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Summary

Real-Time Operating Systems (RTOSs) are widely employed in time-sensitive
applications. However, since keeping costs low is crucial, the adopted hardware
is usually not state-of-the-art, even though safety and responsiveness are often
among the requirements of the system. Therefore, it is important to exploit all
the resources the hardware has to offer. From the perspective of an Operating
System (OS), it has become almost imperative to be able to support multi-core
processing with a single instance of the OS. In this context, the thesis focuses
on porting the Symmetric Multiprocessing (SMP) functionality of FreeRTOS, a
popular open-source RTOS, on the multi-core processor embedded in the Zyng-7000
System-on-Chip (SoC). The process is detailed in both the hardware-dependent
and hardware-independent steps and the result is compared to other existing
multiprocessing options.
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Chapter 1

Introduction

In the last decades, the number of devices surrounding everyone has drastically
increased, along with their complexity. These devices are usually designed to per-
form a few specific functions, and they are referred to as Embedded Systems (ESs).
Technological improvements have made the definition of ES increasingly vague. For
example, a smartphone is usually considered an ES, but today its functionality
makes it more similar to a general-purpose computer. Even if this is less noticeable
in other devices (e.g., appliances, cars), everything has become so smart that it
contains at least a Microcontroller Unit (MCU) or/and a Microprocessor Unit
(MPU). Obviously, the hardware still has a non-negligible cost, so an ES is rarely
implemented with state-of-the-art technology. Because of this, exploiting all the
available resources becomes crucial.

The software design of simple systems can be coded in bare metal to optimize
resource usage, thus saving on hardware costs. However, as the complexity of the
applications grows, the required effort increases drastically. In this scenario, having
a software layer that manages the underlying hardware is useful so programs can
be more easily developed and ported to other devices. In the embedded domain, as
many applications are time-sensitive or need to be predictable, the most common
intermediate layer is a Real-Time Operating System (RTOS).

For many years, creating devices with multiple instances of a Computational
Unit (CU) has been the main strategy to overcome the performance barrier imposed
by the limits of single-core processors. Systems that can manage many CUs support
some form of Multiprocessing (MP), but how this is exploited by the software
directly depends on the target hardware. The most common approaches are
known as Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing
(AMP). Historically, the latter has been more widely used in the embedded domain
because it can manage heterogeneous groups of processors, thus allowing better
allocation of a device’s resources to specific parts of an application. SMP can, in
principle, provide better performance. Still, its design is less flexible than AMP,
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since the processors must comply with the same architecture and the software has
inherently more dependencies. Moreover, because supporting SMP on a processor
introduces some overhead, developing multi-core processors for ESs has encountered
some difficulties. Despite these initial problems, many embedded devices are now
equipped with multiple CU [1] to meet the requirements of modern applications.

This thesis faces the problem of porting the SMP support of an RTOS to
hardware that is equipped with symmetric CUs. The scope is to show that
even older platforms can benefit from improved software support, leading to better
utilization of the systems’ resources. Nevertheless, the process is not straightforward,
since the code created for a single-core device cannot run on multiple cores without
being modified. If more than one CU is considered, the software structure must
be enhanced with appropriate synchronization mechanisms to ensure that no race
condition can disrupt the correct execution of an application.

More specifically, the thesis illustrates the process of adapting the SMP function-
ality of FreeRTOS, a popular open-source RTOS, to Zyng-7000 System-on-Chips
(SoCs), a family of devices released in 2011. This part is preceded by general con-
cepts, which provide the theoretical knowledge required to understand the porting
procedure. The description of the Zyng-7000 SoC, the Cortex-A9 (CA9) processor
that powers it, and the tools used during the development are only some of the
treated arguments. Furthermore, the steps that lead to the final implementation
of the SMP port for the Zyng-7000 SoC are presented in a way that eases the
comprehension, since the discussion is divided into topics rather than being a mere
changelog. As a result, the focus is placed on the hardware-software dual-core
configuration and the changes that address it. Some time will also be spent to
describe the additional primitives that enable the execution in SMP mode. Finally,
the leveraged testing tools and programs are presented, before briefly showcasing
the achieved performance of the SMP port compared to an AMP configuration.



Chapter 2

Background

This chapter provides the foundation for the port implementation described in
Chapter 3. Initially, an overview of the multiprocessing techniques considered in
this document is included, followed by a brief comparison. Afterwards, both the
RTOS and the SoC are presented in depth so that the reader can grasp more easily
the porting process. In this sense, the architecture of the SoC, its components, and
the software that powers them are detailed more than FreeRTOS itself. Indeed,
while the internal functioning of the RTOS constrains the structure of the low-level
code, there are often several ways to implement a port function given a specific
hardware. Nevertheless, in case a non-trivial concept was inadvertently overlooked,
FreeRTOS provides complete documentation [2]. The chapter concludes with a
description of the development environment.

2.1 Multiprocessing

The term Multiprocessing commonly refers to the ability of a system to simultane-
ously use more than one Central Processing Unit (CPU) to perform the required
computation. The definition can be further adapted to a specific context, since it
is functional to describe the possible interactions between the different CU of a
system. Multiple CPUs on many interconnected printed circuit boards, multiple
cores of a single CPU, and different processors with specialized architectures (e.g.,
graphic and neural processing units) on an SoC are only some of the possible
configurations that can be observed in modern devices. For this thesis, a CU is
identified either as a core or a processor, and MP is defined as the ability of a
CU to coordinate with other CUs to fulfill the function of a system. Different MP
solutions can be implemented on a single device depending on the symmetry of the
CUs. Some of the most common approaches are described below, other than being
pictured in Figure 2.1:



Background

o Asymmetric Multiprocessing

In an AMP system, the CUs are typically heterogeneous at both the hardware
and software levels. The processors have distinct architectures and mostly
separate memory address spaces while the programs they run can be com-
pletely different (e.g., bare-metal code and an Operating System). The CUs
communicate with each other through shared memories and interrupt-driven
messaging mechanisms (e.g., hardware mailbox), which can be abstracted by
using proper frameworks (e.g., OpenAMP) or ad hoc software solutions.

A device that integrates an MCU to deal with sensors and other peripherals
and an MPU to run a lightweight Operating System (OS) is a classic AMP
system. The strength of such designs lies in their flexibility and adaptability
to a wide range of requirements. In the previous example, the MPU-MCU
pairing may be a low-power solution for an application that needs to fetch
and label data before transmitting it to the cloud for further processing.

e Symmetric Multiprocessing

An SMP system is equipped with CUs that are homogeneous in terms of
hardware and software. The architectural uniformity ensures that the entire
set of CUs can be managed by a single instance of an OS and most of the
address space is shared, or at least coherent, to ease the interaction of the CUs.
When it comes to software design, it is still possible to assign additional tasks
to each CU, but, compared to the whole application code, the exclusive code
a CU has to execute is generally a small fraction. This approach ensures that
the OS can effectively distribute the system’s workload on all the provided
units. However, the fact that CUs share most of the data structures is also
a disadvantage because the skills and effort required to produce functionally
correct SMP software are much higher than the ones needed to code an
application for a single CU.

A multi-core MPU is the most obvious example of SMP system, even though
devices equipped with multiple instances of a single-core processor can be
found in the embedded domain.

SMP can potentially achieve higher performance than AMP because the homoge-
neous architecture enables designers to tightly couple the CUs [3]. Faster inter-core
communication mechanisms and workload distribution across the CUs are only
some of the advantages SMP offers. However, there are some significant drawbacks,
as the additional complexity needed to realize such systems must be addressed
in hardware and software. The architecture becomes more elaborate in terms of
area and power consumption, due to the CUs’ duplication and the supplementary
units that provide the actual SMP support. For example, ARM Cortex-A MPUs
integrate a module called Snoop Control Unit (SCU) that maintains the L1-cache
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coherence for the cores participating in this process. From a software perspective,
especially when the hardware support is not enabled, the application writer has
numerous restrictions that would not be present with a single CU. In general, the
higher the number of CUs that interact with the same data structures, the higher
the sections of code that need proper synchronization mechanisms to preserve the
application logic. Furthermore, as hinted before, if SMP is not properly supported
at the hardware layer, the software may need to deal with several other hardware-
related issues (e.g., memory coherency). Because of these problems, AMP has
been historically more popular than SMP in ESs. AMP also has the advantage of
better fitting the needs of many embedded applications, since it allows to assign
a separate part of the application to each part of the system. This characteristic
can be beneficial in mixed-criticality systems as every domain can be certified
separately.

Despite their advantages and disadvantages, AMP and SMP are rarely inter-
changeable. Instead, they are usually employed to face different problems. For this
reason, in some systems, selecting one of the two approaches would not benefit
the application as much as combining them in a hybrid form of MP, which can
be referred to as hybrid multiprocessing. This choice is particularly convenient
when clusters of symmetric processors can be managed asymmetrically so that each
cluster can be specialized in a task (AMP) and completely exploit the resources of
the processors within the cluster to efficiently execute the task (SMP).

2.2 Zyng-7000 SoC

The Zyng-7000 SoC is a family of devices developed by Xilinx, now part of AMD,
offering hardware and software programmability on a single chip. These features
are achieved through the integration of a Processing System (PS), which embeds
an ARM-based processor, and a Programmable Logic (PL), which provides the
functionality of a Field Programmable Gate Array (FPGA). The heterogeneous
architecture is especially suited for applications that need a compromise between
hardware acceleration and the flexibility of a powerful processor.

SoCs in this family are divided into two series: Zynqg-7000 and Zyng-7000S. This
thesis focuses on the former architecture, as all the PSs feature an Application
Processing Unit (APU) equipped with a dual-core ARM CA9 processor. Zyng-
7000S SoCs are not considered, since the PS embeds a single-core CA9. Aside from
the PS, the hardware configuration of both the board and the PL is not relevant
to the thesis’ objectives, so it will be presented in detail during the dissertation if
deemed necessary. For reference, an internal view of the PS is depicted in Figure
2.2.

The cores in the APU are connected in an MP configuration, sharing a unified
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512 kB L2-cache and an SCU, which is responsible for maintaining the L1-cache
coherency. Despite the architectural symmetry, the CUs can assume separate roles,
as reported in Section 2.1. For example, the system boot is usually executed on
one of the available cores (i.e., the primary core). In contrast, the others (i.e.,
the secondary cores) are started from the primary core after the system has been
initialized. Therefore, for clarity, the two cores will hereafter be referred to as
CPUO and CPUL.

2.2.1 PS Software Boot Process

The complete Zyng-7000 SoC boot is a complex process that involves several
hardware and software passages [4, ch. 6]. However, the stages required to boot the
PS are sufficient to understand the arguments exposed in the following chapters.

The Zyng-7000 SoC PS boot [5, ch. 3] is a process divided into a maximum of
three steps: stage-0 boot, First Stage Boot Loader (FSBL), and, optionally, second
stage boot loader. The stage-0 code stored in the on-chip ROM is the first software
to be executed on the PS and it also known as BootROM code. Among its tasks,
this program sets up the APU, configures the system peripherals according to the
selected boot mode (e.g., JTAG, Quad-SPI, and SD memory card), and moves the
FSBL from the boot device to the on-chip memory. The FSBL continues the PS’
setup and eventually programs the PL before loading a second stage boot loader
(e.g., U-Boot) or a bare-metal application in Double Data Rate (DDR) memory.
The FSBL that is executed after the BootROM phase can be entirely customized
depending on the user’s needs, but AMD provides an example, which is enough for
most applications.

2.2.2 Application Processing Unit Modules

Besides the CA9 processor, the APU includes several hardware units that provide
core functionalities of the system. Among them, two modules are particularly
relevant for the work presented in this thesis: Generic Interrupt Controller (GIC)
and Triple Timer Counters (TTCs).

A TTC comprises three independent 16-bit timers, each equipped with a 16-bit
prescaler, whose input clock can be selected from the available sources. Every
counter can generate an output waveform (e.g., Pulse Width Modulation) and a
periodic interrupt. Such action is triggered by an overflow, either on the entire
counting range, a shorter interval, or a match with a configurable value. The APU
features two TTCs for a total of six timers.

The interrupt controller incorporated in the APU is a PrimeCell GIC (PL390),
based on the non-vectored ARM GIC Architecture version 1.0. The GIC is
logically divided into a global Distributor and a series of local CPU interfaces.
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The Distributor centralizes the interrupt sources and delivers the highest-priority
pending interrupt to each interface. In contrast, the CPU interfaces allow cores
to manage the interrupts routed through the GIC. When active, a CPU interface
evaluates the associated core’s priority mask and preemption policy to determine
whether to signal the interrupt delivered by the Distributor. The interface is also
used to acknowledge an interrupt and notify of its completion after it has been
handled.

The GIC supports the configuration of security state, priority level, and target
processor for an interrupt, as well as their activation and deactivation. Furthermore,
the managed interrupts are classified in three groups: Software Generated Interrupts
(SGIs), Private Peripheral Interrupts (PPIs), and Shared Peripheral Interrupts
(SPIs). The GIC integrated in the Zyng-7000 SoC accepts signals coming from PL,
I/O peripherals, and CA9 cores and routes the resulting interrupts to PL and CA9
cores.

On the Zyng-7000 SoC, each core has 16 private interrupt sources to generate an
SGI, which can target itself and/or other cores, and some PPIs. Private peripheral
sources are the CPU private timer and watchdogs, the global timer, and an TRQ
and a FIQ, both coming from the PL. Moreover, since SPIs and PPIs are private,
the Distributor registers associated with them are banked. In contrast, SPIs are a
group of signals produced by several modules that the GIC delivers to CPU and
PL, even though it does not manage reception and prioritization for the latter.
An SPI can be assigned to multiple cores, but only one really handles it, and its
sensitivity might also be configurable (e.g., rising-edge or high-level).

The Zyng-7000 SoC Technical Reference Manual (TMR) offers further informa-
tion on both TTC [4, pp. 253-257] and GIC [4, ch. 7]. The GIC is also extensively
described in the ARM manuals [6] [7].

2.3 ARM Cortex-A9

The ARM CA9 is a highly configurable processor optimized for power and per-
formance, part of the Cortex-A series. The processor is implemented with the
ARMvT7-A architecture, but besides the ARMv7-A instruction set, it supports
Thumb and Thumb-2 and can be extended with Floating Point (FP) and single
instruction multiple data support. A single MPU can host a maximum of 4 cores,
each provided with a Memory Management Unit (MMU); however, as already
stated in Section 2.2, the CA9 processor embedded in the Zyng-7000 SoC integrates
only two cores. The following subsections discuss significant CA9-related concepts,
which are helpful to understand the work presented in this thesis.
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2.3.1 Relevant features in the ARMvT7-A architecture

The ARMvT7-A architecture defines several features that enable software and
hardware designers to create complex yet well-structured systems. The most
significant concepts are briefly introduced in this subsection to facilitate the reading
of Chapter 3.

