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Chapter 1

Introduction

In recent years, the fusion of natural language processing and robotic control
has paved the way for more intuitive and user-friendly interfaces in robotics.
In particular, Vision-Language Action (VLA) models have allowed systems to
understand the user’s intentions expressed in natural language and convert them
into executable robotic behaviors. In this thesis, we present the development of an
intelligent agent that uses such models to control a UR10e robotic arm equipped
with a Robotiq 2F-140 gripper, using the RAI framework (RobotecAl) and a
conversational interface based on a Large Language Model (LLM) via Ollama.

This work was carried out in the industrial context of Reply Concept and is
based on a pre-existing RAI-based architecture, originally designed for the Franka
Emika Panda robotic arm. The project therefore involved the adaptation and
extension of this framework to effectively integrate with the UR10e robotic arm
with Robotiq2f-140 gripper, focusing on command interpretation, motion planning
and simulated execution within the Open 3D Engine (O3DE).

1.1 Goal

The main objective of this thesis is to develop a robotic control system capable
of performing high-level tasks defined through natural language. Specifically, the

goals are as follows.

« Integrating a VLA model using an LLM (via Ollama) within the RAT framework
to interpret natural language instructions.

o To enable the robotic agent to autonomously generate and execute motion
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Introduction

trajectories based on user commands.

o Adapt existing RAI tools and control logic for compatibility with the UR10e
and Robotiq 2F-140 hardware.

e To use simulation in O3DE for testing, visual feedback, and interaction in

dynamic environments.

o To evaluate the performance of different LLMs—both multimodal and non-
multimodal—in robotic task execution scenarios.

These objectives aim to demonstrate a robust foundation for interactive and
adaptable robotic control systems with potential for future deployment in real-world

applications.

1.2 Thesis Structure

The remainder of this thesis is organized as follows:

o Chapter 2: Background and Related Technologies Provides an overview of
the core technologies, including the RAI framework, VLA models, the UR10e
robotic platform, and the simulation tools.

o Chapter 3: Intelligent Agent Architecture Describes the internal structure of
the agent, focusing on how natural language commands are parsed, interpreted,
and converted into robotic actions.

o Chapter 4: Adapting RAI to UR10e + Robotiq Details the modifications
made to the RAI system to support the new hardware configuration and the
challenges encountered during integration.

o Chapter 5: Simulation and testing in O3DE Outlines the simulation setup, task
scenarios, and evaluation criteria used to validate the system’s performance.

« Chapter 6: Evaluation of Language Models Compares multiple LLMs (includ-
ing multimodal ones) in terms of their effectiveness in guiding the robot based

on natural language commands.

o Chapter 7: Discussion Reflects on the results, identifies limitations, and
proposes directions for future work.

2
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o Chapter 8: Conclusion Summarizes the contributions of the thesis and high-
lights potential industrial applications.



Chapter 2

Background and Related
Technologies

This chapter describes the foundational technologies and frameworks underlying
the implementation of the intelligent agent for robotic control: the RAI framework,
robotic hardware, the simulation environment, and the conversational LLM pipeline
using Ollama.

2.1 Robot Operating System (ROS 2)

ROS (Robot Operating System) is an open-source software development kit for
robotics applications. ROS provides developers with a standard software platform
that guides them from research and prototyping to implementation and production.

This system was introduced in 2007 and serves as a flexible framework for writing
robot software. It is a collection of libraries and tools. Hobbyists, researchers, and
engineers can contribute to this open-source platform through various communities.
With easy access to the code, robots become accessible to more people around the
world.

Contrary to what the acronym suggests, it is not an operating system: ROS runs
on Linux Debian and Ubuntu. In fact, ROS serves as a middleware and provides a
set of plug-and-play libraries to accelerate robot development.

ROS 2 bases its communication on the Data Distribution Service (DDS). It
eliminates the dependency on a master node of its predecessor. This standard,
combined with the ROS 2 intra-process API, provides users with a much improved
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transmission mechanism.

ROS provides functionality to abstract hardware, device drivers, inter-process
communication across multiple machines, tools for testing and visualization, and
much more.

The core feature of ROS is the way the software runs and communicates, which
allows you to design complex software without knowing how the hardware works.
ROS provides a way to connect a network of processes (nodes) with a central hub.
Nodes can run on multiple devices and connect to the hub in various ways.

The main ways to create the network are by creating services that can be
requested or by defining publisher /subscriber connections to other nodes. Both
methods communicate via specific message types. Some types are provided by the
core packages, but message types can also be defined in individual packages [1].

In the context of this project, ROS 2 serves as the communication backbone
between different system components:

e Sensor data generated in O3DE simulation environment is published over
ROS 2 topics.

o The RAI agent, which is the intelligent system used in this project, listens to
these data and sends commands through ROS to control the robot.

e Tools like Movelt 2 are also inside the ROS system, and they use the target
poses to calculate the robot’s movements.

» RViz 2 is used to watch what the robot is doing, to see the sensor data and
the motion plans, and to check that everything is working correctly.

These parts together show why ROS 2 is powerful: it is modular. This means
you can change or update some parts (for example change the planner or add a
new sensor) without breaking the rest of the system, because the communication
between parts is very clear [1].

ROS 2 operates using a decentralized, message-passing architecture composed
of nodes (independent computational units), topics (for asynchronous pub/sub
messaging), services (for synchronous calls), and actions (for long-duration tasks
with feedback). All these components are organized in packages. In this project,
ROS 2 topics are used to send camera images from the simulation, services are
used to control the gripper, and actions are used for moving the arm. Chapter 4
explains this system in more detail.
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2.1.1 Movelt 2

Movelt 2 is the robotic manipulation platform for ROS 2, it provides high-level
capabilities for robotic manipulators. It includes tools for:

Inverse kinematics (IK)

Collision checking

Path planning (using OMPL, STOMP, CHOMP)

Trajectory execution

Task-space constraints

In this thesis, Movelt 2 is responsible for generating motion trajectories
for the UR10e arm in response to high-level commands issued by the LLM. These
plans are validated against simulated environments in O3DE to ensure feasibility

and safety.

Movelt 2 also integrates tightly with ROS 2’s TF (transform) system and can
be used to visualize motion plans and collision objects, making it easier to debug

and test robotic behaviors [2].

2.1.2 RViz 2

RViz 2 is a 3D visualization tool that helps to see and check the robot status, sensor
data, and the environment in real time. It is a very useful tool when working with
ROS 2, especially for simulation and testing.

With RViz it is possible to:

See TF frames and the robot joint positions

Check live camera images and point clouds

Show collision objects, planned motions, and the position of the robot’s

end-effector

Use interactive markers to set goals or help debugging
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In this project, RViz is used mainly to show the robot’s movements, to check
that Movelt generated correct trajectories, and to visualize the camera and sensor
data from the O3DE simulation. This visual feedback helped to be sure that the
RAT agent understood the environment and selected the correct commands [3].

2.1.3 ROS 2 Jazzy Distribution

The system used in this thesis is based on ROS 2 Jazzy Jalisco, which is the 13th
official release of ROS 2, published in May 2024. Compared to the older versions
like Humble or Foxy, Jazzy has many improvements, such as:

o new and better APIs that support modern C++ (like C++417 and C++20),
o better performance and memory usage in rclcpp and rclpy,

» more stable support for real-time execution and node scheduling,

o and better compatibility with new hardware and simulators.

Jazzy also brings better security, more powerful CLI tools, and improved launch
systems. For this project, Jazzy was a good choice because it works well with both
Movelt 2 and RViz 2, and it is supported by the ROS and O3DE communities.
Using Jazzy made sure that the software is compatible with recent libraries and
will continue to work in the future. This helps to keep the system stable and easy

to maintain [4].

2.2 RAI framework

RAT (RobotecAl) is a flexible agent framework designed for embodied AT systems in
robotics, designed to integrate large language models with robotic software stacks
like ROS2. It offers tools for perception, planning, and action execution in both
real and simulated environments [5].

