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Abstract

Active matter systems, composed of self-propelled agents that continuously consume en-
ergy, exhibit rich non-equilibrium behavior and complex spatial organization. A key
challenge is understanding how local interactions that regulate motility give rise to emer-
gent structures, particularly in multi-species systems where ecological diversity plays a
role. In this work, we investigate the role of chemotaxis—a form of motility control based
on chemical gradients—in driving self-organization in dry scalar active matter. Focusing
on systems with fixed population size, we show that weak, random chemotactic couplings
between species can generate spatial patterns even in the absence of systematic inter-
actions. Using a combination of theoretical analysis and numerical simulations, we first
study the dynamics of a single-species system, then extend our approach to active mix-
tures. Our results highlight a novel mechanism for pattern formation in active matter
and offer insights relevant to biological and ecological systems.
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Chapter 1

Introduction

Active matter refers to a kind of soft matter composed of individual agents, i.e. active
particles, that consume environmental or internal energy to move or produce mechanical
work. This paradigm clearly draws inspiration from living matter, in which activity is
ubiquitous at all scales, ranging from the walk of pedestrians down to bacteria swim-
ming in liquid via rotating flagella, and is also relevant for non-living imitations, such
as synthetic microswimmers. The defining feature of active matter is that energy injec-
tion happens at the microscopic scale of each individual agent, keeping the whole system
perpetually out of equilibrium, in contrast with what happens to usual passive systems,
which relax toward thermal equilibrium. Interactions between active agents lead to a
variety of emergent collective behavior, including pattern formation, spontaneous flows,
and large-scale organization. Understanding the rich phenomenology exhibited by active
matter is not only a fundamental challenge in statistical physics but also of increasing
importance for biology and material science. It offers insights into processes such as
the organization of biological tissues, bacterial colony growth, and the design of smart,
responsive materials. However, establishing a unified theoretical framework remains a
difficult task, as the intrinsic non-equilibrium nature of the problem prevents the use of
conventional statistical mechanics to describe macroscopic behavior.

A central question in active matter research is how motile cells self-organize in space.
This question is broadly relevant in biology, it applies for example to the early stages of
embryonic development (morphogenesis) and to the formation of ecological communities in
highly diverse ecosystems. The latter has been extensively studied in theoretical ecology,
and while various pattern-formation mechanisms have been proposed—such as genetic
drift, mutualistic interactions or competition for resources—relatively little attention has
been paid to the regulation of motility, meaning the adaptation of motion in response to
external factors. Yet, motility control is an intrinsic tool of nearly every living organism
and has been proven to be a driver for the formation of macroscopic structure [3,4,9,10].

We thus aim to investigate the role of motility regulation in shaping spatial assemblies
of active particles. This is a challenging problem due to the inherently non-equilibrium
behavior of such systems, which requires studying the collective dynamics over time while
accounting for local interactions between particles. Moreover, we are particularly inter-
ested in high-dimensional systems involving many distinct species, as is often the case in
natural ecosystems, as for example bacterial colonies. This further increases the complex-
ity of the problem and calls for the use of statistical methods to capture the emergent
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behavior.

Focusing mainly on the dynamics in space, we will consider timescales shorter than the
ecological scales at which population dynamics starts to play a role. FEscherichia coli,
for example, divides approximately every 20 minutes, while its motion typically changes
direction on a timescale of about 1 second [2]. This separation of timescales allows us to
consider dynamics over times ¢ much longer than the reorientation time, while assuming
a constant population size. In particular, we will consider dry scalar active matter, where
the term dry refers to the fact that the degrees of freedom of the environment surrounding
the active particles are not taken into account, but rather integrated out, leading to the
non-conservation of momentum in the system. The term scalar, instead, describes the
symmetry broken by particle shapes: scalar particles can be visualized as spherical, while
nematic ones model rod-like particles with a given angular anisotropy. Finally, if nematic
particles break their head/tail symmetry and manifest a preferential direction of motion
along their axis, we talk about polar active matter.

In this work, we focus on chemotaxis, that is a motility regulation based on the gradient
of a chemical field mediating the interactions among particles. Specifically, we show that
weak, random chemotactical interactions between species represent a new route to self-
organization. Through theoretical work and numerical simulations, we demonstrate how
this mechanism is able to generate spatial patterns in scalar active systems, even in the
absence of pre-existing systematic interactions.

The report is organized as follows: in Section 2, we introduce the model and revise
the mathematical tools that have been employed for the study of monodisperse systems,
i.e., comprising of one single strain. Section 3 presents the corresponding numerical
simulations for the one-species system. In section 4 we extend the theoretical framework
to active mixtures, meaning systems with multiple species of active particles. Finally,
Section 5 concludes with a discussion of future directions.



Chapter 2

Motility regulation in monodisperse
systems

2.1 Models of active particles

The mathematical modeling of active particles combines deterministic self-propelled mo-
tion with a stochastic mechanism for changing direction. The two most common models
that implement this principle in opposite ways are Run-and-Tumble Particles (RTPs) and
Active Brownian Particles (ABPs).

The RTP model describes particles that move with a self-propulsion speed v along a direc-
tion u during run phases, which are interspersed with tumbling phases when the particle
randomly re-orients. Tumbles occur with a rate v and will be considered instantaneous
events. A typical trajectory is represented in Figure 2.1. Including the possibility of
diffusion with diffusion coefficient D;, the dynamics of the position r of the particle in d
spatial dimensions is given by:

P=vu+2Dm(t)  with (n(t) =0 (nt)n(t")) =0t —t)
. (2.1
uSu est?
where 7 is a delta-correlated Gaussian noise with zero mean and unit variance. Because
of the discrete tumblings, the stochastic process cannot be written in terms of a Langevin
equation, but one can find that the probability P(r,u,t) of the particle to be in position
r with orientation u at time t obeys the following Master equation:

«

0P ==V, [vuP — D,V,P] — /P +

P(r,u',t) du’ (2.2)
Q41 gd—1

It is interesting to look at the dynamics of the unit vector u, averaged over the stochasticity
introduced by the tumblings and spatial diffusivity:

e [ [ awwopewin=—tw = )=o) @3
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One finds that the average direction of the motion decorrelates exponentially fast over a
time scale called persistence time 7. For RTP motion, it clearly corresponds to the typical
time interval between tumbles 7 = i The persistence length is the typical distance

covered during 7: [, = =.
(6%

In contrast, the ABP model features a biologically more realistic continuous diffusion of
the orientation vector u in the unit sphere S¥~! with a diffusion coefficient I'. The motion
is schematically depicted in Figure 2.1. For simplicity we present the corresponding
dynamical equations in two dimensions where u is identified by one angle 6:

r=ou-++/2Dn(t)

6 = V2TE(t) (24)

where 17 and ¢ are standard white Gaussian noises. Since the motion of both r and u is
continuous, the corresponding Master equation is a multivariate Fokker-Planck equation:

0P = —V, - [vuP — DV, P] + V2(T'P) (2:5)

Analogously, one can see that the average orientation vector again decorrelates exponen-

}:ially over time, with persistence time 7 = i d—ll)F' The persistence length is therefore

(d— 1)r

As a side comment, we note that for typical organisms spatial diffusion of agents driven by
thermal noise can often be neglected. For instance, the friction coefficient v of Escherichia
Coli can be expressed by Stokes’s law (since its Reynolds number is much smaller than
unity), allowing us to quantify the displacement due to noise during the interval 7:

kpT kpT .
=D = T = 2.
ldlﬁ“ tT — \/ T = \/67‘(’7]7’ m ( 6)

during the same time interval, the bacterium has traveled a distance equal to the persis-
tence length, which can be estimated by data in [2] and is roughly [, ~ 107° m. Being
lp, > lgg, Dy can usually be neglected.

