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Abstract

Master’s degree in Physics of Complex Systems
Statistical Mechanics of Two-Way Recognition

by Matteo Maria Rossi

Molecular recognition, the selective interaction between the elements of two different
populations, plays a central role in regulating key processes in biology as, for example,
immune responses where T cell receptors have the task of recognizing peptide antigens.
Despite advances in sequencing technologies, predicting whether a TCR~antigen pair
will bind remains a major challenge due to the experimental limitations in data collec-
tion. Data-driven approaches exploiting neural networks have shown to be promising
in this regard, therefore understanding the amount and type of data on interacting
partners necessary for generalisation is a question of great interest.

In this thesis we translate this problem into the language of statistical physics and study
two different settings of data collection exploiting the well-known teacher-student model
and replica trick. In the first model we demonstrate the interesting equivalence between
the particular setting in which we have few orthogonal elements from one population
tested against many elements from the other and the case of multiple independent per-
ceptrons. The second model features many paired elements from both populations, we
analyse the behaviour of the overlap parameters and observe how the volume of the
space of interaction matrices decreases as a function of the amount of training data.
These results offer theoretical insights into data requirements for learning in molecular
recognition tasks and may inform future experimental strategies and designs of neural
network models for biological applications.
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Chapter 1

Introduction

Molecular recognition between two populations refers to specific interactions between mole-
cules of different types, which recognize and bind, or not, through various mechanisms
amidst which we can cite hydrogen bonding, electrostatic interactions and hydrophobic
effects. In such interactions, a molecule, belonging to one group, is recognized by a receptor
or a binding partner in the other and, as schematized in Figure [I.1] recognition is often
governed by structural and chemical complementarity similarly to how a key fits into a
specific lock. This means that this process requires high specificity, so that the molecules
bind only with a determined type of partner, ignoring the presence of other irrelevant
molecules.

In biological systems such molecular interactions play a central role in regulating key
processes, with recognition resulting from the specific binding between two distinct molecu-
lar species, each originating from different populations. A clear example is provided by the
olfactory system, where each sensory neuron expresses a specific type of receptor capable
of binding to particular odour molecules to trigger an electrical signal which is then trans-
mitted to the brain. A similar mechanism is observed in the immune system, where B and
T lymphocytes, two types of white blood cells with the role of defending the body, bind to

Protein A Protein B

v

X

Figure 1.1: Lock-key recognition: in the top scenario the two proteins recognise each
other and bind (green tick), whereas in the bottom one they mutually ignore each other
(red cross).



1 Introduction

pathogen-derived proteins to elicit an immune response and neutralize the threat.

A concrete example which serves to illustrate the general problem of selective molecular
recognition involves two populations of amino acid sequences, such as proteins, that can bind
to each other. As anticipated, this framework is exemplified by the interaction between T
cell receptors (TCRs) and peptide antigens, where the former are proteins found on the
surface of T cells and the latter are fragments of viral or bacterial proteins that appear on
the surface of infected cells. When a TCR successfully binds to the target antigen, it triggers
a cascade of intracellular signals to activate the T cell, ultimately leading to the elimination
of the infected cell. Due to its central role in immune function, identifying which TCRs
recognize and bind specific peptides constitutes a fundamental and unresolved challenge in
immunology.

The main tool we have to perform this task is sequencing technology which provides
access to the genetic or amino acid sequences of both the TCRs and the peptide antigens
they target. Thanks to recent advances in this field, data-driven approaches, where machine
learning models (particularly neural networks) are trained on datasets composed of these
sequence pairs, are now a viable and valid option [4]. For instance, in [3] a specific class of
neural networks, Restricted Boltzmann Machines, is used exploiting this approach to study
such interactions. In general, the final goal of these models is to learn predictive patterns
that generalise to unseen sequences, thereby determining whether a novel TCR-antigen pair
will bind or not. Moreover, through an attentive analysis of the trained model, one hopes
to deepen his understanding about the molecular determinants of the interactions, i.e. the
specific features or properties of molecules that are responsible for their recognition with
each other.

The ability to scale the performance to new data, in this context, to predict whether a
previously unseen receptor-antigen pair will bind, is referred to as generalisation capability
and is crucial for real-world applications. A schematic representation of the problem is pre-
sented in Figure [I.2] To date, very little is known about the generalisation performances
of these models and the problem is further complicated by the high costs and experimental
complexity involved in generating training datasets. Indeed, these datasets require exten-
sive experimental validation, such as isolating T cells, determining receptor sequences, and
measuring their binding affinities to various peptides. As a result, this constraint fuels
the interest towards understanding the amount and type of data on interacting partners
necessary for generalisation.

For the aforementioned reasons, in this thesis we will focus on translating this problem
into statistical physics terms presenting some standard techniques, generally used to tackle
problems in disordered systems and machine learning, in Chapter 2 Then, we will compute
the partition functions of two different configurations of data, Chapter [3| and Chapter
with the aim of shedding some light on the generalisation capabilities of such models.



1 Introduction

Peptides
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Figure 1.2: The green ticks denote situations where we know from experiments that the
pair TCR-peptide binds, conversely, the red crosses indicate when they do not bind. The
question mark is present whenever we do not have data concerning that particular pair
and, if the model were to generalise, it would assign either a green tick or a red cross to
that particular pair.

TCRs




Chapter 2

The statistical physics framework

Neural networks are composed of many identical elementary units that interact in nontriv-
ial ways to perform complex tasks. How such sophisticated performances emerge from the
collective behaviour of individual neurons is a question that has attracted the attention of
statistical physicists for several decades now. Neural networks exhibit hallmark statistical
physics behaviour and statistical mechanics aims at producing exact results for their typical
learning behaviour. To do so, it considers the thermodynamic limit, where both the number
of degrees of freedom and the number of examples in the training set diverge but have a
finite ratio. Moreover, neural networks are naturally described as a disordered system, with
training data or random inter-neuron couplings playing the role of the disorder. On top
of that, good performance is often separated from overfitting or unfeasibility regimes by
phase transitions; hence, it is natural to use techniques and tools coming from the physics
of disordered systems to tackle these problems as well. For example, pre-existing works
[8, @] treat the problem of characterizing the maximum storage capacity of a simple binary
perceptron, i.e. how many patterns per input dimensions can be stored without error, in
statistical physics terms also exploiting the replica trick which we will discuss in Section

2.1 Teacher-student model

The basic scenario for learning problems in the statistical mechanics of neural networks
is the so called teacher-student model. It considers a neural network, the student, which
must approximate another neural network, the teacher, as well as possible. In principle,
the architectures of the two neural networks are different, and usually the teacher’s one is
more complicated than the student’s. The only accessible information about the target rule
is contained in the training set composed of the inputs and their corresponding outputs
provided by the teacher. A crucial question is how the examples of the training set are
selected. The importance of this matter is given by the fact that different training sets
may convey a different amount of information even when of the same size. In real-world
applications the training set is determined by the experimental procedures and cannot be
chosen at will; therefore, to model these situations, one assumes the examples of the training
set to be selected independently at random according to some probability distribution.

The ability of the student to approximate the teacher must be quantified with some sort
of similarity measure with respect to the teacher. Whether the student produces the same

7



2 The statistical physics framework

output as the teacher can be modelled, in the case of binary outputs, using Heaviside’s step
function. Let z7 and zg be the output given respectively by the teacher and by the student

1 student has learnt (same output as the teacher)

O(zrzs) = {

0 student has not learnt (different output)

we will need to adequately adapt this expression when considering our setting, but this way
of thinking about the student’s performance will allow us to properly write the partition
function that describes the space of interaction matrices in the following discussion.

In the scenario we are considering, we do not have two different neural networks, but
what we can do is think of the real dynamics governing molecular recognition as the teacher
and our neural network as the student who should learn from it. Note that this section
is meant to be just a qualitative introduction to the topic in order to allow the reader to
comprehend the logic and the ideas behind the work carried out in this thesis, for a more
detailed discussion of this model see [I].

