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Abstract

In recent years, the field of autonomous driving has garnered increasing interest.
Beyond ensuring the reliable operation of autonomous vehicles (AV), increasing at-
tention has been directed towards understanding how these vehicles make decisions
and predictions. Enhancing user trust in AVs requires developing situational aware-
ness and decision-making processes that approximate human-level performance.
Incorporating these capabilities in AV not only improves safety but also facilitates
more intuitive and reliable human-machine interactions. Achieving this requires
AT models capable of interpreting and responding to complex road scenarios in a
manner similar to an experienced human driver. The ability to accurately predict
and respond to dynamic traffic conditions is critical for the success and widespread
adoption of AVs.

Given the safety-critical nature of autonomous driving, interpretable predictive
models are essential for building user trust. This thesis focuses on integrating
methodologies that enhance the explainability of AV decision-making, making the
reasoning behind actions more understandable and transparent.

The initial part of this work reviews the state of the art by analyzing various
frameworks designed to collect, integrate, and fuse heterogeneous data from multiple
sensors — such as cameras, GPS, and LiDAR— to support optimal decision-
making and control commands. This project focuses exclusively on data from a
centrally positioned, front-facing camera aligned with the vehicle’s direction of
travel. Accordingly, the ROAD dataset was selected as the most suitable for this
case study. The dataset is particularly well-suited for analysing road scenarios
and developing models that improve situational awareness and decision-making
in autonomous vehicles, stems form its annotation-based structure, which utilizes
Road Events to describe key elements within a scene.

Several neural network architectures are evaluated to compare the generalization
capabilities of black-box models with those of explainable approaches. The main
goal is to introduce a level of interpretability into the decision-making process, in
order to better understand the rationale behind the actions taken by the ego-vehicle.
This is achieved by applying a Concept Bottleneck Model (CBM) approach, which
enables intermediate predictions of human-interpretable concepts. To identify
high-level concepts within the images the 3D-RetinaNet model was employed. This
model enables the extraction of concepts, i.e., key elements from the scene, similar
to the way a human driver would reason when deciding on an action. Based on
these extracted concepts, various neural networks were subsequently tested to
predict the autonomous vehicle’s decision-making behaviour, leading to a model
with enhanced interpretability by grounding decisions in identifiable scene elements.



While explainability provides valuable insights into the decision-making process,
it can sometimes lead to a reduction in predictive performance. Therefore, it is

important to find an appropriate trade-off between model interpretability and
performance.
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Glossary

Al
Artificial Intelligence.

AV

Autonomous Vehicle.

GPS

Global Positioning System - A satellite-based navigation system that provides
precise location and time information.

LiDAR

Light Detection and Ranging - A remote sensing technology that uses laser
pulses to measure distances and create 3D models of environments.

INS

Inertial Navigation System.

XAI
Explainable Artificial Intelligence.

C-XAI
Concept-based eXplainable Artificial Intelligence.

DNN
Deep Neural Network.

DRIVE
Dependable Robust Interpretable Visionary Ensemble.
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DCG
Driving through the Concept Gridlock.

CBM
Concept-Bottleneck Model.

MLP
Multilayer Perceptron.

ResNet
Residual Network.

CNN

Convolutional Neural Network.

FPN

Feature-Pyramid Networks.

RE
Road Event.



Chapter 1

Introduction

In recent years, the development of autonomous driving technologies has become
a focal point of research and innovation. Autonomous vehicles (AVs) promise
to revolutionise transportation by enhancing safety, efficiency, and convenience.
However, the widespread adoption of AVs hinges not only on their technical
capabilities but also on their ability to make decisions that inspire confidence in
human users.

The decision-making process of AVs is a complex interplay of perception, predic-
tion, and action. To achieve human-like performance, AVs must develop advanced
situational awareness and decision-making strategies that closely mimic those of
experienced human drivers. This requires the integration of diverse data sources,
such as cameras, GPS, and LiDAR, to create a comprehensive understanding of
the driving environment.

Despite the availability of multimodal data, this thesis focuses on the use of
data from a single, centrally positioned, front-facing camera. This design choice
aligns with the goal of developing and evaluating models that can interpret driving
environments in a manner analogous to human perception. By focusing on a single,
forward-facing camera, the dataset simplifies the multimodal complexity of the
original data while preserving the essential visual cues necessary for understanding
dynamic road scenarios.

1.1 Formulation of the problem

In recent years, the development of autonomous driving systems has attracted
increasing interest within the scientific and industrial communities. Most proposed
solutions have focused on learning models that, starting from perceptual inputs (such
as images or sensor data), are able to directly generate the action to be performed.
However, little attention has often been given to understanding how such decisions
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are made within the model, thus neglecting the aspect of explainability. This aspect
is crucial, especially in a critical context such as autonomous driving, where a user
— such as an experienced driver — might want to understand the reasons that led a
neural system to choose a particular action. The lack of transparency in black-box
models raises concerns about their reliability, interpretability, and acceptability in
real-world scenarios.

This awareness has motivated the exploration of alternative approaches that,
beyond providing accurate predictions, are also able to offer an interpretable
explanation of the decision-making process. It is within this framework that the
present work is positioned, aiming to integrate symbolic components within neural
architectures to make explicit the key concepts underlying the decisions of the
autonomous vehicle.

1.2 Contributions

The goal of this thesis is to address the problem outlined earlier — namely, designing
a model capable of providing understandable explanations for how and why a certain
action is chosen by an autonomous driving system.

The first step involved analysing the state of the art in order to identify existing
approaches and assess their limitations in terms of explainability. Then, a most
suitable dataset for the project was selected: ROAD [1]. This dataset was chosen not
only because it allows working with a front-view perspective, but more importantly
because of its semantic annotations — the so-called Road Events (REs) — which
describe the scene context and represent symbolic concepts relevant to the decision-
making process. The work proceeded in several phases. First, two models — a
Multilayer Perceptron (MLP) and a Transformer — were developed with the aim of
predicting the vehicle action from the conceptual representation of the scene. Then,
black-box models were evaluated in order to compare their predictive performance
and explore potential trade-offs between accuracy and interpretability. Finally,
a Concept Bottleneck Model (CBM) was implemented to introduce a layer of
explainability into the system. Specifically, 3D-RetinaNet was used to predict the
concepts (REs) from the input image, followed by one of the previously developed
models (MLP or Transformer) to predict the final action based on the predicted
concepts. This approach enables the generation of interpretable explanations for
the vehicle’s decisions, enhancing the transparency of the decision-making process.

1.3 Outline of the work

The work presented in this thesis is structured into five chapters, each addressing a
specific topic. Below is a brief overview of the content of each chapter:
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Chapter 1 - Introduction: This chapter introduces the general context of
the thesis, clearly formulating the problem to be addressed and outlining the
main contributions of the work. Based on this analysis, the main objective of
the work is defined—that is, the specific challenge the thesis aims to overcome.

Chapter 2 - Related Work: The chapter analyzes the fundamental mecha-
nisms and advanced solutions for autonomous driving, providing the necessary
context for the research problem. It also introduces the concept of explain-
ability (XAI), with a focus on the Concept-Based XAl approach adopted to
ensure model transparency and an analysis of the datased used.

Chapter 3 - Methodology: The chapter presents the methodologies adopted
to carry out the experiments, highlighting the choices made to address the
encountered challenges and improve prediction accuracy. It includes an analysis
of the neural network baselines, and an explanation of how the information
was integrated to introduce a level of explainability in the decision-making
process.

Chapter 4 - Experimental Results: This chapter presents the results
obtained by applying the methodologies described in the previous chapter.
The main experiments are discussed through tables that summarize the con-
figurations used and the corresponding evaluation metrics.

Chapter 5 - Conclusions And Future Works: The final chapter summa-
rizes the main contributions and results achieved throughout the research. It
also discusses possible future directions, suggesting improvements and poten-
tial developments to advance explainability in autonomous driving based on
the findings obtained.



Chapter 2

Related Works

This chapter introduces the main concepts and paradigms underlying autonomous
driving systems. It begins by outlining the fundamentals of deep learning, the
core technology powering modern autonomous vehicles, and discusses its role in
perception and decision-making tasks. The chapter then highlights the importance
of interpretability, a crucial aspect for building reliable and transparent Al systems.
It presents the state-of-the-art in neural network architectures commonly used in
this field. Finally, an analysis of the dataset used, including the rationale behind
its selection and a discussion of its main characteristics.

2.1 Deep Learning

In recent years, deep learning has emerged as the dominant paradigm in AI, due to
its ability to learn complex relationships and representations between inputs and
outputs through the analysis of large-scale data [2]. Models based on deep neural
networks have achieved outstanding results in fields such as image recognition,
motion planning, and semantic segmentation. This success is largely attributed to
their layered architecture (Figure 2.1), which enables the hierarchical extraction of
features from raw input data.

A deep neural network can be modelled as a function f : R® — R™, where
x € R™ represents the input space and y € R™ the output space. Given an input
vector z € R™, the network produces an output vector y = f(x), where y € R™,
through a sequence of layers, each performing a linear transformation followed by
a nonlinear activation. In this context, x may represent, for example, a feature
vector extracted from an image, while y could represent a set of class probabilities
in classification tasks.

However, in order to achieve high performance in classification tasks, these
models require extensive amounts of labelled training samples, from which they can
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extract statistically useful regularities. While this enables remarkable performance
in closed and well-defined domains, it also constitutes one of the major limitations
of deep learning systems.

Hidden layers

Input layer Output layer

Figure 2.1: Diagram of a deep neural network. The input and output layers
are shown on the left and right, respectively, with the number of output nodes
matching the number of predicted classes. The two hidden layers in the center
illustrate the network’s internal structure, which in practice may consist of dozens,
hundreds, or even thousands of layers (see [2]).

Deep learning models often exhibit a limited ability to abstract. As a result,
specific approaches are needed to enhance their generalization capabilities. In the
field of computer vision, a particularly relevant task is multi-view classification
[3], where the same object is observed from different perspectives through images
captured by multiple devices. This approach enables more accurate and detailed
predictions by leveraging the complementarity of visual information. Contrary
to traditional strategies that rely on data from a single viewpoint, multi-view
approaches are capable of collecting and fusing data from multiple sensors. In this
context, two main strategies can be adopted:

e Centralized inference schemes: ecach source node transmits the collected
data (images or features) to a central controller, which performs the entire
inference task (Figure 2.2).

« Ensemble inference schemes: each node performs a local classification on
its own view and sends only the predicted label (or probability distribution)
to the controller (Figure 2.3).
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Figure 2.2: Schematic representation of the operations performed by a source
node (left) and the central controller (right) in centralized inference schemes (see
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Figure 2.3: Schematic representation of the operations performed by a source
node (left) and the central controller (right), in ensemble inference scheme (see [3]).

2.1.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a specific neural network architecture, also
known as a fully connected feedforward neural network [4]. It consists of a sequence
of layers in which each neuron in a given layer is connected to all neurons in the
subsequent layer. The architecture includes an input layer, one or more hidden
layers, and an output layer. The objective of propagating data through these layers
is to learn an approximating function y = f(z, ), where x represents the input,
y the desired output, and 0 the set of parameters (weights and biases) that are
optimized during training. Introducing non-linear activation functions after each
affine transformation is essential for the network to learn complex and non-linear
mappings.