The RAI framework is built around three main concepts: Agents, Connectors,
and Tools.

o Agents are not just normal controllers. They include the logic and intelligence
of the robot (or a digital twin). An agent in RAT can understand language
commands, see what happens in the environment, use its memory, and interact
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with planning tools. This behavior is written in the Agent.run() method,
which controls how the agent works step by step.

o Connectors are like bridges that connect the agent to other systems such
as ROS 2, O3DE, or different types of sensors and actuators. Thanks to
these connectors, the agent can receive real-time data (like images or LiDAR),
send movement commands (for example, joint positions), and communicate
through topics or services in ROS [5]. ROS 2 integration is native, enabling
plug-and-play capabilities with existing robotic ecosystems.

o Tools are the callable modules or actions that an agent can use in response
to natural language queries. These include perception pipelines (e.g., object
recognition, semantic scene parsing), motion planning (e.g., via Movelt 2),
and state estimators. Tools are registered with the agent and exposed through
LLM-based reasoning, meaning that a language model can “call” a tool to

execute a function when formulating a response [5] [6].

One of the distinguishing aspects of RAI is its seamless integration with large
language models (LLMs). Using natural language as the primary interface, RAI
enables agents to interpret high-level human instructions (e.g., “Pick up the red
block to the left of the green one”) and autonomously decide which tools to invoke
to fulfill the task. In the RAI framework, the LLM works like a central planner.
It keeps calling tools, checking the results, and updating the task plan in a loop
based on the conversation[5].

RAT also focuses on making the agent aware of its own body and limits. Using
tools like whoami, the agent can understand its own shape, abilities, and constraints.
It reads this information from files like the URDF, sensor descriptions, and kinematic
models. This helps the agent make decisions that are possible in the real world and
adapt them to the situation. This type of “self-awareness” can also improve how
the LLM reasons, and it can support advanced techniques like Retrieval-Augmented
Generation (RAG) or memory-based planning [5].

RATI has already been tested in different scenarios:

« A mobile robot doing navigation tasks in indoor environments, both real and
simulated.

o A robotic arm in O3DE that grabs and places objects based on what it sees.

e An agricultural robot that plans tasks using tools.
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These examples show how RAI connects high-level reasoning (using LLMs) with
real robot control. It solves some of the problems of traditional robotic systems
by using natural language and visual feedback, while still working with standard
platforms like ROS 2 and Movelt.

To sum up, RAI is a flexible and powerful framework for building smart and
interactive robots. It allows agents to understand complex instructions, reason
about their physical structure, and take action in dynamic environments.

Figure 2.1: RAI framework demonstration using the Franka Emika Panda robot
in O3DE. This setup served as a baseline reference for the development of the
UR10e-based implementation presented in this thesis.

As shown in Figure 2.1, the original RAI demonstration integrates a Franka
Panda arm in a simulated scene using O3DE and ROS 2. This project extended
that foundation by adapting the framework to the UR10e robot.

2.2.1 Configuration Interface

To facilitate setup and user interaction, the RAI framework includes a web-based
configuration interface built with Streamlit. This tool guides the user through all
the steps required to initialize the agent, select models, and enable optional services
such as speech recognition or tracing. The configuration wizard makes the system
more accessible and helps avoid common setup errors.

The configuration is divided into intuitive steps: model selection, tracing,
speech recognition (ASR), text-to-speech (TTS), and review. The final output is a
structured configuration file that the RAI agent uses at runtime.
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Figure 2.2 shows the welcome screen of the RAI Configurator, while Figure 2.3
displays the model selection interface where the user can choose a language model

such as qwen2.5:3b for both simple and complex tasks.

Configuration Progress

Welcome to RAI Configurator! 3y

wironment step by step:

¥ Welcome
8 Model Selection
M Tracing
@ Speech Recognition
& Text to Speech
@ Additional Features

Begin Configuration >

Ml Review & Save

Figure 2.2: Start page of the RAI Configurator interface (Streamlit-based).

Model Configuration

Configuration Progress

m
9 Speech Recognition
&0 Tt

® Addition

Figure 2.3: Model selection screen showing the use of the Qwen LLM through
Ollama.

At the end of the process, the full configuration file is generated and shown
(Figure 2.4), allowing the user to review or save it. Before completing the setup,
a test step validates that all required components are accessible and properly
configured. Figure 2.5 confirms that all modules passed the test successfully.
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Configuration Progress

Figure 2.4: Final configuration file generated by the interface.

Figure 2.5: Validation screen confirming that all setup steps have passed.

2.3 UR10e Robotic Arm and Robotiq 2F-140
Gripper

UR10e

The UR10e is a 6-axis industrial robotic arm made by Universal Robots, and
it is part of the e-Series. It is placed between the smaller UR5e and the bigger
UR16e. The UR10e has a good balance between reach, weight it can carry, and
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safety. It can lift up to 12.5 kg and has a reach of 1300 mm, so it is useful for tasks
like manipulation in factories, warehouses, or research.

It also has force and torque sensors, some flexible settings, and a very precise
movement with repeatability of 0.03 mm. The UR10e respects safety standards like
ISO 10218-1 and PLd Category 3, so it can work close to people without needing
protection barriers in most cases.

Another good thing is that the UR10e works well with ROS and is compatible
with Movelt, which makes it easier to use in research projects or simulations, like
with the RAI framework or O3DE. [7] [8].

UR10e robot

Specifications

Brand Universal Robots

Model UR10e

Type Robot Arm

Axes 6

Payload 10kg

Reach 1300 mm

Repeatability 0.05 mm

Weight 29kg

Figure 2.6: UR10e robot arm by Universal Robots, featuring 6 degrees of freedom,
1300 mm reach and 10 kg payload.

Robotiq 2F-140 Gripper

The Robotiq 2F-140 is a two-finger gripper that can adapt to different situa-
tions and is made for general robotic tasks. It has an adjustable stroke up to 140
mm, so it can take objects of different shapes and sizes — from small and delicate
parts to bigger ones. It can hold up to 2.5 kg and lets you control position and
speed with good precision. It also has internal sensors that help to check if the
object was taken correctly.

One important feature is that it works in a plug-and-play way with Universal
Robots, using the URCaps software, which makes it easier to program from the
UR teach pendant. Because of its strong design and flexibility, the 2F-140 is often
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used in industry and research when the robot needs to grasp different kinds of

objects or do manipulation in dynamic environments [9)].

Figure 2.7: Robotiq 2F-140 adaptive gripper. Two-finger design with a 140 mm
stroke, suitable for diverse object sizes.

2.4 Vision—-Language Action (VLA) Models

Vision—Language Action (VLA) models are a new type of system that combines
natural language, visual input, and robot control. The idea is to connect the words
used by humans with the real-world actions of a robot, by using images and spatial
information to understand what the user wants. For example, a VLA model can
understand a command like “put the red cube on the green platform” and convert
it into robot movements that make sense depending on the current situation.

In classic robotics systems, perception, planning, and control are separated
and programmed by hand. VLA systems are different—they use machine learning
models trained on mixed data (text and images) to understand the scene and
decide what to do. These models can work end-to-end or in a combination with
traditional methods.

In this thesis, the VLA method is done by using a large language model (LLM)
that runs locally with Ollama, inside the RAI agent. The LLM reads the natural
language command, uses RAI tools to get information (like camera data from
O3DE), and sends the correct commands to plan the robot’s action. This way, the
system is flexible and can adapt if the environment changes or the user gives a new
task.

With live visual feedback from the O3DE simulation, the agent can check if
the object is still in the same place, if the task was done correctly, or if something
changed (like an object moved or is blocked). This feedback makes the robot
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smarter—it can ask for more info (“which red block?”) or try again if something
goes wrong.

So, VLA models make robots easier to use, even for people who are not experts.
They are also useful when the environment is not perfect, because they help manage
uncertainty and complex situations. [5] [6].

