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Summary

Automated GUI testing is essential in contemporary Android development, yet it is notoriously
fragile, particularly when utilizing dynamic frameworks like Jetpack Compose. Even minor
changes to the UI frequently cause test failures, resulting in continuous integration pipelines
being overwhelmed with false positives and developers facing expensive maintenance efforts.
This thesis introduces a developer-in-the-loop approach leveraging Large Language Models
(LLMs)—specifically GitHub Copilot combined with Claude 3.7 Sonnet—as a zero-shot test repair
agent embedded within Android Studio. By examining IDE context, this strategy effectively
repairs broken selectors, modifies test oracles, and preserves test logic after GUI modifications.
An empirical assessment of this technique was conducted on the Bitwarden for Android mobile
application, an open-source project with 1083 GUI tests. The analysis covered two recent
versions of the application, identifying test failures and applying the LLM to address these issues.
The study investigates test fragility (RQ1), the effectiveness of zero-shot LLM-based repairs
(RQ2), additional benefits from retrying prompts (RQ3), and improvements resulting from brief
developer interactions (RQ4). Findings demonstrate that a single zero-shot prompt can restore
a notable number of failing tests, greatly decreasing manual repair efforts. Additional prompt
retries yielded marginal further improvements, whereas limited developer intervention significantly
boosted recovery effectiveness. These results highlight that incorporating LLM-driven methods
substantially reduces the maintenance workload associated with GUI test suites, improving
resilience to frequent UI changes in Jetpack Compose applications. Subsequent research will
continue refining LLM integration and examining its broader practical applications.
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Glossary

Capture & Replay A testing technique that records (captures) user interactions with the GUI,
then later replays these interactions automatically.

Composable Function A fundamental building block in Jetpack Compose that declares part
of the user interface in Kotlin code. Each composable manages its own state and can be
nested or combined to form complex UIs.

Compose Testing API A set of tools provided by Jetpack Compose for writing UI tests in
Kotlin. It allows developers to simulate user interactions, assert UI properties, and verify
behavior of composable functions in isolation or as part of a complete screen.

Failed Error Propagation A situation in which an internal error in a program does not
manifest in the external output or behavior.

Flakiness A property of tests that yield inconsistent results across repeated runs, even when
the tested code does not change.

Gamification The integration of game design elements—such as scoring systems, badges, and
leaderboards—into non-game contexts to enhance user engagement, motivation, and partic-
ipation.

Jetpack Compose A modern, declarative UI toolkit for Android that uses composable functions
to define and render interface elements.

Mutation Testing A method for assessing test quality and improving oracles by introducing
artificial faults (mutants) into the code.

ViewModel A lifecycle-aware component in Android’s architecture that stores and manages
UI-related data, survives configuration changes, and helps separate business logic from UI
controllers such as activities, fragments, or composables.
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Chapter 1

Introduction

Software testing is the process of operating a system or component under specified conditions,
observing or recording the results, and evaluating various aspects of the system or component [1].
It is widely recognized as a cornerstone of software development, playing a pivotal role in
ensuring reliability, robustness, functionality, and user satisfaction throughout an application’s
lifecycle [2, 3]. Effective testing not only catches defects early but also helps prevent issues from
escalating, thereby reducing development costs, improving maintainability, and extending software
longevity [2, 3].

Among the broad spectrum of testing methodologies, Graphical User Interface (GUI) testing
is of particular importance because it directly evaluates how end-users interact with the visible
elements of an application. GUI testing verifies that user-facing components function as intended,
respond appropriately to user actions, and align with design and functional requirements [4].
In addition, GUI testing uncovers usability and accessibility concerns, facilitating iterative
improvements in interface design and overall user experience.

Despite its importance, GUI testing for modern mobile platforms—and Android in particular—
remains notoriously fragile [4–6]. Minor modifications—such as relocating a button, renaming a
Composable Function, or shifting a ViewModel field—routinely break tests, flooding Continuous
Integration (CI) pipelines with false alarms and forcing developers into an expensive repair
cycle[5–7]. The challenge is aggravated by (i) Android’s fragmented device landscape [7], (ii)
Jetpack Compose’s highly dynamic, state-driven rendering paradigm [8], and (iii) the oracle
problem, whereby the expected outcome of a test must evolve in lock-step with a changing GUI [3,
9]. Together, these factors create a moving target in which even well-engineered suites quickly
drift out of sync with the product they are meant to test and protect.

To tackle this long-standing problem, the software-testing community has proposed a wealth
of techniques ranging from robust oracles to automatic locator updates and visual comparison
heuristics [6, 10]. However, those techniques typically treat tests as static artifacts whose
fragility must be anticipated at design time. In contrast, this thesis explores a lightweight,
developer-in-the-loop workflow that leverages recent advances in Large Language Models (LLMs)
to heal fragile Android GUI tests after they break, thus keeping their code, selectors, and
oracles up-to-date with new versions of the Application Under Test (AUT).
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Motivation and Challenges
Android’s Fragmented Ecosystem
Android [11]—Google’s mobile operating system—runs on an extraordinarily heterogeneous set of
devices, including smartphones, tablets, wearables, televisions, and even automotive infotainment
systems [12]. Released under the permissive Apache License 2.0 [13], Android allows manufacturers
and developers to freely modify and extend the platform. While this flexibility fosters innovation,
it also produces a highly fragmented ecosystem: different devices may run different Operative
System (OS) versions, custom vendor skins, or bespoke hardware configurations. For GUI testing,
such diversity translates into a combinatorial explosion of execution contexts in which fragile
selectors, timing assumptions, and layout variations become primary sources of false positives
and maintenance overhead [6, 7].

GUI Test Fragility
A key challenge in Android GUI testing is test fragility. Even minor changes to the interface—such
as relocating a button or altering a Composable function—can break previously stable test
scripts, causing false alarms and necessitating manual updates [5]. This challenge is further
amplified by User Interface (UI) toolkits like Jetpack Compose, which employs declarative, state-
driven rendering. Although Jetpack Compose streamlines UI development, its fluid approach to
composable hierarchies can increase the volatility of test scripts that rely on rigid or outdated
references. Mitigating fragility requires carefully designed oracles and testing strategies that can
adapt to changing interfaces without requiring continuous human intervention.

Oracle Maintenance in GUI Testing
Oracle maintenance involves the continual evolution of the mechanism that determines whether
an observed behavior matches the expected outcome. Oracles must be updated over time to
reflect evolving requirements, design tweaks, or shifts in internal application logic—especially
in a platform as dynamic as Android. Traditional oracles often rely on precise references (e.g.,
strict layout IDs or pixel-perfect comparisons) that can become invalid with even slight UI
modifications [10]. Consequently, designers of GUI testing frameworks must address the so-
called oracle problem, where achieving a balance between completeness (detecting all faults) and
soundness (reporting only real faults) remains notoriously difficult.

Emergence of Large Language Models
Large Language Models—such as Generative Pre-training Transformer (GPT)-based architec-
tures—have recently achieved remarkable performance in code completion, program synthesis,
and natural-language reasoning [14]. Their ability to infer context, generate coherent code, and
incorporate fresh knowledge positions them as promising allies for reducing fragility and automat-
ing oracle maintenance. By analysing source code, application state, and textual descriptions of
desired behaviours, LLMs can potentially propose flexible, context-aware fixes, thereby reducing
manual maintenance tasks while retaining developer oversight.

Developer-in-the-Loop LLM-Based Repair Workflow
Building on these observations, this thesis adopts a developer-in-the-loop workflow in which the
engineer—assisted by GitHub Copilot and Claude 3.7 Sonnet inside Android Studio—incrementally
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repairs GUI tests whenever they fail to compile or run. The process unfolds in four lightweight
steps:

(i) context harvesting, where error traces, neighbouring code, and relevant resources are
gathered from the IDE;

(ii) selector healing, which updates brittle locators (e.g., semantic tags or accessibility labels)
so that they match the current Application Under Test (AUT);

(iii) oracle adjustment, where expected outcomes are re-aligned with the live GUI hierarchy
and assertions are patched accordingly;

(iv) intent preservation, ensuring that identifiers, comments, and the original test semantics
remain intact for future readability.

Applied to the Bitwarden Android application1, this workflow restored 55% of the 1 083 tests
that were initially broken or failing, demonstrating that on-demand LLM assistance can be an
effective, low-overhead complement to existing test-automation pipelines.