Cache Maintenance Operations

In a memory hierarchy that employs cache memories, maintenance operations
might be required to ensure that caches do not hold stale data due to changes in
external levels of memory or activity in the MMU (e.g., modification of memory
attributes). This function is provided through the "clean" and "invalidate" CP15
operations, which respectively write dirty lines to more external levels of memory
and remove data from the cache. Nevertheless, these maintenance steps are not
always necessary. For example, cleaning a cache line is only relevant for data caches
that use a write-back policy.

Both clean and invalidate can be performed with cache set, way, or virtual
address granularity. However, while set/way based operations target a specific
level of cache, for virtual addresses two points are defined: the Point of Coherency
(PoC) and the Point of Unification (PoU). The former is the point that allows
all units that can access memory (e.g., direct memory access and cores) to have
a coherent memory view. The PoU is the point where the data and instruction
caches of a core can observe the same copy of a memory location. The concepts of
PoC and PoU are equivalent for the CA9, as they both correspond to the Level
2 (L2) interface [6, ch. 8, pp. 19-20] because the processor does not incorporate
an L2 cache. For more information on cache maintenance operations, refer to the
ARM documentation [8, sec. B2.2.7] [6, ch. 8, pp. 17-21].

Processor Modes

The ARM architecture provides multiple processor modes to handle different
scenarios that can occur during the operation of a system. These modes are
classified as either Privileged or Unprivileged, and aside from User mode, all
modes are privileged, so their ability to perform certain operations is not restricted.
An essential aspect of processor modes is that some of the provided 16 32-bit
general-purpose registers and the Current Program Status Register (CPSR) are
shared across modes. Therefore, registers may need to be saved before being used.
Nevertheless, some modes (e.g., FIQ) still have banked registers, meaning the
software might access different physical locations depending on the active mode.
Stack Pointer (SP) and Special Program Status Register (SPSR) are the only
registers banked in all modes, except User and System mode, which share the
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same set of registers. Since some processor modes are associated to exception
events, the SPSR is used by the processor to automatically save the CPSR of the
mode that was active before the arrival of an exception, while banked SPs allow
to allocate separate stacks for each mode. The topic becomes even more complex
when additional architectural extensions, like the Virtualization Extensions, are
introduced. These cases are beyond the scope of this thesis, but they can be
explored further in the ARM manuals [8, sec. B1.3] [6, ch. 3].

Exception Handling

According to ARM’s definition [8, sec. B1.8-B1.9] [6, ch. 11], an exception is a
condition that disrupts the normal execution of a program due to an external event.
When the processor receives such a signal, it immediately manages the request by
executing the handler associated with the exception in the vector table. This step
is preceded by other operations, which ensure the correct resumption of normal
execution after the event [6, sec. 11.2]. Among the different types of exceptions,
interrupts are particularly meaningful to understand some of the topics presented
in this thesis. ARMv7-A divides interrupts into "IRQ" and "FIQ", so that, when
triggered, all exceptions disable IRQ, but only FIQ and reset disable FIQ.

Since ESs often execute code in response to interrupts, the speed at which
the processor reacts to external events is a crucial factor, referred to as interrupt
latency. Consequently, other than the classic exception management, the software
can define a reentrant interrupt handler to support nested interrupts [6, sec. 12.1].
This feature allows to prioritize interrupts, reducing latency for higher priority
events.

Memory Barriers

Memory barriers are instructions that generate synchronization events to constrain
the execution of memory operations that appear before and after the barrier.
ARM provides three instructions of this kind to support its memory ordering
model: Data Synchronization Barrier (DSB), Data Memory Barrier (DMB), and
Instruction Synchronization Barrier (ISB). DSB and DMB can be applied to
different "shareability domains" and only affect memory accesses generated by
load /store instructions and cache maintenance operations. However, the CA9
support exclusively system-wide DSBs [9, sec. 7.5]. DMB ensures that any explicit
memory access preceding it is observed before any subsequent memory access.
DSB imposes the same conditions of DMB, but it also enforces the completion of
memory operations that appear before the barrier. Finally, ISB flushes the pipeline,
forcing it to freshly fetch the following instructions. This is especially useful when
context-altering operations (e.g., translation lookaside buffer or branch predictor
operations) before ISB must be visible to instructions executed after the barrier.
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Additional information is reported in the ARM documentation [8, sec. A3.8.3] [6,
sec. 10.2].

ARM Architecture Procedure Call Standard

As applications are composed of multiple code modules, often written in different
languages, a standard set of rules is required to ensure interoperability in ARM
executables. For ESs, these rules are collected under the ARM Embedded Appli-
cation Binary Interface (EABI). However, since the comprehension of the next
chapter does not need such extensive knowledge, the attention can be solely focused
on the ARM Architecture Procedure Call Standard (AAPCS). This is a part of
the EABI that defines conventions on registers and stack usage, which must be
respected by compilers and routine calls to guarantee the correct execution of a
program. Key concepts are the relation between stack organization and function
calls and the classification of registers in three functional groups: argument or
caller-saved, callee-saved, and special registers. In particular, the rules related to
memory organization specify the layout of data in memory and argument registers
for function parameters, and that 64-bit types must be aligned to 8-byte boundaries.
More details are discussed in the ARM Cortex-A Series Programmer’s Guide [6,
ch. 15].

2.3.2 Memory Management Unit

An MMU is a hardware unit that acts as an interface between the processor and
the memory system to manage memory accesses. This task is primarily fulfilled
by denying illegal memory operations and translating the virtual addresses from
the processor domain into physical addresses, which are used to access memory
locations. For these reasons, the MMU can operate in conjunction with various
levels of cache (e.g., Level 1 (L1) and L2), other than external memory. The MMU
integrated in the CA9 is compatible with the Virtual Memory System Architecture
version 7; therefore, it supports a variety of features, as described in the ARM
Architecture Reference Manual (ARMvT7-A) [8].

To understand the configuration of an MMU in an SMP system, examining how
the address translation is performed is essential. However, the project developed
in this thesis uses a 1:1 mapping, so there is no distinction between virtual and
physical addresses. The process is based on hardware structures, called translation
tables or page tables, which host a series of entries whose primary function is to
transform a virtual address into a physical address. Attributes related to memory
sections and access permissions are also encoded together. Each entry refers to a
portion of the system’s memory, but the actual size of such a block, also called
page, depends on the specific architecture. This parameter is critical, since the
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correct sizing can drastically influence the performance of memory accesses. The
CA9 MMU supports 4 kB, 64 kB, 1 MB, and 16 MB pages, as well as two-levels
page tables.

Memory types and attributes are concepts strictly tied to the managed memory
section of a memory map [8, sec. A3.5] [4, pp. 59-62]. Three mutually exclusive
memory types exist: Normal, Device, and Strongly-ordered. Memory that stores
data and programs (e.g., DRAM, SRAM, ROM, and flash) is generally marked
as Normal. Differently, I/O peripherals are tagged as Device or Strongly-ordered
memory because they need to comply with more restrictive access rules. The
"shareability" and "cacheability" attributes also affect the memory access order of
the types that define them. The former divides the system into different domains,
each with specific features related to the predictability and coherence of the memory
operations. In the Zyng-7000 SoC, the inner shareable domain ensures coherency
between the CA9 L1 caches. In contrast, the outer shareable domain provides
the exact property to CPU, L2 cache, and other peripherals (e.g., direct memory
access) which may access a shared memory. Cacheability is somewhat linked to
shareability, since it allows to control the coherency of observers that are not part
of the shareability domain of a memory region. In the Zyng-7000 SoC, memory
regions marked as inner cacheable can be fetched in both L1 and L2 cache, while
the ones tagged as outer cacheable can reach only the L2 cache.

2.3.3 Exclusive Access

As explained in Section 2.1, SMP systems require a non-negligible software de-
velopment effort. Hardware cannot always guarantee the functional correctness
of application-level logic, which typically follows a hardware-independent design
model. A concurrent access to the same resource by multiple CUs defines a region
of code referred to as critical section and is a primary example of this concept.

The solution to such an issue is mutual exclusion. However, while in single-
core systems mutual exclusion can often be achieved by disabling interrupts, in a
multi-core device this is not possible because other CUs might still use the shared
resource. Instead, these systems resort to hardware-software mechanisms named
spinlocks.

ARMvT7-A provides three basic instructions to implement mutual exclusion:
LDREX (Load-Exclusive), STREX (Store-Exclusive), and CLREX (Clear-Exclu-
sive). These primitives rely on the ability of exclusive access monitors to track the
accessed memory addresses. Furthermore, the specific monitor used in a particular
scenario depends on the shareability attribute that marks the tagged address.
Non-shareable memory regions are only tracked with the local monitor of a core,
while shareable sections are additionally checked by a global monitor, which also
considers other observers’ activity in the shareability domain. Monitors can assume
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either the "open access" or the "exclusive access' state and can transition between
these states in response to exclusive access instructions. The CA9 includes a local
monitor in each L1 cache [9, ch. 7, p. 8], whereas the presence of a global monitor
is never explicitly mentioned. This is consistent with the possibility of integrating
both local and global monitors into a single unit [8, ch. A3, p. 116]. Furthermore,
the Zyng-7000 SoC provides two additional monitors in the DDR Controller [4,
pp. 142-145].

LDREX performs a load and tags the address in the exclusive monitor, while
STREX conditionally executes a store when the location is marked as exclusively
monitored by the core. Therefore, LDREX and STREX must be used as a pair.
CLREX clears the state of a monitor; thus, it can be employed to ensure that an
STREX-LDREX pair does not depend on the result of previous exclusive accesses.
Naturally, the behavior of these instructions and their variants is slightly different
depending on the shareability attribute of the target memory. Moreover, the
number of bits for a tag is implementation-defined, but always limited between 29
and 21 bits. The size of the tagged memory block, known as Exclusives Reservation
Granule, is equal to 8 words, aligned on an 8-word boundary, for the CA9 [9, ch. 7,
p. 8], and can be retrieved in the CP15 Cache Type Register (c0) [8, sec. B4.1.42]
as log, ERG.

Further information on the topic can be retrieved from the ARM documentation
[6, sec. 18.8] [8, sec. A3.4.1-A3.4.5].

2.3.4 Global and Private Timers

Hardware timers are essential components that enable designers to implement
time-related functions in their applications. The CA9 integrates a private timer
and watchdog block per core, in addition to a global timer accessible by all cores.
The private timers and watchdogs are 32-bit decrementing counters capable of
generating interrupts when the count reaches zero. The counting mode is set to
single-shot or auto-reload, and both prescaler and initial value can be configured
via software. In contrast, the global timer is a 64-bit incrementing counter, split
into two separately accessed 32-bit registers, that can generate interrupts with an
interval shorter than its counting period. Although the global timer is shared, the
registers to configure this feature are banked, making the interrupt private to each
core. All these modules are clocked by the PERIPHCLK signal, which corresponds
to half the CPU frequency on the Zyng-7000 SoC [4, p. 245]. More details on the
timers’ registers can be found on the CA9 MPCore TMR [10, ch. 4].
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2.4 FreeRTOS

FreeRTOS is a market-leading open-source RTOS developed by Real Time Engineers
Ltd., now maintained by Amazon Web Services as part of the AWS FreeRTOS
project [11]. It stands out from other competitors (e.g., ThreadX and Zephyr)
thanks to its small memory footprint and simplicity without giving up the numerous
features of the kernel. This is reflected by the variety of supported task scheduling
strategies (preemptive, cooperative, and hybrid), inter-task communication (queues,
task-notifications, event groups, stream, and message buffers), and synchronization
primitives (mutexes and semaphores). Reliable time-sensitive applications can be
implemented thanks to the deterministic real-time scheduler, the software timer
Application Programming Interface (API), and the deferred interrupt handling, all
while maintaining a low power consumption in tickless idle mode. The memory
management is highly flexible, providing both static and dynamic approaches. This
allows various design choices tailored to the specific application and target device.

FreeRTOS features a layered architecture, which separates hardware-dependent
components, commonly referred to as port layer or port, from hardware-independent
code. Combined with its well-structured design, it helps the kernel to be highly
portable and support a broad range of architectures: ARM Cortex-M/A /R, RISC-V,
and many others.

FreeRTOS is mainly present in Internet of things, industrial automation, and
automotive domains where real-time performance and reliability are essential. Its
adoption is backed up by many libraries, which extend the basic functions of
the kernel (FreeRTOS-Plus) and allow a deep integration with the AWS cloud
environment.

2.4.1 Symmetric Multiprocessing in FreeRTOS

Since 2003, FreeRTOS has been developed as a single-core RTOS. This was reason-
able in the project’s early days because ESs were not equipped with symmetric CUs.
However, AMP still enabled to achieve a certain degree of MP in the developed sys-
tems. Following the design improvements in the embedded domain, FreeRTOS has
been upgraded to officially support SMP in its kernel. Therefore, starting from ver-
sion 11.0.0, along with the options already available, the FreeRTOS configuration file
FreeRTOSConfig.h also provides SMP-related macros: configNUMBER_OF CORES,
configRUN_MULTIPLE PRIORITIES, configUSE_CORE_AFFINITY, etc.

The design of the new features is coherent with the description of SMP provided
in Section 2.1, but it also integrates some additional options, as hinted by the
names of the listed macros. In fact, while the traditional definition of SMP implies
that each core can execute every task, FreeRTOS can be configured to bind some
tasks to specific cores or, if preemptive scheduling is active, to prevent tasks with
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different priorities from running on multiple cores simultaneously. Furthermore,
the SMP kernel enables individual tasks to be configured either in preemptive or
cooperative mode, leading to hybrid forms of MP even within a symmetric set of
CUs. Although the listed features introduce some variations to the original concept
of SMP, they are not uncommon in modern OSs. In the context of ESs, they are
instrumental when an application is migrated from a single-core to a multi-core
environment because they allow the restriction of the software-level symmetry.

The FreeRTOS ports that have already been upgraded to integrate SMP are
located in the portable/ThirdParty/ directory of the FreeRTOS-Kernel reposi-
tory [12]. However, these ports are not always developed by the FreeRTOS team,
as partners and community members can also undergo the contribution process.
Among the available ports, the most notable are the XCORE AI and Raspberry Pi
Pico (FreeRTOS Team Supported), the Texas Instruments Cortex-A53 (Partner
Supported), and the Zynq UltraScale+ MPSoC Cortex-A53 (Community Sup-
ported).

