
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

FasterCellpose: Knowledge Distillation
for Efficient Fluorescence Nuclear

Segmentation

Supervisors

Prof. Santa DI CATALDO

Prof. Francesco PONZIO

Prof. Xavier DESCOMBES

Candidate

Ivan MAGISTRO CONTENTA

07 2025

Abstract

Endocrine-disrupting chemicals (EDCs) are pollutants that interfere with hormone-
receptor binding. In particular, agricultural pesticides have been linked to prostate
cancer. To study their effects and the potential treatments, biologists use 3D in
vitro organoids, captured by confocal microscopy with nuclear biomarker.
Cell segmentation models are employed by biologists to produce a map that iden-
tifies the objects inside the organoid. The label masks simplify experts’ analysis.
Although effective, the current models are computationally costly. Many laborato-
ries can not afford high-performance GPUs. Moreover, labeled datasets are scarce
and manual annotation is time-consuming.
This thesis aims to achieve accurate cell 3D segmentation with a compact neural
network on CPU-only hardware. For this purpose, a lightweight version of the
well-known Cellpose is presented: FasterCellpose. The baseline architecture was
simplified by using more efficient convolutions, removing unnecessary layers and
halving the number of channels per depth scale. The resulting CNN model is 56×
smaller and 8.4× faster than Cellpose for 3D segmentation on CPU.
To preserve baseline performance, knowledge-distillation was employed to transfer
pre-trained Cellpose “teacher” knowledge to the compact “student”.
This work highlights the potential of model compression for both 2D and 3D cell
segmentation. Furthermore, FasterCellpose can generalize like the baseline on
external datasets.
These results pave the way for resource-efficient, high-quality segmentation on 3D
confocal images of organoids.

Summary

Cancer can be caused not only by natural factors, but also by industrial compounds,
called Endocrine Disrupting Chemicals (EDCs). These pollutants can interfere
with the action of natural hormones by binding to their receptors. Agricultural
pesticides are a class of EDCs linked to prostate cancer.
To investigate EDC effects on prostate and the potential treatments, biologists
need a model that faithfully reflects human tissue. Conventional animal models
and human cell lines fail to recapitulate EDC toxicity in human prostate tissue.
To overcome these limitations, the researchers have turned to a cutting-edge
technology, called organoid—3D structure derived from stem cells that closely
mimics the behaviour of real organs.
Confocal microscopy acquires multi-channel fluorescence images of organoids, with
each channel detecting a different biomarker. This study focuses on the nuclear
biomarker: nuclei appear as ellipsoidal objects, and the whole set and their spatial
arrangement distinguish specific phenotypes.

AI models are used to speed up the analysis of confocal images of organoids.
For instance, they can produce segmentation masks that identify nuclei inside the
sample. One well-known state-of-the-art segmentation model is Cellpose. Segmen-
tation masks can be useful for further analysis, like phenotype classification, growth
supervision, etc.
Although effective, state-of-the-art segmentation models are usually computa-
tionally onerous. They are time-consuming, especially if users can not afford
high-performance GPUs.
Another problem is the lack of labeled 3D datasets; in fact, annotation of images
is time-consuming, and online there are few labeled datasets for 2D acquisitions.
Moreover, existing methods rely solely on fully supervised training.

This thesis aims to develop a lightweight version of Cellpose that can perform
3D segmentation efficiently on CPU, while maintaining baseline accuracy.

Cellpose is a state-of-the-art model based on a U-Net like architecture, designed
for biological cell segmentation: it segments well both 2D and 3D images by
computing cell probability scores and flow vectors. Cellpose offers a collection of
pre-trained models on different cell types.

ii

FastCellpose is a compact variant with a halved number of feature map channels
per depth scale; it is specialized in whole kidney glomeruli segmentation.
In this thesis, we present FasterCellpose, a lightweight model obtained by re-
designing the baseline architecture:

1. We reduced the number of convolutional layers in both the encoder and decoder

2. We introduced dilated convolutions in the encoder and transposed convolutions
in the decoder

3. We halved the number of channels per depth scale (as in FastCellpose)

4. We replaced standard convolutions with depthwise separable ones

After streamlining the backbone, we applied offline knowledge distillation: this
approach enables the transfer of expertise from the pre-trained Cellpose model
(teacher) to FasterCellpose (student). The objective is to minimize the distillation
loss function by comparing teacher and student’s predictions. We worked on an
unlabeled dataset of 2D patches, extracted from 3D fluorescence images of prostate
organoids at different magnifications (20× and 40×). This process enabled us to
obtain effective weights for each compact model.

As a result, FasterCellpose is 56× smaller than the baseline, in terms of the
number of parameters and of Multiply-Accumulate Computations. On the CPU, it
is 8.4× faster than the baseline for 3D segmentation, reducing network inference
time on a 200 slices 1024 × 1024 image stack from about 90 minutes to around 10
minutes.
Furthermore, this model matches baseline performance on our datasets and it
is able to generalize on 2D benchmarks, such as DAPI and BitDepth datasets,
containing fluorescence images with nuclear biomarker (Table 1).

Model # Parameters (K) net. inference time (s) F1 score (%) (our) F1 score (%) (DAPI) F1 score (%) (BitDepth)
Cellpose 6,600 14.12 92.10 93.07 83.81

Distilled FastCellpose 564 4.47 93.01 81.27 87.38
FasterCellpose v3 115 3.30 92.07 81.60 87.17

Table 1: Comparison of Cellpose and lightweight variants in terms of performance
metrics on 2D slices

In conclusion, this work demonstrates the potential of neural network compres-
sion techniques, such as lightweight architecture design and knowledge distillation,
for efficient and accurate nuclei segmentation on 2D and 3D organoid images.
These results contribute to making advanced image analysis tools more accessible
to biological researchers working with limited computational resources.

iii

Acknowledgements

I would like to express my gratitude to all who contributed to the completion of my
thesis. First and foremost, I thank my supervisors for their guidance and support
throughout the thesis, namely Prof. Santa Di Cataldo, Prof. Francesco Ponzio, and
Prof. Xavier Descombes. I also extend my thanks to the entire MORPHEME team
at Inria Sophia-Antipolis for their collaboration and encouragement. I am especially
grateful to have played a role in the Morpheus project, “Organoid Phenotypes
Mapping and Modeling: Toward an Endocrine Disruptors Classification”, which
formed the backbone of this work, and I thank ANR for their financial support
(ANR-21-CE45-0029).

A special thanks goes to my family, whose support made it possible for me to
study at Politecnico di Torino and to have an important internship in France. They
were, and continue to be, by my side. I hope to have made them proud.

Last but not least, I would like to thank my friends and my colleagues. They
helped me through this challenging journey, and we shared many enjoyable moments.