2.5 O3DE for Robotic Simulation

The Open 3D Engine (O3DE) is a free and open-source real-time 3D engine. It was
first created by AWS and now it is managed by the Linux Foundation. O3DE is
made for high-quality graphics and has a modular system. It includes many tools
for rendering, physics, animation, and simulation, so it’s not only for video games,
but also very useful for robotics and digital twin applications.

One of the key reasons why O3DE was used in this project is because it has
native support for ROS 2 through the ROS 2 Gem. This allows direct connection
with the Robot Operating System without using external bridges. This is different
from other platforms like Unity or NVIDIA Isaac Sim, which need extra plugins or
bridges to work with ROS. With O3DE, the simulation can directly publish and
subscribe to ROS topics, send RGB and depth images, and share TF transforms
and sensor data—all using normal ROS messages.

Thanks to the ROS 2 Gem, it’s possible to import robot models written in
URDF or XACRO files. This makes it possible to see the real joint movements,
kinematics, and collisions inside the simulation. Also, developers can create interac-
tive environments where the robot reacts to physics, moving objects, and dynamic
elements—while keeping good timing that is important for testing planning and
perception [10].

In this thesis, O3DE wa selected as the main simulator for the UR10e robot
with the Robotiq 2F-140 gripper. The scene included 3D objects, a table, and a
static camera. The camera sent RGB and depth data using ROS topics, and the
RAT agent used that data for perception. This way, it was possible to test the full
vision-language control system without a real robot [11].

14
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O3DE was very helpful during development and integration, because it gave
real-time visual feedback and good physics simulation. Since it’s open-source and
works well with ROS 2, it was a perfect choice for a flexible and realistic robotics
simulator [12].

Figure 2.8: Screenshot of the UR10e robotic arm within the RAl-integrated
O3DE simulation environment. The editor view shows the robot, objects on the
table, and the ROS 2 transform and namespace configuration.

2.6 Conversational Agent via Ollama

Ollama is an open-source platform that helps to run large language models (LLMs)
on your own computer. It is different from cloud-based AI services, which need
internet all the time, user authentication, and sometimes have problems with speed
or privacy. Ollama instead runs the LLMs locally, using the CPU or GPU, and
this is very useful for robotics, where fast response and offline use are important.

The main idea in Ollama is the Modelfile. This is a configuration file that tells
the system how to download, prepare, and start a specific LLM. The Modelfile
includes the model weights, but also other information like the type of tokenizer,
the backend used (for example, llama.cpp or GGML), and hardware limits. This
design makes it easy to switch from one model to another (for example, from
Mistral to LLaMA 2), and also helps to keep the system easy to update and to use
on different machines or by different people.

Ollama provides a built-in REST API that allows external tools and agents—such
as those written in Python, C++, or JavaScript—to interact with a model via
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HTTP requests. This API is used in this thesis to connect the RAI Conversational
Agent with a locally hosted LLM. In this architecture, natural language commands
from the user are sent to the LLM through Ollama, which returns structured
reasoning steps or tool invocation plans. The RAI framework then uses these
outputs to trigger robotic actions or query sensor data, forming a closed control
loop that is both conversational and reactive.

Ollama supports a large number of models. It works with:

o Text-only language models like LLaMA 2, Mistral, DeepSeek, Phi-2, and

Gemma.

o Multimodal models Multimodal models that can also understand images,
like Llava and BakLLaVA, which will be useful in the future for doing vision
and language tasks directly on the device.

In this project, Ollama offers many advantages:

e Privacy and reproducibility: Everything runs locally, so no data goes to
the cloud, and the results can be repeated on other machines.

e Real-time performance: The system replies fast, which helps for smooth

communication with the robot.

o Customizability: Developers can change the prompt style, adjust how the
model answers, and even switch models easily without changing all the code.

In general, Ollama is light and easy to use. It is a good choice for using LLMs in
robotics, because it allows natural language understanding and works well with
physical actions [13] [14] [15].

2.7 Dockerized Deployment of the RAI Robotic
System

Modern robotic systems are becoming more and more complex because they use
many different software tools, special hardware, and constantly changing middle-
wares. For this reason, it is not easy to make everything work the same way on
different computers. To solve this problem, the robotics community started using
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Docker. Docker is a tool that puts all the software and its environment inside a
container that is light, separated from the rest of the system, and reliable.

Docker was first created for cloud applications, but its design is very flexible
and works well also in robotics. With Docker, developers can run the same robotic
system on different computers without problems, because everything is already

prepared inside the container.

2.7.1 Fundamentals of Docker

Docker is a platform for defining and running containers

Containers are isolated processes for each of the components of a project. Each
component runs in its own isolated environment, completely isolated from everything
else on your machine [16].

Here’s what makes them useful. Containers are:

o Self-contained. Each container has everything it needs to function with no

reliance on any pre-installed dependencies on the host machine.

 Isolated. Since containers are run in isolation, they have minimal influence on

the host and other containers, increasing the security of your applications.

o Independent. Each container is independently managed. Deleting one con-

tainer won'’t affect any others.

o Portable. Containers can run anywhere! The container that runs on a certain
development machine will work the same way in a data center or anywhere in

the cloud [17].
Key Docker components relevant to robotics include:

o Images: read-only template with instructions for creating a Docker container
[18];

 Containers: runnable instance of an image [17];

o Dockerfiles: text file containing instructions for building the source code. It
automate the setup of environments [19];

e Volumes and Networking: persistent data stores for containers, essential for
ROS-based workflows and simulation engines [20].
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Docker offers clear advantages for robotics, such as dependency management be-
cause it ensures consistent setups across machines, reproducibility by simplifying
testing and collaboration in research, isolation because it avoids software conflicts
and hardware access enabling GPU acceleration via NVIDIA Container Toolkit [21].

In this thesis, a single Docker container was created to encapsulate the entire

robotic development stack. It included ROS 2 Jazzy, Movelt 2, O3DE, the RAI

agent and its tools and Ollama.
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Chapter 3

System Architecture

This chapter presents the overall architecture of the robotic system developed in
this thesis. The system is designed to enable an intelligent agent to interpret natural
language commands, perceive its environment, and execute physical tasks using
a UR10e robotic arm with a Robotiq 2F-140 gripper. The architecture combines
several advanced software components—including the RAI framework, a locally
hosted LLM via Ollama, the ROS 2 middleware, the Movelt 2 motion planning
library, and the O3DE simulation engine—into a cohesive pipeline that enables

high-level, language-driven robotic control.

3.1 System Components

The system is composed of the following interconnected modules:

o User Interface — Accepts natural language input in free text form.

o LLM via Ollama — A large language model running locally via Ollama, used
to semantically interpret commands and propose structured actions [13] [5].

« RAI Agent Framework — It uses the LLM and connects it with the tools

for perception, planning, and control [5].

* RAI Tools — These are small modules that the agent can use to see the scene,

plan motions, and execute robot actions.

« ROS 2 — It is the communication system that connects everything using
topics, services, and actions [1].
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o Movelt 2 — It helps with robot motion: it calculates trajectories, checks for

collisions, and solves kinematics [2].

e O3DE - It is the 3D simulator where the robot acts. It gives the world, the
camera input, and physics simulation [10].

« RViz 2 - A tool to see what the robot is doing in real time: its position,

trajectories, and sensor data [3].

Each of these modules plays a specific role in a perception—cognition—action
loop: commands are interpreted by the LLM, reasoning and planning are handled
by the RAI agent, and execution is performed through ROS-integrated simulation.

Figure 3.1: The UR10e robotic arm visualized in RViz 2. This interface is used
to monitor joint states, trajectories, and coordinate frames in real time during
execution.

3.2 Functional Flow

The control pipeline can be summarized in six main steps:
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1. Command Input
The user issues a natural language instruction, e.g., “Place the red cube on

the green platform.”

2. Semantic Interpretation
The text from the user is sent to the LLM that runs locally with Ollama. This
model understands what the user wants and changes the command into a
specific tool call—for example, calling get_object_positions("red cube")
and then move_to_point(x, y, z, task="grab").