Thesis Goal and Approach
The overarching goal of this thesis is to investigate how a context-aware, LLM-based approach can
mitigate fragmentation and fragility in Android GUI testing while reducing oracle-maintenance
effort. Concretely, the thesis aims to:

• Design a developer-in-the-loop workflow that leverages LLMs to heal fragile selectors and
oracles post hoc, rather than attempting to foresee every future change

• Integrate the workflow seamlessly into existing Android-Studio workflows using off-the-shelf
tooling (GitHub Copilot and Claude)

• Empirically assess effectiveness, stability, and human effort across multiple releases of a
real-world Android application

• Provide actionable guidelines for practitioners and a roadmap for future research in
LLM-driven GUI testing

The investigation is guided by the following Research Questions (RQs):

RQ1: Baseline Suite Fragility

RQ2: Zero-Shot LLM Repair Effectiveness

RQ3: Zero-Shot Retry Gain

RQ4: Chain-of-Thought Repair Effectiveness

1https://github.com/bitwarden/android
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Thesis Outline
Chapter 2 (Background) surveys the state of the art in Android GUI testing, the oracle
problem, and recent advances in Large Language Models (LLMs). It establishes the theoretical
foundations and highlights the open challenges that motivate the present work.
Chapter 3 (Methodology) details the research design. It introduces the Goal-Question-Metric
(GQM) framework that structures the study, explains the selection of the Bitwarden Android app,
describes the cross-version test-suite extraction process, and outlines the LLM-assisted repair
pipeline evaluated in the experiments.
Chapter 4 (Results) presents the empirical findings for each of the four research questions. It
reports baseline fragility, zero-shot repair effectiveness, the marginal gains from a retry strategy,
and the impact of a brief chain-of-thought dialogue with the LLM.
Chapter 5 (Discussion) interprets the results, analysing their implications for practitioners and
researchers. It examines factors that influence repair success—such as test-class size and context-
window limits—and positions the contributions within the broader literature on automated GUI
testing.
Chapter 6 (Conclusion) summarises the main contributions of the thesis, reflects on its
limitations, and distils practical guidelines for integrating LLM-based repair into continuous-
integration pipelines.
Finally, Chapter 7– (Future Work) outlines several avenues for further investigation, including
broader empirical replication, commit-level longitudinal studies, advanced prompting strategies,
autonomous repair agents, and oracle co-evolution.

17



Chapter 2

Background

This chapter outlines the related work and essential background knowledge required to understand
this research on oracle maintenance for Android GUI testing leveraging LLMs.

2.1 GUI testing fragility
Modern software interfaces continuously evolve to address changing user expectations, introduce
new functionalities, and align with emerging design trends. Nevertheless, the dynamic nature of
such iteration introduces significant challenges to the stability and effectiveness of GUI testing
efforts. Even minor modifications in GUI design, such as altering the placement of buttons or
revising visual styling, can trigger failures in previously stable test scripts, increasing test fragility
and the burden of maintenance [5]. Additionally, GUIs inherently support flexible user interactions,
enabling users to perform numerous events in unpredictable sequences. This interactivity amplifies
complexity during both test creation and maintenance, demanding consideration of various user
paths that might break with small code or design updates.

2.1.1 Core causes of fragile GUI tests
GUI testing fragility often stems from the strong coupling between automated test scripts
and specific visual or structural attributes of the interface. Traditional GUI testing method-
ologies frequently rely upon rigid, fixed locators such as hard-coded IDs, XPath expressions,
coordinate-based selections, or strict visual comparisons, making test cases susceptible to interface
changes. For instance, when interface components are renamed, moved, or removed during
iterative development cycles, test scripts that directly reference these components immediately
fail. Additionally, even subtle visual modifications—such as variations in color, iconography,
or element dimensions—can invalidate tests based on pixel-perfect comparisons or rigid visual
assertions [9, 15, 16].

Beyond visual elements, GUI test scripts must handle diverse interaction patterns used by
end-users. Users may perform a combination of clicks, swipes, gestures, keystrokes, and multi-
step workflows in varied orders, presenting difficulty for test case authors attempting to cover
all possible user scenarios. Consequently, the complexity of modern interfaces, especially those
presenting sophisticated interactive features, increases the probability of test fragility. For example,
tests that presume a particular sequence of UI interactions or strict component hierarchies often
fail after minor refactorings or enhancements. Introducing new interface components or state
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transitions can produce cascading effects that inadvertently disrupt unrelated tests, significantly
reducing the stability and reliability of the entire test suite [9].

2.1.2 GUI testing fragility for Android apps using Jetpack Compose
Jetpack Compose, Google’s modern and declarative UI toolkit designed explicitly for Android
application development, transforms traditional interface-building practices (see Figure 2.1).
By replacing XML-based layout definitions and imperative UI constructions with composable
functions declared directly in Kotlin code, Jetpack Compose streamlines UI design processes and
accelerates iterative development cycles [17]. While this declarative, state-driven architecture
offers significant advantages, it also introduces new complexities for GUI testing strategies,
particularly concerning test fragility.

Figure 2.1: Composable function sample

Unlike traditional Android view hierarchies, Jetpack Compose renders UI dynamically based
on application state, requiring testers to adopt different approaches when defining and maintaining
test scripts. Test cases developed with Compose Testing API emphasize semantic properties (e.g.,
text labels, content descriptions) and logical node hierarchies rather than rigid visual or structural
identifiers [18]. Although this semantics-based approach enhances test readability and reduces
dependency on fragile visual attributes, even subtle alterations in composable function parameters
or modifications of underlying state logic can result in unexpected shifts in the rendered UI
hierarchy. Consequently, tests previously considered robust may suddenly become fragile, as they
are tightly coupled to composable structures or semantic annotations that evolve with changing
application requirements.

Moreover, Jetpack Compose encourages modularity and reusability through composable
functions, which are frequently nested, combined, conditionally rendered, or rearranged during
iterative refactoring [19]. While this modular composability significantly simplifies code reuse and
increases productivity, it creates intricate and rapidly evolving UI structures that are challenging
for testers to deal with. A minor refactor in a composable used across multiple screens can lead
to cascading impacts on test scripts that depend upon the specific nesting or semantic descriptors
initially established. This volatility demands that tests target stable, logically consistent properties
and behaviors rather than structural details susceptible to frequent change.
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As a result, while Jetpack Compose provides developers and designers with clear benefits, it
can amplify GUI test fragility, especially if testing methodologies are not adapted to its paradigm.
Ensuring test stability thus requires careful consideration of testing strategies aligned with Jetpack
Compose’s declarative and state-driven nature. By managing semantic annotations, emphasizing
stable composable behaviors, and structuring tests around resilient UI abstractions, teams can
mitigate some—but not all—of the fragility risks associated with Jetpack Compose.

2.1.3 Progress so far: addressing Android testing fragility
Recent research (before Jetpack Compose became the endorsed framework by Google for developing
Android apps) has made significant progress in addressing the fragility inherent to Android GUI
testing. Coppola et al. [5] conducted a detailed empirical assessment of GUI test fragility
for hybrid mobile applications, finding substantial maintenance burdens associated with both
layout-based and visual GUI test scripts. Their study demonstrated that as much as 20%
of layout-based and 30% of visual test methods required modifications at least once during
application evolution, highlighting the high maintenance cost triggered by frequent, minor GUI
alterations. To tackle these issues, the researchers suggested guidelines such as employing stable,
semantically meaningful identifiers for UI components (which is similar to what Compose Testing
API endorses), avoiding excessive reliance on visually precise locators, and regularly validating
GUI elements against expected properties to minimize the sensitivity of tests to minor design
modifications.

In a broader investigation into Android open-source apps, Coppola et al. [6] revealed that
around 50% of changes in test code were directly attributable to modifications in GUI definitions
and arrangements, emphasizing how GUI evolution significantly impacts test code maintenance
and fragility. They employed a detailed taxonomy of modification causes, categorizing fragilities
to better understand their sources. This taxonomy facilitated the identification of recurring
patterns and specific types of GUI changes—such as adjustments in widget hierarchies, changes
in the visibility or presence of UI elements, and modifications of textual content—that triggered
test code maintenance. These insights are crucial for developers aiming to design robust test
suites and avoid common pitfalls that lead to test fragility.