Grazie Torino, Merci Sophia-Antipolis

iv

https://anr.fr/Projet-ANR-21-CE45-0029

Table of Contents

List of Tables ix

List of Figures x

Acronyms xii

1 Introduction 1
1.1 Endocrine Disrupting Chemicals . 1

1.1.1 EDCs on prostate cancer . 2
1.2 Organoids . 2

1.2.1 Definition . 2
1.2.2 EDC effects on prostate organoids growth 3

1.3 Image acquisition and microscopes 3
1.3.1 Issues with 3D images . 4

1.4 Goals . 5

2 Related works 6
2.1 Instance segmentation . 6

2.1.1 2D instance segmentation 7
2.1.2 3D instance segmentation 8
2.1.3 2.5D instance segmentation 8

2.2 State-of-the-art segmentation models 9
2.2.1 StarDist . 9
2.2.2 Cellpose . 11
2.2.3 Comparison between Cellpose and StarDist 13

2.3 Neural Network Compression . 14
2.3.1 Pruning . 15
2.3.2 Quantization . 15
2.3.3 Low-Rank Decomposition 16
2.3.4 Knowledge Distillation . 16
2.3.5 Lightweight Model Design 17

vi

2.4 FastCellpose . 19

3 Methodology 21
3.1 Dataset . 21

3.1.1 Annotation . 23
3.2 Baseline definition . 23
3.3 Cellpose compression . 24

3.3.1 Dilated Cellpose . 25
3.3.2 Upsample Cellpose . 25
3.3.3 Compressed Cellpose . 26
3.3.4 Cellpose with depthwise separable convolutions 27
3.3.5 Compressed Cellpose with depthwise separable convolutions 27
3.3.6 FasterCellpose . 27
3.3.7 Computational Complexity Analysis 28

3.4 Knowledge Distillation on Cellpose 30
3.4.1 Hyper-parameter optimization 32

3.5 Evaluation . 32

4 Results 33
4.1 Hardware specifications . 33
4.2 Results from internal K-Fold Cross Validation 34
4.3 Performance of Cellpose and StarDist 35
4.4 Performance on our dataset . 36
4.5 Performance on benchmarks . 40
4.6 Performance on 3D images . 43

4.6.1 Mask reconstruction optimization 45
4.7 Applications on 3D segmentation pipelines 47

4.7.1 Application to GNN . 48

5 Discussion 51
5.1 Overview . 51
5.2 Lightweight architecture design . 51
5.3 Distilled models and their performance 52

5.3.1 Considerations on Dilated Cellpose 52
5.3.2 Considerations on Upsample Cellpose 53

5.4 Reduction of memory footprint . 53
5.5 Lack of annotated 3D dataset . 54

6 Future works 55
6.1 Reduction of memory footprint . 55
6.2 Annotation of 3D images . 56

vii

7 Conclusion 57

Bibliography 58

viii

List of Tables

1 Comparison of Cellpose and lightweight variants in terms of perfor-
mance metrics on 2D slices . iii

3.1 Number of images for each laboratory and objective 22
3.2 Training and test set per each objective 22
3.3 Training patches for each magnification 23
3.4 Number of annotated 2D slices for each laboratory and objective . . 23
3.5 Comparison of Cellpose, FastCellpose and lightweight models in

terms of computational complexity 29

4.1 Hardware specifications used for knowledge distillation 33
4.2 Hardware specifications used for inference 34
4.3 Results from K-Fold Cross Validation 34
4.4 Results on 2D slices with magnification 40× 37
4.5 Comparison of network inference time on 3D volumes 43
4.6 Optimization on mask reconstruction time using FasterCellpose v2 . 45

ix

List of Figures

3.1 Models in terms of number of parameters and MACs 30

4.1 Average diameter value for each phenotype and magnification 35
4.2 Quantitative comparison between Cellpose and StarDist on 2D slices 35
4.3 Qualitative comparison between Cellpose and StarDist predictions

on a crop . 36
4.4 Performance on 2D slices of 20× magnification 38
4.5 Performance on 2D slices of 40× magnification 39
4.6 Comparison of models in terms of number of parameters and infer-

ence time on our dataset . 40
4.7 Performances on DAPI dataset . 41
4.8 Performances on BitDepth dataset 42
4.9 Comparison of models in terms of number of parameters and infer-

ence time on a 3D sample . 44
4.10 Qualitative comparison between Cellpose and FasterCP v3 on 3D

segmentation . 44
4.11 Qualitative comparison between Cellpose and FasterCP v3 predic-

tions on crops of 3D volume . 45
4.12 Comparison of masks with and without mask optimization techniques 46
4.13 Mask optimization technique on crop 47
4.14 Comparison of graphs obtained by ellipsoidal model and FasterCP . 49
4.15 3D representation of the graph obtained on FasterCP v3 segmenta-

tion mask . 50

x

Acronyms

AI Artificial Intelligence

BCE Binary Cross-Entropy

CNN Convolutional Neural Network
CP Cellpose
CPU Central Processing Unit

EDC Endocrine Disrupting Chemical

FLOP FLoating Point Operation

GNN Graph Neural Network
GPU Graphics Processing Unit
GT Ground Truth

MAC Multiply-Accumulate Computation
MAE Mean Absolute Error
MSE Mean Squared Error

xii

Chapter 1

Introduction

In this chapter, we first review the Endocrine Disrupting Chemicals (EDCs) and
their role in prostate cancer. Then, we introduce organoids, 3D in vitro models
adopted by biologists to study human tissue: we present the motivations that
led the biologists to use this model, and the effects of the pollutants on prostate
organoids. We cover also the acquisition of organoids via specialized fluorescence
microscopy. In particular, we underline the challenges with high-resolution 3D
images. Finally, we define the main goals of this work.

1.1 Endocrine Disrupting Chemicals
Endocrine Disrupting Chemicals (EDCs) are a class of pollutants that pose various
endocrine-disease risks. These contaminants block the interaction between natural
hormones and their receptors [1]. They enter the body via inhalation or ingestion
and interfere with the endocrine system. These industrial compounds can affect
individuals throughout their lives and also future generations.
The main EDC classes are:

1. Bisphenol A (BPA): used for manufacturing, toys, and food-contact materials
(canned food and beverages) [2].

2. Phthalates: liquid plasticizers present in personal care products and medical
tubing [2].

3. Persistent Organic Pollutants (POPs): organic compounds that remain in the
environment for extended periods. This category includes pesticides, synthetic
chemicals, and industrial process residues [2, 3, 4].

All of these compounds are stored in body fat. While BPA and phthalates have a
relatively low accumulation in adipose tissue, POPs have a crucial role in bioaccu-
mulating in the food chain with significant health and environmental consequences

1

Introduction

[2, 3]. Among POPs, there are insecticides, such as DDT and its metabolites, DDE
and DDD. These organochlorine pesticides act as estrogens and may disrupt the
normal development or function of reproductive organs [4].

1.1.1 EDCs on prostate cancer
Several epidemiological studies have highlighted the impact of EDCs on human
health, such as the reproductive system. In particular, the POPs may cause diseases
in the male reproductive gland, the prostate. In the USA, Agricultural Health Study
(AHS) reported that certain organophosphate and organochlorine exposures in the
agricultural population are associated with prostate cancer risk [2].