Figure 2.1: Typical trajectories of a Run-and-Tumble particle (RTP) on the left,
and of an Active Brownian particle (ABP) in the center. Image taken from [12]. 2d
projection of a tridimensional measured trajectory of a wild-type E. Coli bacterium.
Image taken from [2].
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2.2 Motility regulation

A widespread strategy in biological or synthetic systems is the spatial and temporal
modulation of the motility parameters v, «, I'. For example, many motile organisms can
steer their motion in search of food or to escape from threats, or adjust their speed in
response to local crowding. The regulation can come either from some external factor or
due to interactions among particles, we model both these mechanisms via a controlling
field ¢(r,t) that is either externally imposed in the former case, or produced by the
particles themselves in the latter. Therefore:

v =1vp(c(r,t)) —viu - Vie(r, t)
a = ag(c(r,t)) + aqu - Viee(r, t) (2.7)
I'=Ty(c(r,t)) + Tu- Vee(r, t)

When the particles react at the local value of the field, as in the first terms of the equations,
we refer to the regulation as kinesis, when instead the gradient of the field is involved,
as in the second terms of the equations, regulation is called taxis. In the context of this
thesis, ¢ will represent the concentration of a chemical field produced by the particles,
therefore, we will speak about quorum sensing in the first case and chemotaxis in the
second. Finally, we note that positive values for v, oy, I'y model particles attracted to
the chemical ¢, repelled otherwise.

2.3 Dynamics of chemical fields

In our model, interactions are mediated by a chemical field present in the environment
with concentration ¢(r, t): after being produced by particles, it can travel and be detected
by other particles. A simple model for its dynamics is:

Oic(r,t) = Bp(r,t) + D.V?c(r,t) — xc(r,t) (2.8)

where p is the local density of particles. Equation 2.8 expresses the fact that the chemical
is produced by each of them with rate §, then diffuses in space with diffusivity D., and
degrades with a constant rate y.

Since particle number is fixed, p is a locally conserved field and therefore varies on
timescales O(L*) with L system size and o > 1 which depends on the specific type
of dynamics (for instance, o = 2 for diffusion, & = 1 for ballistic motion). Due to the
linear degradation term in equation 2.8, the relaxation of the chemical field is instead
much faster, happening on timescales 1/x ~ O(1). Being interested in the motion of
particles, we can then consider ¢ to adapt adiabatically to p, and set 9,c = 0. Therefore:

Le(r,t) == (x — DV?)c(r,t) = p(r, ) (2.9)

™| =

S elnt) = (G % p(1))(x) = / dF Glr—PpE,8)  (2.10)

where GG is the Green function associated to the linear operator £, defined such that
LG (r) = 0(r). We report the Green functions in one and two spatial dimensions, along

6
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with their Fourier transform which will be useful in the following chapters. Defining a
characteristic length [ = y/D./x, one finds in one dimensional space:

o ﬁl =l A _/ —iqr _ ﬁlQ 1
G(z) = 2Dc€ 7 = G(q) = Rdx e "G(x) = D15 (i) (2.11)
while in two dimensions:
— B |I" A o / —iq-r o ﬁl2 1
G(r) = 27rDcKO l = G(q) = . dr e "U"G(r) = D. 17 (la? (2.12)

where K| is the 0 order modified Bessel function of the second kind. A derivation of its
bidimensional Fourier transform can be found in the Appendices 6.1. We note that the
chemical field can possibly obey more complicated dynamics, alternative to 2.8, in such
cases the time separation argument remains valid and ¢(r,t) is again a linear functional
of the density p convoluted with a general kernel K(r):

c(r,t) = (K * p(t))(r) (2.13)

2.4 Motility regulation as a pathway for self-organization

Motility regulation is a fundamental ingredient in the emergence of self-organization in
motile systems. By self-organization, we refer to the spontaneous formation of ordered
structures or dynamical patterns from initially disordered states, driven solely by local in-
teractions without the need for external coordination. In active matter systems—ranging
from bacterial colonies to synthetic microswimmers—spatial or temporal modulation of
motility parameters such as speed, tumbling rate, or rotational diffusivity enables com-
plex collective behaviors like clustering, band formation, and patterning. Experimentally,
several studies have demonstrated that controlling motility can induce such phenomena.
For example, in bacterial populations, the secretion of signaling molecules that modulate
motility has been shown to lead to high-density aggregates via quorum sensing [3] or
chemotactic [10] mechanisms. As a prime example of a synthetic system, light-activated
Janus colloids exhibit clustering and phase separation when their propulsion speed is con-
trolled by a spatially inhomogeneous light field [4,9]. Even in macroscopic systems, such
as flocks of birds or schools of fish, mutual interactions, effectively modulating directional
persistence and speed based on the presence of neighbors, can result in coherent motion.
In all these cases, motility regulation acts as a feedback mechanism linking individual
behavior to the evolving environment. Among the many collective behaviors driven by
motility regulation, special emphasis in this report will be placed on motility-induced
phase separation (MIPS), that is the macroscopic separation of active matter in liquid
and gas phases, even in the absence of attractive microscopic interactions. We now report
from [12] a heuristic argument explaining the origin of such phenomenon. For simplicity
we consider active particles without translational diffusivity. Starting from the equations
of motion 2.1 or 2.4, one finds that the probability of one of them to be at position r with
velocity oriented in direction u obeys the master equation:
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0, P(r,u,t) = =V - [v(r)uP(r,u,t)] + OP(r,u,t) (2.14)

where the linear operator © accounts for the angular dynamics. Assuming a fixed velocity
field v(r), for both RTPs and ABPs, the steady-state solution of equation 2.14 is:

Py(r,u) = —— (2.15)

with k£ a normalizing constant. This tells us that active particles tend to concentrate in
regions where they move slower. Then, if interactions are such to slow down particles
in high-density regions, this closes a positive feedback loop in which dense areas become
denser and denser, triggering phase separation. We can derive a quantitative criterion
for the onset of instability by considering active particles with local self-propulsion speed
v(p(r)) modulated by quorum-sensing interactions. Upon perturbing a uniform density
profile pg, p(r) = po + dp(r), the velocity field gets modified, to linear order, to:

v(p(r)) = v(po) + p(r)v' (po) (2.16)

where v/ = Z—Z. In turns, the density field tends to relax towards its steady state:

__ Rk _ K _UI(PO)
)= S0m) ~ o) (1 o(p0)

The mass conservation condition [dr dp(r) = 0 fixes the normalization constant to
R = pov(po). Equation 2.17 can then be expressed in terms of a new perturbation 0p:

5p> + O(6p?) (2.17)

(o0)
o)

p(r) = po+0p with 0p = —po (2.18)

This shows that the initial perturbation grows, i.e., dp > dp if v(p) decreases fast enough,
specifically when

o) 1 dip[/w(p)] <0. (2.19)

v(po) Po 0

Remarkably, the same instability condition will be derived from more rigorous argument
in section 2.7.

