel and Ganguli, 2021 investigated how structure in the input data im-
pacts the double descent peak, and the phenomena of multiple descent was unveiled.
More in detail, the authors chose to work with Gaussian input data that had two
widely separated variance scales, that is a high-variance mode and a low-variance mode,
as showed in Figure 2.3. The result is that the generalization error exhibits peaks not
just at the interpolation threshold « = 1, but also for a lower value of « which depends
on how the modes are split in the covariance matrix X of the input data. As an exam-
ple, considering a P-dimensional regression task, if we choose £ high variance modes
and g low variance modes we obtain the usual peak at & = 1, with the addition of a
new peak at & = 0.5 (see Figure 2.3).

Ao ok

82 9 0 0 y |
[ 1S

0 s 0 0 § oo
. = o ik ht

z= : ; - W= (X"X+ANIp) X'y 2 5o Ak
0 0 52 0 'v’%
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0 0 0 S: : |
i i

7

2

FIGURE 2.3: Multiple Descent in Ridge Regression. This image is taken
from Mel and Ganguli, 2021.

It should be noted that the peaks observed in Kleeorin et al., 2023 and those ob-
served in Mel and Ganguli, 2021 have a fundamentally different nature. In particular,
the former involve the value of the inferred parameters, while the latter involve the test
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error of the model, a quantity that has no counterpart in the unsupervised setting.
Still, the two phenomenologies present some common traits:

¢ The position of the peaks depends on the structure of the input data.

¢ The sharpness of the peaks depends on the structure and on regularization strength
A

In this work we aim at finding a common ground between these two settings,
providing an explanation of the peaks observed in Kleeorin et al., 2023 by working in
the limit of widely separated scales as done in Mel and Ganguli, 2021. As we explain in
the next section, such a common ground is represented by Gaussian DCA in a teacher-
student setting.

2.3 Gaussian DCA

The main goal of this work is to provide an understanding of how models learn dif-
ferent features in the undersampled regime, working along the lines of Kleeorin et al.,
2023. In order to this, it is desirable to work in a simplified scenario with respect to
the classical DCA framework described above for two main reasons:

e It will allow us to pinpoint the true origin of the phenomena observed in Klee-
orin et al., 2023, ruling out the idea that the observed phenomenology is exclu-
sive of the specific chosen model or the chosen regularization scheme.

¢ If we simplify the model enough, it will be possible to perform analytical calcu-
lations.

2.3.1 Learning a Gaussian model with Random Matrix Theory

The first important simplification that we will do is to switch from "classical" DCA
to Gaussian DCA. This means that instead of modeling discrete categorical variables
(e.g., amino acids) using a Potts Hamiltonian, we will assume that each sequence is a
real-valued vector x € R” drawn from a multivariate Gaussian distribution

1/2
P00 = s exp (—5 =) Tx =) ) @)

where J = £71 is the P x P precision matrix containing the pairwise couplings and X
is the corresponding covariance matrix. For simplicity, in the following we will assume
that 4 = 0. It should be noted that Gaussian models can be interpreted as the mean-
field approximation of Potts models, as we discuss in Appendix B.

Now we can deploy Gaussian models in the teacher-student setting introduced in
subsection 2.3.1 by defining the "teacher model" with known parameters J;

1/2 1
pi(x) = (|217tt|)P/2 exp <_2XTJtX> (2.8)
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and we can form a dataset by drawing N i.i.d. samples from p;(x) which we stack
ina N x P matrix X. Let us now define the normalized P x P empirical covariance matrix
S = %XTX and the sampling ratio « = % We can now compute from Equation 2.3 the
log-likelihood of the coupling matrix J given the data X, adding a L spectral penalty
term R[J] = Tr[J] as done in Catania et al., 2025:

log £(J | X) = % log det(J) — % Te[JS] — A Te[J] 2.9)

This regularization choice is uncommon but convenient, as it leads to a closed-
form expression for the maximum-likelihood estimator of the coupling matrix J:

j= [;[ (XTX> + zm] o (2.10)

True coupling matrix J; Inferred coupling matrix j

5 y o 1
sample N points in X —  J= [ﬁXTX + 22171
FIGURE 2.4: Teacher-student setting using L; regularization in a Gaus-
sian setting. P = 10 and A = 103. Here we chose a = ¥ = 10, placing
us in the well-sampled regime. Not surprisingly, the inferred coupling
matrix closely resembles the true one.

which coincides with Gg(—2A) where Gg is the resolvent of the empirical covari-
ance matrix. We can give a Bayesian interpretation to this estimator by observing that
it assigns a prior to inferred couplings J = 571 when data is absent or scarce, then this
prior is updated as more data is added and the rank of S increases. It should be noted
that in the undersampled regime a < 1 the empirical covariance matrix S is rank-
deficient and therefore not invertible, but the addition of +2AI makes its columns
linearly independent ensuring invertibility.
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Resolvent of a matrix

Given an N x N real symmetric matrix A, its resolvent is given by G (z) =
(z1—-A)!

