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Abstract

Entanglement is a fundamental property of quantum mechanics and plays a cen-
tral role in quantum information science, quantum computation, and many-body
physics. It represents non-classical correlations between subsystems that cannot be
explained by local hidden variables. Despite its conceptual importance, entanglement
remains difficult to quantify in practice because it is not directly observable. Vari-
ous tools have been developed to estimate entanglement, among these, a particularly
insightful approach is based on the concept of squashed entanglement, a rigorous en-
tanglement measure defined through the quantum conditional mutual information.
Specifically, the squashed entanglement of a bipartite state is given by the infimum
of the conditional mutual information over all possible extensions. This measure
is of strong theoretical interest because it connects entanglement with information-
theoretic quantities, and thus with entropy; however, it poses significant challenges
for practical computation, as it typically requires complete knowledge of the global
quantum state, which is experimentally inaccessible in most settings. This work
addresses the challenge by deriving experimentally accessible lower bounds on the
conditional mutual information in many-body quantum systems. Through numerical
analysis, we validate the effectiveness of these bounds in several nontrivial scenarios,
highlighting their utility not only for entanglement quantification, especially in ap-
proximating squashed entanglement, but also for a wide range of tasks crucial to the
effective characterization of components in quantum computing.
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Chapter 1

Introduction

1.1 Linear Algebra

A spanning set for a vector space is a collection of vectors |v1⟩ , . . . , |vn⟩ such that any
vector |v⟩ in the space can be written as a linear combination of the vectors in this
collection:

|v⟩ =
Ø

i

ai |vi⟩ . (1.1)

A set of non-zero vectors |v1⟩ , . . . , |vn⟩ is considered linearly dependent if there exists
a set of scalars a1, . . . , an, where at least one ai ̸= 0, satisfying:

a1 |v1⟩ + a2 |v2⟩ + · · · + an |vn⟩ = 0. (1.2)

Conversely, a set of vectors is called linearly independent if it does not satisfy the
above condition for any non-zero coefficients. A basis of a vector space V is a set of
vectors that are both linearly independent and spanning. The number of vectors in
the basis is referred to as the dimension of the vector space.

0This chapter is based on Part 1 Chapter 2 of Nielsen and Chuang [3].
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1.1.1 Linear Operators and Matrices
Given two vector spaces V and W , a linear operator is a function A : V → W that
satisfies linearity:

A |v⟩ = A

AØ
i

ai |vi⟩
B

=
Ø

i

aiA(|vi⟩). (1.3)

Two significant linear operators worth noting are the Identity operator I, which satis-
fies I |v⟩ = |v⟩, and the zero operator 0, which satisfies 0 |v⟩ = 0. To express operators
in a matrix form, consider a linear operator A : V → W and suppose {|v1⟩ , . . . , |vn⟩}
and {|w1⟩ , . . . , |wm⟩} are bases of V and W , respectively. For each j, there exist
scalars Aij such that:

A |vi⟩ =
Ø

j

Aij |wj⟩ . (1.4)

The matrix whose elements are Aij is called the matrix representation of the operator
A.

1.1.2 The Pauli Matrices
Four important matrices that are frequently used in quantum mechanics are the Pauli
matrices. These are defined as:

σ0 =

1 0

0 1

 , σx =

0 1

1 0

 ,

σy =

0 −i

i 0

 , σz =

1 0

0 −1

 .
(1.5)

1.1.3 Inner Products
An inner product is a function (·, ·) : V × V → C that takes a pair of vectors |v⟩ and
|w⟩ from a vector space V and returns a complex number. This operation is denoted
as (v, w) = ⟨v|w⟩. The notation ⟨v| represents the dual vector of |v⟩, which is a linear
functional mapping vectors in V to the complex numbers C. To qualify as an inner
product, the function must satisfy the following properties:
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1. Linearity in the second argument:A
|v⟩ ,

Ø
i

λi |wi⟩
B

=
Ø

i

λi(|v⟩ , |wi⟩).

2. Conjugate symmetry:
(|v⟩ , |w⟩) = (|w⟩ , |v⟩)∗.

3. Positive definiteness:
(|v⟩ , |v⟩) ≥ 0,

with equality if and only if |v⟩ = 0.

A vector space equipped with an inner product is called an inner product space. Inner
products enable the introduction of several key concepts. Two vectors are said to be
orthogonal if their inner product is zero. The norm of a vector |v⟩ is defined as:

∥|v⟩∥ =
ñ

⟨v|v⟩. (1.6)

A vector is called a unit vector or normalized if ∥|v⟩∥ = 1. If this is not the case, the
normalized form of |v⟩ can be obtained as |v⟩ /∥|v⟩∥. A set of vectors {|i⟩} is said to
be orthonormal if each vector is normalized and orthogonal to every other vector in
the set, i.e., ⟨vi|vj⟩ = δij.

1.1.4 Outer Product Representation
Linear operators can be conveniently expressed using the outer product notation. For
vectors |v⟩ and |w⟩ from the inner product spaces V and W , respectively, the operator
|w⟩⟨v| is defined as the linear map from V to W such that:

(|w⟩⟨v|)(|v′⟩) = |w⟩⟨v| |v′⟩ = ⟨v|v′⟩ |w⟩ . (1.7)

Here, the result is the vector |w⟩ scaled by the scalar ⟨v|v′⟩. Linear combinations
of such outer product operators can also be constructed. For example, qi ai |wi⟩⟨vi|
represents a linear operator that, when applied to a vector |v′⟩, produces:

Ø
i

ai |wi⟩ ⟨vi|v′⟩ . (1.8)
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1.1.5 Completeness Relation and Operator Representation
A key application of the outer product formalism is the completeness relation for
orthonormal bases. Let {|i⟩} be an orthonormal basis for a vector space V . Any
vector |v⟩ ∈ V can be expressed as |v⟩ = q

i vi |i⟩, where vi = ⟨i|v⟩. Using this, we
have: AØ

i

|i⟩⟨i|
B

|v⟩ =
Ø

i

|i⟩⟨i| |v⟩ =
Ø

i

vi |i⟩ = |v⟩ . (1.9)

Since this equation holds for all |v⟩, it means that:
Ø

i

|i⟩⟨i| = I, (1.10)

where I is the identity operator. Using the completeness relation, any linear operator
A : V → W can be represented in the outer product form. Let {|vi⟩} be an orthonor-
mal basis for V and {|wj⟩} be an orthonormal basis for W . Then, A can be written
as:

A = IWAIV =
Ø
ij

|wj⟩⟨wj|A |vi⟩⟨vi| =
Ø
ij

⟨wj|A |vi⟩ |wj⟩⟨vi| . (1.11)

This is the outer product representation of the operator A.

1.1.6 Eigenvectors and Eigenvalues
Using this notation, the eigenvectors |v⟩ and eigenvalues v of an operator A are
defined by the equation:

A |v⟩ = v |v⟩ .

The eigenspace associated with an eigenvalue v is the set of all vectors that share
this eigenvalue, forming a subspace of the vector space on which A acts. A diagonal
representation of the operator A is given by:

A =
Ø

i

λi |i⟩⟨i| ,

where {|i⟩} is an orthonormal set of eigenvectors of A with corresponding eigenvalues
{λi}. An operator is called diagonalizable if such a representation exists.
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1.1.7 Adjoints and Hermitian Operators
For a linear operator A on a Hilbert space V , its adjoint (or Hermitian conjugate),
denoted A†, is the unique operator satisfying:

(|v⟩ , A |w⟩) = (A† |v⟩ , |w⟩),

for all |v⟩ , |w⟩ ∈ V . It can be shown that (AB)† = B†A†. Moreover, for a vector |v⟩,
we adopt the convention |v⟩† = ⟨v|, from which it follows that:

(A |v⟩)† = ⟨v|A†.

An operator A is called Hermitian if A† = A. A projector is a specific type of operator
used to project vectors onto a subspace. Suppose W is a k-dimensional subspace of a
d-dimensional vector space V . We can construct an orthonormal basis {|1⟩ , . . . , |d⟩}
for V such that {|1⟩ , . . . , |k⟩} forms an orthonormal basis for W . The projection
operator onto W is then defined as:

P :=
kØ

i=1
|i⟩⟨i| .

An operator A is called normal if AA† = A†A and unitary if A†A = I. Unitary
operators are important because they preserve inner products between vectors.
Theorem 1 (Spectral decomposition). Any operator is normal if and only if it is
diagonalizable

1.1.8 Tensor Products
Let V and W be vector spaces of dimensions m and n, respectively. Their tensor
product V ⊗W is a vector space of dimension mn. The elements of V ⊗W are linear
combinations of tensor products |v⟩ ⊗ |w⟩, where |v⟩ ∈ V and |w⟩ ∈ W . If {|i⟩} and
{|j⟩} are orthonormal bases for V and W , then {|i⟩⊗|j⟩} forms an orthonormal basis
for V ⊗W .

1.1.9 Operator Functions
Functions can also be defined for operators and matrices. Given a function f : C → C
and the spectral decomposition of an operator A = q

a a |a⟩⟨a|, the operator function



Chap. 1. Introduction 8

is defined as:
f(A) =

Ø
a

f(a) |a⟩⟨a| .

One important operator function is the trace of a matrix, defined as:

tr(A) :=
Ø

i

Aii.

The trace has two key properties: it is cyclic, meaning tr(AB) = tr(BA), and linear,
meaning tr(A + B) = tr(A) + tr(B) and tr(zA) = ztr(A) for any matrices A,B and
scalar z. Additionally, the trace is invariant under unitary similarity transformations,
such that for A → UAU †, we have:

tr(UAU †) = tr(A).