3. RAI Agent Reasoning and Tool Invocation
The RAI agent receives the result from the LLM and decides which tools to
use. It chooses the right tool for perception or manipulation, depending on
the goal. The communication happens using ROS 2, and the modular system
helps the agent to work with different robot setups.

4. Perception and Scene Understanding
When the agent calls get_object_positions, it tries to find the object in
the environment. Inside, this tool uses GetGrabbingPointTool, which reads
the RGB image, the depth image, and camera info coming from the O3DE
simulator. Then, it uses Grounding DINO to detect the object by the name
given in natural language, and Grounded SAM to create a mask of that object.
After that, it uses the camera calibration and the depth data to create a 3D
point cloud. It calculates the center of the object (centroid) and converts it
into the robot’s coordinate frame using TF2. This final 3D pose is used later

to plan the robot’s movement.

5. Motion Planning and Execution
After the position of the object is found, the agent uses the move_to_point
tool. This tool sends a request to the ManipulatorMoveTo service, with a 3D
position and the type of task (like "grab" or "drop"). Then, the robot’s motion
planner (using Movelt 2 or similar system) calculates the correct trajectory.
The movement is done using ROS 2, and the gripper opens or closes depending
on the task [2].

6. Feedback and Visualization
The movement is shown inside the O3DE simulator. ROS 2 gives feedback,

21



System Architecture

and this is visualized in RViz 2 [3], so we can see if the task was done correctly.
The agent checks the result and verifies if the action worked.

This system is modular, so the tools can be reused or changed without touching
the main logic of the agent. All parts talk to each other using ROS 2 topics and
services, which helps to keep the performance in real time and the system flexible.

Figure 3.2 provides a visual summary of the modular pipeline described above.

LLM via Ollama

User interface Interpret commands, propose
actions

ROS2

Communication

RAl tools

Perception, plan

N
[ Movelt2

Motion planning

O3DE
3D simulation

(.

Figure 3.2: Block diagram of the system architecture. The user interface sends
natural language commands to the LLM via Ollama, which interprets the intent
and triggers the appropriate tools through the RAI agent. The agent interacts
with ROS 2, Movelt 2, and O3DE to simulate and execute the robotic action.

3.3 Example Execution Loop
A typical execution loop might proceed as follows:

1. User Input: The user provides a high-level instruction in natural language,
for example: “Pick up the red cube and place it on the green platform.”
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2. LLM Interpretation: The embedded large language model (LLM), running
locally via Ollama, interprets the intent of the instruction and converts it into

a sequence of structured tool calls. For example:

e get_object_positions("red cube")
e move_to_point(xl, yl1, zl, task='"grab")
e get_object_positions("green platform")

e move_to_point(x2, y2, z2, task="drop")

3. Perception Pipeline Execution: The get_object_positions tool calls
the internal GetGrabbingPointTool, which uses Grounding DINO to detect
the object in the RGB image based on the provided class name. It then invokes
Grounded SAM to segment the object and projects the mask onto the depth
image. The result is a set of 3D centroids, which are transformed into the
robot’s base frame using TF2 and returned to the agent.

4. Motion Planning and Control: Using the retrieved 3D coordinates, the
agent calls move_to_point (.. .), specifying both the position and the type
of action (“grab” or “drop”). This tool packages the information into a ROS
2 service request to the ManipulatorMoveTo server. The robot’s planner
computes a valid trajectory and executes it, including the appropriate gripper
action (open/close) at the start or end of the motion.

5. Simulation and Feedback: The motion is simulated in O3DE, where the
robot arm performs the desired action. The full interaction is visualized
in RViz 2, which displays detected object frames, planned trajectories, and
real-time robot pose updates. If any inconsistency is detected (e.g., failure to
localize an object), the agent can re-invoke the perception tool and retry the

operation.

The system architecture is designed to integrate high-level natural language
understanding with low-level robotic execution in a modular and scalable fashion.
The RAI framework manages reasoning and tool invocation, ROS 2 handles com-
munication, and O3DE simulates the physical environment. Thanks to the use of a
local LLM (via Ollama), the system supports fast, offline, and privacy-preserving
language processing. This architecture serves as a foundation for future deployment
on real hardware.
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Figure 3.3: Example of tool invocation sequence. The RAI agent calls the
move_to_point tool twice during a pick-and-place task, based on the reasoning
generated by the local LLM.

24



Chapter 4

System Implementation

This chapter explains the general structure of the robotic system made in this thesis.
The goal of the system is to let an intelligent agent understand natural language
commands, see what is happening in the environment, and do real physical actions
using a UR10e robot arm with a Robotiq 2F-140 gripper.

The system uses different software parts that work together: the RAI framework,
a large language model (LLM) running locally with Ollama, the ROS 2 middleware,
the Movelt 2 library for planning movements, and the O3DE engine for simulation.
All these components form one complete system that allows the robot to be
controlled with high-level language instructions.

4.1 System Setup

The implementation of this project is based on the RAI (Robotic Agent Interface)
framework. RAI is a modular system that helps robots to understand and follow
high-level commands written in natural language. It gives a clear way to connect
large language models (LLMs), like the ones running with Ollama, to real robot
actions using ROS 2.

To integrate the UR10e robotic arm with a Robotiq 2F-140 gripper into the

RAT ecosystem, several software layers were configured or adapted:

o Middleware: ROS 2 Jazzy Jalisco, used to let the system parts communicate
to each other.
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o Motion Planning: Movelt 2, for calculating robot movements, checking
collisions, and generating trajectories.

« Simulation: Open 3D Engine (O3DE), which simulates both the robot and

its environment.

o Perception Stack: Grounding DINO and Grounded SAM for multimodal
object detection and segmentation.

o LLM Interface: A local large language model running via Ollama.

o« RAI Framework: The core conversational agent, tool manager, and infras-
tructure linking perception and control.

The whoami package

A central element in integrating a new robot with RAI is the creation of a whoami

configuration package, that includes its looks, purpose, ethical code, equipment,

capabilities and documentation. As outlined in RAI’s official guide, this package

defines the robot’s identity and operational parameters in a declarative format.
More specifically, whoami includes:

e The name and model of the robot (e.g., "ur10e_gripper").

« ROS namespace used by the robot’s topics and services.

o End-effector link name used for sending target positions.

o Planning configuration, such as the motion planning group name for Movelt.
o Camera and sensor topics that the vision tools can use.

« Available RAI tools, that the robot can , like get_object_positions and

move_to_point.

This kind of modular file allows the RAI agent to work with different robots,
just by reading the information inside whoami package.

Human-Robot Interface (HRI)
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After the robot identity is defined using whoami, the Human-Robot Interface
(HRI) must be created. This part connects the high-level commands from the agent
to the ROS services, topics, and actions. According to the RAI HRI documentation,
this layer includes:

» ROS 2 service servers for robot actions like motion (e.g., /manipulator_move_to)
and controlling the gripper

» Subscriptions to topics used for perception like
/camera/color/image _raw, /camera/depth/image_raw, and

/camera/color/camera_info.

e ROS 2 nodes that contain the logic specific to this robot and how it should
execute the commands.

This interface is like a bridge between the abstract tool calls from RAI and
the real operations that move the robot or control the simulation. In this project,
the HRI was modified to work correctly with the UR10e robot, including its joint
limits, coordinate frames, and how the gripper should behave.

Core RAI ROS Packages

The integration of RAI into the ROS 2 workspace required the inclusion of the
following packages (source):

rai_interfaces: Contains .srv definitions (e.g., ManipulatorMoveTo.srv)
and message types used for agent-to-robot communication.

e rai_open_set_vision: Implements the perception pipeline using Grounding
DINO and Grounded SAM, including
GetGrabbingPointTool and other vision tools.

e rai_tools: Provides reusable tool wrappers for motion commands and se-
mantic tool definitions usable by the RAI agent.

e rai_node: The ROS node that runs the agent’s execution environment and
routes tool calls to the appropriate backend logic.

Each of these packages was cloned, built, and sourced within a ROS 2 workspace
using colcon build. Parameters specific to the UR10e were set via launch files and
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ROS 2 parameters, often initialized from YAML configuration files stored alongside
the whoami package [5].