Figure 2.1 illustrates the architectural structure of a MLP, highlighting the
sequence of fully connected layers through which the input is progressively trans-
formed into the final output.

2.1.2 Transformer

The transformer is an architecture designed to model dependencies within a
sequence through a mechanism known as self-attention [5]. This mechanism allows
each element in the sequence to dynamically weigh the relevance of other elements,
enabling the construction of context-aware representations. For each input element,
three vectors are computed through learned linear projections and are used to
compute self-attention, as defined in Equation 2.1:
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Attention(Q. K. V) = softmax (25 ) (2.1)
ention(Q, K,V) = softmax (—— .
Vg

where:

Query (Q): what the element is looking for in the context, Q € R™*4,

Key (K): what each element offers to the context K € R™*%,

Value (V): the information that will be aggregated and passed on V' € R™*4

dy, dimensionality vectors (used for scaling),

n is the sequence length.

To enable the model to capture different types of relationships, a mechanism
called multi-head attention is employed. It applies the attention function in
parallel across multiple heads, each with its own learned linear projections and
operating in a separate subspace. The outputs of all heads are then concatenated
and linearly projected, as shown in Equation 2.2:

MultiHead(Q, K, V) = Concat(heady, ...., head;, )W (2.2)

where:

head; = Attention(QW, KWK, VWY) (2.3)
where:

« WO9: is the output projection matrix applied to the concatenated attention
heads to produce the final output of the multi-head attention mechanism,
WO E thvxdmodel

« WEZ: is the projection matrix that maps the input () into the query represen-

7

tation for the i-th head, W& € Rmoderxds

o WK is the projection matrix that maps the input K into the key representation

for the i-th head, W[ € Rémodetxdx

« WY is the projection matrix that maps the input V into the value represen-

tation for the i-th head, W,V € Rdmoderxdv

Additionally, it is common practice to set d = d, = % where h is the number
of attention heads. This ensures that the concatenation of the outputs from all
heads results in a vector of dimension d,,.qe;, matching the expected input size for
the output projection.
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However, since the attention mechanism is permutation-invariant and does not
inherently encode the order of elements in a sequence, positional encoding is
added to the input embeddings to incorporate information about the relative or
absolute positions of tokens in the sequence. This allows the model to leverage the
sequential structure of the data during training and inference.

A visual representation of how scaled dot-product attention and multi-head
attention are computed is provided in Figure 2.4.

Scaled Dot-Product Attention Multi-Head Attention

Linear

Concat

Mathul

SoftMax

Mask (opt.) Scaled Dot-Product
Attention N

Scale 1 '3

1
MathMul | Linear I.][ Linearl} Linear],]

i

Aoy

\ K Q

Figure 2.4: Left: Scaled Dot-Product Attention. Right: Multi-Head Attention,
composed of several attention layers running in parallel (see [5]).

Figure 2.5 provides a schematic overview of the Transformer architecture, high-
lighting its main components and computational flow.

2.1.3 Deep Learning In Autonomous Driving

Deep learning is widely adopted in autonomous driving systems to enable vehicles to
navigate safely and reactively within complex environments. Autonomous driving
system typically comprises three main functional modules:

e Perception: a module that captures the surrounding scene to build a compre-
hensive description, generating raw data used to identify, classify, and track
objects.

e Decision-making: based on the perceived information, this module de-
termines the action the vehicle should take, selecting the most appropriate
maneuver according to the surrounding environment.
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Figure 2.5: Transformer architecture (see [5]).

o Control: once the action to be taken is determined, this module executes the
necessary commands to implement the chosen decision.

Deep learning plays a fundamental role in the decision-making module, enabling
the system to learn complex patterns from perceived data and make more accurate
and adaptive decisions in dynamic environments.

To accurately perceive their surroundings and make informed decisions, au-
tonomous vehicles rely on a suite of sensors—such as cameras, LIiDAR, RADAR-
vehicle-to-vehicle (V2V) communication systems that provide heterogeneous and
complementary information. Building on this multi-sensor approach, the study [6]
investigate how autonomous vehicles make decisions in mixed-autonomy traffic,
specifically in left-turn scenarios at intersections regulated by traffic lights and stop
signs. Using simulated driving data and binary action labels (“go”/“no-go”), it
compares the performance of an interpretable model, Time Series Forest (TSF),
with two state-of-the-art classifiers; ROCKET [7] and HIVE-COTE 2.0 [8]. The
results show that TSF performs competitively—particularly at stop-sign-controlled
intersections—and that the inclusion of V2V data improves both predictive accuracy

9
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and the interpretability of driver behaviour.

Vista [9] is a generalizable driving world model characterized by high-fidelity
prediction and versatile controllability, designed to enhance dynamic forecasting
and action evaluation in autonomous driving scenarios. Its primary objective is to
overcome the limitations of previous models by generating frames at higher spatial
resolution and increased frame rates (Figure 2.6), thereby preserving critical scene
details more effectively. The training process is divided into two distinct phases:

1. Learning High-Fidelity Future Prediction: focuses on long-term future
state prediction based on key dynamic priors such as position, velocity, and
acceleration (Figure 2.6).

2. Learning Versatile Action Controllability: integrates multiple modalities
of action control, ranging from high-level intentions, such as commands and
goal points, to low-level maneuvers including trajectories, steering angles, and
speeds. During this phase freezing the pretrained weights to learn action
controls (Figure 2.6).

tirme | |

d ! video _ Vista 5 Video
input 6 output

projection

: (=] Iior: input
| 2% training phase [+ |{.,B '

[ | . — .
I "ﬂh-la'\'eé v lo\:E‘\-g ! 1 -
C B

Figure 2.6: Left: Vista uses, in addition to the initial frame, additional information
about future dynamics via latent replacement. Right: Two training phase (see [9]).

Leveraging a unified conditioning interface alongside novel optimization strate-
gies, Vista demonstrates significant generalization capabilities across diverse envi-
ronments and scenarios. Moreover, the model can serve as a generalizable reward
function by assessing the quality of actions through the uncertainty in its own
predictions, without requiring access to ground-truth data.

2.2 Explainable Al

The introduction of artificial intelligence (AI) in sensitive fields such as medicine,
finance, and autonomous driving has made it necessary to increase user trust in
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model predictions. To achieve this goal, it is essential that models are able to
explain how predictions are generated, that is, to provide details on the factors that
influenced a particular decision. This need has led to the emergence of Explainable
Artificial Intelligence (XAI), where the explanation is the collection of features
of interpretable domain that have contributed for a given example to produce a
decision [10]. To foster trust and effective interaction with AI systems, explanations
should be accessible to the average user, not just experts. This highlights the
importance of interpretability in XAl. Explainability refers to the overall ability
of an Al model to provide understandable and meaningful explanations for its
behaviour or decisions. Interpretability, on the other hand, is defined as the
ability to explain or to present in understandable terms to humans. There are two
main approaches to achieving interpretability and explainability in AT models:

« Transparency-based: models are interpretable by design, where the structure
itself enables users to understand how decisions are made. Simple models such
as linear models, decision trees, and rules are examples of transparent models.
However, transparency and predictive performance are often conflicting goals
and must be balanced.

» Post hoc: applied to complex black-box models (e.g. deep neural networks),
these methods generate explanations after training, typically without altering
the model.

2.2.1 Concept-based Explainable Al

Traditional XAI techniques typically provide explanations at the feature level, fo-
cusing on low-level attributes. While effective in some scenarios, these explanations
often lack semantic meaning for non-expert users. To address this limitation, recent
research has introduced Concept-Based Explainable Artificial Intelligence (C-XAI)
[11], which aims to generate explanations based on high-level human-interpretable
attributes, referred to as concepts. Concept-based explanations should explain
how deep neural network (DNNs) make particular decisions using concepts [12]
and adhere to specific criteria such as being meaningful, coherent, and relevant to
the final class [13] and also explicit and faithful [14]. The notion of a concept is
inherently subjective and domain-dependent. In this work, the notion of symbolic
concepts is adopted, i.e. semantic attributes recognisable by humans, such as
colours, shapes, or identifiable objects.

For instance, as shown in Figure 2.7, the presence of a bird’s beak is a discrimi-
native feature useful for classification. By leveraging the class-concept relation —
that is, the association between specific concepts and output classes — it becomes
possible to improve the interpretability of predictions.
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Figure 2.7: Concepts and explanations provided by C-XAI methods and models
(see [11]).

2.2.2 C-XAI In Autonomous Driving

One of the main frameworks addressing C-XAI in the context of autonomous driving
is DRIVE [15], which aims at improving trust and safety in autonomous driving
systems. Specifically, DRIVE enhances the Driving through the Concept Gridlock
(DCG) model, a post-hoc explainability framework for autonomous driving designed
for deep learning models. DRIVE aims to overcome the instabilities of DCG, which
are due to the sensitivity of input perturbations and parameter variations. For
this reason, DRIVE builds upon four foundational properties that ensure both
interpretability and robustness:

» Consistent Interpretability (Ci): interpretability of the model’s output
should be within a bounded distance from that of its original counterpart,

« Stable Interpretability (Si): interpretability must remain stable under
perturbations to the input,

« Consistent Output (Co): output of the model should closely match that of
the original DCG,

« Stable Output (So): predictive output should also exhibit stability when
subjected to input perturbations.
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To achieve these goals, DRIVE uses a multi-objective optimization process
and techniques such as Projected Gradient Descent (PGD) to enhance robustness
against perturbations while ensuring interpretable and predictive consistency.
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Figure 2.8: Overall pipeline of DRIVE (see [15]).

Figure 2.8 shows the DRIVE pipeline and, consequently, its main components.
In particular, it is possible identify the following key elements:

o Feature Extraction: extracts relevant features from the input images,
mapping input z into a meaningful concept space,

« Concept Bottleneck: driving scenarios s are constructed to describe scenes
and encode contextual information. Scenarios are generated using the genera-
tive capabilities of GTP-3.5 [16] and human-created scene descriptions from
the NuScenes dataset [17],

« Temporal Encoding: Longformer architecture [18] to capture the temporal
dynamics of the input sequences,

o Multi-Objective Optimization: process to balance the four key attributes
described above: Ci, Si, Co, and So,

« Training: models are trained using Root Mean Squared Error (RMSE) loss.

Experiments [15] have shown that DRIVE significantly improves the stability
and reliability of explanations and predictions compared to the DCG model.
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2.3 Concept Bottleneck Models

This section introduces Concept Bottleneck Models (CBMs), a class of models
designed to enhance the level of explainability in machine learning systems [11].
CBMs follow a two-stage approach: in the first stage, the model predicts a set
of human-interpretable concepts, g : R* — R* where 2 € R" represents the
input space, and ¢ € R¥ corresponds to an intermediate space of interpretable
concepts. Which are then used in the second stage to perform the final classification,
f : R¥ — R™ then maps these concepts to the final output y € R™. Thus, the overall
prediction becomes y = f(g(x)). This structure promotes greater transparency and
interpretability in the model’s decision-making process.

Figure 2.9 illustrates how a CBM works. Specifically, it shows how the input—an
image in this case—is mapped to a set of interpretable concepts that capture the
main semantic aspects of the scene. These concepts are then used to perform the
final prediction task.

concepts ¢

—
wing color

undertail color task y

Classifier
bird species

beak length

Figure 2.9: Overall pipeline of CBM (see [19]).