The trace of an operator A is defined as the trace of any matrix representation of A.

1.1.10 The Commutator and Anti-Commutator
The commutator of two operators A and B is defined as:

[A,B] := AB −BA.

If [A,B] = 0, then A and B are said to commute. The anti-commutator of A and B

is defined as:
{A,B} := AB +BA,

and A and B are said to anticommute if {A,B} = 0.
Theorem 2 (Simultaneous Diagonalization Theorem). Let A and B be Hermitian
operators. Then [A,B] = 0 if and only if there exists an orthonormal basis in which
both A and B are diagonal. In this case, A and B are said to be simultaneously
diagonalizable.

1.1.11 The Polar and Singular Value Decompositions
The polar decomposition and the singular value decomposition (SVD) are powerful
techniques for expressing linear operators in terms of simpler components.
Theorem 3 (Polar Decomposition). Let A be a linear operator on a vector space V .



Chap. 1. Introduction 9

There exist a unitary operator U and positive operators J and K such that:

A = UJ = KU,

The positive operators J and K are uniquely defined as J :=
√
A†A and K :=

√
AA†.

Also, if A is invertible, the unitary operator U is also unique.
Theorem 4 (Singular Value Decomposition). Given a square matrix A, there exist
unitary matrices U and V and a diagonal matrix D with non-negative entries such
that:

A = UDV,

The diagonal elements of D are the singular values of A.
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1.2 The postulates of Quantum Mechanics
In this chapter, we provide a description of the fundamental postulates of quantum
mechanics. These postulates establish the connection between the physical reality of
quantum systems and the mathematical framework.

1.2.1 State Space
Postulate 1: Every isolated physical system is associated with a complex vector
space equipped with an inner product (a Hilbert space), referred to as the state
space of the system. The state of the system is fully described by a state vector,
which is a unit vector in this Hilbert space.

The simplest quantum mechanical system has a two-dimensional state space and is
known as a qubit. Its state is a vector of a Hilbert space spanned by the orthonormal
basis {|0⟩ , |1⟩}. Any state |ψ⟩ in this space can be expressed as:

|ψ⟩ = a |0⟩ + b |1⟩

where a and b are complex numbers. These coefficients must satisfy the normalization
condition:

⟨ψ|ψ⟩ = |a|2 + |b|2 = 1.

A linear combination of the form q
i αi |ψi⟩ is called a superposition of the states |ψi⟩,

with αi denoting the amplitude for the state |ψi⟩.

1.2.2 Evolution
The second postulate of quantum mechanics prescribes how a physical system evolves
over time:

Postulate 2: A closed quantum system evolve according to a unitary transfor-
mation. Specifically, the state |ψ⟩ of the system at time t is related to the state
|ψ⟩ at time t′ via a unitary operator U , which depends only on the times t and
t′:

|ψ(t′)⟩ = U |ψ(t)⟩ . (1.12)
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This postulate does not specify the particular unitary operator U that governs the
dynamics of a given system. Examples of unitary operators include the Pauli matrices
σx, σy, σz, and the Hadamard gate H, which acts on the qubit basis as follows:

H |0⟩ = |0⟩ + |1⟩√
2

, H |1⟩ = |0⟩ − |1⟩√
2

. (1.13)

There exist also an alternative formulation of Postulate 2, which describes the evolu-
tion of a quantum system in continuous time:

Postulate 2’: The time evolution of the state of a closed quantum system is
governed by the Schrödinger equation:

iℏ
d |ψ⟩

dt = H |ψ⟩ . (1.14)

In this equation, ℏ is the reduced Planck constant. In many practical contexts,
it is common to set ℏ = 1. The operator H, known as the Hamiltonian, is an
Hermitian operator that characterizes the energy and dynamics of the closed
system.

Given the Hamiltonian of a system and the value of ℏ, the dynamics of the system can,
in principle, be completely known. However, identifying the appropriate Hamiltonian
that describes a specific physical system is often a challenging problem. Since the
Hamiltonian is a Hermitian operator, it admits a spectral decomposition:

H =
Ø
E

E |E⟩ ⟨E|, (1.15)

the states |E⟩ are called energy eigenstes and E is the energy of the state |E⟩. The
lowest of these energy is called ground state. We can find a connection between the
Hamiltonian picture of dynamics and the Unitary operator picture just by finding a
solution to the Shrodinger equation:

|ψ(t′)⟩ = exp
C
−iH(t′ − t)

ℏ

D
|ψ(t)⟩ = U(t, t′) |ψ(t)⟩ , (1.16)

where
U(t, t′) ≡ exp

C
−iH(t′ − t)

ℏ

D
. (1.17)
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It can be shown that this is a unitary operator. Any unitary operator can be written
in a form: U = exp(iK) for some Hermitian operator K.

1.2.3 Quantum Measurement
We now explain what happens when the physical system is not closed anymore, In-
teracting with an environment or being measured.

Postulate 3: Quantum measurements are characterized by a set of measurement
operators {Mm}, which act on the state space of the quantum system. The index
m corresponds to the possible outcomes of the measurement. If the state of the
system before measurement is |ψ⟩, the probability of obtaining the outcome m
is given by:

p(m) = ⟨ψ|M †
mMm |ψ⟩ . (1.18)

After the measurement, the quantum state collapses to:

Mm |ψ⟩ñ
⟨ψ|M †

mMm |ψ⟩
. (1.19)

The measurement operators must satisfy the completeness relation, which ensures
that probabilities sum to 1: Ø

m

M †
mMm = I, (1.20)

where I is the identity operator.

1.2.4 Distinguishing Quantum States
In this section, we address the statement: orthogonal quantum states can be dis-
tinguished, whereas non-orthogonal states cannot. Consider a quantum state |ψi⟩
where (1 ≤ i ≤ n) that needs to be identified. If the states |ψi⟩ are orthonormal,
we can define a quantum measurement that distinguishes them. For each state |ψi⟩,
we introduce a measurement operator Mi = |ψi⟩ ⟨ψi|, and an additional operator M0

defined as the positive square root of: I − q
i ̸=0 |ψi⟩ ⟨ψi|. Measuring this observable

on the state |ψi⟩ gives i with probability:

p(i) = ⟨ψi|Mi |ψi⟩ = 1,
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which confirms that orthogonal states can be perfectly distinguished.
In contrast, if the states |ψi⟩ are not orthonormal there is no quantum measurement
able to distinguish the states with certainty. Lets say we try to do a measurement
described by the measurement operator Mj with outcome j and given j we could
use some rule to guess the index i of the state like i = f(j). The problem is that if
we have non-orthogonal states, for example |ψ1⟩ and |ψ2⟩, and we measure a j such
that f(j) = 1, since |ψ2⟩ has a non vanishing component parallel to |ψ1⟩, we will also
sometimes get j while the state prepared is |ψ2⟩, but in that case we would make
an error saying that the state is |ψ1⟩, so in general it is not possible to accurately
distinguish the states.

1.2.5 Projective Measurements
A projective measurement is defined by an observable M , which is an Hermitian
operator acting on the state space of the system under observation. The observable
M can be decomposed as:

M =
Ø
m

mPm, (1.21)

where Pm is the projector onto the eigenspace of M corresponding to the eigenvalue
m. The eigenvalues m represent the possible outcomes of the measurement. If the
system is in the state |ψ⟩, the probability of observing the outcome m is:

p(m) = ⟨ψ|Pm |ψ⟩ . (1.22)

After observing the outcome m, the state of the system collapses to:

Pm |ψ⟩ñ
p(m)

. (1.23)
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Projective measurements simplify the computation of expectation values for observ-
ables. The expectation value of M is:

E(M) =
Ø
m

mp(m)

=
Ø
m

m ⟨ψ|Pm|ψ⟩

= ⟨ψ|
AØ

m

mPm

B
|ψ⟩

= ⟨ψ|M |ψ⟩ .

Using the shorthand ⟨M⟩ ≡ ⟨ψ|M |ψ⟩ for the average value of M , the variance of M
is given by:

[∆M ]2 =
e
(M − ⟨M⟩)2

f
=
e
M2

f
− ⟨M⟩2 . (1.24)

Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle is a cornerstone of quantum mechanics, gov-
erning the intrinsic limits on the precision with which certain pairs of observables
can be simultaneously measured. Consider two Hermitian operators, A and B, and
a quantum state |ψ⟩. Let ⟨ψ|AB |ψ⟩ = x + iy, where x, y ∈ R. From this it is easy
to get: ⟨ψ| [A,B] |ψ⟩ = 2iy and ⟨ψ| {A,B} |ψ⟩ = 2x, and it follows that:

|⟨ψ| [A,B] |ψ⟩|2 + |⟨ψ| {A,B} |ψ⟩|2 = 4|⟨ψ|AB |ψ⟩|2. (1.25)

Applying the Cauchy-Schwarz inequality to ⟨ψ|AB |ψ⟩ gives:

|⟨ψ|AB |ψ⟩|2 ≤ ⟨ψ|A2 |ψ⟩ ⟨ψ|B2 |ψ⟩ . (1.26)

Combining this result with Eq. (1.25), we deduce:

|⟨ψ| [A,B] |ψ⟩|2 ≤ 4 ⟨ψ|A2 |ψ⟩ ⟨ψ|B2 |ψ⟩ . (1.27)

Now we consider two observables C and D, defined by A = C−⟨C⟩ and B = D−⟨D⟩,
substituting back yields the uncertainty relation:

∆(C)∆(D) ≥ |⟨ψ| [C,D] |ψ⟩|
2 . (1.28)
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This means that if an ensemble of systems is prepared in the same state |ψ⟩, and
measurements of C and D are performed on different subsets of the ensemble, the
product of the standard deviations ∆(C) and ∆(D) will obey Eq. (1.28).

