
TIGER: Testing and Improving Generated Code with LLMs

BY

LORENZO GALLONE
B.S., Politecnico di Torino, Turin, Italy, 2023

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2025

Chicago, Illinois

Defense Committee:

Venkatakrishnan Venkatesan Natarajan, Chair and Advisor

Rigel Gjomemo

Chris Kanich

Stefano Scanzio, Politecnico di Torino

ACKNOWLEDGMENTS

I wish to express my heartfelt gratitude to my thesis committee for their guidance and

support throughout my research. Your insights have been instrumental to both my academic

and personal growth.

A special thank you goes to my parents and my sister for their unwavering love and constant

encouragement, which have been fundamental to my achievements. My sincere and heartfelt

gratitude goes to Martina, whose constant support, endless patience, unshakable encourage-

ment, and sincere belief in me have been crucial to every step of this journey. Her love and

strength have been my greatest motivation

I am sincerely grateful to all the wonderful people I’ve met here in Chicago, especially

those from the ”palazzina.” Your friendship and warmth made my experience memorable and

enjoyable. A warm and special thank you to Francino, with whom I’ve shared countless hours

of studying and beyond, making my American experience even more meaningful.

A heartfelt thanks also goes to Ste, Fede, Andre, Totta, Pitta, and Deco who, despite the

distance during this last year, have continued to play an important role in my life. They have

always been there whenever I needed to talk or reach out, regardless of the reason.

Finally, I am genuinely thankful to everyone I’ve encountered on this journey for their

invaluable contributions, inspiration, and support.

LG

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Context and Motivation . 1
1.2 Research Objectives . 2
1.3 Thesis Structure . 4

2 STATE OF THE ART . 6
2.1 Large Language Models for Code Generation 6
2.2 Challenges in Generating Structurally Complex Code 9
2.3 Automated Testing and Validation 11
2.4 Related Works . 15

3 PROPOSED SYSTEM ARCHITECTURE 19
3.1 Problem Definition . 19
3.2 Prior Attempt: Fine-Tuning and Its Limitations 21
3.3 General Overview . 22
3.4 Repository Acquisition and Analysis 24
3.5 Context Extraction for the LLM 26
3.6 Iterative Refinement with Error Feedback 26
3.7 Accuracy Validation through Testing 28
3.8 Error Analysis . 29
3.9 Evaluation Metrics . 29
3.10 Structured Prompting for Code Generation 31

4 IMPLEMENTATION . 33
4.1 Repository Selection and Management 33
4.2 Code Extraction: Functions, Classes, and Tests 38
4.3 Contextual Summarization and Documentation Extraction . . 42
4.4 LLM API Integration . 44
4.5 Multi-Function vs. Single-Function Approaches 48
4.6 Automated Code Replacement and Integration 50
4.7 Error Handling and Debugging 52
4.8 Performance Considerations . 55

5 EVALUATION AND COMPARISON 58
5.1 Aggregate Results: Single-Pass vs. Iterative Methods 61
5.2 Comparison of General-Purpose and Code-Specific LLMs . . . 67
5.3 Analysis by Repository Complexity 70

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.4 Lines of Code (LOC) Analysis 75
5.5 Time Efficiency and Overhead 78
5.6 Discussion of Key Findings . 81

6 CONCLUSION . 84

CITED LITERATURE . 86

VITA . 88

iv

LIST OF TABLES

TABLE PAGE

I OVERVIEW OF SELECTED REPOSITORIES AND ASSOCIATED META-
DATA. 34

II SINGLE-PASS (ITERATION = 1.0) VS. BEST ITERATIVE (ITERA-
TION = 10.0) SUCCESS RATES FOR EACH REPOSITORY, WITH
ONE ROW FOR GEMINI 2.0 AND ONE FOR QWENCODER 2.5 IN-
STRUCT. 63

III AVERAGE NUMBER OF ITERATIONS (FOR SUCCESSFUL GENER-
ATIONS) ACROSS REPOSITORIES, COMPARING SINGLE-PASS (1.0)
AND ITERATIVE REFINEMENT USING LLM-BASED AND REGEX-
BASED ERROR SUMMARIES. 68

IV AVERAGE PERFORMANCE COMPARISON BETWEEN GEMINI 2.0
(GENERAL-PURPOSE) AND QWENCODER 2.5 INSTRUCT (CODE-
SPECIFIC). 70

V REPOSITORY GROUPINGS BY COMPLEXITY, BASED ON NUM-
BER OF FUNCTIONS. SMALL REPOSITORIES HAVE UP TO 30 FUNC-
TIONS, MEDIUM REPOSITORIES HAVE 31–60 FUNCTIONS, AND
LARGE REPOSITORIES HAVE MORE THAN 60 FUNCTIONS. 71

VI SUCCESS RATES (%) IN SMALL REPOSITORIES (UP TO 30 FUNC-
TIONS), COMPARING SINGLE-PASS GENERATION WITH ITERA-
TIVE REFINEMENT UNDER LLM-BASED AND REGEX-BASED ER-
ROR FEEDBACK. 72

VII SUCCESS RATES (%) IN MEDIUM REPOSITORIES (31-60 FUNC-
TIONS). 73

VIII SUCCESS RATES (%) IN LARGE REPOSITORIES (MORE THAN 60
FUNCTIONS). 74

IX AVERAGE LINES OF CODE (LOC) FOR SUCCESSFUL GENERA-
TIONS. THE TABLE LISTS THE ORIGINAL LOC, GENERATED LOC,
AND THEIR DIFFERENCE (GENERATED MINUS ORIGINAL) FOR
EACH REPOSITORY AND MODEL IN SINGLE-PASS MODE. 76

v

LIST OF TABLES (continued)

TABLE PAGE

X AVERAGE EXECUTION TIME (IN SECONDS) FOR SUCCESSFUL
GENERATIONS ACROSS REPOSITORIES AND MODELS. THE TA-
BLE COMPARES SINGLE-PASS EXECUTION WITH ITERATIVE RE-
FINEMENT USING LLM-BASED AND REGEX-BASED ERROR FEED-
BACK (ITERATION LIMIT = 10.0). 80

vi

LIST OF FIGURES

FIGURE PAGE

1 High-level system architecture. 25

2 System architecture for iterative refinement approach. 27

3 System architecture for single-pass code generation approach. 59

vii

LIST OF ABBREVIATIONS

UIC University of Illinois at Chicago

SR Succes Rate

LOC Line of Code

viii

SUMMARY

This thesis presents a test-driven framework for enhancing the reliability of code generated

by Large Language Models (LLMs), focusing on real-world applicability and minimal developer

assistance. The system is designed to simulate a realistic development environment where

no ground-truth implementations are available to the model, relying exclusively on textual

artifacts such as documentation, docstrings, and test outcomes. This constraint ensures that

every generated function is derived from semantic understanding rather than replication or

pattern-matching.

A core innovation of this work is the integration of an iterative refinement loop, which

introduces structured feedback into the code generation process. After producing an initial

function from a natural language prompt, the model’s output is immediately tested. If failures

occur, relevant error signals are extracted and used to update the prompt, allowing the model

to revise its solution. This loop continues until the implementation passes all associated tests

or a retry limit is reached. The system thus mirrors a human-like workflow of test-driven

development and debugging.

To assess the contribution of this iterative process, the same framework is also evaluated in

a non-iterative configuration, where each function is generated only once based on its prompt

and tested without revision.

The evaluation is conducted on entire Python repositories—not isolated functions—making

the task significantly more complex. Functions are embedded in larger software structures,

ix

SUMMARY (continued)

depend on shared state or class behavior, and are often indirectly tested through multi-layered

scenarios. The system parses these repositories to extract structural metadata, resolve function-

to-test mappings, and build context-aware prompts that support both initial generation and

iterative correction.

The results demonstrate that embedding LLMs into a feedback-rich environment substan-

tially increases their capacity to produce robust, test-passing code. Despite added computa-

tional cost, the iterative approach leads to higher success rates across a diverse range of code-

bases, showing that language models, when guided by empirical signals and properly contextu-

alized, can evolve from static generators into adaptive agents capable of producing functionally

correct and maintainable code.

x

CHAPTER 1

INTRODUCTION

The advent of Large Language Models (LLMs) impacted the world of software develop-

ment in various ways, mainly by enabling automatic code generation through natural language

descriptions [1; 2]. The models have the ability to reduce the time required for hand-coded

programming and improve development practices. Studies by [3] revealed that programmers

using AI-assisted coding tools saw an average improvement in code quality by 18% compared

to standard practices, thus validating the productivity benefits offered by LLMs. However, in

spite of such benefits, ongoing code quality and code produced by LLMs’ reliability problems

persist, despite their extensive codebases [2].

1.1 Context and Motivation

The creation of standard code for LLM tends to use a one-shot approach [2]. Here, the model

outputs code in response to a description or docstring in text. The approach is computationally

inexpensive, but no system for giving and receiving feedback is included. Therefore, any logical,

syntax, or semantic errors in code produced by such models must be discovered and corrected

by the user on their own.

A good alternative is an iterative refinement approach. With this method, the LLM receives

feedback from unit tests with caution and uses that feedback to gradually refine the function it

constructs [4]. This approach is designed to make the code more understandable and improved

1

2

by incorporating test feedback into the construction process. This decreases the amount of

assistance humans require to correct and improve issues.

Current investigations have shown that using LLM-assisted development has the ability to

significantly reduce coding and debugging time, leading to increased developer productivity

[5; 3].

1.2 Research Objectives

The goal of this thesis is to demonstrate that Large Language Models (LLMs) can produce

high-quality, test-passing Python code when placed in a structured generation loop that closely

resembles a developer’s test-driven workflow. The focus is on generating code without ever

exposing the LLM to existing implementations. Instead, the model receives only high-level

natural language artifacts—such as README files, reStructuredText documentation, and doc-

strings—along with pass/fail signals from the test suite.

The system is designed to replicate a realistic development setting, where a developer writes

a function based solely on documentation and relies on tests to debug and refine their solution.

In this scenario, the LLM is tasked with generating an initial function based on a prompt

constructed from the available textual context. The generated code is then inserted into the

codebase and executed against its corresponding unit tests. If the function fails, the system

analyzes the test output, summarizes the errors, and constructs a refined prompt containing

this feedback. The LLM is then invoked again to generate a revised implementation. This

process continues iteratively until the function passes all relevant tests or a retry threshold is

reached.

3

A simplified single-pass version of the system, where the LLM is invoked only once with-

out iterative refinement, is used solely for comparison purposes in the evaluation chapter. It

serves to quantify the benefits of the proposed iterative approach but is not a central focus of

the study. The thesis instead concentrates on showing how test-driven, documentation-guided

iteration enables LLMs to produce reliable, functional code without requiring access to existing

implementations or manual corrections.

Evaluation Criteria

After defining the two code generation approaches, it is crucial to establish how their effec-

tiveness will be measured. This study aims to determine whether iterative refinement provides a

tangible benefit over single-pass generation, focusing on the actual functionality of the generated

code rather than just its syntactic correctness.

To facilitate a meaningful comparison, the evaluation will utilize functional testing tools

such as PyTest, JUnit, and a set of unit testing tools. These tests move beyond syntax checks

and review whether the output of the function actually complies with the expected performance

standards.

Key Research Questions

The key aspects under investigation include:

• Functional correctness: Is the output function effectively passing all functional tests,

ensuring that it behaves exactly as expected?

4

• Effectiveness of iterative refinement: Is the probability of finding a correct solution

substantially higher if the first try fails and the operation is redone with the function?

• Efficiency: What iterative methods are required in the generation of a fully functional

item, and do such methods place a heavy overhead compared with generation with a

single pass?

Through a careful analysis of such variables, the study seeks to determine if repeated appli-

cation of a function justifies the effort required or if a properly designed single-pass generation

technique is sufficient in providing stable and working code.

1.3 Thesis Structure

This thesis is divided into six chapters, each addressing a different facet of Large Language

Model (LLM)–driven code generation and validation:

1. Chapter 2: State of the Art reviews current developments in LLM-based code gen-

eration. It explores fundamental architectures, training paradigms, and applications of

LLMs, highlighting ongoing challenges such as erroneous outputs, integration complex-

ities, and scalability. The chapter also examines prevailing evaluation strategies using

frameworks like PyTest.

2. Chapter 3: Proposed System Architecture describes the architectural framework

developed for this research, detailing the iterative refinement process. It clarifies how both

approaches fit into a test-driven pipeline that prioritizes correctness over raw generation

speed.

5

3. Chapter 4: Implementation provides a technical account of the system’s components.

It discusses how LLMs are prompted, how source code is analyzed, and how repository

information is extracted. It also explains how the system integrates and evaluates newly

generated code against existing test suites.

4. Chapter 5: Experimental Methodology and Self-Reflection outlines the design

of the experiments, including selection criteria for repositories, testing workflows, and

the metrics used to evaluate performance. Additionally, the chapter contains a reflective

section wherein the author examines the learning outcomes and improvements gained

while conducting this study.

5. Chapter 6: Conclusions and Future Work presents a consolidated summary of the

research findings, highlighting key benefits and limitations of the iterative refinement

approach. The chapter concludes by proposing potential research directions, including

advanced error-handling strategies and the extension of the current system to broader,

more complex contexts in code generation.

This structure facilitates an in-depth and quantitative comparison of different LLM-based

code generation techniques, focusing particularly on iterative refinement and its impact within

practical software engineering scenarios.

CHAPTER 2

STATE OF THE ART

2.1 Large Language Models for Code Generation

Large Language Models (LLMs) have significantly advanced natural language processing

(NLP) and, in the last time, software development by not only teaching the machines how to

understand and produce human language-based text but also by producing alternatively, au-

tomatically written code in several programming languages. These models that are trained on

large datasets to understand and generate text in a natural language and implement the code

in many programming languages, they can read and write code that a normal coder can write

without any exaggeration in his or her language [1; 2]. Their capability of understanding and

implementing human-readable instructions into functional code has been a very good tool for

developers. It has made computer-assisted functions such as code completion, bug fixing, and

refactorization easier.