Despite the popularity of FreeRTOS and the significant potential of using SMP
in embedded devices that support it, the number of ports that implement this
form of MP remains limited. Many factors contribute to the problem, such as
limited documentation, the required development effort, and the availability of
more mature alternatives (e.g., Zephyr).

About the documentation, aside from the numerous individual posts on the
FreeRTOS forum, the two primary sources of information are the XMOS SMP
design guide [13] and a popular thread discussing the Cortex-A53 SMP port [14].
It is important to note that these resources contain conflicting guidelines due to
the evolution of some constraints over time. The forum post should be trusted in
such cases, as it is more recent than the design document.

2.4.2 FreeRTOS on ARM Cortex-A9

The FreeRTOS documentation provides a dedicated page to illustrate the charac-
teristics of the CA9 port for devices that incorporate a GIC [15]. The most relevant
features of this port are the hardware FP support and the implementation of the
interrupt nesting model.

The context-switch logic can be configured to save the FP registers for all tasks
or only when explicitly enabled by calling vPortTaskUsesFPU() within a task.
Furthermore, FP operations cannot be used by default inside interrupt handlers.
This functionality must be manually set up by modifying the FreeRTOS handler
associated with the IRQ exception in the vector table (FreeRTOS_IRQ_Handler),
so that vApplicationFPUSafeIRQHandler is called instead of vApplicationIRQ-
Handler. Additionally, care must be taken to avoid the usage of functions such
as memcpy () and memset (), as well as any FreeRTOS API that may rely on them
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(e.g., xQueueSend()), inside both tasks and interrupt handlers. In fact, compilers
may exploit FP registers to optimize these functions. The kernel also enables the
definition of a maximum priority that allows interrupts to call faster interrupt-safe
APIs, whose name ends with fromISR.

The implementation of nested interrupt handling is analyzed in Section B.6,
while further details on the configuration and customization of the CA9 port can
be found in the FreeRTOS documentation [15].

2.5 Development Tools

The development of modern applications for ESs often requires the assistance of
an environment that automates and simplifies some steps of the design flow. Being
equipped with both a PS and a PL, Xilinx devices are no exception to this rule,
as they require a hardware-software co-design platform. Moreover, in case the
application is designed to run with the support of an OS, debugging it becomes
challenging, especially if the software is executed on multiple CUs. In this scenario,
an additional OS-aware trace tool may be needed to capture the application’s
behavior at runtime.

2.5.1 Hardware-Software Design Platforms

Vitis and Vivado are development platforms that support the design and imple-
mentation of hardware and software designs on Xilinx FPGAs and SoCs.

Vivado offers a comprehensive tool suite covering the entire hardware devel-
opment workflow. The design begins with the description of a circuit using an
Hardware Description Language (HDL), such as Verilog and VHDL, or by connect-
ing various intellectual properties and custom blocks, which Vivado can group into
an HDL wrapper. The flow proceeds through synthesis, place, and route, which
can be automated to streamline the design iterations. In the end, a bitstream
is generated before programming the target FPGA or exporting the generated
hardware.

Vitis is a software platform that provides end users with several tools to integrate
their designs on Xilinx devices. To start building an application, a target system
must be selected to create a Board Support Package (BSP). Vitis comes with
various predefined devices, but it is also possible to create and import one from
Vivado. An application can then be developed in bare metal or on top of an OS,
as both FreeRTOS and Linux are supported. The designed software can finally be
cross-compiled, using one of the preinstalled toolchains, and debugged, resorting
to GDB or the Eclipse TCF Agent. Vitis also handles deployment by loading the
produced binary on the PS and programming the PL with a bitstream.

Figure 2.3 visually represents the aforementioned co-design flow.
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Figure 2.3: Hardware-software design flow
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2.5.2 Xilinx Software Libraries

Most of the software components that power the design experience offered by Vitis
are sourced from the Xilinx "embeddedsw" software library [16]. This open-source
repository contains a collection of libraries and drivers that provide essential code
to build BSPs and ease the interaction with various hardware modules.

The BSP configuration changes according to the available hardware and the
abstraction level of the designed application. When the latter aspect is considered,
the most relevant packages for the scope of this work are the "standalone" and
"FreeRTOS" BSPs. The standalone BSP is a low-level software library exploited in
bare-metal designs to manage the PS and its hardware modules (e.g., caches and
timers). On the other hand, the latest version of the Xilinx FreeRTOS BSP includes
both the APIs of the standalone BSP and the features of release 10.6.1 of the
FreeRTOS kernel [12, tag V10.6. 1], adequately adapted to the MPUs embedded
in the supplied SoCs.

The drivers included in the BSPs facilitate the interaction between the appli-
cation code and the modules in the PS. Obviously, each hardware unit is used to
an extent that depends on the characteristics of system and application. For this
reason, some modules have more optimized APIs (e.g., GIC and private timer)
while others may not even need a driver (e.g., ). Additionally, as explained in
Section 2.1, despite the presence of symmetric CUs, ESs are frequently configured
in single-core or AMP. This often leads designers to ignore issues strictly related
to SMP during the engineering of the driver.

The FreeRTOS portable code for the Zyng-7000 SoC uses substantially two
drivers: scugic and scutimer. The latter supports the CA9 private timers,
together with its features (e.g., hardware interrupts), whereas the former provides
an interface to interact with the GIC. Although it is not present in the hardware-
dependent layer, the ttcps driver is also relevant in this thesis, as it has been
employed in the test demo to control the TTC module.

ScuGic driver

This subsection details the design of the scugic driver, as a solid knowledge of
such library is essential to understand the design choices described in Subsection
3.4.2.

The scugic library is based on three main data structures, declared in xscu-
gic.h: XScuGic, XScuGic_Config and XScuGic_VectorTableEntry. Each struc-
ture contains the preceding one as a member in the listed order. An XScuGic_-
Config instance stores information on the device managed by the driver. More
precisely, it holds the ID assigned to the GIC in the BSP, the base address of Dis-
tributor and CPU interface, and an array of XScuGic_VectorTableEntry, named
HandlerTable, which records the key-value pairs (Interrupt ID, Handler Address).
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The library allocates a single XScuGic_Config variable in xscugic_g.c, which is
referenced through a pointer whenever the GIC configuration is retrieved with a call
to XScuGic_LookupConfig(). The execution of this preliminary step is essential,
as the function XScuGic_CfgInitialize() assigns the XScuGic_Config#* pointer
to a XScuGic instance during its initialization. Once configured, each XScuGic
variable can be used by a core as an interface to interact with the selected GIC
through the scugic driver.

The library also includes logic to handle multi-core scenarios, since it defines
the internal variable Cpuld to identify the target core and guards the GIC shared
registers, which are part of the Distributor, using the spinlock API contained in
the standalone BSP.

Further information can be found in the library’s source code inside the directory
XilinxProcessorIPLib/drivers/scugic of the embeddedsw repository [16].

Xilinx spinlock API

The standalone BSP provides a simple spinlock for CA9 processors to deal with
critical sections in developed applications. However, the implementation is limited
to a single non-recursive spinlock, making it suitable primarily for Xilinx APIs that
can leverage it and for elemental bare-metal designs.

The library declares the internal variables Xil_Spinlock_Addr, which stores the
address of the spinlock, and Xil_Spinlock_Flag Addr, which holds the address
of the spinlock’s status. The flag is set to either XIL_SPINLOCK_ENABLED or 0,
depending on whether the lock has been initialized. Such action is performed
by calling Xil_InitializeSpinLock(), while to release a spinlock, the function
Xil_ReleaseSpinLock() is used. An important detail is that the lock and its
status can reside within the same 32-byte memory region because the flag is not
accessed using the exclusive operations described in Subsection 2.3.3.

After being initialized, the spinlock can be claimed with Xil_SpinLock() and
unlocked with Xil_SpinUnlock(). As the lock does not support recursive acquisi-
tions, it cannot be claimed multiple times by its owner; hence, a Xil_SpinLock()
must always be followed by a Xil_SpinUnlock().

For a more detailed description of the API’s usage, refer to the files 1ib/bsp/
standalone/src/arm/common/xil_spinlock.* provided with the Xilinx embed-
dedsw library [16].

2.5.3 Trace and Debug

Vitis provides native OS-aware debug options, but only Linux is entirely supported.
Nevertheless, FreeRTOS can be debugged by other means, as it integrates numerous
trace macros in the kernel that the user can selectively implement to extract
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relevant runtime information (e.g., context-switch actors). Furthermore, Percepio
Tracealyzer and its free version, Percepio View, can exploit these trace macros to
collect statistics during the execution of a program and analyze them through a
practical Graphical User Interface (GUT). More specifically, trace data is stored
inside a static buffer in either "Snapshot" or "Streaming" mode. Unfortunately,
Percepio View offers only a subset of the features available in Tracealyzer. Despite
its limitations, for the aims of this thesis, Percepio View has been revealed to be a
valuable tool for achieving observability in a system running FreeRTOS in SMP
mode.

Despite the availability of trace tools, debugging must also be supported by a
well-designed set of tests to be effective. FreeRTOS provides a variety of predefined
demos, each targeting a specific device, along with a template to create new
demos, respectively located under Demo/ and Demo/ThirdParty/Template in the
FreeRTOS Github repository [17].

21



Chapter 3

Implementation

This chapter details the process of porting the FreeRTOS kernel’s SMP support
to the Zyng-7000 SoC. The discussion begins with the setup of hardware and
software environments, followed by the analysis and update of the existing port for
Zyng-7000 SoC from version 10.6.1 to version 11.1.0 of the kernel. After this initial
phase, which focuses purely on the single-core functions, the implementation of
the SMP port is presented. More specifically, the description starts by explaining
the dual-core boot process of the Zyng-7000 SoC, immediately followed by the
multi-core configuration of FreeRTOS, to provide a complete picture of the CPU1’s
bring-up procedure. Ultimately, the main changes introduced in the port are
illustrated, before showing the debug tools and the demo application exploited to
validate the final implementation.

It is essential to underline that although this chapter includes some configuration
steps when the discussion requires them, its objective is to explain the design choices
behind the implementation of the SMP port and its test demo. Detailed guides to
achieve functioning projects based on the Zynq-7000 SMP port [18] and the related
test demo [19] can be found in the README.md files published on the "FreeRTOS
Community Supported" repositories.

3.1 Development Environment

The hardware provided for developing the FreeRTOS SMP port is a TUL PYNQ-Z2,
which integrates a Zyng-7020 SoC. As discussed in Section 2.2, this chip is part of
the Zyng-7000 series and is equipped with a dual-core ARM CA9.

As for the development platforms, general concepts about the tools adopted
to manage the hardware and software layers, which serve as the foundation of
the entire project, have been introduced in Section 2.5. The specific version used
for both Vitis and Vivado is 2021.1, as it is more lightweight than newer releases
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but still provides the needed development features. However, concerning Vitis,
the "Classic" edition does not integrate the System Device Tree (SDT) flow as
the "Unified" one. Consequently, the parts that support the SDT flow have not
been upgraded with the rest of the single-core port and are thus overlooked in the
following discussion. Furthermore, Vitis uses a version of the embeddedsw library
aligned to its release. This introduces the risk of working with outdated BSPs
and drivers. The release tagged xilinx_v2024.1 [16] was preferred to address
this issue. Compared to the library bundled with Vitis 2021.1, the standalone
BSP contains more useful drivers to interact with the Zyng-7000 SoC and fixes for
specific CA9 operations.

Creating a hardware design for the PYNQ-Z2 in Vivado is thoroughly docu-
mented online [20]. It is therefore not presented here, as it does not influence any
of the topics discussed in this thesis. For reference, Figure 3.1 shows the minimal
set of hardware modules required to work with the PS. The generation of Platform
Project (PP) and Application Project (AP) in Vitis is omitted as well, as this
process is documented both in the README.md file provided with the SMP port
[18] and in the official Vitis manual [21, pp. 24-69]. Nevertheless, it should be
underlined that FreeRTOS is included as an external resource in an AP based on
the standalone BSP. This choice stems from the impossibility of integrating BSPs
with custom names and structures into the Vitis GUI without editing its back-end
scripts. In conclusion, the cross-compilation is handled using the arm-none-eabi
toolchain shipped with Vitis, so, unless explicitly stated, it is implied that the
referenced FreeRTOS ports are compiled with version 10.2.0 of the GNU compiler
(GCCQC) [22].
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3.2 FreeRTOS Port Update

Updating the official FreeRTOS BSP for Zyng-7000 SoCs requires modifying the
hardware-dependent layer. Considering that, as stated in Subsection 2.5.2, the
latest available release of the Xilinx FreeRTOS BSP is based on version 10.6.1 of
the kernel [12, tag V10.6.1], the official CA9 portable files of such version have
been compared with the portable layer of the FreeRTOS BSP to discover potential
differences. The analysis led to a better understanding of the changes performed
on the basic CA9 port to adapt it to the Zyng-7000 SoC and on the degree of
integration the BSP has with the Vitis back-end. The most notable aspects are
listed below, grouped by file:

e port.c implements the port functions that interface FreeRTOS with the
host hardware. Compared to the CA9 template in the original kernel, the
management of the runtime statistics, enabled by setting configGENERATE -
RUN_TIME_STATS to 1, is embedded in the port layer and causes the system tick
to be generated ten times faster. Furthermore, additional functions have been
defined to ease the interrupt management in the application code, preventing
the direct usage of xInterruptController, the driver’s instance used to
configure the GIC. Finally, prvTaskExitError, assigned to configTASK -
RETURN_ADDRESS inside FreeRTOSConfig.h, has been redefined to terminate
a task instead of triggering an assertion when it attempts to return.

o portmacro.h defines macros employed across the entire portable layer. In
the FreeRTOS BSP, they have been moved in FreeRT0SConfig.h to better
integrate the FreeRTOS configuration into the Vitis GUIL

The BSP is also supplied with two auxiliary files, which ease the setup steps
needed by FreeRTOS to correctly interact with both the Zyng-7000 SoC and the
user-defined application:

e portZynq7000.c provides the application interrupt handler vApplication-
IRQHandler, the functions used to set up the interrupt that periodically
invokes the scheduler, referred to as "system tick" or "SysTick", and a weak
definition of the FreeRTOS hooks to prevent possible linker errors.

o port_asm_vectors.S overrides the definition of the CA9 vector table and of
the exception handlers provided by the standalone BSP file asm_vectors.S.
Even though vector_table is defined multiple times, the linker does not
produce any error and resolves the symbol to the one in port_asm_vectors.S.
Moreover, both files are linked inside the executable, as the handlers in
port_asm_vectors.S wrap the ones in asm_vectors.S. The function vPort-
InstallFreeRTOSVectorTable is still present in port_asm_vectors.S to set
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the Vector Base Address Register to the correct address, but it is not used in
the current port.