Summary of Setup Flow

1. Clone and build the rai workspace.
2. Create the whoami package with robot identity.
3. Implement or adapt the Human-Robot Interface for UR10e.

4. Ensure that all ROS services (e.g., motion planning) and topics (e.g., camera
feeds) are correctly connected.

5. Launch the simulation (O3DE), the agent (RAI node), and the LLM backend
(via Ollama).

6. Test perception and motion tools individually, then verify agent-level interac-

tions via natural language prompts.

4.2 Adapting RAI to the UR10e Robotic Arm
and Robotiq 2F-140 Gripper

The original implementation of RAI was tailored for the Franka Emika Panda
robot. To adapt this framework for the UR10e robotic arm paired with a Robotiq
2F-140 gripper, a complete reconfiguration was necessary across multiple layers
of the system: robot description, motion control, tool integration, and semantic
identity. This section describes all the steps involved in this adaptation process.

4.2.1 Creating the whoami Package

At the core of every RAI-compatible robot lies its whoami package, which defines
the robot’s semantic identity. This package is not merely descriptive—it informs
the RAI agent of the robot’s physical structure, operational capabilities, documen-
tation, and behavior rules. It is used during the reasoning process, especially in
interactions involving natural language queries about the robot’s characteristics or
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constraints.

In this project, a new whoami package named
url0e_gripper_whoami was created by following the RAI developer guide [22].
The package includes a URDF model describing the robot and gripper, an image
showing the physical layout, and documentation in PDF format for both the UR10e
and the Robotiq 2F-140. A constitution file was also added to define the robot’s
operational safety constraints—such as payload limits and acceptable working
ranges.

Once the folder was complete, the package was parsed using RAT’s
parse_whoami_package.sh script. This command generated a vector database
from the content, producing structured files like robot_identity.txt,
robot_constitution.txt, and
robot_description.urdf.txt. These are queried by the language model during
runtime to answer contextual questions and to guide planning in ways that are
compatible with the robot’s design.

This process also supports multimodal interaction and dynamic knowledge
retrieval. For example, if a user asks, “Can you lift 5 kg?”, the agent does not
rely on pre-coded logic but instead queries the internal documentation parsed
during the whoami setup. This allows the robot to give answers based on its own
specifications and capabilities, as defined in its identity package.

An example of this interaction is shown in Figure 4.1, where the user asks about
the robot’s arm and gripper. The agent responds with a detailed explanation
retrieved from the documentation of the UR10e and the Robotiq 2F-140 gripper
that was used to create the whoam package, demonstrating context-aware and
role-specific behavior.
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urlOe_gripper chat app

A tellme about your arm and gripper

g Surel I'm equipped with a specialized robot end effector called the 2F-140 Gripper. It's designed to grasp and
manipulate objects wi n for material handling

primary function

settings like

. and what about your amr?

Great question! I'm integrat: to a robotic ) precise movement and control,

allowing me to perform tasks accurately in various settings.

The UR10e | rt of a larger robetic system tha move me to different positions to pick up or place objects. It

works searr y with my gi andle efficiently.

Do you have any specific guestions about the robotic arm or it works with me?

Figure 4.1: Example conversation with the RAI agent using the whoami package.
The agent provides a description of its arm and gripper by consulting internal
identity and documentation.

4.2.2 Implementing the Motion Interface

To allow the RAI agent to control the robot, it is essential to expose a service
named /manipulator_move_to, which is the expected interface for high-level mo-
tion commands across all supported robots. This design allows RAI tools such
as move_to_point to be robot-agnostic: rather than implementing a different
planning strategy for each platform, they simply call the same service with a pose
and a task intent (e.g., "grab" or "drop"), and rely on the robot-specific node to
execute the action.

To do this, I created a new ROS 2 node called ur10e_motion_node.py. This
node receives the ManipulatorMoveTo service requests and executes them by plan-
ning or forwarding the movement. It manages the full action, including going to a
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pre-grasp position, using the gripper, and then moving back to a safe pose after
the task is finished. The node also coordinates gripper state changes based on the
task type, ensuring that a “grab” begins with an open gripper and ends with it
closed, and vice versa for a “drop”.

This abstraction layer is critical to keeping the tools reusable and consistent
across robot types. Instead of modifying tool logic, only this interface layer needs
to change when adapting RAI to new hardware.

4.2.3 Robot Model and URDF Modifications

To simulate and plan the robot movements correctly, the URDF of the UR10e was
modified by adding the Robotiq 2F-140 gripper. This was done using a XACRO file
called ur10e_adapter_robotiq_2f_ 140_urdf.xacro, which extends the original
UR10e model by adding the gripper as a child link connected to the wrist joint.
This file also contains the joints for the fingers, and the collision and visual elements
needed for Movelt 2 and O3DE.

This URDF was used both in the whoami file (so the agent knows the robot
structure) and in the launch files to load the model into the simulation and planning
environment. The URDF and the robot state publishers were also configured to
send all joint states to Movelt 2, so it can calculate correct motions and avoid
collisions.

An image of the full robot in RViz was added to the documentation, to help
check and debug the robot’s virtual setup quickly.

4.2.4 Controller Adaptation

The default joint state controller for the UR10e was not enough to support the full
configuration, especially when the robot arm and the gripper need to work together
during complex actions. To solve this, I modified the file ur10e_state_controller.cpp)
which is used to manage how joint states are published and updated.

With these changes, the system could give real-time feedback while the robot was
moving, improve the timing, and send correct joint states to the motion planner.

Having the controller well configured was very important for tasks like pick-and-
place, because even small errors in joint feedback can cause problems like failed
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grasps or collisions.

4.2.5 Launch and System Integration

To connect the robot with the simulation and the motion planning environment, I

edited two launch files:

max_demo_arm_gripper.launch.py and

urlOe_manipulation.launch.py.

I changed these files to load the correct robot model, start the Movelt 2 planning

system, launch the gripper controller, and run the motion interface node I made

before.

These launch files help to start all the needed parts—like the O3DE simulation,
Movelt 2, controllers, and the RAI agent—in a synchronized and repeatable way.

I tested each part one by one, and then I ran complete scenarios to check that

everything was working correctly.
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4.3 Perception Pipeline

The perception system is very important because it helps the robot to understand
the environment and do tasks that need to detect and manipulate objects using

natural language commands.

In this project, the perception is connected to the RAI framework. It uses
images from ROS 2 and two advanced models: Grounding DINO and Grounded
SAM. These models allow the robot to detect and segment objects in the scene,
even if they were not seen before (open-set detection).

4.3.1 High-Level Overview

The primary perception tool used in this setup is get_object_ positions, imple-
mented in the file manipulation.py. This tool allows the agent to localize objects
in the environment by name—for instance, when given a command like “pick up
the red cube”, the agent will internally call get_object_positions("red cube").
This tool serves as a high-level wrapper that internally relies on the more specialized
GetGrabbingPointTool, defined in segmentation_tools.py.

The pipeline integrates with the robot’s RGB-D camera setup in O3DE via ROS
2 topics. Specifically, the tool subscribes to:

 /camera/color/image raw for RGB images,
o /camera/depth/image_raw for depth images, and
e /camera/color/camera_info for intrinsic parameters.

These inputs are used to perform visual grounding and segmentation of the

target object class.

4.3.2 Grounding DINO and Grounded SAM Integration

The perception pipeline uses two state-of-the-art models:

o Grounding DINO (GDINO), which matches textual object prompts to
image regions by producing bounding boxes for class names given in natural

language.
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e Grounded SAM, which segments the object masks based on the bounding
boxes returned by GDINO.

The GetGrabbingPointTool initiates the pipeline by calling the GDINO service
RAIGroundingDino. It constructs a request that includes the image message and
the object name passed by the user or LLM. After receiving a response with
bounding boxes, the tool forwards these detections to the RAIGroundedSam service,
which returns segmentation masks for each detected object.

