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Abstract

The thesis work has been conducted with the collaboration of Nexi Digital S.r.l.,
inside a team adopting the SAFe framework for Agile development methodology, which
is a methodology used in large organizations with multiple teams cooperating among
themselves, to develop complex products in a very quick and continuous way, using a
specific set of technologies.

The case study is about the MyPayments application, which manages merchants’ data
and different kinds of PoS implementations. This application is in the digital payments
market and allows to manage physical PoS terminals, but also soft PoS terminals, which
are increasing over time also because they work on common smartphones.

Although the application has a very extended backend, including databases, the whole
system has some technical issues to be solved, like absences of services or high waiting
times inside the application under specific conditions. Specifically, the objective of the
work is to identify these anomalies and improve the reaction time to these issues, thanks
to a real-time alerting system, also in order to increase the user experience.

The methodology applied in this work consists in analyzing potential solutions with
different approaches, and then suitable technologies for the chosen approach; describing
how the parsing of the raw log data has been done, the partial output structure, which
is used by the machine learning model to be trained, and how the training and execution
of the model are implemented, using two different scripts.

The results obtained are positive and respect the given requirements, since the anoma-
lies have been successfully identified with very high recall. The benefits of the results in
terms of user experience and reactiveness to issues are evident, because the anomaly alert
would be received by the team as soon as an issue is identified, so that it can be solved
in the least possible time.

As a conclusion, the proposed system can be implemented inside the Nexi’s infras-
tructure in the future, both inside the Cloud or in any virtual machine. The analysis and
design of the entire system consists of a RabbitMQ implementation, including the scripts
defined to parse raw logs and to execute the XGBoost model, with the script to send
email alerts. It will also be possible to extend the machine learning model to identify
new anomalies or malicious patterns which may be potentially insecure for the backend
servers and applications.
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Chapter 1

Introduction

MyPayments application is a service provided by the Nexi Group and developed by Nexi
Digital S.r.l. This application is supported by a variety of backend services with different
purposes. The merchants using the application are experiencing technical issues with both
the iOS and Android application, like absence of services or temporary malfunctions.

The objective of this work is to design and implement a solution that supports the
team managing some of the backend servers, which needs to identify and be notified
of problems as soon as they occur, to reduce the reaction time and improve the user
experience of the application.

During the work, different possible solutions are described and compared; the best
fitting one according has been chosen, according to the needs and requirements of the
team. This solution is described at various levels, from the design one to the actual
implementation. Moreover, it is both theoretically and practically relevant due to the
possible approaches, such as machine learning algorithms among other ones.

It is important to notice that some information, like services’ names, IP addresses,
security configurations, additional functionalities, the infrastructure architecture, and so
on have been omitted as agreed with the company partner of this work, to not expose
the infrastructure and services to security threats and also to not make public, internal
information related to the application and the entire ecosystem for several reasons.

A future implementation of the solution has also been discussed, considering and
comparing various available technologies, with respect to the requirements of the team
involved in the work. The chosen approach has been designed and then described at a
more practical level, including the working mechanisms and the expected results.

The chapters of the thesis work are described in the following list:

1. Background: an overview of the team and the company is provided, as well as the
software development methodology used in the team involved in this thesis work.
Some concepts needed to work inside the team are explained, together with the
entire ecosystem of teams working on the company projects, always synchronizing
among themselves. In the end, the technologies involved in the study are briefly
described;

2. Case study: MyPayments application is described, together with some technical
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Introduction

concepts related to the digital payments domain, like the different types of PoS.
The overall architecture of the application and the backend is described, specifically
explaining the internal backend architecture, which is directly managed by the team
involved in this work. The known technical issues of the application and the backend
are also described;

3. Methodology: given the technical issues, some potential solutions are analyzed and
compared among themselves, choosing a specific one. After that, this solution has
been analyzed and designed at a lower level, until reaching the actual implementa-
tion of the final solution, which is described, including all the relevant details about
the code and the complexity managed over the work.

4. Results: the numerical results and performance obtained are discussed, split by
the objectives reached regarding the solved problem. Moreover, the methodologies
used during the various operations done are also described, giving details on how
the work has been executed.

5. Conclusion and future implementations: the result obtained can still be extended
inside a system with specific requirements needed to be satisfied to meet the needs
of the team involved in this work. Possible approaches are discussed and compared
with technical details, reaching a choice. The design of the system based on this
choice is explained, as well as the working mechanisms inside itself and the expected
results from the overall system.
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Chapter 2

Background

The company in which the work has been completed is Nexi Digital S.r.l., which is an
Italian company, part of the Nexi Group and works on several of its products internally, in
order to achieve the best possible results by focusing the development of the applications
and services on the business orientation the company has.

2.1 Team description

In particular, I was part of a team called ApeCar team, within a large set of teams, taking
part in a much larger project. In my team, there are iOS developers, Android developers,
a backend engineer, and two people working on quality assurance for the frontend product,
which is the app. There have also been two testing automation developers, who worked
in the team until they needed to automate some tests which were not automated yet.
Apart from technical personnel, there also is a manager coordinating the ApeCar team
and some others within Nexi Digital, a product owner communicating with stakeholders,
such as various product managers for the app the team works on, each one for a set of
specific aspects of the app, and a scrum master to ensure that the SAFE Agile framework
is correctly applied. The team cooperates with nine other teams to contribute to a much
larger project, which aims to provide several services and products to Nexi’s customers.

2.2 My experience

I had the opportunity to know all the people inside my team, and some other people
from other teams, because sometimes our work was not related to the work of some other
teams. The team in which I worked has a very positive and optimistic approach, all
members cooperate as much as they can to achieve the objectives they have set for the
product. I also knew people from other teams and discussed several times with them,
in order to solve problems with dependencies or incidents which have happened. These
interactions have been very important in order to exhaustively understand how all the
other systems to which the MyPayments App backend is connected. In some situations,
I have also worked together with developers and members of other teams to complete
cross-team user stories or tasks. I think it has been very positive for me to do this,
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Background

because I also understood a bit more of the project they work on, and also the extension
of the entire infrastructure and all the services inside itself.

2.3 SAFe Agile framework

As earlier mentioned, several teams are cooperating in order to achieve the objectives
of a much larger project. All of these teams are part of the ART, which means Agile
Release Train. The ART has the objective of providing new features and improvements
to the products and services managed by the teams within it, by giving priority to each
of them. The features are described by the epics, which contain several user stories to
be implemented in order to release the complete feature. In some cases, there are depen-
dencies among the different teams to complete user stories, so if there are some problems
during their development, other teams may also be affected by them. All the features
and improvements are driven by business choices, requesting to go towards a specific
direction within the market among all the products and services, but also specifically
for every single one. After having defined these things at the ART level, every team
has its own objectives to realize and can work on them, with its software development
methodology. Since every team can choose and adapt the best-fitting software develop-
ment methodology for its work, a common methodology is needed at the ART level, in
order to coordinate in a very efficient and effective way all the teams taking part in it.

2.3.1 ApeCar team methodology

The team in which I work chose the software development methodology which fit more to
its needs, and in this case, it is the Scrumban, which I have already learned and applied
inside the Software Engineering II course, within a team of five other colleagues, apart
from some aspects related to the Kanban methodology. Before joining the team, I al-
ready felt confident about the Scrum actual application, thanks to the project developed
all over the course at University and the support of the professors. The ApeCar team has
to do different ceremonies inside the Scrum, at different moments during the software de-
velopment process. The most frequent ceremony is the Daily Scrum meeting, which lasts
around fifteen minutes and all the team participates in it, including the Product Owner
and the Scrum Master. Moreover, there also are other ceremonies, as we already know,
which are the Sprint planning, the Sprint review or Demo, which is performed at the end
of the iteration, the team retrospective, which will be described in details later, and the
backlog refinement, which is not mentioned inside the theory of the Scrum methodology,
but it is a lot used in practice. The iteration lasts 2 weeks inside the ApeCar team,
as theoretically described by the Scrum methodology. About the Kanban methodology
and how the ApeCar team uses it mixed with Scrum, obtaining the Scrumban, it will be
talked about later on in the thesis work. For all the ceremonies, the team only relates to
Scrum, so everything will refer to it from now on.
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2.3 – SAFe Agile framework

2.3.2 DoD - Definition of Done

The ApeCar team has a document inside a platform, explaining all the criteria to be
respected in order to consider a story as done. In the following they’re listed “(from [3])”:

Acceptance Criteria

1. All acceptance criteria are fulfilled:
Each acceptance criterion defined in the user story is fully met.

2. Completion of all subtasks:
All associated subtasks (e.g., analysis, implementation, testing, pull request, merge
into the development branch) are marked as completed.

3. Documentation requirements:
If documentation is specified in the acceptance criteria, the relevant Confluence
page must be created. The page must include a link to the documentation, video,
or proof of concept (POC), and the Jira code must be present in the page title.

4. Jira test case requirements:
For user stories, there must be at least one associated Jira test case.

5. Unit testing:
All required unit tests must be implemented and successfully passed.

6. Firebase tracking:
All implemented functionalities must be tracked in Firebase as planned with the
same nomenclature for both iOS and Android.

7. Execution of planned Jira tests:
All planned Jira test cases must be executed and marked as PASSED and DONE.

8. Attachment of additional information:
Any supplementary information specified in the description field must be attached,
if required.

9. Resolution field completion:
The Resolution field in Jira must be updated with one of the following options:

• Done
• Fixed
• Won’t fix
• No Longer Applicable
• Not a Bug
• Out of Scope
• Cannot Reproduce
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10. Product Owner (PO) approval:
Final approval and feedback from the Product Owner (PO) must be obtained →
the PO will do the approval once the issue on Jira (of the main ticket) is in Ready
for Acceptance status.

2.3.3 Sprint planning

The sprint planning inside the ApeCar team, like in the theory of Scrum methodology, is
performed at the start of the sprint, which is called iteration according to the SAFe Agile
framework, because it also includes working cycles of Agile methodologies different from
Scrum. During the Sprint planning all the team discusses about the user stories to be
added to the Spring backlog, in order to be implemented. The team has a certain velocity
and capacity which is constantly measured by the Scrum Master, so that the team is very
likely to complete all the stories committed inside the Iteration, unless potential blocks
due to technical problems or dependencies from other teams inside the ART.

Velocity and capacity

As mentioned above, the Scrum master computes and updates the velocity right after
every sprint. Talking about the velocity of the team, it is the average speed of the
completed work from the team members, and it is computed on the measures coming
from the last six iterations as an average value of the measures themselves. The measure
taken inside from every iteration corresponds to the story points completed during it,
so, at the end of every iteration the Scrum master can compute the updated velocity,
which numerically will be the average of the story points that the team is able to commit
and complete in a single iteration. Given a velocity and the number of team members,
once fixed the iteration length, it is possible to compute the total number of story points
the team is expected to be able to complete all over an Iteration. As everyone knows,
some team members may be absent some days, for example, for vacations or other kind
of permits, so the actual number of story points that the team is able to complete may
be lower than the one computed as previously described. As a consequence of this, the
Scrum master also computes the capacity, which is the number of story points the team
is expected to complete during the iteration, considering the absences of all the team
members. In the end of these computations, the Scrum master gets the capacity, which
can be used to choose which user stories to commit or not for the next sprint.