2.2 The model

To tackle the problem from a statistical physics point of view, we obviously have to translate
it into mathematical terms. In the following, we will therefore present a simplified mathe-
matical formulation of the inquiry.

Consider two sequence populations, X and Y, that can interact with each other. For ex-
ample, X may refer to the space of T cell receptors and Y to pathogen-derived antigens.
Ideally, we want to know the binding matrix B(x,y) of any two elements x € X,y € Y|
defined as:

+1 if x and y bind

—1 otherwise

B(X7y) = {

The challenge arises when we consider the fact that the spaces X and Y are often huge, a
detail that makes it unfeasible to measure B(x,y) for every possible pair (x,y). It is exactly
in these situations that there is much interest in attempting to reconstruct this matrix from
a limited number of measurements. Our goal is precisely to shed some light on when this
can be done.

The usual procedure is to one-hot encode, i.e. represent using a sequence of binary inputs,
the amino acid sequences as vectors of dimension proportional to the sequence length and
the number of possible amino acids. Here we may choose a highly simplified model for
binding between two vectors x and y where the elements x € X and y € Y are embedded
as real vectors, x € RV, y € R™. The binding will then be described by

B(x,y) = sign <Z > aWiy, — T)
i

where T'is a real threshold, which sets the relative fractions of interacting and non-interacting
partners. The interaction matrix W is of size N x M.

The dataset we dispose of consists of triplets D = {(bg, 24, ya)} Where by = B(X4,ya)
is known (from experiments) for selected pairs of vectors (x4,yq). The dataset D, due to

8



2 The statistical physics framework

peculiarities of the binding assay used to collect the data, often has an interesting structure
itself. For example, it is often experimentally easier to obtain measurements B(x,,y)
where one of the partners y, is fixed and probed against many potential partners x,,. In
this scenario, the number of distinct sequences y and the one of distinct sequences x in the
data are not comparable, the former being significantly smaller than the latter. Due to such
peculiarities, machine learning practitioners often find that their algorithms fail to generalize
to novel sequence partners not seen in training data. The question we are interested in is
understanding under what conditions, i.e. kind or size of dataset D and dimensionalities N,
M, we can draw inferences about the matrix elements W;;, or other underlying parameters
that determine binding. To try to answer this question, in this thesis we will take into
consideration two particular configurations of data. The first will include a finite number
of y vectors tested against an extensive pool of x vectors, whereas the second setting will
feature a dataset with an extensive number of pairs (x4,y4). Both problems are inspired
by actual situations encountered by experimentalists on a daily basis; therefore, both are
interesting and could be valuable to solve real-world challenges.

Getting more specific, we want to formulate the problem in statistical physics terms, and
what we would like to do is to characterize the volume of matrices W compatible with the
given dataset. To obtain a mathematically well-defined problem, we constrain the matrix
space with a Ly regularisation (a priori Gaussian measure). We can then write a partition

function,
Z= /dWe‘éZij Wi H O |ba X <Z taiWiya; — T)

deD ij

(2.1)

where © denotes Heaviside’s step function and d € D are the measured triplets (by, X4, y4) in
the training dataset. As customary in a statistical physics framework, correctly determining
the partition function of a system is crucial in studying macroscopic properties of the system
and observing phase transitions and critical phenomena. In order to compute it, we will
use some standard statistical physics tools, in particular, a major role will be played by the
replica method.

2.3 The replica method

In this section we will provide the basic notions necessary to understand the following
discussion, but an exhaustive description of the replica method can be found in [10].

Let us start by saying that the replica method is a powerful analytical technique, yet,
it is not rigorous and it is used mainly for disordered systems and some problems in infor-
mation theory and machine learning. In disordered systems, one often wants to compute
the quenched entropy of a system computing the average of the logarithm of the partition
function. Indeed, when treating non-self-averaging quantities one may want to compute
their typical value, which does not coincide with their average; why we take the logarithm
is going to be more clear once we delve into our specific problem in Chapter [3 However,
directly averaging In Z over the disorder is usually challenging and the replica method allows
to circumvent this issue by using the identity:

(In Z) = lim ISt

n—0 n

9



2 The statistical physics framework

allowing to compute (Z™) for integer n and then analytically continue the result to n — 0
(it is precisely this analytic continuation that makes the method not rigorous since it is
not mathematically justified in general). This method introduces n independent copies
(replicas) of the original system, all subject to the same realisation of the disorder, and it
is by studying how these replicas arrange themselves that we gain insight into the structure
of the solution space. This trick is therefore accompanied by an ansatz regarding how the
introduced replicas behave.

The first ansatz that comes to mind, which is the one we will use in the following
discussion, is the Replica Symmetric (RS) one which assumes all replicas to behave the
same, implying that the system has a relatively simple energy landscape with one large
basin of attraction. Examples of this ansatz can be seen in [§, 0] where it is employed
to study a single perceptron. The symmetry of this ansatz often breaks down, leading to
more complicated ansatze which imply a more complicated energy landscape with different
basins of attraction. In these cases we talk about replica symmetry breaking (RSB) which
can assume different forms from 1-step RSB to full RSB. An example of how a similar ansatz
can be used when studying neural networks can be found in [7].

As witnessed by the cited examples, the reason why this trick is so useful also in problems
in machine learning can be easily understood thanks the aforementioned analogy they have
with disordered systems. As a matter of fact, as presented in [12], one could observe the
same duality of variables in both domains. The available data in machine learning can be
identified with quenched interactions in disordered systems, whereas the parameters of a
model can be seen as the spins adapting to the disordered background.

10



Chapter 3

Few-vs-many binding partners data

In this section we will focus on finding the partition function of the first setting mentioned
in Section where we are able to test a finite number of elements of family Y against an
extensive number of elements of X. In doing so, we will exploit the teacher-student model
and the replica trick previously presented.

Let x1,...,xp € RY be random normal vectors with (z;) = 0 and (z3) = 1. Let
Vi,..., ¥k € RM™ be some fixed vectors. Let W, W* € RN*M be respectively the inter-
action matrices of the student and the teacher.

2= [ ulaw) [l O W i W)
£k

where p(dW) o exp (—Ztr(W?)) for some v > 0, is a normalized Gaussian measure
(J p(dW) = 1), © is Heaviside’s step function and the threshold 7" in Eq.(2.1)) is set to

zZero.

Let J;, = Zj Wiyik (ie. Jp = Wyy). Under W ~ p(dW), J is Gaussianly distributed with

5
(Jir) =0, (JuJj) = Z(VVinij>ynkyml = TJYIIYZ

n,m

Denoting this Gaussian measure by p(d.J)

Z= / p(d]) [T o Tix{ Iy) (3.1)

&k

Where Jj = > Wiy

From Eq.(3.1)) we infer that Z involves a product of many random contributions. Products
of independent random numbers possess distributions with long tails for which the average
and the most probable value do not coincide. On the other hand, the logarithm of such a
quantity is a large sum of independent terms and therefore becomes normally distributed
so that its average and its most probable value asymptotically coincide. Hence, the typical

value of Z, for large N, is given by
Z o~ 6(111 Z)

Using the replica trick, previously described in Section [2.3] we want to compute

(InZ), = lim (EMx =1

n—0 n

(3.2)

11



3 Few-vs-many binding partners data

where the average is taken over the data X = (xi,...,xp) with independent entries z;e ~
N(0,1). Introducing replicas a = 1,...,n and considering that the x,¢ are i.i.d. over &:

Qo M) -

a,&k

)

X

where the average on the right is taken with respect to a single x € R with independent

entries z; ~ N(0,1). Next, we introduce the variables uy = \/LNXTJZ and \{ = —x"J¢%

~ VN
<H@(XTJZXTJg)> - / (H@(ukAg)> P(u, A)dudA

X

where A = (A}) and u = (uy), and

A):<1;[5(“k_ )H‘S(Aa Vi J>>

is the distribution of u, A induced by x. Since u, and Af are linear combinations of the
Gaussian variables x, they are themselves Gaussian. Therefore, P(u,A) is a multivariate
normal distribution, with zero means and covariances:

(wpw) = Ry, (M) = Ry, (A7) = aiy
where we introduced the overlap parameters
Ry =

1 * * a 1 a * a 1 a
N(Jk)TJz ) kKl = N(Jk)—r']l ) Qk? = N(Jk)TJ?-

Substituting and changing variables from the dJ® to these overlaps we get

(Z") = /exp {N (a In <H @(ukAz)> + S(R, Q)) } dQdR (3.3)

where (...) denotes the Gaussian average under u, A ~ P(u,A), a = £, Q = (¢7) and R =
(Ry,) and eNS(F@Q) is an entropic factor acting as the Jacobian for the change of variables.
Note that we need B ~ O(N) to get a nontrivial regime because each measurement gives
one inequality and since W has N degrees of freedom to get a significant constraint on W
it is reasonable that we need a number of inequalities comparable to N.