All in all, we have reduced the original inference problem of minimizing the cost
function Equation 2.9 to that of computing the empirical covariance matrix X' X and
applying the simple transformation prescribed in Equation 2.10 in order to obtain the
optimal coupling matrix J.

When the true model underlying the data contained in X is simple enough (see
subsection 3.0.1 and subsection 3.0.2), it is often possible to characterize the spectral
properties of X X, which in turn can be propagated to those of the inferred coupling
matrix j. This can be done by using the tools of Random Matrix Theory (RMT) in the
"thermodynamic limit" N, P — oo, & = % We will show with simulations in subsec-

tion 3.0.1 that « is indeed the relevant scaling variable for this problem.

Random Matrix Theory

Random Matrix Theory (RMT) is a field of mathematics and physics that stud-
ies the properties of matrices whose entries are random variables. It originated
in the 1950s from the work of physicist Eugene Wigner, who used it to model
the energy levels of heavy atomic nuclei, where exact solutions were intractable.
The central focus of RMT is on the spectral properties of large random matri-
ces—specifically, the distribution and behavior of their eigenvalues and eigen-
vectors as the matrix size tends to infinity.
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Chapter 3

Results

In this section we will characterize the maximum likelihood coupling matrix j derived
in Equation 2.10 by working with teacher models that present no interactions, that is
Ji is a diagonal matrix. We will deal both with the case of an isotropic coupling matrix
and that of a matrix with many widely separated modes.

3.0.1 Inferring an isotropic matrix

Let us choose a ground truth coupling matrix of the type J; = JoIl with Jo € R. This
scenario is particularly relevant since the empirical covariance matrix S is a (scaled)
Wishart matrix in the N, P — oo limit (Potters and Bouchaud, 2021).

Spectral Density

For a given random matrix A, we can define the empirical spectral distribution
(ESD) also called the sample eigenvalue density:

1 N
pn(A) = Nkﬂfs()\—}\k)

where Ay are the eigenvalues of A. When N — oo the ESD converges to the
spectral distribution p(A).

\. J

Wishart matrices play a central role in RMT and their spectral distribution is given
by the Marchenko-Pastur (MP) law (Potters and Bouchaud, 2021):

(1—w)d(x) ifa <landx =0,
P = S /OG5 G1)
2max
0 otherwise

2
where x4 = ]1—0 (1 + ﬁ) and o = % As one can read from Equation 3.1 this

distribution includes both a continuous part with support on [x_, x| and a § mass at
x = 0, which is only present when « < 1.
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We want to investigate how well the estimator in Equation 2.10 (that is, our student
model) reproduces J; = Joll as the number of data points N sampled from the teacher
model increases at fixed P.

As it is done in RMT, we will consider J as an array of random variables, and
we will compute the mean and the variance of its entries. We present in Appendix B an
argument to support the fact that the phenomenology observed in Kleeorin et al., 2023
should be found in this context by looking at the variance of the elements of J instead
of their mean value.

First of all we can inspect the eigenvalues of J, which are given by

A 1
Jo = Sy + 2A

(3.2)

where s, is the a-th eigenvalue of S = %XTX and J, is the a-th eigenvalue of J. We can
easily find that the average estimated eigenvalue (f) = % Y, J« is given by the Stiltjes
transform of the Wishart ensamble

A

E[J] = g(-2A) (3.3)

where E[-] denotes the expected value and the expression of the Stiltjes transform is
given by

Stiltjes Transform

The Stiltjes transform of a matrix A is given by

1

@) = LT (Ga(z)) = L
N N =

Z—/\k

where G, is the resolvent of A and Ay are the eigenvalues of A. If we call py the
empirical spectral distribution of A then the Stiltjes transform can be written as

ante) = [ [ B85 25 ) = [ 7282

o?(1—q) —z— /(2= %q + 1))’ ~ 490"
2gz0?

g(z) = (3.4)

where 02 = J; ' and g = a1,

We can see in Figure 3.1 (A) that the formula above fits well the simulation data
even for finite P. The model drastically overestimates the coupling ] in the under-
sampled regime, while the inferred value becomes accurate after the critical value of
« = 1. The interpretation of this result is straightforward: when a — 0 we find that S
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is low rank, meaning that most of his eigenvalues s, are equal to 0, and the eigenvalues
of J are those of the prior, that is (21A)".