2.5 From micro to macro

Equations 2.1-2.4 express the microscopic stochastic laws of motion of particles. In a
statistical mechanics spirit, we are interested in coarse graining such a dynamics to obtain,
possibly, some Thermodynamics rules governing active matter. In this section we will
outline the methods that have previously been developed in [7] to construct a macroscopic
effective dynamics for the spatial density of particles p(r, ).
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Making an effort to keep the most general setting possible, we will allow for both in-
stantaneous tumblings and continuous diffusion of the orientation vector u. Moreover we
will consider smoothly varying motility regulation given by equations 2.7. The master
equation for the probability P = P(r,u,t) of a given particle to be found at time ¢ in
position r with orientation u is then:

P = -V, [vuP — D,V,P] — aP + / a(w)P(r,u’,t) du’' + Vi(TP) (2.20)
Sd—1

Qd—l

where €2, is the solid angle in d dimesions. The first step is integrating out the angular
dependence on u to obtain a closed equation for p(r,t) = [y, du P(r,u,t). We will

. . : 6
briefly illustrate the procedure in d = 2 where u = (2?1: 0

modes P(r,6,1):

>. We expand in Fourier

—+00

P(r,0,t) = Z an(r, t)e™ (2.21)

n=—oo

such that the zeroth-order mode is the probability we’re interested in: ao(r,t) = p(r,?).
Projecting then both sides of the Master equation 2.20 onto the n'® armonic leads to
a dynamical equation for a,(r,t) depending on a,11, a,+2: at this point a reasonable
approximation is needed to truncate this infinite hierarchy of PDEs. Since the zeroth
mode ag evolves on diffusive time and length scales (T' ~ L?, R ~ L), while the higher
harmonics a,o exhibit fast exponential relaxation, we assume they quickly reach steady
states enslaved to ag. Additionally, under the assumption of smooth spatial modulations of
motility parameters and chemical field, we perform a gradient expansion of the hierarchy.
Within the diffusion-drift approximation, we keep only terms up to second-order in spatial
derivatives, yielding the scalings ay1 ~ O(V), ajn>2 ~ O(V?). These assumptions allow
us to solve for the lowest harmonics ag, and ultimately close the hierarchy. A similar
procedure can be carried out for active particles in arbitrary dimension d, expanding
P(r,u,t) in a base of Harmonic Tensors. We refer to [7] for the detailed computations.

This yields an effective Fokker-Planck equation for p(r,t) = ay(r,t):

Op = —V, - (Vp— DV,p) (2.22)

with drift velocity and diffusivity given by:

Uovr’UO 1 1}0(&1 + (d — 1)F1>
V=- - = r 2.2
d(Oé() + (d — 1)F0) d vt ag + (d — 1)F0 Ve ( 3)
2
D = Yo + Dt (224)

d(ag + (d— 1))

The Fokker-Planck equation 2.22 corresponds to the following Langevin dynamics for a
single particle’s position r;, valid at space and time scales larger than their persistence
length and persistence time respectively:
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b, = V(r) + Vo, D(r) + V2D(r,) &(t)  (1to) (2.25)

where €;(t) is a zero-mean Gaussian white noise with unit variance: (&;(¢)&;(t')) = 9;;0(t—
t'). The Ito discretization is made evident since we are dealing with multiplicative noise.
Some comments are in order: to start, we note that the drift term V consists of two
contributions. The first one, proportional to —V vy , is related solely to quorum sensing
and drives particles towards regions where the self-propulsion speed is lower. This is
coherent with what found in the previous section, where, in absence of interaction, the
probability was found to be inversely proportional to the velocity field. The second term,
arising from chemotaxis, biases the motion of the particles towards areas of higher or
lower concentration of the chemical, depending on the sign of the prefactor multiplying
V.c. Additionally, we remark that, at the mesoscopic level of equation 2.25, whether the
particles are ABPs, RTPs, or possess both reorientation mechanisms becomes irrelevant:
their respective tumbling and rotational diffusion rates enter the equations only through
the combination 7'0_(%) = ap@1) + (d — 1)T'g1). This equivalence results from truncating the
gradient expansion at second order. As a final comment, we point out that deriving the
Langevin equation 2.25 from the Fokker—Planck equation 2.22 involves some technical
subtleties when the effective diffusivity D is a functional of the density p, as in the case of
quorum sensing. As shown in [13], this derivation requires adding an extra term to 2.22,
proportional to VK (0). This correction vanishes, for instance, when the kernel K(r) is
symmetric— a condition that is often satisfied in practice and will be throughout our
work.

To complete the coarse graining procedure to a system of N particles one should apply
[to’s lemma to obtain a dynamical equation for the local density of particles:

N

plr1) = 3 6 — xi(1)) (226)

=1

The procedure has been first developed in [5] and results in the fluctuating hydrodynamics
for the density p = p(r, t):

Oip = =V - {V(n [e))p = D(x, [p])Vep + v/ 2D(r, [p]) pA(r, t)} (2.27)

which can be recast into the more standard form:

Op =V, |MVu+ \/2MA} (2.28)

with effective mobility and out-of-equilibrium chemical potential:

w=u(r. o)) = log p(x) + 1 log D(r. 1) + ( tur, [p])j—j) o) (o.30)

10



CHAPTER 2. MOTILITY REGULATION IN MONODISPERSE SYSTEMS

We stress that the macroscopic description of equation 2.28 was derived within the as-
sumption of slowly varying spatial modulation of motility, and is therefore valid only
at large length scales—specifically, at scales larger than the persistence length [, of the
particles. The diffusion-drift approximation breaks down when self-organization instead
occurs at or below the scale given by [,.

2.6 Free Energy and mapping to equilibrium system

The field dynamics 2.28 is an equilibrium one if it admits a free energy F such that

u= %, i.e. if the Schwartz theorem generalized to functionals holds:

ou(r’, [p])  du(r, [p])
dp(r) dp(r’)

For the moment, we will carry out the calculation of F in the case of chemotaxis only,
where vy, ag, I'y € R, and with ¢ a linear functional of the density, as given by equa-
tion 2.13. We get:

—0 (2.31)

70\ <(r, [p])
=1 — 2.32
u(r7 [p]) ng(r)+ (U + 7_1> dD ( )
Schwartz theorem is satisfied whenever 5C§;/(’r[§) D= K@ -1r)=K(r—-r) = S (rp)]) that

is, when we are dealing with a symmetric kernel. If so, we can functionally integrate
equation 2.32 and obtain:

To

Flp) = /p(r)(logp(r) —1)dr+ <v1 + U0—> 22D /drdrp r)K(r —1')p(r') (2.33)

Remarkably, starting from a passive system of N colloidal particles, each obeying a
Langevin equation':

== VoV —1;) + V2Tn,(t) (2.34)

J#i

where n,(t) is a unitary white Gaussian noise, one could coarse grain the dynamics to
obtain the same fluctuating hydrodynamics equation 2.28, provided that:

T Vie—r 1
—=D Vir-r) = = (vl + U0E> K(r—r) (2.35)
g g d 71

This mapping has been established in [11] and expresses the fact that, although the
microscopic dynamics of tactic active particles and passive colloids are fundamentally
different, their large-scale behaviour is completely equivalent, and all the macroscopic
phenomenology arising in passive systems can be observed in tactic active ones as well.