Up to a negligible multiplication factor
= [ (Tt ) Tt ) oo (- 3= im0 3 it + o)
ak,l ak<bl ak,l ak<bl i

where, defining k¢, = 3, R%,J% and h; = (h%,) € R

n

1 2 1 1
; = det (—YTY) det(A) 2z exp (§hiTA_1hi) .
g

12



3 Few-vs-many binding partners data

For large N we can then use the saddle point method and we get

Rzl = Zb,ms Ail;anr)ns(R*);l
-1 _ Q—R(R*) 1RT

Thus implying

1 n n -1 n 1
= ——1 A+ — — = YTy — =1 Yy ).
S 5 ndet A 4 5 ~ 735 kgl ( )kl 5 ndet (7 )

Let us now define some quantities:

* a \T
= ( (Rkl)KxK (Rlbcl>K><nK> , X
(RZl)nKxK qgl nKxnK

()
and

= H @ <Uk)\i) ) I'=
ak

where the average (...) is with respect to u, A ~ P(u, A).
Using Schur’s complement formula, see Appendix [A] it is straightforward to find

—Indet A =Indet X — Indet R*.

Once again
(2" = [ exp (N (a€(R.Q) + S(R. )} dQuR

with

1 1 n n -1 n 1
— o = —E YY) — =1 Y'Yy 4
S(R,Q) 5 ndet 5 ndet R* + 5 72 0 ( )kl 5 ndet (”y ) (3.4)

E(R.Q) = —n [ TTT] a0 et (-3x7=x) 69

a=0 k=1

where 29 = wuy.
Next, we can easily find the saddle point equations, see Appendix [B| which read
2— 5@']‘ -1 -1 -1 1 -1
a—g— (7 -x7reT), = 3 (=), (3.6)
where the indices 7, j only run through the lower part of the matrix, i.e. R and () blocks,
since R* is completely determined by the data and the top right corner is just the transpose

of R.

Starting from this point we can show the interesting result of how the problem we
are considering, under a specific set of assumptions, becomes equivalent to the one of K
independent perceptrons.

13



3 Few-vs-many binding partners data

3.1 Orthogonal data and independent perceptrons

First, let us state that, as it can be seen in Appendix [D.I] in the case of K = 1 and under
specific assumptions, i.e. v = 1, ¢** = 1, the problem we are considering is equivalent to
the one of a single perceptron. Let us now consider a very specific setting for our problem
and take the K vectors from family Y orthogonal to each other, i.e. yi -y, = 0 when k # [.
Where of course we have the constraint ' < M on the number of y vectors otherwise they
could not be all orthogonal. In such a configuration, given the orthogonality of the data,
one expects a result similar to the one describing K independent perceptrons. Similarly to
the case of K =1, to allow for a precise comparison, we assume v = 1 and ¢} = 1.

Let Si,...,Sk be the entropies of K independent perceptrons. We can compare the en-
tropies

K
Z <1n det A — Z In det Ak)

In order for it to simplify we would like A to be a block-diagonal matrix

AH 0o ... 0
a=|0

: .0

0 .. 0 A22

This automatically implies the need to have (A™1),, = 0 and the simplest way to get this is
to use an ansatz where all terms mixing yy,y; for k # [ are equal to zero.

In this way also the energetic term will split into independent terms since the integration
variables coming from different y vectors will be uncorrelated:

The energetic term of the K independent perceptrons will consist of

K
Eit = >  Ex.
k=1

From the equivalence between the case with K = 1 and the single perceptron it automatically
follows that & = Ej. thus proving that these two terms are equivalent.

Before deeming this result to be reliable we need to test the assumption we made to see
whether it is consistent with the saddle point equations in Eq. that we use to compute
the partition function.

In the case of our assumptions, for yy,y; orthogonal when k # [, ¥ will have a particular
structure, here we only present ¥ in the case where K = 2 but it should be easy for the

14



3 Few-vs-many binding partners data

reader to picture the general K case

R0 RI 0
0 R; 0 R;

s R, 0 O 0
O R2 O QQ

The inverse of such a matrix will have the same structure, i.e. zero elements in the same
spots. It follows that, for the terms we set to zero, the saddle point equations reduce to

(z7'rst), = 0.

Regarding I', under our assumptions we have

<ukA7H@ (umxa>> = <ukHe (umz>> <A?H@ <uzA7>> <H 11 @(umA;>> ,

a,m a m#k,l

then
o _ (ue ], © (weAp)) (A TL, © (wA))

(IO () (T1, © (wAf)

We observe that

<uk H © (uk)\%)> = — <uk H © (—uk)\i)> = — <uk H C] (uk)\i)> =0.

Note that we can do the same for every other term of I' mixing orthogonal vectors. We then
conclude that I" has the same structure as X~!. The same structure is preserved during the
multiplication X7'T'Y 71, thus implying that V(i, j) s.t. ¥;; is set to 0 then

(z7'rsT), =0

thus proving that our assumptions are compatible with the saddle point equations.

Now that we proved this consistency, we can state that under the assumptions we made
we recover the case of K independent perceptrons from our model and this means that, in
this particular setting, we could exploit the already well-known results for the individual
perceptron to characterise our problem.

In general, to proceed with the calculations for the partition function, we should assume
a particular behaviour of the replicas and we will consider the following RS ansatz

w = R, 42 = qr + Pridap -

Such an ansatz assumes all replicas to be statistically equivalent and implies the energy
landscape of the system to be relatively simple having one large basin of attraction for each
Ry and qg;. In spite of its apparent simplicity, the saddle point equations are rather involved
and feature three different K-dimensional integrals which make solving them an expensive

15



3 Few-vs-many binding partners data

task which we keep for future work, but the details of the calculations can be found in
Appendix [D.2]

To conclude the discussion, let us briefly summarise the results we found. We started
writing the partition function of a system in which we are able to test a small number K of
vectors from family Y against an extensive pool of x vectors, from there we proceeded with
replica calculations introducing overlap parameters. Thanks to these parameters we were
able to prove the equivalence between our model, when the y vectors are taken orthogonal
to each other, and the case of K individual perceptrons. This parallelism obviously allows
to exploit the well-known results for a single perceptron to draw conclusions on our model in
that particular setting, hence it proves to be highly valuable. Expensive numerical solutions
of the saddle point equations under RS ansatz are instead kept for future work, but what
we can say is that the neural network will not be able, in any case, to generalise and learn
about vectors orthogonal to the hyperplane identified by the K vectors tested from family
Y.

16



Chapter 4

Many-vs-many binding partners data

We now take into consideration the model where each element of X is tested against one
element of Y creating a dataset containing a number B of triplets (be, X¢, ye).