When « increases, instead, more and more of the eigenvalues of S accumulate in
the continuous part of the MP distribution (see Equation 3.1), causing the average
eigenvalue to decrease like 1%"‘ until when, at @« = 1, the § mass in 0 of the MP distri-
bution is finally depleted.

1
Regularization values B 3
s A=le-05

Regularization values
e A=le-05

A

10%-

Analytical 3
« A=0.0001 10
Analytical
A=0.001
Analytical

Analytical
+  A=0.0001
Analytical
A=0.001

Analytical

10°-

. 10%- = -~y .

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 25 3.0

FIGURE 3.1: (A) Mean and (B) variance of the eigenvalues of jasa

function of &« = % for different regularization values. P = 100 and

Jo = 1. Solid lines are the theoretical curves while scatter points are the
simulation data.

Now we turn our attention to the variance of the inferred eigenvalues. We can
compute it directly from Equation 3.2 obtaining

Var[J] = g'(=24) — g(—24)? (3.5)

where g(z) was defined in Equation 3.4 and ¢’(z) is its first derivative with respect
to z.

We can see in Figure 3.1 (B) that the variance of the inferred couplings is very
low in the « — 0 limit, peaks for a critical value of a* = 0.5, and then decreases
abruptly again at « = 1. This phenomena is the simplest instance of the mechanism
underlying the peaks observed in Kleeorin et al., 2023.

We can obtain a simplified description of the curves in Figure 3.1 (B) by expanding
Equation 3.5 in the low regularization limit A — 0 when & < 1 by only considering
the contributions to g(z) given the 6 mass at zero from the MP distribution. We have

l—a 0 1—-u«
g —— 1 gz~ —F
which yields
2
Var[f] ~ e (3.6)

ye
meaning the shape of the variance curve is approximately parabolic in the undersam-
pled (¢ < 1) regime.
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It is natural to ask what is special about the value of «* = 0.5 for which the parabola
in Equation 3.6 has its maximum. We can develop an intuition for this by inspecting
the histogram of the eigenvalues of J in Figure 3.2. We can see that when a < 1
their distribution is bimodal, exhibiting a J-peak at | = (2A)~! and a bulk centered in
J = Jo. When a — 0 all the eigenvalues belong to the peak on the right, while at & — 1
this peak depletes and all the mass in accumulated in the bulk around Jj.

a=04 a=0.5 a=0.6

=

o

o
=]
@

Frequency

o
[y}

o
S

0 1 2 4 5 0 1 2 3 4 50 1 z 3 4
x10? Eigenvalue %107 x10?

FIGURE 3.2: Histogram of the eigenvalues of J close to the critical value

a* =0.5. P =100,A = 1073, Jy = 1. It should noted that the right bin

centered on (2A) " lis a é-peak, while the left bin centered on Jy has a
non-trivial bulk shape.

The value of a* = 0.5 is therefore the special value for which the two bins have
the same height. Intuitively, we can think of this point as the value of « for which the
model is maximally uncertain about its prediction. It should be noted that the expansion
in Equation 3.6 holds only if ]y is close to zero so that the distance between the two
bulks is &~ (24) L.

The position of the peak can be changed by tuning the two parameters of this
model (Jo, A). In particular, as its shown in Figure 3.3 (B), the peak can only be pushed
to the left (that is towards « = 0) by increasing Jo and A.

It should be noted that the statistical distribution of the eigenvalues of j depends
only on the ratio « = ¥, proving that the limit N,P — oo and & =~ 1 is the right
scaling limit for this problem as we argued in subsection 2.3.1. We can check that this
is actually the case by computing numerically the eigenvalues of J for different values
of P and observing that they lie on the same curve (see Figure 3.3 (A) ).