1.2.6 POVM Measurements
Consider a quantum measurement characterized by the measurement operators Mm,
applied to a quantum system in the state |ψ⟩. The probability of observing the
outcome m is again:

p(m) = ⟨ψ|M †
mMm |ψ⟩ . (1.29)

Defining Em = M †
mMm, we see that Em is a positive operator satisfying:

Ø
m

Em = I, p(m) = ⟨ψ|Em |ψ⟩ .

The set {Em} is known as a Positive Operator-Valued Measure (POVM), represent-
ing the measurement. Unlike projective measurements, POVMs generalize quantum
measurements to include scenarios involving noise or partial information.

1.2.7 Phase
The notion of phase plays a critical role in quantum mechanics. Two key concepts
are the global phase and the relative phase. A global phase factor is a complex scalar
of the form eiθ, where θ ∈ R. If a quantum state |ψ⟩ is multiplied by a global phase
eiθ, the resulting state eiθ |ψ⟩ is physically indistinguishable from |ψ⟩. To see this,
consider a measurement operator Mm:

⟨ψ| e−iθM †
mMme

iθ |ψ⟩ = ⟨ψ|M †
mMm |ψ⟩ . (1.30)

Since global phases have no observable effect, they are often disregarded in quantum
descriptions. In contrast, a relative phase captures the phase difference between
components of a quantum state. For example, consider the states:

|0⟩ + |1⟩√
2

,
|0⟩ − |1⟩√

2

we see that the component |1⟩ has the same 1√
2 amplitude in two states, but a phase

shift of −1. Relative phase differences may influence interference patterns and mea-



Chap. 1. Introduction 16

surable outcomes, making them physically significant. More generally, two amplitudes
a and b differ by a relative phase ϕ if:

a

b
= eiϕ.

Quantum states differing by relative phase are in general not physically equivalent.

1.2.8 Composite Systems
The following postulate defines the structure of the state space for composite quan-
tum systems:

Postulate 4: The state space of a composite system is the tensor product of
the state spaces of its components. Consider n quantum states prepared as
|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩, the joint state of the composite system is:

|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ .

Using this postulate, we can define entanglement. Consider the state:

|ψ⟩ = |00⟩ + |11⟩√
2

. (1.31)

This state cannot be expressed as a product |a⟩ |b⟩ of single-qubit states. Such states,
which cannot be written as separable products, are named entangled.
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1.3 Superdense coding
Superdense coding is a remarkable application of elementary quantum mechanics It
involves two parties conventionally known as Alice and Bob, Bob’s goal here is to
transmit two bits of classical information to Alice just sending her only one qubit. So
they initially share and entangled pair of qubits prepared in the state:

|ψ⟩ = |00⟩ − |11⟩√
2

. (1.32)

Bob can encode two bits of classical information into the entangled state by applying
specific operations to his qubit. The transformations are as follows:

00 : |ψ⟩ → |00⟩ + |11⟩√
2

,

01 : |ψ⟩ → |00⟩ − |11⟩√
2

,

10 : |ψ⟩ → |10⟩ + |01⟩√
2

,

11 : |ψ⟩ → |01⟩ − |10⟩√
2

.

The interpretation of this is:

• To transmit the bit string "00", Bob performs no operation on his qubit.

• To send "01", he applies the Z operator.

• To encode "10", he applies the X operator.

• To transmit "11", he applies the iY operator.

The four resulting states form the Bell basis, that is an orthonormal basis of the
two-qubit system:I

|00⟩ + |11⟩√
2

,
|00⟩ − |11⟩√

2
,
|10⟩ + |01⟩√

2
,
|01⟩ − |10⟩√

2

J
.

Once Bob applies the appropriate operation to his qubit, he sends it to Alice. After
receiving Bob’s qubit, Alice can perform a measurement in the Bell basis, allowing
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her to determine which of the four states the system is in. This enables Alice to
decode the two bits of classical information encoded by Bob.
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1.4 The density operator
It is possible to describe quantum mechanics using an alternative framework to the
state vector formalism, employing a tool known as the density matrix.

1.4.1 Ensemble of Quantum States
A quantum system whose state |ψ⟩ is known exactly is said to be a pure state, in this
case the density matrix is simply ρ = |ψ⟩ ⟨ψ|, otherwise ρ is in a mixed state and
in this case the system is in a state |ψi⟩ with probability pi and the corresponding
density matrix is defined as a weighted sum of pure state density matrices:

ρ ≡
Ø

i

pi |ψi⟩ ⟨ψi| (1.33)

In this chapter we reformulate the postulates of quantum mechanics using the density
operator formalism. We start with some examples.

• Evolution: The time evolution of a closed quantum system is governed by
a unitary operator U . If the system starts in the state |ψi⟩ with probability
pi, then after the evolution, it transitions to U |ψi⟩ with the same probability.
Accordingly, the evolution of the density operator is:

ρ =
Ø

i

pi |ψi⟩ ⟨ψi| −→
Ø

i

piU |ψi⟩ ⟨ψi|U † = UρU †.

• Measurement: For a measurement described by the operator Mm, if the sys-
tem initially occupies the state |ψi⟩, the probability of obtaining the measure-
ment result m is:

p(m|i) = ⟨ψi|M †
mMm |ψi⟩ = tr(M †

mMm |ψi⟩ ⟨ψi|).

The total probability of observing the outcome m is then:

p(m) =
Ø

i

p(m|i)pi = tr(M †
mMmρ).
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After measuring outcome m, the new density matrix is:

ρm = MmρM
†
m

tr(MmM
†
mρ)

.

1.4.2 General Properties
The set of all density operators is defined by the following characterization theorem:
Theorem 5. Characterization of Density Operators: An operator ρ represents a
density matrix corresponding to some ensemble {pi, |ψi⟩} if and only if it satisfies the
following conditions:

1. Trace Condition: ρ has trace one i.e. tr(ρ) = 1.

2. Positivity Condition: ρ is a positive semidefinite operator.

Using this theorem, we can redefine a density operator as a positive operator that has
trace equal to one acting on the state space of the system. Now, using this definition,
we can provide an alternative version of the four postulates of quantum mechanics in
terms of the density operator.

• Postulate 1: Every isolated quantum system has associated a complex vector
space equipped with an inner product, known as the state space. The system
is completely characterized by its density operator ρ, which is positive and
has trace equal to one. For an ensemble where the system is in state ρi with
probability pi, the density operator is ρ = q

i piρi.

• Postulate 2: The evolution of a closed quantum system is described by a
unitary transformation. If ρ1 represents the state of the system at time t1, then
the state ρ2 at time t2 is given by:

ρ2 = Uρ1U
†,

where U is a unitary operator that depends only on times t1 and t2.

• Postulate 3: Quantum measurements are represented by a set of measurement
operators {Mm}, where each Mm corresponds to a possible measurement out-
come m. For a system in state ρ, the probability of obtaining the outcome m
is given by:

p(m) = tr(M †
mMmρ),
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and the post-measurement state of the system is:

ρm = MmρM
†
m

tr(M †
mMmρ)

.

These operators satisfy the completeness relation:
Ø
m

M †
mMm = I.

Now we will try to answer an important question that arises: which ensembles of
states can produce a given density matrix? To address this, we introduce vectors
˜|ψi⟩, which are not necessarily normalized. These vectors are used to construct the

density operator as:
ρ =

Ø
i

˜|ψi⟩ ˜⟨ψi|.

The connection to the standard ensemble representation is given by ˜|ψi⟩ = √
pi |ψi⟩.

Then, under what conditions do two sets of vectors { ˜|ψi⟩} and { ˜|φi⟩} generate the
same density matrix ρ?

Theorem 6 (Unitary Freedom in the Ensemble Representation of Density Matrices).
Two sets of states { ˜|ψi⟩} and { ˜|φi⟩} generate the same density matrix ρ if and only
they satisfy this relation:

˜|ψi⟩ =
Ø

j

uij
˜|φj⟩,

here uij is a unitary matrix of complex coefficients. If the two ensembles have different
cardinalities, we pad the smaller one with zero vectors until both have the same number
of elements.

1.4.3 The Reduced Density Operator
In the context of composite quantum systems, the reduced density operator provides
a description of a subsystem’s state. For a system composed of two parts, A and B,
described by the density operator ρAB, the reduced density operator for system A is:

ρA = trB(ρAB),
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where trB is known as the partial trace over the system B. The partial trace is
explicitly defined for product states as:

trB (|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = |a1⟩ ⟨a2| tr(|b1⟩ ⟨b2|),

where |a1⟩ and |a2⟩ belong to the Hilbert space of subsystem A, and |b1⟩ and |b2⟩
belong to that of subsystem B.
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1.5 The Schmidt decomposition and purifications
We now discuss two foundational concepts in quantum information theory and quan-
tum computation: the Schmidt decomposition and the process of purification.

1.5.1 Schmidt Decomposition
Theorem 7 (Shmidt decomposition). For any pure quantum state |ψ⟩ of a composite
system AB, there exist orthonormal state |iA⟩ for subsystem A and |iB⟩ for subsystem
B such that:

|ψ⟩ =
Ø

i

λi |iA⟩ |iB⟩ , (1.34)

where λi are non-negative real numbers called the Schmidt coefficients, satisfying the
normalization condition q

i λ
2
i = 1.