Furthermore, Coppola et al. [7] recently outlined a comprehensive conceptual framework aimed
at enhancing robustness in Android GUI testing. This framework explicitly addresses critical
challenges like fragmentation, fragility, and Flakiness by advocating automated maintenance,
improved execution environments, and adaptive generation mechanisms. The proposed framework
includes multiple integrated modules, such as automated generation and translation of test
cases to adapt to GUI changes, advanced execution environments that handle various hardware
and software configurations, and intelligent test maintenance and repair modules. These repair
mechanisms rely on model-based and heuristic approaches to automatically adjust and update
test scripts in response to GUI modifications, significantly reducing manual maintenance efforts.

The conceptual framework also proposes leveraging Capture & Replay techniques enhanced
with Gamification elements to motivate testers, automated model-based test sequence generation
that intelligently adapts to GUI structures, and Artificial Intelligence (AI)-driven translation of
general test sequences into specific cases suitable for individual applications. The combination of
visual and layout-based test cases allows cross-validation between structural and visual aspects of
the GUI, increasing coverage and test resilience. Additionally, virtualized test environments are
proposed to systematically handle software and hardware fragmentation, supporting repeated
test execution across diverse configurations. The framework further suggests the inclusion of
advanced analytics to detect and predict flaky tests, integrating fragility metrics directly into the
continuous integration pipeline to optimize test prioritization and maintenance strategies.
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Collectively, these works underscore ongoing efforts to mitigate Android GUI test fragility
through empirical assessment, test design guidelines, automated test repair strategies, and
comprehensive conceptual frameworks designed to support continuous integration environments.
Such advancements promise to streamline GUI testing practices, reduce maintenance overheads,
and improve the reliability of automated testing suites, making Android application development
more sustainable and efficient.

2.2 State-of-the-art in oracle testing
Test oracles serve as the reference mechanism for verifying that the System Under Test (SUT)
behaves as intended. They can be derived from formal specifications, program documentation, or
inferred dynamically from system behavior. Key properties of a robust oracle include completeness,
that is detecting all faults, and soundness, namely reporting only actual faults. However, achieving
these properties is notoriously difficult in practice. For instance, a significant challenge arises
from the phenomenon known as Failed Error Propagation [10].

2.2.1 The oracle problem
The oracle problem remains one of the most challenging bottlenecks in automated software testing.
As noted by Gunel Jahangirova [10], a high-quality test oracle must strike a delicate balance
between generality and accuracy. In other words, an ideal oracle is one that can be applied broadly
across many test cases while reliably distinguishing correct behavior from faults. Poorly designed
oracles can lead to two critical issues: false negatives, where faults go undetected, and false
positives, where correct behavior is mistakenly flagged as erroneous—both of which undermine
the efficiency and cost-effectiveness of automated testing.

2.2.2 Techniques for oracle improvement
Recent research has focused on addressing oracle deficiencies through a variety of innovative
approaches. One prominent method involves using search-based test case generation combined
with Mutation Testing to systematically expose weaknesses in existing oracles. This approach
transforms the problem into one where the generation of counterexamples (i.e., test cases that
either trigger false positives or false negatives) guides the iterative improvement of the oracle.
By incorporating a human in the loop, where developers review the counterexamples and adjust
the oracle accordingly, this technique has been shown to significantly enhance fault detection
capabilities [10].

2.2.3 Human-in-the-loop oracle creation and validation
Despite advances in automation, human insight remains crucial in defining and validating test
oracles, especially for complex GUI behaviors. A growing body of work advocates human-in-the-
loop approaches, where automated tools assist in oracle creation but a human tester or developer
provides guidance or confirmation to ensure correctness [20–22]. This stems from the recognition
that many oracle decisions require domain understanding or subjective judgment that humans
excel at. For instance, Zamprogno et al. [20] present AutoAssert, a tool that automatically
suggests assertions for unit tests and lets the developer review and accept or modify them. This
demonstrates how human-in-the-loop oracle generation can reduce manual effort while leveraging
human expertise to vet the machine’s output.
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The incorporation of human feedback is even more vital when using LLMs for oracle generation.
LLMs can propose expected responses or validation rules, but they may occasionally produce
assertions that capture the program’s actual behavior rather than the intended behavior. Therefore,
having a human in the loop to judge the validity of LLM-proposed oracles is important to avoid
false oracles and missed bugs [22].

Another human-in-the-loop strategy in testing is crowdsourced oracle validation, where crowd
workers review automatically generated test cases by evaluating individual assertions against the
software’s documentation. They decide whether each assertion correctly represents the intended
behavior, mark it as indeterminate when documentation is insufficient, or identify it as wrong. If
an assertion is found to be incorrect, workers are also tasked with providing a corrected version.
This process leverages human judgment to bridge the gap left by automated test generation,
effectively addressing the oracle problem in software testing [21].

2.2.4 External vs Internal oracles
Another key aspect of oracle maintenance is the strategic placement of oracles within the code.

External oracles, often implemented as test case oracles, operate by comparing only the
externally observable outputs and side effects of a method. Because they rely solely on visible
states—such as return values, changes to global variables, or modifications in persistent stor-
age—these oracles may fail to detect faults that only affect the internal state of a program. For
instance, if an error causes a subtle corruption within a method’s intermediate variables yet the
externally observable behavior remains unchanged, an external oracle might not detect the fault.
In such cases, the issue is said to involve external failed error propagation, where the internal
discrepancy does not manifest itself in the output. This limitation often necessitates a large
number of test cases to eventually expose the fault, especially when the probability of the error
propagating outward is low [10].

In contrast, internal oracles—such as those placed at return points or other critical internal
checkpoints—are given direct access to the program’s complete execution state at strategic
moments. This enables them to assess not only the externally observable effects but also the
nuances of the internal state. By examining all aspects of the program’s execution, internal
oracles can detect subtle faults that might be missed by their external counterparts. However,
the very advantage of internal oracles comes with the caveat of increased complexity. Creating
these oracles manually requires a deep understanding of the intended internal state transitions
and the interplay between different components of the system. Additionally, even internal oracles
can sometimes be subject to a phenomenon known as internal failed error propagation—where
differences in the internal state are “squeezed out” as execution progresses—thus complicating
their effective design [10]

Ultimately, the challenge lies in striking the optimal balance: achieving maximal fault detection
by placing internal oracles while minimizing the manual effort required for their precise definition.
This trade-off is a key focus of ongoing research, as it addresses the dual goals of enhancing
testing effectiveness and maintaining practical development efforts [10].

2.3 Large Language Models
LLMs have emerged as a transformative advancement within artificial intelligence and natural
language processing, capable of performing complex linguistic and cognitive tasks through
deep learning techniques [14]. These models leverage deep neural networks trained on massive
and diverse datasets containing billions of words, enabling them to capture linguistic patterns,
contextual nuances, and semantic relationships. Their ability to understand context, infer intent,
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and generate coherent text has resulted in numerous successful applications. In particular, code
generation stands out as an increasingly prominent application of LLMs, which is important to
the scope and goals of this thesis.

The significance of code generation arises from its potential to automate and streamline
software development tasks, thereby reducing manual coding efforts, accelerating prototyping
phases, and facilitating rapid iterative software delivery. Given the previous discussion about
challenges associated with traditional GUI testing and maintenance, the prospect of exploiting
LLMs to generate adaptable, context-aware testing scripts presents a clear opportunity.

2.3.1 Architectural principles

Figure 2.2: Simplified Transforer architecture

At the core of contemporary LLMs is the Transformer architecture (see Figure 2.2, an innovative
deep learning structure proposed by Vaswani et al. [23]. This architecture fundamentally departs
from traditional recurrent neural networks [24], which processed input sequences sequentially and
faced inherent limitations when modeling long-range dependencies. Transformers, on the other
hand, employ self-attention mechanisms—allowing each token (e.g., word, character, or sub-word
fragment) to directly reference and weigh the relevance of every other token in the input sequence
simultaneously. This mechanism enables the model to efficiently capture long-range contextual
relationships and dependencies between words, significantly enhancing its understanding of
complex sentence structures, semantics, and nuances in meaning.