Now we can investigate how the statistical properties of the eigenvalues of j prop-
agate to its matrix elements J;;. We start by noting that E[f;;] = E[G;;] = 0 fori # j
due to rotational invariance of the resolvent. Still, we can compute the variance of the
off-diagonal entries of exploiting the spectral decomposition

P
Jii =) Uikl (3.7)
k=1

where [ is the k-th eigenvalue of j and U is the matrix of the eigenvectors of S,
which follows the Haar distribution.
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(A)

10?

10t

FIGURE 3.3: On the left (A): learning of the eigenvalue of J as a function

of a for problems of different size P. On the right (B): heatmap of the

position of the peak a* as a function of the coupling strength Jo and
regularization strength A.

The Haar measure

If W is a real Wishart matrix of size P x P (with parameters already specified),
write its spectral decomposition as

W = uaAu’,

where U € O(P) is an orthonormal matrix of eigenvectors and A =
diag(A1,...,Ap) are the eigenvalues.

Then U is distributed according to the (normalized) Haar measure on O(P), i.e.
for any fixed V € O(P),

P(U) = P(VU) = P(UV),

and furthermore U is independent of A.

By using the 4-point correlation function of Haar matrices (Potters and Bouchaud,
2021 - Sec. 12.1.2) together with the fact that the eigenvalues and the eigenvectors of a
Wishart matrix are independent, we obtain

VarlJ;] = 5 (B[] ~E[JP) = 5 Varl]] (i #)) 68)

that is, the variance of the off-diagonal matrix elements exhibits the same parabolic
behavior of the eigenvalues found in Equation 3.6 but its amplitude is dampened by a
factor 5.

P

As for the diagonal elements of J, we have that E[f;] = E[f], while for the vari-
ance we can still resort to the spectral decomposition Equation 3.7. By recalling that
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E [Uj] = ﬁ and E [UZUZ,| = ﬁ when k # m we obtain
N 2 ) ] 2 IN
Var(Ju] = 2 (E[JY] ~ E[Jf}) = 2 Var(] 69

It should be noted that we have described the distribution of the eigenvalues of J in
terms of their mean and variance, which is generally not an informative representation
of a bimodal distribution like the one showed in Figure 3.2. Still, we have used these
two quantities to compute mean and variance of the matrix entries fij, which follow
a Gaussian distribution (see Figure 3.4) which is indeed fully characterized by its first
two moments.

Diagonal Elements Distribution Off-Diagonal Elements Distribution
Histogram

a(l —a)
— MO, 4pA? )

21298 Histogram
i B \Tge{—2), 29

2PA?

383 390 395 400 405 410 415 -15 -10 =5 i} 5 10

FIGURE 3.4: Statistical distribution of the diagonal and off-diagonal en-

tries of j The first distribution is centered in f = 0 as expected, while

the second one is centered in | = g(—2A). Simulation parameters are
Jo=1,P =5000,A =103, a =0.2.

As a conclusion to this section, we can say that we have provided an explanation
for the simplest instance of the peaks observed in Kleeorin et al., 2023 in the context of
a non-interacting isotropic model. The basic mechanism underlying this phenomena
is the interplay between data and regularization, causing a peak in the variance of the
inferred parameters for an intermediate value of « € (0,0.5].

3.0.2 Inferring a two modes matrix

In this chapter we will deploy the same framework of the previous section to infer a
coupling matrix that includes two widely separated coupling modes. We will work
along the lines of Mel and Ganguli, 2021 extending their results in the context of ridge
regression to the case of Gaussian DCA, allowing us to understand how structure in
the input data modifies the variance peak we have just highlighted in the isotropic
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case. The true model is given by:

N1 0 0 0
J, = 0 -« J; 0 - 0
1o -0 ], --- 0
0 - 0 0 - |

We can tune the values of J1,]> and their relative populations along the diagonal by
setting P; entries equal to [; and P, entries equal to ], keeping P = P; + P;. It should
be noted that this prec1s1on matrix 1s associated to a covariance matrix Xy = Ji~ I hav-

ing variances Sy = J; 2and S, = |, 2. From now on we will make the assumption that
Ji € J2 = 51 > Sy, meaning that the first mode is associated to high variance while
the second mode is associated to low variance.

As prescribed by the teacher-student machinery defined in subsection 2.3.1 we
will draw N samples from p;(x), form the empirical covariance matrix S = 1 XX
and compute J; through Equation 2.10. As in the isotropic case, the easiest place to
start is the eigenvalues of J.