Iteration buffer

The iteration buffer is very important to perform effective sprint planning, for different
reasons. It is possible and it regularly happens in software development that software
engineers and developers face technical issues, problems related to dependencies from
other teams, or incident to be managed, so practically bugs to be fixed, with a variable
priority level. Due to these events which can happen with a varying probability, if the
team commits inside the sprint a number of story points equal to its capacity for that
iteration, it will be very unlikely to complete them all, so the remaining user stories
will be moved in further iterations, also according to possible business priority changes
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related to them. As a consequence, the Scrum master always keeps an iteration buffer,
which is the difference between the actual capacity and the story points committed for
an iteration, so that the team also has time to manage technical problems, overhead to
communicate with other teams in case of issues due to dependencies, etc. The iteration
buffer is also very important to guarantee the possibility of the team to react to incident,
without having to leave incomplete some of the user stories already committed, so that
the users are constantly provided new value, by keeping their experience at the highest
possible level inside the app.

2.3.4 Scrumban

The Scrumban is a hybrid approach derived from the Scrum and Kanban methodologies
in order to achieve a higher level of flexibility, inside the structure of the traditional
Scrum. The ApeCar team adopts Scrumban, so that it can be able to react faster to
incidents coming during the sprints, also depending on their priority. There are different
incidents priorities, starting from 4, which is the lowest one, to 1, which is the highest
one. The reaction depends on the priority of the incident: for example, in case of priority
2 incidents, "War rooms" are opened, in which several people with different roles, like
developers, managers, product managers, etc., join and discuss about how to solve the
problem, its actual impact on users, the users impacted by the problem, etc. In this
scenario, the developers responsible for the code causing the problem have to work until
the incident is not solved, and everyone has to help them as much as he can, in order to
reduce the fixing times.

2.3.5 Sprint review

The sprint review, which consists of a demo with all the stakeholders of the product, is
performed every Friday after the end of an iteration. During the review, the ApeCar
team shows the new features implemented. The stakeholders for the ApeCar team and
the MyPayments App are the product managers working across all the teams of the
global project, especially the product manager of the MyPayments App. During the
sprint review, the main developer of a certain feature usually shows a demo of it, with a
video or by showing the functionality in real time on the product. After completing the
demo, the presenter asks for any questions coming from the product managers, then he
answers them, if there are any.

2.3.6 Sprint retrospective

After the end of each iteration, the members of the team do a retrospective, which
is conducted by the Scrum master. During the retrospective, each team member can
express his thoughts, by writing them on a board, and then the whole team discusses
about everything inside an online meeting. The team usually also gives a mark to the
iteration.
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2.3.7 Backlog refinement

The backlog refinement is executed with all the team together, although some of the user
stories which will be implemented in the iteration aren’t related to all the team, since
there are three main categories of developers, which are the ones working iOS, Android
and on the backend. During the backlog refinement, anyone can express his thoughts or
concerns about new user stories to be implemented, and then the developers involved in
the implementation of the user stories have to give an estimation of that. As from the
literature of software engineering, there are several ways to give an estimation of user
stories, like Scrum poker, T-shirt sizing, which simply consists of giving an estimation
with the value of the size of a t-shirt, like S, M, and so on, the three-point estimation,
etc. The ApeCar team estimates the user stories using the Scrum poker, with Fibonacci
values, generally up to a maximum of 13, otherwise, the story should be decomposed into
more and smaller stories, manageable inside a single iteration. During this meeting, the
developers can also discuss technical aspects of the implementations, in order to provide
better estimations for the user stories. After each vote, it is important to get to the same
values in order to confirm the estimation for the user story, so if the values proposed by
the different developers are not equal, they have to explain themselves the motivation
of their vote, so that the voting can be performed again, to verify the new estimation
proposed. This process continues until the proposed estimations are the same among all
the developers participating in the voting operation. In the end of the refinement, the
team has estimated the new user stories, ready to be planned in further iterations.

2.4 Spikes
The team can commit user stories to be completed inside the iterations, regarding the
implementation of new feature inside the iOS or Android app, inside the backend. More-
over, the team can also commit Spikes. A Spike is created when a user stories is requested
to be implemented, but the time needed is not easily estimable, or the technical possibil-
ity to implement it is not granted, so the team has to check and verify if the user story
can be implemented and in which way. Spikes usually last one day and are expected to
produce a document as output, to explain what has been found in detail, any potential
problems, etc. If the spike yields a good result, the developers can estimate the user story
more confidently, making it ready to be added to an iteration to be implemented.

2.5 SAFe framework - ART
All teams within the ART adopt the same shared framework in order to cooperate harmo-
niously among themselves. The adopted framework is SAFe, which means Scaled Agile
Framework.

2.5.1 Definition

SAFe is an organizational framework that allows one to apply Agile, Lean and DevOps’
principles on a large scale, in a context which several teams work in, with the objective of
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developing very complex products, in a very quick and continuous way, as already defined
inside DevOps and Agile principles, while being aligned with the strategical objectives of
the company the teams work for, all together. In order to achieve these results, the SAFe
framework provides a structure, roles, practices and workflows, which allow to extend
the traditional Agile application to a very wide context of working teams, by keeping
the focus on the cooperation and continuous deployment, as in the DevOps principles, in
order to always provide value to the customers, that are fundamental for every business.
In the following a scheme containing the principal elements and functions inside the SAFe
framework is represented:

Figure 2.1. Scheme with the main elements of the SAFe framework from
(Reproduced from [4])

In the following sections, the most important elements and practices of the ART from
the internal point of view of the ApeCar team will be explained and discussed.

2.5.2 Core values

Like Agile, Lean, and DevOps, the SAFe framework also has its own values, which add
to those of the methodologies it is defined upon. These values are as follows:

• Alignment

• Built-in quality

• Transparency

• Program execution

Alignment

SAFe framework is used to manage a variable number of teams, in order to let them
cooperate in the most efficient and effective possible way. It is very important that all
the teams are aligned and work toward a common goal. In this way, all the teams work
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in alignment with the defined strategy and objectives defined by the business, producing
the best possible results, which is fundamental for every organization.

Built-in quality

Quality is fundamental in the SAFe framework, and it has not to be an add-on to the
final product. It has several aspects to be considered, like code quality, external quality
of the product, and so on. The objective, as in Agile methodology, consists of working to
produce only high-quality products. This can be ensured through accurate testing, which
has to be automated in order to automatically execute tests when needed, ensuring no
regressions after new implementations or changes to the already existing code. Moreover,
practices like pair programming, continuous integration, etc. contribute to consistently
maintaining quality high.

Transparency

Transparency is a core value of the SAFe framework, as well as for the Agile methodology.
It is very important that all the people working to a project have the complete visibility of
what is done, and the trust is fundamental from the stakeholders and product managers,
towards all the development teams. Transparency makes it easier to honestly cooperate
among all the teams, and inside every single team, in order to earlier identify any problem
and to solve them, so that the value provided to the customer is the highest possible.
Transparency can be adopted through the usage of several practices, like having visible
Agile boards, so that every member of the team and also product managers can see the
progresses of every single team inside the ART, sharing metrics related to each team,
and having frequent feedback, which is possible thanks to iteration reviews and system
demos.

Program execution

Program execution in the SAFe framework consists of continuously providing value to
the customer, which is crucial for every business. This value is similar to continuous
deployment in DevOps. In order to actually be adherent to program execution it is very
important to follow the schedules defined about the development of new features, their
releases, etc., while being focused also on any possible improvement to already existing
ones.

2.5.3 Ceremonies

Since the SAFe framework is grounded in Agile principles, just as there are some cer-
emonies defined by the Agile methodology, there are also some within the SAFe. The
main ceremonies of the SAFe framework are as follows:

• PI Planning

• Scrum of Scrums (SoS)
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• PO Sync

• System Demo

• Inspect & Adapt (I&A)

PI Planning

PI planning is executed at the start of every PI, which means Program Increment. The
ART the ApeCar team works in adopts a PI lasting five iterations, each one lasting two
weeks. There is only an exception to this structure and organization, which happens
only in a PI over the year, and it is that in the PI going over the month of August,
the iteration over the second and third August weeks, lasts three weeks instead of two.
This choice is due to a lot of people taking vacations in these weeks, so the capacity
of the teams is too low to complete the committed user stories for the iteration within
two weeks, as it usually happens. Product managers, product owners, system architects,
RTEs, which means Release Train Engineer, business owners, and other technical or
functional stakeholders, together with all the members of every team inside the ART
take part to this ceremony, in order to schedule the work to do in the iterations of the
PI, manage dependencies across the different teams, to better plan the activities and the
user stories to be committed inside every iteration, otherwise, some teams may commit
user stories which are impossible to complete due to some dependencies to user stories of
other teams, which may not be completed yet. During PI planning, every team maps all
dependencies with others, identifies the main risks related to the activities and user stories
to be implemented, and defines the objectives of the whole PI. PI planning typically lasts
two days, as in the ApeCar team case inside the ART.

Scrum of Scrums (SoS)

The Scrum of Scrums, also called SoS, is a Scrum meeting that is regularly performed
among the scrum masters of all the teams inside the ART. Its objective is to coordinate
all the teams inside the ART, to manage and solve problems and dependencies across
the teams. Thanks to the SoS, the workflow of the entire ART improves in terms of
efficiency, and all the scrum masters can align on the common objectives of the current
PI. The participants to this ceremony usually are the scrum masters of every team inside
the ART, but also the RTE and sometimes product managers or system architects, if
they are needed to provide any kind of explanation to the scrum master, allowing them
to better organize the work of all the teams.

PO Sync

The PO Sync, which means Product Owner Sync, is a very important ceremony inside the
SAFe framework, because it is fundamental in order to coordinate the products owners
from every single team, and also product managers in several situations, in order to
guarantee continuous alignment on priorities of the different features committed during
inside the PI and how their development progresses trhoughout it. Moreover, some teams
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may have related user stories in their backlog, so the product owners can also discuss how
to better synchronize their teams’ work during the iterations. Product owners during this
meeting also discuss functional and prioritization problems, if there are any. The PO Sync
is regularly executed, like a Scrum of Scrums, and sometimes also system architects, the
RTE, and the business owner take part in it. Thanks to this sync, POs are always
aligned about the strategic business direction of the product, while being also able to
quickly adapt to problems happening over the PI and feedback received from product
managers, etc.

System Demo

The system demo is a ceremony involving all the people already involved inside the PI
planning, with the objectives to show the results of the PI obtained by every single
team inside the ART. During this demo, every team usually shows the most important
features implemented during the PI, in order to receive feedback from the stakeholders,
the product managers, etc. The system demo also allows one to verify that the ART
is actually producing the expected value for the customers, according to the business
strategy already defined.