INote that here and in all the following Temperature is expressed in units of Boltzmann constant kg.

11
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2.7 Predict MIPS from free energy

After having derived the free energy for chemotactic systems in the previous paragraph,
we now show that the same computation for quorum sensing interactions (with v; = oy =
I’y = 0) is not always possible. For simplicity we take D, = 0. Up to constant terms, the
chemical potential simplifies to:

u(r, [p]) = log p(r) + log vo(r, [p]) (2.36)

which is clearly non-local, due to the functional dependence of vg on the full density field.
This non-locality generally prevents the existence of a free energy F for arbitrary vy (p).
Nevertheless, assuming that the typical length scale of the coarse-graining kernel K—i.e.
the distance over which the chemical produced by an active particle is sensed by the
others—to be much smaller than the scale over which p varies, we can expand:

(e, o) = [ K= 1)) (2.37)

~ / i K (r — ') <p(r) (= 1) Vep(r) + %(r’ ) H(r)( — r))) (2.38)
= K(0)p(r) + O(V?p) (2.39)

where H is the Hessian of p, we have defined K(0) = J drK(r) and we have used the
fact that K is symmetric. The local approximation consists in truncating the expansion
at zeroth order, such that the self-propulsion speed at a given point depends only on the
local density in that point. It corresponds to take the Kernel to be a delta function,
weigthed by its norm (the area under its curve). The large-scale dynamics then reduces
to an equilibrium one with free energy and free energy density:

Flol= [defoe)  with  f(p) = pllogp— 1)+ [ dplogun(p) (240

As in equilibrium physics, the most likely state minimizes F. In the following we revise the
computations in [12] that show how minimization of free energy can explain the instability
of a uniform density profile, leading to the separation of the system into two phases with
densities p; > p,.

Indeed, a phase-separated system with a gas fraction a and a liquid fraction 1 — a would
have F =V (af(p) + (1 — ) f(pg)) where V is the total volume. We will therefore require
minimization of the constrained free energy density:

G(pi, pgr o ) = auf (pg) + (1 = ) f(pr) = 11 (po — apg — (1 — ) p1) (2.41)

where the Lagrange multiplier 1 enforces conservation of mass. Taking derivatives we
obtain:

12
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oG  0G
_ —0 e o) = f'(p) = 2.42
oG
90 =0 & Sfog) = npg = fo) — o (2.43)
oG PL— Po
— =0 & a= 2.44
op pL— Py (2:44)

The first two equations are satisfied if f admits a common tangent construction, that
is if there exist two points (py, f(py)) and (pi, f(pi)) sharing the same tangent, which
requires f to be non-convex. Being « € [0, 1], the third equation shows that coexistence
occurs when py € [p,, pi], defining the binodal region pictured in Figure 2.2c. Within
this interval, we identify the spinodal region [p;, p‘f], where 2275 < 0. In this window, a
uniform profile is unstable because small fluctuations bring a uniform systems at pg to
separate into two regions at slightly perturbed densities (pg + dp1), (po — dp2), lowering
the global free energy and triggering spinodal decomposition, as shown in Figure 2.2d.
Outside this interval but still within the binodals, i.e. for py € [py, p;} U [p}, pi, the
uniform profile is metastable and nucleation is required to initiate phase-separation. For
the quorum sensing field theory 2.40 the condition for spinoidal instability is:

f _ 1, wl)
o p  wip)

<0 (2.45)

which is the same that we have previously derived with heuristic arguments in section 2.4.

We have tried to apply the framework of common tangent construction to chemotactic
interactions as well. In this case, one can carry out a local approximation to equation 2.33,
obtaining a free energy and free energy density:

Flol= [df(oe)  with  fp)=pllogp— 1)+ 5 7 (+—) k(o)

(2.46)

Such free energy density is non convex only when kK (0) < 0, as it is depicted in Fig-
ure 2.2f. Although, even in the non convex case, it does not admit a common tangent
construction, since the energy term scales out the entropic term: plogp < p* as p > 1.
Therefore, the local approximation fails completely in describing phase separation when
starting from a high enough average density, only predicting a condensation of the lig-
uid phase at unbounded p;, while p, — 0. This behavior will indeed be observed in
simulations presented in section 3.2. More precisely, the local approximation ignores the
existence of a structure in the dense phase. When correctly resolved, the latter can lead
to the stabilization of a liquid-gas coexistence, with finite densities for both gas and liquid
phases.
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Figure 2.2: (a)-(d) Prediction of phase separation with common tangent construc-
tion, image from [12]: (a) If the free energy density f(p) is everywhere convex,
any uniform density pg is stable, since any separation in densities pi, p2 such that
po = apg + (1 — a)p; would increase the total free energy of the system. (b) When f
is concave around the initial density pg the uniform profile is unstable because sep-
aration into densities pj, p2 can lower the total free energy. (c) Common tangent
construction identifies the binodal densities pg, p;. (d) The condition 327 < 0 marks
the spinodal region. If initial density pg lies inside this interval a weak perturbation
leading to densities po + dp1, po — dp2 is sufficient to destabilize the uniform profile,
being energetically favored. On the contrary, when pg € [pg,pg] U [p}, p] nucle-
ation is required. (e) Effective free energy density within the local approximation for
the quorum sensing system, obtained by inserting the self propulsion speed 3.3 with
vy = 10, v; = 1 into the function 2.40. Common tangent construction is successful
in predicting phase separation and giving an estimate for the binodal densities. (f)
Local approximation of free energy density for chemotactic system with k¥ = —0.3: no
common tangent can be constructed.
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Chapter 3

Numerical simulations of
monodisperse system

We have developed a code to perform numerical simulations of the system at the micro-
scopic particle level. At first, we simulated a 1-dimensional system, in which N RTPs live
in a box of size L with periodic boundary conditions. For every particle, a time duration
of the next run phase is randomly drawn from an exponential distribution of mean T,
then, when a tumbling event occur during a timestep dt, the particle position is updated
for the corresponding fraction of dt, its direction is inverted with probability 1/2, and
position is then again updated until the end of the timestep. Interactions among particles
are mediated by the chemical field which, in practice, can be computed as follows:

N N

() = (K xp)() = / 02K (r—a')pla) = / 'K (=) 3 0(ra) = 3 K (e
- ETEY

The sole self-propulsion speed undergoes regulation according to equation 2.7, while the
tumbling rate 77! is kept constant (in the notation adopted in this report, a; = 0). We
set D; = 0, meaning that particles do not diffuse, which is a sensible assumption for
bacteria, as we showed in section 2.1. We chose a coarse-graining kernel K with typical
length scale o, representing the interaction length. Consequently, the timestep dt of the
simulation is computed adaptively at every step such that the maximal displacement
never exceeds ¢/10. This method ensures that the timestep is low enough to properly
resolve interactions. The code is kept O(NV) by tracking the positions of particles inside
virtual boxes of the size of the interaction length, such that interactions only occur among
particles in the same box or in nearest neighboring boxes. Results are shown in terms of a
smoothed density of particles p, possibly averaged over a number of decorrelated samples:

where ¢ is a smoothing kernel.
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CHAPTER 3. NUMERICAL SIMULATIONS OF MONODISPERSE SYSTEM