Moreover, Transformer-based models exhibit remarkable scalability, benefiting from increased
computational resources and model parameter counts. As parameter counts grow, the models
become better in their tasks. This scalability has driven recent advancements in all the most
popular LLMs such as the GPT-series models, Gemini, Claude, and other state-of-the-art
generative models [25].
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2.3.2 Training methodologies
The training of large language models primarily revolves around self-supervised learning method-
ologies [26]. Unlike traditional supervised learning, self-supervised approaches do not rely on
extensive manual annotations; instead, these models derive linguistic and conceptual knowledge
directly from massive amounts of unstructured textual data publicly available online. The pre-
dominant strategy involves training the model to predict missing tokens (words or phrases) or
subsequent tokens in a given sequence of text [27]. Through this iterative process of context
prediction, LLMs internalize grammatical structures, lexical relationships, semantic coherence,
and contextual information, thus building comprehensive representations of language and meaning.

Following this general pre-training phase, models typically undergo task-specific fine-tuning to
specialize their learned capabilities for particular application domains. In domains requiring precise
outputs—such as medical diagnosis, legal interpretation, or, notably, software development—fine-
tuning significantly enhances the accuracy and contextual appropriateness of model-generated
outputs. In particular, fine-tuning LLMs on software repositories, source code datasets, or
programming tasks has proven highly effective for automated code generation tasks [28], allowing
the models to internalize syntax, semantic logic, coding patterns, best practices, and even
project-specific conventions.

2.3.3 Prompt Engineering
Prompt engineering has emerged as a key technique for effectively querying LLMs. At its core,
prompt engineering involves designing and refining natural language prompts to guide model
behavior, maximizing the accuracy and appropriateness of outputs produced by the model [29].
Therefore, the inherent flexibility of natural language also implies sensitivity; minor changes in
wording, phrasing, context, or structure can significantly influence the generated outputs.

Several main approaches to prompt engineering currently exist:

• Zero-shot prompting [30]: In zero-shot prompting, tasks are specified explicitly in the
prompt without providing examples. The model thus relies entirely upon its pre-trained
knowledge and comprehension to perform the task. While powerful, zero-shot prompting
requires clarity and precision in the wording to ensure accurate interpretations by the model.

• One-shot prompting [31]: One-shot prompting supplements the task instruction with
one example within the prompt itself. This example acts as a reference, clarifying user’s
expectations and enabling the model to generate output that closely aligns with the provided
context. One-shot prompting often reduces ambiguity and can enhance the quality and
consistency of outputs compared to zero-shot scenarios.

• Few-shot prompting [32]: Few-shot prompting involves providing the model with multiple
examples within the prompt. This approach is particularly effective for complex tasks
requiring nuanced understanding, pattern recognition, or creativity. By examining multiple
contextual examples, the model can better infer patterns, conventions, or styles, improving
the likelihood of generating more accurate outputs.

• Chain-of-thought prompting [33]: Chain-of-thought prompting makes the model detail
intermediate steps and reasoning processes before arriving at a final answer, effectively
following a "think aloud" process. This method enhances transparency, logical coherence,
and interpretability, providing insights into how the model arrives at its conclusions. Chain-
of-thought prompting has proven valuable for tasks involving logical reasoning or multi-step
solutions such as code generation and debugging.
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Nevertheless, prompt engineering remains an active and rapidly evolving research area. Recent
studies indicate varying degrees of effectiveness depending on task complexity, domain specificity,
and model size. Interestingly, some research, such as that conducted by Reynolds and McDonell
[34], indicates that zero-shot prompting can sometimes yield superior results compared to few-shot
or one-shot prompting.

2.4 LLMs for GUI Testing

Recent advances in LLMs have given rise to a new generation of GUI testing frameworks
that leverage deep neural networks’ powerful language and code-generation capabilities. These
approaches promise to address many of the shortcomings inherent in conventional GUI testing,
including fragility and maintenance overhead. Unlike rigid test scripts that rely on brittle
locators or simplistic model-based exploration, LLM-based frameworks can reason about a richer
contextual understanding of both code (e.g., composable elements) and higher-level descriptions
of user interfaces.

2.4.1 A memory-driven LLM approach: GPTDroid

Liu et al. [35] introduce GPTDroid (see Figure 2.3), which reframes mobile GUI testing as a
dynamic, multi-turn Question & Answer (Q&A) exchange between an LLM and the application
under test. Crucially, GPTDroid provides the LLM with detailed, evolving prompts contain-
ing local screen context (e.g., widget types, textual hints, and layout positions) as well as a
“functionality-aware memory” that tracks broader testing progress, such as which features have
already been explored.

This richer prompt design enables GPTDroid to navigate multi-step operations—like adding,
editing, and deleting items in a sequence—without losing track of high-level objectives. At each
step, GPTDroid executes the model’s recommended action in the app, then updates the prompt
with observed changes (e.g., newly appeared widgets or screens), allowing it to adapt to real-time
GUI variations (such as renamed or repositioned widgets). Evaluations on 93 diverse Android
apps show that GPTDroid achieves substantially higher activity coverage (on average, 75%)
compared to conventional approaches and exposes more bugs (up to 31% more), underscoring the
power of a memory-driven LLM framework to handle complex, evolving interfaces.

2.4.2 Mapping natural-language test descriptions to GUI actions

Zimmermann and Koziolek [36] demonstrate a method for interpreting natural-language test
cases with GPT-3 and automatically mapping them to executable GUI actions. Their approach
continually re-supplies the entire GUI state at each step—rather than relying on persistent hidden
memory—so that the LLM can decide the next interaction with full contextual awareness.

In an experiment with a small desktop application (a 25-button grid), the authors constructed
a dataset of natural-language test descriptions alongside corresponding GUI states and then
fine-tuned GPT-3 to execute these tests by clicking buttons in the specified sequences. Despite
the relatively constrained scenario, the results showcased the feasibility of using prompt-based
techniques to convert plain-English instructions into real-time GUI actions with minimal error.
This proof-of-concept also points to how LLM-driven testing can lower the barrier for non-technical
test writers while supporting iterative, stateful execution across diverse interface states.
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Figure 2.3: GPTDroid

2.4.3 Context-aware text input generation: QTypist

Another line of work by Liu et al. [37] addresses the challenge of generating valid text inputs
for mobile GUI testing. They propose a tool called QTypist (see Figure 2.4), which dynamically
constructs prompts from the GUI’s local and global context—such as widget hints, parent nodes,
and activity names—and feeds them into GPT-3 to produce realistic text inputs.

This prompt-based approach is tuned on automatically collected examples of user-provided
text inputs, refining the model’s ability to generate domain-specific strings (e.g., login credentials,
addresses, or search terms). In evaluations with 106 real-world Android apps, QTypist reported
an 87% pass rate on pages requiring text inputs and significantly outperformed existing baselines.
When integrated into popular automated GUI-testing frameworks, QTypist substantially increased
coverage (by up to 52% more pages, on average) and exposed nearly twice as many defects. These
findings highlight how context-aware input generation can unlock deeper exploration of app states
and lead to more robust, comprehensive GUI tests.
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Figure 2.4: QTypist

2.4.4 LLM-driven GUI testing in engineering software: GERALLT

Moving beyond mobile environments, Rosenbach et al. [38] explore LLM-driven GUI testing
in desktop-based engineering applications. Their system, GERALLT (see Figure 2.5), targets
a real-world tool-integration wizard in a large-scale research application and orchestrates two
LLM-based components—one that autonomously interacts with the UI and another that evaluates
potential usability problems after each action.

Through prompts containing localized GUI context (e.g., screenshots, labeled metadata of
widgets) and relevant textual documentation, GERALLT forms test actions aligned with domain-
specific requirements. In evaluations, it discovered issues overlooked by manual testing efforts,
such as misaligned error messages or inconsistent UI states. This approach further underscores
how LLM-based methods can extend beyond mobile scenarios and automate exploratory tests for
more specialized desktop software.

Figure 2.5: GERALLT
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2.4.5 Intent-based testing for Android: DROIDAGENT
Yoon et al. [39] propose an LLM-based technique named DROIDAGENT (see Figure 2.6) for
Android GUI testing, focusing explicitly on intent-driven scenarios rather than simple coverage
of visual elements. DROIDAGENT leverages multiple cooperating LLM agents with long- and
short-term memory to identify meaningful tasks—such as sending messages or configuring user
settings—that mirror realistic, high-level user goals.

Once a task is defined, one LLM agent executes it step by step, while another reviews the
actions in real time to detect unexpected outcomes. The system maintains both a memory
of previously visited interface states and textual descriptions of each screen, driving deeper,
semantically aware exploration. Empirical studies show that DROIDAGENT can achieve high
activity coverage and generate realistic test flows spanning advanced app features—proving that
LLM-based test generation can be guided by user-centric objectives rather than purely structural
metrics.