Let X = (x1,...,xp) € RYB and Y = (yy,...,yg) € R®*B be data points, with inde-
pendent components drawn from x;,y; ~ N(0,1). Let W,W* € R¥*M he the interaction
matrices of the student and the teacher, respectively. We are interested in

1
Z = /,u (dW) H © (zgngyE) ;= —ng*y§
: vVMN

where p (dW) o exp {—4tr (W'W)} is a normalised Gaussian measure. Note that E[W;;] =
0 and E[W32] = 1 under p (dW). In particular E [tr (WTW)] = NM, and typically W;; ~
O(1). We assume tr(W*W*T) = NM. In a similar fashion as before, we want to exploit
the replica trick to find the typical value of the partition function, therefore, Assuming that
the data (2f,x¢, y¢) are i.i.d. over { we want to compute

(Z™) —/<H@ zfng“yg > Hu(dW“) =

:/exp {Bln <1:[@ (z*xTW“y)>D} ]:[u (W)

This time we define the quantities 2* = \/ﬁXTW“y and z = (2%, 2%,...,2") so0 as to have

<H @(Z*XTW“y)> = <H @(z*za)> = 2/ OOP(z)alz
a D a z~P(z) 0

where P(z) is the distribution induced by x,y which are assumed to be normally distributed
with independent components of zero mean and unit variance. Non-zero contributions
come from points z where all entries have the same sign. The last equality follows from
P(z) = P(—z).

Note that the exact form of P(z) is a complex distribution, but still convex, hence, for
simplicity, we will assume it to be Gaussian with (z*) = (z*) = 0 and

1 * *
:WZW“Wb—qab, (2%2") NMZW”‘W = (") =1

17



4 Many-vs-many binding partners data

Thus P(z) only depends on W1, ... W™ through Q = (¢*) and R = (R%):

P(z) ocexp{—%zTZ_lz} , XM= (;% %T) :

Note that P(z) = P(z*)P(z!,...,2" | z*), where P(z*) ~ N(0,1), while P(z',...,2" | z¥)
is Gaussian with (2% | 2*) = R%2* and (2%2° | 2*). = ¢** — R°R".

Next, we proceed in a similar way as before and we write the integrand as the exponential
of an energetic and an entropic part:

(27 = / exp {MN (a&(R, Q) + S(R,Q))} dQdR

where a = 2=, £(R,Q) =In (2 f0+°° P(z)dz) and S is such that

MN?>
1 a * a
vz T)>H§(Qb_

eNMS(R,Q) _ /H5 (Ra .
a a<b

Note that we need B ~ O(MN) to get a nontrivial regime. Each measurement gives one
inequality z,x] Wy, > 0 and since W has M x N degrees of freedom it is reasonable that
we need O(M N) inequalities to get a significant constraint on .

Using Fourier transforms 6(z) = 2 [ eN6*d¢, we get

100
eNMS(Q,R) _/ H
—1300 a

NlM tr (W@W”)) H pu (W)

dg” J] dR®exp {NM > "™+ NM YRR+

<b a<b
NM —1\ab pa Pb NM
+T%;(L )P RR —Tlndet(L)}

where L% = ¢%+6,,G*+064. Note that we omit irrelevant constants and exploit > i VV{;Q =
MN. Then, we extremise in R* and G for large M N finding

Ry (LT)PR =0, (L7 =g = RUR" = (2" | 7).
b
and " = (1 — %) (L — 8,p). Substituting we get

trQ + %mdet(cg —RR").

N | —

SQR)=5 -

4.1 Replica Symmetric ansatz

We shall now choose an ansatz to proceed with the calculations and we opt for a Replica
Symmetric ansatz of the form

R*=r, ¢ = (1~ 0uw)do+dudi -
Then P(z',...,2" | 2*) becomes a Gaussian distribution with

(=" [z =rz" and (2"2"| 2%)c = (1= da)go + dapar — 7.
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4 Many-vs-many binding partners data

Next, we compute

+oo +o0 +oo
/ P(z)dz :/ dz*P(z*)/ P2, ..., 2" | 2%)d2t .. de" =
0 0 0

+o0 +oo
- / do(=) [ dpl)e"(ag + B2
0 —00
where A = A(r, g0, 1) o ;2) B(r,q0,q1) = 7= and

et o)

where we exploited the analogy with the problem of the equicorrelated Gaussian orthant
[11], see Appendix |C| for more details.
For n — 0 we can write

£(R,Q) = In {2 /0 m P(z)dz} ~ 2 /0 " () /_ T o) mB(AC + B

[e.9]

For the entropy we have det (Q — RRT) =detY = (q1—q)" 'dwithd = ¢; +(n—1)qy—nr.
Therefore

1
hl(ql — qO) ~

S(QB) =21~ ) + 5 (g + (0 — Do —nr?) +

— 2
2—{1—C,I1+hl(ql—CJO)-I—qO }
2 q1 — qo

where we considered the n — 0 limit. Then, we can write & = n€ and S = nS where

~ “+oo +00
E(rrdorqr) =2 / 4= o) / dCo(C) I B(AC + B2")

o0

and
2

— T
{1—q1+ln(q1—q0)—|—qo } (4.1)
qd1 — qo

SN(TJ qo, ql) -

N | —

Substituting we get
(Z") = exp {nMNeéc’%r (ag(R, Q) + S(R, Q))} :
Using the definitions of A(r, qo, ¢1) and B(r, gy, q1) we can rewrite the entropy in Eq. as
S(q, A, B) = = {1 — ¢ +1Ing —In(1+ A* + B?) + A%}

from which, since £ depends on 7, qo, g1 only through A and B, we can determine the optimal
value of ¢;. Extremizing S with respect to ¢; at fixed A, B we get ¢; = 1.
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4 Many-vs-many binding partners data

4.1.1 Saddle point equations

Now we extremize with respect to A and B to find the saddle point equations. Starting
from the energetic term we get

85 L ¢ (AC + B2")
o€ e p(AC+ Bz")
=2

B /0 A" e )/ A Yo Ty
Extremizing the entropic term

o8 _, A 08 _ B

0A 1+A2+ B>’ 9B 1+ A2+ B2’
We then write the saddle point equations as follows:

00 00 SO(A(+ Bz*) A
9 * * -/ A — =

These equations admit solutions with ¢y = r which means considering the teacher to be
equivalent to just another student, which also intuitively should be reasonable, but a more
detailed discussion of this argument can be found in [6]. Thanks to this observation we can
write A = /r and B = \/ITTT Then, we can focus on one of the two equations and solve
parametrically:

A
1 m—fl

o =
¢(AC+Bz)
2f dzrp (%) [, dCe(C s(acB)S
for a as a function of r. Given ¢y = r we can rewrite the energetic and the entropic terms
as follows

5 +00 +o0 r
&) =2 [ arele) [ dgeomaicr L==),

~ 1
S(r) = 5 {r+In(1-n)},
and we can define another interesting quantity which we call V as
V(a,r) = al(r)+S(r)

which is nothing less than the volume of the space of the interaction matrices.

Since the only parameter we can control is « it makes sense to look at the behaviour
of the relevant quantities of this problem as a function of the latter as presented in Figure
In particular, from Figure we can see how the overlap between the student and the
teacher starts at r = 0 for « = 0 and increases with « as expected. In particular we notice
a steep growth for small values of o, whereas the curve starts saturating for o ~ 2 and, as
expected, for large values of a we have r — 1. This result is exactly what we expect and is
consistent with what we would expect knowing the results for the perceptron [6].
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4 Many-vs-many binding partners data

Plot of r(a) as a function of a Plot of S(a), &a) and V(a) as functions of a

024 —— Entropy 3(a)
25 Energy &)
—— Volume Wa)

Figure 4.1: Plots of the overlap parameter r, the entropy S, the energy € and the volume
V as functions of a.