In the limit of widely separated scales, the spectral distribution of S is given by the
superposition of two Marchenko Pastur distributions p; and p, roughly centered on
S% and S3 (Mel and Ganguli, 2021):

V(g —x) (x —x)

2783

2
i1y £ _fa
= _Sd (1 d;dfd> ( ‘X—Zd’<dfd’>

Where fy = %, 8, = ]2 andd = 1,2,

It should be noted that the spectral density of the empirical covariance matrix S
associated to the second mode p; exists only for a« > f; = 1;1/ meaning that the spec-
trum of S goes through a phase transition at which a new "bulge" is enucleated at the
critical value of a* = fj, as it can be seen in Figure 3.5.

As in the previous case, we are interested in the mean and variance of the in-
ferred eigenvalues, and thanks to the wide separation assumption we can treat the

two modes separately. For the high-variance mode associated to J;:

E[h] = /dx +2A =81(=2})

pa(x) =
(3.10)
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FIGURE 3.5: Distribution of the eigenvalues of S = %XTX when data

is drawn from a model with two widely separated scales. For a < 0.5

only the bulk relative to the first mode is visible, but when « > 0.5 a

new the one relative to the second mode also appears. The two bulges

are roughly centered on S? and S3 as expected. Simulation parameters
are P =5000, f; = fo =0.5,5; = 1and S, = 1072.

where g1 is a "modified Stiltjes transform”, directly obtained from Equation 3.4 by
mapping
=5t q=11 G11)

For the low variance modes instead, we have to keep in mind that the spectral
distribution has no mass if « < f;, in which case all the eigenvalues relative to this
mode are going to be (2A) . When a > f; instead, we can write

e - [P i

where g, is obtained by mapping

02 =2 (1 _ %fl) = fol (3.12)

The picture that we obtain (as it can be seen in Figure 3.6) is that the low variance
modes are "frozen" to the value f, = (21)~! set by the prior for « < f;, while they are
get unlocked as soon as « > f1 and then start approaching their true value. The high
variance modes instead are always "active" and start being learned from « = 0 on.
The model is learning features hierarchically as a function of N, prioritizing high
variance directions over low variance ones.

Now, following the discussion of the previous section we wish to investigate the
variance of the estimated eigenvalues. We can simply extend the result found in 3.0.1
by obtaining
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FIGURE 3.6: On the left (A): the high-variance eigenvalues are learned

in « € [0,0.5]. On the right (B) the low-variance eigenvalues instead

are frozen in this interval and are learned for « > 0.5. The simulation

parameters are P = 100, /; = 1 and J; = 100. The two modes are
divided equally, meaning that f; = f, = 0.5.

Var(fy] = g1(~2A) — g1(~21)? (3.13)
Var[fs] = gh(~2)) — ga(—2A)? |

As it can be seen in Figure 3.7 the variance of the first mode is peaking for a] = /;—1

while the variance of the second mode is peaking for a5 = % This is the straight-
forward generalization of what was found in Equation 3.5 by simply considering this
inference task as two separate tasks of smaller size being carried out in sequence.

10!
19 ® Variance of high modes

® Variance of low modes

@ Variance of high modes
® \Variance of low modes

10° +—s.
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a= a=

o=
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FIGURE 3.7: Variance of the eigenvalues of [ for two different partitions
of the two modes. On the left f; = 0.3 and f, = 0.7, while on the right
f1=07and f, = 0.3.

In Figure 3.8 we can observe that the critical values of a7 , found above correspond
to the points of maximal variance within the blocks corresponding respectively to high
and low variance, as predicted above.
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FIGURE 3.8: Inferred coupling matrix J for the values a. Numerical

parameters are P = 100, J; = 1, [, = 100, f; = f, = 0.5. The top half of

Jt is associated to high variance, while the second half is associated to
low variance.

Concluding this section, we have proved that in the undersampled regime fea-
tures are learned in a hierarchical and independent way when the scales involved
are widely separated. More specifically, the learning curves above correspond to the
curves of two separate inference problems of smaller size being performed from high-
est to lowest variance. It should be noted that this result can be easily extend to a
scenario in which there are not just two, but d-different modes along the diagonal.

3.0.3 The intermediate regime

In subsection 3.0.1 we have described the theory of learning an isotropic model, while
in subsection 3.0.2 we have generalized our findings to the case of models with 4
widely separated scales. Of course we expect that the the prediction of the latter sce-
nario will match that of the former when the separation of scales is reduced. In order
to investigate this systematically we can define the aspect ratio v = % and we can tune
it to observe the transition between the two limits.