Figure 2.6: DROIDAGENT

2.4.6 Beyond GUI: Broader LLM-based Software Testing Approaches
Beyond these GUI-specific efforts, broader evaluations of LLMs in software testing reveal the
general promise of neural approaches for oracle creation, code generation, and automated debug-
ging [40]. In fact, the comprehensive survey by Wang et al. [40] underscores how LLMs can be
employed to tackle unit test case generation, bug localization, and program repair, suggesting
that GUI testing could similarly benefit from neural approaches to produce more robust and
flexible test oracles.

Nevertheless, adapting these ideas from code-centric testing to GUI scenarios requires careful
consideration of graphical nuances. Common LLM-based approaches for oracle generation (e.g.,
[41–43]) frequently assume a well-defined functional specification—such as a method signature or
developer comment—which might not exist for GUI elements. Hence, GUI-oriented solutions
must design prompts that integrate high-level UI semantics (e.g., composable hierarchies, state
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transitions) and textual descriptions to capture the intended behavior of graphical interfaces. By
incorporating information about layout structures, user workflows, and interface states, researchers
can harness the full potential of LLMs to create testing strategies that are both flexible and
aligned with actual end-user interactions.

2.4.7 Summary and Outlook
Overall, these efforts illustrate the emerging potential of neural approaches, backed by adaptive
prompt engineering and domain-specific constraints, to tackle challenges in GUI testing. While
promising, challenges remain—such as managing token-length limits for large-scale apps or
ensuring prompts remain valid under significant interface restructuring. Nonetheless, the success
of these frameworks in various domains (mobile, desktop engineering, and general Android)
suggests that LLM-driven testing strategies can significantly lower test fragility by adapting
to interface changes in real time, ultimately producing scripts that are more maintainable and
aligned with genuine application behavior.
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Methodology

3.1 Goal-Question-Metric

Table 3.1: GQM table for the study

Analyze: LLM-assisted, developer-in-the-loop GUI test maintenance
For the purpose of: Easing maintenance burden of Android GUI suites
With respect to: Test fragility
From the viewpoint of: Android developers and CI engineers
In the context of: Rapidly evolving Jetpack Compose apps

This thesis employs the GQM paradigm, detailed in Table 3.1, which highlights five essential
dimensions that guide and structure the investigation. Firstly, the objective is to examine the
maintenance workflow, specifically focusing on how developer-in-the-loop, LLM-assisted technique
can alleviate the challenges associated with maintaining Android GUI test suites. Secondly, the
intent is evaluative: the research aims to gather empirical evidence demonstrating the degree
to which these techniques simplify the process of maintaining Android GUI test suites. Thirdly,
the central quality attribute is test fragility—specifically, the capability to swiftly and effectively
repair failing tests, ensuring their continued alignment with the evolving GUI and its test oracles.
Fourthly, the perspective considered is that of Android developers and CI engineers, who directly
encounter and manage the consequences of failed pipelines. Finally, the study is situated within
the context of rapidly changing Jetpack Compose applications. These applications follow frequent
release schedules and depend on runtime recomposition, where minor adjustments can significantly
reorganize the underlying semantics tree.

3.2 Research Questions
This investigation is structured over these four research questions:

RQ1—Baseline Suite Fragility. Given a GUI test suite authored for version v1 of the AUT,
how many tests (i) still compile and pass, (ii) compile but fail, and (iii) fail to
compile when executed unchanged on version v2?
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RQ2—Zero-Shot LLM Repair Effectiveness. For the tests that either do not compile or
compile but fail on v2, what proportion can be recovered after a single zero-shot GitHub
Copilot prompt that leverages contextual information from the IDE?

RQ3—Zero-Shot Retry Gain. If the first zero-shot repair attempt is unsuccessful, what addi-
tional proportion of tests can be recovered by issuing another one zero-shot prompt—a
retry informed only by the updated compilation or runtime feedback?

RQ4—Chain-of-Thought Repair Effectiveness. For the tests still failing after the two zero-
shot attempts, how many can be salvaged through a brief, developer-in-the-loop conversation
with Copilot?

To answer these RQs, the focus is on test cases originally written for a previous v1 version
of the AUT which are then run against a later v2 version. The test case naming convention for
this thesis is: a test case is classified as passing if it compiles successfully and the test passes,
failing if it compiles but fails during execution due to assertion failures or runtime exceptions,
and broken if it fails to compile.

Importantly, compilation errors may not always stem from the code within the test case itself;
they can also arise from broader contextual elements, such as setup routines executed prior to each
test or shared companion objects referenced across multiple tests. Once a test successfully passes
at a given stage of the repair process, it is excluded from any further maintenance attempts. To
address this, a structured methodology is introduced to evaluate the effectiveness of LLM-based
approaches in repairing broken tests, track progressive enhancements achieved through successive
repair efforts, and assess the role of developer-guided interventions in facilitating test maintenance.

3.3 Project Selection
The choice of the Bitwarden mobile application for Android as the subject under test (AUT) in
this study was informed by several key considerations.

First, the selected system needed to be (i) fully open-source, ensuring complete accessibility
to all components, including Gradle build configurations and test suites; (ii) implemented using
Jetpack Compose; and (iii) equipped with a comprehensive GUI regression testing framework.
To identify a suitable candidate, existing literature on Android application analysis was reviewed.
Based on these criteria and its prior use in related research [44], the Bitwarden app was deemed
an appropriate choice.

Bitwarden Android serves as the Android client for the open-source Bitwarden password
management platform, offering secure, encrypted storage and retrieval of user credentials on
mobile devices. It supports features such as system-wide autofill, biometric authentication,
offline access, and password generation. As part of a vibrant open-source ecosystem, the app
benefits from community-driven development, independent security audits, and the flexibility of
cloud-based or self-hosted deployment options.

For this cross-version analysis, when the study began the two most recent stable tags were:
v2025.1.21, dated 10 February 2025, that will be referred to as v1 and v2025.2.02, dated 7
March 2025, which it will be called v2 from now on. The four-week gap is a threshold that is
intended to verify that the core business logic remains unchanged. However, it is also long enough

1https://github.com/bitwarden/android/releases/tag/v2025.1.2
2https://github.com/bitwarden/android/releases/tag/v2025.2.0
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for routine UI refinements, such as tweaks to the vault list, the bottom navigation bar, and the
accessibility semantics – all modifications mentioned in the changelog – to come to light. After
an inspection in the changelog and diff files between the two releases of the application, no major
changes to the business logic were found. This snapshot comparison gives a clear baseline for
assessing how well LLM-assisted techniques can repair and maintain fragile GUI tests.

3.4 Test Case Extraction
To systematically identify and synchronize GUI test cases across the two versions, two Python
scripts were developed: find_ui_tests.py3 and sync_ui_tests.py4.

find_ui_tests.py inspects the code-base and produces a list of GUI test cases. Starting
at the project root, it visits every file that resides inside the src/**/test subtree and ends in
.kt. A file is considered a test class only when two conditions hold: it imports Jetpack Compose
or Espresso test libraries, and it contains at least one method annotated with @Test. Each
such method is then examined; if its body calls a recognised Compose helper like onNode() or
performClick(), the method is classified as a UI test case (see Listing 3.1). Finally, the script
writes two plain-text artifacts as output files. ui_test_report.txt5 is a human-orientated
index that shows, per source file, the names of its UI-test methods and a Google Sheet-compatible
hyperlink to the file in the on-line repository. ui_test_fqns.txt6 is machine-orientated: it
lists one Fully Qualified Name (FQN) per line, ready to be supplied to a Gradle script.

sync_ui_tests.py7 consumes the ui_test_fqns.txt generated above and ensures that
precisely this set of tests is present on a newer Git reference. With the repository still checked out
at the commit of version v1, it reads ui_test_fqns.txt, maps every class to the subset of its
methods that must be retained, and loads the corresponding Kotlin source file from that commit.
The script then checks out the commit of version v2, injects each source file into that version of
the tree, and removes any @Test method whose simple name is not on the keep-list. Removal is
implemented by balanced-brace counting so that helper code and non-test logic remain untouched.
Each transformed file is staged with git add, and on completion the script reports the number of
files copied and trimmed, leaving the index ready for commit.