The FreeRTOS configuration file FreeRTOSConfig.h has been analyzed alongside
the port layer because, as explained before, its generation is deeply integrated in
the Vitis environment. Unfortunately, FreeRTOS 10.6.1 did not include a template
to perform a proper comparison. Moreover, the back-end script that manages
FreeRTOSConfig.h selectively includes definitions according to the features enabled
in the BSP configuration. Therefore, the template located under examples/
template_configuration in the FreeRTOS-Kernel repository [12, tag V11.1.0]
has been preferred over the configuration file provided in the FreeRTOS BSP as a
starting point for future applications.

Updating the port to version 11.1.0 did not require any particular effort, since
the basic functions needed to execute FreeRTOS in single-core remained consistent
across the two releases. The only significant contributions have been the relocation of
some macros from the BSP FreeRT0SConfig.h to portmacro.h and the addition of
vApplicationDaemonTaskStartupHook inside portZynq7000.c. The SoC-specific
sections of FreeRTOSConfig.h have also been added at the end of the template.

3.3 Secondary Core Bring-up Procedure

This section presents the steps required to boot the dual-core CA9 embedded in the
Zyng-7000 SoC. The parts concerning the Xilinx BSP and FreeRTOS are discussed
separately to improve the clarity.

3.3.1 Dual-Core Boot on the Zyng-7000 SoC

The PS’s boot process, presented in broad terms in Subsection 2.2.1, needs to be
discussed in more detail, since understanding the role of each core is essential to
achieve a multi-core boot.

In a dual-core Zyng-7000 SoC, the BootROM code begins at address 0x0 on
both cores [4, pp. 151-152]. Nevertheless, while CPUQ performs the boot procedure,
CPU1 parks itself in a low-power state using the Wait For Event (WFE) instruction.
Therefore, to start executing code on CPU1 after the stage-0 boot, it is necessary
to write the application’s entry point at address OxFFFFFFF0 and awaken the
core with a Send Event (SEV) instruction [4, p. 160]. As a safety measure, even
if a SEV is mistakenly issued before the content of OxFFFFFFFO is overwritten,
CPU1 remains blocked in the same section of code. Section B.2 provides more
details in this regard.

After the FSBL hands off control to the bare-metal application, the standalone
BSP code in boot.S is executed by the core domain selected during the creation
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of the AP. For instance, choosing CPU1 as the AP domain leaves CPUQ in a
low-power state. The second-stage boot sets up numerous modules of the APU
(e.g., SCU, cache, MMU, and processor registers) to initialize the primary core.
This procedure is outlined in the Zyng-7000 SoC TMR [4, p. 104] and in the ARM
Cortex-A Series Programmer’s Guide [6, ch. 13, p. 2]. From now on, APs will
have CPUO as a domain, unless specified otherwise.

The primary core’s setup sequence in boot .S contains sections of code that ease
the configuration of the APU in SMP, even though, by default, the standalone BSP
can exploit only one core. In particular, the primary core is set in SMP mode and
the MMU can be configured to coherently access memory with multiple symmetric
cores by defining the preprocessor directive SHAREABLE_DDR.

To achieve coherency at the core level, the developed SMP system must properly
set the DDR memory’s attributes in the MMU, since it is the only external memory
accessed by both cores. As hinted in Subsection 2.3.2, this can be done by tagging
as "shareable" the page table entries that perform address translation for the DDR.
Failing to do so forces to manage coherency with explicit software operations [6,
ch. 10, pp. 4-5]. Enabling the S bit of an MMU descriptor is a necessary step [4,
ch. 3, p. 74], but it is not enough to achieve memory coherency, as the cores need
to actively participate in the process by informing the SCU. For this reason, they
have to set the SMP bit in the Auxiliary Control Register [9, ch. 4, pp. 27-29].
Listings B.3 and B.4 show the relevant code in boot.S, while Section B.3 further
analyzes the DDR configuration inside the MMU.

At the end of the bare-metal boot, the execution proceeds with the C startup
code in xil-crt0.s, where the application is finally started. The FreeRTOS
documentation on CA9-based systems [15] suggests calling the main() function in
supervisor mode, but the processor mode is set to system mode.

The boot process provided by the standalone BSP concludes with CPU1 stuck in
WFE and, by default, the code to manage the wake-up mechanism of the secondary
core is not implemented in bare metal. Using the FreeRTOS BSP, the result would
be the same, since, as described in Subsection 2.5.2, the library is based on the
standalone BSP. It is possible to unlock a domain that configures the CA9 APU
in SMP mode without user intervention, but it is required to select the Linux OS
during the creation of a PP.

The only way to wake up CPU1 with the adopted AP structure is to follow
the steps mentioned earlier in this subsection. However, since the FreeRTOS
scheduler must be started inside xPortStartScheduler() on all the cores that
run the application [13, p. 2], it does not make sense to wake up CPU1 in any
of the BSP files. This consideration aligns with a key decision that will influence
many design choices: to modify and exploit the BSP code as little as possible to
minimize the effort required to execute the port on future BSP releases. The new
port file smpPortZynq7000.S implements the process to boot CPU1 along with
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other functions required to operate in SMP.

3.3.2 Secondary Core Setup in FreeRTOS

The FreeRTOS kernel provides vTaskStartScheduler() to start the scheduler
after configuring the application inside the main() function. This API initializes
several kernel objects (e.g., idle task) and ultimately calls xPortStartScheduler (),
which performs architecture-specific steps before restoring the context of the first
task. However, as explained in Section 2.1, when SMP is adopted, the symmetry
that characterizes this MP paradigm does not inherently apply to the entire kernel
structure. Therefore, in FreeRTOS, the setup of the primary core differs from that
of the secondary cores, as observed in Subsection 3.4.1.

Nevertheless, in SMP mode, xPortStartScheduler () must start the scheduler
on all the available cores. In the Zyng-7000 SoC SMP port, the wake-up process
of the secondary core begins with a call to vPortLaunchSecondaryCore, whose
code is reported in Listing 3.1 for clarity. In this function, CPUO stores the entry
point of CPU1 at address OxFFFFFFF0 and then manually cleans the dirty line of
its L1 data cache to prevent the presence of stale data in CPU1’s L1 data cache.
As a result, since DDR addresses are marked with a write-back cache policy and
CPU1 did not take part in hardware coherency yet, the memory views of the two
cores differ. The cache line is cleaned by explicitly writing to the CP15 because
the DCCMVAC pseudo-instruction [8, ch. B3, p. 1491] is not supported by the
assembler. Moreover, as stated in Subsection 2.3.1, PoC and PoU are equivalent
for the CA9, since the cache maintenance operations end in L2 cache or, in case
it was inactive, in main memory. The instruction is guarded with two DSBs; the
first makes sure that all prior operations are complete before proceeding, while
the second forces the line clean to conclude before the execution of SEV. No other
barrier is required in this case, as DMB only constraints the ordering of memory
instructions without guaranteeing their completion [23], and ISB does not affect
the visibility of data [8, ch. A3, pp. 148-152].

In the second part of vPortLaunchSecondaryCore, CPUO continuously polls
the shared variable ulSecondaryCoreAwakeConst to determine when it can stop
issuing SEV instructions. The variable is updated once CPU1 has been completely
configured, so the primary core does not start executing the application before the
secondary core is ready. Alternative designs for the code are possible, as explained
in Section B.4.

The entry point of CPUT1 is the address associated with the symbol _boot_corel.
This label is defined in smpPortZynq7000.S and marks the beginning of a section
of code that replicates the boot of the primary core in boot .S, following the ARM’s
guidelines [24, ch. 5, pp. 10-11]. Naturally, the initialization procedures for the
SCU and L2 cache are skipped, as they are shared resources. Another substantial
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.type vPortLaunchSecondaryCore, %function

vPortLaunchSecondaryCore:

/* Write the start address of CPU1 */

mov 10, #CORE1l_START_VECTOR

1ldr r1, =_boot_corel
str r1, [r0]
dsb

mcr pl5, 0, r0, c7, cl10, 1 /* Clean address to PoC */

dsb

/* Wake up CPUl and wait for it to be ready */

ldr r2, ulSecondaryCoreAwakeConst

pollForCore:
sev
ldr r1, [r2]
cmp rl, #0

beq pollForCore

bx 1lr

Listing 3.1: CPU1 wake-up process
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distinction can be observed in the definition of the labels that identify the processor
mode stacks, as they are different from the ones used in boot.S. This is necessary
because both cores operate concurrently, so the stack would be corrupted if they
happened to be in the same processor mode simultaneously. For this reason, the
linker script lscript.1ld, which is automatically generated during the creation of
an AP, has been modified to allocate .stackl. This additional memory section
hosts the processor modes’ stack of CPUL. In the entire project, this is the only
scenario in which the user is obliged to substitute or modify a BSP file.

After the initial boot phase, CPU1 must be properly set up to work under
FreeRTOS. Therefore, before signaling to CPUO that the core is ready to execute
the application, CPU1 configures the GIC interface by jumping to vPortInit-
CoreInterruptController (). This function is defined in portZynq7000.c and,
other than initializing the scugic driver instance of CPU1, links prvYieldCore-
Handler () to the SGI with number portSGI_ID. As explained in Subsection 2.2.2,
SGIs allow the cores connected to the GIC to communicate with each other. In
the FreeRTOS SMP port, this feature is exploited by defining the macro port-
YIELD CORE(x) as the scugic function XScuGic_SoftwarelIntr(); its objective
is to notify another core that it needs to yield the task it is currently executing.
The operation is performed inside prvYieldCoreHandler () by setting the variable
ulPortYieldRequired[xCoreID] for the running core. Since this is a frequent
operation, one could consider integrating it in the FreeRTOS_IRQ_Handler, as
discussed in Section B.5.

Although the end of the code section that starts with _boot_corel features
several calls to C functions, no further action is needed to comply with the AAPCS,
since the stack pointer is always 8-byte aligned.

After the setup steps described in these sections, the scheduler can run on the
secondary core, so CPU1 can finally execute its first task.

3.4 Symmetric Multiprocessing Port Upgrade

The previous section discussed the bring-up procedure of the Zyng-7000 SoC’s
secondary core without investigating the improvements introduced in the FreeRTOS
port layer that enable this process. These changes are both numerous and diverse,
so only the most important ones are presented in the following subsections.

3.4.1 Primary Core Setup in FreeRTOS

Subsection 3.3.2 mentions that CPUO and CPU1 have different roles during the
startup of FreeRTOS. Still, it does not anticipate that the primary core executes
additional setup phases both in the hardware-dependent and independent layers.
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Nevertheless, the current discussion solely focuses on the port code, specifically on
the operations performed inside xPortStartScheduler().

In SMP, although the scheduler is started on all the available cores, a single core
must handle the system tick. This ensures the correct management of xTickCount,
the variable that tracks the number of OS ticks since the start of the scheduler, and
the FreeRTOS APIs that rely on it (e.g., vTaskDelay()). However, unlike in the
single-core port, the installation of the SysTick interrupt in FreeRT0S_SetupTick-
Interrupt () is not followed by restoring the first task’s context. Indeed, CPUO
enables the SGI that implements the inter-core communication. Nevertheless,
differently from CPUL, it calls vPortSetupYieldRequestHandler (), a function
defined in portZynq7000.c, since it already initialized its CPU interface before
configuring the system tick. After the previous step, the primary core checks if
the spinlock API presented in Subsection 2.5.2 is disabled and, eventually, sets
it up. At this point, as thoroughly described in Subsection 3.3.2, CPUO jumps
to vPortLaunchSecondaryCore() and starts executing its first task, once CPU1
finishes its boot sequence.

3.4.2 Multi-core Interrupt Management

The hardware-dependent layer handles the interaction between cores and GIC
through the scugic driver, whose functioning is mostly described in Subsection
2.5.2. Nevertheless, its usage has not been flawless, since, even though multiple
cores are supported, the driver’s design is not SMP-oriented.

Subsection 2.2.2 states that the registers of the CPU interfaces are banked;
hence, in principle, a single XScuGic instance could be used to set up both cores.
However, upon its first call, XScuGic_CfgInitialize() configures the passed XScu-
Gic instance so that it cannot be used to initialize more CPU interfaces. While it
would technically be possible to overcome this limitation by manually modifying
the IsReady field, this approach has been discarded to avoid potential issues in
future library versions. Instead, the two-element array xInterruptControllers|[-
configNUMBER_OF_CORES] has been used to allocate a separate XScuGic variable
per core.

Another substantial limitation lies in the interrupt handlers’” management be-
cause, although an XScuGic instance is assigned to each core, different cores cannot
have different handlers associated with the same interrupt ID. As already explained
in Subsection 2.5.2, the driver only defines a single XScuGic_Config variable, thus
a single HandlerTable. Addressing this issue would require modifying the scu-
gic library or directly manipulating its variables in the port code. To preserve
compatibility, the design has been adapted to follow the current structure of the
driver. For this reason, the interrupt handling in the SMP port complies with the
following rules:
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o A single handler must service an interrupt on all the cores that enable it, no
matter the interrupt type (i.e. SPI, PPI or SGI).

o After an interrupt handler is installed using XScuGic_Connect (), no call
to XScuGic _Disconnect() or XScuGic Connect() with another handler as
argument must be performed as long as at least one core needs the handler
associated with that interrupt.

These rules prevent to incur in some of the limitations of the scugic driver.
Still, when multiple cores interleave in the usage of the library, further precautions
are needed due to the internal management of Cpuld. Supposing the hardware
has version 1.0 of the GIC, like the Zyng-7000 SoC, the driver assigns the value
returned by XGetCoreId() (i.e., the running core) to Cpuld only at the beginning
of XScuGic_CfgInitialize(); all other functions that use this variable never
evaluate again the active core number. While this is not an issue for PPIs and SGIs,
enabling or disabling an SPI on a certain core is not safe by default. Therefore, it
is advised to check the value of Cpuld with XScuGic_GetCpuID() and eventually
change it with XScuGic_SetCpuID(). Specifically, the functions that require this
measure are XScuGic_Enable, XScuGic_Disable, and XScuGic_Stop.