This result is particularly useful in analyzing quantum systems. For a pure state |ψ⟩
of a composite system AB, the reduced density matrices for the subsystems A and B
can be written as:

ρA =
Ø

i

λ2
i |iA⟩⟨iA| , (1.35)

ρB =
Ø

i

λ2
i |iB⟩⟨iB| . (1.36)

This demonstrates that the eigenvalues of ρA and ρB are identical and equal to λ2
i .

This means that for a pure state of a composite system, properties determined by
the eigenvalues of the reduced density matrix are the same for both subsystems. The
orthonormal bases {|iA⟩} and {|iB⟩} are known as the Schmidt bases for subsystems
A and B, respectively. The number of non-zero Schmidt coefficients, λi, is referred
to as the Schmidt number of the state |ψ⟩. This quantity serves as a measure of
entanglement between subsystems A and B.

An important property of the Schmidt decomposition is that the Schmidt number
remains unchanged under unitary transformations applied to either subsystem A or
B individually. To see this, consider the Schmidt decomposition of |ψ⟩:

|ψ⟩ =
Ø

i

λi |iA⟩ |iB⟩ .

Applying a unitary operator U to subsystem A, the Schmidt decomposition of the
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state U |ψ⟩ will be:
U |ψ⟩ =

Ø
i

λi(U |iA⟩) |iB⟩ .

The new state retains the Schmidt decomposition structure, with the same Schmidt
coefficients λi.

1.5.2 Purification
Another key concept in quantum information theory is purification. Any mixed
state ρA of a quantum system A can be associated with a pure state |AR⟩ of an
extended system AR, where R is an auxiliary system known as the reference system.
This pure state is constructed such that:

ρA = trR(|AR⟩⟨AR|),

where trR denotes the partial trace over the reference system R. The reference system
has no physical interpretation and is introduced purely as a mathematical construct.
To demonstrate this, consider a mixed state ρA with an orthonormal decomposition:

ρA =
Ø

i

pi

---iAf eiA--- .
Introduce a reference system R with the same state space as A, and let {

---iRf} form
an orthonormal basis for R. Define a pure state for the combined system AR as:

|AR⟩ =
Ø

i

√
pi

---iAf ---iRf .
To verify that |AR⟩ purifies ρA, calculate the reduced density matrix for system A:

trR(|AR⟩⟨AR|) =
Ø
i,j

√
pipj

---iAf ejA
--- tr(---iRf ejR

---) (1.37)

=
Ø
i,j

√
pipj

---iAf ejA
--- δij (1.38)

=
Ø

i

pi

---iAf eiA--- (1.39)

= ρA. (1.40)
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Thus, |AR⟩ satisfies the condition for purification. The relationship between Schmidt
decomposition and purification is really important. When purifying a mixed state ρA,
the procedure involves constructing a pure state where the Schmidt basis for system
A is the eigenbasis of ρA, and the Schmidt coefficients are the square roots of the
eigenvalues of ρA.
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1.6 EPR and the Bell inequality
In classical physics, an object’s properties are well-defined and independent of ob-
servation. However, quantum mechanics introduces a different perspective: physical
properties often lack definite values until measurement. This concept is central to
quantum mechanics and challenges classical intuition. Einstein, Podolsky, and Rosen
(EPR) famously critiqued this interpretation, arguing that quantum mechanics was
incomplete. They proposed the concept of elements of reality: if the value of a phys-
ical property can be predicted with certainty without direct measurement, it must
correspond to an element of reality. To illustrate this concept we consider an entan-
gled pair of qubits shared between two parties Alice and Bob, represented by:

|01⟩ − |10⟩√
2

. (1.41)

If Alice measures the spin along the v⃗ direction, she determines Bob’s corresponding
spin with certainty. For instance, if Alice measures +1, Bob is guaranteed to measure
−1 when measuring along the same direction. This suggests that Alice is always able
to know the value of Bob’s measurement before he makes it. This implies that the
result is an element of reality and should be represented in any complete physical
theory according to the three scientists. Einstein, Podolsky, and Rosen wanted to
prove that quantum mechanics is incomplete. They argued that it was missing cer-
tain elements of reality, meaning things that exist whether we measure them or not.
Their goal was to bring back a more classical view of the world, where systems have
definite properties that don’t depend on measurements. However, experiments show
that this classical view is wrong and that quantum mechanics is correct. The main
idea behind this experimental proof is called the Bell Inequality. This result doesn’t
come from quantum mechanics itself. Instead, it is based on a thought experiment
that uses our everyday understanding of how the world works—something Einstein
believed nature followed. By looking at this idea, we will see that quantum mechanics
actually disagrees with it.

Thought experiment: Suppose we prepare two particles in such a way that we
are able to reproduce at wish this preparation, and we send one of them to Alice and
one to Bob. Alice possesses two different measurement apparatuses: one for the prop-
erty PQ and one for PR. For Bob the same thing happens, but he measures different
properties PS and PT . None of them know in advance which property is going to be
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measured over their particle, but they have to decide it based on a random event, like
a coin toss (both independently). We suppose also that all of these 4 properties can
only produce as output ±1. The timing of the two experiments should be such that
one’s result cannot influence the other’s so they must act in a causally disconnected
manner. We begin by analyzing the expression QS+RS+RT −QT , observing that:

QS +RS +RT −QT = (Q+R)S + (R −Q)T. (1.42)

Since R,Q ∈ {±1}, it follows that either (Q + R)S = 0 or (R − Q)T = 0. Conse-
quently, from (1.42), we deduce that QS +RS +RT −QT = ±2.

Now, let p(q, r, s, t) represents the probability that the system is initially in the state
characterized by Q = q, R = r, S = s, and T = t prior to any measurement. These
probabilities can depend on experimental conditions. Denoting the expectation value
of a quantity by E(·), we have:

E(QS +RS +RT −QT ) =
Ø

q,r,s,t

p(q, r, s, t)(qs+ rs+ rt− qt) (1.43)

≤
Ø

q,r,s,t

p(q, r, s, t) × 2 (1.44)

= 2. (1.45)

Additionally, we can write:

E(QS +RS +RT −QT ) =
Ø

q,r,s,t

p(q, r, s, t)qs+
Ø

q,r,s,t

p(q, r, s, t)rs (1.46)

+
Ø

q,r,s,t

p(q, r, s, t)rt−
Ø

q,r,s,t

p(q, r, s, t)qt (1.47)

= E(QS) + E(RS) + E(RT ) − E(QT ). (1.48)

Comparing (1.45) and (1.48), we derive the Bell inequality:

E(QS) + E(RS) + E(RT ) − E(QT ) ≤ 2. (1.49)

By repeating the experiment multiple times, Alice and Bob can determine the values
on the left-hand side of the inequality with arbitrary precision.
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Quantum Mechanical Experiment: Now we consider the preparation of the spe-
cific quantum state:

|ψ⟩ = |01⟩ − |10⟩√
2

. (1.50)

The first qubit is given to Alice, and the second qubit to Bob, they will perform
measurements of the following observables:

Q = Z1, S = −Z2 −X2√
2

, (1.51)

R = X1, T = Z2 −X2√
2

. (1.52)

Simple calculations give the following expectation values for these observables:

⟨QS⟩ = 1√
2
, ⟨RS⟩ = 1√

2
, (1.53)

⟨RT ⟩ = 1√
2
, ⟨QT ⟩ = − 1√

2
. (1.54)

Thus, we find:
⟨QS⟩ + ⟨RS⟩ + ⟨RT ⟩ − ⟨QT ⟩ = 2

√
2. (1.55)

This result violates the Bell inequality, and it can be experimentally confirmed.

The violation implies that at least one of the assumptions that we have made to get
the Bell inequality must be incorrect. The two best candidates are:

1. The assumption that physical properties PQ, PR, PS, PT have definite values Q,
R, S, T independent of observation. This is often referred to as the assumption
of realism.

2. The assumption that Alice’s measurement does not influence Bob’s measure-
ment outcome, and vice versa. This is known as locality.

Together, these two principles form the concept of local realism. The violation of Bell’s
inequality demonstrates that at least one of these assumptions must be incorrect.



Chapter 2

Mutual information bounds for
quantum systems

2.1 Introduction
In this section, we explore fundamental quantities from information theory, such as
mutual information and conditional mutual information, within the framework of
quantum systems. Our primary goal is to investigate how these quantities can be
estimated using only the observable characteristics of the system under study. This
approach aims to make these quantities more physically meaningful and accessible,
especially when direct computation is impractical. We focus on identifying rigorous
lower bounds for these information-theoretic quantities that are closely related to
quantum observables, such as correlation functions and operator average values. By
grounding these bounds in physical quantities, we aim to provide tools that can be
applied across a wide range of quantum systems, from many-body lattice models to
qubit systems. This perspective not only offers a concrete handle on total correlations
within a system but also helps reveal the minimal informational content that must ex-
ist given certain observable features. Through this approach, we seek to build a more
operational understanding of mutual and conditional mutual information in quantum
settings, one that connects theoretical quantities with the realities of experimental
and numerical analysis.

29
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2.2 Information theory
Information theory deals with the quantification, storage, and transmission of infor-
mation inside and between systems of various nature. Since Shannon’s foundational
work, the field has expanded significantly, shaping disciplines such as physics, com-
puter science, biology, and statistics. In our work, we use information theory to
explore correlation properties from a purely theoretical standpoint, as well as in the
context of specific physical systems. Through this lens, we will show how information-
theoretic quantities, introduced and discussed throughout, can be related to experi-
mentally observable quantities.