1.2 Organoids
Historically, the biomedical research has relied heavily on animal models. Although
these in vivo models allow for a deep understanding of several biological processes,
they lack human specificity and lead to a deficiency in knowledge of heterogeneous
populations [5]. For instance, in both human and rodent models, the onset and
development of prostate cancer are influenced by androgen and estrogen levels [2].
But, the experts should be cautious about mice models and in inferring causality
in humans, since spontaneous prostate cancer is much rarer in mice than in men.
Furthermore, EU REACH regulation promotes alternative non-animal methods to
evaluate the hazards posed by chemical substances [2].
Consequently, researchers developed alternative models for these studies, such as
human cell lines: these are a population of living cells growing in laboratories for
extended periods, used for in-vitro research and cultivation of vaccines. Although
convenient, they are often genetically unstable, ethically controversial, tumorigenic,
and difficult to grow or control [6].
In recent decades, organoids have emerged, offering a compromise between 2D cell
lines and living animals [7].

1.2.1 Definition
An organoid is a three-dimensional in vitro model that reproduces a human
organ or tissue during growth, homeostasis, and disease, under controlled cultured
conditions. Organoids are derived from primary tissue samples or stem cells (adult,
embryonic, or induced pluripotent) [5]. These structures develop within a 3D
extracellular matrix (e.g. matrigel or hydrogel), which provides growth-promoting
factors [8]. The composition of the medium varies with the donor tissue [9]. This
configuration preserves in vivo physiology and genetic diversity better than existing
two-dimensional cell lines. However, organoids represent only an approximation

2

https://aghealth.nih.gov/
https://aghealth.nih.gov/
https://environment.ec.europa.eu/topics/chemicals/reach-regulation_en

Introduction

of the donor organ or tissue, as they lack in vivo features, such as a defined body
axis or a functional system. In that sense, they are considered complementary to
animal models and human cell lines [5]. Another obstacle is the reliable growth of
organoids, given to the limited availability of human tissue for the culture initiation
[5]. The main applications of these models are tissue engineering, drug discovery,
and regenerative medicine. Some organoids preserve characteristics of embryonic
tissues that endow them with regenerative capacity. When implanted in host tissue,
they can also undergo further maturation toward a more adult phenotype [9]. In
addition, patient-derived organoids enable personalized drug screening to identify
therapies and drugs that work uniquely on that subject [5].

1.2.2 EDC effects on prostate organoids growth
Androgen levels drive prostate organoids growth [7], such as testosterone and
dihydrotestosterone (DHT). During the proliferation, luminal epithelial cells are
responsible for the secretion of the prostatic fluid and have a crucial role. EDCs
can alter organoid growth in terms of morphometric properties (shape and size)
and fluid secretion. Disruptors have a significant impact on the androgen and
estrogen signaling pathways. Agricultural pesticides are typically organochlorinated
compounds, like DDT (Dichlorodiphenyltrichloroethane) and its metabolite DDE
(DHT antagonist).
At elevated DHT concentrations, organoids first undergo massive cell proliferation.
The final shape consists of two layers of nuclei, lumen, and basal layers, and prostatic
fluid inside that puts pressure on these “barriers”. This phenotype is called cystic.
However, proliferation could be influenced by organochlorinate concentration.

• High DDE concentrations lead to the interruption of differentiation and hinders
the formation of the cyst. Compact organoids are dense aggregates of nuclei
without fluid inside.

• An overproliferation and uncontrolled cell growth produces organoids with
irregular and nodular surfaces, whose phenotype is called cauliflower.

The detection of these morphological changes is not sufficient to characterize
the biological events that cause them, making careful temporal sequences analysis
of the organoid growth necessary.

1.3 Image acquisition and microscopes
The power of organoids is their three-dimensional structure. This architecture
allows biologists to study structural complexity and its main features, such as the
phenotype, morphological characteristics, and development. 3D imaging is superior

3

Introduction

to traditional 2D tissue section imaging in organoid visualization [10].
The traditional microscopy is ideal for visualizing a thin section of a tissue [11]. Its
lower image quality is due to the uniform illumination on the specimen and to the
"noise" caused by the reflection of other parts of the sample.

Compared to light microscopy, confocal microscopy captures thick tissues. Con-
focal images accurately reflect the in vivo cellular composition of organoids [12].
This microscope consists of pinholes, objective lenses, and low-noise detectors [13].
The image quality is superior and provides more contrast than conventional mi-
croscopy. The acquisition technique allows virtual three-dimensional image recon-
struction: each optical section is taken by moving axially through the focal region
and is a few micrometers deep [14].
During acquisition, the excitation beam is focused through the objective into a
small spot inside the tissue [11]. The excitation light is reflected off a dichroic
mirror rather than directly illuminating the organoid. A laser tuned to a specific
wavelength is used to induce fluorescence in a specific fluorophore, thereby revealing
its marker. To overcome the reflected fluorescence light issue, the detection pinhole
blocks any emission not originating from the focal plane.
As a concrete example, the nuclear biomarker [15] is tagged with fluorescent in
situ hybridization. When the laser excites a specific fluorophore at a probe wave-
length (i.e., the FISH probe), the resultant emission fluorescence will be at a longer
wavelength. These fluorescence signals can be collected in sharp optical sections to
map nuclear biomarkers in three dimensions.

There are confocal microscopes that are more suited for live imaging, called
spinning disk confocal microscopy. Instead of having a single pinhole, they consist
of a metal disk, called Nipkow disk, with hundreds of pinholes arranged in spirals
[11]. It rotates at high speeds to scan every part of the image. From each point the
light is electrically transmitted and then reassembled remotely through a second
disk. The cameras on spinning disk microscopy must have high framerates due
to the speed of the spinning disk ("what is spinning disk confocal microscopy?",
Teledyne).
The advantages of spinning disk confocal microscopes are the imaging speed,
relatively low-light dose, and the fact that the sample does not have to be moved
through the illumination [13].

1.3.1 Issues with 3D images
Despite their value, 3D confocal images introduce practical challenges. First,
the annotation of 3D volumes is time-consuming. In practice, expert biologists
often label 2D slices rather than full 3D volumes; for example, Data Science Bowl
Challenge 2018 dataset consists of a labeled collection of 2D fluorescence images
with nuclear biomarker [16]. This drawback prevents the application of supervised

4

https://www.teledynevisionsolutions.com/learn/learning-center/scientific-imaging/what-is-spinning-disk-confocal-microscopy/
https://www.teledynevisionsolutions.com/learn/learning-center/scientific-imaging/what-is-spinning-disk-confocal-microscopy/

Introduction

learning techniques. A consequence of the scarcity of annotated 3D datasets is the
lack of pre-trained models on 3D confocal images. The dimensionality challenge
affects also the efficiency of 3D segmentation. Often, a confocal stack contains
around 200 slices of 1024 × 1024 pixels each with a resolution of 8-bit or 16-bit.
Therefore, it can occupy a large amount of memory and its prediction can be
resource-demanding and time-consuming. Because many users do not have access
to a Graphics Processing Unit (GPU), CPU-based segmentation can exceed one
hour per 3D volume.