Even though the driver’s design does not easily allow to manage SPIs, the
configuration of these interrupts is flexible due to their nature. Since SPIs are
shared among all cores, if a core enables one of such interrupts, the corresponding
bit in the Distributor Interrupt Set-Enable Register [25, sec. 4.3.5] is observed by
other cores too. The same applies to similar Distributor registers (e.g., Set-Pending
Register, Clear-Pending Register). However, an SPI is forwarded only to the CPU
interfaces of the cores selected as targets in one of the Interrupt Processor Targets
Registers [25, sec. 4.3.11]. Therefore, every core can configure an SPI for any
other core. Considering the behavior of CpuId described in the previous paragraph,
an SPI can be enabled using the scugic driver by setting the target core with
XScuGic_SetCpulID() before calling XScuGic_Enable (), independently from the
running core.

Interrupt Management API for Applications

The application-level API provided to handle interrupts when FreeRTOS is config-
ured in SMP is different from the single-core API included in the official Xilinx
release. Although the interactions with the scugic driver are still completely
managed through the API, the redundant checks on the XScuGic instance have
been removed, and the various operations have been split into multiple functions
to improve flexibility. Therefore, users need to manually perform some setup steps,
which are hidden in the single-core API, but can also customize further their appli-
cations. For example, vPortConfigureInterrupt () allows to configure sensitivity
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and priority for a certain interrupt and vInitialiseInterruptController () en-
ables to initialize the XScuGic of the executing core without the need to install a
handler.

With regard to multi-core, the correct management of Cpuld is handled by
both vPortEnableInterrupt() and vPortDisableInterrupt(). Nevertheless,
the requirements imposed by the usage of the scugic library in SMP must be dealt
with by the applications, as enforcing those rules within the API would require
additional logic.

3.4.3 Recursive Spinlocks

FreeRTOS requires two recursive locks to coherently manage mutual exclusion
when operating in SMP, due to constraints imposed by the internal functioning of
the kernel [13, pp. 4-5]. Nevertheless, the spinlocks’ structure is the same; thus, a
single set of functions must be implemented to handle both the "ISR" and "Task"
locks. The spinlock mechanism provided in the FreeRTOS SMP port for the Zyng-
7000 SoC is based on the lock_t data structure and on the vPortGetLock() and
vPortReleaseLock() primitives, which respectively allow to acquire and release a
lock. Implementing these spinlocks heavily relies on the exclusive access features
detailed in Subsection 2.3.3.

lock_t is declared in portmacro.h and, as shown in Listing 3.2, it is composed
of two fields: ulLock and ulRecursionCount. The latter holds the number of
times its owner has recursively acquired the lock. At the same time, the former is
the actual lock, hence the memory location targeted by the exclusive accesses, and
stores the state of the spinlock. Its value can be either portCOREO (lock owned
by CPUO), portCORE1 (lock owned by CPU1) or portLOCK_FREE (lock free). The
ISR and Task locks are defined by the array xLocks [portLOCK_COUNT] and, since
the DDR memory’s attributes analyzed in Section B.3 are compatible with the
ones required to use the L1 cache monitors [4, pp. 142-143], the exclusive accesses
can correctly end both in L1 cache and DDR memory. Moreover, considering that
the elements of an array are allocated in subsequent memory locations, the GCC
attribute at line 22 could be optionally included to align each lock_t variable
to a 32-byte boundary. As the structure size is 8 bytes, such alignment ensures
that different locks are stored in memory regions identified by different tags in
an exclusive monitor. The final version of the SMP port does not implement
this feature because, despite the warnings in the ARM documentation [8, ch. A3,
p. 121}, several tests have demonstrated that the spinlocks are not affected by
starvation or livelock. Nevertheless, these conditions cannot be excluded a priori
in a system that relies on the spinlock API to handle additional recursive locks.

The functions to acquire and release a spinlock are provided in smpPortZynq-
7000.8, and while vPortReleaseLock() is implemented once, vPortGetLock()
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/ %%k port.c k%% /

/* Recursive ISR and TASK spinlocks */

volatile lock_t xLocks[portLOCK_COUNT] = { [0 ...

«» = {portLOCK_FREE, 0}};

/*** portmacro.h **x/

#define portCOREOD
#define portCORE1l

/* Lock macros */
#define portLOCK_COUNT

#define portISR_LOCK
#define portTASK_LOCK

/* The value of this macro has to be the same as the one

0ou

10

2U

0]
10

defined inside the assembly files. */

#define portLOCK_FREE

typedef struct{

uint32_t ullock /*__attribute__( (aligned(32)) )*/ ;
uint32_t ulRecursionCount;

} lock_t;

2U

Listing 3.2: Recursive locks variables and macros
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has two slightly different variants. Listing 3.4 reports only one of the avail-
able versions, but a user can choose between the two by properly setting the
macro configGET LOCK_VERSION in FreeRT0SConfig.h. Since they are hardware-
dependent, the primitives to handle the recursive locks are not directly manipulated
by the FreeRTOS kernel, but are hidden through the macros reported in Listing
3.3.

extern void vPortGetLock( volatile lock_t* xLockAddr );

1

2 extern void vPortReleaseLock( volatile lock_t* xLockAddr);

3 extern volatile lock_t xLocks [portLOCK_COUNT] ;

4

5 #define portGET_TASK_LOCK() vPortGetLock (&xLocks [portTASK_LOCK])
6 #define portGET_ISR_LOCK() vPortGetLock (&xLocks [portISR_LOCK])
7

#define portRELEASE_TASK_LOCK()
< vPortReleaseLock(&xLocks [portTASK_LOCK])
s #define portRELEASE_ISR_LOCK() vPortReleaseLock(&xLocks[portISR_LOCK])

Listing 3.3: FreeRTOS spinlock interface

vPortGetLock() is called with a single argument of type volatile lock_tx;
thus, according to the AAPCS, the address of the lock is passed in the scratch
register RO. The core ID is retrieved before entering the lock acquisition loop,
which starts at line 9. The instructions executed inside the loop are similar to
the basic example provided by ARM [8, ch. D7, p. 2446, but, since the lock can
assume three values, an additional branch operation is required. As the spinlock
supports recursive acquisitions, if the lock is not free, it is impossible to know which
core owns it without further testing the held value. Consequently, when the lock is
unavailable, the program jumps to line 30 to verify the lock’s ownership. If the value
stored in memory is equal to the ID of the running core, the execution proceeds by
claiming the lock once again; otherwise, the core remains stuck in the loop at line
35, waiting for the complete lock’s release. If the lock is free, the described branch
is not taken by any core that might be trying to acquire the lock until one of them
successfully executes the STREX instruction. Upon the acquisition of a lock, DMB
is issued to ensure the state of the lock is written in memory and the recursion count
is successively increased. Furthermore, when configTEST RECURSIVE_SPINLOCK
is set, vPortGetLock () includes some test code which can be used to catch errors
during the usage of the API.

1 vPortGetLock:
2 /* r0: lock address */
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/* Get core ID %/
mrc pl5, 0, r1, cO, cO, 5
and rl, r1, #AFF_MASK

/* Try to claim the lock */

tryLockLoop:

ldrex r2, [r0]
cmp r2, #portLOCK_FREE /* Check if the lock is free */
bne checkOwnership

strex r3, rl, [r0] /* Try to claim the lock */

cmp r3, #0 /* Check if the operation updated the memory (r2=0)
o x/

bne  trylLockLoop /* If not loop until one claimer gets the lock
o */

/* Ensures that all subsequent accesses are observed after the
gaining of the lock is observed. */

dmb
#if ( configTEST_RECURSIVE_SPINLOCK == 1 )
ldr  r2, [r0, #4]
cmp r2, #0 /* Recursive count == O when first acquired */
bne
#endif
b 1f
checkOwnership:
cmp r2, ri
beq 1f /* If the core owns the lock just reclaim it */
/* Continue to loop until the lock is free */
waitLockLoop:

ldrex r2, [rO]

cmp r2, #portLOCK_FREE
strexeq r3, ri, [rO]
cmpeq r3, #0

bne  waitLockLoop

/* Ensures that all subsequent accesses are observed after the

gaining of the lock is observed. */
dmb
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/* From now on shared data are protected from concurrent accesses.
[ */

#if ( configTEST_RECURSIVE_SPINLOCK == 1 )
1ldr r2, [r0, #4]
cmp r2, #2565 /* Recursive count < 255 when reclaimed */
bhs

#endif

/* Increase claim count */
ldr r2, [r0, #4]

add r2, r2, #1

str r2, [r0, #4]

bx 1r

Listing 3.4: Recursive spinlock acquisition function v1

vPortReleaseLock() is more aligned than vPortGetLock() to the example
code in the ARM documentation [8, ch. D7, p. 2446]; nevertheless, it still presents
some changes due to the recursive nature of the locks. The code in Listing 3.5 shows
that the lock is freed only if the recursion count has reached zero. Furthermore, the
barrier is placed before the STREX instruction to prevent the preceding memory
operations from being observed after the lock’s release.

3.5 FreeRTOS SMP Port Trace and Debug

The SMP port includes a configurable trace library that embeds the tools described
in Subsection 2.5.3 to ease the debugging of both hardware-dependent and in-
dependent components. However, while trace macros are more suited to debug
specific low-level issues, Percepio View offers tracing features that facilitate the
analysis of wide applications. Moreover, unlike the trace macros, Percepio View
must be properly set up both in the application code and library configuration files.
Detailed information on the matter is illustrated in the Percepio documentation
[26] [27] and in the "User manual" shipped with Percepio View.

Aside from some code in the portable layer, the API is entirely defined by the
files in the directory utility/ of the Zymqg-7000 SoC SMP port [18].
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1 .type vPortReleaselLock, Jfunction
2 vPortReleaselock:
3 /* r0: lock address *x/

s #if ( configTEST_RECURSIVE_SPINLOCK == 1 )

6 /* Get core ID x/

7 mrc p15, 0, r1, cO, cO, 5

8 and rl, r1, #AFF_MASK

9

10 ldr r2, [r0]

11 cmp rl, r2 /* Core ID == Lock owner ID */
12 bne . /* Error */

13

14 ldr r2, [r0, #4]

15 cmp r2, #0 /* Recursion count != 0 */
16 beq . /* Error */

17 #endif

18

19 /* Decrease the recursion count */

20 ldr r2, [r0, #4]

21 sub r2, r2, #1

22 str r2, [r0, #4]

23

24 cmp r2, #0

25

26 /* Allow all the previous memory operations to be observed
27 before releasing the lock */

28 dmb

29

30 /* Release the lock if all the claims have

31 been released */

32 moveq rl, #portLOCK_FREE

33 streq ril, [r0]

34

35 bx 1lr

Listing 3.5: Recursive spinlock release function
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3.5.1 Trace Macros

The debugging of the SMP features integrated in the port has been initially
aided by the trace macros scattered in the FreeRTOS kernel. A few of them
have been used, as they were the most suited to discover subtle implementation
errors: context-switch and recursive lock macros. The former appear in the code
as traceTASK_SWITCHED IN() and traceTASK_SWITCHED QUT(), while the latter
have been introduced in the port layer to test the locks at the kernel level. In
particular, tracing the activity of the locks required to wrap vPortGetLock()
and vPortReleaseLock() in the C function vPortRecursiveLock(), as well as
to redefine the spinlock macros presented in Subsection 3.4.3. Furthermore, the
context-switch macros have been implemented, so that two subsequent calls to
traceTASK_SWITCHED_IN() on the same core block the program in a loop. This
tweak has been crucial for finding a critical error in the port functions ulPortSet-
InterruptMask() and vPortClearInterruptMask() [28].

While the single-core usage of the trace macros is straightforward, the design
choices are not so immediate in multi-core, since the trace analysis can be either
static or dynamic, and the structures that store the collected data can be either
shared or dedicated. About these aspects, the SMP port instantiates a statically-
allocated circular buffer for each core, whose size can be configured by the user. This
solution has proven to be the most efficient, as it is not affected by the Universal
Asynchronous Receiver-Transmitter (UART)’s issue reported in Section B.1 and is
hence less invasive than dynamically transmitting data through a shared UART
peripheral [29]. Moreover, while creating a thread-safe xil_printf () function is
technically possible, doing so at the kernel level using the spinlock provided in the
standalone BSP or recursive spinlocks can lead to deadlock, since both APIs are
leveraged in the port layer.

3.5.2 Percepio View

Percepio View 4.10.3 has been a fundamental tool for performing offline analyses
of the tested applications’ behavior. However, tracing the activity of FreeRTOS
running on a CA9 configured in SMP has required significant changes to the
portable interface, as Percepio View does not natively support multi-core on CA9
processors. The necessary modifications are reported in a brief guide by Percepio
[30].

An essential step in the multi-core configuration of Percepio View is the definition
of the additional macros TRC_CFG_CORE_COUNT and TRC_CFG_GET_CURRENT_CORE()
in trcConfig.h. The former must be set to the same value of configNUMBER_OF _-
CORES, as it specifies the number of cores to trace, while the latter can be defined
as portGET_CORE_ID(), since it serves as API to retrieve the ID of the running
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core. TRC_CFG_HARDWARE PORT must also be defined as TRC_HARDWARE PORT_ARM -
CORTEX_A9 to include the portable code to work with the CA9. About trcKernel-
PortConfig.h, TRC_CFG_RECORDER_MODE and TRC_CFG_FREERTOS_VERSION have
to be respectively defined as TRC_RECORDER_MODE_STREAMING and TRC_FREERTOS -
VERSION_11 1 O to set the correct operating mode and FreeRTOS version. Only
Streaming mode is capable of operating in SMP because, other than being depre-
cated [27], Snapshot mode integrates fewer features [31] and cannot be configured
to trace multiple cores. The remaining settings are still important to customize
the runtime data collection, but they are not critical to understand the next steps.

To complete the configuration, it is possible to modify trcHardwarePort.c
and trcHardwarePort.h, the library files that handle the hardware-dependent op-
erations. trcHardwarePort.c requires adapting cortex_a9 _r5_enter_ critical
and cortex_a9 r5 exit critical to use the critical section handling primitives
provided in the SMP port, since their implementation is different from the single-
core version. On the other hand, while trcHardwarePort.h needs to change the
declaration of the functions modified in trcHardwarePort.c, it must also redefine
the timestamp-generation logic, as every traced core must be able to access the
used hardware timer [30]. The global timer has been the obvious choice for this
purpose because, as described in Subsection 2.3.4, it is embedded directly in the
CA9 and can be accessed by all the available cores. Although Xilinx provides a
way to access the counter register, a small library that further eases the config-
uration of the global timer and the setup function vTraceSetupGlobalTimer ()
have been developed respectively in gtimer.h and trace.c. More specifically,
the sequence of instructions implemented in vTraceSetupGlobalTimer () config-
ures the prescaler to zero to allow both the global timer and the private timers
to run at the same frequency, since, as explained in Subsection 2.3.4, they are
clocked with the same signal. Ultimately, configCPU_CLOCK_HZ must be defined
to XPAR_CPU_CORTEXA9 CORE_CLOCK_FREQ HZ / 2UL in FreeRTOSConfig.h to let
Percepio View know the clock frequency of the timer.