Inspect & Adapt (I&A)

This ceremony is equivalent to the iteration retrospective at the team level, but it is
conducted among all the teams of the ART, together with the RTE, product managers,
system architects, business owners, and stakeholders. During this ceremony, the system
demo is executed in order to show the results obtained and the features implemented.
After that, the metrics chosen at the ART level are analyzed together to evaluate the
positivity of the results. Some metrics which may be used in order to execute this
analysis are the percentage of PI objectives completed, velocity, quality, etc. In the
end, the participants cooperate with the objective of identifying the main problems that
appeared or emerged throughout the entire PI, so that they can define the cause of the
problems, without having to point the finger on anyone who has any responsibility, but
only to improve the performance inside the ART, across all the teams. The technique
used to understand the causes of the problems is the RCA, which means Root Cause
Analysis. After having identified all the problems and their causes, the participants
identify improvement actions to prevent the problem from appearing in future Program
Increments.

2.5.4 Epics

Within the ART, across all the teams, it would be too complex and also meaningless to
discuss user stories, as each team does this at a lower level. Due to this problem and to
the need of being more concrete and adherent to the business strategy point of view, it is
necessary to talk about features at a higher level, without making too detailed distinctions
among the different platforms on which the product is deployed, etc. An equivalent of
user stories at the team level is needed at ART level to achieve this objective, which is why
there are epics. Epics are similar to user stories, but may include several implementations
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and sub-features which need to be implemented, in order to complete the entire epic, so
it is also possible to define it as a collection of user stories, related among themselves
from a common objective, which is defined by the business. Every epic has a description
of what the business wants to provide to the customer, and then the PO has to align the
team about what is needed to be done from his team’s side, in order to contribute in the
correct way to the epic actual implementation. As imaginable, starting from the analogy
of the epics with user stories, there is also a backlog at ART level, so that it is possible
to track and prioritize the features across all the teams, in order to let them be able to
coordinate and cooperate in the most efficient and effective way, if needed.

2.6 Considered technologies

During this work, several technologies are considered, each one of them for different and
specific reasons, according to the objectives to be reached at the end of the work.

In this section, these technologies will be briefly described, in order to provide a better
overview of the entire technological stack.

2.6.1 Python

Description

Python is a high-level programming language that is interpreted and object-oriented. It
is also a very easy to read programming language.

Thanks to these characteristics, it is well-suited for data analysis and machine learn-
ing. It has a very extended set of available libraries and frameworks, such as NumPy
and Pandas, providing tools to manipulate data in several ways, to implement machine
learning algorithm, and so on.

This is one of the most used languages in these fields, so it is supported by a very
active and extensive community.

There are also several studies and articles highlighting its relevance in machine learn-
ing and AI field, such as "Machine Learning in Python: Main Developments and Tech-
nology Trends in Data Science, Machine Learning, and Artificial Intelligence" from [14]

2.6.2 XGBoost model

Description

XGBoost is a very powerful machine learning algorithm, due to its efficiency and perfor-
mance with limited resource availability.

This algorithm is based on gradient boosting, optimized for speed and performance.
XGBoost is very effective in classification and regression problems, since it is highly

capable at managing heterogeneous data, also because it is very robust, and it rarely
happens that overfitting occurs when using it. This model also manages missing or
incomplete data, which is frequent in real-world data because of errors or other issues
which may occur.
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There are several studies that demonstrate the effectiveness of this machine learning
model in different contexts, as well as its integration with the scikit-learn library, as
demonstrated in the study "Gradient Boosted Regression Trees in scikit-learn" from [13]

Reasons to use it

There is a very important article, named "XGBoost: A Scalable Tree Boosting System"
from [6], which highlights the performance of the model, describing it as better and more
efficient rather than other models, on several machine learning benchmarks. This is very
important for this thesis work, for the reasons analyzed later on.

Thanks to this information, it is easy to understand why it makes sense to use this
machine learning model, due to its characteristics, but also its performance, which is
satisfying for several potential applications.

2.6.3 scikit-learn library

Description

This is a machine learning library for Python language. It provides a very wide set of
tools for different purposes, such as data mining, statistical modeling, etc.

This library is very easy to use, as well as scalable and efficient in its possible appli-
cations.

scikit-learn library supports several machine learning models, which can be trained
and executed right after the training operation is done.

It is important to note that it is backed by a very active community, which continu-
ously contribute to its development over time.

Usages and algorithms supported

Going into further details, it includes support for supervised learning algorithms, both for
classification and regression purposes. Some examples of these algorithms are Support
Vector Machines (SVM), k-Nearest Neighbors (k-NN), Random Forest, etc., for classifi-
cation purposes, but there are also Linear Regression, Support Vector Regression (SVR)
and others as regression algorithms, as highlighted and explained in the book "Mastering
Machine Learning with scikit-learn" from [7].

This library also provides features to train machine learning models without supervi-
sion, like clustering algorithms, but it also supports dimensionality reduction algorithms,
like PCA, which means Principal Component Analysis, that are fundamental to solve
different kind of problems. The clustering algorithms supported are k-Means, DBSCAN
and Hierarchical Clustering.

Moreover, additional support is included, for example, to preprocess data, by pro-
viding tools to normalize, standardize, and also transform data with techniques like the
One-Hot Encoding and Polynomial Features. These techniques are widely used in data
preprocessing to prepare the dataset in the training phase of a machine learning model.

Scikit-learn also provides features to evaluate trained models with an extensive set
of metrics, which can also be configured depending on the needs. The available metrics
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include accuracy, precision, f1-score and ROC-AUC, also with different variants available
for the f1-score. Cross-validation is also supported to evaluate the machine learning
models more robustly, reducing the likelihood of bias.

This library is also widely used because it is integrated with other Python libraries
like NumPy, SciPy, etc. Thanks to these integrations, it is easy to implement in any
scenario, providing useful tools for several needs.

Reasons to use it

scikit-learn is also widely used because of the tools it provides for training machine learn-
ing models and preprocessing data for the training. There are several articles highlighting
the completeness of the tools provided by this library for data preprocessing, specifically
for normalizing and transforming data, often surpassing other libraries providing similar
functionalities in terms of efficiency. Moreover, another reason to use is its seamless in-
tegration with other libraries, which enhances the entire project workflow, as supported
by a study entitled "Scikit-learn: Machine learning in Python" from [12].

2.6.4 RabbitMQ

Description

RabbitMQ is an open-source message broker that uses the AMQP protocol, which stands
for Advanced Message Queuing Protocol. It works with an asynchronous paradigm in
order to let the different applications to exchange messages through message queues, in
a reliable way.

This broker supports different messaging mechanisms, such as the publish/subscribe
one, where there are topics and subtopics. Applications can subscribe to specific topics
to read or publish messages, sending messages to other applications that are subscribed
to the same topic. It is fundamental to note that the messages stay in their queue until
they are consumed by a subscriber. There are also other mechanisms supported, like the
routing and the request/response ones.

The request/response paradigm is used to facilitate bidirectional communication be-
tween application instances.

Reasons to use it

RabbitMQ is acknowledged for its scalability, reliability, and simplicity of integration
with different programming languages.

It is important to note that it supports clustering to balance the workload and au-
tomatically manage failures, as highlighted by the study "Evaluation of highly available
and fault-tolerant middleware clustered architectures using RabbitMQ" from [15]. These
characteristics are very important for certain implementations that need to be scaled,
although they may not be considered when there is a single instance consuming messages
inside a system.

Moreover, considering other alternative technologies in the same category, like Kafka,
it is important to notice that RabbitMQ is very powerful at managing clusters in a
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reliable way, at replicating queues among the different instances, which is very important
to obtain the expected results from the overall system, and it is also easy to integrate
among applications using different programming languages, as also stated by another
study entitled "A study on Modern Messaging Systems: Kafka, RabbitMQ and NATS
Streaming" from [16]. This last analysis also details RabbitMQ’s capability to maintain
very low latency while supporting different communication protocols, which is crucial in
terms of flexibility for this technology.

2.6.5 Apache Kafka

Description

Kafka is an open-source platform providing tools to manage high volumes of data flowing
in real time. It is designed to be scalable, in order to reliably handling ever-growing data
volumes.

It is also known for its capability to effectively manage persistent data and operate
with low latencies, as described in the study "Kafka: a Distributed Messaging System for
Log Processing" from [11]. Due to these characteristics, Kafka is well-suited for real-time
processing in several contexts.

Moreover, Kafka can easily be integrated with different systems used to process data,
such as Apache Hadoop, Apache Spark, and so on.

Reasons to use it

There are several reasons to use Kafka, such as the very good capability to work with
persistent data, while maintaining low latencies, which are crucial in order to execute
real-time processing.

It is also important to know that it is scalable at a very high level, specifically in
an horizontal direction, so it may be the perfect choice if the system being designed
or redesigned is planned to grow to manage a very high data volume, always keeping
throughput very high respect to other similar technologies with the same data amount.
These results have been obtained using Kafka to execute an experimental implementation,
which is documented in a study named "A Study of Apache Kafka in Big Data Stream
Processing" from [9].

2.6.6 REST APIs

Description

This approach is based on the HTTP protocol. It consists of a specific way of imple-
menting APIs, according to the REST paradigm, which means REpresentational State
Transfer.

REST APIs have different characteristics: such as the stateless nature, meaning that
every request is independent from every other one, so it needs to include all the needed
information to execute the procedure on the server side.

Moreover, this API flavor is scalable, thanks to its architecture, allowing it to handle
a high rate of requests.
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It is very important to know that REST APIs expose a uniform interface for the
possible operation which can be called, so that they are compatible with other systems
of different natures.

Reasons to use it

REST APIs are widely used due to the ease of implementation they provide, keeping a
very high flexibility in terms of applications, but this approach fits best web solutions,
thanks to the improved scalability and efficiency for them, as also highlighted by the study
"Choosing the Right Communication Protocol for your Web Application" from [8], which
also states that sometimes, despite limited performance in certain scenarios, REST APIs
are still the chosen solution for web applications due to their simplicity of integration and
interoperability with other systems they have.

Although REST APIs are very flexible and scalable, when implementing microservices
with high workloads or real-time systems, technologies like RabbitMQ manage the work-
load volume better due to its asynchronous nature and the publish/subscribe paradigm,
as demonstrated by the study "Performance Analysis of RESTful API and RabbitMQ for
Microservice Web Application" from [10].
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Chapter 3

Case study

In this chapter, the existing iOS and Android application which the ApeCar team works
on is described, with technical details on its architecture and on both versions of the
mobile applications. Moreover, some problems of the project are introduced, in order to
effectively motivate the solution proposed with its implementation.

3.1 MyPayments App

MyPayments is an application available for both iOS and Android devices, dedicated
to the markets of these countries: Germany, Switzerland, Austria, Denmark, Sweden,
Norway, Finland, Latvia, Lithuania, Estonia, France, Faroe Islands, Iceland, and Liecht-
enstein.

The application has been designed to streamline the management of digital payments
for merchants of all kinds, by providing them several features which make it easier to
manage their terminals, to enable tips, for example, to receive assistance in various situa-
tions, and more. Users are also able to access a detailed transaction history, with curious
insights computed on their data, and users can also accept NFC card payments directly
from their smartphones, working as a Soft PoS, without the need for any external termi-
nal. The application has some different features specific for every country, because some
of them haven’t still be released in some countries or aren’t available at all, due to several
reasons.