Architecture and Training of LLMs

Large Language Models (LLMs) are a class of models developed using deep learning tech-

niques, primarily based on transformer architectures [6]. These models employ self-attention

mechanisms to capture relationships between elements in the input, enabling them to produce

coherent and contextually appropriate language outputs. Their training involves processing

6

7

vast volumes of textual data, allowing them to learn complex syntactic patterns and semantic

structures.

For instance, OpenAI’s GPT-3 was trained on a dataset comprising approximately 410 bil-

lion tokens sourced from the web, books, and Wikipedia [1]. Subsequent advancements have

led to the development of models specifically fine-tuned for code generation. Examples in-

clude OpenAI Codex and DeepMind’s AlphaCode, which were trained on extensive corpora of

programming-related content [2; 4]. These specialized models demonstrate enhanced capabili-

ties in generating software solutions tailored to specific tasks.

Nevertheless, despite these improvements, significant challenges remain. Issues such as hal-

lucinated outputs, incorrect logic in generated functions, and security vulnerabilities persist [7].

These limitations raise important concerns regarding the reliability and robustness of LLMs in

real-world software development scenarios.

Fine-Tuning and Domain Adaptation for Code Generation

Fine-tuning is an approach that adapts a pre-trained Large Language Model (LLM) to a

specific domain or task by continuing its training on a targeted dataset. This method enables

the model to internalize domain-specific coding practices, adhere to particular performance

constraints, and follow established architectural or stylistic conventions. As a result, fine-

tuned LLMs demonstrate improved effectiveness in generating contextually appropriate and

syntactically correct code when compared to general-purpose models.

Fine-tuning is particularly beneficial in:

8

• Domain-Specific Code Generation: Specialist models trained on databases such as

those related to cybersecurity, blockchain, or scientific computing can utilize domain-

specific syntax, security best practices, and optimizations [8].

• Enterprise Codebases: Companies fine-tune LLMs using internal software repositories

to ensure uniformity. This process enforces company coding standards, architectural

constraints, and security policies [9].

• Performance Optimization: Fine-tuned models trained on high-performance comput-

ing benchmarks have shown significant improvements. A study by [4] demonstrated that

fine-tuned AlphaCode models achieved performance comparable to mid-level human pro-

grammers in competitive programming challenges, significantly surpassing baseline models

trained without domain-specific adaptation.

Applications in Code Generation

The use of large language models in software engineering is a novel approach to the pro-

gramming process, which has significantly altered the relationship between developers and

code. Such models are able to perform the translation of natural language explanations into

executable code, thereby reducing the cognitive effort required from developers and accelerating

the software development process [2]. A prominent example is GitHub Copilot, which integrates

OpenAI Codex to provide real-time code suggestions directly within IDEs. This feature has

demonstrated its effectiveness in improving coding efficiency, although security concerns remain

a topic of discussion [7].

9

Auto-completion has become an increasingly significant application of LLMs. Beyond sim-

ple code correction or enhancement, these models allow developers to create new software com-

ponents by providing high-level specifications in natural language. Studies have shown that

auto-completion and AI-assisted bug fixing are most effective when trained on high-quality

datasets and when users provide clear prompts. Furthermore, domain-restricted models im-

prove the reliability and security of generated code, as demonstrated in recent evaluations of

OpenAI Codex and similar tools [3; 10].

Unlike single-shot code generation, our study explores an iterative approach, where the

model refines its output based on structured test feedback. This aligns with recent research

emphasizing the importance of execution-based evaluation and adaptive refinement.

2.2 Challenges in Generating Structurally Complex Code

While Large Language Models (LLMs) have demonstrated notable proficiency in generat-

ing accurate standalone functions, their effectiveness significantly diminishes when applied to

more structurally complex codebases. Such contexts involve multiple interdependent functions,

shared variables, class hierarchies, and intricate control flows, all of which demand a coherent

understanding of the broader software architecture.

As the size and complexity of the application grow, generating modular, well-integrated

components becomes increasingly challenging. Current models often struggle to maintain con-

sistency across related code units, properly manage persistent state, or ensure compatibility

with existing API structures. These limitations underscore a fundamental weakness of LLMs

when faced with the demands of real-world software engineering beyond isolated function gen-

10

eration.

Inconsistency in Multi-Function Codebases

LLMs are by nature stateless, meaning they do not have a full or global context at a cer-

tain moment. When client modules like binary-to-text decoders or image converters are auto-

generated, verbose and confusing module names can be a problem. Another issue is missing

or unknown variable names or syntax errors in the final code. Additionally, some components

may be logically inconsistent, making debugging more challenging. As highlighted by Sobania

et al. [10], Codex-generated modules often fail to maintain internal coherence when generat-

ing multi-function programs, requiring manual intervention to correct structural inconsistencies.

API Integration and Handling Concerns

Error management and authentication are becoming crucial components of system stabil-

ity as software development depends more and more on external APIs. LLMs, however, have

trouble with organized error handling and version management. This problem was found in

Codex-generated API interactions by Sobania et al. [10], who found that more than 60% of

RESTful API requests had improper authentication procedures or handled replies incorrectly,

causing security issues.

State Management Challenges

11

Databases, global variables, or object-oriented programming paradigms are used in many

applications’ software architectures to track permanent state. Managing stateful components

presents different issues depending on the programming language. However, memory allocation

and resource management become inefficient due to LLMs’ inherent inability to track commu-

nicated information across successive function generations [11].

Approaches to Address These Challenges

To address these challenges, researchers are exploring hybrid approaches that integrate

LLM-generated code with:

• Static Analysis Tools: These tools automate the detection of syntactic and semantic

errors based on predefined rules, improving the reliability of generated code [11; 2].

• Property-Based Testing: This technique ensures that function outputs align with

expected behaviors, supplementing traditional unit testing methods [12].

• Memory-Augmented LLMs: Recent advancements introduce memory-enhanced ar-

chitectures that allow models to retain contextual information across multiple function

generations, improving coherence in long-term code synthesis [11; 4].

These methods aim to reduce manual debugging efforts and enhance LLM applicability in

enterprise software development.

2.3 Automated Testing and Validation

While LLMs have shown remarkable promise in code generation, ensuring the correctness

and reliability of generated code remains a significant challenge. Without rigorous validation

12

mechanisms, LLM-generated code can introduce bugs, security vulnerabilities, and logic errors.

To mitigate these risks, automated testing techniques have become a critical component of

evaluating generated code [2].

Test-Driven Development

Test-Driven Development (TDD) is a widely known software engineering technique in which

test cases are written even before the actual implementation of a function [13]. The develop-

ment process here becomes more strict, and its essence is to ascertain whether the created code

is meaningful or not with respect to predefined targets. According to recent studies, integrating

TDD into LLM-supported code generation might have a positive effect on the correctness and

stability of the model regarding the generated functions since the model is predetermined to

implement well-defined behaviors [2].

Evaluation Metrics

Evaluating LLM-generated code presents unique challenges, as traditional NLP metrics

such as BLEU and ROUGE [14] fail to capture functional correctness. Several studies indicate

that high BLEU scores do not necessarily correlate with successful execution. For instance,

Hendrycks et al. [15] found that models achieving top BLEU scores still generated code that

was either syntactically incorrect or failed execution in over 40% of cases. Similarly, Chen et

al. [2] highlighted that BLEU and similar metrics fail to assess logical correctness, reinforcing

the need for execution-based evaluation.

13

To address these limitations, execution-based evaluation metrics have been proposed as

a more reliable alternative. In this study, we assess model performance using success rate

(equivalent to Test Accuracy) and failure rate, along with additional factors related to efficiency

and refinement process. These metrics provide a more comprehensive view of both correctness

and the overall effectiveness of the generation process.

This execution-focused methodology ensures a more practical assessment of LLM-generated

code in real-world development scenarios.

Challenges in Code Validation

Despite advancements in automated testing, several shortcomings remain. The code pro-

duced by LLMs might pass basic syntactic checks but still contain logical faults, leading to

faulty program behavior. In addition, testing coverage and robustness are subject to the qual-

ity of test case generation. There is evidence to suggest that while testing-by-example practices

improve accuracy, they do not ensure the elimination of all potential faults, necessitating sub-

sequent alterations and human checks [2; 4].

Error Handling in Code Generation

A persistent challenge in LLM-based code generation is handling errors effectively. Unlike

traditional software development, where debugging is performed manually, LLM-generated code

requires systematic strategies to detect, diagnose, and correct errors. Errors can manifest in

14

various forms, including syntax errors, runtime exceptions, and logical inconsistencies [12; 7].

Error Detection and Analysis

To guarantee that the output code meets functional standards, researchers have examined

automatic error detection tools. Unit testing tools and code analysis tools help identify failure

instances with useful information about the positions and causes of the failures in the output

code [2]. Classifying errors into categories such as syntax errors and logical errors helps scholars

maximize the feedback loop required for the improvement of large language models’ output.

Feedback Mechanisms and Iterative Refinement

Recent studies suggest that structured feedback mechanisms can significantly improve the

quality of LLM-generated code. Rather than discarding faulty outputs, an iterative process

can be employed where models receive failure reports and attempt to refine their responses

accordingly [12]. This method has been explored in research on adaptive code refinement,

where LLMs adjust their outputs based on structured test feedback to progressively converge

toward functionally correct implementations [10].

Notwithstanding, the ongoing improvement of code poses computational and practical is-

sues. While certain errors will be correctable through iterative improvement, others will neces-

sitate external help in the manner of additional context or modifications to trigger design. This

study seeks to identify the optimal ways of merging automation and human oversight in a bid

to maximize the preferred results.

15

2.4 Related Works

The area of automatic code generation has seen remarkable advancements over the past few

years, mainly due to the rapid evolution of large language models (LLMs). Current research

focuses on two major research directions: testing methodology-guided code generation and gen-

eration guided by natural language specifications.

Generating Code from Tests

One of the more significant topics of debate is related to the generation of code entirely from

the given test specifications [2; 13]. In this context, the code is generated by the model that is

then validated by an exhaustive test suite. Although this approach ensures a level of functional

correctness, it is also associated with significant limitations. More specifically, in cases where

the tests are poorly defined or not robust enough, the code generated can pass the tests and

yet be buggy. In addition, without clear semantic guidance, models often generate code that is

syntactically correct but differs from the intended functionality.

Generating Code from Program Specifications

One major area of research is on code generation directly from specifications stated in natu-

ral language [2; 9]. The approach mirrors how developers usually describe software requirements

and has picked up popularity with the development in large language models’ ability to under-

stand text descriptions. The general idea is to extract relevant information from specification

16

documents, functional mappings, or test cases to create detailed prompts that guide the code

generation process.

Many studies have tried to improve code generation at the repository level using this ap-

proach. For instance, RepoCoder [16] leverages a cyclical retrieval-generation framework that

combines a retrieval model with an LLM in order to generate code from relevant segments that

are already present within the repository. On the other hand, CatCoder [17] uses type-context

information from statically typed languages like Java and Rust, applying static analysis for

extending prompts with pertinent method signatures and data structures.

Advancing Repository-Level Code Generation: Our Approach

While previous methods have shown promising results, our method includes a number of

important innovations that distinguish it from RepoCoder, CatCoder, and evaluation systems

like HumanEval [2] and APPS [15]:

1. Our design is carefully crafted to address the challenges posed by structurally complex

repositories, where functions, classes, and shared variables are distributed across multiple

files and are tightly coupled through inter-component dependencies. In these settings,

generating code requires not only syntactic correctness, but also compatibility with exist-

ing architectural elements and the ability to integrate seamlessly into the broader software

system. This stands in contrast to popular benchmarks like APPS and HumanEval, which

operate on isolated, self-contained functions with clearly defined problem statements and

no need for contextual integration. While such benchmarks are valuable for assessing

17

isolated code generation capabilities, they do not reflect the complexities of real-world

software engineering, where correctness also depends on structural coherence and contex-

tual awareness.

2. As a contrast with approaches like RepoCoder and CatCoder, which draw upon exist-

ing code snippets within repositories and present them for the model’s aid, our method

produces code entirely from documentation. The model draws upon README files

(‘.md‘), reStructuredText files (‘.rst‘), function signatures, and docstrings but not upon

pre-existing implementation code segments. This makes the resulting code inherently

informed by high-level descriptions and not directly derived from comparable code, thus

better mimicking the process by which a function would have to be built from scratch

according to the documentation provided.

3. Our evaluation methodology relies on a combination of static analysis and test execution.

While static analysis—using Python’s Abstract Syntax Tree (AST) module—supports

the extraction of structural elements such as function signatures, argument types, and

docstrings, our primary metric for assessing model performance is the success rate, defined

as the percentage of generated functions that pass all associated tests. This metric directly

captures the functional correctness of the output, offering a more meaningful evaluation

than similarity-based scores. In contrast, many prior studies rely on BLEU, edit distance,

or token-level overlap with reference implementations, which may yield high scores even

when the generated code is syntactically correct but functionally invalid [2; 15]. By

18

grounding evaluation in execution results, our approach ensures that code is not only

well-formed, but also operationally sound within its target context.

4. We follow the iterative refinement practice where the process involves the reassessment

of data gathered from failed tests and the subsequent use for improving the prompt.

The practice is critical in driving the model towards the creation of better outputs. The

feedback process is a core component of our process, setting our approach apart from

others where the practice depends on single generations or single designs without the

inherent process for improvement.

A major drawback with benchmarks like HumanEval and APPS is their focus on decontex-

tualized, well-delineated issues likely not representative of real-world project environments. Our

approach, by contrast, directly involves existing codebases with the need for the generated code

to be merged into the overall codebase while also addressing inter-function and inter-module

dependencies. Our end-to-end validation process using a testing-based approach also provides

a better guarantee concerning the quality of the code.

The features outlined represent a significant advancement within the automatic code gen-

eration space with significantly increased generalization and robustness relative to existing

approaches. By avoiding reliance upon the assumption of the presence of pre-existing code

and focusing solely on testing-induced validation, our method functions without issues across

different repositories irrespective of specific repository configurations or similarity metrics not

necessarily corresponding with functional correctness.