The changes described in this section are provided with the port in the Percepio
View 4.10.3 patch/ directory [18]. Furthermore, the configuration of Percepio
View for an application that uses the SMP port is shown in the main.c file of the
Zyng-7000 SoC test demo [19].

3.6 FreeRTOS SMP Port Test Demo

The upgrade of the FreeRTOS port for Zyng-7000 SoC has been debugged and
tested along its development using several ad hoc programs, which targeted specific
port functions without considering special scenarios (e.g., interrupt nesting) or in-
teracting in particular ways with the FreeRTOS features. Therefore, such programs
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have not been deemed sufficient to validate the port, requiring the adoption of a
comprehensive test suite.

The FreeRTOS repository [17] already includes a demo that targets the Zyng-
7000 SoC in the directory Demo/CORTEX_A9_Zynq_ ZC702. However, although the
demo integrates a complete set of tests, its template is outdated, and the target
board differs. Consequently, rather than adapting it to both the SMP port and
the TUL Pyng-Z2, a new test demo was developed using the template under
Demo/ThirdParty/Template. Nonetheless, the demo applications for the ZC702
Evaluation Kit and the Zynq UltraScale+ MPSoC (Demo/CORTEX_A53_64-bit_
UltraScale_MPSoC) have been used as a reference during the development.

Considering Demo/ThirdParty/Template as root directory, while the general
setup of the demo is common to all devices and is thoroughly described in
README.md, the implementation of IntQueueTimer.* and RegTests.* depends
on the target system. Specifically, the latter test contains the logic to verify the
correct preservation of the task context, while the former acts as an interface
between the hardware and the high-level code in IntQueue.c. This file, together
with the sources and headers respectively located in the Demo/Common/Minimal and
Demo/Common/include folders, provides the actual tests that are common to all the
demos created with the FreeRTOS template. Regarding its functioning, the demo
operates by setting up the test routines enabled in FreeRTOSConfig.h, as well as
the control task prvCheckTask(), before starting the scheduler. This is done with
a call to the vStartTests() function, which is defined in TestRunner.c. Such a
file contains the entire mechanism for starting the selected tests and periodically
monitoring their status, reporting eventual errors.

As for the test files to be implemented, the sequence of instructions to prove
the correct preservation of the tasks’ context is illustrated inside RegTests.c and
is not influenced by the number of cores. The test logic consists of filling the
general-purpose and FP registers with known values, before entering an infinite
loop until one register is corrupted. If this happens, the appropriate ulRegister-
TestXCounter is set and, when prvCheckTask() is resumed, the issue is reported
to the user. The test has been coded in the assembly file RegTest .S instead of
RegTests.c to exploit the greater controllability over the registers’ usage.

Implementing the nested interrupts’ test is more complex than the previous
one, since it combines the usage of the FreeRTOS queues with the nesting support
offered by the CA9. Moreover, due to its logic and the usage of port-level functions,
this test depends on the number of running cores. As for the other tests, the
setup is performed inside vStartTests () using vStartInterruptQueueTasks(),
which creates the kernel objects instantiated in IntQueue.c. Nevertheless, since
this function does not interact in any way with the portable layer, the configu-
ration is completed with a call to vInitialiseTimerForIntQueueTest() in the
higher-priority task "HIQRx". vInitialiseTimerForIntQueueTest() is defined

40



Implementation

in IntQueueTimer.c and its function is to set up the GIC and a TTC module to
properly manage the interrupts required for the test. However, while the configura-
tion of the T'TC is independent of the number of available cores, that of the GIC is
not, since, in the multi-core version, the issues of the scugic driver are addressed
through the API presented in Subsection 3.4.2. Regarding the configuration of
these units, the TTC is set up to generate three periodic interrupts: two with
comparable periods and one that fires ten times more frequently than the others.
Furthermore, the GIC is configured so that the two low-frequency interrupts can
safely use the FreeRTOS API, while the remaining one cannot, since it is assigned a
priority below configMAX_ API_CALL_INTERRUPT_PRIORITY. Such a setting allows
the interrupt not to be masked during the execution of critical sections, hence to be
leveraged to stress the implementation of FreeRTOS_IRQ_Handler (). Aside from
configuring their priorities, vInitialiseTimerForIntQueueTest () also associates
the interrupt to prvTimerHandler (). Each time the handler is invoked, it records
the maximum nesting depth and counts the number of times it is executed. Only
when a lower-frequency interrupt is serviced, it calls either xFirstTimerHandler ()
or xSecondTimerHandler (). prvTimerHandler() could also be used to test FP
operations in interrupt service routines; however, this feature has not been included
in the final demo. Section B.8 explains the reasons behind this choice and provides
useful insights on the usage of FP registers within interrupt handlers.

Although the described implementation is fully functional on the classic CA9
port, running in SMP mode requires some additional tweaks because the test
logic was initially developed for a single-core scenario. For example, even though
the TTC interrupts can be managed by multiple cores, simultaneously executing
xFirstTimerHandler () and xSecondTimerHandler() makes one of the tested
conditions fail, causing prvQueueAccessLogError() to flag an error. Enabling
other tests revealed that StreamBufferDemo.c and MessageBufferDemo. c are also
affected by similar issues.

After several hours of tracing, the flawed code sections were spotted and properly
fixed with solutions aimed at preserving the original single-core logic while avoiding
unnecessary assumptions about the tasks’ state. More specifically, the former
objective has been achieved by binding certain tasks to a single core and limiting
the kernel’s ability to concurrently execute tasks with different priorities. Additional
information about these solutions can be found in the README . md file within the test
demo repository [19]. Moreover, a detailed discussion of the errors in IntQueue.c
is available on the FreeRTOS forum [32].
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Results

As anticipated in Chapter 3, the Zyng-7000 SMP port for FreeRTOS [18] and its
test demo [19] are already available on the official FreeRTOS repositories. After its
release, the port has been upgraded to version 11.2.0 of the FreeRTOS kernel [12,
tag V11.2.0], but this process has not been documented, as it only required minor
changes.

To assess whether running FreeRTOS in SMP mode on the Zyng-7000 SoC brings
some advantages, it is possible to compare it to an equivalent AMP configuration.
For this purpose, a simple benchmark program has been created for both SMP
and AMP modes, as explained in Chapter C. More specifically, the application
uses version 11.2.0 of the FreeRTOS API to create two tasks and a queue, which
implement a producer-consumer scenario. The evaluation focuses on both the size
of the generated executables and the performance of the two MP configurations.

The size of the programs is shown in Table 4.1. While for SMP the measurements
correspond to a single executable, for AMP they incorporate the Executable and
Linkable Format files for both cores. Depending on the optimization flag, the
binary of the SMP program is on average 9% bigger than the equivalent binary
produced for a single core configured in AMP. Nevertheless, independently of the
optimization level, the SMP program has a smaller memory footprint than the
combined AMP binaries. The benchmark application reaches the maximum of
a 47% size reduction when the compilation is oriented to limit the executable’s
dimension (-0s flag). Therefore, the SMP configuration can more easily be stored
by memory-constrained systems.

Concerning performance, Tables 4.2 and 4.3 report the average execution timings
over ten samples of various test cases, which differ in the number of exchanged
items, queue size, and optimization flags. In AMP, each task is bound to a
core, whereas in SMP the scheduler freely performs the workload distribution.
The two MP configurations deliver similar performance, since, comparing the
best results for the 10k items scenario, the difference is a mere 4% in favor of
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SMP. Table 4.4 shows that this result could stem from the slight difference in
the programs’ setup time, caused by the longer execution of the main() in the
AMP configuration. Unfortunately, running in AMP with a queue size higher
than one creates synchronization issues. However, this limitation should not
significantly interfere with the proposed conclusions, since tasks can only gain a
minor performance improvement from having a larger queue. This is confirmed by
the results reported for SMP. Furthermore, increasing the number of exchanged
items does not yield new insights, as the execution time increases linearly regardless
of the adopted MP strategy.

When a third higher-priority task is introduced, the gap between AMP and
SMP becomes more evident. In this scenario, the SMP program delivers the items
from task "Tx" to task "Rx" up to 33% faster than AMP. Increasing the queue
size in AMP is only helpful if the producer can store items in the queue while the
consumer cannot receive them. If the bottleneck task shares the same core as the
producer, the queue size does not impact the final execution time. In contrast, the
SMP kernel can execute the high-priority task on one core and let the producer
and consumer run on the other. Therefore, the performance benefits from a bigger
queue, since each task can process more items in its execution slot. Limiting the
tasks’ schedulability (e.g., tasks with different priorities cannot run simultaneously)
inevitably reduces the performance.

Although the analysis in this chapter is based on a simple benchmark, it clearly
shows the advantages of using the FreeRTOS SMP port on the Zyng-7000 SoC.
Obviously, the numerical results are strictly tied to the considered application;
however, other aspects are also worth considering. As discussed in Appendix C,
the AMP setup is quite tricky and must be tailored to both a specific program and
a target system. On the other hand, in SMP, the memory layout, the kernel-level
synchronization on shared resources, and task scheduling can be managed entirely
by the OS. Therefore, portability and maintainability are improved, as designers
can develop applications without considering low-level details.
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Multiprocessing configuration Optimization Size (B)
-00 405438

Asymmetric Multiprocessing -03 378522
-Os 360430
-00 220711

Symmetric Multiprocessing -03 211475
-Os 196591

Table 4.1: Program size comparison

#Items Queue size Optimization Avg. Exec. Time (ms)
-0O0 33.4
10000 L -03 21.0
-Os 22.1
10 - -
_00 }
100000 1 03 92047
_Os }

Table 4.2: AMP benchmark execution times
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#Items Queue size  Optimization Avg. Exec. Time (ms)
-00 29.8
! -03 21.1
10000
-Os 20.5
10 -Os 20.2
100 -Os 20.1
-00 _
1000000 1 o3 ]
-Os 1983

Table 4.3: SMP benchmark execution times

MP Sampling Optimization  Avg. Exec. Time (ms)
start
main() -03 21.0
AMP
prvTxTask() -O3 21.6
main() -Os 20.5
SMP
prvTxTask() -Os 20.1

Table 4.4: Impact of benchmark program’s setup on the final execution time for
different MP configurations
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MP Queue size  Optimization Avg. Exec. Time (ms)
1 -03 30.9
AMP
10 - -
1 -Os 28.5
SMP 10 -Os 25.3
100 -Os 23.1
1000 -Os 23.0

Table 4.5: Benchmark execution time with 10000 items and additional high-
priority task
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Chapter 5
Conclusion

This thesis investigated the usage of SMP in applications based on an RTOS and
in embedded devices that support such MP paradigm.

The main point was understanding whether SMP could benefit the embedded
domain as it is in others. More specifically, the research aimed at verifying if SMP
could improve the design of MP applications even in older platforms, for which
AMP had historically been the obligated choice.

The thesis focused on porting the SMP support of FreeRTOS, a Real-Time
Operating System, on the Zyng-7000 SoC, an embedded platform that integrates a
dual-core processor.

The work started with the analysis of Xilinx’s development tools. This allowed us
to set up the hardware-software environment and to discover the available options
to integrate FreeRTOS in the existing software structure. The choice was to include
it as an external library in a bare-metal application to improve compatibility with
future versions of the tools.

After this preliminary phase, the existing FreeRTOS port for Zynq devices was
inspected, allowing us to familiarize ourselves with the FreeRTOS portable layer
and understand the changes introduced to the CA9 template available on the
FreeRTOS repository. Examining the port revealed that several device-specific
adjustments were necessary to adapt FreeRTOS to the Zyng-7000 SoC.

Subsequently, the required steps to boot the system in dual-core mode were
collected. While the BSP set up the primary core to work in SMP, no already
functioning driver was provided to wake up the secondary core. For this reason,
the bring-up procedure was completely implemented following the Zyng-7000 SoC
documentation. The instructions enabled waking up the secondary core from the
primary, allowing it to execute an initial configuration. Moreover, the bare-metal
environment was modified to allocate a dedicated memory section for the correct
execution of the secondary core.

The dual-core boot process was successively incorporated in the FreeRTOS
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portable layer. Nevertheless, further steps were added to initialize both cores to
ensure the FreeRTOS kernel could correctly control them. Therefore, the cores
were provided with a way to configure the GIC, to protect critical sections in the
Xilinx drivers, and to communicate with each other. A final call to the scheduler
was inserted to start it on all the available cores, as required by FreeRTOS.

Additional changes were introduced in the port layer to adapt it to handle the
execution of multiple cores, among all the implementation of the recursive locks.
An API was also included to allow users to manage application interruptions.

The porting process concluded with its validation using a test demo based on a
template provided on the FreeRTOS repository. However, the tests required some
changes, as they were developed for single-core scenarios.

In the final phase, a benchmark program assessed whether Symmetric Multipro-
cessing improved the results obtained with AMP. The outcome demonstrated that
running FreeRTOS in SMP mode allows achieving better execution timing and
memory footprint on the tested application. The configuration of the programs to
operate in SMP and AMP also proved that SMP offers better maintainability and
portability on systems that support it.

In conclusion, this thesis confirms that configuring embedded platforms equipped
with symmetric CUs in SMP offers significant advantages over other MP options.
These benefits apply even to older devices with a lower core count. Nevertheless,
the availability of a software layer to manage the architectural complexity of such
systems remains crucial. Therefore, providing application designers with these
tools is fundamental to fully exploit the hardware’s potential.
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Appendix A

Reference Manuals

The following tables report the manuals consulted during the development of this
thesis, properly grouped according to the treated topic.

Unit Supplier Version
Zynq 7000 SoC TMR [4] AMD 1.14
Zynq 7000 SoC Software Developers Guide [5] AMD 13.0

Table A.1: Zyng-7000 SoC: Reference manuals

The versions of the manuals in Table A.1 are consistent with the ones listed
in the Zyng-7000 SoC TMR [4, pp. 1934-1935]. In case of discrepancies in the
versioning of a manual, the most appropriate document has been chosen:

e Arm Cortex-A9 MPCore Technical Reference Manual, Revision r3p0
(DDI0407F)

The values of the revisions are incompatible; revision F corresponds to the
first release of r2p2 and revision G corresponds to the first release of r3p0.

o Arm Generic Interrupt Controller v1.0 Architecture Specification (IHI 0048B)

The architecture’s version and the revision are incompatible; GIC v1.0 corre-
sponds to revision A and v2.0 corresponds to revision B.