The relevant services are defined in:
e rai_interfaces/srv/RAIGroundingDino.srv
e rai_interfaces/srv/RAIGroundedSam.srv

These services are called asynchronously and their responses are awaited via

rclpy.spin_once.

4.3.3 3D Position Estimation

After the segmentation masks are received, the pipeline finds possible 3D positions
to grasp the object. The mask is projected on the depth image, and with the
camera parameters (from the camera info topic), a point cloud is created using
the depth_to_point_cloud function. This point cloud is then cleaned to remove
low-confidence areas and background.

To find a good point to grasp, the tool takes the top points based on the Z value
(height), and calculates the average position. This becomes the grasp centroid. The
tool also calculates the best angle for the gripper using the shape of the object in

the image, with cv2.minAreaRect.

Then, this centroid is transformed from the camera frame to the robot’s planning
frame using TF2TransformFetcher, which uses the TF logic in ROS 2.

At the end, the get_object_positions tool gives a list of 3D poses (centroids),

already in the base frame of the robot, and ready to be used by the move_to_point
tool.
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4.3.4 Node and Topic Architecture

The perception logic is divided into different parts:

The RAI tool get_object_positions (in the file manipulation.py) (defined

in manipulation.py)

The segmentation tool GetGrabbingPointTool (in segmentation_tools.py)

ROS 2 nodes that run the GDINO and SAM services

The camera topics published from O3DE

This modular setup lets the robot detect and understand objects it never saw
before, using only language and vision. It doesn’t need specific training for each
object. Also, the perception tool is not directly connected to the robot hardware—it
just uses the camera data and TF transforms to find object positions.

«Pick up the red cube» Invokes perception pipeline

Natural language command RAI Tool: get_object_positions

g Y e Y g Y e Y
RGB Image Camera Info Grounding DINO Grounded SAM
From Text-to-region matching » Image segmentation + object
From /camera/color/image_raw J/camera/color/camera_info bounding boxes mask

- S AN v A / AN S

: . n TF2 Frame
. Point Cloud 3D Centroid &
Object Mask + Depth X . X S Transformation
. Generation Orientation Estimation
Image N N N Transform pose from camera
P 3D point extraction from mask Extracted from the point cloud;
Projection onto depth map N N . B frame - robot base frame
\ and depth orientation via minAreaRect

\‘ Estimated 3D Pose(s)
Output to RAIl agent (for
move_to_point)

Figure 4.3: Perception pipeline architecture. A natural language command trig-
gers the get_ object_ positions tool, which invokes the vision pipeline. The system
uses Grounding DINO for grounding object names to image regions, Grounded
SAM for segmentation, and depth projection to estimate 3D object poses in the
robot base frame.
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4.4 Motion Planning and Execution

After the perception system gives the position of one or more target objects, the
robot has to plan and execute a correct movement to reach, grab, and maybe move
the objects. This step is very important because it goes from “knowing where
the object is” to “doing something with it.” It needs to generate a valid path, re-
spect some limits, and control the gripper, all based on natural language commands.

In this project, the motion planning and execution were done using a mix of
ROS 2 services, RAI agent tools, and Movelt 2 to calculate the trajectories.

4.4.1 Motion Planning with Pose Targets

The robot receives target positions from the tool get_object_positions, which
outputs 3D poses in the robot’s base frame. These poses are then used by the RAI
agent to construct a motion command that is passed to the tool move_to_point.

The move_to_point tool, defined in manipulation.py, accepts a Cartesian
pose and a task intent ("grab" or "drop"). This tool does not plan the motion by
itself. Instead, it sends the execution to the robot using a standard interface: the
/manipulator_move_to service.

This service takes as input:
« A 3D position (x, vy, z)
A fixed orientation in quaternion (already set in the tool class)

o The task type (like “grab” or “drop”), which is used to decide how the gripper
should move

This setup keeps the planning part separate from the agent logic. The RAI
agent only needs to think about “where” and “why” to move, while the tool and
ROS system handle the “how” to actually do it.

4.4.2 Execution via /manipulator_move_to

The /manipulator_move_to service is implemented inside a custom node called
url0e_motion_node.py. This node manages both the robot movement and the
gripper control. It creates a ManipulatorMoveTo.Request message using the target
pose, and takes care of the full execution of the task.
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For a “grab” task:

o The gripper is opened before the move

e The robot moves to the target pose

e The gripper is closed upon arrival

For a “drop” task:

o The gripper remains closed during movement

o The robot places the object at the destination

o The gripper is opened at the end

This state machine makes sure that the robot always does the same thing
when grabbing or releasing an object, without needing to write new code for
each task. It also works well with the standard RAI tools, because they expect
the robot behavior to change depending on the task type, not on special instructions.

The node uses rclpy and keeps spinning until it gets a response or the timeout
is reached. If the service fails or the target position can’t be reached (for example
because of kinematic limits), the tool sends back a failure message. This lets the
RAT agent try again or choose a different plan.
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Figure 4.4: Motion planning and execution flow. The move_to_point tool
transforms a 3D target pose and task intent into an executable motion via the ROS
2 service /manipulator_move_to. The motion node handles gripper actions and
trajectory planning using Movelt 2, ensuring safety constraints are met. The result
is fed back to the agent for verification or retry.

Motion + Gripper State

4.4.3 Orientation and Safety Constraints

In this project, the robot’s orientation is fixed using a quaternion that is already
set in move_to_point. This makes the control easier and is good enough for most
tasks on a table.

The Z value (height) of the position is managed more carefully:

e A min_z value is used so the robot never goes too low and hits the table.

e An additional height is added when doing a “drop” to avoid collisions with
the object or the surface.

These limits are checked inside the tool before calling the service. If needed, the
position is adjusted to avoid dangerous movements. This helps to make the system
more safe and stable.
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4.4.4 Integration with Movelt 2

Even if Movelt 2 is not called directly by the RAI tool, it is still an important part
of the system that supports the motion node. The UR10e robot is configured with
a planning group in the Movelt 2 setup (called uriOe_moveit_config), and the
motion node uses this to create the trajectories using Movelt services or its own
planning code.

The movement execution is synchronized with the joint controllers that are
started by the launch files. The gripper is also controlled using joint states, so the

grasp and release actions work the same in both simulation and on the real robot.

4.5 Tool Integration with the RAI Agent

The RAI system is based on the idea of a conversational agent that understands
the user’s high-level commands written in natural language. Then, it uses specific

“tools” to do actions with the robot, the environment, or some internal knowledge.

These tools are like small functional blocks that are added to the agent’s config-
uration and can be used by the LLM during the reasoning process.

In this project, the integration of tools focused mainly on two things: motion
control and object perception. Both tools were added to the agent through the
whoami package and were written in Python using the BaseTool API from RAL

In this project, tool integration focused on two main areas: motion control and
object perception. Both tools were configured and exposed to the agent through
the whoami package and implemented in Python using RAI’s BaseTool API.

4.5.1 Tool Registration and Configuration

In the RAI framework, tools are created as Python classes that extend from
BaseTool, and they must be imported and registered when the system starts.
Unlike other systems that use .yaml or . json files for configuration, RAI uses
registration directly in the code. This gives more control to the developer to decide

which tools are available to the agent.

In this project, I added the tools move_to_point and get_object_positions by
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creating their classes in the files manipulation.py and segmentation_tools.py.
These tools are loaded when the agent starts and are ready to be used by the LLM

using prompts or function calls.

Each tool has:
o A name, used by the system and the LLM
e A description, that helps the LLM understand what the tool does

e An args_schema (using Pydantic) to check the input arguments and format
the prompt correctly

With this method, the agent can decide which tool to use based on the
user’s request. For example, if the LLM wants to move the robot to grab some-
thing, it uses move_to_point. If it needs to find an object in the scene, it uses
get_object_positions. All this works without needing to manually change the
configuration.

4.5.2 Motion Tool: move_to_point

The move_to_point tool is the connection between natural language commands
like “place the cube here” and the ROS 2 motion service /manipulator_move_to.
It hides the low-level details of planning and movement, and only gives the agent a
simple interface with the target position and the type of task.