CHAPTER 3

PROPOSED SYSTEM ARCHITECTURE

3.1 Problem Definition

Large Language Models (LLMs) have shown impressive results in generating executable code

from natural language prompts [1; 2; 4]. However, these models often struggle when deployed

in realistic software development scenarios, especially where correctness depends on subtle

functional requirements, edge cases, or adherence to project-specific conventions [7; 10]. In

such contexts, generating code that merely appears syntactically correct is insufficient. Without

precise understanding of intended behaviour, the generated functions frequently fail validation

when executed against real-world test suites.

This work addresses the challenge of guiding LLMs to generate functionally correct Python

code using only a limited set of natural language artifacts. Specifically, the model is exposed ex-

clusively to high-level documentation (such as .md and .rst files), function docstrings, and unit

test results—never to developer-written implementations. This strict separation avoids inject-

ing solution-specific patterns or leakage of intended logic, and better replicates the experience

of a human developer working from external documentation and test-driven feedback.

Unlike approaches that operate on isolated function definitions or synthetic benchmarks—

such as HumanEval [2] and APPS [15]—this study targets entire open-source repositories.

These repositories present a more realistic and complex environment: functions are deeply

19

20

embedded within architectural layers, interact with shared state, and often depend on behaviour

defined across multiple files. This design choice significantly increases the difficulty of the

generation task, but also enhances ecological validity by aligning with how code is developed

and maintained in practice.

To improve the quality of generated functions under these constraints, this work proposes

an iterative refinement framework. The model generates an initial candidate function based on

documentation and class context. If the generated function fails one or more tests, the system

extracts a structured error summary and integrates it into a revised prompt. This feedback

loop continues until all associated tests pass or a fixed number of iterations is reached. This

process reflects the natural workflow of debugging and test-driven development, where errors

guide progressive refinements until correctness is achieved [13; 2].

A single-pass version of the system is also implemented, where the model generates each

function only once. This non-iterative configuration is used exclusively for comparative pur-

poses, enabling a clear assessment of how test-driven feedback contributes to functional cor-

rectness. Results presented in later chapters demonstrate that the iterative refinement strategy

consistently increases the success rate across a variety of repositories, without requiring model

retraining or fine-tuning.

By operating solely on documentation, test outcomes, and human-readable descriptions, and

by explicitly avoiding the use of existing implementation code, the proposed system sets a real-

istic and generalizable foundation for automatic code synthesis. It combines natural language

21

understanding with empirical validation through testing, enabling a principled investigation of

LLM capabilities in software development tasks grounded in real-world constraints.

3.2 Prior Attempt: Fine-Tuning and Its Limitations

Before arriving at the current design, an initial strategy was explored based on fine-tuning

a language model to specialize in Python code generation. The hypothesis was that exposing

the model to curated pairs of prompts—consisting of function signatures, documentation, and

class context—together with their corresponding implementations would allow it to internalize

patterns specific to the task. A fine-tuned model, it was hoped, would then generalize more

effectively to new, similarly structured codebases.

The experimental setup involved training on one repository and testing on another, with

the goal of assessing cross-project generalization. While the model demonstrated acceptable

performance when generating functions structurally similar to those in the training repository,

its ability to handle unfamiliar coding styles and documentation formats was limited. A second

experiment attempted to mitigate this by training on a collection of multiple repositories and

testing on a completely unseen one. However, this broader exposure did not improve perfor-

mance. In fact, accuracy decreased further when the test repository diverged significantly in

structure or style from the training set.

These results indicate that fine-tuning, while potentially useful in narrow or domain-specific

contexts, struggles to scale in open-ended, heterogeneous environments such as those consid-

ered in this work. The diversity of documentation styles, naming conventions, and structural

patterns across projects introduces too much variance for a static, pretrained model to handle

22

reliably. Consequently, the fine-tuning approach was abandoned in favor of a more adaptive

strategy: an iterative framework that leverages local feedback from test outcomes to guide

generation without altering the model’s internal parameters.

3.3 General Overview

This work introduces a modular and test-driven framework designed to evaluate and enhance

the effectiveness of large language models in generating functionally correct Python code in

realistic development settings. A key design constraint is the exclusive reliance on natural

language artifacts—such as documentation files, docstrings, and test cases—without access

to developer-written implementations. This separation ensures that generated functions are

grounded in the model’s interpretive capabilities rather than derived from memorized patterns

or code replication.

To address the limitations discussed in Section 2.2—such as the difficulty of generating

code that integrates into structurally complex repositories, the presence of cross-file dependen-

cies, and the need for strict functional correctness—this work adopts a test-driven, iterative

approach to code generation. Rather than relying on single-shot generation or leveraging ex-

isting implementation code as context, the proposed method is grounded in previous research

on documentation-based synthesis [2; 9], while deliberately avoiding any exposure to developer-

written functions. The model receives as input only natural language artifacts—such as README

files, docstrings, reStructuredText documents, and test descriptions—ensuring that generation

is guided purely by specification and structural analysis.

23

At the core of the approach is an iterative refinement loop in which each function is gen-

erated, validated through test execution, and then revised based on structured error feedback.

This design mimics real-world development workflows where developers iteratively improve their

code based on test results. Unlike methods such as RepoCoder [16] or CatCoder [17], which

incorporate partial code retrieval or static typing constraints, this framework aims to simulate

the end-to-end behavior of a developer tasked with writing new functionality from scratch based

solely on textual descriptions. As discussed in Section 2.4, this separation from code reuse en-

ables more robust generalization across diverse repositories and reduces the risk of overfitting

to repository-specific patterns.

By integrating prompt engineering with a structured test-based feedback mechanism, this

methodology supports the incremental improvement of generated code without requiring model

fine-tuning or reliance on code similarity metrics. The result is a flexible, repository-agnostic

system capable of producing implementations that are not only syntactically valid, but func-

tionally sound within their respective software contexts.

At the core of this framework is a cycle in which the model repeatedly generates and refines a

candidate function. The process begins with the construction of an initial prompt that encodes

relevant context, including the function’s name, signature, docstring, and surrounding class

structure. The generated implementation is dynamically inserted into the codebase and tested

using the function’s associated test suite. If test failures occur, they are programmatically ex-

tracted and summarized, and this diagnostic information is incorporated into a revised prompt

24

for the next iteration. This loop continues until the function passes all tests or a predefined

iteration limit is reached.

The system architecture, shown in Figure 1, is designed to scale across repositories with

varying structures and documentation formats. It parses project artifacts to extract metadata

and establish precise function-to-test mappings. These mappings enable accurate prompt gen-

eration and ensure that test results are correctly attributed to the relevant function. Each

iteration of the generation cycle is independently validated through function-specific test exe-

cution, ensuring that progress toward correctness is measured concretely and automatically.

By replacing static fine-tuning with dynamic prompt refinement, the framework remains

agnostic to domain-specific implementation patterns and adapts to the local context of each

repository. It mirrors common software engineering practices such as debugging, test-driven

development, and regression analysis. Consequently, it offers both a robust benchmark for

evaluating LLM-based code synthesis and a practical method for integrating such models into

automated development pipelines.

3.4 Repository Acquisition and Analysis

The procedure begins with the retrieval of a repository from GitHub, which is a resource

for pulling in core elements, consisting of Python code, functional requirements documentation,

and unit tests to ensure correctness. An initial validation phase checks integrity of the code-

base before adding in any alterations. In this phase, it infers function signatures, structural

dependencies, exact mappings of functions to their respective test cases. Yet, to maintain the

25

Figure 1: High-level system architecture.

challenge of code generation solely from natural language, the LLM is deliberately not granted

direct access to existing implementations in the repository.

The methodology of repository acquiring is regulated by the clone or update repository

function, which guarantees that access to the latest version of the repository is ensured. In case

the repository is not locally available, it is put under cloning; otherwise, if locally available, it

is updated. The phase of evaluation is done through the analyze repository function, which

either loads a pre-computed summary or computes one in light of repository content. The

process is important in achieving structural data and producing important prompts for the

26

LLM, while following the requirement that no code written by developers is integrated into the

generation.

3.5 Context Extraction for the LLM

Large language model (LLM) context extraction is a foundational step for achieving context-

aware and accurate automated code generation. In our approach, the pipeline systematically

explores the repository’s directory structure and extracts textual content from Markdown (.md)

and reStructuredText (.rst) files, which typically contain the main body of human-written

documentation. These documents are aggregated into a unified textual corpus, with filenames

preserved for traceability and easier reference.

This corpus is then provided to a pre-trained language model via a carefully designed prompt

that instructs the model to generate a structured summary of the system. The goal of this sum-

mary is to capture key technical aspects — such as system architecture, functionalities, APIs,

data structures, and performance constraints — that are relevant for guiding code generation

tasks.

By avoiding direct access to implementation files, this process ensures that the LLM gen-

erates code based solely on high-level documentation and specifications, thus adhering to the

design constraint of abstraction from developer-written code.

3.6 Iterative Refinement with Error Feedback

The iterative refinement method enhances accuracy by integrating structured feedback loops

throughout the code generation process. Initially, the LLM generates a function based on a

carefully constructed prompt, which is then integrated into the codebase via the Replacer Mod-

27

ule. Once incorporated, the function undergoes execution against a predefined suite of unit tests

to assess its correctness. In the event of test failures, the system analyzes the errors through

the Error Analyzer and Summarizer, which extracts relevant insights and refines the prompt

accordingly. The LLM then utilizes this revised prompt to generate an improved version of the

function. This cycle of evaluation and refinement continues iteratively until the function suc-

cessfully passes all tests or reaches a predefined retry limit. Throughout this process, all results

are systematically logged, ensuring transparency and enabling further analysis. By leveraging

test feedback as a guiding mechanism, this approach significantly improves the likelihood of gen-

erating functionally correct implementations while minimizing the need for human intervention.

The architecture for this approach is shown in Figure 2.

Figure 2: System architecture for iterative refinement approach.

28

3.7 Accuracy Validation through Testing

Evaluation via testing is a basic part of the assessment framework, as it ensures that func-

tions developed meet set performance and accuracy levels. Validation involves use of tests that

have been carefully crafted for functions derived from a suite repository, documenting instances

of success and failure for empirical examination, and analyzing test execution performance us-

ing time complexity and error classification. Each function is tested exclusively with the set of

pre-mapped tests that directly or indirectly depend on it, ensuring that the evaluation remains

relevant to its specific role within the repository.

As illustrated in Figure 2, the iterative refinement process systematically incorporates error

analysis to enhance the accuracy of the functions produced. Throughout this process, the LLM

is deliberately prevented from accessing developer-written implementation code. This design

choice reflects a realistic scenario where a function must be generated from documentation and

test outcomes alone, without relying on call-site clues or existing function bodies, which could

inadvertently guide the model. By isolating the generation process from prior implementations,

we ensure that the resulting code is produced independently, thereby preserving the validity of

the evaluation and its applicability to the creation of new functions in real-world settings.

This architectural framework enables fair assessment of both single-pass and iterative code

generation approaches and provides an empirical measure for evaluating their effectiveness in

real-world software development environments.

29

3.8 Error Analysis

Ensuring the correct identification of faults and extensive examination of faults is critical

to improving functionality obtained from language models. The system utilizes two different

methodologies for assessing functions under test for faults.

Regex-Based Error Extraction

Regex-based analysis involves analyzing test output using pattern-based methods. This

technique efficiently locates faults in assertions, groups equivalent faults, and removes unneces-

sary information. By focusing on structured error messages, it provides a compact overview of

faults without requiring additional computational resources. This technique is most useful for

handling well-structured test outputs in which faults have predetermined patterns.

LLM-Driven Error Summarization

Upon activation, raw test outputs are processed by the LLM in order to generate a structured

fault summary. This process differs from regex-based inspection in that it utilizes the model’s

ability to parse sophisticated test failure and eliminate extraneous information, thus providing

a compact fault representation. The LLM is instructed to extract only the most relevant failure

messages and thus exclude stack traces and unnecessary information.

3.9 Evaluation Metrics

In contrast to many prior works that evaluate code generation through similarity-based

metrics such as BLEU scores or edit distance, this study adopts a functional, execution-based

30

perspective. The primary objective is not to replicate the original implementation verbatim,

but to generate functionally correct and executable code that integrates properly within a real-

world software repository. Accordingly, the evaluation framework is centered on metrics that

capture actual runtime behavior and development-oriented performance, rather than syntactic

resemblance. [2; 15]

The most critical metric employed is the success rate, defined as the percentage of generated

functions that pass all their associated test cases. This directly reflects the functional viability

of the generated code within its operational environment. Unlike similarity metrics, which may

score highly even when the code is syntactically correct but semantically flawed, test-based

evaluation ensures that the model’s output meets the intended behavior as defined by the

test suite. This is particularly relevant in practical scenarios where correctness, rather than

resemblance to a reference, is the ultimate requirement.

To complement success rate, the framework includes analysis of effective lines of code (LOC),

comparing the size of the generated implementation to that of the original. This provides insight

into the verbosity and structural efficiency of the generated code. While brevity is not always

synonymous with quality, excessive or unnecessarily complex implementations may indicate

misunderstanding of the task or overfitting to prompt artifacts.

Another critical dimension is execution time, which captures the duration needed to com-

plete the generation, integration, and validation of each function. In iterative scenarios, this

includes all regeneration cycles prompted by test failures. This metric offers an estimate of the

31

system’s responsiveness and suitability for real-world development pipelines, where developers

expect prompt feedback and efficient iteration cycles.

The evaluation framework is composed of both quantitative and qualitative dimensions. Suc-

cess rate and execution time are inherently quantitative, offering measurable and comparable

results across experiments. LOC, while numeric, also has qualitative implications—it helps as-

sess the readability, maintainability, and structural adequacy of generated functions. Together,

these dimensions form a robust and pragmatic evaluation strategy that supports empirical

comparison between approaches while remaining grounded in practical software engineering

concerns.