1 @Test
2 fun ‘Turning off autofill should send AutofillServiceChanged with value of false

‘() {
3 mutableStateFlow . update {
4 it.copy( autofillEnabled = true)
5 }
6 composeTestRule
7 . onNodeWithText (" Autofill services ", ignoreCase = true)
8 . performScrollTo ()
9 . performClick ()

10 verify {
11 viewModel . trySendAction ( SetupAutoFillAction . AutofillServiceChanged ( false ))
12 }
13 }

3https://github.com/BlakeDake/android/blob/main/find_ui_tests.py
4https://github.com/BlakeDake/android/blob/main/sync_ui_tests.py
5https://github.com/BlakeDake/android/blob/MYv2025.1.2/ui_test_report.txt
6https://github.com/BlakeDake/android/blob/MYv2025.1.2/app/ui_test_fqns.txt
7https://github.com/BlakeDake/android/blob/main/sync_ui_tests.py
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Listing 3.1: Example GUI Test case

3.5 Operational Environment

Figure 3.1: LLM repair pipeline

All experiments were carried out on a consumer-grade laptop running Windows 11 (version
24H2). Development and testing were conducted using Android Studio Meerkat Feature Drop, with
JetBrains Runtime 21 configured as the Gradle JDK. Versions for Kotlin, Jetpack Compose, and
other relevant dependencies are defined in the centralized configuration file libs.versions.toml8.
During the experimental phase (May 2025), GitHub Copilot Pro and Claude 3.7 Sonnet (Thinking)
were employed as LLM-based tools for test repair tasks.

The complete testing pipeline is illustrated in Figure 3.1. For each test originating from version
v1, it is executed against the updated codebase at version v2. This initial run addresses RQ1 by
categorizing the test outcome using a three-tier classification. If the test compiles and passes, it
is marked as Passing and excluded from further intervention. Otherwise, the corresponding error
log is supplied to GitHub Copilot chat along with a minimal prompt: "Fix the test". Although
straightforward, this zero-shot strategy is supported by existing literature demonstrating its
effectiveness in GUI testing scenarios [45, 46].

The output of this first repair attempt informs RQ2. If the generated fix results in a passing
test, the case is again labeled as Passing. If errors persist, RQ3 is addressed by reiterating the
same prompt but updating the context with the new error log.

Should the second zero-shot attempt still fail, RQ4 is examined through a brief chain-of-
thought interaction with Copilot. This guided dialogue begins with identifying the error, followed
by an explicit reasoning step and a proposed fix ("Please identify the issue in the error log above"
followed by "Please provide a fix for that issue"). If the initial fix fails to resolve the issue, a

8https://github.com/BlakeDake/android/blob/main/gradle/libs.versions.toml

33

https://github.com/BlakeDake/android/blob/main/gradle/libs.versions.toml


Methodology

follow-up prompt requests an alternative solution based on the latest error feedback ("That did
not work, provide another fix given the new error log above"). If both guided attempts fail to
produce a compiling and passing test, the case is ultimately labeled as either Failing or Broken,
depending on the nature of the unresolved issue.

Below, two example replies: one for a zero-shot round (see Listing 3.2) and the other for a
CoT interaction (see Listing 3.3 for the identify the issue step and see Listing 3.4 for the provide
a fix step) .

1 The test is failing because it can ’t find the node with text "By activating this
switch you agree " as a substring . Looking at the strings .xml file , I can see
the actual string includes a comma after " switch " that isn ’t being matched :

2

3 <string name ="
by_activating_this_switch_you_agree_to_the_terms_of_service_and_privacy_policy
">

4 By activating this switch , you agree to the
5 <annotation link =" termsOfService "> Terms of Service </ annotation >
6 and <annotation link =" privacyPolicy "> Privacy Policy </ annotation >
7 </string >
8

9 Also , looking at the TermsAndPrivacySwitch composable in CreateAccountScreen .kt , I
see that the switch has a content description " AcceptPoliciesToggle " which

would be more reliable to use for testing .
10

11 Here ’s how to fix the test:
12

13 @Test
14 fun accept policies should be toggled on or off according to the state () {
15 composeTestRule
16 . onNodeWithContentDescription (" AcceptPoliciesToggle ")
17 . assertIsOff ()
18

19 mutableStateFlow . update { it.copy( isAcceptPoliciesToggled = true) }
20

21 composeTestRule
22 . onNodeWithContentDescription (" AcceptPoliciesToggle ")
23 . assertIsOn ()
24 }
25

26 This uses the content description to reliably find the switch rather than
27 trying to match the text , which can be tricky especially with annotated
28 strings that contain formatting .

Listing 3.2: Example GitHub Copilot response zero-shot

1 The error in your test is happening because the test is trying to find a UI
element with the text " Master password hint ( optional )" but no such element
exists in the UI.

2

3 Looking at the string resources in your application , there is:
4 - ‘master_password_hint_not_specified ‘ -> " Master password hint"
5 - ‘new_master_password_hint ‘ -> "New master password hint"
6

7 But there ’s no string for " Master password hint ( optional )".
8

9 To fix this issue , you need to update your test to look for the actual text that
appears in the UI. You should change the test to use the exact label that ’s
displayed in your reset password screen , which is likely either " Master
password hint" or "New master password hint" based on the string resources
available .
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10

11 Check your ResetPasswordScreen implementation to see which string resource it ’s
actually using , and update your test accordingly .

Listing 3.3: Example GitHub Copilot response CoT - Identify the issue

1 Looking at the test file , it seems you need to use the correct string resources
for testing password hint input . Based on the strings .xml file , there are two
relevant strings for password hints :

2

3 1. ‘new_master_password_hint ‘ - "New master password hint"
4 2. ‘master_password_hint_not_specified ‘ - " Master password hint"
5

6 Here ’s a fix for the test method that uses these string resources :
7

8 @Test
9 fun ‘password hint input change should send PasswordHintInputChanged action ‘() {

10 // Setup
11 val hintText = "My password hint"
12 val hintLabel = composeTestRule . activity . getString (R. string .

new_master_password_hint )
13

14 // Execute
15 composeTestRule
16 . onNodeWithText ( hintLabel )
17 . performTextInput ( hintText )
18

19 // Verify
20 verify {
21 mockActionHandler . invoke (
22 match { action ->
23 action is ResetPasswordAction . PasswordHintInputChanged && action .

hint == hintText
24 }
25 )
26 }
27 }
28

29 This fix retrieves the "New master password hint" string from resources and uses
it to find the correct input field , then verifies the correct action is sent
when text is entered .

Listing 3.4: Example GitHub Copilot response CoT - Provide a fix
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Results

This section outlines the results corresponding to each research question.
Figure 4.1 illustrates the distribution of test outcomes, categorized by their association with the
respective research questions. In parallel, Table 4.1 provides a detailed view of how test cases
evolve across the different RQ stages, organized by test class.
Overall, the data in Table 4.1 indicates that little to no improvement is observed during the RQ3
phase. Additionally, it becomes evident that larger test classes tend to pose greater challenges for
the LLM. Among the three research question phases, the initial output generated in response to
RQ2 emerges as the most impactful in determining whether a test can be successfully repaired.
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Figure 4.1: Cumulative test outcomes per RQs
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Table 4.1: Distribution of test case outcomes (Passing P , Failing F , Broken B) per research
questions (only test classes with failing or broken test cases are present).