In Figure the behaviour of the entropic term, the energetic term, and the volume
with respect to a are shown in the same plot to allow for a more immediate comparison
of the three curves. We can see that S and € are both monotonic but their trends are
one opposite to the other. As a matter of fact, they respectively increase and decrease their
values with «v, with £ that saturates to 0 for & — +o00. Moreover, the entropic term presents
an inflection point roughly at the same value of o ~ 2 for which the plot of r begins to
saturate. The general behaviour of V, as expected, is still monotonic and decreases with «,
implying that the more data are fed into the neural network, the more the space of possible
interaction matrices shrinks.

Let us now briefly summarise the results obtained in this section. We started writing
the partition function of a system in which we are able to test an extensive number of x,y
pairs, thus building a dataset with a number B of triplets (b4, X4, y4) describing every time
the interaction between two new vectors. After some replica calculations, again under the
RS ansatz, we were able to find the saddle point equations and to plot the behaviour of the
overlap parameters, as well as of the entropic term, the energetic term and the volume of the
space of interaction matrices, as a function of the amount of data fed into the network a.
These quantities behave as expected with the overlap between student and teacher beginning
to saturate towards one at o ~ 2, thus meaning that the neural network actually learns.
The same can be said for the overlap among the different students (replicas) and in general
the entropic term decreases whereas the energetic term grows and saturates to zero. As
expected, the volume of the space of the interaction matrices keeps decreasing with «.
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Chapter 5

Conclusion

In order to bring together the central arguments of this thesis, we now summarize the key
results and their implications. The problem posed was to characterize the parameter space
of a neural network with the task of learning the binding matrix between two families of
data. We presented two different models for which we computed the partition functions
exploiting the replica trick with Replica Symmetric ansatz.

Studying the first model we found the equivalence between the case of K independent

perceptrons and the one in which we can test K orthogonal vectors of one family against
an extensive number of vectors from the other family. Then, under RS ansatz, we were
able to derive a simplified expression for the partition function of the model which in future
work will permit to write and solve a set of saddle point equations allowing to study the
behaviour of the overlap parameters.
Studying the second model, where we considered an extensive number of (x,y) pairs, we
found the behaviour of the overlap parameters, coming from replica calculations with RS
ansatz, which proved to align with our expectations showing a decreasing volume of the
space of interaction matrices with the amount of data fed into the neural network.

We deem both models to be of great importance both from a theoretical and practical
point of view, since the characterisation of these and similar settings might lead to a deeper
understanding of how to collect actual data for an optimal deployment of experimental re-
sources. Because of this, in the future, it would certainly be interesting to compare the
results obtained in this thesis with the performances of actual neural networks trained on
real-world data to see how accurate the predictions of these models are.

Ongoing continuation of this work is to derive the saddle point equations of the model
in Section [3| and to solve them numerically for different values of the amount of data fed
into the neural network. With this procedure, hopefully, interesting behaviours of the
generalization capabilities of the model, such as phase transitions, might arise. Further
changing the structure of the dataset could also lead to interesting results. A possible option
for experimentalists would be to test few elements of family X against many elements of
family Y and the other way around; under these assumptions nontrivial results could arise
and it is definitely something that we envisage to analyse in the future. Moreover, in the
case of TCRs and peptides the interaction matrix W is generally sparse; therefore, future
perspectives might include taking this feature into account to look at the changes induced
by this additional constraint. In general making precise assumptions on the structure of the
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5 Conclusion

interaction matrix might lead to interesting behaviours.

Always with the aim of reducing as much as possible the need for collection of new data,
an interesting question certainly is if there are optimal choices for the dataset D in terms
of the type of data and not just the quantity. To pose the question in a statistical physics
language we would want to find the best way to choose the vectors x4, y4 such that Z is
much smaller than its typical value, i.e. the possible W matrices are highly constrained.
Answering this question would require to look at large deviations and non-zero number of
replicas, in a similar fashion to what is done in [5].

Other cases that could be considered are those of more complex binding models involving
higher-order interactions between the binding partners or when the threshold in Eq.(2.1)) is
set to be non-zero, thus describing a situation in which a different fraction of pairs actually
bind. This last setting would be an important step towards a more realistic model of what
happens in the actual interactions; setting the threshold to zero means considering that on
average half of the considered molecules bind, whereas in real life the fraction is obviously
smaller. Another assumption that could be changed to make the model more realistic is
changing the distributions from which the x and y vectors are sampled, as a matter of
fact choosing a spin-like distribution would mean studying a more realistic model and could
show some interesting dependence on the form of the interaction matrix W. Always with
a glance at the practical implications of this research, experiments can produce noisy data,
meaning that while collecting a data point (bg, X4, y4) there is some probability that x or
y are mildly corrupted versions of the true sequences, or that b; has the wrong sign. We
can then modify the partition function to take into account such sources of noise trying to
understand their effect on the inference of the binding matrix W.

As it should be clear by now, the possibilities are numerous and all of them can be of great
value not only from a mere theoretical point of view, but with many direct implications in
more practical tasks especially if more realistic features are included in the studied models.
Hence, the hope is to be able to explore as many of them as possible, further shedding light
on the intricate mechanisms governing complex networks.
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Appendix A

Schur’s complement

The Schur complement is defined for a block matrix. Let matrix M be defined as

M= (é g) (A1)

If respectively D (or A) is invertible, then the Schur complement of the block D (or A) of
M is the matrix defined by
M/D = A— BD™C (A.2)

or

M/A=D-CA'B (A.3)

This complement allows to write very useful properties of matrix M. For instance its inverse
can be written as

M= <A_1 + A_lB(M/A)—ICA—l _A_lB<M/A)_1)

—(M/A) oA (M/A)"! (A4)

or in a symmetric way for M/D.

. (M/D)™ —(M/D)"'BD!
= (oS s BeonD) 5en) )

It also allows to write the determinant of M, when A, respectively D, is invertible, as follows
det M = det Adet (D — CA™'B) (A.6)

respectively
det M = det D det (A — BD”C) (A.7)
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Appendix B

Gradient of multivariate normal

Consider a centred multivariate normal density
1
P(x) = (27) N2 det(2) "% exp <—§XT21X> (B.1)

with covariance matrix <xxT> =Y. Then

2_52‘]'
2

In P(x) = [+ S xx TS

)

i <] B.2
o5 (i <) (B.2)
where the derivative is taken with respect to a triangle ¢ < j of the symmetric matrix 3.
That is, the variation of X;; for 7 < j implies the same variation of ¥, which is why we
need the factor 1 — %&j.

For a proof of this formula, one needs the gradient of Indet(...). This is given in Appendix
A.4.1 of Boyd & Vandenberghe’s book [2].
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Appendix C

Equicorrelated GGaussian orthant

Let x1,..., 2, be normally distributed and equicorrelated with (x;) = 0 and (z;x;) = §;; +
(1 —6;5)p- Their joint density reads

P(x) = (27)"2 det %77 exp {—%XTElx} (C.1)

where ¥;; = d;;+(1—0;;)p and has a non-degenerate eigenvalue 14 (n—1)p and a (n—1)-fold
degenerate eigenvalue 1 — p which must be positive for X to be positive definite.
We want to compute the orthant probability

+oo
P:P(:L’1>a,...,xn>a):/ P(zy,...,x,)dzy ... dx, (C.2)

where a is a threshold.

Assuming p > 0, we can write x; = /pZy + V1 —pZ;, where Zy, Zy, ..., Z, are indepen-
dent standard normals. Indeed, from (Z;Z;) = d,;, we see that this representation implies
(rixj;) = p+ (1 — p)d;j, which is consistent with the previous definition. It follows that

P(xy,...,2n | Zo) = [I, P(xi | Zo) where P(z; | Zy) is Gaussian with (z; | Zy) = \/pZ and
(x? | Zy) = 1 — p. Clearly,

P = / (x1>a,...,2, >a| Zy=C)P({)d( = (C.3)

/ Pla, > a| Zo = O PO)dC (C.4)

Let ®(c) be the CDF of a standard normal

o)==, 2= [ wnw=gfi-ar( ) ©

Using
Plai>a|Zy=C) = ((\/f%pa) (C.6)
we obtain

P /+°°<1>"(Cf _p“) P()d¢ (€1

Note that this gives the correct real result even if p < 0. For more details refer to [11].
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Appendix D

Few-vs-many binding partners data:
detailed calculations

Let xi,...,xp € RY be random normal vectors with (z;) = 0 and (z3) = 1. Let
Vi,-..,Yx € RM be some fixed vectors. Let W,W* € RV*M bhe respectively the inter-
action matrices of the student and the teacher.

z—/MWUH@@wwﬂﬁw@ (D.1)
&k

where p(dW) o exp (—%tr(W?)) for some v > 0, is a normalized Gaussian measure
(J u(dW) = 1), © is Heaviside’s step function and the threshold 7" in Equation is
set to zero.