As previously mentioned, MyPayments application is available for both iOS and An-
droid, providing the same functionalities but in different ways in some cases, because
of the characteristics of operating systems and already existing implementations in both
versions of the app.

The application is integrated with a very extended backend system to retrieve trans-
actional data, to authenticate and get authorized to access different other systems, to
access detailed reports and analytics about transactions of every merchant, etc.

In the following, there are some screenshots of the user interfaces of the application:
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Figure 3.1. Transactions and settlements interface (Reproduced from [5])
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Figure 3.2. Business statistics interface (Reproduced from [2])
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3.1.1 PoS categories

Different kinds of PoS terminal exist, and the MyPayments application manages them in
different ways, from the physical PoS, to the virtual PoS. Before going into details, let’s
briefly describe the characteristics of every terminal category and how they’re integrated
into the application.

Physical PoS

A physical PoS is a device composed of a screen, a keyboard, which may be physical
or implemented using a touchscreen, potentially also a printer, which is used to print
receipts to be given to customers, and also a reader for cards. There are different kinds
of readers, like the magnetic stripe reader for cards, the EMV chip reader and the NFC
reader, which means Near Field Communication and it is compatible with almost every
smartphone on the market nowadays.

Soft PoS

A Soft PoS, meaning Software PoS, consists in using a physical device like a smartphone,
a tablet, or any other of their kind, which is able to perform digital payments on itself,
without the need of any additional physical hardware. Merchants only need their device
to perform contactless payments, using the NFC technology in order to retrieve all the
information from the cards used to pay for the receipts.

Virtual PoS

A virtual PoS is a software platform, like a web one, which is able to elaborate payments,
without the usage of any physical device. Virtual PoS platforms are used on the web to
execute payments remotely, just by securely sending the card information data needed to
process the payment. Virtual PoS can be integrated into various applications, supported
by any platform, thanks to integration with the web service of the virtual PoS.

3.1.2 Security

The application follows the rules defined by PCI-DSS, which means Payment Card Indus-
try - Data Security Standard, about the protection and security of all the data managed
by the application working in the payments market. Moreover, the My Payments applica-
tion also implements end-to-end encryption in any communication done with the servers,
thanks to the TLS protocol used over HTTP.

3.1.3 Translations

MyPayments application is translated into eleven languages to provide the best user expe-
rience to any merchant in any country where the app is released. Managing translations
can be done in several ways in apps, for example in iOS by using Localizable.string files,
so there is a file for every language we translate phrases and words into, but this method
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has not been used for this project. The methodology used to manage translations in-
volves using Lokalise, an online tool allowing to manage translations to any language, in
a centralized way for every version of the application, so for both iOS and Android, by
accessing the translations through its dedicated SDK, directly within the applications.
Lokalise associates a translation with a specific key, which has to be unique and can be
named in any way. In the MyPayments project there is a standard for naming new keys
in Lokalise, which consists in inserting the string "ms" before any key name, in order to
recognize that the corresponding translation is related to the MyPayments applications.
As already mentioned, both applications access translations thanks to the Lokalise SDK,
by retrieving the texts in the locale language of the device running the application. In
order to place the translations on the right label, a Lokalise key is associated with every
single component, so that the translation retrieved from the Lokalise system will auto-
matically be set in the correct position. In some situations, the locale language of the
device, which is used to request translations, has not any mapping on Lokalise, so the
default language, which corresponds to English in this case, will be used.

3.2 Overall architecture

Figure 3.3. Overall backend architecture (Reproduced from [1])
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The overall architecture of the project’s backend is composed of several elements,
which will be simplified to their functions within the architecture, without going into
deep details, as requested by the company. Let’s start from the services which are di-
rectly managed by the ApeCar team. These services have multiple instances, to achieve
better performance in providing the best possible service to the users of the MyPayments
application. They are inside the central block of the scheme, and will be discussed in
detail later on in a dedicated section, because of their importance for the MyPayments
application.

At the left of the central block, there is a DMZ, which contains a load balancer, to
better distribute the incoming requests for the internal servers of the central block, and
a web proxy, which can be used to safely exit outside the central block. The security
configuration of the web proxy isn’t known by the ApeCar team, because it is managed
by a different team, working on the infrastructure. The load balancer configuration is
also unknown to the ApeCar team for the same reasons.

At the right of the scheme there are several servers, exposing services in order to
access the several payments portal for the merchants. Since the MyPayments app allows
merchants from different portals to access the application, its services then retrieve data
directly from the portal on which the different merchants are registered, in order to show
it in the application. The backend of the MyPayments app also requests some operations
to be performed on these portals, by exposing APIs to the app, which can request to
execute these operations at any time.

These portals are related to the merchants of different countries, so there is a portal
for German merchants, for example, another one for Nordic merchants, and so on. There
also are some portals related to the same merchants, with different versions, because
they’re being migrated, but the previous version cannot be disabled until the migration
isn’t completed, so the MyPayments app also manages merchants part of a migration,
by accessing their data in the correct way, with specific strategies, according to the
requirements, business rules, etc.

Since some data is present on Confluence, about the ApeCar team and also other
teams inside the ART, the central block is also connected to the confluence server, in
order to be able to directly upload automatically generated reports, etc.

At the bottom of the scheme there is a database block, containing some of the informa-
tion accessed by the MyPayments app, which has not access all the existing information
on these databases. This block isn’t described in much detail, for several reasons.

The central block also communicates with the Lokalise servers, in order to implement
the translation functionality described in the MyPayments application section.

In the end, the mobile application instances of the MyPayments app communicate
with the central block, through the DMZ, to implement security controls and balance to
load among all instances inside the backend managed by the ApeCar team. The mobile
application instances also directly communicate with external systems not present in this
scheme, because they do not interact with the central block, so they are not displayed
here.

Talking about security, all the communications among the different server instances
use https as a protocol, in order to achieve confidentiality, integrity, and authentication.
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3.3 Internal backend architecture

The MyPayments App backend is composed of a limited set of servers with related ser-
vices, essentially two, plus an additional external service managed by the ApeCar team
only to perform maintenance and incident management on it. This backend system is
completely developed with Java Spring Boot framework, and there are two environments
as is usually done according to development best practices, which are the pre-production
environment and the production environment. The pre-production environment is used
to allow developers and stakeholders to perform tests on new feature or on already exist-
ing ones, in order to verify the presence of bugs, issues, etc. The production environment
only executes the tested and released code, which has already been approved by at least
one system architect of the ART.

3.3.1 External service

The External service is the outer one managed by the ApeCar team, and it communicates
with a data warehouse, containing all the data about transactions of the user on the
different systems. It exposes several APIs providing statistics and detailed information
coming from the analysis of the very large amount of data stored in the data warehouse.
The ApeCar team isn’t responsible of any development of this service, so hasn’t many
details about how it works, technical implementations, specific business requirements, etc.
The backend of the MyPayments app communicates with this service to retrieve statistics
and other data associated with app users, as well as general data which is available to
any user of the application.

3.3.2 Internal services

The two internal services, which will be called BE1 and BE2, are managed and developed
by the ApeCar team, which also manages all the incidents involving them. These two
services have different roles inside the backend of the MyPayments app.

BE1 is the frontend service, which takes all of the requests from the mobile appli-
cations, and then it directly communicates with the services connected in the entire
architecture for the majority of the requests, or with BE2 for the remaining ones, which
are related to specific use cases. As imaginable, BE1 exposes a lot of APIs to the frontend
applications.

BE2 has a lighter implementation, because it only provides some specific functionali-
ties, which are the registration, authentication, and authorization of the users trying to
access the MyPayments application, but it also provides other business-analysis-related
functions. These last functions are about tracking all the accesses of the users from every
country, in order to create country-focused report for logins, and also overall reports, con-
sidering combined data from all the countries where the app is released. Since there are
more instances of these servers, both in the pre-production and in the production environ-
ment, distributed lock mechanisms have been implemented to perform some operations
in the correct way, and only once, avoiding repetitions for different reasons, like having
duplicated data, and so on. Moreover, BE2 also provides other tracking functionalities,
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which will not be discussed in this thesis work.

3.3.3 Profile configurations

All these server instances operate in two different environments, as previously mentioned.
Also the servers providing external services to the ones managed by the ApeCar team have
different URIs to be identified. Due to this architecture, all the pre-production instances
and production instances, communicate with resources in the web, which have different
URIs, depending on the environment they are into. For example, in the pre-production
environment the BE1 service communicates with a service called SRV-PP to perform this
explanation, which has a specific URI in the web. The same BE1 implementation inside
the production environment communicates with SRV-P, which is the production replica
of SRV-PP, in order to provide the correct service to the frontend mobile applications,
for example by accessing the production database, and so on. A possible solution to
implement this mechanism in BE1, BE2, and external server instances may be to have two
different builds of the service code, with different URIs for the services they communicate
with, according to the environment they’re released into. This solution isn’t the best
one, because some mistakes may be done and also because for every service different
builds would be needed. In order to solve this problem in an efficient way, BE1, BE2
and External server instances have profile configurations, containing all the information
related to the environment they run in.

The actual implementation consists of having different ".yml" files with properties
containing the URIs of the other services in the corresponding environment, and also
other configuration values used by the server instances at runtime. The properties files
have an ordered hierarchy to be accessed until a certain property hasn’t been found, so
that the property requested by the server instances is at first searched in the most specific
properties file, which is configured in the execution configuration of the machine the code
runs on. If the requested property is not present inside the specified properties file, then
it is searched in the previous one of the ordered hierarchy; this recursively happens until
the property gets found.

The main properties file configured are three, which are the "p" properties file, where
"p" stands for production, the "pp" properties file, where "pp" stands for pre-production,
and simple properties file, which is the lastly accessed properties file, if the requested prop-
erty is absent in all the other ones. This last file usually contains common configuration
properties, which are both used inside the pre-production and production environments.

3.3.4 Identity Management

As previously briefly explained, the MyPayments app allows merchants from different
portals to access their data through the app. The app backend does not know the
credential for all the merchants, in every portal, since it only retrieves data from them,
to show it in the frontend application, after being requested. A strategy is still necessary
to authenticate and authorize merchants requesting some data, which are retrieved by
the various portals.

This property is satisfied with the following implementation: every merchant has to
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register initially, so that the MyPayments backend, particularly BE2 service, checks if
the user is already registered on at least one of the available portals; if this condition is
verified, then the registration is successfully completed, and the MyPayments backend
can authenticate and authorize the merchants at every login future within the app.

When retrieving data, the BE1 and BE2 services have to communicate with specific
portals, depending on which one the merchant performing the request belongs to. In
order to perform these requests, BE1 and BE2 are authorized to make any request for
any value to any portal, to have no blocks in accessing any data. It is very important
to properly manage the privacy aspect in compliance with GDPR law, otherwise. some
merchants may see data from others, actually violating the privacy law in EU, which is
very strict and severe.