Specifically, two possible architectures for implementing this approach will be
analyzed: a Multilayer Perceptron (MLP) and a Transformer, both employed to
learn the mapping from annotated concepts to the target class.

2.4 ResNet-50

ResNet-50 is an architecture designed for image recognition tasks, belonging to the
family of Residual Networks (ResNets), introduced to overcome key limitations of
deep convolutional neural networks [20]. These models have proven particularly
effective in addressing two well-known issues: the vanishing/exploding gradient
problem and the degradation of performance as network depth increases.

The core innovation of ResNet lies in the introduction of a residual learning
framework, where network blocks are designed to learn a residual function defined
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as f(x) = h(x) — z, rather than directly learning the target function h(x).

A typical residual network block (Figure 2.10a) consist of two or more convolu-
tional layers and a shortcut connection that bypasses those layers and adds the
original input directly to the output of the block. The final output of the block is
then given by h(x) = f(x) + .

These connections do not introduce additional parameters or increase computa-
tional complexity, and they facilitate gradient backpropagation, thus enabling the
effective training of very deep networks.

In moderately deep architectures, standard building blocks are employed, whereas
in deeper networks, such as ResNet-50, a bottleneck block (Figure 2.10b) is used
to optimize computational efficiency while preserving the model’s representational
capacity.

X 256-d
A

y

weight layer | 1x1, 64 |
l relu

F(x) 4 relu x [ 3x3,64 |
weight layer . . y relu
identity | 11, 256

(a) Building block (b) Bottleneck building block

Figure 2.10: Comparison between two types of residual blocks: (a) highlights
the relationship between the functions H(x) and F(z); (b) depicts the bottleneck
design, adopted in deeper networks such as ResNet-50 (see [20]).

Figure 2.12a illustrates the architecture of a generic ResNet model. Compared
to this general structure, ResNet-50 does not introduce architectural changes in
terms of the number or organization of the bottleneck building blocks. The main
differences lie instead in the internal configuration of the convolutional layers, such
as kernel sizes, bottleneck structures, and channel dimensions [20].

2.5 R2PluslD_ 18

The R(2+1)D is a 3D convolutional neural network architecture designed for
video action recognition. It can be regarded as an extension of traditional 2D
convolutional networks, such as the ResNet-50 model discussed in section 2.4,
which applies convolutions only in the spatial domain and processes video frames
independently, without capturing the temporal dynamics between them.

In contrast, R(24+1)D introduces an explicit temporal modelling component,
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making it particularly suitable for action recognition tasks in video clips [21]. Un-
like conventional 3D architectures that perform joint convolutions over all three
dimensions 7' x W x H, the R(2+1)D model factorizes the 3D operation into a
sequential application of a 2D spatial convolution followed by a 1D temporal convo-
lution. This decomposition introduces a structural simplification while enhancing
representational power.

Consequently, while in conventional 2D convolutional networks the input to
the model typically consists of a single image — from which an output such as
a classification prediction is produced — in the case of the R(2+1)D model, the
objective remains unchanged, but the nature of the input differs. Specifically, the
model receives as input a sequence of consecutive frames, usually 8 or 16, extracted
from a video. The output, namely the classification, is associated with the last
frame in the sequence, referred to as the target frame. This approach allows the
model to explicitly observe the temporal dynamics leading up to the target frame,
thereby improving context understanding and the quality of the final prediction.
The availability of multiple preceding time steps enables the construction of a more
informed and robust representation of the ongoing action.

Figure 2.11 provides a visual comparison between a standard 3D convolutional
block and a (2 + 1)D block, illustrating the described factorization.

A4

A 4

1xdxd
txdxd
*IW
+- tx1x1

*
a) b)

Figure 2.11: (a): Standard 3D convolution, where spatial and temporal dimen-
sions are convolved jointly. (b): R(2 4 1)D convolution, where spatio-temporal
operation is factorized into a 2D spatial convolution followed by 1D temporal
convolution.

A non-linear activation function (ReLU) is placed between the two convolutional
steps, effectively doubling the number of non-linearities and allowing the model to
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represent more complex functions without increasing the number of parameters.
Additionally, the separation of spatial and temporal components facilitates opti-
mization during training, leading to lower training and validation errors. These
advantages make R(2+1)D a more effective and computationally efficient solution
for video action recognition compared to both traditional 2D and 3D architectures.

Figure 2.12b illustrates a generic architecture of an R(2+1)D network. The
R(2+1)D 18 model does not differ in terms of the number or organization of the
residual blocks; the variation lies solely in the convolutional properties, such as
kernel configuration and channel dimensions, according to the specific depth of the
network.

space-time pool space-time pool

(2+1)D conv
(2+1)D conv
(2+1)D conv
(2+1)D conv
(2+1)D conv
clip clip
(a) ResNet 2D Architecture (b) ResNet 2+1D Architecture

Figure 2.12: (a): Generic architecture of a ResNet model that processes only
spatial features, using 2D convolutions applied independently to each frame. (b):
Architecture of the R(2+1)D network, where spatio-temporal modeling is achieved
by factorizing 3D convolutions into separate spatial (2D) and temporal (1D)
operations.

2.6 3D-RetinalNet

3D-RetinaNet is a network inspired by 3D convolutional neural network (3D CNN)
architectures [22] for video action recognition and feature-pyramid networks (FPN)
[23].

FPNs are an architecture designed to address the problem of multi-scale object
detection, namely the ability to detect objects of varying sizes (small, medium,
large). In traditional object detection models, small objects tend to be overlooked,
as deeper layers of the network gain semantic abstraction at the expense of spatial
detail. An FPN is composed of three main components:
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« Bottom-up pathway: this represents the standard flow of a CNN, where
feature maps with increasing semantic richness but decreasing spatial resolution
are extracted. Deeper feature maps are useful for detecting larger and more
prominent objects.

o Top-down pathway: this consists of an upsampling process applied to
deeper feature maps, restoring them to higher resolutions to recover spatial
information. This enhances the network’s ability to detect smaller or partially
visible objects.

o Lateral connections: these are skip connections that merge information
from the bottom-up and top-down pathways, integrating semantic content
with spatial detail to generate a rich, multi-scale feature representation of the
scene.

Within this structure, objects are associated with anchor boxes [24] —predefined
bounding boxes with fixed sizes and aspect ratios—which serve as references for
locating objects in the image. Each level of the FPN is responsible for detecting
objects at a specific scale, thus enabling the model to effectively handle objects
of different sizes. The anchor boxes are subsequently refined by the network to
produce the final bounding box predictions.

The model’s input consists of a temporal sequence of T video frames, from which
it extracts a set of feature-pyramid maps [1]. For each generated anchor on these
feature maps, the network predicts bounding boxes (expressed as 4 coordinates)
and confidence scores for multiple classes. The architecture is flexible and allows for
the use of different backbones, such as ResNet-50, Inflated 3D (I3D), and Slowfast,
enabling a balance between accuracy and computational efficiency.

The model adopts a multi-label approach, predicting multiple concepts simultane-
ously—including agent classes, actions, and positions—and incorporates a dedicated
classification head for predicting the actions performed by the autonomous vehicle
itself (AV-action). A key feature of the architecture is its ability to operate in an
online manner, updating predictions as new frames are acquired, without the need
to reprocess the entire past sequence.

Figure 2.13 illustrates the proposed architecture for 3D-RetinaNet, which takes
as input a video sequence from which hierarchical spatio-temporal multi-level
features are extracted. These features are processed by a FPN that enables the
detection of objects and events of varying sizes and durations. As shown in the
figure, the pyramid consists of multiple levels, each including two subnetworks: the
first is responsible for classifying anchor boxes and estimating the confidence of
belonging to different classes, while the second performs regression of the associated
bounding box coordinates. Additionally, an auxiliary branch of the architecture
predicts a temporal sequence of actions performed by the AV.
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Figure 2.13: Proposed 3D-RetinaNet architecture for online video processing (see

[1]).

2.7 ROAD

The ROAD dataset [1] represents a fundamental resource for studying the interac-
tions between agents in the scene and the corresponding actions of the autonomous
vehicle (AV). Thanks to its detailed annotations, the dataset captures the complex
dynamics of traffic and provides a rich context for developing models capable of
effectively predicting and managing critical driving situations. In particular, ROAD
was specifically designed to evaluate an AV’s ability to recognize and correctly
interpret Road Events (REs).

It was derived from videos of Oxford RobotCar Dataset [25]. The latter consists
of footage captured as a car drives through the main streets of Oxford, UK,
repeatedly traversing the same routes to record a variety of conditions and situations,
including heavy rain, nighttime, direct sunlight, and snow. Filming took place
between May 6, 2014, and December 13, 2015, resulting in a total of 1,010.46 km
of recorded street footage.

The dataset was collected using Oxford RobotCar platform, an autonomous-
capable Nissan LEAF, equipped with a heterogeneous set of sensors, including
multiple cameras, LIDAR, GPS, and INS. However, in the context of the ROAD
dataset, only one of these sensors is used:

Point Grey Bumblebee XB3 (BBX3-1352C-38) trinocular stereo camera, 1280 x
960 x 3, 16 Hz, 1/3” Sony 1CX445 CCD, global shutter, 3.8 mm lens, 66° HFoV,
12/24 cm baseline.
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However, the dataset used to conduct the experiments, ROAD, uses only a
specific subset of the original dataset. Specifically, consisting of 22 video sequences
recorded between 25 June 2014 and 3 March 2015. Video sequences are split into
18 videos for training and validation of the model, and the remaining 4 videos are
used for testing the trained model.

Namely, a centrally placed, front-facing camera aligned with the vehicle’s direc-
tion of travel. This configuration was chosen to replicate the visual perspective of a
human driver, thereby making the dataset particularly suitable for tasks involving
the analysis of road scenes from a human viewpoint.

2.7.1 Road Event

Each frame in the dataset is annotated based on the concept of Road Events
(REs). A RE is formally defined as a triplet E' = (A,, A., Loc), where:

« A, is the road agent,
o A, represents the action performed by the agent,
o Loc indicates the location of the agent relative to the field of the AV.

Multiple REs can be identified within a single frame, consequently each of them can
be spatially localised using a bounding box, defined by coordinates that precisely
identify the corresponding agent in the image. This allows for a clear understanding
of which visual element each annotated event refers to.

20374
Test
21001

101780
Train_Val
101907

m Annotated m Not Annotated

Figure 2.14: Distribution of the number of annotated and non-annotated frames
in the training/validation and test datasets.
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An analysis was conducted to check whether all frames were annotated, revealing
that not all frames actually contain annotations. This aspect is illustrated in
Figure 2.14, which compares the number of annotated and non-annotated frames,
distinguishing between frames belonging to the training/validation videos and those
belonging to the test videos. It can be observed that the vast majority of frames
are annotated.

Road Agent

Objects or people able to perform actions which can influence the decisions made
by the autonomous vehicle are termed agents. Agents are classified as active
when they directly influence the decision-making process of the AV. Typically,
these are agents that appear in the foreground of the scene, whose presence or
behaviour requires a response from the system. In contrast, agents that appear in
the background or do not interact meaningfully with the immediate road context are
not considered particularly relevant for the final decision-making process. Table 2.1
shows and describes the possible agents annotated within the dataset.