Most importantly, this methodology ensures that models are evaluated based on their ability

to produce code that is not only syntactically valid, but also executable, testable, and main-

tainable—closely aligning the evaluation process with the demands of real-world programming

tasks.

3.10 Structured Prompting for Code Generation

A central feature of the system is in the formalized prompt design, which guarantees that

the model generates functionally correct and semantically consistent code without explicit ex-

posure to programmers’ implementations. Since the model receives only textual explanations,

documentation, and test cases, prompt design has to include all contextual information re-

quired to successfully direct the generation process. Each prompt is built dynamically from

data acquired via parsing of the repository. This involves function names, parameter specifica-

tions, and documentation or inline comment-derived descriptions (docstring). When a function

32

is inside a class, contextual information such as class attributes and methods is included to

provide logical consistency within the codebase. This structured method ensures that the gen-

erated function complies with conventions in place within the repository and interacts with

surrounding components as required.

The iterative improvement process refines the prompting methodology through structured

feedback obtained from test failure instances. If a function does not validate, then the er-

ror analysis module captures relevant information about the failure and recasts it in a better

prompting form. This process of improvement provides correct feedback to the large language

model so that it can fix previously detected errors and avoid repeating them.

The prompting process is carried out via specialized modules that enable the generation of

prompts throughout different levels. Prompting is utilized in the generation stage to maximize

the chance for a correct function on the initial attempt. Where tests fail, structured error

feedback is added to the prompt to enable a specific revision in implementation.

The structured prompting technique is crucial to the system’s ability to improve code quality

incrementally, within its main constraint: all implementations have to be derived solely from

textual explanations and validation feedback. This ensures that generated functions are written

independently of prior code.

CHAPTER 4

IMPLEMENTATION

4.1 Repository Selection and Management

Criteria for Repository Selection

The selection of repositories plays a critical role in shaping the scope, generality, and realism

of the evaluation framework. For this study, repositories were selected based on their capacity

to support meaningful testing of automatically generated code in a real-world development

context. Specifically, repositories were prioritized if they met several key conditions: they had

to be implemented in Python, include a sufficiently rich set of test cases, and offer meaningful

natural language documentation in formats such as Markdown (.md) or reStructuredText (.rst).

The presence of informative docstrings and clearly documented interfaces further reinforced

their eligibility.

Importantly, the chosen repositories span a broad spectrum of domains and sizes. Some

are lightweight libraries offering utility functionality, while others are larger-scale projects with

more complex structures and dependencies. This heterogeneity was intentional, as it allows

the system to be evaluated across a variety of software development scenarios, ranging from

cryptographic tools to debugging utilities, from scheduling libraries to database engines. Such

diversity is essential to assess the generalizability and robustness of the code generation ap-

proach.

33

34

Each repository is treated as a self-contained software artifact. The system must analyze its

documentation, extract function-level metadata, and generate or refine code in such a way that

the resulting implementations integrate seamlessly within their local context. This diversity

in size, design, and functionality ensures that the evaluation is not confined to contrived or

overly simplified scenarios, but instead reflects the variability encountered in practical software

engineering.

TABLE I: OVERVIEW OF SELECTED REPOSITORIES AND ASSOCIATED METADATA.

Index Owner Repository Description # Functions

1 msiemens tinydb A lightweight document-oriented

database designed for small-scale ap-

plications. It provides a flexible query

system and is often used in scenarios

where traditional SQL-based solutions

are excessive.

46

2 cdgriffith Box A Python library that extends dictio-

nary objects to allow attribute-style ac-

cess. It simplifies manipulation of nested

data and is often used in configuration

management and data serialization.

18

3 pyeve cerberus A rule-based validation engine for

Python dictionaries. It enables precise

validation of user input or configuration

files and is frequently used in REST API

backends.

44

35

Index Owner Repository Description # Functions

4 cool-RR PySnooper A lightweight debugging utility that au-

tomatically logs variable changes and

function calls to aid in understanding

and troubleshooting code execution.

13

5 mpdavis python-jose A cryptographic library for handling

JSON Web Tokens (JWTs), signature

algorithms, and key management in

Python applications, often used in au-

thentication systems.

54

6 delgan loguru A modern logging library that simpli-

fies logging configuration while offering

advanced features such as sink manage-

ment, colorized output, and contextual

information injection.

24

7 arrow-py arrow A replacement for the standard Python

datetime module, providing a more intu-

itive interface for date and time manip-

ulation. It is frequently used in schedul-

ing and temporal data processing.

92

8 jquast blessed A library for terminal interaction that

provides advanced formatting, keyboard

input handling, and color management,

useful for building command-line inter-

faces.

81

36

Index Owner Repository Description # Functions

9 mahmoud boltons A large collection of standalone utility

functions and classes covering areas such

as iteration, time management, string

manipulation, and networking. It serves

as a general-purpose standard library

extension.

237

10 stochastic-technologies shortuuid A utility for generating concise, unam-

biguous, and URL-safe UUIDs. It is

typically used in web applications where

identifier brevity and clarity are desir-

able.

9

Selecting appropriate repositories for evaluation involved several trade-offs and practical

considerations. One of the foremost challenges was achieving a balance between diversity and

manageability. Repositories varied widely in terms of codebase size, complexity, and architec-

tural design. While smaller projects provided a controlled environment for debugging and quick

iteration, larger ones introduced real-world intricacies such as inter-module dependencies, ab-

stract base classes, or indirect test coverage. Ensuring that the system could adapt to both ends

of this spectrum required the development of flexible parsing strategies and modular processing

pipelines.

In some cases, test execution also depended on specific environmental constraints, such as

the presence of native libraries, third-party services, or operating system features. Repositories

that posed insurmountable setup or compatibility issues were excluded from final experimen-

tation, though special attention was given to ensure the remaining selection retained broad

37

functional diversity.

GitHub Integration and Repository Management

To maintain consistency and reproducibility throughout the experimental pipeline, reposito-

ries are integrated directly from GitHub using an automated acquisition strategy. Upon initial

execution, each repository is cloned locally from its public remote. If the repository is already

available on disk, the system attempts to update it using a standard pull operation, thereby

ensuring that the most recent version of the source code and associated test suite is used.

This approach avoids unnecessary duplication while also ensuring that any recent changes,

such as added test cases or updated documentation, are captured. It also facilitates large-scale

experimentation across multiple repositories without manual intervention, a necessary feature

for iterative evaluation loops. All repository data is stored in a standardized directory structure

that allows downstream modules to access code, documentation, and tests efficiently.

At present, all evaluated repositories are publicly accessible and do not require authenti-

cation. However, the infrastructure can easily accommodate authenticated requests if private

repositories are to be included in future expansions. This would involve integrating GitHub

API tokens to handle rate limiting and secure access control.

By combining a diverse and well-structured set of repositories with automated integration

and update mechanisms, the system is equipped to support rigorous, repeatable, and general-

izable evaluation of LLM-based code generation capabilities.

38

4.2 Code Extraction: Functions, Classes, and Tests

AST Parsing and Code Analysis

To extract relevant information from Python repositories, the system employs the Abstract

Syntax Tree (AST) module, a built-in Python library that enables static code analysis. This

approach ensures a structured and reliable method for identifying function definitions, class

definitions, and their associated metadata.

The extraction process begins by parsing each Python file into an AST representation,

allowing the system to traverse the syntax tree and detect class and function nodes. Each class

definition is analyzed to extract its name, docstring, and attributes. Instance attributes are

collected by inspecting assignments to the self object within the init method, while class

attributes are identified as variables assigned directly in the class body. This information is

crucial in constructing a clear class structure that can later be leveraged for generating coherent

and context-aware function implementations.

Function extraction follows a similar methodology. Each function is analyzed to retrieve its

name, arguments, and docstring. Additionally, the system captures the precise function signa-

ture, ensuring that decorators and return type annotations are preserved. This is particularly

valuable for maintaining function integrity and ensuring that generated code matches expected

specifications. The ability to extract multiline function signatures allows the system to generate

highly informative prompts when invoking the language model for code generation.

To improve robustness, the system is designed to ignore irrelevant files, such as those located

in example directories or those that contain syntax errors. By systematically filtering out non-

39

relevant or malformed files, the system minimizes noise and enhances the accuracy of the

extraction process.

The information collected is stored in an internal representation that reconstructs the repos-

itory’s structural hierarchy. This code tree enables the system to efficiently navigate the code-

base, establishing links between classes, functions, and eventually their test coverage. The entire

process is governed by a modular pipeline, summarized in the following high-level pseudocode:

Algorithm 1 Class and Function Extraction via AST

1: Input: Repository path R
2: for each file f in R do
3: if f is not a valid Python file or contains syntax errors then
4: continue
5: end if
6: Parse f into AST tree T
7: for each node n in T do
8: if n is a class then
9: Extract class name, docstring, attributes
10: else if n is a function (global or method) then
11: Extract function name, arguments, docstring, signature
12: end if
13: end for
14: end for
15: return Structured list of functions and classes with metadata

This structured parsing and filtering process ensures that only meaningful and analyzable

code is passed to downstream modules. The extracted metadata serves as a foundation for

generating consistent and context-aware prompts, aligning the code generation process with

40

the original implementation logic of the repository.

Function-Test Mapping

After identifying all functions and classes within the repository, the system proceeds to

establish a precise correspondence between these elements and the test cases that validate

them. This step is critical to ensure that any generated function can be reliably evaluated by

leveraging the repository’s existing test suite.

The process begins by scanning all files recognized as test scripts. These are typically located

in conventional directories such as tests/, or named according to common testing patterns like

test *.py. Within these files, the system identifies test functions based on naming conven-

tions (e.g., functions starting with test) and parses their source code using Abstract Syntax

Tree (AST) analysis. Through this parsing, the system extracts the names of application-level

functions invoked within each test. This forms the foundation for the initial test-to-function

mapping.

However, this direct association often captures only part of the picture. Many real-world

test functions verify behaviors that rely on chains of internal function calls, not just the ones

explicitly invoked within the test itself. To address this, the system extends its analysis through

test propagation, a process that recursively expands test coverage by analyzing the function

call graph.

In particular, if a test case invokes a function A, and A in turn calls another function B,

then the test case is considered to cover both A and B. This transitive reasoning is generalized

41

across the entire call graph: any function fi that calls fj transfers its test coverage to fj , recur-

sively, until the propagation stabilizes. This approach ensures that even deeply nested helper

functions—those not directly invoked by test code—are still associated with the appropriate

test cases, provided they are part of a tested execution path.

Algorithm 2 Function-to-Test Mapping with Propagation

1: Input: Repository path R, function set F
2: Extract test functions and build call graph G over F
3: Initialize mapping function to tests = {}
4: for each test function t do
5: Associate t to directly called functions
6: end for
7: repeat
8: changed ← False

9: for each function fi in G do
10: for each callee fj of fi do
11: Propagate tests from fi to fj
12: if new tests added then
13: changed ← True

14: end if
15: end for
16: end for
17: until changed = False

18: return function to tests

This recursive propagation is implemented efficiently, ensuring convergence by halting once

no new associations are added in a full pass over the graph. The final result is a comprehensive

map from functions to the set of test cases that either directly or indirectly exercise them.

42

The resulting function-test mapping is stored in a structured format and includes metadata

such as the file and line number where each function is defined. This output not only provides

transparency into the system’s internal mapping logic but also serves as a valuable debugging

tool. For instance, it allows users to easily verify which functions are well-covered and which

might lack sufficient testing support.

In practice, this enriched mapping significantly improves the robustness of the code gener-

ation pipeline. It ensures that the evaluation of generated functions reflects the full behavioral

coverage offered by the test suite, capturing edge cases and helper logic that might otherwise

be overlooked. Moreover, by relying on a structural analysis of the call graph rather than su-

perficial string matching, the system achieves high accuracy in associating tests to the actual

functionality under examination.

In summary, the function-to-test mapping with propagation plays a central role in validating

the correctness of generated code. It allows the system to take advantage of the test suite’s

implicit structure and logic, ensuring that each function is evaluated not only based on explicit

references in test files, but also through the complete chain of functional dependencies involved

in tested workflows.

4.3 Contextual Summarization and Documentation Extraction

A foundational component of the proposed system is the generation of a high-level sum-

mary that captures the structure, purpose, and internal mechanics of the target repository.

This summary is derived by aggregating and analyzing all textual documentation within the

repository, primarily sourced from Markdown (.md) and reStructuredText (.rst) files. The

43

extraction process systematically traverses the directory tree to locate these documents and

compiles them into a unified textual corpus.

This corpus is subsequently passed to a dedicated summarization module, which prompts

a large language model to generate a detailed and structured overview of the repository. The

prompt is designed to elicit specific technical details relevant to code generation, including the

system’s architectural layout, functional modules, data flow patterns, API specifications, and

domain-specific algorithms. The result is a structured summary that serves as the foundational

context for subsequent code synthesis tasks.

The importance of this process is twofold. First, it allows the model to build a mental repre-

sentation of the repository’s logical design and software purpose without accessing any existing

implementation code. Second, it enhances the semantic coherence of generated functions by

exposing the model to prior function names, expected behaviors, and component responsibili-

ties described within the documentation. In many cases, the prompt includes the names of core

functions and classes, which enables the LLM to invoke them appropriately during generation.

This capability is especially critical when the generated function is meant to interact with ex-

isting components, such as performing operations on user-defined objects or invoking internal

utility methods.

Furthermore, the quality of this initial context directly influences the success of the gen-

eration process. A well-summarized system facilitates more accurate and structurally aligned

function generation, reducing the likelihood of semantic drift or redundant code. By contrast,

44

poor or incomplete documentation leads to vague prompts, which may produce syntactically

valid but semantically inappropriate implementations.

Therefore, the contextual summarization phase is not merely a preparatory step but a

critical enabler of functionality-aware code generation. It ensures that all downstream modules

operate with a shared and accurate understanding of the software system, laying the groundwork

for functionally correct, maintainable, and contextually integrated code outputs.