It is also important to say that the business logic complexity of the backend services,
BE1, BE2 and the mobile applications is increased because a single merchant may be
present on one or more portals, but every portal has different data and also features,
which have to be correctly displayed in the mobile applications. As a consequence, the
application appears and behaves differently according to the kind of merchant logged in
and to the requested operations.

In the following paragraphs, some technical aspects of identity management will be
discussed, adding more details in order to explain the complete flow implementing the
mechanism just described at a higher level.

3.3.5 Merchant login mechanism

Let’s discuss the complete mechanism implemented to provide authorization and authen-
tication to merchants on the MyPayments application. The three main operation needed
to register for the MyPayments application and to be authorized for any access: regis-
tration, token and authentication, which in a single operation actually implements both
authentication and authorization.

Registration

At the beginning, right after the app download, the merchant has to register on the
MyPayments app through the registration process. In order to perform the registration,
the merchant has to provide his/her email address or CVR, which have to be already
registered on at least one of the portal connected to the MyPayments internal backend,
otherwise, the registration process will fail. CVR is the equivalent of the VAT number
for Denmark. Moreover, an application identifier is needed, in order to associate a single
email or CVR with a specific mobile application instance. After the mobile application
sends the requested information, the BE1 service receives the request and forwards it to
the BE2 service, which communicates with different databases and portals to verify that
the email address or the CVR present in the request is already registered on at least one
source system.

In the end of this check, if the value is absent in every source system, the registration
operation will fail, returning a 404 error, indicating that the requested email address or
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CVR was not found; otherwise, the BE2 service will generate an OTP and send it by
email to the email address in the request.

If the value in the request is a CVR, the mechanism is different, because the OTP
is sent to the email address of the administrator associated with the sent CVR. In this
way, the administrator can authorize people working in his organization to access the
MyPayments application, although they have no access to the organization email, just
by communicating them the OTP.

Right after these operations, the merchant has to insert the OTP in the mobile appli-
cation and send the request to perform the next operation of the flow. The registration
allows to bind an application identifier to a specific merchant or CVR on the portals.
Thanks to this implementation, it is also possible to have multiple instances of mobile
applications accessing the same merchant information from any of the portals.

Token

The next operation of the flow concerns the obtaining of a token. Right after the regis-
tration, the next operation to perform consists of sending the OTP code, together with
the application identifier and the email address or CVR used to perform the registration.

Right after that, the BE1 service will receive the request and forward it again to the
BE2 one, which implements the identity management mechanism, which will verify the
OTP against the saved one for the corresponding email address or CVR and application
identifier. If the check successfully ends, the BE2 service will return a persistent token to
the mobile application instance, which will permanently save it for future accesses. The
persistent token has an expiration period, to ensure a higher security level to the app
users. If the check fails, the BE2 service responds indicating that the OTP is wrong, so
the merchant can try to send the OTP again, in order to get the persistent token.

Authentication and authorization

The last operation of the login flow is authentication and authorization. This operation
uses the values obtained from the previous ones, particularly the persistent token and the
application identifier.

The mobile application sends these values to the BE1 service, which forwards the
request to the BE2 service. This service authenticates the user if the persistent token
and the application identifier are bound in the database; otherwise, it responds with an
error. If the authentication is successfully executed, the BE2 service generates a JWT
token, which is used to authenticate the merchant in every request of the session, until
it expires. The duration of this session token has to be low, in order to increase the level
of security, protecting from any potential MITM (Man-in-the-middle) attack.

After generating the JWT token, the BE2 service responds including it in the body
and also collects other information related to the authenticated merchant. This implemen-
tation is not standard or structured as it should according to the software development
best practices and theoretics, because together with the token, the BE2 service also re-
turns all the information about the organization of the merchant, so all the shops inside
the organization, the enabled features for the specific merchant and portal, etc. This
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information should be returned by independent APIs to keep the corresponding methods
inside the code independent, to improve maintainability, reduce network load, and also
increase modularity. This implementation was developed by the previous external team,
before the project began being managed internally by the company.

In the end, the BE2 service sends the response to the BE1 service, which forwards it
to the mobile application instance, and the login will be completed, with the merchant
having access to all his/her information inside the app.

After a certain amount of time, the JWT token expires for security reasons, so any
new request to APIs requesting authentication will return an error, indicating to perform
the authentication operation again, in order to get a new JWT token, to start a new
session.

A problem in this implementation is that the authentication operation may take a
high number of seconds to be completed, so performing it more than once in a short time
period is neither scalable nor efficient, and the overall user experience in the application
does not benefit from this mechanism.

For these reasons, the BE1 server instances have a cache storing the authentication
responses for a certain period, associated to the corresponding application identifier.
Thanks to this implementation, the mobile application instances can call the authenti-
cation API multiple times, without having to use all the resources needed as in the first
call. This is also possible because data is unlikely to change in a short time, so the user
experience gets improved, and the data consistency is not affected. Since data is unlikely
to change in a short amount of time, there is no need to retrieve the same copy of it
multiple times from the merchant’s portals, generating higher network loads, resource
usage, and so on.

3.3.6 Databases

All data displayed within the MyPayments mobile application comes from several source
systems.

Among all the databases accessed to retrieve the requested information or to provide
the correct service to the merchants, there are some only used to retrieve and update
statistics, while others are accessed to check if merchants are already registered or not on
some portals. For example, for the portal which is being migrated at the moment, there
are both the new implementation and the old one in the current production environment,
with the related databases.

The internal backend, managed by the ApeCar team, communicates with different
databases for different purposes. For example, the External server accesses statistical
data from a separate database which is used for different purposes, while the team also
manages two databases, containing all the information directly related to the mobile
application.

Almost all the databases use Oracle Extended SQL as query language, which means
that they are Oracle databases. There are also some instances of Cassandra databases
used for a specific purpose, but are planned to be dismissed in the future.

It is also very important to retrieve data properly from the different databases; other-
wise, there may be inconsistencies or missing data, which would affect the user experience
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of merchants impacted by the issue.

3.3.7 Known technical issues

As described up to this section, the application is extensive and manages a lot of data, so
there may be issues or bugs in different implementations, in the backend services and in
the frontend applications. The objective of the ApeCar team is to improve app quality
to provide the best possible user experience to merchants, and this can be achieved in
several ways.

Regarding the backend and the exposed APIs, the team has already noticed different
issues due to external providers or potential internal bugs, which may be solved more
quickly by monitoring them by constantly analyzing logs and receiving an alert when
issues occur. Some known issues are related to an absence of service or to malfunctions,
distinguishable by problems related to the response time, that may be too low or too high
for a specific API, or implementations not working as expected, detectable when an API
returns a 400 status code, for example, instead of a success status code under normal
conditions, etc.

In order to improve the quality of the mobile application, the proposed solution will
be discussed in the next chapter, giving further details about the overall problems and
the actual implementation.
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Chapter 4

Methodology

The objective of this thesis work is to notify the ApeCar team of issues as quickly as
possible, so that it is possible to react in the shortest possible time to prevent or minimize
the impact on merchants.

4.1 Solution analysis and choice

In this section the possible solutions to the problem will be analyzed, with their char-
acteristics, downsides, etc., in order to choose which of them to actually implement to
satisfy the objective of the ApeCar team regarding the MyPayments application.

4.1.1 Possible solutions

In order to react in the shortest possible time, it is needed to analyze logs in real-time, so
that a problem is detected right after happening, and an alert can be sent by the system
analyzing logs.

There are several possible solutions to analyze logs, like implementing some detailed
controls within the code, in the API methods. With this approach, if a problem occurs,
the corresponding backend server instance can directly send an alert, by using the email
or any other method.

This solution requires significant development effort to be implemented, and it also
increases the overall complexity of the backend code, because additional logic is added to
every API called.

It is also very important to consider that every API and method may present is-
sues under different conditions, also due to the implementations from external services
and portals with which the API method interacts, making this solution very onerous to
implement.

Moreover, there are other possible solutions, like developing a script which can be run
on demand, or by scheduling a chronologic job. This solution would need to receive log
files as input to analyze them, but the effort required to define all the possible issues for
every API in a deterministic way would be too high, and there would not be any warranty
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of covering every possible problem, so also this solution has been discarded, as well as
the previous one.

Another possibility is to use a machine learning algorithm. For this solution, it is
necessary to choose one of the available ones to train it and improve its performance,
maximizing recall and accuracy.

This choice allows to train the model basing on the detailed logs collected from the
internal backend servers and let the model autonomously learn from them, analyzing
and considering all the situations actually happening at the moment, so no issues will be
ignored or mistakenly not considered. Furthermore, this model can be run continuously
to receive logs and analyze them in real-time, so that an alert is generated and sent in
the chosen form right after a problem occurs.

In the end of this analysis, the choice was to use the machine learning model, because
it promises more accurate and comprehensive results, characteristics which align with the
objective of the ApeCar team for the MyPayments application.

4.1.2 Model potential choices and evaluation

Before analyzing the potential choices and evaluating them, it is important to define the
resources available to train the model, also according to the amount and complexity of
data in the log files of the backend service considered.

Talking about the available resources, the chosen model will be trained on a portable
PC, so it would not be sustainable and feasible in a reasonable amount of time to train
a large-scale model or even a medium-scale one, but in this case it depends on the model
characteristics.

In this analysis, several potential models will be briefly described to determine whether
they are suitable for solving the previously described problem.

XGBoost

This model is a Gradient Boosted Decision Trees algorithm, that does not support cat-
egoric values, but it is possible to define them by the usage of the one-hot-encoding
technique. The computational cost of this model is medium, but the model is very op-
timized and in between a lightweight and a medium-scale model. The ideal number of
features is maximum of two thousands, but the model works better on tabular data,
which are the data the ApeCar team can generate directly from logs.

LightGBM

LightGBM is another Gradient Boosted Decision Trees algorithm, but it also uses leaf-
wise growth, rather than the level-wise approach used by XGBoost. This model performs
better on large datasets with more than a thousand features, natively supports categor-
ical data, and is highly optimized in terms of computational cost required for training.
Moreover, LightGBM is not very robust on a small number of features, also because the
robustness is affected by the tuning executed. It is also more sensitive to overfitting if
not properly tuned, which requires additional effort.
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CatBoost

CatBoost is another Gradient Boosted Decision Trees algorithm, which works very well
with data containing a high number of categorical features, without needing one-hot
encoding to use this kind of features. The computational cost is medium, but higher and
less optimizable compared to XGBoost, and this model works well with any number of
features.

This model is quite expensive to execute with a large set of data.

Random Forest

Random Forest is a bagging of decision trees machine learning model, which is a Random
Forest algorithm variant, with a very low computational cost to train and execute the
model, but it is less scalable than boosting models.

Moreover, it performs very well with a few hundred features inside the data set, but
it has poorer performance compared to other boosting machine learning models. It does
not require much effort for tuning, so the training time is slower than other models, but
the performance is affected by this characteristic.

4.1.3 Chosen Model

Starting from the Random Forest model, this is very easy to implement, but its perfor-
mance and scalability are lower than the ones of the other models described, so it has
been discarded.