3.1 Quorum sensing

To begin with, the code has been tested on the well studied situation of quorum sensing.
To compare with results in [12,14], the same motility regulation has been employed:

v(z, [p]) = vy + = 5 i [1 + tanh (20(‘”’ ol 2)} (3.3)

Pm

where v, > v, p, € RZ? are parameters to be chosen. The speeds v, and v, are the
limiting velocities of the particles when the local density is, respectively, p < p,, or
p > pm. Such regulation slows down active particles in response to crowding, fueling
the positive feedback that leads to MIPS. The chemical concentration c is obtained by
convoluting the empirical density with the bell-shaped kernel:

2

K(z) = ée—ﬁ@w — 2?) (3.4)
where A is a normalizing constant and © is the Heaviside step function. Such function
resembles qualitatively a Gaussian but has the advantage that its derivative of all order
(including the function itself) vanish for x = 4o, making it particularly suitable for
a numerical simulation where a threshold interaction length must be set to limit the
computational complexity. The system is initialized at a uniform average density pg
so that, when the latter is chosen in the to-be-found binodal interval py € [pg, pi], the
system separates into coexisting gas and liquid phases, as illustrated by the snapshots
in Figure 3.1b. We measured their densities p, and p; via identifying the position of the
peaks in the histograms of density values collected in every point of the box and over many
decorrelated time samples. We summarize in Figure 3.1 our results of the binodal densities
(green triangles) for various values of the ratio v,/v;, alongside theoretical predictions and
previously published data from [14].

Our numerical results closely match those from earlier simulations and exhibit even better
agreement with the theoretical predictions developed in [12].

3.2 Chemotaxis

In this section we will present the main simulation results of this report, focusing on
chemotaxis. We simulated chemotactic interactions among the Run-and-Tumble particles
by regulating their speed according to:

v =1y — viu Oye(x, [p)) (3.5)

where vy, v; € R are tunable parameters and u € [—1,1]. As before, the tumbling rate is
constant 7 = 7y. Following the same logic of equation 3.1:

dpc(x) = Z K'(x — ;) (3.6)
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Figure 3.1: Simulations with quorum sensing regulation of self-propulsion
speed. (a) Phase diagram of the system in the plane (p/pm, vg/v;). The solid and
dotted black lines represent the binodals and spinodals, respectively, computed using
the common tangent construction within the local approximation (see Sec. 2.7). The
red curve corresponds to a mean-field theory developed in Ref. [14], from which the
blue square data points are also adapted. Green triangles are our numerical results.
(b) and (c) Examples of simulations at vy/v; = 10 (top) and vg/v; = 4 (bottom). (b)
Spatial profiles of density p(z) and speed v(z), obtained by averaging 10 snapshots
spaced out by a decorrelation time of 107, used solely for presentation purposes to
slightly smooth out fluctuations. (c¢) Histograms of local density values collected over
1000 decorrelated snapshots. Peaks at maximal values of the histogram correspond to
the coexisting densities plotted in panel (a). Parameters common to all simulations:
L=30,0=1 17=1,vy=1, pp =100, py = 120.
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CHAPTER 3. NUMERICAL SIMULATIONS OF MONODISPERSE SYSTEM

We remind that the chemotactic active system is equivalent, at the macroscopic scale, to a
system of passive colloids with friction coefficient v at temperature 7', interacting through
a potential V. Applying our choice of parameters and dimensionality, the correspondence
detailed in equation 2.35 is established provided that:

V(z) =y K(zx) T=~D = 'yngo (3.7)

3.2.1 Condensation

We studied the system given by the bell-shaped coarse graining kernel 3.4, represented
in Figure 3.2a. The corresponding equilibrium system interacts via a potential that is
either a well, if v; < 0, or a hill, if v; > 0. Accordingly, we expect the active system
to collapse into points in the first case, or to remain in a uniform phase where particles
maximize their mutual distances in the second. Indeed, these behaviors are observed in
numerical simulations, as shown in Figure 3.2b, and agree with the prediction given by a
local approximation of the free energy. Collapse can occur via two distinct mechanisms.
Applying the instability criterion derived in Section 4.3 to the bell-shaped kernel (for which
K (¢) > 0 ¥q), one finds that the system is predicted to become unstable to fluctuations
when:

1
b= < (3.8)
YoTo poK(0)

In this regime, spinodal decomposition is expected: multiple droplets of condensed mat-
ter spontaneously form independently and subsequently merge over time. In contrast,
when 0 zi 0 < k < 0 the system is stable with respect to small fluctuations. However,
the uniform density phase is only meta-stable, and condensation can still occur through
nucleation: a single droplet spontaneously forms and, being “energetically” favored, grad-
ually absorbs all other particles. The difference between these two regimes is illustrated

in Figure 3.2b.
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Figure 3.2: Simulations with chemotactic interactions with bell-shaped
kernel. (a) Coarse-graining kernel. (b) Time average of 20 snapshots of density
profile (in pink) in the regime k > 0 (left), instantaneous snapshots in the regimes
—p% < k < 0 (center), k < _p% (right) and average density (dashed blue line). Homo-
geneous phase at equilibrium, nucleation and spinodal decomposition at early stages
(t = 1007), respectively, are observed. Parameters common to the three simulations:
L=50,0=1,71T=19=1,v=1, pp =1.5.
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3.2.2 Phase coexistence
We next investigated the interacting system given by a composite kernel:

1 T x
IR (3.9)

K(ZL‘) = Q_ZTG 2la

where [, > [,, setting the interaction length to ¢ = [,. Such a kernel cannot derive
from the dynamics of one chemical fields, since, depending on the value of ¢, can assume
negative values which could lead to unphysical negative values for the concentration c.
In order to understand the reason for this choice, we consider a modulating mechanism
based on two chemicals in the environment:

v = vy — V11U OpC1(T) — V1ou OpCa()
= v — v11u 0L (K7 * p)(z) — vi2u 0, (K * p)(x)

= vy — v11u O, (K * p)(x) where  K(x) = Ky(z) + 2Kg(a:)
V11

It is clear then that the kernel 3.9 represented in Figure 3.3e mimics the situation in which
two chemical fields with the exponential kernel of equation 2.11 are present: choosing
v1,€ > 0 describes RTPs repelled by the chemical with length scale I, (v;; > 0) and
attracted by the one with length scale I, (vi3 < 0).

In the language of the equivalent passive system, we are studying interactions composed
of hard-core repulsion and attractive tails, similar to the ones in a Van der Waals fluid.
We expect then to find the phase diagram in space (p,T') of Figure 3.3a, where lowering
the temperature below a critical line triggers phase separation. For densities comprised
between the spinodal and binodal lines a uniform density profile is still metastable, even
though not energetically favored. In contrast with what is typically done, the effective
temperature of the active system was set constant in the simulations by fixing vy and
To, while € has been varied to control the depth of the attractive tails. Increasing e
produces deeper wells and so, to some extent, the same effect of lowering the temperature
as 1/e, leading to phase separation of the system into coexisting gas and liquid phases,
shown by the snapshots in Figure 3.3c. Indeed, the system transitions from a constant
density state (blue) to a separated state (orange). When ¢ is increased enough so that
K(O) = [dzK(z) <0, i.e. £ > 1, according to the local approximation of free energy,
the system is predicted to collapse, with particles condensating to arbitrary high density,
as visible in the pink snapshot.