Category Label Description
People Pedestrian a person including children
P Cyclist a person is riding a push/electric bicycle

Car a car up to the size of a multipurpose vehicle
Small size * ook
Medium vehicle vehicle larger than a car, such as van

Vehicles Large vehicle vehicle larger than a van, such as a lorry
Bus a single or double-decker bus or coach
Motorbike motorbike, dirt bike, scooter with 2/3 wheels

Emergency vehicle ambulance, police car, fire engine, etc

Vehicle traffic light traffic light related to the AV lane
Other traffic light  traffic light not related to the AV lane

Traffic light

Table 2.1: List of ROAD active agent classes, with description (see [1]).

Note:

* Defined in the paper, but never used in experiments
** Not defined in the paper, but used in experiments
*** Definition not provided.
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Road Action

Actions represent the behaviours that agents can perform within the road scene.
Each agent can be associated with one or more actions at a given point in time,
depending on the context and its interaction with the surrounding environment.

Label

Description

Traffic light red

Traffic light amber

Traffic light green

Traffic light black *

Moving away
Moving towards

Moving

Reversing
Braking
Stopped

Indicating left

Indicating right
Hazard lights on
Turning left
Turning right
Moving right
Mowing left

Overtaking

Wasiting to cross

Crossing road from left

Crossing road from right

Crossing

Pushing object

Traffic light with red light lit

Traffic light with amber light lit

Traffic light with green light lit

Traffic light with no lights lit or covered with an out-of-
order bag

Agent moving in a direction that increases the distance
between Agent and AV

Agent moving in a direction that decreases the distance
between Agent and AV

Agent moving perpendicular to the traffic flow or vehicle
lane

Agent is moving backwards

Agent is slowing down, vehicle braking lights are lit
Agent stationary but in ready position to move

Agent indicating left by flashing left indicator light, or
using a hand signal

Agent indicating right by flashing right indicator light, or
using a hand signal

Hazards lights are flashing on a vehicle

Agent is turning in left direction

Agent is turning in right direction

Moving lanes from the current one to the right one
Moving lanes from the current one to the left one

Agent is moving around a slow-moving user, often switching
lanes to overtake

Agent on a pavement, stationary, facing in the direction of
the road

Agent crossing road, starting from the left and moving
towards the right of AV

Agent crossing road, starting from the right pavement and
moving towards the left pavement

Agent crossing road

Agent pushing object, such as trolley or pushchair,
wheelchair or bicycle

Table 2.2: List of ROAD action labels, with description (see [1]).
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Note:

* Defined in the paper, but never used in experiments
** Not defined in the paper, but used in experiments
*** Definition not provided.

This dynamic association allows for a more realistic and detailed modelling of
agent behaviour, reflecting the complexity of real-world scenarios. Furthermore,
the ability to assign multiple actions to a single agent enables the capture of
behavioural transitions or ambiguous situations, thereby enhancing the quality of
annotations and the effectiveness of predictive models. The possible actions that

can be performed are shown in Table 2.2

Location

Label

Description

In vehicle lane

In outgoing lane
In incoming lane
In outgoing bus lane *
In incoming bus lane
In outgoing cycle lane

In incoming cycle lane

On left pavement
On right pavement

On pavement
At junction

At crossing

At bus stop

At left parking *
At right parking *
Parking **

*

Agent in same road lane as AV

Agent in road lane that should be flowing in the same direc-
tion as vehicle lane

Agent in road lane that should be flowing in the opposite
direction as vehicle lane

Agent in the bus lane that should be flowing in the same
direction as AV

Agent in the bus lane that should be flowing in the opposite
direction as AV

Agent in the cycle lane that should be flowing in the same
direction as AV

Agent in the cycle lane that should be flowing in the opposite
direction as AV

Pavement to the left side of AV

Pavement to the right side of AV

A pavement that is perpendicular to the movement of the
AV

Road linked

A marked section of road for cross, such as zebra or pelican
crossing

A marked bus stop area on road, or a section of pavement
next to a bus stop sign

A marked parking area on left side of the road

A marked parking area on right side of the road
*okk

Table 2.3: List of ROAD location labels, with description (see [1]).
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Note:

* Defined in the paper, but never used in experiments
** Not defined in the paper, but used in experiments
*** Definition not provided.

The location of agents plays a crucial role, as it provides essential information
for the AV to determine the appropriate action to take. However, not all agents
in the scene have an associated position. Specifically, static objects such as traffic
lights are not spatially localised, since they are not movable objects and do not
require dynamic tracking. In contrast, for all other agents, at least one position
must be defined in order to enable accurate context analysis and support the
decision-making process. Possible location labels are shown in Table 2.3

An example frame is shown in Figure 2.15, where the perspective from which
the dataset was generated can be observed, as well as the variety of environmental
conditions captured. Additionally, the annotations are highlighted in terms of
labels: Road Agent, Road Action, Location, Duplex (encoded by the agent-action
combination), and Triplet (encoded by the agent-action-location combination). In
the conducted experiments, the duplex was not used, whereas both the individual
labels and the triplets were employed to encode the information.

. r
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Figure 2.15: Two examples of frames sharing the same perspective but exhibiting
different lighting conditions: (a) daytime image, (b) nighttime image. The Road
Event annotations, as previously described, are highlighted, comparing the ground
truth shown in green and the 3D-RetinaNet predictions in red.
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2.7.2 AV

In each frame annotation, in addition to the information regarding the agents present
in the scene and the actions they perform, the action taken by the autonomous
vehicle AV is also specified. This additional annotation is essential for understanding
the relationship between the behaviour of external agents and the operational
decisions made by the autonomous system.

To enable this, a predefined set of possible AV actions is used, which includes
maneuvers described in Table 2.4.

Label Description
AV-Stop AV not moving
AV-Mowe AV on the move

AV-Turn-Right AV turning right
AV-Turn-Left AV turning left

AV-Overtake AV overtaking another vehicle
AV-Mowve-Left AV moving towards left
AV-Move-Right AV moving towards right
AV-Black ** ok

Table 2.4: AV-related action classes (see [1]).

Note:

* Defined in the paper, but never used in experiments
** Not defined in the paper, but used in experiments
*#* Definition not provided.

An analysis of the distribution of the autonomous vehicle labels was conducted.
The results of this analysis are presented in Figure 2.16, which shows the distribu-
tions for the two portions of the dataset. It can be observed that the training/vali-
dation set and in the test set exhibit approximately similar distributions, with both
showing a peak for the AV-Mov action. However, the graph also highlights that the
labels are not evenly distributed, confirming the presence of a highly imbalanced
dataset.
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(a) Distribution of the AV labels in training/validation set.
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Figure 2.16: Distribution of the AV labels in training/validation set (a) and in
test set (b). The graphs show the distribution of the labels as percentages.



Chapter 3

Methodology

This chapter provides a detailed description of the methodologies adopted in the
development of this thesis work. Approaches employed to determine the action
of the autonomous vehicle (AV) are presented, both from symbolic concepts and
directly from images. Finally, the explainability layer integrated into the system
is introduced, aiming to create an interpretable connection between the different
stages: from visual processing to concept prediction, and ultimately to the AV’s
action decision.

3.1 From Concept To AV-Action

The first part of the project focused on training models capable of predicting
autonomous vehicle actions starting from concepts. The main goal of this approach
is to enhance the transparency and interpretability of the decision-making process,
as opposed to black-box models, which predict the final action directly from the
input image without explicitly revealing the factors that led to the decision. The
adoption of a concept-based approach falls within the broader field of C-XAI, with
the aim of developing models that are not only predictive but also interpretable
and transparent.

In particular, transitioning from raw data (images) to a symbolic representation
(Road Event) allows for increased traceability of the decision-making process,
making it easier to understand which elements contributed to the selection of the
final action. This approach thus provides a more causal explanation of the model’s
decisions: the predicted action is not just a numerical value, but the result of a
logical combination of interpretable and observable factors within the scene. For
example, the decision to brake may be explained by the presence of a pedestrian
crossing the road close to the vehicle or the possibility to move forward when facing
a green traffic light. However, it is important to note that a concept-based approach
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also presents some challenges, such as the need for high-quality annotations and the
potential loss of information compared to end-to-end models, which may exploit
visual content from images more directly.

To implement this transparency-enhancing phase, a Multilayer Perceptron (MLP)
and a Transformer were used. It is important to highlight that these models did not
operate directly on images, but rather on structured annotations, which represent
the key concepts extracted from the environment. These concepts can be interpreted
as a form of symbolic representation, serving as an intermediate layer between
the perceptual input (the image) and the decision output (the vehicle’s action).
Their purpose is to capture the most relevant elements of the scene, in a manner
akin to how a human observer would perceive them (concepts). Specifically, the
annotations were organized according to the Road Event schema, divided into
three main categories: Road Agent, Road Action, Location. This information
was encoded to be processed by indicated models, serving as input for both the
training and prediction phases. The possible actions that the vehicle could perform,
previously described (see subsection 2.7.2), represent the target labels of the system.

Three distinct approaches for input encoding were explored:

« Triplet Encoding: directly uses the annotations encoded as triplets (agent-
action-location).

o Label Encoding: separates the information, encoding the presence of each
concept (agent, action, location) individually, while maintaining the relation-
ships between them.

o Combined Encoding: a hybrid version that concatenates the triplet encoding
and the single-label encodings, aiming to integrate both representations.

By observing Figure 2.15a, it is possible to understand how this information is
represented using different encoding methods. For example, when analysing the
vehicle in front of the ego-vehicle, it can be observed that the Triplet encoding
represents the information Car-MoveAway-VehLane with a single numerical value,
which encapsulates the entire concept. In contrast, in the Label Encoding, the
information is divided into three separate values, each corresponding to the agent,
the action, and the position, respectively. Instead, in the Combined Encoding,
the information results from the concatenation of the Triplet and Label encodings,
thus consisting of four numerical values.

Finally, for the MLP model, a more detailed analysis was conducted through
two encoding variants:

1. Binary approach, recording only the presence or absence of a given concept.

2. Quantitative approach, recording the number of occurrences of each concept
within the frame, enabling the model to leverage quantitative information.
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3.2 Baseline models

Two black-box models were selected as baselines: ResNet-50 and R2Plus1D__ 18,
which are neural networks that, predict the action to be taken by the ego vehicle
based on a perceptual input (either an image or a sequence of images). The use of
these models, along with the adopted approaches, is described in more detail in
the following sections. Both models were tested to evaluate different configurations
and to analyze how performance could vary depending on the adopted strategy.

3.2.1 ResNet-50

As described in section 2.4, ResNet-50 takes a single image as input and predicts,
from a set of predefined actions, the one that the autonomous vehicle (AV) should
perform. Based on the metrics obtained in this baseline scenario for ResNet-50, sev-
eral techniques were explored with the aim of improving performance. In particular,
two approaches were adopted: Data Augmentation and Oversampling.

Data Augmentation

Data augmentation is a widely used technique in the field of Computer Vision to
improve the performance of machine learning models, especially when available
datasets are limited in size or poorly representative [26]. The main goal of this
technique is to increase the volume, quality, and diversity of training data by
applying transformations that preserve the semantic meaning of the original images.
In this way, the model can learn more generalizable representations, reducing the
risk of overfitting and enhancing system robustness. This approach is particularly
effective as it introduces synthetic variations into the training data, simulating the
presence of new examples while maintaining label consistency.