LightGBM is a very efficient machine learning model which works very well with
large datasets with a high number of features. However, it is foreseen to not have a high
number of features, which is needed to get optimal performance using this model, which
is around a thousand at least. Moreover, this model is robust only if the tuning is very
well executed, and this operation requires some additional effort.

In the end of the analysis, the most suitable models were CatBoost and XGBoost,
due to their capability to manage categorical and numerical features, the low-to-medium
computational cost for training and executing the model with the available resources, and
their efficiency.

The final choice is XGBoost because it performs better with large datasets, like the
one the ApeCar team has, containing all the logs from multiple instances of internal
backend servers.

4.2 Implementation

In order to implement the chosen model, including its training and execution, it is im-
portant to select a programming language with the corresponding library to access the
XGBoost model. After several considerations based on availability of the model, versatil-
ity, completeness of functionalities provided by the currently available libraries, the final
choice for the programming language has been Python.
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Moreover, according to the chosen solution, the log analysis is needed to be executed
on all the instances of two out of the three internal backend services.

Before implementing a specific solution for each of the two different services and their
multiple instances, which would require more effort than doing it for just one service, the
ApeCar team chose to start by implementing the solution for just a service, including all
its instances. This approach allows for validation of the implemented solution, and then
replication on the other instances.

This methodology is feasible thanks to the log structure on the two services, which is
very similar, allowing the logs to be parsed with slight changes to the parsers for the two
different services.

4.2.1 Project configuration

In order to train and execute an XGBoost machine learning model with the chosen pro-
gramming language, which is Python, it is important to include all the libraries allowing
to do these operations, which are the "xgboost" library and other ones allowing data
manipulation, hyper-parameters tuning, etc. These libraries have to be included in the
scripts to train and execute the XGBoost model.

Folders

The project has been divided into different folders to separate different types of files,
scripts, etc. Going in further details, in the project there are the following folders:

• logs: contains all the logs used to train the XGBoost machine learning model;

• logs_for_tests: contains all the logs used to test the trained XGBoost model and
evaluate its performance;

• utils: contains the script created to parse logs, producing the parsed logs used to
train the model and the ones to test its performance;

• main: contains the script to train the machine learning model, the script to execute
it and the file containing the model trained in the .pkl format.

4.2.2 Logs

The choice of the ApeCar team is to implement the solution only for a single service of
the MyPayments internal backend, so the one considered will be the service on the BE2
server instances.

In order to obtain the detailed logs, it is necessary to access the different instances of
the server and to activate debug mode for the new logs. In this way, the model will have
more information to use during the training process.

After activating the logs in debug mode, it was necessary to wait several days to collect
enough data usable to properly train the machine learning model and to parse them,
considering almost the majority of the possible APIs called by the mobile application
instances.
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Once the log files have been produced, I accessed the machines, moved them in a
folder allowed to download files from it, and downloaded them. After downloading the
log files, I put them into the "logs" and "logs_for_tests" folders of the project, in such a
way that each log file is only in a folder.

With this approach, the data used for testing are different from those used during the
training process, so the performance measures of the trained model executed on the test
dataset are more accurate and reflective of a real usage scenario.

4.2.3 Log analysis

After adding the log files inside the project folders, I started analyzing the log structure to
identify all the information which may be useful to train the XGBoost machine learning
model, also by computing additional features using data within the logs.

Here is a log example to clearly explain the structure of the log files:

2025-03-12 15:53:14.964 [20ca3541-9e83-44a1-8875-6365785684dd] INFO - ======>
Incoming Request | Flow: AUTHENTICATION | URI: /BE2/auth | Method: POST |
Request Body: {...} | Content-Type: application/vnd.nets.v6+json

2025-03-12 15:53:14.984 [20ca3541-9e83-44a1-8875-6365785684dd] INFO - Outgoing
Request ======> | URI: https://outerservice.com/auth | Method: POST |
Headers: [Accept:"text/plain, application/json, application/*+json, */*", X-
Target-Portal:"SP", Content-Type:"application/json", Content-Length:"81", X-
Trace-Id:"20ca3541-9e83-44a1-8875-6365785684dd"] | Request Body: {...}

2025-03-12 15:53:15.534 [20ca3541-9e83-44a1-8875-6365785684dd] DEBUG- Incoming
Response <====== | URI: https://outerservice.com/auth | | Status Code: 200 |
Headers: [Date:"Wed, 12 Mar 2025 14:53:15 GMT", Server:"", Strict-Transport

-Security:"max-age=3600; includeSubDomains; preload", Content-Type:"
application/json; charset=utf-8", Content-Length:"1465", Keep-Alive:"timeout
=5, max=300", Connection:"Keep-Alive"] | Response Body: {...}

2025-03-12 15:53:19.469 [20ca3541-9e83-44a1-8875-6365785684dd] INFO - <=====
Outgoing Response | Flow: AUTHENTICATION | URI: /BE2/auth | Status Code: 200

As seen in these logs, some requests perform additional requests to external services,
like the portals, to provide the correct service to the mobile application calling the API.

Initially, the choice was to analyze the entire sequence of requests needed to provide
a response for a single API, also considering the status codes of each request between the
incoming request and the outgoing response, in order to have very detailed data to train
the XGBoost model.

This approach led to several complexities which may would have not provided any
advantage, so the analysis was simplified by only considering all the requests in the
sequence in terms of message length, response times, etc., without considering the URI,
incoming responses status codes and other information, which would have made explode
the number of features used to train the machine learning model.

This choice has also been made to train the model in a very efficient way, keeping a
high level of performance.
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The objective is to monitor API calls independently, so it is necessary to group all
logs according to something which is unique for every incoming request. This is crucial
to keep track of the request execution and analyze its data to identify any anomalies and
their type.

The unique possibility to group different log rows together based on a single API call
is by using the X-Trace-Id, which is the value inside the square parenthesis, to analyze
all the requests and responses as part of the same server-side request execution.

Looking at the log file example, it is possible to identify some features which can
be directly extracted by reading them. Some of these features, like the date and the
X-Trace-Id, are meaningless for any analysis, since the X-Trace-Id is unique for every
request sequence, since it is a UUID. The date is also unique, but it may be useful to
extract the day of the week from it to help the machine learning model detect potential
patterns during the training phase.

There are some other features which are more interesting than these first ones, so
they can be parsed to train the model. These features are the URI, which is a categorical
feature since there are a certain amount of different URIs associated to the APIs exposed
by the service under analysis, the hour of the day, the status code of the outgoing response,
which allows one to detect malfunctions or absences of service for a specific API, so that
the ApeCar team can deeper investigate to better understand what happens with the
involved API, the API method, and the flow associated with the request, that indicates
a specific functionality provided by the service.

Thanks to the grouping by X-Trace-Id of the log rows, it is also possible to compute
other features from the logs. These features are different from those directly extractable
form the logs, like the URI and so on.

The derived features which have been considered meaningful are the average message
length over the requests sequence, which may indicate the presence of errors if its value
is too high, or the absence of the expected data in the responses if its value is too low,
the day of week, for the same motivation of the hour of the day, and the total response
time, computed considering the timestamps of the log rows with the same X-Trace-Id,
starting from the incoming request and ending with the outgoing response.

After analyzing the logs and identifying the interesting and meaningful features, it is
time to parse the log files and produce data in tabular form, so that the XGBoost model
can be trained using the clean dataset produced.

4.2.4 Log parsing

In order to be able to use the data contained inside the log files to train the machine
learning model, it is needed to convert them from the raw format to a tabular one, after
having identified the features and their possible values.

Starting from the log files, it is needed to understand their structure to be able to
parse them properly. Since the amount of logs needed to train and test the XGBoost
model is very high, it is necessary to perform this operation in an automatic way, for
example by writing a script to produce a file containing data in a tabular form, like a
.csv file.

Continuing with this approach, the single rows of the log files have to be properly
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parsed, extracting from them the values of the identified features to be used by the
XGBoost model.

In order to extract them, the most efficient method to be used consists of defining
specific regular expressions for the different elements of a log row, so that the elements
can be correctly identified and inserted inside the file containing the dataset in tabular
form.

Specifically different patterns and regular expressions have been used, because it was
needed to identify the single log row at first, and then also to identify different features
inside it, like the URIs, containing a string in a specific format, the status code string
with the numeric value, needing another kind of pattern to be identified, and also method
and flow from the request.

The parser script also has to be able to group all the log rows with the same X-Trace-
Id, so it is possible to group the different requests and responses of the same sequence
thanks to its value.

Moreover the script also has to compute some derived features, like the total response
time from the incoming request to the outgoing response; this has been computed by
performing the proper subtraction between the timestamp of the outgoing response and
the incoming request with the same X-Trace-Id.

In the end, also the anomaly type has to be computed, in order to train the model, and
to verify the performance of the already-trained model, right after testing it on the test
dataset. The trained model will not consider the anomaly type feature when performing
the predictions, otherwise, this solution would be pointless.

In the following table some examples of parsed sequences of requests and response for
different single API calls are shown, in order to provide more details about the output of
the log parsing operation:

URI Method Flow Status
code

Hour Day
of
week

Message
length
(Avg)

Response
time (ms)

Anomaly
type

/auth POST AUTH 200 17 2 204.98 1236 0
/events POST AUTH 204 14 4 111.00 14 0
/auth POST AUTH 204 14 1 175.25 3676 0

After the log parsing operation, the training and test datasets are ready to be used
in training the machine learning model, and testing it right after the training phase to
evaluate its performance and make changes if needed to improve them.

4.2.5 Training

For the training operation, it was necessary to write a new Python script, as well as for
the other operations.

This script went through different versions throughout the thesis work for several
reasons. All versions of the script have been realized to improve the trained model’s
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performance as much as possible, until achieving satisfying and meaningful results to
resolve the ApeCar team problem.

Both the initial version and final one will be described, along with all the increments
added to the initial script to reach the final version.

Features changes and filtering

In the initial version, there was no Flow feature, which enables the machine learning
model to distinguish the APIs also based on the logic flow they belong to within the
backend. After considering the flow value as a new feature to train the model, it became
also possible to detect additional patterns, so that the overall performance was improved
rather than before.

Moreover, in the initial versions of this script, all requests and responses sequences
were considered, even though some of them did not conform to the standard character-
istics. Since these cases occurred, I chose to not include these sequences because they
caused performance loss if used during the training operation.

Some of these sequences have a response time of zero, which is physically impossible.
They may correspond to some log rows with internal messages or exceptions which are not
associated with any time interval, but only with a single timestamp in the row, making
it impossible to identify a complete sequence.

Missing values management

During the first training executions, some features had no values for specific sequences
related to some APIs. It was necessary to manage these situations to train the XGBoost
model properly, considering all the available data in the correct form.

There were various features which may contain no value, so it has been set to unknown
in some situations, or to the most meaningful one for that feature in other ones, as done
in the following image:

Figure 4.1. Filling missing values

Data standardization

After the first operations related to the data contained inside the dataset, now, operations
needed to improve the machine learning model performance will be discussed.