Test Class Tot RQ1 RQ2 RQ3 RQ4
P F B P F B P F B P F B

SetupUnlockScreenTest.kt 27 26 1 0 1 0 0 0 0 0 0 0 0
CheckEmailScreenTest.kt 5 0 0 5 4 1 0 0 1 0 0 1 0
CreateAccountScreenTest.kt 17 13 0 4 1 0 3 1 1 1 0 2 0
EnterpriseSignOnScreenTest.kt 7 5 0 2 1 0 1 0 0 1 0 1 0
EnvironmentScreenTest.kt 14 0 0 14 0 0 14 0 0 14 0 12 2
LandingScreenTest.kt 22 0 0 22 19 3 0 0 3 0 0 0 3
LoginScreenTest.kt 16 0 0 16 16 0 0 0 0 0 0 0 0
ResetPasswordScreenTest.kt 12 0 0 12 0 0 12 5 6 1 2 1 4
StartRegistrationScreenTest.kt 12 10 1 1 1 0 1 0 0 1 1 0 0
TwoFactorLoginScreenTest.kt 16 0 0 16 12 4 0 1 1 2 1 2 0
SearchScreenTest.kt 27 0 0 27 0 0 27 0 0 27 26 1 0
AccountSecurityScreenTest.kt 60 0 0 60 45 15 0 3 9 3 2 10 0
AppearanceScreenTest.kt 8 2 6 0 4 1 1 2 0 0 0 0 0
AutoFillScreenTest.kt 28 24 4 0 2 1 1 2 0 0 0 0 0
ExportVaultScreenTest.kt 16 0 0 16 16 0 0 0 0 0 0 0 0
FolderAddEditScreenTest.kt 8 0 0 8 8 0 0 0 0 0 0 0 0
OtherScreenTest.kt 10 7 3 0 3 0 0 0 0 0 0 0 0
VaultUnlockedNavBarScreenTest.kt 13 0 0 13 13 0 0 0 0 0 0 0 0
GeneratorScreenTest.kt 55 0 0 55 0 54 1 0 55 0 34 21 0
SendScreenTest.kt 28 0 28 0 28 0 0 0 0 0 0 0 0
VaultAddEditScreenTest.kt 143 0 0 143 0 0 143 0 0 143 0 0 143
VaultItemScreenTest.kt 98 0 0 98 75 23 0 0 5 18 0 5 18
VaultItemListingScreenTest.kt 57 0 0 57 0 0 57 0 0 57 0 0 57
ManualCodeEntryScreenTests.kt 8 5 3 0 0 3 0 0 3 0 0 3 0
VaultMoveToOrganizationScreenTest.kt 12 8 4 0 0 3 1 0 3 1 0 4 0
VaultScreenTest.kt 53 0 0 53 51 0 2 0 0 2 0 0 2
VerificationCodeScreenTest.kt 14 0 0 14 0 0 14 0 14 0 0 14 0

Test classes requiring maintenance 786 100 54 632 300 108 278 14 101 271 66 77 229
Total test classes 1083 397 54 632 697 108 278 711 101 271 777 77 229
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4.1 RQ1 - Baseline Suite Fragility
To address RQ1, it was assessed how many test cases and test classes written for version v1 of
the Bitwarden application could be executed successfully—i.e., compiling and passing without
modification—on the subsequent version v2.

As noted in Section 3.2, a compilation failure in a single test case can prevent its entire class
from compiling, potentially skewing the number of reported non-compiling test cases. To mitigate
this, the pipeline employs a selective exclusion mechanism: if a test case fails to compile due to
an issue isolated to its own code (i.e., not related to shared setup logic or companion objects), it
is excluded from the suite and the remaining tests are recompiled. This iterative approach allows
the rest of the test class to be evaluated. In contrast, if compilation errors stem from shared
structures—such as @Before methods or companion objects—the entire test class is treated as
non-compilable.

From a total of 1083 GUI test cases extracted from version v1, execution on version v2 yielded
the following results: 397 test cases passed successfully, 54 failed at runtime, and 632 could
not be compiled. These outcomes are visualized in Figure 4.1, alongside results for subsequent
research questions. While more than 36% of the test cases remain functional across versions, the
large number of failures and compilation issues highlights the significant maintenance overhead
introduced by even short-term UI changes. This pronounced disparity underscores the inherent
fragility of the test suite under study.

4.2 RQ2 - Zero-Shot LLM Repair Effectiveness
RQ2 evaluates the effectiveness of automated maintenance through the use of zero-shot prompting
with a LLM. Specifically, this phase examines how well such an approach can repair test cases
that were either failing or non-compilable in the initial run.

In a realistic development setting, the developer would apply the LLM’s proposed fix—whether
it takes the form of a direct code snippet, a structured series of edits, or step-by-step instructions
referencing specific patterns or lines. Any fix that led to a compiling and passing test case was
considered a successful repair.

A total of 686 test cases were analyzed under RQ2. Following a single zero-shot prompt based
solely on the error message, 300 test cases (approximately 43.7%) were successfully repaired. This
subset includes 40 test cases that had previously failed at runtime and 260 that had originally
failed to compile. At this stage, 108 test cases remained in a failed state—100 of which had
been broken from the outset. Of the 278 broken test cases that were not fixed, 272 remained
non-compilable.

These findings suggest that LLM-assisted, developer-guided repair workflows can meaningfully
reduce the volume of broken or failing tests, successfully resolving nearly one-third of the cases
initially deemed fragile. However, the proportion of unresolved tests remains considerable,
warranting further investigation through RQ3 and RQ4.

4.3 RQ3 - Zero-Shot Retry Gain
RQ3 investigates the potential added benefit of issuing a second zero-shot prompt to those test
cases that remained failing or broken after the initial LLM-based repair attempt. In this second
iteration, the LLM was provided with the most recent error logs, alongside the same minimal
prompt used previously.
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The observed improvement from this follow-up attempt was considerably lower than that of
the first. Only a small number of additional test cases were successfully repaired: 14 in total,
comprising 6 that had previously failed and 8 that had been broken. The number of failed test
cases remained high at 101—of which 79 were carried over from prior failures and 22 originated
from the previously broken set. As for broken tests, the count stood at 271, including 23 cases
that now failed and 248 that continued to be non-compilable.

These findings indicate a limited return from simple repetition of the zero-shot prompt. The
marginal recovery rate in this second round suggests that a purely iterative prompting strategy,
without additional context or reasoning support, is not an effective approach for test repair in
this setting.

4.4 RQ4 - Chain-of-Thought Repair Effectiveness
The final set of test cases evaluated under RQ4 includes 372 instances, of which 271 were non-
compilable. In this phase, the developer engaged in a brief but targeted interaction with GitHub
Copilot, following a chain-of-thought (Chain-of-Thought (CoT)) prompting strategy.

This interactive approach enabled the LLM to generate more nuanced and potentially creative
fixes. As a result, 66 test cases were successfully repaired—38 of which had previously failed
at runtime and 28 that were initially broken. Despite these gains, 77 test cases remained in a
failed state, with 57 carried over from earlier failures and 20 originating from the broken set.
Additionally, 229 test cases continued to be non-compilable. Of these, 223 remained consistently
broken across phases, while 6 had transitioned from a failing state.

These results highlight the potential of minimal developer intervention combined with struc-
tured prompting to enhance repair effectiveness, particularly for cases that resist simpler zero-shot
approaches.

Table 4.1 presents the distribution of test outcomes across the different research questions. To
clearly highlight the impact of each repair phase, the table focuses exclusively on the subset of
test files that contained at least one failed test case during the initial execution. Files unaffected
by GUI changes—i.e., those in which all tests passed from the outset—are excluded, allowing for
a more concise and meaningful depiction of the test maintenance process.
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Discussion

V1 Test Cases
1,083

Passing RQ1
397

Failing RQ1
54

Broken RQ1
632

Passing RQ2
300

Failing RQ2
108

Broken RQ2
278

Passing RQ3
14

Failing RQ3
101

Broken RQ3
271

Passing RQ4
66

Failing RQ4
77

Broken RQ4
229

Passing
777

Figure 5.1: Sankey Chart of the test cases through the RQs

This chapter discusses the empirical findings obtained across the four research questions,
emphasizing their implications for test maintenance in Bitwarden, an Android GUI application
developed using Jetpack Compose. The analysis offers both quantitative and qualitative insights
into the strengths and limitations of LLM-assisted test repair strategies.

The results for RQ1 reveal that 63.3% of test cases originally authored for version v1 fail
when executed without modification on version v2. Of these, 58.4% fail to compile, and 5% fail
at runtime. These figures underscore the high fragility of GUI tests in the face of even minor
application evolution. Structural UI changes—such as altered composable function signatures,
modifications to layout hierarchies, or renamed resource identifiers—are key contributors to this
degradation. These findings are consistent with prior work highlighting the brittleness of GUI
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tests in reactive or declarative rendering frameworks, affirming that short release cycles can
introduce substantial test maintenance challenges.

RQ2 investigates the effectiveness of a single zero-shot repair prompt using GitHub Copilot,
relying on error messages and IDE context. Out of 686 broken or failing test cases, 300 were
successfully repaired, yielding a recovery rate of 43.7%. These successful fixes included both
direct code edits and step-by-step modifications that allowed the tests to compile and pass. The
results demonstrate that LLMs can serve as practical assistants in test maintenance workflows,
producing syntactically valid and semantically meaningful patches even without task-specific
fine-tuning or elaborate prompting. However, a large portion of test cases remained unresolved,
reflecting the limitations of single-step automated interventions—especially in the presence of
intricate dependencies or unclear failure messages.