2.2.1 Self-Information and Entropy
The foundational concept in information theory is the self-information (also called
information content) of an event x [4]. Given that the probability of the event is
P (x), the self-information quantifies how surprising or informative that event is:

I(x) = − logb P (x) (2.1)

Here, the base b is typically taken to be 2, in which case the information is mea-
sured in bits. Intuitively, rare events (low P (x)) carry more information, while more
probable events convey less. Building on this, we define the Shannon entropy,
which captures the expected (average) self-information of a random variable X with
probability distribution P (x) and domain X :

H(X) = −
Ø
x∈X

P (x) logb P (x) (2.2)

Entropy serves as a quantitative measure of uncertainty or unpredictability in a sys-
tem. The greater the entropy, the more uncertain we are about the outcome; con-
versely, reducing entropy corresponds to gaining information. We now introduce some
really important quantity that derives from these concepts. For classical systems,
given two random variables X and Y we define the Joint Entropy as:

H(X, Y ) = −
Ø
x,y

P (x, y) logP (x, y) (2.3)
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And the Conditional Entropy as:

H(X|Y ) = −
Ø
x,y

P (x, y) logP (x|y) (2.4)

If we have two different distributions over the same domain X , namely P and Q, we
can define the Kullback-Leibler (KL) divergence between them as:

DKL(P∥Q) =
Ø
x∈X

P (x) log P (x)
Q(x) (2.5)

KL divergence measures how different the distribution Q is from the true distribution
P. It quantifies the expected amount of additional information (or "surprise") incurred
when using Q to approximate P. Although not a true distance metric, since it is not
symmetric and does not satisfy the triangle inequality, KL divergence is widely used
as a measure of dissimilarity between probability distributions.

These ideas can be extended naturally to quantum systems. In the quantum set-
ting, a system is described by a density matrix ρ, and the analogue of Shannon
entropy is the von Neumann Entropy:

S(ρ) = −Tr[ρ log ρ] (2.6)

The von Neumann entropy plays a central role in quantum information theory, quanti-
fying the uncertainty, or mixedness, of a quantum state. Like its classical counterpart,
it provides insight into the information content and correlations present in the system.

If we consider a quantum system composed of two subsystems, A and B. The full
system is described by the density matrix ρAB, while the reduced states of the sub-
systems are given by ρA = TrB[ρAB] and ρB = TrA[ρAB]. The Joint Entropy of the
system is then defined as:

S(AB) = −Tr[ρAB log ρAB] (2.7)

Which is simply the entropy of the total system A + B. We define also the Condi-
tional Entropy:

S(A|B) = S(AB) − S(B) (2.8)
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And finally an object that quantifies how hard it is to distinguish between two states,
and this is called Relative Entropy:

S(ρ||σ) = Tr[ρ(log(ρ) − log(σ))] (2.9)

Note: In the following, we will use the notations S(A) and S(ρA) interchangeably to
denote the Von Neumann entropy of quantum system A.

2.2.2 Mutual Information
In classical information theory, mutual information measures how much informa-
tion two random variables share. For two classical random variables X and Y with
joint probability distribution P (X, Y ), the mutual information is defined as:

I(X : Y ) =
Ø
x,y

P (x, y) log
A

P (x, y)
P (x)P (y)

B
(2.10)

This expression quantifies how much knowing the value of X reduces uncertainty
about Y , and vice versa. It can also be written in terms of Shannon entropies as:

I(X : Y ) = H(X) +H(Y ) −H(X, Y ) (2.11)

Mutual information is always non-negative, and equals zero if and only if X and Y

are independent, that is, if their joint distribution factors as P (x, y) = P (x)P (y).
In the quantum scenario, mutual information is defined analogously, but using the
von Neumann entropy instead of Shannon entropy. For a bipartite quantum system
described again by a joint density matrix ρAB, the quantum mutual information
is given by:

I(A : B) = S(A) + S(B) − S(AB) (2.12)

Just like in the classical case, quantum mutual information quantifies the total corre-
lations between subsystems, but in this setting, it captures both classical correlations
and uniquely quantum correlations, such as entanglement. It is a central quantity in
quantum information theory, playing key roles in communication, thermodynamics,
and entanglement theory.
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2.2.3 Conditional Mutual Information
In classical information theory, the conditional mutual information between three
random variables X, Y , and Z is defined as:

I(X : Y | Z) = H(X | Z) −H(X | Y, Z) (2.13)

where H(X | Z) is the conditional Shannon entropy. This expression quantifies how
much knowing Y helps reduce the uncertainty about X beyond what is already known
from Z. An equivalent expression in terms of entropy is:

I(X : Y | Z) = H(X,Z) +H(Y, Z) −H(Z) −H(X, Y, Z) (2.14)

this quantity plays a key role in understanding conditional dependencies. For exam-
ple, in a Markov chain X → Y → Z, we have:

I(X;Z | Y ) = 0

This indicates that once Y is known X provides no additional information about Z,
encapsulating the essence of the Markov property where the future is independent of
the past given the present. In this case, however, it reflects more of a spatial version
of the concept.

In the quantum setting, for a tripartite quantum state described by ρABC , the quan-
tum conditional mutual information is defined as:

I(A : B | C) = S(AC) + S(BC) − S(ABC) − S(C) (2.15)

This quantifies how much information subsystems A and B share, given knowledge
of subsystem C. It captures both classical and quantum correlations in the system
and quantifies its deviation from being Markovian.

Conditional mutual information in quantum systems is also fundamental in defin-
ing certain entanglement measures. The most prominent example is the squashed
entanglement [2] , defined for a bipartite quantum state ρAB as:

Esq(ρAB) = 1
2 inf

ρABC
I(A : B | C) (2.16)
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where the infimum is over all extensions ρABC such that TrC(ρABC) = ρAB. Thus,
CMI serves not just as a diagnostic for Markovianity, but also as a powerful tool in
quantifying entanglement.

We end this section stating two important relations that we will largely exploit later,
namely:

I(A : B|C) = I(A : BC) − I(A : C) (2.17)
I(A : B|C) = I(B : AC) − I(B : C) (2.18)

2.2.4 Subadditivity and Strong Subadditivity Theorems
In the quantum setting, the von Neumann entropy, shares many properties with the
Shannon entropy, among its most important structural properties are subadditivity
and strong subadditivity, both of which express fundamental constraints on the
entropic content of multipartite quantum systems.
Theorem 8 (Subadditivity). For any bipartite quantum state ρAB on the Hilbert
space HA ⊗ HB, the following inequality holds:

S(ρAB) ≤ S(ρA) + S(ρB)

with equality if and only if ρAB = ρA ⊗ ρB, i.e., the state is a product state.

Interpretation: Subadditivity tells us that the entropy of the joint system is less
than or equal to the sum of the entropies of its parts. If the two subsystems are
correlated, the joint entropy will be strictly less than the sum. This theorem also
implies that:

I(A : B) = S(ρA) + S(ρB) − S(ρAB) ≥ 0

Theorem 9 (Strong Subadditivity). For any tripartite quantum state ρABC, the fol-
lowing inequality holds:

S(ρABC) + S(ρC) ≤ S(ρAC) + S(ρBC)

This can be rewritten in terms of conditional mutual information:

I(A : B | C) = S(AC) + S(BC) − S(ABC) − S(C) ≥ 0 (2.19)
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Interpretation: Strong subadditivity is a profound and nontrivial property of quan-
tum entropy. It tells us that the conditional mutual information I(A : B | C) is always
nonnegative, meaning that our uncertainty about A when C and B are known is not
more than when only C is known. SSA captures this balance quantitatively and
reveals how information cannot be freely shared across multiple systems, a feature
that is fundamental to quantum mechanics and has deep implications for quantum
communication, cryptography, and the structure of multipartite entanglement. No-
tice that equality holds in the relation (2.19) if and only if the tripartite state forms
a quantum Markov chain: A → C → B.

2.2.5 Carlen-Lieb Extension of Strong Subadditivity Theo-
rem

A significant advancement in understanding quantum entropies is provided by Carlen
and Lieb, who introduced an important extension of the strong subadditivity theorem
[1]. Their result refines the conventional strong subadditivity inequality by presenting
a sharper lower bound involving explicitly entropic differences. Specifically, their
theorem is stated as follows.
Theorem 10 (Extended Strong Subadditivity [1]). For any tripartite quantum state
ρABC, the following strengthened inequality holds:

I(A : B | C) ≥ 2 max{S(ρA) − S(ρAB), S(ρB) − S(ρAB), 0}. (2.20)

Interpretation: The Carlen-Lieb extension offers a deeper insight into the struc-
ture of quantum correlations by connecting conditional mutual information directly
to entropic differences among subsystems. Classically, the entropy differences S(A)−
S(AB) and S(B)−S(AB) are always non-positive, and hence do not yield additional
insights. However, in the quantum setting, these conditional entropy differences can
become strictly positive, indicating a quantum regime characterized by entanglement.

Example:
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Consider the tripartite state

|ψ⟩ABC = 1√
2

(|000⟩ + |110⟩)

We compute two key quantities: S(A) − S(AB), and the conditional mutual in-
formation I(A : B|C), to illustrate the Carlen–Lieb inequality. First, we observe
that tracing out system C leaves AB in the pure Bell state |Φ+⟩ = 1√

2(|00⟩+|11⟩),
so S(AB) = 0. The reduced state of system A is maximally mixed, ρA = 1

2I,
and thus S(A) = 1. Therefore:

S(A) − S(AB) = 1.