Starting with data standardization, it is crucial to ensure that all the features have
the same weight for the model, without having one of them being more relevant and
dominant than other ones, because this situation would cause a biased model training
associated with the involved feature.
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Moreover, having standardized data improves the model’s convergency speed, because
the steps needed to train the model are less compared to non-standardized data. This
is very important in this implementation, because the available resources are limited.
Reducing the convergency time decreases the resource usage to train the model, as the
time needed to train it with the available hardware, which consists only of a portable PC.

This technique also allows easier comparison of all the features’ values, since they are
on the same value scale, and this also increases the interpretability of the trained model.

To achieve these results, the operations done during this phase consist of removing
the average value from all the values of a specific feature, so all of them will be centered
around zero for every feature inside the dataset, and in scaling all these values so that the
unit variance is one and the features’ values are uniformly distributed over their scale.

Dataset splitting

Given the training dataset, it is also important to test the model during the training phase
to measure errors and other metrics, so that the machine learning model’s performance
can be improved. In order to achieve these results, it is fundamental to correctly split
the dataset into training and testing sets.

Dataset splitting also helps reducing the overfitting, because in some situations the
model may learn too well on the training dataset, without properly generalizing analyze
new data and negatively affecting the model overall performance metrics.

In this implementation, the whole dataset has been split, dedicating the eighty percent
of itself to train the model and the remaining twenty percent to test it.

It is important to remember that there is another entire dataset dedicated to model
testing; it will be discussed in the following paragraphs.

Once the dataset is properly split to train the model, it is important to ensure that
it is balanced to avoid biases, increase the overall performance of the model, generalize
correctly on the new data and recognize anomalies or rare events. In this implementation,
for example, it is fundamental to identify anomalies with the highest possible recall,
especially for the absence of service anomaly class.

Dataset balancing

The dataset obtained from all the collected logs, despite their volume, is very unbalanced
considering the requests and responses sequences with an anomaly in the "absence of
service" class.

Numerically, the number of sequences with this anomaly is less than ten out of several
thousands. This imbalance may have led to a lack of performance in the trained machine
learning model, so it was necessary to balance the dataset to have more occurrences of
this anomaly class. Thanks to this operation, the XGBoost model could also predict this
anomaly with a satisfying accuracy level.

The objective is to obtain a balanced dataset: this operation may be done in different
ways, for example, by collecting more log files. This approach is the simplest, but it
may not have led to a solution, since it is impossible to predict how many occurrences
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of requests and responses sequences with a specific anomaly will occur within a defined
time period.

Due to these conditions, it would have taken an undefined time to collect a certain
amount of samples with the anomaly type "absence of service" directly from the log files.

In the end, the logs could not be collected as described earlier to balance the dataset,
so it was needed to do it with a different technique, for example, by generating valid
sequences to train the model properly and increase its performance.

Figure 4.2. SMOTE technique application

In this script the usage of SMOTE, which means Synthetic Minority Over-Sampling
Technique, was needed, to increase the number of samples for the "absence of service"
anomaly class.

This technique generates synthetic samples of the minority class within the dataset,
not by simply duplicating the already existing ones, but by creating new samples which
are similar to the real ones.

Thanks to the implementation of this technique within the script, the trained XG-
Boost model will more accurately detect the sequences with the anomaly class involved,
and it will also be less biased toward the most dominant class, as all classes will have a
balanced amount of samples.

Although the "absence of service" anomaly is rare, it is important to have the highest
possible recall, so that the model will recognize almost all the occurrences of the event.

In conclusion, the model will detect more accurately this class of sequences, which
is fundamental since its impact is extremely high on the merchants of the MyPayments
application.

Hyperparameter tuning

As already well known, every model needs to be tuned to reach a higher performance
level, given the same dataset and other conditions. There are different approaches which
can be followed to tune the hyperparameters of a machine learning model, for example by
testing random values. Although it may look strange or useless, it can be a good solution
in some cases for several reasons.

For this XGBoost model the approach I chose to use consists of using GridSearchCV,
which allows to explore all the possible hyperparameters combinations within a defined
set, so that the search is exhaustive and complete.

With GridSearchCV it is possible to define a set of hyperparameters with their possible
values to execute the exploration. This set is defined through a parameters grid, which
is used during the search operation.

Moreover, also the GridSearchCV needs some input parameters to be inserted to effec-
tively execute the search operation. Among these parameters, there are some interesting
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ones to be discussed, like the scoring method, which is used to evaluate the performance of
a certain set of hyperparameters tested, and the validation method, which is the stratified
K-fold in this case.

About the scoring method, there are different values for it, like accuracy, precision,
and so on. In this implementation the chosen one has been the f1 macro, which is based
on the harmonic mean computed on the precision and the recall.

Using this scoring method is fundamental if a dataset is unbalanced, even after bal-
ancing with SMOTE technique or other ones, because this combination of techniques
ensure better robustness of the model and a correct performance evaluation during the
training phase.

In further detail, the f1 macro scoring method computes the F1 score for every pre-
dicted class. The harmonic mean is computed by calculating the average of the F1 scores
of all the classes, treating them equally, independently from the amount of samples ana-
lyzed for each of them.

Regarding the other interesting parameter, it is the validation method, which corre-
sponds to the stratified K-fold in this implementation. This method was chosen because
the dataset is unbalanced, so other possible methods like the standard K-fold, the Leave-
One-Out method, etc. would not have been effective for this dataset, since they have
better performance when the dataset is balanced.

Thanks to this choice, the evaluations done during training operation are more reli-
able, as the results are more stable and the model will be evaluated in a more appropriate
way. Moreover, the overfitting is prevented, because the model is evaluated after split-
ting the dataset in different ways, increasing the generalization level. Furthermore, all the
classes are proportionally represented in every split datasets, because their distribution is
kept the same as in the original dataset, and it cannot happen that a fold is unbalanced,
which may cause a wrong evaluation of the trained model.

Model training and exporting

After all this preparation and these operations to properly prepare the dataset and tune
the hyperparameters of the model in the best possible way, the model is trained on the
machine and then exported in a file in the format .pkl.

The file is inside the main folder of the project, so it can be used during the model
execution phase to run it with other datasets, different from the ones used for training
and testing.

4.2.6 Model execution

Once the model is ready, it is possible to execute it on the test dataset. Another Python
script is needed to execute the model at this moment. This new script has to import the
trained model, the dataset and all the other elements needed to execute the model. After
the import operations, the response time ratio is computed, as in the training script,
and the features are encoded with the One-Hot-Encoding technique, since the XGBoost
machine learning model only works with numeric values. Moreover, also the response
time ratio thresholds are computed as in the previous script.
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Other minor operations are performed to align features, sort columns, etc., but they
will not be described in detail.

The XGBoost model can be executed at this moment, right after preprocessing and
preparation operations. Its execution returns the column with the anomaly class predic-
tion for every row in the test dataset.

After the model execution, it is very important to evaluate the performance of the
trained model to understand the results produced by the training operation and identify
potential problems of the model.

The performance evaluation operation has been included in the script executing the
model, and it consists in computing relevant metrics like recall, accuracy, precision and
F1 score, so that they can be printed and shown as results of the model execution.

4.2.7 Post-execution logic (Results cleaning)

Post-execution logic consists of deterministic algorithms executed after the model predic-
tion is completed to remove false positives or false negatives which can easily be identified
and removed. Thanks to this operation, it is possible to provide more accurate results
and increase the overall performance of the model together with all the logic surrounding
it.

The logic introduced is crucial to increase the precision of the trained model based
on the actual data inside the dataset, ensuring the prediction is coherent with it. It
also removes false positive predictions, since there are some scenarios in which the model
classified some requests and responses sequences as anomaly, although they were not, for
example with the absence of service anomaly class, for which the recall was maximum,
but the precision and accuracy were very low.

Since the log rows for the class with this anomaly type were too few, having more
of them would have been very useful to increase the accuracy of the model without any
post-execution logic, but new logs have not been collected for different reasons.

One reason is that it would have been needed to activate logs in debug mode for
some other days on the machines, but this would have used more resources of the server
instances, so this solution was not chosen. Another reason is that the same final re-
sults could be obtained by adding some easy post-execution logic, analyzable, and imple-
mentable in a very short amount of time, so this solution has been chosen to improve the
final results provided by the script executing the machine learning model.

Here it is the code logic implemented:

Figure 4.3. Post-execution logic for absence of service anomaly class

In the end of this added operations, the recall is still maximum, but also the accuracy
and the precision are much higher than before.
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It is very important to consider that the objective of the ApeCar team was to have
the highest possible recall. This objective was already accomplished without the post-
execution logic, but there would have been too many false positives to check, making the
alerts useless in this situation.

The model has produced the final outcome, properly identifying the different possible
anomalies, with a very high level of accuracy and recall, meeting the needs of the ApeCar
team.
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Chapter 5

Results

Now let’s discuss all the results obtained from the implementation done, including the log
parsing script, the training script and the script to execute the chosen machine learning
model after analyzing several ones.

It is important to always consider the requirements to properly evaluate the results
of any work, especially in this case where the ApeCar had specific needs for the product
it manages.

In the next paragraphs, the results of the log parsing script will be analyzed, with a
qualitative approach since no numbers are available for the operation it executes. For the
XGBoost model trained, the results and metrics will be described in both a qualitative
and quantitative way.

These results have been obtained thanks to the log data collected by the internal
backend server instances of the MyPayments application, although it was not possible to
collect a very high volume of data for several reasons, as previously explained.

5.1 Numerical results and performance

Let’s analyze the results, distinguishing between the log parsing and everything related
the XGBoost model.

5.1.1 Log parsing results

Considering this part of the project, it has produced the expected results. After collecting
a sufficient number of logs, in terms of tens of thousands log rows, all the different row
types have been correctly identified and parsed with the developed script.

Another positive result is that also during the execution of the model with a completely
disjunct dataset from the one used to train the model, all the log rows were parsed
correctly and no information has gone lost.

In the end, this part of the project has satisfied the requirements, being able to
successfully parse and analyze all the occurrences of the log rows of the BE2 service.

Since the log structure is the same for both BE1 and BE2 services, this implementation
can easily be applied also to the BE1 service as well.
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5.1.2 XGBoost model results

These results are crucial to meet the requirements defined by the ApeCar team, and also
to realize the log-analysis system properly.

The metrics obtained can be split by anomaly class, because the model may be more
performing on some anomalies rather than on others.

Absence of service anomaly

Starting with this anomaly, the XGBoost model initially did not reach a very high accu-
racy. However, thanks to the post model execution logic implemented, the model accuracy
has been increased by removing all the false positives, and the recall is maximum.

As mentioned, this result for this type of anomaly respects the ApeCar needs, and it
is the desired result for this log analysis work.

In the end, it is crucial to identify this kind of anomalies because it allows for their
immediate detection, as they may be sign of something impacting very much on the
merchants using the MyPayments application. Therefore, it is necessary to react quickly
to minimize any potential downtime or partial absence of service for any feature.