The findings for RQ3 show that a second zero-shot repair attempt, using updated error feedback,
produced only a modest improvement. An additional 14 test cases were repaired, corresponding
to a marginal gain of 2.0%. This minimal increase suggests that iterative prompting without
additional context or developer feedback leads to diminishing returns. The ineffectiveness is
particularly pronounced in structurally complex test classes, where deeply nested components or
lengthy test bodies may confuse the model and hinder accurate repair.

RQ4 explores the role of minimal developer guidance through a brief COT interaction with
the LLM. This strategy resulted in the repair of 66 additional test cases—a recovery rate of
17.7% over the unresolved cases from the previous stage. These results underscore the benefits of
interactive repair: guided prompting enables the model to better reason about the failure context,
refine its suggestions, and align more closely with the developer’s intent. Such interactions are
especially valuable when automated fixes fail due to incomplete context or ambiguous test logic.
The findings support the integration of lightweight, focused developer input into the repair loop
to enhance effectiveness.

A further crosscutting observation concerns the influence of test class size on repair success.
Larger test files, particularly those containing numerous test methods, proved systematically
more difficult to repair. In such cases, the overall complexity likely exceeded the LLM’s effective
context window, making it harder to localize compilation errors or generate coherent fixes. This
was especially evident in test classes spanning thousands of lines, where shared setup logic and
tightly coupled test bodies obscured the fault structure. These observations suggest that future
repair workflows should incorporate modularization strategies or targeted prompting techniques
to improve scalability in large or monolithic test suites.

In summary, the results demonstrate that LLM-based test repair can significantly reduce the
manual effort required to maintain GUI test suites. Zero-shot prompting offers an effective entry
point, and developer-guided interactions add value for cases that resist straightforward repair.
Among the strategies evaluated, context-informed zero-shot prompting emerges as the most
efficient compromise between repair effectiveness and maintenance effort, making it particularly
suitable for time-sensitive development cycles.
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Chapter 6

Conclusion

This thesis set out to answer a recurring question in modern Android development: How can we
keep large GUI-regression suites alive while the application and its Jetpack Compose interface
change almost daily?
To explore this, we designed and evaluated a developer-in-the-loop workflow that turns recent
Large Language Models (LLMs) into just-in-time repair agents for broken tests.

6.1 Recap of Purpose and Method
Guided by the Goal–Question–Metric framework, we examined four research questions that
progress from observing baseline fragility (RQ1) to measuring successive layers of LLM assistance
(RQ2–RQ4):

• Application under test. Bitwarden Android—an open-source, production-grade app
implemented with Jetpack Compose.

• Experimental setup. 1 083 GUI tests originally written for tag v2025.1.2 were replayed
on tag v2025.2.0; failures triggered one or more LLM-driven repair rounds inside Android
Studio (Github Copilot + Claude 3.7 Sonnet).

• Classification. After every round each test was labelled passing, failing, or broken

6.2 Main Findings

Table 6.1: Evolution of test pass rates across repair stages.

Stage Passing Failing Broken ∆ Passing
Baseline (RQ1) 397 54 632 —
Zero-shot repair (RQ2) 697 108 278 +300 (+43.7%)
Zero-shot retry (RQ3) 711 101 271 +14 (+2.0%)
Chain-of-thought (RQ4) 777 77 229 +66 (+17.7%)
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Baseline fragility is severe. Nearly two-thirds (63.3 %) of tests written just four weeks earlier
either failed or could not compile.

Single-shot LLM fixes go a long way. A single error-centric prompt lifted the pass rate from
36.7 % to 64.3 %, repairing 300 tests without bespoke tuning.

Blind repetition has little benefit. Re-prompting with updated logs rescued only 14 addi-
tional cases (+2 %), confirming diminishing returns for «retry-only» strategies.

Lightweight human guidance pays off. A brief chain-of-thought exchange added 66 further
repairs, pushing the final pass rate to 71.8 %.

Class size matters. Large test files (>100 methods) resisted repair more often, hinting at
context-window limits and tangled setups.

6.3 Implications for Practice
1. Embed LLM repair into CI. Even vanilla zero-shot prompting can more than halve the

breakage avalanche after a release. Integrating a repair step before the build fails can spare
developers hundreds of manual edits.

2. Keep prompts concise yet contextual. Error traces plus a one-line intent (“Fix the
test”) proved sufficient; surplus instructions did not improve outcomes.

3. Reserve developer attention for hard cases. A focused two-or-three-turn conversation
unlocks another ∼18 % of stubborn failures—excellent leverage for minutes of effort.

4. Modularise tests. Splitting monolithic classes lowers both the cognitive and token load
for the LLM, boosting repair success and future maintainability.

6.4 Contributions
• Empirical evidence that LLM-assisted maintenance can raise the survivability of a

real-world Compose suite from 37 % to 72 % within three short cycles.

• A reproducible workflow combining automated scripts, IDE context harvesting, and
progressive prompting patterns.

• Actionable guidelines on when to rely on zero-shot fixes, when to involve a human, and
how to structure tests for LLM compatibility.

In summary, this thesis demonstrates that recent LLMs—paired with minimal but strategic
developer oversight—can transform brittle GUI regression suites into self-healing assets. By folding
language-model intelligence directly into everyday workflows, Android teams can keep pace with
rapid UI evolution, trading the drudgery of manual repairs for a collaborative conversation with
machines.
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Chapter 7

Future Works

Building on the findings of the present study, several promising research directions can be
pursued to deepen our understanding of LLM-assisted GUI testing and to push the boundaries of
automated repair.

7.1 Broader and Deeper Empirical Replication
• Multiple case studies. Replicating the experiment on a diverse set of Android, iOS,

and multiplatform projects (e. g. Flutter, React Native) would clarify which benefits are
universal and which depend on framework specifics, codebase size, or team culture.

• Extended temporal scope. Observing the same suites across months or years—capturing
major refactors, design overhauls, and library upgrades—can reveal how LLM performance
decays (or improves) as the divergence between training data and code reality widens.

• Meta-analysis of historical releases. Mining public repositories that tag every store
release (e. g. F-Droid) would enable a retrospective view of GUI test fragility at scale,
complementing prospective studies.

7.2 Fine-Grained, Commit-Level Evolution
A pipeline that replays the entire test suite at every commit could produce an invaluable
longitudinal dataset: pass/fail labels, repair attempts, and contextual signals such as diff size or
author experience. Such granularity would let future researchers pinpoint the exact kinds of code
changes (UI layout vs. business logic) that trigger breakage, the threshold at which LLMs “lose
the plot” due to accumulating drift and early-warning heuristics for proactive repair suggestions.

7.3 Advanced Prompt Engineering and Retrieval
• Adaptive prompts. Mechanisms that condition the prompt on static analysis (e. g.

dependency graphs) or dynamic coverage could supply richer context without bloating token
budgets.

• Curriculum strategies. Starting with coarse fixes and progressively exposing deeper
failure traces may help the model converge to correct patches with fewer hallucinations.
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• Retrieval-augmented prompting. Coupling an LLM with a vector store of past fixes or
code snippets can ground suggestions in project-local idioms and Application Programming
Interfaces (APIs).

7.4 LLM Agent Architectures
Beyond single-shot or conversational prompting, future work could explore full-fledged autonomous
repair agents that iterate through plan → edit → compile → test loops. Key research questions
may include:

1. How many reflection or self-critique cycles maximise benefit before diminishing returns?

2. Can reinforcement learning from compilation/test rewards surpass heuristic retry policies?

3. What governance mechanisms (e. g. static analysis filters, policy-based “safety rails”) are
required to keep agents efficient and secure?

7.5 Beyond Repair: Generation and Oracle Evolution
Finally, the long-standing oracle problem in GUI testing remains only partly addressed. Future
studies could (i) investigate LLM-generated assertions that evolve alongside the UI or (ii) integrate
crowdsourced validation or differential execution (reference-vs-candidate runs) to vet the semantic
correctness of repaired tests or (iii) compare test generation vs. test repair pipelines to evaluate
cost–benefit trade-offs in green-field versus legacy scenarios.

In summary, extending the experimental canvas—across projects, time, and methodological
sophistication—will not only solidify the empirical grounding of LLM-assisted maintenance but
also chart a path toward truly resilient, self-evolving GUI test suites.
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