The tool uses a fixed orientation quaternion (always the same for all tasks), and
includes some calibration offsets and height limits to avoid collisions.

The task type—Tlike "grab" or "drop'—is understood by the system and used to
control the gripper in the right way. This is managed inside the motion node.

This separation between logic and execution means the LLM doesn’t need to
know about kinematics or how to plan motions. It just needs to know which tool
to call and when

4.5.3 Perception Tool: get_object_positions

The get_object_positions tool handles all vision-related tasks. Given a class
name (e.g., “red cube”), it invokes the full grounding and segmentation pipeline.
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Internally, this tool delegates to the GetGrabbingPointTool, which performs:

The call to the Grounding DINO service using the class name

The call to Grounded SAM using bounding boxes from GDINO

Projection of masks onto depth data

Grasp pose estimation and transform to robot base frame

The tool returns one or more object poses as strings formatted for readability.
These outputs are parsed or reasoned about by the agent (or filtered using tool
logic) before being passed to motion tools. In this way, the agent can autonomously
link object detection and manipulation without requiring the user to provide exact
coordinates.

Fiobot docs

Gel position of it ool

GDino ROS2
provider Node

Faw image

Figure 4.5: Simplified pipeline: the RAI agent interprets a natural language
command, invokes the perception tool to identify object poses via Grounding DINO
and Grounded SAM, and issues movement commands using the motion tool.
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4.5.4 Tool Invocation Process

During a reasoning cycle, the agent processes the user’s instruction using the LLM
hosted via Ollama. The model first interprets the intent and identifies whether a
tool should be called. If so, it selects the tool and populates its arguments from
the context.

For example, given the command:

“Put the red cube on the green cube.”

The agent might issue:

1. get_object_positions('red cube") — returns [x1, y1, z1]
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2. get_object_positions("green cube') — returns [x2, y2, z2]
3. move_to_point(xl, yl, z1, task="grab")
4. move_to_point(x2, y2, z2, task="drop")

Each invocation is logged and can be monitored for debugging or analysis. This
architecture makes it possible to follow the decision-making process and trace the
full chain from command to action.

4.6 Challenges and Solutions

Adapting the RAI framework to a new robotic platform inevitably introduced
technical challenges at various levels, particularly in ensuring compatibility with
the expected interfaces and achieving stable motion and perception behaviors.

One of the main challenges was the implementation of the
/manipulator_move_to service. RAI’s motion tools are designed to be generic and
expect this service to be exposed regardless of the robot model. Since this interface
did not exist for the UR10e by default, I had to create a custom ROS 2 node
(ur10e_motion_node.py) that received requests with target poses and translated
them into valid robot motions, including gripper actuation. This was necessary to
allow RAI’s motion tools to work out-of-the-box with the new hardware, without
modifying the internal logic of the tools themselves.

Another issue involved motion execution. Some target poses returned by the
perception system were outside the UR10e’s workspace or too close to the ta-
ble surface. To address this, I applied constraints on the Z-axis within the
move_to_point tool, setting a min_z threshold and adjusting placement height
with an additional height parameter. These safety buffers prevented collisions

and improved stability.

Finally, during initial tests, the synchronization between arm motion and gripper
state transitions was not reliable. This was fixed by carefully managing the gripper
commands within the motion node, ensuring that the gripper state was set before
and after the robot moved, depending on the task type.
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Despite these challenges, the modular design of RAI and its reliance on standard
interfaces allowed for a smooth adaptation process without having to rewrite core

agent logic.
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Simulation and Testing in
O3DE

The system developed in this project was tested within a simulated environment
using Open 3D Engine (O3DE). The simulation scene was based on the original
RAI demo with the Franka Emika Panda robotic arm that was replaced by the
UR10e arm + Robotiq 2F-140 gripper. The workspace configuration, lighting,
and camera placement were preserved, allowing the integration of the new robot

without major modifications to the virtual scene.

The UR10e robot was added to the simulation with its proper kinematics, visual
model, and control configuration. ROS 2 topics for the RGB and depth camera
feeds were reused to ensure compatibility with the existing perception pipeline.

The interaction with the system occurred through a Streamlit-based chat inter-
face, where the user entered natural language commands that were then interpreted
by the RAI agent. For visual validation were used 2 different tools: RViz 2, for
monitoring trajectories and transformation frames, and O3DE, for observing the

robot’s behavior in the simulated environment.

5.1 System Setup

The intention behind this testing phase was also to compare the behavior of different
language models when interpreting and generating robotic commands. However,
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due to the limitations of available models in Ollama, only Qwen could be used for
complete task execution, as it was the only one to support function calling natively.

Despite initial attempts to test several models—including 11ama3:8b, mistral,
mixtral, phi-mini, phi-medium, command-R, gemma, and openchat—none of these
provided direct support for function-based tool invocation within the RAI agent,
making them unusable in the current setup. Likewise, multimodal models such as
llava, deepseek, and bakllava were evaluated, but they lacked function calling
capabilities and thus could not be integrated for active testing.

As a result, the evaluation focused entirely on Qwen in different variants. Four
categories of commands were issued during testing:

1. Simple motion commands, such as “move the arm to the right”, to verify

basic understanding and execution flow.

2. Grasping commands, like “pick up the red cube”, to assess perception
accuracy, execution timing, and number of attempts.

3. Pick-and-place tasks, involving compound actions such as “pick the red

cube and place it on the green one”, to evaluate planning and fluency.

4. Multi-step sequences, such as “sort the cubes by color” or “place the
red cube on the green one and then move the apple to the right”, to test
autonomous task decomposition.

Each command was evaluated qualitatively, with attention to the correctness
of the toolchain generated, the fluency of the execution, and the system’s ability
to retry after partial failures. Qwen performed reliably on most simple and inter-
mediate tasks, and showed limited but functional capacity to handle decomposed
sequences.
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(a) Simulated manipulation environ-
ment created in O3DE. The scene in- (b) Alternative view of the same envi-
cludes a UR10e robot, table, and vari- ronment with a focus on camera angle
ous tools and objects. and background layout.

Figure 5.1: Custom O3DE simulation environments designed for this thesis. The
scenes include physical elements like a table, chair, and tools to create realistic
manipulation scenarios.

5.2 Hardware Setup

The physical hardware used in this thesis includes a UR10e robotic arm from
Universal Robots and a Robotiq 2F-140 parallel gripper. This hardware setup
is the same as the one used in the simulation. The robot was connected to the
development PC using a direct USB cable, which allowed fast communication
for sending commands and checking the robot’s status. The real workspace was
arranged to look as close as possible to the virtual one made in O3DE, with similar
objects and layout.
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Component Specification

Device Desktop Workstation

Operating System Ubuntu 24.04.2 LTS

CPU Intel Core Ultra 9 (Meteor Lake, 16 cores)
GPU NVIDIA GeForce RTX 5080, 16 GB VRAM

GPU Driver and CUDA

NVIDIA Driver 570.xx, CUDA 12.4

Memory (RAM)

64 GB DDR5 @ 5200 MHz

ROS 2 Distribution

ROS 2 Jazzy

O3DE Version

O3DE 24.02 (custom Linux build)

Robot Connectivity

USB 2.0 interface for UR10e

Gripper Connectivity

Ethernet interface for Robotiq 2F-140

Containerization

Docker with GPU support (NVIDIA Container Toolkit)

Table 5.1: Hardware and software specifications of the development workstation

Hardware Specifications of the Development Environment All the development

and tests were done on a powerful workstation that was made to support real-time

simulation, GPU rendering, and fast communication with the robot. The system

specs are shown in Table 5.1.