1.4 Goals
The thesis aims to develop a lightweight model that performs efficiently both
2D and 3D segmentation and matches state-of-the-art accuracy on our unlabeled
organoid dataset. Starting from the baseline architecture, we derive a compact
version applying neural network compression strategies (e.g., pruning, quantization,
lightweight model design). The objective is to reduce the number of parameters
and MACs by a factor of at least 15. Since 3D segmentation is very expensive, we
focus on shortening the inference time on Central Processing Unit (CPU).
Furthermore, to overcome the scarcity of biomedical data, we employ a teacher-
supervised distillation approach: the baseline network predictions serve as pseudo-
labels for training the compressed model on unlabeled images.
Then, we test the distilled lightweight model and the baseline on our dataset,
comparing the quality of their predictions in terms of Precision, Recall, and F1
score.
Finally, we evaluate how well the distilled model generalizes beyond our organoid
dataset by comparing its predictions and baseline ones on some benchmarks, such
as DAPI and BitDepth datasets.

Additionally, an important goal is to use the distilled compact model to speed
up applications that include the baseline. Because segmentation is the primary
bottleneck in these workflows, streamlining the model is crucial. For instance,
organoids can be modeled as graphs and Graph Neural Networks (GNNs) can use
cell segmentation masks to cluster and classify organoid phenotypes.

5

Chapter 2

Related works

In this chapter, we first describe the instance segmentation task, which is performed
by several state-of-the-art models to identify different instances of the target objects.
For this task, we consider two well-known state-of-the-art models, StarDist [17]
and Cellpose [18], U-Net like architectures presented in chronological order. In a
dedicated section, both strengths and weaknesses will be analyzed, from workflow
to the presence of pre-trained models.
However, these baselines demand powerful hardware to perform the task. We
then focus on neural network compression techniques to make them lighter. Each
compression method can improve the model architecture in terms of accuracy,
inference time, and/or development cost.
Finally, a section is dedicated to a compressed version of Cellpose released in
November 2023, called FastCellpose [19]: it has 12× fewer parameters than Cellpose
and its optimization speeds up by 2.3 times the network inference time for 3D
segmentation.

2.1 Instance segmentation

Instance segmentation combines the requests of both object detection and semantic
segmentation, by localizing the objects coordinates, labeling their pixels and
distinguishing the several instances. Due to the dependency to these two tasks,
instance segmentation has to overcome their issues to obtain good predictions and
to be efficient. The main obstacles are the presence of small objects, the geometric
transformations, the image occlusions and degradations [20, 21].

6

Related works

2.1.1 2D instance segmentation
Instance segmentation is mainly employed on two-dimensional images. The pro-
posed approaches combine the architectures and methodologies of object detection
and semantic segmentation.
At the beginning, the approaches were based on a component that finds blobby
image regions, containing some objects and features. The aim of bottom-up mask
proposals approaches is to generate mask proposals and then to classify them;
Selective Search [22] identifies quickly image regions that might be good bounded
boxes.
With the advent of CNN, many instance segmentation models were released. The
main CNN approaches can be divided into three categories: multi-stage, two-stage
and single-stage method [21].
In particular,

• Multi-stage methods perform instance segmentation by fusing output from
different sub-tasks or modules. They are not suited for real-time instance
segmentation.

• Two-stage methods perform image detection and segmentation in sequence.
The order of these two operations defines a particular approach:

– Top-down approaches, known also as detection-followed-by-segmentation,
first draw the bounding boxes and then generate the instance mask.
Although a simple and robust solution, it strongly depends on object
detection outcome [21].
MASK-RCNN [23] is an example.

– Bottom-up approaches, known also as labelling-pixels-followed-by-clustering,
first segment the image and then cluster the pixels into individual in-
stances. They are based on a powerful semantic segmentation backbone.
However, these methods do not generalize well, especially with occlusions
and touching objects [21].
An example is represented by U-Net [24] with Watershed [25] post-
processing technique.

• Single-stage methods perform detection and segmentation in a single architec-
ture. They are computationally lighter than two-stage methods by removing
pre-processing steps and using a lightweight backbone. There are two main ap-
proaches that differ in how central points are drawn to design the corresponding
bounding boxes.

– Anchor-based methods produce bounding boxes around fixed center points
placed densely on a regular grid across feature maps [21, 26].
InstanceFCN [27] and YOLACT [28] are two examples.

7

Related works

– Anchor-free methods determine object coordinates in a precise way by
extracting features from the input and by identifying feature points [21,
26]. There were released several FCOS [29] extensions.

2.1.2 3D instance segmentation
Instance segmentation is applied not only on 2D planes, but also on 3D volumes.
3D data contains more semantic information than 2D one in terms of depth and
surface topology. However, deep learning methods still encounter many challenges.
Three-dimensional instance segmentation deals with different types of data, from
RGB images with depth information to meshes. The focus of our study is on voxels,
volumetric pixels of three-dimensional objects used for bioimaging. In our case,
since 3D confocal images are stacks of 2D slices, a voxel is identified as a pixel of a
2D slice at a certain depth [30].
The 3D instance segmentation is split in two methods:

• Proposal-based methods first generate object proposals and then adjust them
to produce the final instance masks. These techniques can be further divided
in

– Detection-based: 3D bounding box regression
– Detection-free: predicting proposals and evaluating them on confidence

scores

• Proposal-free methods label each point and then group feature embeddings to
obtain definitive 3D instance labels.

These approaches match respectively anchor-based and anchor-free approaches
treated in 2D instance segmentation.
The models for 3D instance segmentation are usually based on 3D U-Net [31].

2.1.3 2.5D instance segmentation
However, 3D CNNs are computationally expensive, characterized by long inference
times. Moreover, they have a large number of parameters that make them prone to
overfitting on small biomedical datasets and highly demanding of GPU resources
[32].
2.5D segmentation methods represent a promising solution to bridge the gap be-
tween 2D and 3D instance segmentation task. 2.5D images are stacks of 2D slices:
XY plane has high-resolution, while z-axis shows a lower resolution.
The key benefit of 2.5D instance segmentation is the use of 2D models across the
three dimensions. This means that a reduction of parameter count and of inference

8

Related works

time to perform the same task on the same three-dimensional images, with respect
of 3D models [32, 33]. These models guarantee also an adaptation to images with
varying z axis, due to anisotropy.
However, they can fail to capture inter-slices relationships and contextual informa-
tion and are prone to discontinuity in 3D volumes. The improvement of performance
between 2.5D CNNs and 3D ones has not been qualitatively evaluated [32].
The main categories of 2.5D instance segmentation models are three [32].

• Multi-view fusion: it consists of predicting each slice with 2D model from
different planes and then fusing the segmentation results.

• Incorporating inter-slice information: it deals with anisotropic voxels, so with
images with high-resolution on XY plane, but with lower information on z
axis. It incorporates inter-slice information during the segmentation of 3D
image with 2D models.

• Fusing 2D/3D features: it combines both 2D and 3D segmentation to obtain
respectively the mask for each slice and the spatial information based on 2D
predictions.