This quantity is positive, which is a distinctly quantum phenomenon: in classical
information theory this wouldn’t be possible, signaling the presence of purely
quantum correlations. Next, we compute the conditional mutual information.
Since the global state is pure, S(ABC) = 0. The state ρC is also pure, thus
S(C) = 0. The reduced states ρAC and ρBC are each mixtures:

ρAC = 1
2(|00⟩⟨00| + |11⟩⟨11|), ρBC = 1

2(|00⟩⟨00| + |10⟩⟨10|),

and both have entropy S = 1. Therefore,

I(A : B|C) = 1 + 1 − 0 − 0 = 2.

We can conclude that in this case the bound provides extra information beyond
that of the standard strong subadditivity theorem.

An important implication of this extended inequality is related to entanglement mea-
sures. Carlen and Lieb [1] derived the following bound on squashed entanglement
Esq, demonstrating its fundamental relation to entropy differences:

Esq(ρAB) ≥ max{S(ρA) − S(ρAB), S(ρB) − S(ρAB), 0} (2.21)

This inequality asserts that significant deviations in entropy between the total and
individual subsystems necessarily indicate a non-trivial quantum entanglement.
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2.3 Lower Bound on N-Partite Mutual Informa-
tion

We now discuss the behavior of a full quantum system, which we consider to be
divided into two subsystems, A and B (these may also represent separate regions that
do not necessarily sum up to the entire system). The mutual information between
two subsystems, denoted by I(A : B), has already been defined. In 2008, M. M. Wolf
et al. [5] found an analytical lower bound for this quantity that depends only on the
average values of observables. Specifically, considering two observables, MA, acting
on subsystem A, and MB, acting on subsystem B, it can be shown that:

I(A : B) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 (2.22)

where C(MA,MB) = ⟨MA ⊗ MB⟩ − ⟨MA⟩⟨MB⟩ is the correlation function between
the two observables. This relation highlights the usefulness of mutual information
I(A : B) as a powerful measure of correlations, surpassing traditional correlation
functions C(MA,MB). Specifically, the inequality demonstrates that mutual infor-
mation captures all correlations, ensuring that even weak correlations are not over-
looked, unlike simpler measures, which may fail to detect quantum correlations.

Following this relation, the authors emphasize that if mutual information decays
exponentially, traditional correlation functions must also decay exponentially. There-
fore, mutual information serves as a reliable tool for defining correlation lengths in
quantum systems. This robustness makes mutual information particularly relevant
for the study of area laws, as the existence of a finite correlation length (quantified
through mutual information) rigorously implies an area-law scaling of the system’s
entropy. In this way, the relation effectively connects local, observable-based cor-
relations with a global information-theoretic measure, offering deeper insights into
complex many-body states.

Starting from this result, we have worked to generalize it to the case of N-partite
mutual information, defined as:

I(A1 : A2 : . . . : AN) = S(A1) + S(A2) + . . .+ S(AN) − S(A1A2 . . . AN) (2.23)
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and we found the relation:

I(A1 : A2 : . . . : AN) ≥

èeoN
i=1 MAi

f
−rN

i=1 ⟨MAi
⟩
é2

2rN
i=1 ∥MAi

∥2 (2.24)

Proof. It is a well known fact that, in the context of quantum information, mutual
information between different subsystems can be expressed as a relative entropy:

I(A1 : A2 : . . . : AN) = S(ρa1a2...aN
∥ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN

)

Here, ρai
with i ∈ [1, N ] is the reduced density matrix describing subsystem Ai,

obtained by tracing out all other subsystems. We now exploit Pinsker’s inequality,
which in this case reads:

S(ρa1a2...aN
∥ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN

) ≥ 1
2∥ρa1a2...aN

− ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN
∥2

1

Since this relation involves the trace norm ∥. . .∥1, we can apply the inequality ∥X∥1 ≥
Tr[XY ]

∥Y ∥ , where we have the freedom to choose Y . In our derivation, using Y = (MA1 ⊗
MA2 ⊗ . . .⊗MAN

), we find:

∥ρa1a2...aN
− ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN

∥1 (2.25)

≥ Tr[(ρa1a2...aN
− ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN

)(MA1 ⊗MA2 ⊗ . . .⊗MAN
)]

∥MA1∥∥MA2∥ · . . . · ∥MAN
∥

= Tr[ρa1a2...aN
(MA1 ⊗MA2 ⊗ . . .⊗MAN

) − ρa1 ⊗ ρa2 ⊗ . . .⊗ ρaN
(MA1 ⊗MA2 ⊗ . . .⊗MAN

)]
∥MA1∥∥MA2∥ · . . . · ∥MAN

∥

= ⟨MA1 ⊗MA2 ⊗ . . .⊗MAN
⟩ − ⟨MA1⟩ ⟨MA2⟩ · . . . · ⟨MAN

⟩
∥MA1∥∥MA2∥ · . . . · ∥MAN

∥

Combining these two inequalities, we find:

I(A1 : A2 : . . . : AN) ≥ (⟨MA1 ⊗MA2 ⊗ . . .⊗MAN
⟩ − ⟨MA1⟩ ⟨MA2⟩ · . . . · ⟨MAN

⟩)2

2(∥MA1∥∥MA2∥ · . . . · ∥MAN
∥)2

(2.26)
which is exactly expression (2.24).

Therefore, even when the system is partitioned into more than two parts, an analogous
lower bound to that presented in [5] holds for multipartite mutual information. This
result establishes a meaningful connection between local observable-based correlations
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and global information-theoretic quantities, offering valuable insight into the structure
of quantum correlations in complex many-body systems.



Chapter 3

Lower bounds on Conditional
Mutual Information

We now consider the behavior of the conditional mutual information. Given a quan-
tum system, we define three subsystems, A, B, and C, and aim to compute an
analytical lower bound for I(A : B|C). As explained in the Information Theory sec-
tion, this quantity represents the amount of information that B has about A that is
not already provided by C. In the quantum context, in particular, this quantity can
be used to quantify entanglement between A and B. Our objective is to strengthen
the strong subadditivity theorem by providing a lower bound that is positive and
strictly greater than zero at least in certain cases. This would allow us to use the
bound I(A : B|C) ≥ max(0,LB) rather than relying solely on the standard inequality
I(A : B|C) ≥ 0. Additionally, we aim to derive a lower bound that depends primar-
ily, or ideally, exclusively, on observable quantities. Such a result would provide an
effective tool for estimating entanglement in experimental or physical settings.

3.1 Trivial cases
We begin by identifying some trivial cases that do not require further analysis. These
are quantum states described by ρABC for which the conditional mutual information
satisfies I(A : B|C) = I(A : B). This can occur for two reasons:

• ρABC is a pure state: In this case, a straightforward computation shows that
I(A : B|C) = I(A : B). This result follows from the property that, for any pure

40
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quantum state bipartitioned as Z = X +Y , the two resulting subsystems carry
exactly the same amount of entropy, i.e., S(X) = S(Y ), regardless of subsystem
characteristics such as dimension. In our case, using relation (2.15), we obtain:

I(A : B|C) = S(AC) + S(BC) − S(ABC) − S(C)
= S(B) + S(A) − S(AB)

where we have also used the fact that S(ABC) = 0 for a pure state.

• The state is a product between AB and C: ρABC = ρAB ⊗ ρC : In this
case, we can use the fact that the entropy of a product state is additive:

S(ρX ⊗ ρY ) = − TrXY [(ρX ⊗ ρY ) log(ρX ⊗ ρY )]
= − TrX [ρX log(ρX)] − TrY [ρY log(ρY )]
= S(X) + S(Y )

Applying this property to our case yields S(ABC) = S(AB) + S(C), which,
when substituted into relation (2.15), again leads to I(A : B|C) = I(A : B), for
every choice of ρAB mixed or pure.

In both of these cases, we can trivially conclude that the lower bound for the condi-
tional mutual information reduces to the one given in (2.22). Thus, we can write:

I(A : B|C) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 (3.1)

3.2 Non-Trivial Cases
We now seek to derive a non-trivial lower bound that is useful for highly correlated
states, namely, non-product mixed states. To this end, we start by exploiting relations
(2.17) and (2.18) to write:

I(A : B|C) = 1
2 (I(A : BC) − I(A : C) + I(B : AC) − I(B : C)) (3.2)

It is well known that tracing out any degrees of freedom can only reduce mutual
information. That is, given a purified state ρABCD such that ρABC = TrD[ρABCD], we
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always have:
I(A : C) ≤ I(AD : C) (3.3)

Now, focusing on the negative terms in equation (3.2), we can write:

−[I(A : C) + I(B : C)] ≥ −[I(AD : C) + I(B : C)]
= −[S(AD) + S(C) − S(ADC) + S(B) + S(C) − S(BC)]
= −[S(BC) + S(C) − S(B) + S(B) + S(C) − S(BC)]
= −2S(C)

Substituting this back into equation (3.2), we obtain:

I(A : B|C) ≥ 1
2 (I(A : BC) + I(B : AC) − 2S(C)) (3.4)

Next, by applying the lower bound from equation (2.22) to both I(A : BC) and
I(B : AC), we arrive at:

I(A : B|C) ≥ 1
2

A
C(MA,MBC)2

2∥MA∥2∥MBC∥2 + C(MAC ,MB)2

2∥MAC∥2∥MB∥2 − 2S(C)
B

(3.5)

Where MAC and MBC are generic operators on systems ρAC and on ρBC , that can be
defined as:

MAC =
Ø

i

ri(MAi
⊗MCi

)

MBC =
Ø

i

si(MBi
⊗MCi

)

Defining the right-hand side of the inequality (3.5) as LB(MA,MB,MAC ,MBC , S(C)),
we can state the following result:

Theorem 11. Given a quantum system partitioned into three subsystems A, B, and
C, the following inequality always holds:

I(A : B|C) ≥ max(0, LB(MA,MB,MAC ,MBC , S(C)))
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3.3 Testing the Effectiveness of the Lower Bound
We now aim to determine whether there exist actual non-trivial quantum states for
which LB is positive, indicating that it serves as a useful lower bound. It is easy
to observe that this behavior is governed by the competition between the two pos-
itive, observable-dependent terms and the negative entropic term in equation (3.5).
To better characterize the behavior of different quantum states, we divide them into
distinct categories and analyze each separately. In the following we consider states
to be simple qubit states, doing so we will work with an 8 dimensional Hilbert space
for the full 3-qubits system A, B and C.