In order to measure the coexisting densities p,, p;, given the intrinsically discrete nature
of numerics simulating particles (and not the continuous field p), one would need a bin
size | > 1/p,, 1/pi, such that a high enough number of particles fall inside the bin
(or equivalently the typical lengthscale of the plotting kernel g). However, a proper
phase transition in the statistical mechanical sense, cannot be achieved in 1d, due to the
relative scalings between energy and entropy of the ordered state, exactly as happens for
the Ising model in one dimension. Therefore, a one-domain configuration with long-range
correlations is non-favored, instead, the system separates into droplets with typical size
l4, making it necessary to reduce the binning size [ in the plots 3.3c in order to resolve
them. This sets a minimal threshold density, drawn in green in panel 3.3d, below which
densities cannot be resolved and measured. In particular, in our system, l; and p, are
such that an optimal binning length [ such that 1/p, < | < [l; does not exist, making
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it impossible to measure p,. For this reason we have implemented 2d simulations of the
system, which results are accounted in section 3.3.

As a final remark, we note that, given our choice of £ > 0, the mean field theory developed
in section 4.3 predicts the onset of a linear instability of the uniform density profile when:

- 1
dgst. K(q) < —— 3.10
75t K(g) < - (3.10)

where K(q) is the Fourier transform of the kernel K (z) and k = o is positive. This
condition is marked by the dashed black line in Figure 3.3b, below which the uniform
profile is unstable. In particular, the condition requires ¢ > 1, for which the system
undergoes thermodynamic collapse, and thus is not able to distinguish the phase separated
region.
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Figure 3.3: (a) Qualitative sketch of the phase diagram in the space (p,T') of
the passive system. (b) Phase space of the chemotactic system in the corresponding
variables (p,1/¢), where the dashed black line is the spinodal density obtained from
linear stability analysis in Mean Field. (c) Spatial density profile with pg = 2 (dashed
blue line) in different regimes: in blue (bottom) time average of 30 decorrelated
snapshots at ¢ = 0.4 corresponding to a constant density phase, in orange (top)
instantaneous snapshot at e = 0.8, where phase separation occur, in pink (center)
instantaneous shot at ¢ = 1.1 showing thermodynamic collapse. (d) Histogram of
values of local densities from 700 decorrelated snapshots. The green line marks the
minimal density that can be resolved due to the smoothing process necessary to plot
profiles in one dimension. The red line identies the peak density, corresponding to
the binodal density p; marked in red in panel (b).(e) Coarse-graining kernel for the
3 values of € considered in panel (b) and (c). Parameters common to all simulations:
L=50,v=05 v1=1,0=1, 7=0.1, [, =1/10, [, = 1/6 leading to k = 40.
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3.3 2d simulations

Since 1d simulations of the chemotactic system have proven to be problematic due to
the lack of a proper phase transition, combined with an extremely low density of the gas
phase, we have extended the code to simulate the same system in two spatial dimensions.
The N RTPs live in a square box of side L with periodic boundary conditions. Their
orientation vector u is determined by an angle 6 and, at each tumble, a new direction ¢’ is
drawn uniformly in [0, 271]. At every timestep the sole self propulsion speed is regulated via
computing the gradient of the chemical field in each particles’ position. Since the Kernel
is always taken to be rotationally invariant, interactions depend only on the distance d
between particles:

al N OKr -1,
Vie(r) =Y ViK(r—1;) = 5L 4 k (3.11)
i=1 1 1

=1

in the exact same way in which one would compute pairwise forces with a potential
proportional to K, coherently with the equilibrium mapping. We have again chosen
positive v; and a composite kernel representing the interplay between an attractive and
a repulsive chemical field with lengthscales, respectively, [, and [,:

K(d) = a, Kq (li) ~ a,Ko G) (3.12)

where we remind that K is the 0'" order modified Bessel function of the second kind. We
have fixed the parameters a,), lo() S0 that the system is equivalent, at large scales, to
an equilibrium system of passive particles interacting through a potential with soft core

repulsion and slightly attractive tails. Additionally, K(q) > 0 Vq, so that the dynamical
instability condition derived in section 4.3 translates to:

1
k< ———————— (3.13)

po ming K(q)

and is never satisfied, being k oc v; > 0. Of course, this does not guarantee in any way
that the system will remain in a uniform phase for two main reasons: first, the linear
stability analysis gives a dynamical criterion which does not capture the possibility of
metastability, that occurs when the uniform state is a local minimum of the constrained
free energy but not a global one. Additionally, the criterion comes from a mean field
approximation, which is, by definition, uncontrolled.

Indeed, simulations show phase separation of the system into coexisting gas and liquid
phases, with droplets of liquid slowly merging into a single domain over time. To produce a
phase diagram that is the closest possible to the equilibrium system’s one, we have kept the
coarse graining kernel fixed and changed the persistence time 7 of active particles, which is
directly proportional to the effective Temperature. Increasing 7 then, one expects to cross
a critical line, above which the uniform profile is stable. As visible from the snapshots in
Figure 3.4, the gas density can so low that identifying a binning length [ much larger than
1/p; and 1/p, but much smaller than the droplet size seems complicated. Therefore, in
order to measure the binodal densities p;(7), p,(7) we have employed a different strategy.
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Taking a time snapshot of the system, we have run a clustering algorithm on the data
constituted by 2-dimensional positions of particles at that time. The algorithm should
not only be able to identify clusters of similar density, irrespectively of their shape, but
also to leave out particles that do not belong to any cluster, which will be identified
as particles in the gas phase. Therefore, the natural choice was to use the DBSCAN
clustering algorithm, first introduced in [8], that builds on the two hyperparameters ¢ and
minPts: a points is defined as a core point if at least minPts are present in its spherical
neighborhood of radius €. Then a point belong to a cluster either if it is a core points or
if it is in the e-neighborhood of a core point. € and minPts have been chosen to achieve
stability of the classification.

At the end of the clustering procedure one can distinguish particles belonging to liquid
and gas phases, the next step is then measuring the area of the liquid droplets. Since
the latter can be highly non convex, especially at high effective temperatures, we have
computed the alpha-shape of every cluster, which is a generalization of the concept of
the convex-hull and leads to a non convex polygon for every cluster, which area and
consequent density can be readily evaluated. At the end of the procedure one will obtain
one sample of p; for each cluster and one sample of p, computed by dividing the number
of non-clustered points by the area left out by clusters. Finally the binodal densities can
be extracted as averages of the values collected over many time samples, constructing
(partially) the phase diagram in space (7, p). Two example pictures of the method are
reported in Figure 3.4 for different effective temperatures, along with one corresponding
histogram and the phase diagram in Figure 3.5.
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Figure 3.4: Instantaneous snapshots of the system of RTPs at different values of
7 (and therefore effective temperature): 7 = 0.02 (left), 7 = 0.04 (center), 7 = 0.06
(right). The bottom panel illustrates with different colors the clusters identified by
DBSCAN (note that PBCs have been applied for the color coding), contoured by
the corresponding AlphaShape. Black points are particles in the gas phase. Colored
shapes in the top panel reference to phase diagram of Figure 3.5. Parameters common
to all simulations: vg = 1, v1 = 1.3, a, = 2, aq, = 0.5, I, = 1/7.5, I, = 1/4, 0 =

1, po =2, L = 30.
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Figure 3.5: Phase diagram (left) of the chemotactic system in space (7, p) corre-
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for the system at 7 = 0.02. The colored points mark the parameter choice for the

three simulations shown in figure 3.4.
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Chapter 4

Active mixtures

In the following we turn our attention to active mixtures, namely systems composed of
multiple strains of particles, each characterized by distinct motility parameters. Our focus
is on high-dimensional ecosystems, meaning those with a large number S of strains, which
are particularly relevant in theoretical ecology. In many biological systems of this kind,
notably microbial communities, motility is regulated through specific signalling pathways
that couple different strains. In addition to these systematic interactions, motility can
also be affected by weaker, indirect mechanisms, such as the exchange of metabolites
between strains. Since biological systems are inherently complex, modeling these mild
effects in full detail would not only be impractical but also of limited theoretical interest:
our goal is to understand the typical behavior of such ecosystems. For this reason, we
model these indirect interactions as random couplings, treating them as quenched disorder,
and investigate how the system behaves independently of the specific realization of the
disorder.