2.2 State-of-the-art segmentation models
The instance segmentation task [20] has a crucial role in bioimaging. The study of
cell morphology is important to understand the state of the cells and their response
to certain diseases and related treatments [34].
With the development and advancement of deep learning, several neural networks
were developed. Our focus is on neural networks developed for biomedical images,
especially for fluorescence images. The most well-known methods were tested
mainly for the Data Science Bowl Challenge 2018 [16] on nucleus detection [35, 34].
Our interest is not only in 2D images (subsection 2.1.1), but also in 3D volumes. In
the last case, 3D and hybrid 2.5D approaches (subsection 2.1.2 and subsection 2.1.3
respectively) obtain good results on volumetric data.
Among these, the most relevant cell segmentation models are StarDist [36] and Cell-
pose [18] for their broad adoption and user-friendliness. We listed the publications
of these models in chronological order.

2.2.1 StarDist
StarDist [36] is a single-stage method that predicts cell nuclei in fluorescence images
through star-shaped convex polygons, rather than axis-aligned bounding boxes.
In this approach, for each pixel, the Euclidean distances to the object boundary
are calculated along a set of predefined radial directions. Star-convex polygons

9

Related works

accurately represent spheroidal shapes. This approach is useful for overcoming
the crowded-cells issue. Non-maximum suppression (NMS) is performed to prune
redundant and low-confidence shapes for each object and to get the final set of
polygons. StarDist separately assigns to each pixel a probability of being part of
an object or the background.
It is a U-Net like architecture with an additional 3×3 convolutional layer with
128 channels. The two consecutive output layers represent respectively the object
probability output and the polygon distance output. The last one has several
channels equal to the number of radial directions. The suggested number of radial
vectors is 32.
StarDist has a 3D version [17] whose architecture is slightly different from the 2D
version. The three-dimensional version is a proposal-free method. There are two
versions of the backbone.

• The 3D U-Net backbone [31] has two depth scales. Each block has two
convolutional layers with kernel size 3×3×3 per depth. There is another block
before upsampling.

• The 3D ResNet backbone [37, 38] starts with a 7×7×7 convolution followed by
a 3×3×3 convolution. Then, the architecture presents several residual blocks,
each of these containing three 3×3×3 convolutions, residual connections and
a downsampling layer. After the backbone, the feature maps are upsampled
in the last two output heads.

As for 2D version, the output is composed by one channel of cell pixel probabilities
(using the sigmoid function) and as many channels as there are radial vectors.
For this extension, the challenges are the computation of the intersection of two
star-convex polyhedra and the number of radial directions. A sufficient number of
radial vectors to describe the polyhedron is 64.
During training, we minimize a loss function (averaged over all pixels) containing
the following two terms:

• Binary Cross-Entropy (BCE) loss for the predicted object probabilities.

• Mean Absolute Error (MAE) on the radial distances, weighted by the object
probability.

A weighted parameter λd balances the two loss terms. The distance loss term
contains a regularization term for background pixels; the scaling parameter λreg
deals with both object and background distances.
Let p and p̂ be the predicted and actual object probabilities, and let d and d̂ be

10

Related works

the predicted and actual radial distances. The loss function is defined as follows:
L = Lobj + λdLdist

Lobj(p, p̂) = −(1 − p) · log(1 − p̂) − p · log(p̂)

Ldist(p, d, d̂) = p · ✶p>0 · 1
n

Ø
k

|dk − d̂k| + λreg · ✶p=0 · 1
n

Ø
k

|d̂k|

The formulation is identical for both 2D and 3D versions.
The 2D model is trained on synthetic (TRAgen [39], TOY) and real (Data

Science Bowl Challenge 2018 [16]) images.
The 3D model uses WORM [40] and PARHYALE [41] volumes. This demo pre-
trained model is compatible with the 3D U-Net backbone.

2.2.2 Cellpose
Cellpose [18] is a U-Net-like model capable of segmenting a large number of cell
images.
Conceptually, given a two-channel input (cytoplasm and nuclei), Cellpose operates
in two stages:

1. The neural network computes, for each pixel, a cell probability score and a flow
field pointing toward the center of the cell. The latter represents the vertical
and horizontal spatial gradients derived via a heat diffusion simulation.

2. The predicted cell probability map and flow field are then used to reconstruct
the instance segmentation mask. A dynamical system is run for n iterations
(by default 200) to cluster pixels into distinct instances by grouping those
whose flow vectors converge to the same point.

Cellpose has an encoding and a decoding part, each of these consists of four
spatial scales. However, this architecture has different features:

• The direct summation replaced feature concatenation in the upsample pass to
reduce parameter count

• The residual blocks were employed instead of U-net building blocks

• The average pooling layers instead of max pooling ones

A spatial block consists of two residual blocks, each containing two 3×3 convolutions
interleaved with non-linearity layers. There are skip connections from encoder to
decoder at the same spatial scale.
The last encoding spatial block computes not only the feature map for the first
decoding unit, but also a vector containing the style of the input image and global

11

Related works

image characteristics. This style embedding has 256 channels and it is obtained as
a global average pooling over the final feature map of the downsampling path [18,
42]. This feature map is first normalized, then added to the last three convolutional
layers of each decoding unit.
The output head consists of a residual block with 1×1 convolution that computes
the outcome [42].

Model hyper-parameters are the diameter, the flow threshold, and the cell
probability threshold. While the last two affect the quality of predicted masks,
the diameter represents the mean size of the target objects. The network rescales
images based on both the user-provided diameter and the one learned by the model.

The loss function is defined as the sum of two terms [18, 42]:

• Mean Squared Error (MSE) over the horizontal and vertical flow fields

• Binary Cross-Entropy (BCE) loss between the predicted cell probability map
and the ground truth (GT)

Let C denote the Cellpose output, where C0 and C1 are, respectively, horizontal
and vertical flows, and C2 is the class probability map. Concerning GT values, let
H and W be the vertical and horizontal flows, and let P be the binary mask. The
loss function can then be written as


L = Lflows + Lprob

Lflows(C, H, W) = ∥C0 − λH∥2
2 + ∥C1 − λW∥2

2
2

Lprob(C, P) = −(1 − P) · log(1 − σ(C2)) − P · log(σ(C2))

where σ(·) is the sigmoid function. The parameter λ rescales the normalized
ground-truth flow vectors so that they can be directly compared with the predicted
vectors.

Cellpose performs well segmenting both 2D and 3D images. The 3D variant reuses
the 2D model, so new training or fine-tuning is unnecessary. The segmentation on
three-dimensional images works by running Cellpose on 2D planes (XY, ZY, ZX) and
by averaging the resulting flows (multi-view fusion, described in subsection 2.1.3).
This implies that segmentation on 3D images is repeated three times, i.e. one time
for each orientation. Therefore, the inference time is at least 3× longer than on 2D
images.

Cellpose contains a collection of several pre-trained models, where each of these
can identify specific biomarkers within the image (cytoplasm, nuclei, membranes).
The authors periodically retrain the model on the data from the community.