4.4 LLM API Integration

Provider Selection and Integration Strategy

The integration of Large Language Models (LLMs) is a central component of the proposed

system, as it enables both the generation and iterative refinement of Python functions based

solely on natural language documentation and structured prompt inputs. In order to support

high-volume, iterative experimentation while balancing factors such as latency, cost per token,

API stability, and rate limits, several LLM providers were evaluated during the design phase.

Ultimately, the platform selected for integration was OpenRouter, which offers a unified

API interface for accessing multiple models. This choice facilitated seamless experimentation

without the need to modify the underlying codebase for each model. Among the models avail-

able through OpenRouter, two were chosen for detailed analysis. Gemini 2.0 was selected as

a general-purpose model due to its competent performance across a variety of tasks and its

favorable pricing structure, while QwenCoder 2.5 Instruct was chosen for its specific optimiza-

tion toward code generation. By employing these two models, the system is able to compare a

generic LLM (Gemini 2.0) with a code-centric model (QwenCoder 2.5 Instruct), thereby pro-

45

viding valuable insights into their relative performance in generating and refining code based

solely on natural language prompts.

Notably, models with relatively small parameter counts and limited context windows (typ-

ically below 7 billion parameters) were excluded from the final round of testing. These models

struggled to process long, structured prompts containing detailed class hierarchies and doc-

umentation, often truncating or ignoring critical input details and leading to incomplete or

incoherent outputs. Consequently, the focus was maintained on models that could effectively

handle the complexity inherent in real-world software development scenarios.

In summary, by leveraging OpenRouter to access both Gemini 2.0 and QwenCoder 2.5 In-

struct, the system benefits from a comparative framework in which one model provides a general-

purpose approach while the other is specifically tailored for code generation. The subsequent

analysis of their results enables a deeper understanding of the trade-offs between generality and

specialization in LLM-based code synthesis.

Prompt Generation and Structuring

A defining feature of this system is its modular and hierarchical approach to prompt con-

struction. All prompts are generated dynamically through specialized functions that encode

contextual information about the target function, its class (if applicable), and the repository in

which it resides. This approach ensures that the model operates exclusively on textual inputs

derived from documentation and structural analysis, in full compliance with the constraint of

avoiding any exposure to developer-written implementations.

46

The core prompting functions are generate prompt for function for the first prompt, and

generate improved prompt for the subsequent prompts. These functions accept as input the

function metadata, a repository-level summary, and, when applicable, class-level details such

as attributes and related methods.

The resulting prompt includes a complete function signature, a detailed docstring, and a

textual description of the function’s expected behavior. When the target function belongs to a

class, the prompt also includes the class name, its attributes (both class-level and instance-level),

and the names and signatures of other methods defined within the same class. This provides

the LLM with the contextual information necessary to generate a function that integrates

coherently within its surrounding code structure.

The prompt construction process enforces strict formatting and output constraints. The

model is explicitly instructed to return only the function definition and its body, with no ac-

companying commentary, markdown formatting, or usage examples. These instructions are

critical for ensuring that the generated code can be parsed, tested, and integrated into the

codebase without additional post-processing.

Iterative Refinement with Error Feedback

When a generated function fails validation, the system engages in an iterative refinement

process aimed at incrementally improving the implementation. This is achieved by invoking

the generate improved prompt function, which constructs a new prompt incorporating infor-

mation about the previous generation attempt and the associated test failures.

47

The improved prompt retains the function signature and docstring but appends two new

sections: the exact content of the previously generated code, and a structured summary of the

errors encountered during testing. This feedback may originate from regex-based parsing of the

test output or from a separate LLM module dedicated to error summarization. The prompt

then includes specific instructions to revise the function, addressing the identified errors while

preserving the intended behavior and structural integrity of the original specification.

To illustrate, a typical refinement prompt might include the function’s prior definition:

def parse_data(file_path):

...

followed by an error summary:

TypeError: expected string or bytes-like object, got ’NoneType’

The model is then instructed to generate a revised implementation that is not identical to the

previous attempt and that explicitly addresses the listed error. By repeating this cycle—prompt

generation, function synthesis, test execution, and feedback integration—the system guides the

model toward a correct and stable implementation.

Each iteration is logged for future analysis, and the loop terminates either when all tests

pass or when a predefined retry threshold is reached. This mechanism ensures that function

generation is not a one-shot operation, but rather an adaptive process that mimics real-world

development workflows, where errors are systematically diagnosed and resolved.

48

4.5 Multi-Function vs. Single-Function Approaches

The proposed system is designed to operate across entire repositories or on individual func-

tions, using an iterative refinement strategy guided by unit test feedback. This flexibility

enables both broad evaluations of model performance and targeted debugging of specific func-

tions. Central to this approach is the integration of automatic feedback loops that allow the

model to iteratively revise its output in response to empirical errors.

Iterative Refinement Across Repository

In this method, the system begins by generating a candidate implementation for each func-

tion using a prompt that includes its docstring, parameters, and surrounding class context.

This initial version is inserted into the codebase and tested using the function’s associated test

suite. If the implementation fails any test cases, the system activates a refinement cycle that

incorporates error feedback into a new prompt. This process repeats until the function passes

all tests or a predefined iteration limit is reached.

This iterative strategy mimics real-world debugging workflows, where repeated testing and

correction cycles are essential for achieving robust functionality. Each failed attempt provides

actionable insights that guide subsequent corrections, transforming test feedback into a gener-

ative signal. The refinement loop is supported by an Error Analyzer and Summarizer module,

which distills raw error outputs into concise descriptions that can be interpreted by the model.

As demonstrated in Chapter 5, this approach yields significant improvements in function

correctness across diverse codebases. The system adapts to varying documentation styles and

49

Algorithm 3 Iterative Refinement Across Repository

1: Input: list of functions with docstrings and test coverage, maximum iteration limit N
2: for each function f in the repository do
3: Prompt the LLM with f ’s docstring and context to generate an initial solution
4: for i = 1 to N do
5: Inject the generated code into the repository
6: Run all relevant tests for f
7: if tests pass then
8: Record success and stop refining f
9: break out of the loop
10: else
11: Extract error details from the failing tests
12: Append error summaries to the prompt for the next iteration
13: Query the LLM again using the refined prompt
14: end if
15: end for
16: if none of the N attempts succeed then
17: Record failure for f
18: end if
19: end for
20: Summarize results for all functions

50

logic complexity without requiring changes to the model’s internal parameters. By relying solely

on prompt-level modifications and error-driven iteration, the method achieves high reusability

and generalization in open-ended software environments.

This flexible generation pipeline can operate at scale, processing entire repositories, or can be

deployed in a focused manner to improve specific functions. Regardless of scope, the underlying

principle remains the same: use structured testing feedback to guide the model toward solutions

that satisfy predefined correctness conditions in a test-driven and documentation-aware manner.

4.6 Automated Code Replacement and Integration

A crucial phase in the system’s workflow involves integrating the newly generated function

directly into the existing codebase, by replacing the current implementation of the function

under test. Unlike a stub-completion setting, the goal here is not to fill in a blank method or

create code from scratch, but to evaluate whether the function generated by the language model

can effectively replace a real, working function from an active repository. This is essential for

assessing the quality of LLM-based code generation in real-world development environments.

This task is managed by the function replacer.py module, which carries out a precise

sequence of steps: extracting the original function and its indentation, reformatting the new

code to match the repository’s structure, replacing the original implementation in-place and

executing relevant tests.

The replacement procedure begins with the creation of a backup of the original file. This

ensures that even if an error occurs during parsing, editing, or testing, the source code remains

intact. The system then uses AST traversal to locate the exact bounds of the original function,

51

preserving decorators and indentation. The generated function is then parsed, cleaned, and

re-indented to match the formatting of the surrounding code, using a normalization strategy

based on the function’s original indentation and structural depth.

Once the new implementation is inserted into the file, the system immediately executes a pre-

selected subset of tests that are known to invoke the target function, either directly or indirectly.

These test mappings are established earlier during the repository analysis. The outcome of the

test execution determines whether the generated function is accepted or discarded. Crucially,

this evaluation happens in a realistic setting: the new function is tested on site, within its full

application context.

Regardless of the test outcome, the module concludes by restoring the original version of the

file from the backup. This design ensures that the repository remains unmodified between runs,

which is essential for isolating each test iteration and preventing cascading effects. The replaced

function and the result of the test execution are logged in detail, including the generated code,

success or failure status, and any relevant error summaries.

The internal logic responsible for replacing and validating generated code is governed by a

structured routine. This procedure ensures that each newly produced function is integrated into

the codebase, executed in a controlled environment, and evaluated solely through its associated

tests. The original implementation is first backed up, then replaced with the generated version,

and specific tests targeting the modified function are run. Depending on the outcome, the

system records either a success or failure and restores the original code to ensure repository

integrity for future runs.

52

This conservative and isolated strategy enables precise assessment of functional correctness

without introducing unintended side effects. It reflects a realistic scenario in which a developer

proposes a new implementation, tests it in place, and only accepts changes once correctness has

been empirically demonstrated.

Algorithm 4 High-Level Procedure for Function Replacement and Validation

1: Input: target function, new implementation
2: Preserve the original source code for safety
3: Integrate the new implementation into the codebase
4: Identify and execute relevant tests for the modified function
5: if tests are successful then
6: Record the implementation as valid
7: return success
8: else
9: Capture and log test failure information
10: return failure
11: end if
12: Restore the original function to maintain repository integrity

4.7 Error Handling and Debugging

A key component of the system is its ability to interpret test failures and use them to guide

successive code refinements. This error-handling capability is essential when evaluating the cor-

rectness of generated functions, especially in the iterative mode where test outcomes directly

influence future generations. To achieve this, the system implements two complementary mech-

anisms for extracting and summarizing test errors: one based on regular expression parsing,

53

and the other powered by a dedicated LLM. These approaches are designed to accommodate

different levels of complexity in test outputs, and can be selected or combined depending on

the nature of the repository and the user’s configuration.

Regex-Based Error Extraction

The first strategy employs pattern matching to identify and extract useful information

from the raw test output. As soon as a test fails, the system records its full textual trace.

The function extract error summary then processes this log line by line, discarding unrelated

content—such as platform metadata or general summaries—and isolating segments that indicate

assertion failures or exceptions.

The method focuses primarily on lines that begin with the error marker E, as well as those

that contain explicit assert statements. These lines are grouped into compact entries based on

their main error messages, such as type mismatches, missing attributes, or value discrepancies.

Redundant lines and repeated stack traces are collapsed to reduce noise, and line numbers are

ignored to prevent superficial variations from inflating the count of unique issues. When the

same error occurs across multiple files or test cases, the system merges them into a single,

canonical entry, ensuring that the resulting summary remains focused and easy to interpret.

Regex-based extraction is efficient and lightweight. It does not rely on any external services

and functions reliably in offline environments. However, its effectiveness depends on the con-

sistency of the test output format and the specificity of the matching patterns. In repositories

with unconventional test logging or less structured output, this method may struggle to produce

54

clear summaries. For these cases, an alternative mechanism—based on LLM summarization—is

also available.

LLM-Assisted Error Summarization

To handle more verbose or ambiguous error logs, the system offers an optional error summa-

rization mode that leverages a Large Language Model. When this mode is enabled, the system

invokes the function extract error summary with LLM, which constructs a custom prompt

containing the raw test output. The model is asked to produce a concise and readable sum-

mary of the errors, omitting file names, line numbers, and stack trace details. The emphasis

is placed on identifying the underlying causes of failure and organizing them in a way that

facilitates correction.

This approach can provide valuable advantages, especially in large or heterogeneous repos-

itories where test failures may span multiple layers of logic or involve nested exceptions. By

summarizing conceptually similar issues—even if their wording differs slightly—LLM-based

summaries offer a more semantic interpretation of the test outcomes. They are particularly

helpful when multiple errors stem from a single underlying misunderstanding, as the model can

consolidate feedback and highlight patterns that might otherwise go unnoticed.

To ensure robustness, the system includes a fallback mechanism. If the LLM request fails

due to network issues, API errors, or empty responses, the system reverts to regex-based parsing

automatically. This guarantees that error information is never lost and that the iterative process

can proceed without interruption.

55

In both modes, error analysis is triggered only if a test suite fails and if the iterative refine-

ment option is active. The summarized errors—whether generated by regex or the LLM—are

then included in the prompt for the next generation attempt. This loop continues until the

function passes all relevant tests or the retry limit is reached. By combining syntactic parsing

with semantic analysis, the system maintains a flexible and resilient error-handling pipeline

capable of supporting both straightforward and complex debugging scenarios.

4.8 Performance Considerations

Scalability and Large-Scale Processing

The framework is built to analyse repositories ranging from small utility libraries to large

projects that expose hundreds of public callables. Although no hard ceiling is imposed on

input size, growth in repository scale magnifies three practical pressures: total wall-clock time,

aggregate compute consumption, and sensitivity to external language-model services.

When a repository expands, every function triggers a fixed pipeline—documentation pars-

ing, prompt construction, model inference, code insertion, and test execution. Under iterative

refinement this pipeline may repeat several times before a function satisfies all of its tests. In

a codebase such as mahmoud/boltons (more than 230 functions), thousands of pipeline stages

can accumulate in a single evaluation run. While an individual stage completes quickly, their

collective cost scales super-linearly with both the number of functions and the average number

of retries per function.

Test-suite heterogeneity adds further variability. Lightweight unit tests often finish in mil-

liseconds, whereas file-system or network-bound integration cases can run orders of magnitude

56

longer. Because the framework delegates execution to each repository’s own tests without

modification, it inherits this latency profile wholesale. A single slow test, if invoked repeatedly

during refinement, can dominate the global timeline.

Dependence on remote LLM endpoints introduces an additional scaling factor. Every

prompt consumes tokens and counts against provider quotas. During long experiments, tran-

sient throttling, network congestion, or short service interruptions can delay generations or

force retries. These exogenous effects must be considered when budgeting time and resources

for large experimental batches.

Several engineering measures keep the workload tractable. Parsed documentation, ASTs,

and contextual summaries are cached so that reruns avoid redundant computation. Related

functions are processed in batches to amortise interpreter start-up and to reuse test fixtures.