In the context of this project, transformations operating at the input space level
were applied, including geometric operations (e.g., rotations, translations, distor-
tions) and photometric adjustments (e.g., changes in colour, contrast, brightness).
In the experiments described in this thesis, the following transformations were
employed:

« RandomHorizontalFlip: applies a horizontal flip to the image with a given
probability (applied with p = 0.5). This transformation simulates mirrored
scenarios, making the model more robust to the orientation of road elements.

« RandomRotation: applies a random rotation to the image within a specified
angle range. This transformation enhances the model’s tolerance to variations
in object or scene orientation, simulating scenarios where the camera may
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have been slightly tilted or displaced. Inside the project, maximum value is
10°

RandomAffine: applies a random affine transformation that combines multi-
ple geometric variations: rotation, translation, scaling, and shear in a single
operation. Rotation is applied by selecting an angle within a predefined range,
translation shifts the image by a certain percentage relative to its original
dimensions, scaling adjusts the image size proportionally within a specified
range, and shear alters the shape of the image through an angular distortion.

RandomGrayscale: randomly converts a colour image to grayscale with
a predefined probability (applied with p = 0.1). The main purpose of this
transformation is to increase the model’s robustness to colour variations,
allowing it to focus more on the structural and textural features of the image
rather than on colour information.

Resize: is a transformation that modifies the spatial dimensions of an image
by rescaling it to a specific resolution. It is applied to ensure that all input
images have the same size, which is a necessary condition for most neural
network architectures. Resizing may lead to changes in the original aspect
ratio of the image.

ColorlJitter: is a transformation that randomly alters the colour properties of
an image, including brightness, contrast, saturation, and hue. This variation
simulates the appearance of the image under different lighting and environ-
mental conditions, helping improve the model’s robustness to non-structural
visual changes.

GaussianBlur: is a transformation that applies a blur to the image using a
Gaussian filter, reducing high-frequency details and making the image appear
visually softer. This operation simulates suboptimal visual conditions, such as
slight out-of-focus effects.

Normalize: is a transformation that normalizes the pixel values of an image
channel by channel, by subtracting the mean and dividing by the standard
deviation of each channel. This operation centers the data distribution around
zero and reduces its variance.

The described data augmentation transformations were carefully configured

to fulfill the purpose of increasing the dataset’s variety, thereby contributing to
the improvement of the model’s generalization capability. In particular, they
enabled the generation of diverse images, making the network more robust to visual
variations not present in the original dataset. Moreover, some transformations
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were designed to simulate possible distortions caused by real issues in acquisition
sensors, such as changes in camera angle or loss of quality in the captured image.

The transformations were applied in two distinct modes, each characterized by
a different level of intensity. The first mode, referred to as soft, involves the use of
mild transformations with moderate parameters that introduce limited variations
compared to the original image. The second mode, called strong, employs more
aggressive transformations with more pronounced parameters, capable of generating
significantly altered images. This distinction allowed for evaluating the model’ s
performance under progressively more challenging data augmentation conditions,
simulating more complex usage scenarios.

Table 3.1 and Table 3.2 show the transformations and parameters used for the
data augmentation configurations referred to as soft and strong, respectively.

Augmentation Parameters

Resize 224 x 224

RandomHorizontalFlip 0.5

ColorJitter 0.5,0.2,0.2,0.1

RandomRotation 10

RandomAffine degress = 0, translate = (0.05,0.05), scale = (0.95,1.05)
Normalize mean = [0.485,0.456, 0.406], std = [0.229, 0.224, 0.225]

Table 3.1: List of data augmentation transformations and their parameters for
the soft configuration.

Augmentation Parameters

Resize 224 x 224
RandomHorizonalFlip 0.5
RandomGrayScale 0.1

ColorlJitter 0.5,0.3,0.3,0.15

GaussianBlur kernel size = (3,3), sigma = (0.1,2.0)

RandomAfine degress = 15, translate = (0.1,0.1), scale = (0.9,1.1),
shear =5

Normalize mean = [0.485,0.456, 0.406], std = [0.229, 0.224, 0.225]

Table 3.2: List of data augmentation transformations and their parameters for
the strong configuration.
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Oversampling

Oversampling is a widely used technique to enhance the performance of machine
learning models, particularly neural networks, when dealing with imbalanced
datasets [27]. A dataset is considered imbalanced when the distribution of labels
across classes is not uniform, meaning that some classes are significantly underrep-
resented compared to others. This imbalance can hinder model performance, as
the learning process tends to favour majority classes, thereby limiting the ability
to correctly learn the features of minority classes.

To address this issue, random oversampling was employed in this project. This
technique involves randomly replicating samples from the minority classes. By doing
so, the training dataset is rebalanced, mitigating the bias introduced by the original
imbalance. As illustrated in Figure 2.16, some original classes occur with very
low frequency; the oversampling process increases their representation, enhancing
the model’s capacity to generalize to underrepresented categories. However, the
repeated inclusion of identical samples may result in an increased risk of overfitting,
which could negatively impact generalization on unseen data.

To evaluate the effectiveness of this approach, three different values of the
oversampling factor were tested. This allowed for an analysis of how different
degrees of artificial balancing influence the neural network’s performance, and
whether progressively increasing the number of replicated samples leads to significant
improvements in classification accuracy.

Figure 3.1 clearly illustrates how the application of oversampling changes the
class distribution within the training dataset. Specifically, it can be observed that
the proportion of minority classes increases, while the majority class proportion
decreases. For instance, the AV-Move label decreases from approximately 70%
(Figure 3.1a) to around 40% (Figure 3.1d), resulting in a more balanced overall
distribution.

3.2.2 R2Plus1D_ 18

The R(2+1)D_ 18 model was adopted to evaluate how a neural network behaves
when the input consists of an image sequence rather than individual frames. Unlike
approaches that rely on processing a single frame to make a prediction, this
architecture processes an entire temporal sequence and predicts the action of the
autonomous vehicle (AV) corresponding to the target frame, i.e., the last frame
in the sequence. This allows the model to capture the temporal evolution of the
scene and exploit the continuity between consecutive frames.

No specific experimental variations were applied to this model; rather, the main
objective was to observe how the model’s performance changes when temporal
information is explicitly included in the learning process.
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Figure 3.1: Distribution of AV labels under different oversampling rates. The
figure shows the original label distribution (a) and the effect of applying three
different oversampling rates: 0.05 (b), 0.1(c), and 0.2(d) to the minority classes.

3.3 Concept Bottleneck Model for AV Action
Prediction

In the final part of this work, the task to develop an explainable model is addressed
using a Concept Bottleneck Model (CBM), previously described in section 2.3.
As discussed in section 2.6, 3D-RetinaNet is a model that processes a sequence of
frames to produce predictions not only related to the AV’s action but also concerning
symbolic concepts describing the driving scene. It also identifies symbolic concepts,
referred to as Road Events (as introduced in subsection 2.7.1), along with their
corresponding bounding boxes within the image.
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For this reason, 3D-RetinaNet was used as the first stage of a cascade architecture,
to which models such as MLP or Transformer were subsequently added. These
were applied to predict the action taken by the ego-vehicle, specifically following
the procedure described in section 3.1. In practice, 3D-RetinaNet is responsible
for extracting a structured conceptual representation from the visual input, which
is then passed to the second module in charge of action prediction. To formalize
what has been described and to better align it with the functioning of the CBM,
the prediction process can be represented as a sequence of operations z — ¢ — v,
which can be further divided into two distinct stages: x — ¢ and ¢ — y. A more
detailed analysis yields:

e x — ¢: starting from an input image (z), symbolic concepts (¢)—namely the
Road Events—are predicted using 3D-RetinaNet, which was employed as a
pretrained network on the dataset used;

« ¢ — y: based on the predicted symbolic concepts, the target action (y) is
estimated using two alternative models, MLP and Transformer, both trained
as part of this project.

Since the ¢ — y prediction can be performed using two different models, it is
convenient to introduce the following notation:

o CBM-MLP: where the ¢ — y prediction stage is implemented using a
Multilayer Perceptron (MLP). Thanks to the modularity of this approach, it
is possible to select the most suitable encoding strategy, as well as to choose
between a qualitative or quantitative approach, depending on the chosen MLP
model.

o CBM-Transformer: where the ¢ — y prediction is performed using a
Transformer-based model. Similarly, in this case, the modularity allows for the
selection of the preferred encoding scheme and the definition of the number of
Transformer layers.

Compared to the other models explored in this work, this architecture introduces
an additional level of explainability, thanks to the explicit representation of relevant
scene concepts, so called Road Event. These concepts correspond to key elements
that, in a real-world scenario, a human driver would consider essential in deciding
which action to take. Therefore, this approach not only enables action prediction,
but also provides an interpretable representation of the reasoning behind the
decision.

34



Chapter 4

Experimental Results

This chapter presents the experimental results obtained throughout the project. It
begins with a description of the hardware setup used to run the experiments, along
with the main configuration parameters. Then, the evaluation metrics adopted
for model assessment are introduced. The presentation of results follows a logical
progression: first, models that predict the AV’s action based on symbolic concepts
are evaluated; next, the performance of black-box models is analysed; finally,
the explainability-driven approach is discussed, involving a CBM that performs
two-stage inference, first predicting the intermediate concepts and then the final
action.

4.1 Parameters And Configuration

All experiments were conducted on a notebook equipped with 16 GB of RAM and
an NVIDIA GeForce RTX 3070 Ti Laptop GPU with 8 GB of dedicated memory.
Regarding the training parameters, most configurations were trained for 10 epochs,
although in some cases the number of epochs was increased up to 30 to handle
slower convergence scenarios. The batch size was set to 512 for models that did
not involve image processing, while it was reduced to 32 or 16 for models working
with visual data, depending on model complexity and memory requirements.

Some parameters remained constant across all experiments: the optimizer was
set to Adam, the learning rate was fixed at 0.001, and the dataset was split into 80%
for training and 20% for validation, as the test set was already provided separately
by the dataset creators.

Additionally, for each experiment, different seeds (0,50,99) were used when
generating the training split. This choice allowed the evaluation of the model’s
robustness with respect to different random initializations of the data partitioning.

These values provide a general overview of the experimental configurations, while
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the specific setups for each experiment will be detailed in the following sections.

4.2 Metrics

To evaluate the performance of the models, particularly their ability to accurately
predict both the ego-vehicle’ s action and the intermediate symbolic concepts
(REs), two main evaluation metrics were adopted: Accuracy and F1-score. For
clarity, these two metrics will be shown in the tables using the abbreviations Acc.

(Accuracy) and F1 (F1-Score).