• Almost Product States: In this case, we define the full quantum state as:

ρABC = P (ρAB ⊗ |0⟩ ⟨0|) + (1 − P )(ρAB ⊗ |1⟩ ⟨1|) (3.6)

where P is a probability. To qualify as an almost product state, P must be close
to either 0 or 1. We also choose ρAB to be a randomly generated mixed state, so
that the full state ρABC is mixed as well, thus possessing non-trivial quantum
correlations. C instead is in a simple known state like |0⟩ ⟨0| or |1⟩ ⟨1|. These
are low entropy states. For a fixed value of P , we generate approximately ten
thousands such states and examine how many of them yield a positive value for
LB (see Fig. 3.1).

Figure 3.1: Distribution of LB values for almost product states
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It is clear that for these simple states, the value of S(C) is entirely determined
by P . Indeed, we have:

ρC = P |0⟩ ⟨0| + (1 − P ) |1⟩ ⟨1|

which yields:
S(C) = −P log(P ) − (1 − P ) log(1 − P )

This entropy acts as a constant shift applied to the sum of the two positive
terms in equation (3.5). If this shift is not large enough to overpower the
contributions from the observables, the bound LB remains positive, resulting in
a meaningful lower bound. Fixing P = 0.99, this occurs for approximately 20%
of the generated states. In Fig. 3.2, we can see the validity of our inequality
for some of these states. Each point represents a state, with its I(A : B|C)
value plotted against its corresponding (positive) LB value. The diagonal line
indicates where I(A : B|C) = LB exactly. Here we can clearly observe that
these quantum states deviate from a purely Markovian system, and our lower
bound serves as a clear indicator of this behavior.

Figure 3.2: I(A : B|C) vs. LB values for almost product states with P = 0.99

Based on these results, we conclude that for almost product states of the form
considered here, the bound given by equation (3.5) provides a valid refinement of
the strong subadditivity theorem in a modest but significant portion of random
states.

• Random-P States: In this case, we still use a fixed structure for subsystem
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C, and the full state retains the same form as before:

ρABC = P (ρAB ⊗ |0⟩ ⟨0|) + (1 − P )(ρAB ⊗ |1⟩ ⟨1|)

However, unlike in the previous analysis, we now allow P to vary across its
entire range, P ∈ [0, 1]. This means that the entropy term S(C) will vary from
state to state ranging from zero up to its maximum at P = 1

2 , corresponding
to a maximally mixed state. To better characterize the behavior of the bound
LB(MA,MB,MAC ,MBC , S(C)), we do not sample P uniformly. Instead, we
generate P values such that the resulting distribution of S(C) is uniform. Nat-
urally, in this setting we still encounter states for which LB is positive—simply
because, with sufficiently high probability, P will occasionally be near 0.99,
effectively reproducing the "almost product" scenario.

What is more interesting in this case is to analyze which states yield a positive
LB, especially with respect to parameters that were previously fixed, namely,
the entropy S(C) and the purity of the full state.

Figure 3.3: S(C) values for all states and for positive LB states

In Fig. 3.3, we show that the distribution of S(C) is indeed uniform, while the
subset of states for which LB is positive is mostly localized towards low S(C).

In Fig. 3.4, we present the purity distribution for the same set of states. As
expected, those with positive LB tend to have higher purity values.

To produce these figures, we simulated approximately 5 × 103 random quantum
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Figure 3.4: Purity values for all states and for positive LB states

states of the form given in equation (3.6), with P randomly generated to ensure
uniformity in S(C). We found that approximately 5% of the generated states
exhibited a strictly positive lower bound. Thus, we conclude that Theorem
(11) provides a non-trivial refinement of the strong subadditivity inequality in
a small but significant number of cases.

• Completely Random States: In this final case, we consider fully random
and mixed states, constructed as follows:

ρABC = P (ρABC) + (1 − P )(σABC) (3.7)

where both ρABC and σABC are pure tripartite states. Using these two pure
states, we generate a mixed state as done previously, with P acting as a mixing
parameter. In this scenario, the entropy S(C) depends not only on the value of
P but also on the randomly sampled reduced state ρC . As a result, the influence
of P on determining the positivity of LB is significantly diminished.

We conducted simulations similar to those in the previous sections, now using
a Dirichlet distribution for P :

f(P ) = 1
B(α1, α2)

· Pα1−1 · (1 − P )α2−1 (3.8)

where:
B(α1, α2) = Γ(α1) · Γ(α2)

Γ(α1 + α2)
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Figure 3.5: LB values for α1 = α2 = 0.1

In Fig. 3.5, we show the LB values for the case α1 = α2 = 0.1. Here, the
distribution of P is strongly skewed toward the extremes, favoring high-purity
(though still mixed) states. Under these conditions, we found that approxi-
mately 0.4% of the generated states exhibit a positive value for LB.

Figure 3.6: LB values for α1 = α2 = 1

In Fig. 3.6, we set both α1 and α2 to 1, resulting in a uniform distribution
for P . This case represents the most general scenario. Here, we observed that
approximately 0.02% of the sampled states yield a positive value of LB.
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These numerical investigations demonstrate that the proposed lower bound:

LB(MA,MB,MAC ,MBC , S(C)) = 1
2

A
C(MA,MBC)2

2∥MA∥2∥MBC∥2 + C(MAC ,MB)2

2∥MAC∥2∥MB∥2 − 2S(C)
B

offers a meaningful refinement of the strong subadditivity inequality in several non-
trivial scenarios. For almost product states, where the entropy S(C) is minimal and
well-controlled, the bound is positive in approximately 20% of randomly generated
cases, clearly validating its effectiveness in detecting correlations beyond the trivial
regime. When generalizing to Random-P states with uniformly distributed entropies,
the positivity rate drops to around 5%, but still reveals a clear preference for states
with lower S(C) and higher purity, confirming that the bound remains informative in
broader settings. Finally, for completely random mixed states, constructed via convex
combinations of pure tripartite states, the bound remains positive in a small fraction
of cases, about 0.4% under skewed Dirichlet-distributed P , and around 0.02% with
uniform mixing, demonstrating that even in highly generic situations, the inequality
captures non-trivial structure.



Chapter 4

Conditioning-System Independent
Lower Bounds

In this section, we aim to exploit the Carlen–Lieb extension of the Strong Subadditiv-
ity theorem to find a lower bound on the conditional mutual information I(A : B|C)
that depends only on observable quantities over systems A and B. We arrive at the
relation:

I(A : B | C) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 + f(⟨V ⟩ρAB⊗ρAB
, d) (4.1)

where MA and MB are generic observables over systems A and B, V is the Swap
Operator evaluated on the system AB and d is the dimension of that system. In
this case the function f(⟨V ⟩ρAB⊗ρAB

, d) is defined as:

f(⟨V ⟩ρAB⊗ρAB
) =

53
1 − 1

d
−K(d, ⟨V ⟩ρAB⊗ρAB

)
4

log
3

1 − 1
d

−K(d, ⟨V ⟩ρAB⊗ρAB
))
4

+
31
d

+K(d, ⟨V ⟩ρAB⊗ρAB
)
4

log
31
d

+K(d, ⟨V ⟩ρAB⊗ρAB
)
46

and

K(d, ⟨V ⟩ρAB⊗ρAB
) =

öõõôAd− 1
d

B3
⟨V ⟩ρAB⊗ρAB

− 1
d

4

Proof. We begin with the Carlen–Lieb inequality [1]:

I(A : B | C) ≥ 2 max{0, S(A) − S(AB), S(B) − S(AB)}

49
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from which we deduce:

I(A : B | C)
2 ≥ 2S(A) − S(AB)

2
I(A : B | C)

2 ≥ 2S(B) − S(AB)
2

Adding the two, we obtain:

I(A : B | C) ≥ S(A) + S(B) − 2S(AB)
= I(A : B) − S(AB)
= S(ρAB ∥ ρA ⊗ ρB) − S(AB)

We now apply the same inequality used in proving equation (2.24):

S(ρAB ∥ ρA ⊗ ρB) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 ,

As we can see, this term of the relation depends only on the observables MA and MB,
so our remaining task is to express the entropic term S(AB) in terms of observables as
well. It has been shown [6] that this can be done finding a lower bound to −S(AB),
that depends only on the dimension of the system AB, which we call d, and the
Purity γ of that system. In fact, one can write:

−S(AB) ≥

1 − 1
d

−

öõõôAd− 1
d

B3
γ − 1

d

4 log
1 − 1

d
−

öõõôAd− 1
d

B3
γ − 1

d

4
+
1
d

+

öõõôAd− 1
d

B3
γ − 1

d

4 log
1
d

+

öõõôAd− 1
d

B3
γ − 1

d

4

For the final step we use the fact that the purity of a quantum state can be written
as the expectation value of the Swap operator V . For a generic state ρ, we have:

γ = Tr[ρ2] = Tr[V (ρ⊗ ρ)] = ⟨V ⟩ρ⊗ρ. (4.2)

(See Section 4.2.) Substituting this into the previous expression yields the bound in
equation (4.1).
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Note: In all these derivations, we have used the Swap operator V , defined either in
equation (4.8) or (4.7), depending on the context. In any case, it can be expressed as
a sum of simple spin observables

4.1 Numerical Analysis
In this section, we aim to test whether the newly derived lower bounds for the condi-
tional mutual information I(A : B|C) remain non-negative for a relevant number of
randomly generated mixed states. As before, we construct states by considering fully
random and mixed combinations:

ρABC = P (ηABC) + (1 − P )(σABC), (4.3)

where both ηABC and σABC are pure tripartite states. The values of P are drawn
from a Dirichlet distribution (3.8). We vary the parameters α1 and α2 to sample
states with different purity characteristics. For α1 = α2 = α = 1, the P -distribution
is uniform, while for α1 = α2 = α = 0.1, the distribution is skewed toward the
extremes, favoring higher purity. (In image 4.1, we show the purity distributions
obtained through this method.)

Figure 4.1: Purity distribution
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We are now ready to test the bound derived in the previous section namely:

I(A : B | C) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 + f(⟨V ⟩ρAB⊗ρAB
, d) = LB(MA,MB, V ), (4.4)

For this analysis, we have used 3-qubit systems for ρABC , consequently, the dimension
d in these relations referring to ρAB is set to 2. In this specific case the function
f(⟨V ⟩ρAB⊗ρAB

, d) takes the simpler form:

f(γ) =
1

2 −
ó

1
2

3
γ − 1

2

4 log
1

2 −
ó

1
2

3
γ − 1

2

4 (4.5)

+
1

2 +
ó

1
2

3
γ − 1

2

4 log
1

2 +
ó

1
2

3
γ − 1

2

4 (4.6)

Where, of course, we have again γ = ⟨V ⟩ρAB⊗ρAB
. Moreover, the set of quantum

states over which the study was carried out comprised approximately 5000 states.

Results:

For LB(MA,MB, V ), using MA = MB = σz, we find that for α = 1, 1.22% of
the states yield a positive bound, while for α = 0.1, this increases to 5.1%. The
corresponding values are illustrated in image 4.2.

4.2 Swap Operators
We use this section to prove that we can find a swap operator V that satisfies the
relation (4.2) for both 2 and 4 dimensional Hilbert space states.

2D Hilbert space: in this case ρ ∈ C2×2, then, V can be written in terms of
Pauli operators as:

V = 1
2(I ⊗ I + σz ⊗ σz + σx ⊗ σx + σy ⊗ σy) (4.7)
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Figure 4.2: Mixed Observables Lower Bound Values

To show (4.2) we use the Bloch vector representation of the density matrix: ρ =
1
2(I + r⃗ · σ⃗):

Tr[ρ2] = Tr
51
4(I + 2r⃗ · σ⃗ + (r⃗ · σ⃗)2)

6
Now using the fact that:

• (r⃗ · σ⃗)2 = ∥r⃗∥2I

• Tr[r⃗ · σ⃗] = Tr[rxσx] + Tr[ryσy] + Tr[rzσz] = 0

We find the relation:
Tr[ρ2] = 1

2(1 + ∥r⃗∥2)

Going back to the expression for the Swap operator V we have:

Tr[V (ρ⊗ ρ)] = 1
2 (Tr[(I ⊗ I)(ρ⊗ ρ)] + Tr[(σx ⊗ σx)(ρ⊗ ρ)]

+ Tr[(σy ⊗ σy)(ρ⊗ ρ)] + Tr[(σz ⊗ σz)(ρ⊗ ρ)])

= 1
2
1
Tr[ρ] · Tr[ρ] + Tr[σxρ]2 + Tr[σyρ]2 + Tr[σzρ]2

2
= 1

2
1
1 + Tr[σxρ]2 + Tr[σyρ]2 + Tr[σzρ]2

2
And since Tr[ρσi] = ri ∀i:
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Tr[V (ρ⊗ ρ)] = 1
2(1 + ∥r⃗∥2) = Tr[ρ2]

4D Hilbert Space: Let ρ ∈ C4×4 be the density matrix of a two-qubit system.
Now V will be:

V = 1
4

Ø
i,j∈{0,x,y,z}

σi ⊗ σj ⊗ σi ⊗ σj (4.8)

We aim to prove that also in this case:

Tr[V (ρ⊗ ρ)] = Tr[ρ2].

To do this we start by noticing that any 2-qubit operator ρ ∈ C4×4 can be expanded
in the Pauli basis as:

ρ =
3Ø

i,j=0
rij σi ⊗ σj,

where the coefficients are given by:

rij = 1
4Tr[ρ(σi ⊗ σj)]

This is possible because the 16 operators σi⊗σj form an orthonormal basis for 2-qubit
operators under the Hilbert-Schmidt inner product. (from now on σ0 = I, σ1 = σx,
σ2 = σy, σ3 = σz)

Using the expansion, the tensor product ρ⊗ ρ becomes:

ρ⊗ ρ =
3Ø

i,j,k,l=0
rijrkl σi ⊗ σj ⊗ σk ⊗ σl

Now we compute:

Tr[V (ρ⊗ ρ)] = 1
4

3Ø
m,n=0

Tr
(σm ⊗ σn ⊗ σm ⊗ σn) ·

3Ø
i,j,k,l=0

rijrkl σi ⊗ σj ⊗ σk ⊗ σl



= 1
4

3Ø
i,j,k,l=0

3Ø
m,n=0

rijrkl Tr [σmσi ⊗ σnσj ⊗ σmσk ⊗ σnσl]
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Using trace factorization:

Tr[A⊗B ⊗ C ⊗D] = Tr[A] Tr[B] Tr[C] Tr[D]

and the property of Pauli matrices:

Tr[σaσb] = 2δab

we get:

Tr [σmσi ⊗ σnσj ⊗ σmσk ⊗ σnσl] = 2δmi · 2δnj · 2δmk · 2δnl = 16δmiδmkδnjδnl

This enforces m = i = k and n = j = l, so only terms with i = k, j = l survive.
Thus:

Tr[V (ρ⊗ ρ)] = 1
4

3Ø
i,j=0

r2
ij · 16 = 4

3Ø
i,j=0

r2
ij (4.9)

Now we compute the purity using again the Pauli expansion:

Tr[ρ2] = Tr


 3Ø

i,j=0
rijσi ⊗ σj

2
 =

3Ø
i,j,k,l=0

rijrkl Tr[(σiσk) ⊗ (σjσl)]

We notice that only terms with i = k and j = l survive, giving:

Tr[ρ2] =
3Ø

i,j=0
r2

ij · Tr[σ2
i ] · Tr[σ2

j ] =
3Ø

i,j=0
r2

ij · 2 · 2 = 4
3Ø

i,j=0
r2

ij

Which is exactly equal to (4.9), therefore,

Tr[V (ρ⊗ ρ)] = Tr[ρ2].
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4.3 Summary of results
In this final section, we summarize all the lower bounds to the conditional mutual
information I(A : B|C) derived in this chapter, along with the most significant results
from our numerical tests. The bounds presented are:

•

I(A : B|C) ≥ 1
2

A
C(MA,MBC)2

2∥MA∥2∥MB∥2∥MC∥2 + C(MAC ,MB)2

2∥MA∥2∥MB∥2∥MC∥2 − 2S(C)
B

= LB(MA,MB,MAC ,MBC , S(C))

•
I(A : B | C) ≥ C(MA,MB)2

2∥MA∥2∥MB∥2 + f(⟨V ⟩ρAB⊗ρAB
, d)

= LB(MA,MB, V )

The table below presents the percentage of randomly generated states (for different
Dirichlet parameters α) for which each bound yields a positive value:

Bound α = 1 α = 0.1

LB(MA,MB,MAC ,MBC , S(C)) 0.02% 0.4%

LB(MA,MB, V ) 1.2% 5.1%

Table 4.1: Positivity test results for different α values and bounds

The results in Table 4.1 highlight how the effectiveness of each lower bound varies
with the purity of the sampled states, controlled by the Dirichlet parameter α. An
important feature of the latest bound, namely LB(MA,MB, V ), is that it is inde-
pendent of the conditioning system C, and rely only on observable quantities over
subsystems A and B. This allows for experimentally feasible estimation of quantum
correlations.
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A key implication of these results lies in their connection to entanglement measures.
Since each of the proposed lower bounds provides a guaranteed floor for the con-
ditional mutual information I(A : B|C), they also translate into lower bounds for
known entanglement quantifiers. Specifically, they imply:

Esq(ρAB) ≥ max{LB(MA,MB,MAC ,MBC , S(C)), LB(MA,MB, V ), 0} (4.10)

In summary, the lower bounds derived and tested in this chapter offer both theoretical
insight and potential practical relevance. Their independence from the conditioning
system in some cases, along with their formulation in terms of experimentally accessi-
ble quantities, suggests that they could serve as useful tools in quantum information
settings, especially in situations where the system size is large, making the direct
study of a density matrix inconvenient.
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