Let J;, = Zj Wiyik (ie. Jp = Wyy). Under W ~ p(dW), J is Gaussianly distributed with

5
(Jie) =0, (Jiei) = Y (Wi Wi Yt = #y;yz (D.2)

n,m

Denoting this Gaussian measure by p(dJ)

Z= / p(d]) [T o6 Tix{ Iv) (D.3)
&k

Where Jj = >~ Wihyp.
From Eq. we infer that Z involves a product of many random contributions. Products
of independent random numbers possess distributions with long tails for which the average
and the most probable value do not coincide. On the other hand, the logarithm of such a
quantity is a large sum of independent terms and therefore becomes normally distributed
so that its average and its most probable value asymptotically coincide. Hence, the typical
value of Z, for large N, is given by

Z ~eln?) (D.4)

Using the replica trick previously described in Section [2.3) we want to compute

(InZ), = lim (EMx =1

n—0 n

(D.5)
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D Few-vs-many binding partners data: detailed calculations

where the average is taken over the data X = (xi,...,xp) with independent entries z;e ~

N(0,1). Introducing replicas a = 1,...,n:
X

71 {/ [ 1L

_ / [H M(dj“] <H@ ] J9) >X (D.6)

a,&k
Since the x¢ are i.i.d. over

<H @(ng;ng;)> =11 <H O(x{ Jix{ If) > <H@ (x"Jix"J9) >
X 13 a,k

a7§7k“

X& X

where the average on the right is taken with respect to a single x € RY with independent
entries 2; ~ N(0,1). Next, we introduce the variables wy = Z=x"J} and \j = J=x"Ji:

<H@(XTJ;;XTJ;)> = / (H@(WZ)) P(u, A)dudA (D.7)

X

where A = (Af) and u = (uy), and

A) = <1;[5 (uk - ) H5 ()\“ 7 TJa) >x (D.8)

is the distribution of u, A induced by x. Since u, and A} are linear combinations of the
Gaussian variables z, they are themselves Gaussian. Therefore, P(u,A) is a multivariate
normal distribution, with zero means and covariances:

(wew) = Ry, (ANw) = Ry, (MA)) = gy (D.9)

where we introduced the overlap parameters

1 * * a 1 a * a 1 a
~ Jk)TJw = _(Jk)TJla Qk? = _(Jk)TJ? (D~1O)

Rkl:N( KN N

Substituting,
(2™ = /exp {B In <H @(Wg)>} 11wt (D.11)

where (...) denotes the Gaussian average under u, A ~ P(u, A). We change variables from
the J* to these overlaps, writing:

(Z™) = /exp {N (a In <H @(uk)\Z)> + S(R, Q)) } dQdR (D.12)

where a = £, Q = (¢¥) and R = (RY,) and eV5®@ s an entropic factor acting as the

Jacobian for the change of variables.Note that we need B ~ O(NN) to get a nontrivial regime
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D Few-vs-many binding partners data: detailed calculations

because each measurement gives one inequality and since W has N degrees of freedom to
get a significant constraint on W it is reasonable that we need a number of inequalities
comparable to N.

Up to a negligible multiplication factor

NS / (H d]fzgl> ( 11 dqgg’) exp (-NZR;Z w= N @+ In Q)

a,k,l ak<bl a,k,l ak<bl
) (D.13)
where, defining h$, = >, RY,J; and h; = (h,) € R"F,
LT - -3 LT,
Q;=det (=YY det(A) 2 exp §hi A"'h; (D.14)
Y
For large N we can then use the saddle point method and we know
a 1 a * ab 1 a 7b
kKl = N7 Z<Jzk> il e = 77 Z< iedin) (D.15)
N - N -
and 0ln 0ln Q)
n ) n )
JoVTh = —= d i JZ?’ =
< k) l aR%l < k l> aqgf

Here (J4) and (J2.J5) are moments to be computed under the Gaussian measure with
(Jagby, = (A™H% and (J2) = (A~ h;)?. Then at saddle point

Rzl = Zb,m,s A%I;anr)ns(R*);l (Dlﬁ)
Ail _ Q o R(R*>71RT

Thus implying

S =- éln det A+ % [Tr(AQ) — Tr (AR(R*)'R")] +
7 Tyylon Lyry)
)2 (Y7Y), = 5 ndet (73/ Y) =

1 n n T\-1 T 1.+
:—élndetA—l—E—vE;(Y V) — 5 Indet (;Y Y> (D.17)

Let us now define some quantities:
* a \ T
Y ( (Br)gxr ( lgl)KXnK) X — ( (ur) ) (D.18)
(Rzl)nKxK ql%l nKxnKk ()‘%)nK

and

Ax) =[]0 @A), T= (D.19)
ak
where the average (...) is with respect to u, A ~ P(u, A).
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D Few-vs-many binding partners data: detailed calculations

Using Schur’s complement formula, see Appendix , it is straightforward to show det A1 =
(det R*)~" det X, therefore

—Indet A =Indet ¥ — Indet R*. (D.20)

Once again
(27 = / exp {N (a(R, Q) + S(R, Q))} dQdR (D.21)

with

1 1 L n n TiA-1 T 1 .+
S(R,Q)zilndetE—ﬁlndetR +§—7§Z(Y Y), —§1ndet (;Y Y) , (D.22)

E(R,Q) = ln/Hdek mexp (—%XTEIX) : (D.23)

a=0 k=1

where 2 = u;, We can easily find the saddle point equations, see Appendix , which read

2- 5@']‘ -1 -1 -1 -1

a—g— (Z —X T )ij == (E )jl. (D.24)

where the indices 4, j only run through the lower part of the matrix, i.e. R and @ blocks,
since R* is completely determined by the data and the top right corner is just the transpose

of R.

In the following we will first prove the equivalence between our problem when K = 1,
under certain specific assumptions, and the one of an individual perceptron. Then, we will
proceed with the calculations for the RS ansatz.

D.1 Case K =1 and single perceptron

First we consider the case K = 1 which, under some specific assumptions on the parameters
of our model, we expect to behave as the single perceptron [6].

First, let us look at what happens in our calculations when K = 1. The overlap parameters
can be defined as follows:

_ %Zu;)bz; -~ Z (JeT?) (D.25)

and, similarly as before, at saddle point we have

R = AR
N (D.26)
=@ —-RR
Entropic term
Following the previous result at saddle point, the entropy becomes
1
S(R.Q) = —3 In(det A) + g (1—v+Iny) (D.27)
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D Few-vs-many binding partners data: detailed calculations

Now, in order to do a proper comparison with the results in [6] we need to set v = 1 and
we also have ¢ = 1. Regarding the results of the entropic part in [6]

SP(RvRaQ7Qa]%a):_5——1H(det14> —-ZR“ abR+
+ = Z E iy g™+ Z R*R" (D.28)
a<b

we only have to change the variable ko 2q** to find

; ; —3 1 TA R a pa ~ab ab
ol 7.Q.Q) = | (2re) F [[azesp (-3 AJ—zRJ)]JrzZRR DY

- n 1 1 T 1 a pa ~ab ab
_—5——1ndetA— “RTA- R—i—zZRR +iY 4 (D.29)

a<b

Rewriting -, as 5>, +5 >, and changing variables —i§* — ¢** and —iR% — R°
1 T 1 a pa
Sp(R, R, Q, Q)—————lndetA+2Tr(R ATIR) + Tr (AQ) — ZRR (D.30)

Using once more the saddle point approximation

Ra — Z AabRb
{(A—l)ab b: Qab . RaRb <D31)

Therefore we have that at saddle point A = A and

1 ~
Sp = —§1ndetA (D.32)

= —%ln det A (D.33)

Which is exactly what we find setting v = 1 in our calculations.