4.2.1 Accuracy

Accuracy is a metric that describes how the model performs across all classes. It
represents the percentage of correct predictions out of the total number of samples.
Accuracy is defined by the following formula:

TP+TN
TP+TN+ FP+ FN

where: TP is True Positive, TN is True Negative, FP is False Positive, and
FN is False Negative

Accuracy = (4.1)

4.2.2 F1 Score

The F1-score is the harmonic mean of precision and recall, and it combines these
two metrics into a single value to provide a balanced measure of classification
quality. Fl-score is defined by the following formula:

Precision x Recall
Fl1=2 4.2
% Presicion + Recall (4.2)

where:

TP TP
Precision = W R@CCL” = m (43)

4.3 Multilayer Perceptron Evaluation

To evaluate the performance of the MLP model, two fundamental metrics were
considered: accuracy and F1-score. These metrics were chosen because they are
directly related to the model’s objective—namely, predicting the action to be taken
by the AV based on symbolic concepts (Road Events).
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In order to ensure the reproducibility of the experiments, evaluations were
carried out using different seed values. Additionally, for each input encoding
strategy, a further analysis was conducted, as previously described: in the first
case, only the presence or absence of concepts was considered, while in the
second configuration, the frequency with which each concept appeared in the
input was also taken into account. Metrics were computed on both the validation
set (Table 4.1) and the test set (Table 4.2), allowing for a comparison of the model’s
performance on previously seen data and entirely unseen data.

Analysing the results reported in Table 4.1, it can be observed that the model
exhibits good stability with respect to seed variation. The accuracy and F'1-score
metrics show only minor fluctuations across different experiments, suggesting that
the training process is robust. Regarding the impact of the track occurrences
encoding, it appears that including this information does not lead to significant
changes in terms of accuracy, with an average increase that does not exceed 2%.
However, the improvement is more noticeable for the Fl-score, which increases
by up to approximately 6%, indicating a better balance between precision and
recall in predicting the correct action. Among the different encoding strategies,
the Combined approach emerges as the best performing one. Specifically, in
the configuration that includes occurrence tracking with seed = 99, the model
achieves its highest overall performance, reaching an accuracy of 0.9264 and an F1-
score of 0.7224. This suggests that combining multiple symbolic sources, enriched
with frequency information, provides the model with a more comprehensive and
discriminative representation that enhances its classification ability.

A h Track Seed: 0 Seed: 50 Seed: 99 o
pproac Occ. Acc. F1 Acc. F1 Acc. F1 Acc. F1
Teinlet X 0.9124 0.6542 0.9096 0.6776 09143  0.6831 0.0024 0.0154

b 0.9168 0.6943 0.9143 0.6931 0.9186  0.7016 0.0022  0.0046
Label X 0.9060 0.6295 0.9057 0.6237 0.9080  0.6403  0.0013  0.0084
v 0.9209 0.6841 0.9172 0.6813 0.9191  0.6943 0.0019  0.0068

Combined X 0.9185 0.6719 0.9178 0.6683 09196  0.6750  0.0009  0.0034
ombmne v 0.9232 0.6970 0.9223 0.7087 0.9264 0.7224 0.0022 0.0127

Table 4.1: Accuracy and F1-score results, including the corresponding standard
deviations, for the MLP model evaluated on the validation set.

Table 4.2 reports the results obtained by the MLP model on the test set.
A significant drop in performance is immediately noticeable compared to the
validation set, with a particularly sharp decline in F1-score values. When analysing
the effect of varying the seed, the metrics remain relatively stable, indicating that
the model is robust to randomness in the data split. Unlike what was observed
on the validation set, the application of the track occurrences technique does not
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lead to significant variations in performance: both accuracy and F1l-score show
only minimal differences. On the test set, the best-performing encoding is Label
encoding, particularly in the configuration with seed = 0 and without tracking
occurrences, where an accuracy of 0.7232 and an F'l-score of 0.2394 are achieved.

A h Track Seed: 0 Seed: 50 Seed: 99 o
pproac Occ. Acc. F1 Acc. F1 Acc. F1 Acc. F1
Teinlet X 0.5985  0.1727  0.5901 0.1659 0.5994 0.2030 0.0051  0.0199

p 0.5872  0.1668 0.6001 0.1636 0.5916 0.1668 0.0066 0.0019
Label X 0.7232 0.2394 0.6997 0.2262 0.7221 0.2327 0.0133  0.0066
v 0.7200  0.2344  0.6890 0.2237 0.6462 0.2029 0.0371  0.0160

Combined X 0.6694 02123 0.6514 0.2018 0.6563 0.2043 0.0093  0.0055
ombine v 0.6676  0.2106  0.6560 0.2066 0.6473 0.2017 0.0102  0.0045

Table 4.2: Accuracy and F1l-score results, including the corresponding standard
deviations, for the MLP model evaluated on the test set.

4.4 Transformer Evaluation

The Transformer model was employed with the goal of predicting the autonomous
vehicle’s (AV) action based on a conceptual representation of the scene, namely the
Road Events. The training process was carried out by providing the model with
symbolic concepts as input, with the aim of generating the vehicle’s corresponding
action as output.

To ensure the reproducibility of the experiments and to assess the model’s
robustness to dataset splitting, training was conducted using different seed values.
Furthermore, various levels of model complexity were explored by changing the
number of Transformer layers: specifically, configurations with 1, 2, and 3 layers
were tested.

It is important to emphasize that, in order to achieve better performance — as
will be discussed later — the model with 3 layers was trained for 30 epochs, whereas
the configurations with 1 or 2 layers were trained for only 10 epochs. As with the
MLP model, performance evaluation was carried out on both the validation set
(Table 4.3) and the test set (Table 4.4), to analyse the model’s ability to generalize
to unseen data.

Looking at the results reported in Table 4.3, which refer to performance on the
validation set (expressed in terms of accuracy and F1-score), the model demonstrates
a good level of stability across different seeds. The metrics vary only slightly between
runs, suggesting that the model’s generalization capability is not strongly affected by
the specific training/validation split. When analysing the impact of the number of
layers, different trends emerge depending on the type of input encoding. Specifically,
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for the Triplet and Combined encodings, increasing the number of layers from 1 to 3
results in a noticeable performance degradation. Accuracy drops by approximately
4%, while the Fl-score drops declines substantially—by up to 35% in the case of
the Triplet encoding, where the F1-score falls from 0.6322 to 0.2740. This drop
occurs despite models with 3 layers being trained for more epochs, suggesting
that increased model depth does not always lead to better performance and may,
in some cases, hinder the model’s ability to fit even familiar data. In contrast,
the Label encoding approach shows a consistent improvement as the number of
layers increases. Accuracy rises from 0.9134 to 0.9261 instead Fl-score from 0.6712
to 0.7259. This corresponds to approximately a 1% increase in accuracy and an
almost 10% increase in Fl-score from 1 to 3 layers. These results suggest that,
for this symbolic representation, the model is able to effectively exploit the added
architectural complexity to improve its discriminative capabilities. However, it is
worth noting that this improvement comes at the cost of higher computational
effort: models with 3 layers were trained for 30 epochs, compared to only 10 for
the other configurations.

A h Num Seed: 0 Seed: 50 Seed: 99 o
pproac Layers Acc. F1 Acc. F1 Acc. F1 Acc. F1
1 0.9120 0.6322 0.9100 0.6775 0.9119 0.6788 0.0011  0.0265
Triplet 2 0.9081 0.6486 0.9024 0.6169  0.9050 0.6122  0.0029 0.0198
3 0.8669 0.2740 0.8585 0.2908  0.8716 0.2772  0.0066  0.0089
1 0.8931 0.6255 0.9036 0.6265  0.9134 0.6712  0.0102 0.0261
Label 2 0.9159  0.6709 0.9140 0.6785  0.9197 0.6766  0.0029  0.0040
3 0.9217 0.6883 0.9232 0.7230 0.9261 0.7259 0.0022 0.0210
1 0.9150 0.6400 0.9109 0.6671 0.9170 0.6657 0.0031  0.0153
Combined 2 0.9022 0.4452 0.8941 0.5112  0.8980 0.4288  0.0041  0.0436
3 0.8767 0.3093 0.8650 0.3040  0.8737 0.3043  0.0061  0.0030

Table 4.3: Accuracy and F1-score results, including the corresponding standard
deviations, for the Transformer model evaluated on the validation set.

Looking at the results presented in Table 4.4, which report the metrics obtained
on the test set—i.e., data never seen by the model during training and therefore
more representative of a real-world scenario— it is possible to carry out an analysis
similar to the one performed for the validation set.

To begin with, a good level of stability can be observed across different seeds: in
most cases, the metrics vary by only a few percentage points. A notable exception is
the Label encoding approach with 2 layers, where accuracy fluctuates by up to 4%,
and the Fl-score shows a more significant variation of up to around 12%, ranging
from 0.2213 to 0.3442. Focusing instead on the impact of the number of layers,
increasing the model depth does not result in substantial performance variations.
Overall, the metrics tend to remain stable or exhibit slight improvements. Once
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again, an exception can be observed: for seed = 0, the Label encoding approach
with 2 layers achieves a notably higher F1-score compared to the other two seeds,
standing out as an outlier with respect to the general trend. This configuration
reaches an accuracy of 0.7072 and an F1-score of 0.3442.

Overall, even on the test set, the Label encoding approach confirms itself as the
most effective, achieving the highest accuracy and F1-score values compared to the
other two representation strategies. Conversely, the Triplet encoding consistently
proves to be the least effective.

Approach Num Seed: 0 Seed: 50 Seed: 99 o
bp Layers Acc. F1 Acc. F1 Acc. F1 Acc. F1

1 0.5916 0.1815 0.6088 0.1804 0.6245 0.2208 0.0165 0.0230

Triplet 2 0.5755 0.1752 0.5997 0.1710 0.6167 0.1792 0.0207 0.0041
3 0.6441 0.1914 0.6095 0.1731 0.6478 0.1705 0.0211 0.0114
1 0.6437 0.2311  0.6544 0.2151 0.6950 0.2656 0.0271  0.0258

Label 2 0.7072 0.3442 0.6775 0.2213 0.7160 0.2301 0.0202 0.0686
3 0.7057 0.2565 0.7301 0.2407 0.7041 0.2344 0.0146 0.0114
1 0.6532 0.2067 0.6576 0.2132 0.6854 0.2212 0.0175 0.0073

Combined 2 0.6493 0.2131 0.6538 0.2384 0.6933 0.2380 0.0242 0.0145
3 0.7113 0.2220  0.6258 0.1615 0.6744 0.1854 0.0429 0.0305

Table 4.4: Accuracy and Fl-score results, including the corresponding standard
deviations, for the Transformer model evaluated on the test set.

4.5 ResNet-50 Baseline Evaluation

ResNet-50 is the first architecture considered in this work that uses raw images as
input, without relying on symbolic annotations or explicit concepts. The goal is
to predict the action that the autonomous vehicle (AV) should take, addressing
the problem in an end-to-end manner and operating as a black box. This section
presents the metrics and results obtained by the ResNet-50 model on both the
validation and test datasets, in order to evaluate its performance in predicting
vehicle actions. Initially, the results obtained using the plain network are reported,
followed by those achieved after applying data augmentation techniques. Finally,
the performance is shown when both oversampling and data augmentation are
applied.