12

Related works

2.2.3 Comparison between Cellpose and StarDist

These state-of-the-art segmentation models differ not only in the approach they
use, but also in terms of results. Several studies have compared them, identifying
the strengths and weaknesses of each model. Cellpose and StarDist are evaluated
in their application on 3D fluorescence images with stained proliferative cell nuclei
[43].
As noted in subsection 2.2.2, Cellpose has a collection of pre-trained models, and it
does not require further training, making it a useful tool for novel and inexperienced
biologists. StarDist has few pre-trained models on 2D images, such as the one
from Data Science Bowl Challenge 2018 [16] (subsection 2.2.1). However, there is
only a demo pre-trained model on 3D images and it would not be the best choice
if users need a ready model. StarDist is the best option if a large and labeled
collection of samples is available for a supervised learning session, even though it
is time-consuming. Furthermore, these datasets should have highly varied shapes
and background intensity specimens. Some tools can reduce StarDist training time
on small datasets. Like StarDist, Cellpose relies on supervised training techniques.
It also offers a human-in-the-loop for 2D images: at each iteration, the model
generates segmentation masks, then the user corrects them and finally it retrains
on the updated labels [44].
Cellpose produces better segmentation masks than StarDist and other U-Net like
methods because the resulting mask consists of pixel-cell probability and also the
gradient of flow, to overcome some minor classification errors. The use of simulated
diffusion to predict the flow field is particularly helpful for segmenting irregularly
shaped objects, like elongated cells; indeed, star-convex polygon can not identify
these objects [42]. While other methods look for the center of the cell and guess
the diameter to the outer boundary, Cellpose diffusion algorithm predicts the point
where the flow gradient of each pixel converges as the center of the cell. Moreover,
it is expected to be more resilient due to image resize on diameter value [42]. Yet,
the last one represents a challenge because of different image resolutions. Using a
fixed value for cell diameter will lead to varying the accuracy depending on the
input resolution.
StarDist should be used when Cellpose predictions are not accurate enough to
be used. The latter model performs better when images contain high contrast
between objects and background, spaced-out objects with uniform intensity and
regular shape. While with high noise, Cellpose could miss several objects and the
specialized StarDist can detect blurred cells. StarDist outperforms Cellpose in terms
of prediction time, indeed the first is significantly faster than the second. Cellpose
runtime is dependent on hardware limitations. Therefore, it can be improved with
higher processing power [43].

13

Related works

2.3 Neural Network Compression
Deep neural networks achieve strong performances in their tasks, but it is hard
to deploy these models on low-resource devices due to the demands in terms of
memory storage and energy consumption [45, 46].
Compression techniques target different aspects of a convolutional neural network’s
structure and parameters. We can categorize methods based on whether they
preserve the original network architecture or remove components such as layers,
channels, etc.
In particular, structure-preserving techniques are mainly applied to pre-trained
models. In this way, reference network weights can not be lost at all and the task
can be still performed. Usually, these techniques do not require any prior knowledge
of inter-layer relationships [45]. Instead, other techniques work by changing the
topology of the network. In this manner, retraining is required to derive an efficient,
compact model.
To compare the neural networks and their compressed versions, the main complexity
metrics should be mentioned [47, 48]:

• number of parameters: it represents the number of variables that characterize
the deep neural network. The learnable parameters can be adjusted during
the training process to minimize the loss function. This number describes the
computational complexity and memory footprint of the model.

• FLOPs (FLoating Point Operations): it represents the number of floating-point
operations. They could be sum, multiplication, subtraction, or division. It is
a measure of the computational cost of a neural network.

• MACs (Multiply-Accumulate Computations): it represents the number of
couples of addition-multiplication operations. As a rule, we consider 1 MAC
= 2 FLOPs.

Let N and M be the number of input and output channels, DF and DG be the
size of the square input and output feature map, and DK the size of the kernel.

#Parameters = N · M · DF · DF

#MACs = N · M · DG · DG · DF · DF

#FLOPs = 2 · MACs

Inference time measures the amount of time required to process the input and
produce an output. It is related to the number of parameters and the number of
computations. This value also varies with hardware and software implementation.

This work focuses more on the number of parameters, MACs, and inference
time.

14

Related works

2.3.1 Pruning
Typically, artificial neural networks are dense and over-parametrized. This leads to
increased memory footprint and computational cost [49].
Pruning is a technique that removes redundant weights without significant impact
on model performance [46, 50]. The objective is to obtain sparse networks that
retain generalization ability while reducing storage requirements. There are different
kinds of pruning:

• Unstructured: these approaches remove individual model parameters based
on heuristics.

• Structured: entire weight structures (filters, layers, etc.) are pruned.

Unstructured pruning can remove a large number of unimportant parameters with
a low impact on model accuracy. In contrast, structured pruning often causes a
larger performance drop at the same pruning ratio. It is necessary to know well
the network before applying structured pruning [46, 50].
The learnable parameters could be removed using various criteria: magnitude,
sensitivity, etc. [50]. Among them, the most relevant one is magnitude-based
pruning. The weights with smaller absolute values have little influence on the
overall performance. Lp-pruning is a technique based on magnitude that computes
Lp norm of a weight tensor: the values with smaller norms are more likely to be
cut off. L1-based pruning is suited to prune the network without fine-tuning, while
L2-based pruning performs well if it is followed by fine-tuning [51].
Furthermore, pruning techniques can be classified as local or global. The difference
lies in pruning a subset of layers or the whole network. Setting a prune ratio for
the layers to prune could be a limitation to local pruning, leading to sub-optimal
sparsity. In contrast, global pruning automatically assigns a prune ratio value for
each layer [50].
Pruning is usually applied to a pre-trained model, in order to compare dense
model performance with its pruned version. Sometimes, training the subnetwork
for several epochs is necessary to regain performance. Alternatively, pruning an
initialized model eliminates the cost of pre-training, as the sparse model is trained
from scratch [50].

2.3.2 Quantization
Quantization is the process of representing values with a reduced number of bits.
These values can be weights, activations, or gradients. This technique reduces
inference time for models, decreases power consumption, and saves memory space
[46, 52]. If value representation is 32-bit, then it is needed param.mem = #params·
32 bits to store weights [53].

15

Related works

The most common value representations are half-precision for floating point (FP-16)
and integer arithmetic (INT-16). The current research focus is on lower-precision
integer representations, such as INT-8, INT-4, INT-2, or 1-bit (binarization) formats
[52]. However, reducing the number of bits can lead to a drop in performance.
A standard approach is to replace floating-point operations with their integer
equivalents. A further training session of the quantized model can regain much
of the lost accuracy. This process, called quantization-aware training, applies
quantization during both forward and backward propagation. By contrast, post-
training quantization offers a simpler alternative: it performs quantization and
adjusts the weights without any fine-tuning [46]. Alternatively, another compression
method includes the quantization as a penalty term in the loss and minimizes it [45].
Consequently, designing quantized model architectures facilitates both training and
deployment on resource-constrained devices [52].