Configurable retry ceilings prevent unbounded iterations on especially stubborn functions. Fu-

ture versions may incorporate real-time quota telemetry, adaptive concurrency, and checkpoint

recovery, but even in its present form the system can run unattended on extensive repositories

while honouring its documentation-driven, test-guided philosophy.

Computational Overhead and Execution Time

Iterative refinement mirrors a developer’s inner loop: generate a candidate implementation,

run the tests, inspect failures, and revise until all tests pass or a stop rule fires. Each iteration

introduces a fresh model call, a code rewrite, and another test cycle, so total runtime grows

with both the number of functions and the average iterations per function.

57

Runtime also depends on external factors. Network latency can stretch model response

times, while provider rate limits may throttle bursty request patterns. Variation within test

suites—especially when integration tests are involved—widens the gap between best-case and

worst-case completion times, complicating accurate scheduling.

Not every revision advances the function toward correctness; some changes fix one issue while

revealing another. To reduce waste, each cycle ends with an automatic error-summarisation

step that condenses failing traces into concise, actionable feedback. Focused feedback raises the

likelihood that the next generation will address the underlying defect, shortening the expected

path to convergence.

Although the loop increases computational expense, it turns unit tests into a live supervisory

signal that steers generation toward functional soundness. Results in Chapter 5 show a clear

trend: additional iterations significantly raise the success rate, particularly in security-critical

or data-validation code where reliability cannot be compromised. Early-stopping thresholds,

adaptive prompt budgets, and granular logs give practitioners fine-grained control over the

trade-off between runtime and correctness.

In sum, the framework invests extra computation to achieve higher assurance. For scenarios

where accuracy outweighs speed, this overhead is a rational cost: iterative refinement consis-

tently delivers implementations that satisfy existing tests and align with real-world constraints,

something one-shot generation rarely attains.

CHAPTER 5

EVALUATION AND COMPARISON

This chapter assesses the effectiveness of the iterative, test-driven framework introduced

in the previous sections. A streamlined, non-iterative configuration—illustrated in Figure 3—

is implemented solely to provide a reference point. In that variant the model receives the

same prompt constructed from documentation and docstrings, generates a single candidate

implementation, and is evaluated once against its unit tests. No regeneration takes place, and

no additional feedback is supplied. All other components of the pipeline (repository analysis,

prompt construction, code insertion, and test execution) remain identical, ensuring that any

performance difference can be attributed to the presence or absence of the feedback loop.

The comparative analysis proceeds along three quantitative dimensions: success rate, de-

fined as the proportion of functions that pass every associated test; lines of code (LOC), which

captures verbosity and potential over-engineering; and execution time, measured from the first

prompt emission to the final test outcome, including all retries where applicable. Section 4.7

complements these metrics with a qualitative study of the two error-handling modes—regex ex-

traction and LLM-based summarisation—and their impact on convergence speed and accuracy.

Because the evaluation targets complete open-source repositories rather than isolated tasks,

the generated functions must integrate with pre-existing modules, respect cross-file dependen-

cies, and satisfy domain-specific constraints. This setting is markedly more demanding than

58

59

Figure 3: System architecture for single-pass code generation approach.

benchmarks based on stand-alone problems such as HumanEval or APPS, where each function

is self-contained and receives an exhaustive specification in the prompt [2; 15].

The remainder of the chapter is organised as follows. Section 5.1 presents aggregate re-

sults across all ten repositories, contrasting the iterative framework with the single-prompt

reference. Section 5.2 compares the behaviour of a general-purpose LLM (Gemini 2.0) and

a code-specialised LLM (QwenCoder 2.5 Instruct). Section 5.3 investigates performance as a

function of repository size and structural complexity, while Sections 5.4 and 5.5 discuss, respec-

tively, the relationship between code length and correctness, and the computational overhead

introduced by iterative refinement. The chapter concludes with a synthesis of key findings and

an outlook on how test-guided iteration can be integrated into real-world development work-

60

flows.

Key Metrics Computation and Logging

In order to assess the performance of the proposed system, three primary metrics were

computed and logged throughout the experiments. These metrics, which complement the eval-

uation framework discussed in Section 3.9, provide both quantitative and qualitative insights

into the system’s behavior under various generation strategies.

The Success Rate (SR) was determined by calculating the proportion of functions that,

upon integration, passed all associated test cases. For each function generated, the system

executed a predefined test suite—following the automated code replacement process described

in Section 4.6. A function was marked as successful only if it passed every test case; the overall

success rate was then computed as the ratio of successful functions to the total number of

generated functions, expressed as a percentage. All test outcomes were logged systematically

for subsequent analysis.

The Lines of Code (LOC) metric was used to assess the verbosity and structural efficiency

of the generated solutions compared to the original implementations. Beyond serving as a

measure of code compactness and clarity, LOC also provided insight into how the LLM handled

functions of varying length, enabling an analysis of whether the model was more effective when

generating shorter or longer implementations. The computed LOC values for each function

were recorded in the experimental log files for both individual and aggregate analyses.

61

Finally, Execution Time captured the total time required for a function to reach a passing

solution or for the system to exhaust the predefined retry limit. Timing measurements were

taken from the moment a function generation attempt was initiated until the test suite pro-

duced a final outcome. In cases where iterative refinement was applied—incorporating multiple

generation attempts as detailed in Section 4.7—the execution time metric included the cumu-

lative duration of all iterations. High-resolution timers ensured precise measurement, and all

timing data were logged alongside the corresponding function identifiers and iteration counts.

By systematically logging these metrics in a structured format, the evaluation framework

provides a robust basis for comparing single-pass and iterative approaches and for drawing

conclusions regarding their practical applicability in real-world software development workflows.

5.1 Aggregate Results: Single-Pass vs. Iterative Methods

Table II summarizes the overall performance of both single-pass and iterative approaches

across the selected repositories. For each repository, the table compares the success rate of each

model in single-pass mode against the the same model using iterative refinement, with one row

per model. The results confirm that iterative strategies consistently outperform the single-pass

method in terms of functional correctness.

In particular, repositories such as Box, PySnooper, and shortuuid show marked improve-

ments. For example, the Gemini 2.0 model achieves a success rate of only 38.9% in single-pass

mode for Box, which rises to 66.7% when using iterative refinement. Similarly, QwenCoder 2.5

improves from 69.2% to 92.3% in PySnooper, and from 25.0% to 77.8% in shortuuid. These

62

patterns suggest that many failures in single-pass mode are recoverable through successive

regeneration attempts informed by test feedback.

The benefit of iteration is also evident in larger repositories such as boltons and python-jose,

where the initial success rate is relatively low (around 40% or less), but iterative execution lifts

it by more than 10 percentage points for both models. While the absolute gain varies, the

relative improvement remains consistent, underscoring the importance of test-driven retries for

handling complex code structures and external dependencies.

It is important to note that the gains from iteration come at the cost of increased compu-

tational effort. As discussed in Section 5.5, iterative methods may require significantly longer

runtimes due to multiple generation-validation cycles. However, given the substantial gains in

correctness observed across nearly all repositories, the trade-off is often justifiable, especially in

settings where reliability takes precedence over latency.

In sum, these results reinforce the value of integrating feedback-driven iteration into LLM-

based code generation pipelines. By overcoming limitations of the single-pass approach, iterative

refinement enhances the model’s ability to produce functionally valid, test-passing code across

diverse software repositories.

Comparison of Error Summaries

Within the iterative refinement process, the type of error feedback provided to the LLM

plays a crucial role in guiding successful regeneration. This study investigates two complemen-

tary strategies for error summarization: a lightweight, rule-based approach using regex-based

63

TABLE II: SINGLE-PASS (ITERATION = 1.0) VS. BEST ITERATIVE (ITERATION = 10.0)
SUCCESS RATES FOR EACH REPOSITORY, WITH ONE ROW FOR GEMINI 2.0 AND
ONE FOR QWENCODER 2.5 INSTRUCT.

Repository Model Single-pass SR (%) Iterative (10.0) SR (%)

Box Gemini 2.0 38.9 66.7
Box QwenCoder 2.5 38.9 61.1
PySnooper Gemini 2.0 76.9 84.6
PySnooper QwenCoder 2.5 69.2 92.3
arrow Gemini 2.0 27.2 35.9
arrow QwenCoder 2.5 27.2 34.8
blessed Gemini 2.0 37.0 46.9
blessed QwenCoder 2.5 37.0 46.9
boltons Gemini 2.0 43.9 54.9
boltons QwenCoder 2.5 42.2 59.1
cerberus Gemini 2.0 29.6 47.7
cerberus QwenCoder 2.5 27.3 36.4
loguru Gemini 2.0 29.2 50.0
loguru QwenCoder 2.5 33.3 50.0
python-jose Gemini 2.0 20.4 46.3
python-jose QwenCoder 2.5 16.7 35.2
shortuuid Gemini 2.0 22.2 66.7
shortuuid QwenCoder 2.5 25.0 77.8
tinydb Gemini 2.0 41.3 60.9
tinydb QwenCoder 2.5 34.8 63.0

64

extraction, and a more semantic, model-driven strategy employing an LLM-based summary of

test failures.

The regex-based mode extracts concise error messages directly from the test output logs by

matching common patterns. These summaries are typically short and focused on the immediate

cause of failure—such as a missing attribute, a type mismatch, or a failed assertion. For

example, after generating the initial implementation:

def t a b l e s (s e l f) −> Set [str] :

return set (s e l f . s t o r a g e . keys ())

the regex-based summary identified the recurring issue:

AttributeError: ’MemoryStorage’ object has no attribute ’keys’

This kind of feedback allows the model to quickly realize the underlying misunderstanding (e.g.,

treating the storage object as a dictionary) and produce corrected versions. Through successive

iterations and increasingly specific errors (e.g., handling of NoneType or checking if the storage

was opened), the function was eventually refined to:

def t a b l e s (s e l f) −> Set [str] :

i f not s e l f . opened :

raise RuntimeError (”Database i s not opened”)

data = s e l f . s t o r a g e . read ()

i f data i s None :

return set ()

65

return set (data . keys ())

which passed all test cases successfully.

In contrast, the LLM-based error mode operates by summarizing the full test output

using another LLM, producing more verbose and semantically rich feedback. Instead of simply

reporting exceptions, it contextualizes them within the structure of the test logic. For instance,

for an incorrect generation such as:

def t a b l e s (s e l f) −> Set [str] :

return set (s e l f . opened . keys ())

the feedback might include multiple compacted assertions like:

assert [] == list(db.tables()) → AttributeError: ’bool’ object has no

attribute ’keys’

assert "persisted" in db.tables() → AttributeError: ’bool’ object has no

attribute ’keys’

assert db.tables() == {" default", "table1", "table2"} → AttributeError:

’bool’ object has no attribute ’keys’

This mode is more expressive and often captures richer information, such as the logical

relationships between tests, side effects, or inferred expectations. However, the verbosity can

introduce noise, and in some cases, less targeted guidance may lead to slower convergence or

even hallucinated fixes.

66

Empirical results (see Section 5.1) show that both methods can be effective, but their

performance varies depending on the model and context. The regex-based mode tends to be

more stable and focused, making it especially effective in simpler repositories or with models

that respond well to low-level feedback. LLM-based summaries, by contrast, are more useful

in complex scenarios requiring higher-level understanding or when the root cause of failure is

distributed across multiple test cases.

Ultimately, the choice between these strategies represents a trade-off between precision and

abstraction, and their comparative impact is analyzed in the following sections.

Success Rate and Iteration Counts

Table III summarizes the average number of iterations required to reach a passing solu-

tion across the various repositories and models. In the single-pass configuration, the iteration

count is fixed at 1.0 by definition. In contrast, the iterative refinement process—employing

either LLM-based or regex-based error feedback—yields modestly higher iteration counts. For

instance, in the Box repository with the Gemini 2.0 model, the LLM-based approach required

an average of 2.3 iterations, whereas the regex-based method converged in 1.7 iterations. In

the same repository, when using QwenCoder 2.5 Instruct, both iterative strategies converge in

approximately 1.2 iterations. Similar trends are observed for the PySnooper repository, where

Gemini 2.0 improves from a single-pass of 1.0 to 1.7 iterations with LLM feedback and to 1.2

iterations with regex feedback, while QwenCoder 2.5 Instruct consistently converges after about

1.2 iterations.

67

More complex repositories such as arrow and python-jose tend to require slightly higher

iteration counts, ranging from 1.3 up to 3.0 iterations, which suggests that more sophisticated

error feedback is occasionally necessary to resolve intricate issues. Nevertheless, the overall

average iteration counts remain low. It is important to note that the cap of 10 iterations was

set solely for experimental purposes to observe the system’s behavior under a conservative upper

bound. In practical applications, the vast majority of functions are corrected within just a few

cycles.

These findings indicate that incorporating error feedback—whether via LLM-based summa-

rization or regex-based extraction—substantially enhances the success rate over the single-pass

approach, while only minimally increasing the average number of iterations needed. The rel-

atively low average iteration counts support the view that iterative refinement is an effective

strategy for overcoming initial generation shortcomings, and that further efficiency improve-

ments may be achieved in practical settings.

5.2 Comparison of General-Purpose and Code-Specific LLMs

The experimental evaluation also provides an opportunity to directly compare the perfor-

mance of two distinct LLM types: a general-purpose model, Gemini 2.0, and a code-specific

model, QwenCoder 2.5 Instruct. Although both models are capable of generating syntactically

correct and functionally viable code, they differ in several key performance aspects.

Gemini 2.0, designed for versatility across various language tasks, typically exhibits a lower

success rate in single-pass mode. However, when iterative refinement is applied, its success

rate improves significantly, suggesting that its initial outputs benefit considerably from the

68

TABLE III: AVERAGE NUMBER OF ITERATIONS (FOR SUCCESSFUL GENERATIONS)
ACROSS REPOSITORIES, COMPARING SINGLE-PASS (1.0) AND ITERATIVE REFINE-
MENT USING LLM-BASED AND REGEX-BASED ERROR SUMMARIES.