Table 4.5 reports the accuracy and F1-score results obtained on the validation
set for the ResNet-50 model, comparing the baseline configuration with two variants
employing data augmentation techniques (soft and strong). It can be observed that,
for each configuration, the results vary only slightly depending on the initialization
seed, indicating a certain robustness to this parameter. However, a notable exception
is the Aug. Strong configuration with seed 50, where the F1l-score drops from
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0.9115 (seed 0) to 0.8594, marking a decrease of approximately 6%. Overall, it is
evident that introducing data augmentation leads to a degradation in performance,
particularly in terms of Fl-score. While the accuracy remains relatively stable
across the different settings, the Fl-score shows a consistent downward trend,
with the worst-case scenario (Aug. Strong, seed 50) showing a reduction of over
11% compared to the baseline. These results suggest that, on the validation set,
the application of the considered data augmentation techniques did not yield any
improvements and instead had a negative impact on classification performance.

Method Seed: 0 Seed: 50 Seed: 99 o

etho Acc. F1 Acc. F1 Acc. F1 Acc. F1
Base 0.9913 0.9769 0.9906 0.9714 0.9903 0.9622 0.0005 0.0074
Aug. Soft 0.9773 0.9370  0.9748 0.9255 0.9773 0.9433 0.0014  0.0090

Aug. Strong  0.9715 0.9115  0.9669 0.8594 0.9731 0.9380 0.0032  0.0400

Table 4.5: Accuracy and Fl-score results, including the corresponding standard
deviations, for the ResNet-50 model (plain and with data augmentation) on the
validation set.

Table 4.6 shows the results obtained on the test set for the same configurations
previously analysed. As anticipated, the metrics show a general decrease, which is
expected given that the test data were never seen during training. When analysing
the variability introduced by different random seeds, the results remain mostly
consistent between seed 0 and seed 99, with the exception of the Aug. Strong
configuration. Seed 50, however, stands out, particularly in terms of F1l-score: in
the Base configuration, it leads to a significant performance drop of about 4%
compared to seed 0, while in the Aug. Soft configuration it results in an increase of
approximately 3.5%. Interestingly, contrary to what was observed on the validation
set—where data augmentation generally led to lower performance—on the test
set, the application of augmentation techniques either preserved or improved the
Fl-score. The best result is achieved with the Aug. Soft configuration and seed 50,
reaching a peak Fl-score of 0.3126. These findings suggest that data augmentation
helped improve the model’s ability to generalize to unseen data.

Building on the previous results, an oversampling technique was applied with
the aim of increasing the representation of samples belonging to underrepresented
classes. This approach was intended to assess whether a higher presence of such
examples in the dataset could help the model learn and generalize more effectively.
Three main threshold values for oversampling were considered: 0.2, 0.1, and 0.05.
As these values decrease, the degree of duplication for underrepresented classes
is reduced. Thresholds higher than 0.2 were avoided, as they would have led to
excessive replication of the same samples, increasing the risk of overfitting. In
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Method Seed: 0 Seed: 50 Seed: 99 o

etho Acc. F1 Acc. F1 Acc. F1 Acc. F1
Base 0.6036 0.2599  0.5890 0.2189  0.5929 0.2577 0.0076  0.0231
Aug. Soft 0.6406 0.2869 0.6668 0.3126 0.6165 0.2768 0.0252 0.0185

Aug. Strong  0.6695 0.3009  0.6247 0.2681  0.6070 0.2583  0.0322  0.0223

Table 4.6: Accuracy and F1-score results, including the corresponding standard
deviations, for the ResNet-50 model (plain and with data augmentation) on the
test set.

addition to oversampling, the data augmentation techniques previously described
were also employed, resulting in three different experimental configurations:

1. Ovr.: oversampling only;
2. Ovr. + Aug. Soft: oversampling combined with soft augmentation;

3. Ovr. + Aug. Strong: oversampling combined with strong augmentation.

The results of the different experimental configurations described above are
presented in Table 4.7 and Table 4.8, corresponding to the validation set and the
test set, respectively.

A detailed analysis of Table 4.7 (validation set), shows that performance metrics
are consistently high across all configurations: accuracy ranges from 97% to 99%,
while the Fl-score varies between 94% and 98%. These values indicate that no
configuration significantly outperforms or underperforms the others, and that all
combinations of oversampling and data augmentation enable the model to achieve
strong and reliable results. What stands out in particular is the comparison with
the results obtained without oversampling (see Table 4.5): while accuracy remains
largely unchanged, the Fl-score shows an improvement of approximately 2-3%.
This suggests that oversampling can help improve the balance between precision
and recall, especially for underrepresented classes.

Table 4.8 reports the results obtained on the test set. Also in this case, the
performance metrics appear to be generally stable, although with slightly more
noticeable fluctuations compared to those observed on the validation set (Table 4.7).
No significant differences emerge among the various configurations, with the ex-
ception of the Ovr. configuration with ovr.ratio = 0.05 and seed 50, which shows
improved performance compared to the other two seeds in the same category. In
contrast, the configurations that combine oversampling and data augmentation
seem to contribute to greater model robustness. The best performance is ob-
served in the configuration with Ovr. + Aug. Strong, Ovr. Ratio 0.1, and
seed 99, which yields better results in terms of both accuracy and Fl-score. A
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Method Ovr. Seed: 0 Seed: 50 Seed: 99
etho Ratio Acc. F1 Acc. F1 Acc. F1 Acc. F1

0.2 0.9943 0.9819 0.9924 0.9727 0.9924 0.9834 0.0011 0.0058

Ovr. 0.1 0.9926  0.9807 0.9920 0.9770  0.9934 0.9793  0.0007 0.0019
0.05 0.9927 0.9711 0.9919 0.9800  0.9930 0.9823  0.0006  0.0060
0.2 0.9806 0.9573 0.9788 0.9556  0.9801 0.9542  0.0009 0.0016

Ovr. + Aug. Soft 0.1 0.9770 0.9437 0.9750 0.9539 0.9793 0.9612 0.0022  0.0088
0.05 0.9768 0.9538 0.9749 0.9336  0.9784 0.9564  0.0018 0.0125
0.2 0.9765 0.9463 0.9809 0.9561  0.9774 0.9590  0.0023  0.0067

Ovr + Aug. Strong 0.1 0.9791 0.9561 0.9749 0.9481 0.9791 0.9560  0.0024 0.0046
0.05 0.9797 0.9534 0.9750 0.9440 0.9761 0.9535  0.0025 0.0055

Table 4.7: Accuracy and F1l-score results, including the corresponding standard
deviations, for the ResNet-50 model on the validation set, obtained by applying
oversampling and data augmentation techniques.

comparison with the results obtained without oversampling (Table 4.6) does not
reveal particularly substantial improvements on the test set. However, the use
of oversampling—especially when combined with data augmentation—has helped
to enhance or stabilize the model’s performance overall, even if it has not led to

drastic changes.

Method Ovr. Seed: 0 Seed: 50 Seed: 99
Ratio Acc. F1 Acc. F1 Acc. F1 Acc. F1
0.2 0.5954 0.2628 0.5928 0.2713  0.5928 0.2680  0.0015 0.0043
Ovr. 0.1 0.5909  0.2481 0.5943  0.2631 0.5955 0.2613 0.0024  0.0082
0.05 0.5921 0.2621 0.6284 0.3049  0.5887 0.2508  0.0220 0.0285
0.2 0.6047 0.2640 0.6618 0.2987  0.6207 0.2931  0.0295 0.0187
Ovr. + Aug. Soft 0.1 0.6296 0.2877 0.6461 0.2863  0.6140 0.2737  0.0161  0.0077
0.05 0.6465 0.2895 0.6250 0.2950  0.6315 0.2764  0.0110 0.0096
0.2 0.6253 0.2900 0.6161 0.2640  0.5920 0.2492  0.0172  0.0207
Ovr 4+ Aug. Strong 0.1 0.6040 0.2563 0.6445 0.2931 0.6741 0.3158 0.0352 0.0300
0.05 0.6639 0.2985 0.6167 0.2701  0.6474 0.3026  0.0240 0.0177

Table 4.8: Accuracy and F1l-score results, including the corresponding standard
deviations, for the ResNet-50 model on the test set, obtained by applying oversam-
pling and data augmentation techniques.

4.6 R2PluslD 18 Baseline Evaluation

The R2Plus1D_ 18 network was employed with the same goal as ResNet-50, namely
to predict the action of the AV based on visual input. Unlike ResNet-50, which
relies on a single image, R2Plus1D_ 18 processes a sequence of frames, aiming
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to capture the temporal dynamics of the scene and better understand how the
situation is evolving over time.

In this project, due to hardware limitations, it was not feasible to perform
extensive experimentation. Therefore, a baseline configuration was adopted to
compare the performance of this model with that of ResNet-50, and to assess
whether the use of multiple input frames could effectively enhance the model’s
generalization capability. Experiments were conducted using the same random
seeds adopted in previous tests, with a batch size of 16 and an input sequence of 8
frames. Specifically, in order to predict the action associated with a given target
frame, the model also considered the seven preceding frames, thus capturing the
evolution of the action over time. Since no additional experimental configurations
were explored, the results for both the validation and test sets are reported in a
single Table 4.9.

It can be observed that the metrics vary slightly with different seeds, particularly
for seed 99, which shows the most significant deviation—mainly on the test set
rather than on the validation set. Looking more closely, the validation set shows
consistently high performance in terms of both accuracy and F1l-score. On the test
set, accuracy remains around 0.9378, while the F1-score reaches its highest value
of 0.5360 with seed 99.

Comparing these test results with those obtained using the previous black-box
model, ResNet-50 (Table 4.6 and Table 4.8), a significant improvement can be
noted: accuracy increases by approximately 26%, while Fl-score improves by 22%.
These findings suggest that leveraging sequences of frames to predict the action at
the target frame allows for a more accurate understanding of the driving context.
Thus, temporal information emerges as a key factor in enhancing performance in
autonomous driving tasks.

Method Seed: 0 Seed: 50 Seed: 99 o
Acc. F1 Acc. F1 Acc. F1 Acc. F1
Validation set
Base 0.9919 0.9603 0.9907 0.9700 0.9935 0.9763 0.0014 0.0081
Test set
Base 0.9378 0.4746 0.9340 0.4635 0.9406 0.5360 0.0033 0.0391

Table 4.9: Performance of the R2Plus1D_ 18 model in terms of Accuracy and
F1-score, including the corresponding standard deviations, reported on both the
validation and test sets.
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4.7 Concept Bottleneck Model Evaluation

3D-RetinaNet was the model used to introduce a level of explainability into the
project, as it was employed to predict the Road Events present in the scene. These
events represent key elements that an experienced driver considers when assessing
the situation and deciding which action to take.

Since only pretrained models were involved at this stage, the results reported here
refer exclusively to the test set. Furthermore, as previously discussed, the symbolic
input (¢) can be encoded in multiple ways: these encodings were also explored
in this inference setup, with the output of 3D-RetinaNet being appropriately
transformed. Lastly, the different random seeds used during the training of the
MLP and Transformer models were also evaluated to assess their impact on final
performance.

Table 4.10 presents accuracy and F1l-score metrics for the two-stage inference
pipeline, in which the ¢ — y prediction is carried out using an MLP, so called
CBM-MLP. Moreover, as discussed earlier (section 4.3), the use of track occurrences
has not been applied in this setting, since, based on the results in Table 4.2, this
configuration did not lead to any significant performance improvements.