49



Reference Manuals

Unit Supplier Version
Cortex-A9 MPCore TMR [10] ARM G
Cortex-A9 TMR [9] ARM G
ARM Cortex-A Series Programmer’s Guide [6] ARM 4.0
ARM Architecture Reference Manual (ARMv7- ~ ARM C

A) 8]

PrimeCell Generic Interrupt Controller (PL390)  ARM B
TMR [7]

ARM Generic Interrupt Controller v1.0 Archi-  ARM A

tecture Specification [25]

Table A.2: Zyng-7000 SoC: Third-party IP and standards documents

Unit Supplier Version
Cortex-A9 MPCore TMR [24] ARM G
PYNQ-Z2 Reference Manual [33] - 1.0
FreeRTOS SMP Change Description [13] XMOS -

Vitis Unified Software Platform Documentation: Xilinx 2021.2
Embedded Software Development [21]

Table A.3: Reference manuals: Miscellaneous
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Appendix B

Implementation Detalils

This chapter provides insights on the most relevant topics faced while developing

the FreeRTOS SMP port for the Zyng-7000 SoC.

B.1 Multiple UART Connections on PYNQ-Z2

Configuring multiple UART connections on the PYNQ-Z2 can be cumbersome.
While UARTO is connected through MIO 14 and 15 to the FTDI chip, making it
accessible from the Micro-USB port, UART1 must be routed via EMIO (i.e., I/O
between the PS and PL) into the PL and then out through one of the available
external interfaces (e.g., a PMOD port) [34].

B.2 CPU1 BootROM Code

The debug of an AP based on a PP that uses CPUO as domain reveals that, after the
FSBL phase, the program counter of CPU1 is set to OxFFFFFF34. This indicates
that the processor is executing the instruction stored at address OxFFFFFF32.
Keeping in mind that, in the ARMv7-A architecture, the instruction memory is
always mapped in little-endian [8, ch. A3, pp. 109], it is possible to decode such
instruction (0xE320F002) as WFE (0x02F020E3).

Considering that OxFFFFFFF0 holds the address OxFFFFFF20, Listings B.1
and B.2 report the content of the memory region executed after the issue of a SEV
instruction, to further explain the safety mechanism mentioned in Subsection 3.3.1.
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Address 0 -3 4 -7 8 - B C-F

FFFFFF10 00000000 00000000 00000000 00000000

FFFFFF20 F57FF04F E320F002 EAFFFFFC F57FF04F

FFFFFF30 E320F002 E3EO0OOOF E590E000 E37E00D4

FFFFFF40 OAFFFFF9 EEO70F15 EEO70FD5 EEO80F17

FFFFFF50 E3A04000 EEO14F10 E12FFF1E 00000000

FFFFFF60 00000000 00000000 00000000 00000000

Listing B.1: Memory dump of CPU1 boot instructions

fEf£££20: dsb sy
ffffff24.: wfe
f£ff£££28: b -16 ; branch at address Oxffffff20
ffffff2c:  dsb sy
ff£f££30: wfe
fffff£34: mvn r0, #0xf ; O = not(0xF) = OxFFFFFFFO
ffffff38: ldr 1r, [rO0] ; load value in OxFFFFFFFO to LR
ffffff3c: cmn 1lr, #0xd4 ; compare LR and (-0x4D) = OxFFFFFF2C
ffffff40: beq -28 ; branch at address Oxffffff2c

; invalidate the entire

instruction cache

; O is ignored and opc2 is 0O, since it is omitted

ffffffd4. mcr pl5, 0, r0, c7, cb5

; invalidate the branch predictor

ffffff48: mcr pl5, 0, r0, c7, c5, 6

; invalidate the entire unified TLB

ffffffdc: mcr pl5, 0, r0O, c8, c7

f£f££f££50: mov r4, #0

; move r4 to the SCTLR in c1 (CP15)

ffff£fb4. mcr pl5, 0, r4, c1, cO

f£f£ff££568: bx 1lr ; branch to the address in OxFFFFFFFO

Listing B.2: ARMv7-A instructions decoded from Listing B.1
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B.3 MMU Configuration for SMP

An in-depth analysis of the MMU configuration reported in Subsection 3.3.1 is
necessary to verify that the DDR memory is correctly set up to work in SMP.

The code shown in Listing B.4 configures 1 GB of memory; enough to cover
the entire 512 MB of DDR3 memory included on the PYNQ-Z2 [33, p. 10]. The
linker script 1script.ld actually sizes the DDR region ps_ddr_0 as 511 MB
(0x1FF00000) because it begins at address 0x100000 (1 MB), in accordance with
the Zyng-7000 SoC system memory map [4, p. 106].

Since the number of modified L1 page table entries is 1024 and the two least
significant bits are 0b10 [4, pp. 67-68], each entry identifies a 1 MB page. Starting
from the string 0x15de6, every iteration of the loop adds 0x100000 to the Section
Base Address to apply the memory attributes to the next page. Besides the S bit,
other important fields are Domain, TEX, B, and C. The Domain field, together
with the Domain Access Control Register [8, ch. B4, p. 1554], is configured to
prevent the generation of any permission fault during a memory access. At the
same time, the TEX, B and C bits define the memory as cacheable with write-
back /write-allocate inner and outer policy. For additional information refer to the

Zyng-7000 SoC TMR [4, pp. 67-75].

/* Write to ACTLR */

mrc pil5, 0, r0, cl, cO0, 1 /* Read ACTLR*/

orr r0, r0, #(0x01 << 6) /* set SMP bit */

orr r0, r0, #(0x01 ) /* Cache/TLB maintenance broadcast */
mcr pi5, 0, r0, c1, cO, 1 /* Write ACTLRx*/

Listing B.3: Core takes part in the SCU cache coherency protocol

B.4 Acknowledge CPU1 Boot End from CPUOQ

After the execution of the SEV instruction, CPU1 jumps to the value of the
memory location OxFFFFFFF0 [4, p. 160]. Meanwhile, CPUQ cannot start the
first task, so it needs to wait for CPU1 to finish its initialization. In principle,
the solution presented in Subsection 3.3.1 is not unique, since the procedure could
also be implemented differently. A possible alternative is to immediately set a
shared variable to allow the primary core to enter a low-power state after the
secondary core wakes up. The primary core would then be awakened by generating
an event just before CPU1 executes the application. This would prevent CPUO
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/* Mark the entire DDR memory as shareable */

#ifdef SHAREABLE_DDR
ldr 13, =0x3ff /*
1dr 10, =TblBase /*
1dr 12, =0x15de6 /*
< B=bl */
shareable_loop:
str r2, [r0] /*
add 10, r0, #0x4 /*
add r2, r2, #0x100000 /:*
subs 13, r3, #1
bge shareable_loop /*
#endif

1024 entries to cover 1G DDR */
MMU Table address in memory */
S=bl TEX=b101 AP=bl1, Domain=b1111, C=bO,

write the entry to MMU table */
next entry in the table */
next section */

loop till 1G is covered */

Listing B.4: Page table configuration for DDR memory
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from spamming event signals, potentially triggering other hardware units in the
PS and in the PL [4, pp. 45-46].

This solution has been discarded because the memory configuration after the
awakening of CPU1 does not allow to easily manage a shared variable. In fact, at
this point, the L2 cache has already been enabled during the standalone BSP’s
boot and, while the cache coherency of CPUO is handled by the SCU, that of
CPU1 is not. The code that implements this solution is reported in Listing B.5.
However, despite the absence of known errors, it has not been considered safe
due to the author’s lack of information on the access order to the L2 cache. For
example, CPU1 might write to a shared variable while CPUO performs maintenance
operations on the cache line that hosts it.

The uncertainty that characterizes some parts of such code is underlined by the
need to clean and invalidate the line holding the shared variable in the L2 cache
inside the loop that starts at line 31. Theoretically, these operations should not
be necessary because CPU1 should write directly in the L2 cache, so, after CPUO
invalidates the shared variable in its L1 cache, the SCU should correctly fetch this
line from the second level of cache.

A solution to the problematic memory configuration could be not to enable the
L2 cache during the boot of the standalone BSP. Nevertheless, while a multi-core
boot does not impose any constraint in this regard [24, ch. 5, pp. 10-11], doing
so would require to modify boot.S, thus the BSP. Moreover, it is not possible to
exclude an additional issue that might be present in the code shown in Listing
B.2, since there is a DSB before the WFE instruction but not after it. In case
speculation was allowed, this could lead CPU1 to see stale data in its L1 cache
because the load instruction might be executed before both the WFE and the
cleaning of the L1 cache of CPUOQ.

// CPU1
_boot_corel:
/* Notify CPUO that CPUl is awake */
/* Data L1 is not active yet so the write goes either in
* L2 or main memory. */
mov 1rl, #1
ldr r2, =ulSecondaryCoreAwake
str r1, [r2]
dsb

/* Initialize CPU1 */
sev  /x Wake up CPUO */

sev
sev  /x Issue more than one just to be safe */
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// COREO
vPortLaunchSecondaryCore:

/* Code common to Listing 3.1 */

/* Wake up CPU1 */

ldr r3, =L2CCCleanPa

1ldr r4, =L2CCInvPa

1ldr r5, =L2CCCleanInvPa

ldr r2, =ulSecondaryCoreAwake

mcr pl5, 0, r2, c7, c10, 1 /* Clean address to PoC */

dsb

str r2, [r3] /* Clean address in L2 */

dsb

sendEvent:

sev

/* Hardware coherency through the SCU is still not active
* on CPUl so CPUO may read stale data in its D-L1 cache if the
* line holding ulSecondaryCoreAwake is not invalidated */

mcr pl5, 0, r2, c7, c6, 1 /* Invalidate address to PoC in D-L1 %/

dsb

str r2, [r6] /* Clean and Invalidate address in L2 */
dsb

1dr r1, [r2] /* Fresh read from L2 or main memory */
cmp rl, #0

beq sendEvent

/* Wait for CPU1 initialization */
wfe

bx 1r

Listing B.5: Alternative CPU1 wake-up process

B.5 Core Yield’s Integration in FreeRTOS Inter-
rupt Handler

A way to optimize the management of yield requests, which come from external

cores, could be to integrate the logic inside FreeRTOS_IRQ_Handler instead of

associating the SGI to a handler with the scugic driver. In practice, the idea is to
skip the section of code that starts at line 11 and ends at line 25 in Listing B.7.
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However, the logic required to implement it would use additional registers and
control sequences, increasing the handling time of other interrupts (e.g., system
tick interrupt). Due to these concerns, the definitive adoption of the proposed
solution should be preceded by profiling sessions. In case the tests were to produce
mixed results, the macro in Listing B.6 could be used to distinguish between the
new and the classic version of FreeRTOS_IRQ_Handler depending on the specific
application.

/* Set configUSE_YIELD_CORE_HANDLER to O to integrate the

< portYIELD_CORE(x) logic into FreeRTOS_IRQ_Handler, to 1 otherwise.
< */

#define configUSE_YIELD_CORE_HANDLER 0

Listing B.6: Macro to select the FreeRTOS_IRQ_Handler version

B.6 Cortex-A9 Nested Interrupt Handling
in FreeRTOS

According to Subsection 2.4.2, FreeRTOS supports a full interrupt nesting model.
However, although this might appear to be confirmed by examining the code of
FreeRTOS_IRQ_Handler, such a handler is slightly different from the one reported
as an example in the official ARM documentation [6, sec. 12.1.3]. Specifically, the
I bit of the CPSR remains set when control is transferred to the application IRQ
handler, as it is not cleared after being set by the processor upon entering the IRQ
exception. Therefore, while interrupt nesting is supported, its usage is not imposed,
since the user must consciously enable it by clearing the interrupt masking within
the application-level handler. The SysTick handler FreeRT0S_Tick Handler ()
is an exception to this rule because, by default, it reactivates the reception of
interrupts through a call to portCPU_IRQ_ENABLE().

B.7 Exclusive Access Tests on the Zynqg-7000 SoC

The implementation of the primitives illustrated in Subsection 3.4.3 has been
extensively tested to investigate the behavior of LDREX and STREX on the
Zyng-7000 SoC; the results are reported below:

» Two cores access two locks with the same tag:
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.type FreeRTOS_IRQ_Handler, ’function
FreeRTOS_IRQ_Handler:

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

/* Code not relevant */

/* Read value from the interrupt acknowledge register, which is
— stored in rO for future parameter and interrupt clearing use.
o *x/

LDR r2, ulICCIARConst
LDR r2, [r2]
LDR r0, [r2]

/* Ensure bit 2 of the stack pointer is clear. r2 holds the bit 2
— value for future use. _RB_ Does this ever actually need to be
< done provided the start of the stack is 8-byte aligned? */

MOV r2, sp
AND r2, r2, #4
SUB sp, sp, r2

/* Call the interrupt handler. R4 originally pushed to maintain
— alignment. It contains the core ID in the SMP port. */
PUSH {r0-r4, 1r}

LDR rl, vApplicationIRQHandlerConst
BLX rl

POP {r0-r4, 1r}

ADD sp, sp, r2

/* R2 can be used again */

CPSID i
DSB
ISB

/* Write the value read from ICCIAR to ICCEOIR. */

LDR R2, ulICCEOIRConst
LDR R2, [R2]
STR RO, [R2]

Listing B.7: Section of FreeRT0S_IRQ_Handler that could be optimized to handle
external yield requests
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1. Both cores fail on the first attempt to acquire the locks even if the monitor
is previously cleared with CLREX.

2. Executing an LDREX on CPUO and issuing the LDREX-STREX instruc-
tions on CPU1 leads to complete the exclusive access on CPUL. As
expected, a successive STREX on CPUO fails. The outcome is different if
the same scenario is repeated switching the cores’ roles. In this case, the
sequence of LDREX and STREX on CPUO fails, while the STREX on
COREL1 succeeds.

3. An LDREX on CPUI1, followed by an LDREX on CPUO, leads to a
successful STREX on CPU1 and a failed access on CPUO. However, if
the execution order is reversed, the access on CPU1 succeeds while the
one on CPUO is unsuccessful.