Repository Model LLM Iter. Regex Iter.

Box Gemini 2.0 2.3 1.7
Box QwenCoder 2.5 1.2 1.2
PySnooper Gemini 2.0 1.7 1.2
PySnooper QwenCoder 2.5 1.2 1.2
arrow Gemini 2.0 1.3 2.0
arrow QwenCoder 2.5 1.3 1.8
blessed Gemini 2.0 2.1 1.9
blessed QwenCoder 2.5 1.8 1.6
boltons Gemini 2.0 1.7 1.8
boltons QwenCoder 2.5 1.9 1.9
cerberus Gemini 2.0 2.0 1.2
cerberus QwenCoder 2.5 1.4 1.3
loguru Gemini 2.0 1.9 1.8
loguru QwenCoder 2.5 1.5 1.3
python-jose Gemini 2.0 2.4 2.8
python-jose QwenCoder 2.5 2.8 2.7
shortuuid Gemini 2.0 1.4 1.5
shortuuid QwenCoder 2.5 2.9 2.3
tinydb Gemini 2.0 2.3 1.9
tinydb QwenCoder 2.5 3.0 1.9

69

corrective feedback provided by the testing pipeline. In contrast, QwenCoder 2.5 Instruct

often achieves higher success rates in single-pass mode, reflecting its specialization in code

synthesis. Nonetheless, even QwenCoder 2.5 Instruct gains from iterative feedback in more

complex scenarios.

A closer examination of the iteration data reveals that Gemini 2.0 generally requires more

iterations to converge to a passing solution than QwenCoder 2.5 Instruct. For example, in

the Box repository, Gemini 2.0 averaged 2.3 iterations with LLM-based feedback compared to

approximately 1.2 iterations for QwenCoder 2.5 Instruct. This trend is consistent across several

repositories, indicating that the general-purpose model benefits from additional correction cycles

to adapt its output to stringent code requirements. In contrast, the lower iteration counts

observed for QwenCoder 2.5 Instruct highlight its effectiveness in producing high-quality code

with minimal feedback, particularly in less complex contexts.

Table IV provides an aggregated summary of key performance metrics for the two models.

The table shows that the average single-pass success rate for Gemini 2.0 is 36.7%, compared

to 35.2% for QwenCoder 2.5 Instruct. Under iterative refinement, the success rates improve to

56.1% and 55.7%, respectively, while the average iteration counts remain nearly identical (1.91

for Gemini 2.0 and 1.90 for QwenCoder 2.5 Instruct). In terms of execution time, however,

QwenCoder 2.5 Instruct incurs a higher computational cost, with average single-pass and iter-

ative times of 13.9 seconds and 25.6 seconds, respectively, compared to 10.7 seconds and 20.3

seconds for Gemini 2.0.

70

Overall, these findings underscore the importance of selecting an LLM that aligns with the

specific task requirements. While general-purpose models such as Gemini 2.0 offer flexibility

and lower latency, specialized models like QwenCoder 2.5 Instruct are better suited for tasks

that demand precise, context-aware code generation. The trade-offs between iteration count,

runtime, and success rate—as summarized in Table IV—provide valuable insights for future

applications of LLM-based code generation in real-world software development.

TABLE IV: AVERAGE PERFORMANCE COMPARISON BETWEEN GEMINI 2.0
(GENERAL-PURPOSE) AND QWENCODER 2.5 INSTRUCT (CODE-SPECIFIC).

Metric Gemini 2.0 QwenCoder 2.5 Instruct

Average Single-pass SR (%) 36.7 35.2
Average Iterative SR (%) 56.1 55.7
Average Iteration Count (LLM) 1.91 1.90
Average Single-pass Time (s) 10.7 13.9
Average Iterative Time (s) 20.3 25.6

5.3 Analysis by Repository Complexity

In this section, the performance of each code-generation approach is assessed by grouping

the ten repositories according to their size and complexity. Only functions with a descriptive

docstring or that are tested (directly or indirectly) are included, ensuring that each function

has both conceptual guidance and meaningful test coverage. Table V shows the number of

71

analyzed functions in each repository and the assigned tier.

TABLE V: REPOSITORY GROUPINGS BY COMPLEXITY, BASED ON NUMBER OF
FUNCTIONS. SMALL REPOSITORIES HAVE UP TO 30 FUNCTIONS, MEDIUM REPOS-
ITORIES HAVE 31–60 FUNCTIONS, AND LARGE REPOSITORIES HAVE MORE THAN
60 FUNCTIONS.

Repository # Functions Complexity Tier

shortuuid 9 Small
PySnooper 13 Small
Box 18 Small
loguru 24 Small
cerberus 44 Medium
tinydb 46 Medium
python-jose 54 Medium
blessed 81 Large
arrow 92 Large
boltons 237 Large

Small Repositories

In small repositories (up to 30 functions), single-pass generation can sometimes be effective

for simpler logic but often fails when confronted by corner cases. Table VI summarizes success

rates for shortuuid, PySnooper, Box, and loguru. Iterative refinement tends to improve correct-

ness, particularly for utility-like functions that rely on correct handling of data structures or

custom exceptions. The computational overhead remains moderate in most small repositories.

72

Most failures in small repositories stem from attribute errors, incorrect handling of special

cases, or omissions of input validation. Regex-based error extraction is usually sufficient for

direct assertion failures, while LLM-based error summaries are more helpful when multiple is-

sues appear concurrently. The gains in success rate across all small repositories—shortuuid,

PySnooper, Box, and loguru—confirm that test-driven iteration substantially reduces failures,

even in relatively simple codebases.

TABLE VI: SUCCESS RATES (%) IN SMALL REPOSITORIES (UP TO 30 FUNCTIONS),
COMPARING SINGLE-PASS GENERATION WITH ITERATIVE REFINEMENT UNDER
LLM-BASED AND REGEX-BASED ERROR FEEDBACK.

Repository Model Single-pass Iterative (LLM) Iterative (regex)

Box (18) Gemini 2.0 38.9 66.7 66.7
QwenCoder 2.5 38.9 61.1 50.0

PySnooper (13) Gemini 2.0 76.9 84.6 76.9
QwenCoder 2.5 69.2 92.3 84.6

shortuuid (9) Gemini 2.0 22.2 55.6 66.7
QwenCoder 2.5 25.0 77.8 66.7

loguru (24) Gemini 2.0 29.2 50.0 50.0
QwenCoder 2.5 33.3 50.0 50.0

Medium Repositories

Medium repositories (31–60 functions) introduce additional complexity and domain-specific

considerations. Table VII contains success rates for cerberus, tinydb, and python-jose. These

73

codebases highlight more intricate validation logic, file or database I/O, and multi-step domain

workflows. Single-pass performance rarely exceeds 40%, but iterative feedback, either via regex

or LLM-based error summaries, improves outcomes in all three cases.

The iterative approach is particularly helpful in addressing non-trivial dependencies or cryp-

tographic routines (as in python-jose). LLM-based summaries show strong utility where several

assertion failures arise from interdependent causes. Meanwhile, regex-based extraction proves

an efficient baseline for more direct or repeated exceptions, such as missing keys or incorrect

type checks.

TABLE VII: SUCCESS RATES (%) IN MEDIUM REPOSITORIES (31-60 FUNCTIONS).

Repository Model Single-pass Iterative (LLM) Iterative (regex)

cerberus (44) Gemini 2.0 29.6 47.7 38.6
QwenCoder 2.5 27.3 36.4 36.4

tinydb (46) Gemini 2.0 41.3 58.7 60.9
QwenCoder 2.5 34.8 63.0 60.9

python-jose (54) Gemini 2.0 20.4 38.9 46.3
QwenCoder 2.5 16.7 35.2 33.3

Large Repositories

Large repositories (more than 60 functions) are the most challenging due to deeper depen-

dencies, diverse function sets, and broader test coverage. Table VIII shows the success rates

74

for blessed, arrow, and boltons. Single-pass results drop below 40% in most configurations, un-

derscoring the complexity of replicating the original logic in a single shot. The iterative modes

offer consistent improvements, although they sometimes converge more slowly, reflecting the

interplay of multiple abstractions or layered modules.

Many failures in arrow and boltons relate to domain-specific edge cases, such as time-zone

conversions or generic utility functions spanning multiple data types. Iterative refinement

enables the models to incrementally correct these issues. The regex-based mode remains robust

for relatively straightforward exceptions, while the LLM-based mode helps when interlocking

functionalities trigger

compound errors.

TABLE VIII: SUCCESS RATES (%) IN LARGE REPOSITORIES (MORE THAN 60 FUNC-
TIONS).

Repository Model Single-pass Iterative (LLM) Iterative (regex)

blessed (81) Gemini 2.0 37.0 46.9 42.0
QwenCoder 2.5 37.0 46.9 43.2

arrow (92) Gemini 2.0 27.2 30.4 35.9
QwenCoder 2.5 27.2 31.5 34.8

boltons (237) Gemini 2.0 43.9 54.0 54.9
QwenCoder 2.5 42.2 59.1 58.2

Summary of Complexity Analysis

75

Smaller repositories can sometimes be handled with single-pass generation if functions are

relatively simple, but iterative prompts deliver valuable correctness boosts in nearly all cases.

In medium repositories, domain complexity grows and single-pass success rates drop, making

iterative refinement increasingly important. In large repositories, single-shot code generation

struggles with multi-layered interactions, and feedback-driven iteration is often necessary to

reach acceptable success rates. Overall, detailed docstrings and direct or indirect test coverage

allow each function to be both guided by initial context and rigorously validated, ensuring that

iterative corrections can converge on robust solutions.

5.4 Lines of Code (LOC) Analysis

Table IX presents a comparative view of the original lines of code (Orig LOC) versus the

lines of code in model-generated solutions (Gen LOC), along with their difference. Several

trends emerge from these data. In some instances, the generated code is more concise than the

reference implementation. For example, single-pass solutions for PySnooper (Gemini 2.0 and

QwenCoder 2.5) are substantially shorter than the originals, often because the model omits

certain checks or defensive constructs. In other repositories, such as Box with Gemini 2.0,

the generated code exceeds the original by approximately two lines, reflecting additional logic

inserted to handle errors or validate inputs. It is important to note that only effective lines of

code were counted, excluding comments, empty lines, and formatting artifacts.

Generated vs. Original LOC

76

TABLE IX: AVERAGE LINES OF CODE (LOC) FOR SUCCESSFUL GENERATIONS. THE
TABLE LISTS THE ORIGINAL LOC, GENERATED LOC, AND THEIR DIFFERENCE
(GENERATED MINUS ORIGINAL) FOR EACH REPOSITORY AND MODEL IN SINGLE-
PASS MODE.

Repository Model Orig LOC Gen LOC (Diff)

Box Gemini 2.0 7.3 9.4 (+2.1)
Box QwenCoder 2.5 6.0 5.7 (-0.3)
PySnooper Gemini 2.0 6.3 2.4 (-3.9)
PySnooper QwenCoder 2.5 6.0 2.0 (-4.0)
arrow Gemini 2.0 2.3 2.7 (+0.4)
arrow QwenCoder 2.5 2.3 1.8 (-0.5)
blessed Gemini 2.0 9.1 7.2 (-1.9)
blessed QwenCoder 2.5 9.1 8.6 (-0.5)
boltons Gemini 2.0 7.5 9.0 (+1.5)
boltons QwenCoder 2.5 6.7 5.7 (-1.0)
cerberus Gemini 2.0 2.6 2.7 (+0.1)
cerberus QwenCoder 2.5 2.5 2.2 (-0.3)
loguru Gemini 2.0 2.3 2.3 (0.0)
loguru QwenCoder 2.5 2.3 2.3 (0.0)
python-jose Gemini 2.0 2.7 3.4 (+0.6)
python-jose QwenCoder 2.5 2.3 3.7 (+1.3)
shortuuid Gemini 2.0 3.5 2.5 (-1.0)
shortuuid QwenCoder 2.5 7.0 6.0 (-1.0)
tinydb Gemini 2.0 5.1 3.6 (-1.5)
tinydb QwenCoder 2.5 3.6 3.1 (-0.5)

77

The variability in generated code length does not adhere to a single pattern across repos-

itories. In smaller projects like PySnooper, concise solutions may suffice when the underlying

functionality is relatively straightforward, especially if the model omits repetitive validation

checks from the original. Conversely, in repositories such as arrow or python-jose, the addition

of multiple checks or error-handling statements can expand the total code. Iterative refinement

further contributes to these fluctuations. In some cases, repeated attempts shorten the solution

by removing superfluous lines. In others, each cycle introduces new code elements to address

corner cases or align with implicit expectations revealed through the tests.

Shorter code does not invariably correlate with higher accuracy. For instance, while PyS-

nooper shows a substantial reduction in lines, it also relies on robust testing and a clearly

documented API to guide the model. In Box, the average gain of two lines for Gemini 2.0 often

reflects additional logic needed to handle missed conditions in the original attempt. These ob-

servations underscore that the presence or absence of lines is less consequential than ensuring

the generated code captures all required domain constraints.

Correlation with Success Rates

There is no consistent relationship between code length and success rates, as some ver-

bose implementations fail critical tests and certain minimal solutions pass them with fewer

lines. Repositories like shortuuid and PySnooper illustrate that effective outcomes can be more

concise, particularly for functions whose original implementations include redundant control

structures or defensive checks that the model omits while still preserving correctness. By con-

78

trast, python-jose demonstrates how higher line counts sometimes improve correctness when

handling layered encryption or token verification routines. Yet even in that domain, merely

adding lines does not guarantee success; the newly introduced logic must specifically address

the underlying test failures.

Overall, these patterns indicate that the decisive factor for correctness lies less in code

length and more in how thoroughly each solution satisfies the demands of the tests and domain

constraints. The role of comprehensive docstrings and well-targeted test cases proves critical:

by clarifying functional requirements, they enable the model to focus on the essential logic, be

it in fewer lines or more.