Energetic term

The energetic term in our calculation so far is untouched” so in principle it should coincide
with the one in [6] which reads

E(¢",R") = \/%/H /Hd)\“H@uA“
X exp (————Z ~ R'R) )\“)\b+22)\“>\“ zuZA“R“)

(D.34)
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D Few-vs-many binding partners data: detailed calculations

Which after integration becomes

exp <—“72 1 (AT =uRT) AN - uR))

E (¢",R") =In / du / 1:[(»@1:[@(%“) TPy -
=1In / gd:ﬁ“]:[@(x%“)mexp <—%XT.AX> (D.35)

where - .
_ (R"TAR+1 -R'A
pom (AR RO D20
The energetic part in our calculations presents a similar structure
E= ln/deaA ! exp (—EXTZ_lx) (D.37)
det(?wE) 2

And, thanks to Schur’s complement formula, it can be shown that A = X!, thus proving
the consistency between what we found and the results in [6].

D.2 Replica Symmetric ansatz

In order to get to the saddle point equations, we will work on equations (D.22)) and (D.23)).
To proceed, it is now necessary to assume a particular behaviour of the replicas and we will
therefore consider the following RS ansatz.

= L s Gl = G + Pradap (D.38)

Such an ansatz assumes all replicas to be statistically equivalent and implies that the system
has a relatively simple energy landscape with one large basin of attraction for each Ry, and
dkl-

Our goal is to find an expression that makes their dependence on the number of replicas n
explicit. This will allow us to group everything by n and proceed with the replica trick.

Entropic term

When we take the derivative of the entropic term with respect to the overlap parameters,
the only non-zero contribution will be Indet ¥ — Indet R* = Indet A~!, therefore in the
following we will only consider this term.

First we observe

(A_l)Z? = Qi + Pridab — Z R (R) ;s Ris = Grt + Dradab (D.39)

m,s

Our goal, in order to find the determinant of the matrix, is to find its eigenvalues and we will
do so distinguishing between two different sets of eigenvectors: we will have K eigenvectors
not depending on the replica index which we will call v; and (n—1) K eigenvectors v, which
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must satisfy the condition ), v = 0.
Considering the first set

> (Ao = Z Qrivr + Zpk5abvz =n Z Qrivr + Zpkwl Z ngw + pr)ur - (D.40)

bl

we get K different eigenvalues The equation for the second set is

Z Dl = Z vy + Zpkléabvl Zpkzvl (D.41)

bl

which leads to K different eigenvalues each of which is (n — 1)-fold degenerate. Therefore,
the determinant we are looking for will be of the form

det A~ = (det P)" " det <P + nQ> (D.42)

which can be expanded for n — 0 thanks to Jacobi’s formula and becomes

det A~ L (det P (1 +n Z lekl) (D43)

thus leading to

Indet A~ ~n [ln (det P) + Z qukl] (D.44)
el

Energetic term

In order to get to the saddle-point equations, let us work on the energetic term of the
partition function.

; - 1 Ylu * u
— <](;k[@<uk)\]g)> = O+OoduPR*(u)/o <H@ (A | >PR( )d (D.45)

where

<H@(Ag | u)> :/0 " P(A | w)dA = (D.46)

=(27)""2 (det C) "2 x

x / Ooexp{gZZ(Az—uz) () (A?—u?)}l‘gcui (D.47)

ab ki

Using the Hubbard Stratonovich transformation we are able to write it as
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<H@ <Az|u>>=

(2m) nK/ Hd,\“/HdAkexp{iZS\Z(AZ—MZ)—%ZZS\ZC};{’;\?}
a,k

ab ki

(D.48)

Using the Replica Symmetric ansatz in Eq.(D.38) we can write the conditional probability
P(A|u) ~N (u,C) where

pe = (A& | u) Z RS, U = Y Rpg(R) bt = piy (D.49)
lm

Coy = qy Z Ry (R*) AR = qua + pradap — Z Rim (R Rq = Chy + priday (D.50)

m,s

it becomes

<H@(Ag | u)> — (2m) K /O+OOHdAi/Hd;\Zexp {z‘ZXg(Ak
_%;ad (Z Xg) (Z Ab> - —Zpklxw} (D.51)

a,k,l

Once again exploiting the Hubbard-Stratonovich transformation we get
+oo
KK N 8 14
IIe (/\Z\u)>:(27r) "K=% (det C) %/ HdA;/HdA;/H—x
<a,k 0k ak V2T
. Ya/ya a . Ya 1 ~N— 1 Yala
X exp {Z Zk Ae( A — p) + sztk)‘k 5 ; (C 1>kl teti — 5 Zpk,l/\k)‘l }

a,k,l
(D.52)

We can now take outside of the integral the sum over the replica index and perform the
K-dimensional integration over A{ thus obtaining

<g@ (A2 | u)> —(27)" " (det &)~ 3 (det P) 3 /1;[ \C/h;%exp {—% ;tk (é—l)kl tl} X
X (/0 h Hd/\k exp {—% Z()\k — i+ ) (P DN — i+ tﬂ})

k.l

(D.53)
Which allows to write the energetic part as
1 Foo
(AX)) = / du Py (u) / QP H (t—p P)  (D.54)
fo duPr-(u) Jo
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where
+oo
H(t—p,P / H A exp { - > e = e+ ) (PN =+ t) p - (D.55)
V2 2 -

and the two probabilities are multivariate normal distributions, Pg«(u) ~ A (0, R*) and
Pa(t) ~ N (0, é).
Forn — 0

H'(t —p,P)~14+nlnH(t—pu,P)~1+nnH (t — p, P) (D.56)

which means that we can write

<H@(A; | u)> :1+n/dtP@(t)lnH(t—u,P)

Then we are left with

In(A(x)) =1In |1+ f0+oo dZPR*< | /O+OO duPg-(u) /dtP@(t)lnH(t -, P)| ~
. J.7° duPp.(u) [ dtPs(t)In H (t — p, P) (D.57)
B Je duPR*( ) '

Using the results obtained for the entropic and the energetic terms, we can now write

(27 ~exp d N extr 0 * duPg-(u) [dtPs(t)In H (t — p, P)+
Q.R [.7 duPp- (u)

11 11 1
—1 ~ T T
— In(det P) — ;(P Judi + 5 =75 2/; Y'y), - 5 Indet (;Y Y)

(D.58)
Using Eq.(D.5)) this finally gives

1
v ¢

* duP dtP~(t)InH (t — u, P
In Z) ~ extr 0 i )+foo c(®)nH(t—p. >—|—
Q.R Jo duPg-(u)

T 1 1 -1 1 1
—In(det P) =Y (P~ )pdu + 5~ 75 > Y'y),, - 5 Indet (;YTY)
k,l v,p

(D.59)
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Appendix E

Many-vs-many binding partners data:
detailed calculations

Let X = (x1,...,x5) € RV and Y = (yy,...,ys) € RM*B be data points, with inde-
pendent components drawn from x;,y; ~ N(0,1). Let W, W* € R¥*M he the interaction
matrices of the student and the teacher, respectively. We are interested in

B
* 1 *

where p1 (dW) o exp {—5tr (WTW) } is a normalised Gaussian measure. Note that E[W;;] =
0 and E[W7Z] =1 under 1 (dW). In particular E [tr (WTW)] = NM, and typically W;; ~
O(1). We assume tr(W*W*T) = NM. In a similar fashion as before, we want to exploit
the replica trick to find the typical value of the partition function, therefore, Assuming that
the data (z],x;,y;) are i.i.d. over t

:/<H® Zix, Wy, > Hu(dW“) = (E.2)
= / exp {B In <H @(Z*XTW“y)> } []n(awe) (E.3)

where now (...)p is the average over a single data point triple (z*,x,y). we assume here
that x,y ~ P(x,y) are normally distributed with independent components of zero mean
and unit variance.