2.3.3 Low-Rank Decomposition

Low-rank decomposition simplifies convolutional layers by approximating each full-
rank weight matrix in a neural network by a product of two smaller matrices [46,
54]. Typically, this decomposition technique is applied layer-by-layer [46].
The low-rank factorization of the filter tensors eliminates redundancies in the
parameters and improves the compression ratio [52]. It can reduce the number
of multiply-accumulate operations and potentially accelerate inference. However,
in many architectures, it does not speed up the model significantly, since the
computational operations of CNN are mainly in the convolution layer.
Singular Value Decomposition (SVD) is the standard method for computing a
low-rank factorization of weight matrices in both fully connected and convolutional
layers [45].
However, the implementation is not that easy since it involves a computationally
expensive operation, such as decomposition [54].

2.3.4 Knowledge Distillation

Knowledge distillation is a strategy to transfer expertise from a large teacher model
to a small student model. The small model is trained to mimic the teacher’s
behaviour. It works by providing the same input to both models and comparing
their output to adjust student’s weights [46]. Teacher knowledge is transferred
to the student using class probabilities as “soft targets” [55]. When ground-truth
is available, a standard cross-entropy loss between student predictions and true
labels, known as “hard targets”, is included in the objective function [56].
There are three main types of teacher-supervised techniques [57]:

16

Related works

• Response-based knowledge trains the student to directly mimic the final pre-
diction of the teacher

• Feature-based knowledge represents an extension of the response-based ap-
proach: it supervises the training of the student by also leveraging the feature
maps of the intermediate layers

• Relation-based approach is based on the relationships between different layers
of student and teacher models and their corresponding feature maps

Knowledge distillation is divided into three main learning schemes [57]:

• Offline distillation: a fixed, pre-trained teacher model transfers its knowledge
to the student model.

• Online distillation: teacher and student learn together.

• Self-distillation: the same network is used for both teacher and student. A
network teaches itself.

2.3.5 Lightweight Model Design
The lightweight model design consists of reducing the computational complexity of
the neural network by employing more compact convolution kernels or methods. A
CNN architecture can be simplified by introducing efficient convolutional modules
or by removing redundant layers. Moreover, beyond classical techniques, an optimal
neural network can be obtained using complex mechanisms with feedback loop,
like NAS [58, 53, 46].
An overview of the lightweight architectures and their efficient convolutional modules
is then presented. Next, the focus is on depthwise separable convolutions, a cheap
and effective convolution module that replaces standard convolution.

Overview of lightweight model design techniques

The research pays attention on the simplification of CNN structure to deploy the
architecture on lower resource-demanding devices. The design of a lightweight
model leads to a reduction in the number of computations and in inference time
[58, 46].

Efficient convolution modules The first move is to design a cheap convolutional
layers. Obviously, the goal is not only to perform less computations, but also to
efficiently compute the input to preserve the most relevant features. Several efficient
convolutional modules were published and adopted instead of standard convolutions.

17

Related works

In general, the 1 × 1 kernel convolution, known as pointwise convolution, are really
employed. These convolutions reduce the computational complexity, but also work
effectively across channels, mixing the information and maintaining the input
spatial dimensions. They are 9× cheaper than 3 × 3 convolutions.
Among the most common cheap neural networks, there is SqueezeNet [59] that
reduces by 9 times the number of parameters and decreases the number of channels
by replacing 3×3 convolution kernels with a 1×1 convolution kernel. MobileNet [60]
splits the standard convolution in two sequential operations, depthwise convolution
and pointwise convolution. ShuffleNet [61] replaces group convolution with pointwise
convolution and the outcome is combined with channel shuffle [58, 53, 46].
Moreover, it is important to add residual connections or skip connections to these
structures to not lose information and even to gain model accuracy [58].

Layer removal The layer removal is applied to further streamline the back-
bone. For example, a study [62] compared functionalities of different layers: the
bottom layers contain general information, while the upper ones contain abstract
information relevant to a specific dataset and task. Removing upper pre-trained
convolutional layers can improve network performance. In this way, it is possible
to avoid retraining or fine-tuning. The number of layers to remove before applying
transfer learning depends on the nature of the dataset.

Combination of lightweight architecture design and compression tech-
niques The lightweight model design and model compression techniques (i.e.,
pruning, quantization) can be combined to optimize CNN structure. While the
first approach defines a new architecture, the second one refines some details,
like removing redundant weights or changing their value representation without
losing too much in performance [53]. Both aim to deploy the architecture on
low-performing devices.

Future directions The future research directions include automatic design
method, like Neural Architecture Search (NAS). It is a system composed by three
parts (search space, evaluation method and search method), whose goal is to obtain
the optimal neural network satisfying a multi-objective optimization through a
feedback loop [58, 46].

Since the convolution operation can be divided in shift and multiplication
operations, the focus is also to optimize the shift operations to further trim memory
footprints [58].

18

Related works

Depthwise Separable Convolution Layers

We now present a detailed overview of depthwise separable convolutions, which will
be important in the development of lightweight models in the Methodology chapter
(subsection 3.3.4).
A standard convolutional layer filters and combines inputs into a new set of outputs
in a single step. Its computational cost depends on the size of the input feature
map, the number of input and output channels, and the filter sizes. To make
convolution operations more efficient, Xception [63] and MobileNet [60] introduced
a new module, called depthwise separable convolution layer. In this module, the
standard convolution layer is split into a filter step and a combination step. These
two operations are performed in sequence.

1. Depthwise convolution applies one filter to each input channel.

2. Pointwise convolution applies a 1 × 1 convolution to linearly combine the
resulting feature maps.

MobileNet applies the non-linearities after each layer [60], whereas in Xception
the non-linearity is applied only at the end of the stack of operations [63]. The
depth (i.e., number of channels) of the intermediate feature spaces is critical to the
usefulness of the non-linearity. In detail, non-linearity is helpful for deep feature
spaces, while it may discard information in shallow feature maps [63].

Let DF be the square input feature map size, N the number of input channels,
DG the square output feature map size, M the number of output channels, and
DK the kernel size. Then, the computational cost of a standard convolution is

M · DK · DK · N · DF · DF

whereas the cost of a depthwise separable convolution is

N · DK · DK · DF · DF + M · N · DF · DF

This leads to a reduction in the computation of

1
M

+ 1
D2

K

2.4 FastCellpose
FastCellpose [19] is a lightweight variant of Cellpose specialized in segmenting whole
kidney glomeruli. This model was obtained by simplifying Cellpose backbone and
optimizing the mask reconstruction.
Concerning the architecture, the authors modified two key parameters: neural

19

Related works

network width and depth. They are respectively the number of base feature maps
per depth scale and the number of convolutional layers per unit.
The best number of channels at the first depth scale is 16, then this number doubles
when downsampling until reaching 128 channels, then, this value halves during
upsampling. By contrast, Cellpose initial number of feature map channels is 32
and the maximum number is 256.
Furthermore, the authors found that each spatial block should contain two con-
volutional layers instead of four. In the upsample block, the unpooling layer was
replaced by a transposed convolution, followed by one standard convolutional layer.
In each downsample unit, the pooling layer remains present.
Therefore, the computational complexity was drastically reduced by 92 % in number
of learnable parameters.