As it can be seen in Figure 3.9, when v = 1 we retrieve the single peak at &« = 0.5
predicted by the isotropic theory (subsection 3.0.1). When 7 is increased, instead, the
curves associated to the two modes start diverging, until when, for 7 > 1 they settle

on the values of a7, = % predicted by the two-scales theory (subsection 3.0.2).
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Chapter 4

Conclusions

In this work we have discussed the effects of undersampling and structure in the in-
put data of generative models. We first simplified the problem by reformulating it in
a Gaussian scenario where a ground truth model is available, and then studied the
statistical properties of the inferred parameters through the means of Random Ma-
trix Theory. Notably, we found that even in the simple case of isotropic input data,
peaks emerge in the fluctuations of the inferred parameters, for which we provided
analytical formulae. When structure is added, multiple peaks are observed, and we
provided the criteria needed to understand their position and sharpness, connecting
to previous works on Potts models and ridge regression. Additionally, we explain that
when structure is added, models learn features in a hierarchical way as a function of
the dataset size, going from high to low variance.

This work leaves room for many possible extensions:

* An extensive discussion of models with interactions is needed. In other words,
what happens when the teacher model has non-zero off-diagonal elements? The
first reasonable task one can tackle is that of fully characterizing the inference of
uniform blocks of different sizes and coupling strength along the diagonal, that
is developing a theory for the inference of sectors. In this case one can interpret
sectors as signals to be inferred in presence of the noise dictated by the diagonal
elements of the covariance matrix.

¢ The learning dynamics of models contain a lot of information about data that is
disregarded when working only with maximum-likelihood estimates. The same
type of hierarchy that we have unveiled as a function of the dataset size is indeed
present as a function of the number of gradient descent iterations needed for
learning. This is aspect deserves further exploration and needs to be related to
the phenomena described in this work.

* In a scenario in which no ground truth model is available, it is necessary to
find some measurable quantity (like a susceptibility) during learning that will
probe the progressive learning of new modes, in order to provide criteria for
understanding which features can be learned for a given level of undersampling.
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Appendix A

Independence on regularization
scheme

In this section, we extend the results obtained for L; regularization to the more com-
mon choice of L, regularization. The Max-Likelihood is now

1 1
log L(J | X) = 5 logdet(J) — 5 Tr[JS] — AllJ|z (A1)

and we can exploit the fact that J is symmetric and positive definite (SPD) to obtain
that

W=t ()77) = (?) =L/ = Y7
ij i=1

where J; is the i-th eigenvalue of J. We can find that the eigenvalue problem with this
regularization choice is the same as for L, but we have to be careful and map A — VA
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. «  A=0.0001 50004
125 = . A=5e-05 . .
100- - « A=1le-05 4000 Regularization values
A=0.0001
A=5e-05
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FIGURE A.1: Mean and variance of the eigenvalues of J using L, regu-

larization in the context of an isotropic teacher model. Model parame-

ters are P = 20, Jo = 1, while gradient descent parameters are learning

rate 7 = 1072 and number of iterations N = 5000. Scatter points are

simulation data and the solid lines are the theoretical curves found in
subsection 3.0.1 by mapping A to v/A.

It should be noted that in the case of L, regularization we do not have access to an
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explicit form of J as we did for L;. therefore we need to run gradient descent on the
cost function

log £(J | X) = %log det(J) — %Tr[]S] AT (A2)

which is a delicate process as we have to ensure that J is SPD at each iteration. In order
to solve this issue we ran the optimization procedure only on the lower-triangular part
of J, which we call L, only computing J = LTL at the end of the procedure.
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Appendix B

Bridging with pre existent work

In this section we aim at substantiating the connection between our results and pre-
existent works in literature, with a particular focus on the work by Kleeorin et al.,
2023. In order to do this, there are three criticalities that need to be addressed:

1. Potts and Gaussian models are fundamentally different. How to bridge the two
formalisms?

2. Previous works (Kleeorin et al., 2023) have highlighted the uneven representa-
tion of different structures in the input data, but in this work we consider variance
modes as central the central objects of our study. How are these two things re-
lated?

3. We argued in subsection 3.0.1 that the peaks in parameter inference observed
in Kleeorin et al., 2023 can be explained by looking at the fluctuations of the
inferred parameters. Why is that?

In the following we will address all three issues above.