Introducing z* = \/JéjiNxtTW“yt, and z = (2*,2%,...,2"), we have

<H @(z*xTWay)> = <H @(z*za)> =2 / OoP(z)dz (E.4)
a D a z~P(z) 0

where P(z) is the distribution induced by x,y. Non-zero contributions come from points z
where all entries have the same sign. The last equality follows from P(z) = P(—z).

Note that the exact form of P(z) is a complicated distribution, but still convex, hence, for
simplicity, we will assume it to be Gaussian with (z%) = (z*) = 0 and

aty/b a A * *
NMZWW (2%2* NMZW Wi, (=1 (E.5)
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where we can define the overlap parameters as
1 a b 1 a *
Qb = 737 Y WiWh, R, = NI > WEWS (E.6)
i,9 i,J

Thus P(z) depends on W1, ... W™ only through Q = (¢**) and R = (R%)

1 T
P(z) o exp {—§ZT21Z} , U= (]1% }22) (E.7)
Note that P(z) = P(2*)P(z',...,2" | z*), where P(z*) is Gaussian with zero mean and unit
variance, while P(z!,... 2" | z*) is Gaussian with mean (2% | 2*) = R%2* and covariance

<ZaZb ’ Z*>c _ qab _ RaRb.

Next, we write

(27 = / exp {BE(R, Q) + NMS(R, Q)} dRAQ (E.8)

where £(R, Q) = {2 f dz} and S(R, Q) is the entropy

/Hé(

Using Fourier transforms, d(z) = £ [ ¢V7d¢

eNMS(Q,R) :/HM( dwa / H d(jabH dRanp{NManb ab

=00 o< a<b

tI‘ WaW*T ) Qab
I

a<b

T (Wew'T) )H p( dWe)

(E.9)

HNMD RUR =t (WWT) =Y Rt (WewT) } =
a a<b a

/ I1 dA"bH dR, exp{NMZAab “"+NMZR‘1R‘1+ZIHYW} =

ico a<b a<b i

/ 11 dd“bH dR® exp{NMZ i"'q" + NM YRR+

00, <p a<b
NM

... NM
; (L~ RRP ~——In det(L)}

ab

(E.10)
where L% = ¢® 4 0,4,G% + 64 and

Yz-j:/exp{—%zwﬂ > GuWW? — ZR Wew, }H dw

a a<b
1
X ——————ex W2y L, LR.R
det(L) p{ Z b}
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Note that we omit irrelevant constants and exploit ), j W{;-? = MN. Here Yj; is the nor-
malization constant of a Gaussian distribution over W', ... W™ with covariance matrix

(WeWw?), = (L71)® and averages (W) = W3S, (L71)®R,. For large MN, we get the
stationarity equations by extremizing in }?i“, Ge

R+ > (LTHY"R =0, (L7')"=¢" - R'R’ (E.12)
b

and % = (1— %) (L®—4,). Note that (L71)® = (22" | 2*), as we wrote above.

Substituting,
n

S(R,Q) = 5 %tr@ + %lndet(@ — RRT) (E.13)

Note that we need B ~ O(NM) to get a nontrivial regime. Each measurement (z;,x;,y;)
gives one inequality zx,; Wy; > 0. Since W has M N degrees of freedom, it is reasonable

that we need O(M N) inequalities to get a significant constraint on W; then let a = %.

E.1 Replica Symmetric ansatz

We assume the following Replica Symmetric ansatz
Ra =r, Gab = (1 - 5ab)q0 + 5abq1 (E14)

then P(z,... 2" | z*) is a Gaussian with (2% | 2*) = 72" and (2%, 2% | 2*). = (1 — dw)q0 +
dapq1 — r%. Next, exploiting the calculations presented in Appendix , we compute

+o00 +oo +oo
/ P(z)dz :/ dz"P(z") / Pz, ..., 2" | 2)det .. de" =
0 0 0

:/OW dz*@(z*)/m dCp(C)@"(AC + B2") (E.15)

—00

qo—r?

where A = A(r, g0, 1) = \/ &=, B = B(r,q,q) = Ve and

o(w) = \/IQ_We—"f B = /_oo o(w)dw = % {1 ~er <%) } (E.16)

For n — 0 we can write

(R, Q) =In {2/;00 P(z)dz} ~

~In2+In /+OO dz"p(z") /+Oo dCp() {1+ nln®(AC + Bz")} ~ (E.17)
01 +o0 - +o0
~In2+In {5 + n/o dz"p(2") /_Oo dCp(¢) In ®(AC + Bz*)} = (E.18)
:m‘f(r, do, q1) (E.19)
where . .
Eraa) =2 [ ae) [ depOmaac+ B2 (B.20)
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E Many-vs-many binding partners data: detailed calculations

Considering that ¥ under the RS ansatz has a non-degenerate eigenvalue d = ¢; + (n —
1)go — nr? and a (n — 1)-degenerate eigenvalue q; — o, for the entropic term, exploiting the
properties of Schur’s complement, we have det (Q — RRT) =detY = (¢ — q)" 'd. Hence

1 n—1
S(Q,R) = (1 —q)+ 3 1n(q1 +(n—1)q — m“2) + In(q1 — qo) -
Then, taking the limit for n — 0 we can write
S S qo —1*
S(R,Q)~nS, S= 1—q +In(g —qo) + : (E.21)
a1 — Qo
Substituting we get
(2") =exp {nMNegth (a€(R.Q) + S(R,Q)) } (E.22)
= exp {nMN extr V(r, qo, ql)} (E.23)
7,940,491

with V(r, qo, q1) = @&(, qo, 1) + S(r, qo, ¢1) for small n. Using the definitions of A(r, qo, q1)
and B(r, qo, q1) we can rewrite the entropy in Eq.(E.21)) as

S(qi, A, B) ——{1—q1—i—lnq1 In(1+ A®+ B?) + A%} (E.24)

from which, since E depends on 7, qo, g1 only through A and B, we can determine the optimal
value of ¢;. Extremizing & with respect to ¢; at fixed A, B we get ¢; = 1, which implies

S(A,B) == {A2 In (1+ A*+ B?%)} (E.25)

We now look at V' as a function of A and B. Extremizing, starting from the enregetic term,
we get

AC + Bz*

€ X el )
94 2/0 dz"p (2 )/_ dC@(C)WQ (E.26)
o0& TN ¢ (AC+ Bz") |
9B 2/0 dz gp(z)/ d¢y (O(I)(AC%—BZ*)Z . (E.27)
Extremizing the entropic term
oS A oS B
AT IFErE 0BT 1rALB (E.28)
We then write the saddle point equations as follows:
> > p (AC + B2") A
2 Yo (2 — S (+ A — 0 = E.2
o [Tare) [ ael0R Gt A T 0 B)
R ¢ (AC+B2Y) B _
2a/0 dz @(z)/_mdcgp(O@(A(—i—Bz*)z 1—|—A2+B2_0' (E.30)
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These equations admit solutions with ¢y = r which means considering the teacher to be
equivalent to just another student, which also intuitively should be reasonable, but a more
detailed discussion of this argument can be found in [6]. Thanks to this observation we can
write A = Vr and B = \/ffr Then, we can focus on one of the two equations and solve
parametrically:

1 ¢_A

o= — 1+A%+B?
00 % % 00 A(+Bz*
2 [T derp (27) 75, dCp(Q) E4EE ¢
for a as a function of . From here we can plot parametrically all the quantities of interest
that we have considered.

(E.31)
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