This setup had enough resources to run real-time physics, generate 3D scenes
with Al, and plan robot motion with ROS 2. The NVIDIA RTX 5080 GPU helped
to keep good graphics and physics performance inside O3DE. The full system was

containerized using Docker, so it was easy to reproduce and to keep it working the

same on different machines during development and testing.
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Chapter 6

Evaluation of Language
Models

A core objective of this project was to test the feasibility of using large language
models (LLMs) to control a robot through high-level natural language commands.
Given the modular structure of RAI, the conversational agent can in principle
be paired with any LLM that supports function calling—allowing the model to
decide when and how to invoke available robotic tools. This chapter documents
the language models evaluated during the project, their level of compatibility with
RAI, and their performance across different types of tasks.

Although multiple open-source LLMs were tested, only one—Qwen—was able
to fully support the required function-calling mechanism via Ollama. All other
models lacked this functionality or required significant adaptation, which would go

beyond the scope of this work.

6.1 Comparison of Language Models

The following table summarizes the language models evaluated, their type, function-
calling support, and whether they were usable in the final implementation:
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Model Name Type Parameters FU.IIC!;IOI’I Usable Notes
Calling
Used for all tests; supports
Qv.ven N.OD_ 1.8B-14B v Yes tool calls; robust in
(various) multimodal :
multi-step tasks.
Non- Lacks function calling
LLaMA 3 (8B) multimodal 8B X No support in Ollama.
Nom. Good performance in NLP,
Mistral . 7B X No but not integrable with RAI
multimodal
tools.
Mixtral Non- 12.7B (MoE) X No Not compatible with tool
multimodal invocation.
. . Non- B Lightweight and fast, but
Phi-1.5 / Phi-2 multimodal 1.3B-2.78 X No lacks required APIs.
Command-R Non— _35B X No _N ot Callable via function
multimodal interfaces in current setup.
Coemma Non— 9B-TR X No Tested, but lacks ROS and
multimodal tool support.
OpenChat Non- B X No Natural-sounding responses
pett multimodal but not tool-aware.
LLava Multimodal ~13B X No N(.) .functlon calling;
vision-only usage.
BakLLaVA Multimodal ~12B X No Multl'modal but lacks
function-call support.
DeepSeek Multimodal _13B X No Not usable for structured

tool chaining.

Table 6.1: Comparison of tested language models and their compatibility with

RAI

6.2 Observations on Qwen’s Behavior

All the commands described in Chapter 5 were executed using Qwen models with

varying numbers of parameters. Even the most lightweight versions were able to

correctly interpret simple instructions and select the appropriate tools. For object

manipulation operations—for example, commands like "pick up the red cube'—the

model consistently invoked first get_object_positions and then move_to_point,

following the expected sequence.

With more complex instructions, which required spatial reasoning and multi-step
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decomposition, the behavior was less linear: in some cases, one or more attempts
were needed to complete the task. However, the requested action was generally
completed in most cases. Reliability tended to improve as the model size increased,

although this resulted in longer inference times.

The results show that, at present, the choice of language model is heavily
constrained by the availability of native function-calling support. Although many
LLMs perform well in traditional NLP tasks, they cannot be integrated with robotic
tools unless they are able to reason over structured function schemas and trigger
calls dynamically. Qwen proved to be a practical choice due to its compatibility
with Ollama and its built-in support for tool-oriented reasoning.

While the integration of multimodal models would open the door to even
more advanced capabilities—such as vision-language reasoning without hardcoded
pipelines—this remains out of scope for the current system due to limitations in

tool interfacing.
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Discussion

This thesis set out to investigate whether it is feasible to control a robotic arm using
high-level natural language commands, leveraging the RAI (RobotecAl) framework
in combination with a large language model. Throughout the project, the focus
remained on integrating perception, planning, and execution into a single tool-based
agent architecture that could operate in simulation using the UR10e robotic arm
and Robotiq 2F-140 gripper.

The overall structure of RAI proved to be well-suited for this kind of extension.
Although originally built around the Franka Emika Panda, the framework’s use of
abstracted services and modular tools made it possible to adapt the pipeline to new
hardware without rewriting the core logic [5]. Creating a dedicated whoami package,
implementing the required ROS 2 services, and adjusting the robot description files
were sufficient to enable compatibility.

The agent, based on a conversational LLM using Ollama, interfaced naturally
with the available tools. Of the tested models, Qwen was the only one to support
function invocation in a manner aligned with the expectations of the RAI tool
system. Although other LLMs were evaluated (e.g., LLaMA 3, Mistral, LLava),
none supported dynamic tool invocation at runtime [rai__docs|. Qwen’s struc-
tured output allowed the agent to correctly generate a sequence of tools for object

manipulation and basic spatial reasoning.

The simulated environment, adapted from the original RAI demo, allowed for
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comprehensive integration testing using O3DE and ROS 2. RViz 2 was used
to validate the joint trajectories and sensor data in parallel. The various tests
performed confirmed the overall feasibility of the system in handling pick-and-

place tasks, perception-driven actions, and multi-step natural language instructions.

Some limitations were noted. The environment, while functional, was not
completely realistic. Depth noise, occlusion, and latency, common in physical
systems, were not replicated. Furthermore, only one usable LLM with native tool
support was available through Ollama, which limited broader evaluation. Finally,
the system was not implemented on a physical robot, which would have been
necessary for real-world validation. Nonetheless, the results confirm the feasibility
of LLM-driven robot control using a modular, tool-based framework like RAI. This
work lays the groundwork for future research into open-set robotic manipulation

guided by natural language.

7.1 Personal Contributions and Framework Reuse

This thesis is based on the existing RAI framework, which was first created for
the Franka Emika Panda robot. However, to use it with a new industrial robotic
platform (UR10e with Robotiq 2F-140 gripper), it was necessary to create some
new components and also change some of the existing ones to make everything

work correctly.

The table below gives a summary of the main components used in the system.
It shows which ones were already available in the original RAI framework, which
were modified, and which were developed from zero during this project.
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Component Pre-existing | Modified | Created from Scratch
RAT Agent Core v X X

whoami package for UR10e X X v
url0e_motion_node.py X v v
/manipulator_move_to service inter- X v v

face

O3DE simulation scene v v X

URDF + XACRO for UR10e + Robotiq X v v

gripper

Launch files for UR10e integration X v v

Table 7.1: Overview of the components reused, modified, or created during this
thesis. Symbols indicate: v'for present, X for not applicable.

This breakdown highlights the breadth of engineering work carried out during the
thesis—from hardware-level integration to high-level tool interfacing—demonstrating
the system’s portability and extensibility beyond its original scope.
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Conclusion

This work demonstrated that integrating a language-based agent with a simulated
robotic platform can be successful. Thanks to RAI’s modular architecture and the
support for the Grounding DINO and Grounded SAM visual perception modules,
the system was able to complete a variety of user-defined tasks using only natural
language commands.

By using Qwen as the reasoning engine and implementing the necessary interfaces
and configuration files, the original demonstration, designed for a different robot
(Franka Panda), was extended to a new configuration using the UR10e and the
Robotiq 2F-140 gripper. The fact that this was achieved without modifying the
core tools confirms the generalizability of the RAI agent structure.

Even if the system was only tested in simulation, the results were promising and
suggest that function-calling language models, when integrated with structured
robotics frameworks, can enable flexible, task-based control with minimal manual

programming.
Future Work
There are many ways this project can be improved in the future:

Support for more LLMs: Adding different language models, maybe with
fine-tuning or custom adapters, could make the system understand more types of
instructions, work in different languages, and improve how it splits tasks into steps.
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Multimodal agents: It could be useful to use models that understand both
images and text directly, without needing an external perception pipeline. This

would make the system architecture simpler and easier to manage.

Better error checking and feedback: Adding ways for the system to check if
something went wrong—Iike rechecking the vision result or confirming if the action

succeeded—could make the robot more stable and accurate.

Multiple agents: In the future, the system could control more than one robot
at the same time. Each robot could do a different task, and they could work
together. For example, one arm could pick the objects, and another could place
them. RAI’s modular design makes this possible, but it would need some changes
to support roles, shared memory, and communication between agents.

These ideas would help make the system more intelligent, flexible, and ready to

work in real-world situations where robots need to understand high-level instructions
and work together.
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