B.1 Gaussian models as Mean Field Potts models

The Mean Field approximation (MF) is a powerful technique from statistical physics
that allows for a simplified treatment of many systems. The main idea of Mean Field is
to assume that each unit of the considered system is subject to an "average” interaction
with all its neighbors, instead of a site-specific interaction.

In the work by Morcos et al., 2011 it was shown that a MF description of a Potts
model is available and can be achieved thanks to a low-coupling expansion, originally
developed by Plefka in the context of disordered systems. The bottomline of this work
is that estimating the parameters of the Potts model within MF reduces to the inversion
of a regularized empirical covariance matrix

Ci"™ (A, B) = f3(A, B) — fi( A)f(B) (B.1)
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where

a=1

B = — (A Ly
i B) = 3w, \ 7 T L A

are the empirical frequencies with the addition of two regularizing elements:

f.(A)_# &_{_%i(s
! _)\—FMeff q aCAA

* the pseudocounts parameter A which plays a role similar to regularization,

* a re-weighting by a factor m”, counting the number of times a sequence is re-
peated, in order to correct the sampling bias. We also define Mg = Y, 1/m".

It was later shown by Baldassi et al., 2014 that the same matrix as Equation B.1
naturally arises as the covariance matrix of a Gaussian model in a Bayesian inference
framework. All in all, the bottomline is that Gaussian models can be interpreted as
the Mean Field version of Potts models.

B.2 Structure and variance modes

In this work we have used the variance modes of the input data as the central object
regulating the hierarchy of learning in the undersampled regime. Still, previous works
on DCA (see Kleeorin et al., 2023) revolve around the inference of different features in
the coupling matrix (contacts, sectors, ...) rather than variance modes. In this section
we present an argument to show how the two are connected, and how the theory we
have proposed in the main body can explain the uneven representation of different
features.

Let us consider the true model J; as shown in Figure B.1. This 20 x 20 coupling
matrix includes three contacts, a small sector and a big sector as done in Kleeorin et al.,
2023 1. Let us use the spectral decomposition to write

Jt = ODO' (B.2)

where O is the orthogonal matrix of the eigenvectors of J; and D is the diagonal
matrix of its eigenvalues. As it can be seen in Figure B.1, D presents five different
modes along its diagonal, and interestingly the most populated modes are the highest
variance ones.

In the main body of this work we have shown that models are blind to low-variance
modes when data is scarce, and that the inferred parameters relative to invisible modes
are flattened to a value that is inversely proportional to the regularization strength A.
We can therefore mimick the effect of undersampling by explicitely assigning the value

11t should be noted that it is not possible to use the same exact matrix that was used in Kleeorin et al.,
2023 because Gaussian models carry the additional constraint of their coupling matrix having to be SPD.
Here we add a +2I to the original coupling matrix to ensure this condition is met.
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1 to the low variance modes of D. This will produce a new "flattened" diagonal matrix
Ds (see Figure B.1). Then we can rotate D¢ back in the canonical basis by using

je=0DO" (B.3)

and we see that the uneven representation of features emerges in J¢. Indeed, the inferred
coupling contact is higher than that of the small sector, which in turn is higher than
that of the big sector. Concluding this remark, we have provided an argument to
show that the uneven representation of features found in Kleeorin et al., 2023 can be
interpreted as the flattening of the low-variance modes of the input data, which we
have shown to be a consequence of undersampling due to the hierarchical learning
scheme we have highlighted in the main body.

B.3 Frobenius norm and fluctuations

When working with Potts models, the couplings are stored in a ¢ x g X L x L tensor
Jij(A, B). Still, In order to gain an intuitive understanding of these couplings, it is often
desirable to flatten this tensor onto a contact matrix. The most common way to do this
(as its done in Kleeorin et al., 2023) is to consider the Frobenius norm over the amino
acids alphabet

1/2
1151l = (zbw,b)z) |

which makes it possible to obtain one simple scalar value for all possible choices
of (i,j). We observe that this choice makes it so that H]in is a measurement of the
fluctuations of the predicted value of | rather then a prediction of the value itself.
Consider for example the case of two non interacting sites i and j, for which J;;(a, b) =
0 Va,b. In this case ||J;j|| is proportional to the standard deviation of the coupling
strength over all amino acids for sites i and ;.
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FIGURE B.1: Uneven representation of features emerges when the spec-
trum of Ji is flattened in correspondence of the low variance modes.
Regularization strength is set to A = 1073,
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