4.1 Generalization of coarse graining

In this paragraph we will briefly generalize the coarse-graining methods outlined in sec-
tion 2.5 to mixtures of S strains. We allow for both quorum sensing and chemotaxis,
based on multiple chemical fields ¢, (r, [{p,}]) with h € {1,..., H}. Self-propulsion speed
and persistence time of particle 7 of strain u located at r;, are then a function of the fields
in the same position:

H
vip = vou({en}) — Wi Y 0, Vi, e (4.1)
h=1
H
Tt = 7o ({en}) + wi - D> (1) Vi, e (4.2)
h=1

We do not distinguish between different reorienting mechanisms (RTPs or ABPs) since
their equivalence at the fluctuating hydrodynamic level will remain valid. With analogous
calculations the Langevin equation for the density of strain p is obtained:

at/)u = -V, {Vu<r7 {pu})pu - D#(I‘, {pu}>vrpu + \/QDH(I‘, {pv}>/)uAu(r> t)} (4'3>
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V,=-— _ =

Uouv UOu 1 u
TOH -1 d —
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which again can be written in terms of strain mobility and out-of-equilibrium chemical
potential:

Oupp = Ve | MV, + /20, A, (4.5)
M (r, [{p}]) = Dule, o N (o) (1.6
1 < Tou 1
o, [peb) = 108 0+l Dy o)+ Y- (v + 0, ) 5 e )

(4.7)
where we have defined the coefficients k.

4.2 Quorum Sensing

Our study on chemotaxis builds upon and extends the framework introduced in [6], which
focuses on quorum sensing. We briefly review their main results here. The model therein
considers S strains of run-and-tumble particles (RTPs), each with a self-propulsion speed
regulated by S chemical fields according to:

mmmmwmdm%zwﬂ%iﬂ () = (K p)(x)  (48)

v=1

where r,, is a random Gaussian matrix with independent entries modeling weak, random
interactions between strains:

m o?

<K/Ml/> = E Var[/{;w] = g (49)
with m,0? ~ O(1). Numerical simulations show that increasing the heterogeneity o>
leads to a phase transition from a homogeneous to a fragmented ecosystem, where strains
self-organize into distinct communities. This transition occurs both in the absence and in
the presence of average motility inhibition—i.e, for m = 0 and m < 0, respectively.

Linear stability analysis of the coarse-grained hydrodynamic equation 4.5 around a homo-
geneous state p, = po(1,...,1) can predict the emergence of such phases. The dynamics
of a perturbation 0p,(q) in Fourier space is governed, to linear order, by:

8t(5,5“(q) = _q2D;w5/6V(q) ) (4.10)

where q is the wavevector and D, is a diffusivity matrix depending on the couplings
kuv- Instability arises when D has eigenvalues \; with negative real parts; in particular,
the condition Re()\g) < 0 for the eigenvalue \g with smallest real part marks the onset of
phase separation. Considering the case py = p, leads to the simplified diffusivity matrix:

ij =Dy <5NV + g/‘iwj) = MN=D (1 -+ 55\1> (411)
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where {5\1} are the eigenvalues of the matrix x,,. Results from random matrix theory are
then used to compute the spectral properties of D in the limit of large S, allowing one to
predict the location of the phase transition and the nature of the emerging fragmented
state based on the eigenvectors associated to negative eigenvalues.

These predictions demonstrate that even weak (Var[x,,] Sooe, 0), random motility regu-
lation suffices to drive ecosystem fragmentation.

4.3 Chemotaxis

We devote the rest of the chapter to the original study of high-dimensional chemotaxis.
We start with the most general setting allowing for H chemical fields, each of which can
be produced by any strain v:

S

en(r, [{p}]) = Y (Ko % pu)(x) (4.12)

v=1

We begin by carrying out the linear stability analysis of the fluctuating hydrodynamic
equation 4.5. Taking the statistical average over the noise and applying a mean-field
approximation yields:

O(pu) =V - [Dylpu V) = V - [D{pu) Vi [{(p0) }] (4.13)

We are interested in determining the stability of a homogeneous steady density profile
p=1(p1,---,ps) =py=po(l,...,1), which is the trivial solution. We consider then a
small perturbation dp(r,t) and expand the dynamics up to linear terms. From this point
on, we omit the average brackets ().

5pu —FpoZkuhZ I/h*éplj )

Taking the Fourier transform, we obtain:

0pbpu(r,t) =V - {D \Y

} +0(6p%) (4.14)

8t6pu qv =—q Z Mw/ 5p1/ q, ) with M;w(q) = Du <5wf + Po Z kuhf{vh(q)>
h
(4.15)
where K uh( f dre” quKl,h( ) is the Fourier transform of the coarse-graining kernel.

The homogeneous state becomes unstable when there exist a q for which the matrix M (q)
has an eigenvalue \q with negative real part. In order to progress further analytically we
make some simplifying assumptions. First, we assume all strains have the same diffusivity,
D, = Dy, which is the case, for example, if they share the same mobility parameters v
and 7y in the absence of chemotactic regulation. Second, we assume the kernels have a
common shape in q, differing only by a strain-dependent amplitude: Kyh(q) = B K (q).
Under this assumptions:

M,,(q) = Dy <5W+POIA((Q) Z kmﬁm) = Ai(a) = Dy (1 + QOK(Q)S\i> (4.16)

h
———

oy
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We define the matrix o, = Y, kunBun, that quantifies how strain v affects the motility
of strain p, summing over all the metabolic pathways connecting the two species. As
discussed earlier, we take it to be symmetric, oy, = a,,, which, together with the fact
that K (q) € R (see appendix 6.1 for a proof), ensures real eigenvalues A. Clearly, the
matrices M, and «,, share the same eigenvectors. The instability condition dq s.t.
Ai(q) < 0 translates to:

£ 1
min [K(q))\l} e (4.17)
D Po
~ A ~ - 1
min {)\mm max K(q), Amae min K(q)} < —— (4.18)
q q £o

If the kernel is positive in fourier space Vq', and since the r.h.s. is negative, the condition
can only be satisfied if:

< ~ 1
Amin max K(q) < —— (4.19)
q Po

As we have mentioned earlier, physically plausible kernels additionally respect K (r) >
0 Vr, which, as we show in the appendix 6.1, leads to |K(q)| < K(0). The condition
reduces then to the simpler:

< 1

pofs(0)
As discussed earlier, we model o, entries as Gaussian random variables with:
m o?
<aMV> - E Var[auu] = (421)

S
In the following, we will distinguish two regimes: absence of systematic motility regulation,
given by m = 0, or cross motility inhibition between species, given by m < 0. As we will

show, in the motility enhancement case m > 0 the phase diagram in unchanged with
respect to m = 0.