The first observation concerns the concept prediction x — ¢, whose results
remain unchanged across different seeds. This is expected, as 3D-RetinaNet is
a pretrained model and is not fine-tuned for each seed. It is also worth noting
that accuracy is very high in the Triplet and Combined encodings (above 99%),
whereas it drops by about 10% in the Label encoding. However, the latter shows a
significant increase in Fl-score (up to 35% compared to the Triplet), suggesting
improved performance in classifying underrepresented classes. In this regard, Label
encoding proves to be more effective for Road Event prediction.

As for the ¢ — y prediction, the performance is generally stable across different
seeds, with the only exception being the Triplet approach with seed 50, where the
F1-score increases from 0.1212 to 0.1484. The best overall performance is achieved
by the Label encoding approach, which reaches an accuracy of 0.6630 and an
Fl-score of 0.1938 when using seed 99. Comparing these results to those shown
in Table 4.2 — where the model receives ground-truth concept labels as input —
it is possible observe an average drop in Fl-score of about 5%. This decline is
expected, as the symbolic input in this case comes from upstream model predictions
rather than ground-truth annotations. Nevertheless, the performance degradation
is relatively limited, confirming the robustness of the two-stage architecture. Finally,
it is worth noting that although the x — ¢ metrics are lower for the Triplet and
Combined approaches, the final prediction quality ¢ — y does not drop significantly.
The differences from the best-performing configuration remain within the 3-7%
range, indicating a certain level of resilience in the MLP even when processing
imperfect symbolic inputs.
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. Seed: 0 Seed: 50 Seed: 99 o
Approach Prediction Acc. F1 Acc. F1 Acc. F1 Acc. F1
Triplet T —c 0.9980 0.2988 0.9980 0.2988  0.9980 0.2988  0.0000  0.0000
b c—y 0.5874 0.1212 0.6149 0.1484  0.5868 0.1209  0.0161 0.0158
Label T —c 0.8949 0.6454 0.8949 0.6454  0.8949 0.6454  0.0000  0.0000
c—y 0.6740 0.1935 0.6546 0.1879 0.6630 0.1938 0.0097 0.0033
Combined xr—c 0.9952 0.5549 0.9952  0.5549 0.9952 0.5549 0.0000  0.0000

c—y 0.6060 0.1673 0.5994 0.1570  0.6102 0.1636  0.0054  0.0052

Table 4.10: Accuracy and F1-score results, including the corresponding standard
deviations, for x — ¢ and ¢ — y predictions using MLP

Table 4.11 reports the same metrics presented in the previous table, with one key
difference: the model used for action prediction (¢ — y) is a Transformer, so called
CBM-Transformer. As described in section 4.4, several architectural configurations
of the Transformer were explored. However, the results reported in Table 4.4 show
that using two layers yields better performance. Therefore, all experiments in this
section were conducted using a Transformer with two layers.

Analyzing the results of the x — ¢ prediction, the values are identical to those
reported in the previous case. This behaviour was expected, as the prediction of
concepts (REs) is independent of the architecture used in the subsequent stage
of the model. Therefore, no variations are expected in the x — ¢ phase, whereas
differences may emerge in the ¢ — y phase, where the architecture actually changes.
The results shown in Table 4.11 confirm this observation.

Turning to the final prediction ¢ — y, the variation in seed results in negligi-
ble differences (around 2%), suggesting the model is stable across initializations.
Performance also remains consistent across different encoding strategies (Triplet,
Label, Combined), with Fl-scores ranging from 0.1323 to 0.1698. The Combined
encoding with seed = 99 yields the best results. When comparing these results
with those from Table 4.4—where the symbolic input consists of ground-truth
concepts—there is a performance drop, with the Fl-score decreasing by up to 18%
in the worst case. However, this best-performing case in Table 4.4 represents an
outlier. Taking a broader view, the average drop in performance is around 6%,
confirming the robustness of the two-stage architecture even when the concepts are
predicted rather than provided as ground truth.

What ultimately matters is not only the intermediate predictions of the concepts,
but rather the final action prediction. When comparing the metrics obtained, it is
clear that the final prediction using the MLP or Transformer achieves accuracy/F1-
score values of 0.6630/0.1938 and 0.6256,/0.1698, respectively. This indicates that
the MLP was able to generalize slightly better in this setup. When these results
are compared with those of a black-box model, specifically ResNet-50, reported

46



Experimental Results

. Seed: 0 Seed: 50 Seed: 99

Approach Prediction Acc. F1 Acc. F1 Acc. F1 Acc. F1
Triplet T —c 0.9980 0.2988 0.9980 0.2988  0.9980 0.2988  0.0000  0.0000
b c—y 0.5941 0.1323 0.5887 0.1255  0.5915 0.1225  0.0027  0.0050
Label T —c 0.8949 0.6454 0.8949 0.6454  0.8949 0.6454  0.0000  0.0000
c—oy 0.6086 0.1518 0.5977 0.1578  0.6076 0.1525  0.0055 0.0806
Combined xr—c 0.9952 0.5549 0.9952  0.5549 0.9952 0.5549 0.0000  0.0000
c—y 0.6000 0.1490 0.6253 0.1525 0.6256 0.1698 0.0147 0.0111

Table 4.11: Accuracy and F1-score results, including the corresponding standard

deviations, for x — ¢ and ¢ — y predictions using Transformer

in Table 4.6 and Table 4.8 — where the accuracy/F1-score are 0.6668/0.3126
and 0.6741/0.3158 respectively — it becomes evident that while the accuracy
remains relatively stable, the Fl-score drops by approximately 12% with the MLP
and 15% with the Transformer. This degradation is entirely expected: while a
slight performance drop is observed, it is compensated by the ability to provide a

transparent explanation for the decision made.

As such, the proposed C-XAI approach, structured as a CBM, in which the
prediction follows the form x — ¢ — y, has enabled the design of an explainable

model for autonomous driving.
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Chapter 5

Conclusions And Future
Works

This chapter presents the final considerations on the work carried out, summarizing
the thesis objective, the adopted approach, and the configurations that yielded the
best results. Additionally, it discusses the main limitations encountered during the
experimentation and outlines a series of possible improvements and future research
directions that could be explored.

5.1 Conclusion

This thesis focuses on integrating methodologies that enhance the explainability
of AV decisions, making the reasoning behind actions more understandable and
transparent. The work explored how to design a model capable of providing insight
into the decisions made by an autonomous vehicle. A Concept Bottleneck Model
(CBM) approach was adopted, allowing the introduction of intermediate, human-
interpretable concepts that support the final action prediction. This design enables
a clearer understanding of the vehicle’s decision-making process.

A key observation emerging from the study is the trade-off between explainability
and performance. The introduction of interpretability layers inevitably led to a
drop in accuracy when transitioning from a black-box approach to a C-XAl-based
explainable system. Specifically, a performance decrease of about 12-15% was
observed in the explainable models. This comparison was conducted using ResNet-
50 as a baseline model, which — similarly to the proposed CBM — predicts the
vehicle’s action based on a single input frame. This comparison was more fair
than using R2Plus1D_ 18, which exploits temporal sequences and thus benefits
from a broader information context compared to a single observation. The CBM
implemented in this thesis uses multiple frames to predict the concepts associated
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with a target frame, but the final action prediction is based solely on the concepts
corresponding to the target frame. For this reason, a direct comparison with models
that incorporate temporal dynamics in both perception and decision-making —
such as R2Plus1D 18 — would not be meaningful. This insight paves the way
for future improvements. A natural extension would involve modifying the CBM
architecture so that the ¢ — y stage considers temporal dependencies — in other
words, the evolution of concepts over time. To support this, the x — ¢ stage would
need to be extended to predict concepts not only for the target frame but also for
preceding frames. The ¢ — y model could then exploit this sequence of conceptual
representations to produce a more context-aware prediction of the action. Such an
extension could reduce the performance gap with temporal black-box models while
preserving the transparency of the decision-making process.

Table 5.1, 5.2, 5.3 present a summary of the results obtained on the test set.
Specifically, all tables report the Accuracy and Fl-score metrics averaged across
different seeds, referring to the best-performing configuration for each model.
Table 5.1 shows the results for the MLP and Transformer models, focusing on the
¢ — y prediction. Table 5.2 reports the results of the black-box models, which
perform the x — y prediction. Finally, Table 5.3 presents the outcomes of the
CBM model designed to introduce explainability, which uses 3D-RetinaNet in the
x — ¢ phase and then either an MLP or a Transformer in the ¢ — y phase.

c—=y
Model Encoding Accuracy F1-Score
MLP Label 0.7150 0.2328
Transformer Label 0.7002 0.2652

Table 5.1: Average Accuracy and F1-score across seeds for the best configurations
of the MLP and Transformer models.

=y
Model Method Accuracy F1-Score
Aug. Soft 0.6413 0.2921
ResNet-50 Ovr. + Aug. Strong 0.6409 0.2884
R2Plus1D_ 18 Base 0.9375 0.4914

Table 5.2: Average Accuracy and F1-score across seeds for the best configurations
of the ResNet-50 and R2PluslD_ 18 models.
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rT—c—y

Encoding Prediction Accuracy F1-Score

3D-RetinaNet + MLP

Label T —c 0.8949 0.6454
c—y 0.6639 0.1917

3D-RetinaNet + Transformer
) T —=c 0.9952 0.5549
Combined c—y 0.6170 0.1571

Table 5.3: Average Accuracy and F1-score across seeds for the best configurations
of the CBM.

5.2 Future Works

Based on the observations outlined in the previous section and the design choices
made during the project development, several strengths and possible improvements
can be identified to achieve a more precise and effective explainable model. The
main areas for improvement are described below:

« CBM in temporal domain: extend the CBM model to operate in the
temporal domain, by leveraging the sequence of input frames not only to
predict the concepts for the target frame, but to generate a temporal sequence
of concepts. This would allow the models responsible for the ¢ — y phase to
exploit the temporal evolution of the concepts to predict the vehicle’s action,
enabling a deeper understanding of the dynamic context of the scene.

o Dataset Balancing: One of the main limitations lies in the imbalance of
the dataset used, particularly regarding the distribution of driving actions. A
more balanced dataset could enhance generalization capabilities and offer a
more accurate understanding of which concepts are most critical for specific
actions.

e Semantic Enrichment: Future datasets could benefit from richer semantic
annotations, such as more detailed descriptions of agents, actions, and spatial
positions. These additions would improve the clarity and precision of concept-
based reasoning.

o Multi-perspective Data: Although this study focused on a single, front-
facing camera to emulate human vision, incorporating additional viewpoints
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(e.g., lateral views) or other sensors could offer a more complete environmen-
tal understanding. Nonetheless, maintaining concept annotations across all
modalities remains essential to preserve interpretability.

o Improved Concept Prediction: While the accuracy in concept prediction
was generally high, the F1-score indicates that there is room for improvement,
particularly in handling class imbalance. Exploring more advanced detection
architectures or data augmentation strategies could enhance overall robustness.

This work represents a first step toward the application of C-XAT in the context of
autonomous driving. Although the results are promising, further research is needed
to refine the models, improve data quality, and optimize the trade-off between
performance and transparency. Most importantly, achieving better generalization on
unseen data is essential, since it is impossible for a model to have encountered every
possible road scenario worldwide. Consequently, generalization is a crucial aspect
because models can only be trained on a subset of contexts. By addressing this,
it will be possible to advance toward more reliable and interpretable autonomous
systems—qualities that represent fundamental strengths in this application domain.
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