5.5 Time Efficiency and Overhead

Table X compares the average execution time for successful generations using single-pass

generation versus iterative refinement under two different error handling modes. The data

clearly illustrate that single-pass attempts are systematically faster but often fail more fre-

quently (see Section 5.1), whereas iterative methods require multiple prompts, resulting in

higher overall runtime.

Single-Pass vs. Iterative Timing

Single-pass generation produces code in one step and runs the test suite only once. As shown

in Table X, this leads to lower average times (e.g., 3.0 s for Gemini 2.0 in shortuuid or 4.0 s

for QwenCoder 2.5 in PySnooper), but with limited chances to correct errors. Consequently,

79

the success rate in single-pass mode remains lower, particularly in medium-to-large repositories

with more complex dependencies or extensive tests.

Iterative refinement, on the other hand, retries generation after test failures and integrates

error feedback into subsequent prompts. While this approach substantially improves correct-

ness (see Section 5.1), each additional attempt incurs extra time. The iterative LLM-based

mode can be especially time-consuming due to multiple calls to the large language model (e.g.,

12.6 s for Gemini 2.0 in Box, compared to 3.8 s in single-pass). However, for challenging tasks,

investing additional cycles to iteratively resolve errors may prove more efficient overall than

manually diagnosing failures or relying solely on one-shot code generation that fails outright.

Impact of Error Handling Mode

Regex-based error extraction generally offers the fastest feedback cycle: it scrapes concise

failure messages from the test logs, leaving little overhead for processing or summarization. As

a result, its total runtime in iterative mode tends to be lower than the LLM-based approach

(e.g., 5.5 s vs. 7.3 s for QwenCoder 2.5 in Box). However, regex extraction struggles to capture

multiple, interlinked errors spanning multiple test assertions.

By contrast, the LLM-based summary mode provides more context-rich feedback, enabling

the model to address intricate or compound errors more effectively. This advantage is particu-

larly apparent in repositories with more complex testing scenarios or non-standard failure cases

(see also Section 5.3). Yet the extra LLM calls and token usage lead to increased computational

cost (e.g., 35.1 s vs. 25.0 s for QwenCoder 2.5 in arrow).

80

TABLE X: AVERAGE EXECUTION TIME (IN SECONDS) FOR SUCCESSFUL GENER-
ATIONS ACROSS REPOSITORIES AND MODELS. THE TABLE COMPARES SINGLE-
PASS EXECUTION WITH ITERATIVE REFINEMENT USING LLM-BASED AND
REGEX-BASED ERROR FEEDBACK (ITERATION LIMIT = 10.0).

Repository Model Single-pass Iterative (LLM) Iterative (regex)

Box Gemini 2.0 3.8 12.6 8.2
Box QwenCoder 2.5 9.1 7.3 5.5
PySnooper Gemini 2.0 3.7 6.4 4.3
PySnooper QwenCoder 2.5 4.0 5.1 4.2
arrow Gemini 2.0 17.0 33.8 37.6
arrow QwenCoder 2.5 25.0 35.1 36.2
blessed Gemini 2.0 4.3 13.1 14.8
blessed QwenCoder 2.5 5.4 14.8 9.8
boltons Gemini 2.0 3.9 8.0 8.7
boltons QwenCoder 2.5 4.4 12.4 8.7
cerberus Gemini 2.0 3.0 8.9 6.1
cerberus QwenCoder 2.5 2.8 9.3 7.5
loguru Gemini 2.0 14.4 26.0 23.2
loguru QwenCoder 2.5 16.4 24.0 21.2
python-jose Gemini 2.0 51.0 78.0 84.2
python-jose QwenCoder 2.5 61.5 106.1 109.4
shortuuid Gemini 2.0 3.0 6.4 5.5
shortuuid QwenCoder 2.5 6.0 22.4 11.3
tinydb Gemini 2.0 3.3 10.2 6.9
tinydb QwenCoder 2.5 4.6 19.2 7.0

81

In essence, there is a clear trade-off between the lightweight speed of regex-based extrac-

tion and the more robust but resource-intensive LLM-based approach. For simpler failures or

smaller repositories, regex-based parsing can be sufficient and faster. When failures are more in-

tricate—perhaps involving multiple attributes, layered assertions, or domain-specific logic—the

richer semantics of LLM-based error summaries may justify the higher overhead.

5.6 Discussion of Key Findings

Significance of Iteration for Complex Functions

Iterative generation yields tangible advantages when addressing functions that involve in-

tricate dependencies or domain-specific nuances. Multiple attempts, each guided by error feed-

back, enable the model to incorporate incremental corrections until the function aligns with

deeper architectural demands. This iterative process is particularly apparent in repositories

such as python-jose and boltons, where single-pass attempts often fail on subtle inter-module

or cryptographic challenges. Successive regenerations, informed by precisely captured or sum-

marized errors, progressively adapt the code to match the intended domain logic. In settings

where correctness is a primary concern, such as security-focused libraries, the capacity to refine

an initially incomplete solution becomes critical.

Trade-Offs in Cost and Time

Despite the clear gains in reliability from iterative refinement, this method incurs additional

computational overhead. Each unsuccessful attempt prompts fresh calls to the large language

model, requiring further replacements and repeated test runs. Although single-pass generation

82

executes rapidly, it seldom addresses complex corner cases at the first attempt. In time-sensitive

or cost-sensitive scenarios, the iterative approach risks inflating token usage and execution time.

However, findings show that in complex repositories, single-pass methods rarely achieve accept-

able coverage without manual post-processing or debugging. When uninterrupted operation

and high assurance are priorities, iterative refinement justifies the higher resource consumption

by steadily converging on verified, test-passing code. In simpler repositories or in prototyping

phases, a single-pass approach might suffice, although subsequent manual corrections become

indispensable.

Limitations and Possible Future Works

One significant limitation of the current system is its heavy reliance on the quality and

comprehensiveness of the test suites. The evaluation framework assumes that a function passing

all available tests is correct; however, if the tests are incomplete or insufficiently rigorous,

critical edge cases may be overlooked. Consequently, a function might pass validation while

still failing in real-world scenarios. Furthermore, when error logs and assertions lack sufficient

detail, both regex-based extraction and LLM-based summarization may generate inadequate

feedback, thereby impeding effective iterative refinement.

It is important to note that for this study only repositories with test suites that pass 100%

of their tests at the time of acquisition were selected. This controlled selection criterion ensures

that any failure in the generated code is attributable to deficiencies in the generation process

83

itself rather than to shortcomings in the test suite. In such an environment, a single test failure

unequivocally indicates that the generated function does not meet the intended specifications.

To mitigate these issues, future versions of the system could incorporate mechanisms for

dynamic weighting or tagging of test cases based on their coverage depth, ensuring that the most

critical behaviors are rigorously evaluated. In addition, implementing a retrieval-augmented

correction mechanism to maintain a repository of recurring error patterns and their successful

resolutions could streamline the refinement process. By allowing the system to reuse previously

effective fixes, it would reduce redundant reasoning and accelerate convergence on new tasks.

An adaptive error-handling strategy also offers a promising improvement. Simpler, well-

structured logs could continue to be processed efficiently using lightweight regex extraction,

while more complex or ambiguous failure cases could dynamically trigger LLM-based summa-

rization, balancing speed and depth of understanding depending on the complexity of the test

output.

Finally, further enhancements in prompt engineering and lightweight static analysis in-

tegration could improve the system’s ability to interpret vague or incomplete test feedback.

Incorporating minimal static checks, such as basic type validation or undefined variable detec-

tion, would enrich the feedback without sacrificing the system’s lightweight and general-purpose

design. Altogether, these directions aim to reduce computational redundancy while making the

generated code even more robust for real-world development scenarios.

CHAPTER 6

CONCLUSION

The findings in the previous chapter reaffirm the strength and practicality of an iterative,

feedback-driven approach for LLM-based code generation. Throughout this work, the single-

pass strategy was used solely as a comparative reference, to highlight how introducing structured

feedback loops can dramatically enhance correctness — without relying on expensive fine-

tuning, additional model training, or human intervention.

Instead, the proposed method demonstrates that meaningful improvements can be achieved

with lightweight means already available to any developer: project documentation, function-

level docstrings, and existing test suites. By iteratively refining the generated code based

solely on test feedback, the system evolves its outputs autonomously, respecting the natural

development workflow while minimizing overhead.

While iterative refinement naturally entails some additional runtime compared to a single

generation attempt, the overall computational costs remain modest and are justified by the

significant gains in success rate and code reliability. This balance is particularly evident across

a wide range of projects, from smaller libraries like Shortuuid to more complex ecosystems like

Box and TinyDB, where repeated, feedback-guided generations consistently led to functional

implementations.

84

85

Moreover, the system’s dual error-handling strategy — lightweight regex parsing for straight-

forward cases and LLM-based summarization for complex failures — enables adaptable, efficient

correction cycles tailored to the nature of the encountered errors.

Ultimately, this approach demonstrates that improving LLM-generated code does not re-

quire monopolizing resources, retraining models, or building specialized infrastructures. It is a

lightweight, cost-effective, and developer-friendly solution that scales naturally with the com-

plexity of real-world software projects.

CITED LITERATURE

1. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., and Dhariwal, P.: Lan-
guage models are few-shot learners. Advances in Neural Information Processing
Systems, 33:1877–1901, 2020.

2. Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., and Kaplan, J.: Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

3. Svyatkovskiy, A., Wang, S. K., and Lee, N. S.: Intellicode compose: Code generation with
transformer-based model. arXiv preprint arXiv:2005.08025, 2021.

4. Li, Y., Lakshminarayanan, B., Ritchie, D., and Singh, S.: Competition-level code genera-
tion with alphacode. arXiv preprint arXiv:2203.07814, 2022.

5. Bavarian, M., Lee, F., Khabsa, M., Rawat, A., Hajishirzi, H., Kiela, D., and Lewis,
M.: Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

6. Vaswani, A., Shazeer, N., Parmar, N., and Uszkoreit, J.: Attention is all you need. Advances
in Neural Information Processing Systems, 30, 2017.

7. Pearce, H., Ahmad, W., McGill, M., Peebles, D., and Shmatikov, V.: Assessing the security
of github copilot’s code contributions. IEEE Symposium on Security and Privacy,
2022.

8. Wang, Y., Deng, S., Wang, W., Gao, Y., Wang, J., Ye, X., Chen, Q., Zhao, Z., and Xu, J.:
Codet5+: Open code large language models for code understanding and generation.
arXiv preprint arXiv:2305.07922, 2023.

9. Nijkamp, E., Lee, B., Huang, Y., Zhang, S., Sun, W., Chang, K.-W., Smolensky, P., and
Jiang, H.: Codegen-multi: Multi-turn program synthesis with pretrained models.
arXiv preprint arXiv:2302.06817, 2023.

10. Sobania, D., Schuff, H., Neumann, G., and Hoppe, T.: Analysis of code generation with
openai codex. arXiv preprint arXiv:2301.12359, 2023.

86

87

CITED LITERATURE (continued)

11. OpenAI: Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

12. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Lattimore, F., Brockman, G., Cottrell, G.,
and Schulman, J.: Training language models to follow instructions with human
feedback. arXiv preprint arXiv:2203.02155, 2022.

13. Beck, K.: Test-Driven Development: By Example. Addison-Wesley, 2002.

14. Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.: Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 311–318, 2002.

15. Hendrycks, D., Burns, C., Basart, S., Zou, A., Song, D., Steinhardt, J., and Jacob, M.: Mea-
suring coding challenge competence with apps. arXiv preprint arXiv:2105.09938,
2021.

16. Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan, D., Mao, Y., Lou, J.-G., and
Chen, W.: Repocoder: Repository-level code completion through iterative retrieval
and generation. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 2471–2484, 2023.

17. Pan, Z., Hu, X., Xia, X., and Yang, X.: Enhancing repository-level code generation with
integrated contextual information. arXiv preprint arXiv:2406.03283, 2024.

VITA

NAME Lorenzo Gallone

CONTACT +1 (464) 204-8833 — lorenzo.gallone@gmail.com —
www.linkedin.com/in/lorenzo-gallone

EDUCATION

Master of Science in “ Computer Science ”, University of Illinois at
Chicago, May 2025, USA

Specialization Degree in “ Computer Engineering ”, Jul 2025, Poly-
technic of Turin, Italy

Bachelor’s Degree in Computer Engineering, Jul 2023, Polytechnic of
Turin, Italy -

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2023 - IELTS examination (7.0/9)

A.Y. 2024/25 One Year of study abroad in Chicago, Illinois

A.Y. 2023/24. Lessons and exams attended exclusively in English

SCHOLARSHIPS

Fall 2024 Italian scholarship for final project (thesis) at UIC

Fall 2024 Italian scholarship for TOP-UIC students

TECHNICAL SKILLS

Programming
Languages

Python, Java, MATLAB, SQL, JavaScript, PHP, HTML5, C, C++,
Bash, Kotlin

Frameworks React, NodeJS, Firebase, GitHub, Linux, Docker

Skills Software Engineering, Artificial Intelligence, Neural Networks,
Databases, Data Management, Programming & Software Development,
Academic Research, Web Application Development, System Design,
Object Oriented Programming

88

89

VITA (continued)

ACADEMIC PROJECTS & APPLIED EXPERIENCE

2024 – Present LLM-Powered Code Generation System

Master’s thesis at University of Illinois at Chicago on developing an AI-
powered system for automatic Python code generation using large lan-
guage models. Integrated automated testing and iterative refinement to
ensure accuracy. Demonstrated strong problem-solving, adaptability,
and independent research, aiming for a research publication.

2024 – 2025 Secure Web Application

Joint project between Politecnico di Torino and University of Illinois
at Chicago. Developed a secure, real-time multiplayer web application
using React, Node.js, and Express. Combined creative UI design with
robust backend security. Highlighted teamwork, cross-cultural collabo-
ration, and practical problem-solving.

2024 – 2024 Professional Task Manager (Android)

Developed a Kotlin-based Android application featuring live chat and
multi-team support. Delivered a fully functional prototype under tight
deadlines, demonstrating agility, time management, and a practical,
hands-on approach.