In the absence of systematic regulation and in the limit of large S, the eigenvalues A
follow a Wigner semi-circular law with support [—20,20], and the lowest eigenvalue is
therefore S\mm = —20. It can be proven with tools from Random Matrix Theory that the
corresponding eigenvectors have uniform distribution in the unit sphere S, therefore, the
eigenvector associated to the lowest eigenvalue Amin With be orthogonal to (1,...,1), i.e.
the dominant perturbation will have ZM dp, = 0. This means that the corresponding
density profile will be fragmented, featuring regions with high concentration of certain
species and low of others.

INote that the Fourier transform K (q) of the kernels that we used throughout this report is generally
positive Vq: this condition is always true for the bell-shaped kernel of Equation 3.4 and also stands for
the double exponential kernel defined in 3.9 when € < 1, which is the interesting regime in which phase
separation can occur.
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When instead there is a nonzero average regulation (m # 0), the distribution of the
eigenvalues A features the usual Wigner semicircle plus an isolated eigenvalue at A =
m + %2 When o < |m|, this outlier is separated from the bulk of the distribution and
is the smallest eigenvalue. In [1] it has been shown that the corresponding eigenvector
dp, has Zu dp, = o/|m|, meaning that the perturbed density profile undergoes partial
demixing: is well-mixed, or gregarious, for ¢ = 0, fragmentation then increases with o
until a maximum is reached at ¢ = |m|. Indeed, if ¢ < |m|, the outlier eigenvalue lies
again within the bulk, and the lowest eigenvalue is again the lower end of the semicircle
S\mz’n = —20 with the same eigenvector as before.

To summarize, instability arises when:

2 1 . _ 2 2
{0 > B0 itm=0o0ro®>m (4.22)
2 om0 02 : ’
0" > —= 0o m otherwise

It can be checked by direct calculation that the phase-separating line is continuous and
differentiable even when m < 0.

Figure 4.1 shows the phase diagram of the polydisperse system in presence and absence
of systematic motility regulation.

m =0 m <0
0_2

fragmented

1 fragmented m?
uniform uniform gregarious

0 . 0

0 L po 0 1 Po
K(0) K(0)m

Figure 4.1: Phase diagram in the plane (02, pg) of the polydisperse system. In
absence of average motility regulation (m = 0, left) the uniform density profile is
stable for low values of the heterogeneity o2, then increasing this parameter above a
critical line leads to fragmentation of the ecosystem and spatial demixing of species.
When average interactions are motility inhibitory (m < 0, right) there is an additional
gregarious phase, corresponding to phase separation with equal density distribution
for every species, at ¢ = 0, or only partial demixing for 0 < ¢? < |m|. The color
gradient quantifies the degree of fragmentation.
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Chapter 5

Conclusions

In this work, we have explored how motility regulation drives self-organization in dry
scalar active matter, both in monodisperse systems and in mixtures of many interacting
species. Starting from microscopic models of active particles, we presented the coarse-
graining procedure used to derive the macroscopic dynamics of the density field under both
quorum sensing and chemotactic interactions. We revised the analytical methods used
to characterize the onset of motility-induced phase separation (MIPS) in quorum sensing
systems, and extended them to chemotactic interactions by deriving instability criteria
from a hydrodynamic description and, where possible, constructing effective free energy
functionals. For monodisperse systems, we validated our theoretical predictions through
microscopic simulations in one spatial dimension, confirming the emergence of distinct
regimes including homogeneous states, liquid-gas phase coexistence, and condensation,
depending on the type and strength of interactions.

Numerics in 1d, however, have proven to be problematic for accurately measuring the
densities of the coexisting phases, due to the absence of long-range correlations in one-
dimensional systems. Therefore, two-dimensional simulations have been developed to
overcome this limitation. The predicting power of the theoretical methods employed-
common tangent construction on a local approximation of free energy density, and linear
stability analysis of the mean-field hydrodynamic equation-has proven limited in the case
of composite chemotactic interactions. While both approaches correctly predict the on-
set of thermodynamic collapse for sufficiently strong attractive interactions, neither is
able to capture the phase-separated regime or quantitatively predict the binodal densi-
ties. In future work, it would be interesting to go beyond the local approximation and
develop non-local methods for constructing effective free energy landscapes, in order to
better characterize phase coexistence in systems with competing attractive and repulsive
chemotactic interactions.

We then extended the theoretical analysis to mixtures of multiple interacting strains,
introducing random couplings to model weak, unspecific chemotactic cross-regulation. By
applying linear stability analysis and tools from random matrix theory, we demonstrated
that even these weak interactions can destabilize the homogeneous state, leading to the
formation of fragmented, spatially structured communities. In the future, simulations of
the high-dimensional system will be necessary to test and validate the original theoretical
predictions developed here.
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Chapter 6

Appendices

6.1 Generalities about Fourier transform

In this paragraph, we show some results about Fourier transform that have been employed
to perform the Linear Stability Analysis of the fluctuating hydrodynamic equation in
section 4.3. We use the convention:

fla) = [ v

£6) = 5= [ dac"f(a)

First, we note that in the context of this report, the kernel K (r) defines the concentration
of the chemical in space. Since the latter is, by definition, positive everywhere and for
any distribution of the density p that produces it, the convoluting Kernel must also be
everywhere positive in real space:

c(r)=(Kxp)(r) >0 ¥Yr Vp(r) = K(r)>0 Vr

This can be simply proven by taking p(r') = §(r’), leading to K(r') > 0. Given the
arbitrariness of the point r’, the result follows straightforwardly.

In the report we have made use of the fact that K (q) is real Vq. This simply follows from
the symmetry of the function in real space. Indeed, if K(—r) = K*(r):

K'(a) = [ e )
= /dreiq'(r)K(—r)

= /dre‘iq'rK(r)
= K(a)
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Now we can show that |K(q)| < K(0):
K@) =| [ dreoric
< /dr le T K (r)|

= / dr [e7" 9| K (r)
= K(0)

where we have used the positivity of K (r) between the second and third line.

6.1.1 Bidimensional Fourier transform of K

In the following we detail the derivation of the bidimensional Fourier transform of the
function G(r) = Ky(a|r|) where we denote with Ky(r) the 0" order modified Bessel
function of the second kind.

G(q) = / dr e G(r) (6.1)
_ /0 T ar /0 4o r miresog(y) (6.2)

=27 /OOO dr rJo(qr)G(r) (6.3)
— ot (G0 (0 (6.4
6.5)

where we have defined the 0*" order Hankel transform 5%} and in going from line 1 to 2 we
have expanded in polar coordinates and implicitly set the zero of ¢ when r is aligned to
q, which was made possible by the circular symmetry of G(r). Ky belongs to a tabulated
pair of known Hankel pairs (the Hankel transform is self-inverse), leading to:

N 2

G(q) = Z1]qP (6.6)
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