Response time anomaly

Considering the other anomaly class, which is the response time anomaly, the table with
predictions is displayed after executing the machine learning model, and it is shown in
the following to better explain the obtained results:

Table 5.1. Prediction details of test dataset - example

ID Response Time Msg Length Status Anomaly Type
1 3362 199.25 200 None
7 3 288.00 200 Response Time

13 1234 187.69 200 None
15 17076 231.87 200 None

2217 24815 223.48 500 Absence of service
2310 86836 242.78 204 Response Time
2705 155707 251.79 200 Response Time

As shown in the prediction table for the test dataset, which is completely disjunct
from the training one, several sequences of requests and responses have very high or
low response times, comparing them to the values considered as normal by the machine
learning model. The normal values were obtained after having grouped them by URI,
status code and method, in order to have more specific values for every possible scenario.

In this way, thanks to these results, the ApeCar team will be able to receive an alert
when an anomaly occurs, in order to check if everything is working properly, or if there
are any kind of issues, like network ones, overload problems on external services, and so
on.
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This is very useful because sometimes there may be problems on external services,
but the teams responsible of them may not be aware of the issues. This may degrade
the user experience within the app and slow down reaction times compared to having an
alert system.

In conclusion, after getting this kind of information, the reaction by any team involved
in the problem will be faster, so that the overall user experience of the merchants inside
the MyPayments app will be better, as requested and needed by the ApeCar team.

5.2 Methodology

After having displayed the results, it is important to also describe how they were obtained,
so the methodology used in each phase.

5.2.1 Log parsing

During the log parsing operation, when writing the script, a sufficient number of logs
needs to be collected, to be able to consider all possible log rows. If this is not done, the
parsing would be incomplete and information would be lost after executing the parsing
operation.

After having collected log files, it is necessary to explore them, understand the struc-
ture of the single rows, identify and define some strategies to parse them to get a result
usable as training or testing data for a machine learning model. A possible choice is using
the regex approach, though there may be other equally valid possibilities.

This activity requires various changes and adjustments to realize a script capable of
identifying all possible occurrences within the log files, as well as in any other kind of
data source.

5.2.2 Machine learning model training

This is a critical phase for this work, because all the results of the entire project depend
on how well the model is trained, using the correct methodologies, which must be based
on the data collected for training.

In this implementation the usage of some techniques has been needed as already
described, like the SMOTE and so on, but with other datasets others may be needed,
in order to satisfy the requirements and obtain the highest possible performance for the
trained model.

It is fundamental to consider the value distribution for all the features within the
dataset to avoid biases in the final model.

Moreover, the testing strategy has to be chosen appropriately according to the data
distribution of the training dataset, otherwise, the metrics obtained may be unrealistic
or simply wrong.

After doing these considerations, training can be executed and results have to be
analyzed, to understand if performance can be improved through additional training
executions, considering any changes which could potentially benefit the model to better
satisfy the given requirements.
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When the model satisfies the requirements, it was tested with a completely different
dataset in this project to evaluate its performance more realistically than during the
training phase.

5.2.3 Machine learning model execution

After training the machine learning model, it was tested with a complete disjunct data
set to simulate a real use case as accurately as possible in the actual environment.

This operation was executed several times because, although the training phase pro-
duces very good metrics and performance values, the model may have very different
performance when tested. Therefore, something needs to be changed during the training
phase or the parsing one, such as considering new features, etc., in order to reach the
objective and satisfy the given requirements.

As described, it is always important to consider and evaluate all the aspects affecting
the final results, to be able to make changes at any time to reach the defined goal.
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Conclusion and future
implementations

The practical thesis work has been successfully completed, since the model works as
expected and required by the ApeCar team.

After the already described implementation, it should be integrated into a running
system inside the Nexi Group’s infrastructure to be actually used in real-time to analyze
logs and send alerts if any of the anomalies defined occur.

This implementation would have taken too long because changes to the company IT
infrastructure are required. These changes need different stakeholders and technical staff
analyzing and approving them, as well as investment in new machines, configurations, and
everything else necessary. Moreover, some other teams should have also worked on this
implementation, in order to correctly integrate the new machines inside the infrastructure,
configure the network to properly work, and so on.

Due to these factors, it is currently only possible to design a possible implementation
meeting the requirements defined by the ApeCar team, explaining its working mechanisms
in some detail.

Before going on to the possible solutions, the main requirements will be briefly sum-
marized.

The main requirements consist in analyzing the logs in real-time, to react quicker to
incidents or become aware of them before being notified from the merchants using the
MyPayments application, and sending alerts immediately after any of the anomalies is
detected.

The work completed until now allows the team to detect the anomalies, as earlier
explained and shown in section 5, which describes the results obtained. With a small and
simple add-on, it is possible to send an email alert to a defined recipient list, but it is not
possible yet to analyze logs in real-time.

In the following sections, different potential solutions to achieve this objective will be
discussed, at least by designing the system at a high level.
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6.1 Possible implementations

After identifying the requirements for this kind of implementation, it is time to consider
and evaluate different potential implementations based on their characteristics.

6.1.1 Requirements

Since the new system which has to analyze logs in real-time, has to be implemented in
a data center or on the cloud, and to receive data by the MyPayments internal backend
through the network, it is necessary to consider architectural solutions compatible with
this scenario. Moreover, it is also important to consider that its implementation has to
be done with Python programming language to run the log parsing scripts and the script
to execute the XGBoost model.

Given this information, it is possible to identify compatible solutions for this imple-
mentation, analyze them, and choose one to design the new system.

6.1.2 Possible approaches

There are possible approaches for these implementations, for example, using REST APIs
to send the logs and then process them, or by using a broker like RabbitMQ, implementing
a message queuing system, or by using a streaming platform like Kafka. The last two
approaches are quite similar under different aspects, which will be discussed later on in
detail.

6.1.3 REST APIs approach

This is the most common approach on the web to execute Remote Procedure Calls by
sending HTTP requests.

REST APIs could be chosen to implement the already described system, but it is
fundamental to consider their main characteristics and the given requirements.

REST APIs would need to send an HTTP request containing the log data in this
implementation, with the objective of obtaining a response, but the MyPayments internal
backend does not need it, because it only has to send the logs to the new system which
will analyze them. Analyzing other characteristics, it is important to remember that
HTTP requests generate some overhead due to their nature, so managing a large amount
of them would be consume a significant amount of resources, resulting in an overload
of the log-analysis system. This overload could anyway be managed by introducing a
buffering or queuing mechanism, in order to not overload the HTTP server directly.

After analyzing these characteristics, this approach does not seem to suit the require-
ments described earlier very well.

6.1.4 RabbitMQ and Kafka approaches

RabbitMQ and Kafka are grouped in the same paragraph because their implementation
would be conceptually similar. However, there are some important technical differences
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between them which have to be considered to make the most appropriate choice for the
final implementation.

RabbitMQ is based on a queue mechanism, so all incoming messages are enqueued
until consumed by the system. Moreover, it ensures that the messages reach their desti-
nation, as also Kafka does, but in a different way.

Kafka is based on a streaming mechanism, it is more scalable than RabbitMQ, but it
needs more effort to be implemented.

Delving into technical details, Kafka is designed to handle a very high number of
connections including their messages, ensuring a very high throughput. RabbitMQ would
be overloaded under these conditions, but this is not expected to happen in this scenario.

The maximum number of connections from the MyPayments internal backend servers
to the log-analysis system would be around a hundred. Thanks to this value, the imple-
mentation with Kafka would may be over-dimensioned for the system to be implemented,
but it remains a very good choice.

There are other factors to consider, like the configuration effort necessary to implement
them: RabbitMQ is easier and faster to implement and set up rather than Kafka, so it
would be more cost-effective in economic terms to the company. Moreover, Kafka is very
good also at managing persistent data, which is not needed in the system being discussed,
since it is possible to temporarily store the logs in variables until they are analyzed, to
be removed immediately after this process.

Talking about resource consumption, which would be very important if the system is
implemented in the cloud, Kafka is much more efficient at managing a high volume of
data, while it may be less efficient than RabbitMQ at managing a lower data volume.

In conclusion, as previously discussed, the approaches of Kafka and RabbitMQ are
similar in terms of functionalities, but the described differences are important to consider
to choose the most suitable approach for this system.

6.2 Chosen approach for future implementation

In the end, three approaches have been analyzed, including technical details and some
comparisons for Kafka and RabbitMQ.

The REST APIs approach is not the best one and does not adapt very well to this
implementation, since it could need some extra mechanisms in order to work as it should,
but the overhead generated by the HTTP requests cannot be avoided in any way.

After these considerations, this approach is discarded in favor of one of the remaining
ones.

Considering Kafka and RabbitMQ, they work in a similar way as described above.
There are some technical differences, like the efficiency, the number of connections they
can manage at the same time, and so on, that suggest to choose RabbitMQ, because
although it is less scalable than Kafka, it is correctly dimensioned to the requirements
of the ApeCar team, and it also needs less effort to be implemented. Talking about the
scalability of these two solutions, Kafka is the most scalable one, while RabbitMQ is less
scalable at very high data volumes due to the complexity needed to manage the message
queues.
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In conclusion, the choice goes on RabbitMQ, because the amount of logs to be analyzed
is not very high, for sure under millions of log rows per day.

Given these considerations, the log analysis system may only need a single instance
in order to execute the analysis. The designed system can also be scaled up to manage
more logs simultaneously up to a certain limit in case of necessity, which is unlikely to
be reached in the medium term.

6.3 Working mechanism

Currently, it is possible to define how the implementation with the chosen approach
should work, including more technical details.

The mechanism is very linear, so the solution should use queues in RabbitMQ to re-
ceive logs in real time from the different server instances within the MyPayments internal
backend. These logs should be stored inside some variables until a final response log is
received for a certain sequence.

Once this log is received, the complete sequence will be retrieved from the variables
and passed to the log parser. In this way, all data is converted and formatted as needed
by the XGBoost model, which will then make the prediction on it. At the same time,
the requests and responses of the sequence will be removed from the variables containing
them, since they will no longer be accessed or used. Thanks to this approach, the resource
usage will be more efficient and optimized, which is crucial for running any kind of
service onto the cloud, for example, but also on any server machine to make it capable
of managing a higher volume of requests and responses sequences.

The parsed sequence of logs has to be passed to the script executing the machine
learning model to execute the prediction on the anomaly. When the prediction is ready,
it can be refined using the previously described post-prediction logic to obtain the final
prediction.

Once the prediction is complete, it has to be processed by an algorithm that analyzes
it to send an email alert if necessary. This feature can be configured and implemented in
different ways, which will not be discussed here in detail.

In conclusion, the requests and responses sequence has been analyzed, sending the
proper alerts to the configured email addresses, as in the needs of the ApeCar team.

6.4 Expected results

After completing this implementation, the expected result is a log analysis system which
works as described and satisfies the needs of the ApeCar team for real-time analyzing
logs.

Moreover, the predictions made by XGBoost are expected to be performed keeping the
same performance metrics as observed during the testing phase of the machine learning
model, which was conducted using a completely disjunct dataset from the training one.

In addition, if any anomalies are detected, the system is expected to send an email to
all the addresses configured within the new system, so that the relevant people become
aware of the anomalies as soon as possible. This allows to react them in a shorter possible
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time than before and increase the user experience and value provided to the merchants
using the MyPayments application, by minimizing absences of services and malfunctions.
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