» Two cores access two locks with different tags:

1. Both cores fail on the first attempt to acquire the locks even if the monitor
is previously cleared with CLREX.

2. Executing an LDREX on CPUO0 and issuing the LDREX-STREX instruc-
tions on CPUI1 leads to complete the exclusive access on CPU1l. As
intended, a successive STREX on CPUO does not fail because the state of
the monitor used by CPUOQ is not invalidated. The result is equivalent if
the roles of the cores are reversed.

e When two cores try to claim the same lock, the observed behavior is identical
to performing an exclusive access on addresses that produce the same tag.
Therefore, during a contention, CPU1 wins over CPUOQ.

The tests’ results do not align with the global monitor’s description provided by
ARM [8, ch. A3, 116-119]. More specifically, executing an LDREX instruction on
a core should not interfere with exclusive accesses to the same tag of another core.

To assess the consistency of such results, the same set of tests has been executed
with the spinlock API provided in the standalone BSP:

e Two cores access the same lock

1. Issuing an LDREX on CPUO and then on CPU1 leads to a successive
STREX on CPUO to succeed. The outcome is equivalent if the roles are
switched.

2. Performing an LDREX on CPU1, followed by a LDREX-STREX sequence
on CPUQO, results in a successful exclusive access on CPUO. The same
happens on CPU1 when the roles are reversed.
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Unlike the spinlock implemented in the port layer, the one included in the
standalone BSP exhibits the expected behavior. One possible explanation is that
the Zyng-7000 SoC favors exclusive accesses from CPUI1 in case of contention, in
accordance with ARM’s guidelines [8, ch. A3, p.121]. Nevertheless, this behavior
should have also been observed during the tests on Xilinx’s spinlock.

Further experiments on the code have been conducted to unravel the causes
of the reported behavior; however, no definitive conclusion has been reached. For
example, an unsuccessful attempt to solve the failure on the first exclusive access
to a lock led to disabling the L2 cache, since it does not have any monitor.

Even though the cause of these observations is still unknown, it has been noticed
that debugging the code that performs the exclusive access in instruction-step
mode leads STREX to fail more often and in less predictable ways. This might be
consistent with possible interferences to the monitor’s state due to store instructions
[8, ch. A3, p. 117] and cache maintenance operations [8, ch. A3, pp. 120-121].

B.8 Floating Point Operations within Interrupt
Handlers

The IntQueueTimer. c file included in the ZC702 demo of the FreeRTOS repository
[17] contains sections of code dedicated to testing FP operations within interrupt
handlers. However, as explained in Section 3.6, the Zyng-7000 SoC demo created
for the SMP port has not been equipped with such a feature. The reason is
that changing the application interrupt handler vApplicationIRQHandler () to its
FP-safe version vApplicationFPUSafeIRQHandler (), as mentioned in Subsection
2.4.2, completely bloats the demo due to the high volume of serviced interrupts.
Therefore, prvCheckTask() cannot print any message to inform the user about
the status of the tests.

Unfortunately, since the application-level handler is the same for every interrupt,
it is not even possible to selectively preserve the FP context without modifying the
implementation of FreeRTOS_IRQ_Handler (). Furthermore, manually saving the
FP registers inside an interrupt handler is not feasible, as the compiler may use
them to optimize some memory operations before the registers can be pushed onto
the stack.

Finally, as explained in Subsection 2.4.2, it is essential to understand that,
even though the FP registers are not explicitly modified, if the FreeRTOS APIs
is used inside an interrupt service routine, the FP context might still need to be
saved. For instance, considering the test demo, if prvTimerHandler () enabled
interrupts, defining vApplicationFPUSafeIRQHandler () could be necessary to
correctly execute the application. Both xFirstTimerHandler() and xSecond-
TimerHandler () make use of the queue’s functions, so if any of the two interrupted
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the other while it is executing a memcpy (), the FP registers would probably be
corrupted. Listing B.8 shows the memcpy ()’s usage in the queue functions.

1 0010b3d4 <xQueueReceiveFromISR>:
2 10b3d4: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, 1lr}
3 10b3d8: e2504000 subs 14, r0, #0

5 10b44c: eb0072cb bl 127f80 <memcpy>
6 10b450: 3790001 cmn 19, #1
7 10b454: 2455001 sub r5, r5, #1

10 001178ec <xFirstTimerHandler>:

11 1178ec: €92d4070 push {r4, r5, r6, 1r}

12 .« .

13 117958: e1a0200d mov 1r2, sp

14 11795c: e28d1004 add ri1, sp, #4

15 117960: ebffced9b bl 10b3d4 <xQueueReceiveFromISR>
16 117964: 3500001 cmp r0, #1

17

18

9 00127£80 <memcpy>:

20 127£80: e1a0c000 mov 1ip, r0

21 127£84: e3520040 cmp r2, #64 @ 0x40

22 127£88: aa000028 bge 128030 <memcpy+0xb0>
23 o« .

24 128080: aa000032 bge 128150 <memcpy+0x1d40>
25 128084: ed910b00 vldr 40, [ri]

26 128088: e25aa040 subs sl, sl, #64 @ 0x40
27 12808c: ed911b02 vldr di, [r1, #8]

28 128090: ed8c0b00 vstr d0, [ip]

29 128094: ed910b04 vldr dO, [r1, #16]

30 128098: ed8cl1b02 vstr d1, [ip, #8]

31 12809c: ed911b06 vldr d1, [r1, #24]

=

Listing B.8: Usage of memcpy () within an interrupt handler
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Benchmark Program

Chapter 4 analyzes the results gathered with a simple benchmark program imple-
mented on the Zyng-7000 SoC in the SMP and AMP configurations. This chapter
offers additional details on the setup of such an application in AMP, along with its
code. However, the FreeRTOS configuration is omitted, since FreeRT0SConfig.h
can be directly retrieved from the SMP port [18].

Although the SMP program is not included, it can be easily obtained by
combining the code provided for AMP.

C.1 AMP Configuration

Several online guides describe the preliminary steps required to create an application
running in AMP on the Zyng-7000 SoC [35] [36], therefore this process is not
presented in details. The discussion focuses on the changes needed by APs based
on the standalone BSP to correctly run a FreeRTOS instance on both cores of the
CA9 processor.

Configuring an application in AMP on the Zyng-7000 SoC requires creating two
APs in a single system project, each targeting a different domain, and then loading
them into the PS. This operation can be performed by programming the flash
memory embedded in the Pyng-Z2 with a bootable image of the system project.
Furthermore, the AP running on CPU1 must define the compilation flag USE_AMP=1
to prevent the BSP’s boot code from configuring shared resources (e.g., L2 cache)
that have already been initialized by CPUO.

As explained in Chapter 4, the developed application implements a producer-
consumer problem using two tasks, a queue, and, optionally, a higher-priority
task. In terms of memory, each FreeRTOS instance requires a private address
space, but the queue must be accessible by both cores. Therefore, the default
memory layout is modified in the 1script.1d files of both APs, as displayed by
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Listing C.1. In particular, each core privately allocates 255MB of DDR memory
(ps7_ddr_0), as well as a shared 1MB region (shared_ddr) to host common data.
Listing C.2 shows that shared_ddr is populated at runtime with the memory
section .shareable mem, which defines the labels to reference the queue.

Listings C.3 and C.4 report the application code, respectively, of CPUO and
CPUL. It is possible to notice that __queue is used to share the handle returned
after the creation of the queue in the main() function of CPUO. Furthermore, since
in AMP this operation is performed using statically allocated memory, the additional
data structures __queue_storage and __queue_buffer are defined, according to
the description of xQueueCreateStatic() in queue.h. The support for static
allocation must be enabled in FreeRT0SConfig.h through the configSUPPORT_-
STATIC_ALLOCATION macro.

Regarding the dual-core setup, as described for SMP mode in Subsection 3.3.1,
CPUO must wake up CPU1 following the procedure provided in the Zyng-7000 SoC
TMR [4, p. 160]. However, in AMP, the memory attributes need to be manually
assigned, since the memory layout is not standard. For this reason, both cores use
the function Xil_SetTlbAttributes() to properly set up the shared region, as it
can be observed at lines 50 and 26. The used attributes configure the memory as
shareable and non-cacheable.

Finally, placing the shared region in DDR and using the previously described
memory attributes should also allow to target locations within .shareable_mem
with exclusive access. Therefore, the spinlock presented in Subsection 2.5.2 can be
exploited when mutual exclusion is not implicit.
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/*x%x CPUQ %%/

MEMORY

{
ps7_ddr_O : ORIGIN = 0x100000, LENGTH = OxFFO00000
ps7_gspi_linear_O : ORIGIN = 0xFC000000, LENGTH = 0x1000000
ps7_ram_O : ORIGIN = 0x0O, LENGTH = 0x30000
ps7_ram_1 : ORIGIN OxFFFFO0000, LENGTH = OxFEOO
shared_ddr : ORIGIN = 0x1FF00000, LENGTH = 0x100000

/*%xx CPU1 *x%*x/
MEMORY
{

ps7_ddr_0O : ORIGIN = 0x10000000, LENGTH = OxFF00000
ps7_gspi_linear_O : ORIGIN = 0xFC000000, LENGTH = 0x1000000
ps7_ram_0O : ORIGIN 0x0, LENGTH = 0x30000

ps7_ram_1 : ORIGIN = OxFFFFO00O, LENGTH = OxFEOO

shared_ddr : ORIGIN = 0x1FF00000, LENGTH = 0x100000

Listing C.1: Memory layout of the benchmark program in AMP configuration

.shareable_mem (NOLOAD) : {
__shareable_start = .;
__queue = .; /* Queue handle */
. += 0x4;
__queue_storage = .;
. += 0x4; /* Queue of 1 element */
__queue_buffer = .; /* Queue handler */
. += 0x50;
__shareable_end = .;

} > shared_ddr

Listing C.2: Shared memory section definition in AMP configuration
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/* FreeRTOS includes.
#include "FreeRTOS.h"
#include "task.h"

#include '"queue.h"
/* Xilinx includes.
#include
#include
#include
#include
#include

*/

*/
"xil_printf.h"
"xil mmu.h"
"xil_io.h"
<sleep.h>
"gtimer.h"

#define
#define
#define
#define

sev()

ARM1 _STARTADR
ARM1_BASEADDR
cleanToPoU()

/* FreeRTOS variables.
TaskHandle_t xRxTask;
QueueHandle_t xQueue;
/* Shared variables.

extern uint32_t
extern uint32_t __queue;

extern uint32_t __queue_storage;
extern uint32_t __queue_buffer;

o/

*/

int main( void )

{
/* Leave time to connect to
sleep(5);

/* Setup global timer. */
GlobalTimer_Stop();

asm__("sev")

OxFFFFFFFO
0x10000000
__asm__ volatile( \
"dsb \n" \
"mcr pl5, 0, %0, c7, cl0, 1 \n" \
"dSb \I'l" \

::"r" (ARM1_STARTADR): "memory");

__shareable_start;

the Serial interface */
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GlobalTimer_SetCounter(0);
GlobalTimer_SetPrescaler(0);
GlobalTimer_Start();

/* Sets 1MB of DDR as Shareable, Non-cacheable, Full Access
since each L1 Page Table entry is a section covering 1MB. */
// S=b1 TEX=b100 AP=b11, Domain=b1111, C=b0, B=b0

Xil_SetTlbAttributes((uint32_t) &__shareable_start,0x14de2);

/* Create FreeRTOS objects. */
xTaskCreate( prvRxTask,
( const char * )
configMINIMAL_STACK_SIZE,

tskIDLE_PRIORITY + 1,
&xRxTask );

configASSERT( xRxTask ) ;

xQueueCreateStatic(1l,
sizeof ( uint32_t ),
((uint8_t*) &__queue_storage),

((StaticQueue_t*) &__queue_buffer) );

configASSERT( xQueue ) ;
/* Pass the queue handle to CPU1l. %/
*((uint32_t*)&__queue) = (uint32_t) xQueue;

/* Start CPUl before continuing. */
Xil_Out32(ARM1_STARTADR, ARM1_BASEADDR);
/* Clean address to PoU */
/* Wake up CPU1 */

cleanToPoU() ;
/* Start the scheduler.
vTaskStartScheduler();
for( ;; );

static void prvRxTask( void *pvParameters )

uint32_t ulRxData
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xQueueReceive ( xQueue, &ulRxData, 0 );

if ( ulRxData == 10000 )

{
GlobalTimer_Stop();
xil_printf("Higher 32 bits: %u \r\n", (unsigned int)
< (GlobalTimer_GetCounter_High32()));
xil_printf("Lower 32 bits: %u \r\n", (unsigned int)
— (GlobalTimer GetCounter Low32()));
break;
}
}
vTaskDelete (NULL) ;

Listing C.3: Benchmark program for CPUO in AMP

/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include '"queue.h"

/* Xilinx includes. */
#include "xil mmu.h"
#include "gtimer.h"

static void prvTxTask( void *pvParameters );
static void prvBusyTask( void *pvParameters ) ;

/* FreeRTOS variables. */

static TaskHandle_t xTxTask;
static TaskHandle_t xBusyTask;
QueueHandle_t xQueue;

/* Shared variables. */

extern uint32_t __shareable_start;
extern uint32_t __queue;

int main()

{
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st
{

Xil_SetTlbAttributes ((UINTPTR) &__shareable_start,Ox14de2

/* Set Queue handle. */
xQueue = (QueueHandle_t) __queue;

xTaskCreate (prvTxTask,
( const char * ) "Tx",
configMINIMAL_STACK_SIZE,

NULL,
tskIDLE_PRIORITY + 1,
&xTxTask );

xTaskCreate (prvBusyTask,
( const char * ) "Busy",
configMINIMAL_STACK_SIZE,
NULL,
tskIDLE_PRIORITY + 2,
&xBusyTask );

configASSERT( xTxTask );
configASSERT( xBusyTask );

vTaskStartScheduler();
for( ;; );

return O;
atic void prvTxTask( void *pvParameters )
UBaseType_t uxResult;

for(uint32_t ulTxData = 0 ; ulTxData <= 10000 ; )
{

uxResult = xQueueSend( xQueue, &ulTxData, 0 );
ulTxData += (uxResult == pdTRUE)? 1:0;

}

vTaskDelete (NULL) ;
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static void prvBusyTask( void *pvParameters )

{

volatile uint32_t* pulTrash;
for(uint32_t ulIndex=0; ulIndex<1000000 ; )
{
pulTrash = (volatile uint32_t*) &ulIndex;
(*pulTrash) += 1;
}

vTaskDelete (NULL) ;

Listing C.4: Benchmark program for CPU1 in AMP
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