Since inference time is a sum of network prediction and mask reconstruction
times, the authors also optimized the latter. For mask reconstruction optimization,
a U-Net-like approach was adopted to operate on the network prediction: first, the
final outcome (both cell probability mask and flow field) is downsized. Next, the
label mask is computed as in Cellpose. Then, the resulting mask is upsampled back
to the original image size. Moreover, the number of gradient flow tracking iterations
is reduced from 200 to 50 to further speed up the mask reconstruction process.
The authors removed the style branches, as they were designed to simultaneously
segment different types of cellular images.

FastCellpose was trained by scratch on renal glomerulus samples, without
recurring to a Cellpose pre-trained model. The human-in-the-loop approach was
adopted to train the neural network on mouse kidneys of different ages. This
technique is a supervised learning approach that integrates human knowledge
and experience [64]. This pre-trained model also performs well on neural soma
segmentation.

This architecture is designed for multi-threaded and parallel computing. In this
way, segmentation speed can be up to 12 × faster than Cellpose.

20

Chapter 3

Methodology

This chapter describes the dataset and the workflow employed for training and
inference.
First, we introduce our dataset of 3D confocal images of prostate organoids with
nuclear biomarker. We also cover data annotation. Next, we select our baseline by
comparing StarDist and Cellpose and motivating why one is better suited to our
scenario and dataset. Subsequently, we present the lightweight models, describing
how they were compressed and conducting a complexity analysis against the baseline
to quantify the efficiency gains. Furthermore, we describe how we applied knowledge
distillation to match baseline performance. Finally, we perform a comparative
analysis of Cellpose and our distilled models by measuring segmentation quality on
2D images against ground-truth annotations.

3.1 Dataset
Our dataset contains confocal images of mice prostate organoids that were sampled
in two laboratories, one in Nice and one in Paris. These organoids were mostly
acquired with the confocal microscopy, but some of them with Spinning Disk
confocal microscopy. Two objectives were used to capture the images: 20 × and 40
× magnification. There is not a detailed description of the immersion medium under
each objective. Confocal microscopy employs light beams on a nuclear fluorophore
to highlight this bio-marker in the images. Therefore, the images contain only one
channel, the nuclear one. Each organoid was sampled on the 7th day.
The images are divided into three sets; each set represents a specific phenotype. As
mentioned in the subsection 1.2.2, the phenotypes for prostate organoids are cystic,
compact, and cauliflower.
These image stacks are in .tif format and they can be opened with Fiji tool [65].
We removed some images because they were blurred and state-of-the-art models

21

Methodology

can not predict accurate segmentation mask on them.
This dataset is unlabeled. It represents a limitation, as we could not perform
supervised training on these images and could not quantitatively evaluate the
prediction accuracy relative to the ground-truth. Table 3.1 contains the number of
images grouped per laboratory and magnification. Most of the samples belong to
the cystic phenotype. There is a low quantity of compact organoids.

Laboratory Objective # samples Cauliflower Compact Cystic
Nice 20 × 104 17 31 56
Paris 20 × 5 0 0 5
Paris 40 × 190 106 1 83

Table 3.1: Number of images for each laboratory and objective

We partitioned the data into an 80% training set, and a 20% test set (Table 3.2).
The training portion was further split into 67% for model fitting and 33% for
validation. After completing the distillation sessions, we added new samples to the
test set.
Because samples are unevenly distributed across phenotypic classes and instance
segmentation focuses only on assigning image pixels to object instances, we ignored
these labels. Instead, we grouped samples by laboratory and imaging objective,
accepting their natural distribution.

Laboratory Objective # train samples # test samples
Nice 20 × 80 24
Paris 20 × 4 1
Paris 40 × 104 86

Table 3.2: Training and test set per each objective

For prediction, we used both 3D volumes and 2D slices extracted from them.
For training, we divided each image into 256 × 256 patches to avoid memory-
allocation (Out-Of-Memory) issues during distillation process. We filtered the
patches to keep only those containing nuclei and to discard background-only
patches. This ensures that segmentation models are tested on their ability to
detect nuclei rather than background. We collected training patches by objective,
regardless of the originating laboratory. The following table Table 3.3 shows the
number of patches for each objective.

22

Methodology

Objective # train patches
20 × 43,739
40 × 224,187

Table 3.3: Training patches for each magnification

3.1.1 Annotation
Given 3D samples, we extracted some 2D slices for each dataset (laboratory,
objective) and labeled nuclei using multi-point tool of Fiji [65]. The resulting
annotations were useful as ground-truth for the evaluation of the cell segmentation
models. The coordinates of the labeled objects were saved in .csv files. Table 3.4
shows how many 2D slices were annotated.

Laboratory Objective # slices Cauliflower Compact Cystic
Nice 20 × 17 5 6 6
Paris 20 × 1 0 0 1
Paris 40 × 8 3 0 5

Table 3.4: Number of annotated 2D slices for each laboratory and objective

We annotated only 2D slices, and not full 3D image stacks, because labeling
3D volumes is time-consuming. The motivations of this choice are explained in
section 5.5.

3.2 Baseline definition
The comparison between Cellpose and StarDist, reported in subsection 2.2.3, helped
us to choose Cellpose as baseline for our work.
The key advantages of Cellpose are its single architecture for both 2D and 3D
segmentation and its set of pre-trained models (subsection 2.2.2), including the
one specialized on fluorescence images with nuclear biomarker (“nuclei” model).
Cellpose is ideal for non-experienced users due to its ease of use.
By contrast, StarDist requires distinct models for 2D and 3D segmentation, as
noted in subsection 2.2.1. StarDist has few pre-trained models on 2D images,
but for 3D segmentation there is only an unofficial version trained on 20 samples.
Community members have also released models trained on 3D images, such as
StarDist Plant Nuclei 3D ResNet, but we did not test them. StarDist obtains

23

https://bioimage.io/#/?tags=stardist&id=10.5281%2Fzenodo.8421755&type=model

Methodology

accurate predictions after training on a large set of labeled images, but our unlabeled
datasets (section 3.1) are not suited for this purpose. Although StarDist is lighter
and faster than Cellpose, these benefits did not compensate for its limitations in
3D segmentation.
Finally, we reported a numerical comparison in section 4.3: we computed predictions
of both models on 2D slices from our datasets. The results demonstrated that
Cellpose outperforms StarDist by at least 5 % in F1 score.
These combined technical, usability, and performance advantages led us to adopt
Cellpose as our project baseline.

3.3 Cellpose compression
This project aimed to develop a neural network that achieves baseline perfor-
mance while keeping low inference costs. Because FastCellpose is currently the
lightest variant, we focused on designing an even more compact architecture. On
the baseline backbone, we employed different neural network compression
techniques. These methodologies are complementary since they streamline the
architecture at the expense of accuracy, inference time, or development cost. We
evaluated the main compression families: we discarded the methods that change
weight representation (quantization, subsection 2.3.2) or that remove redundant
parameters to produce a moderately sparse network at the cost of accuracy (prun-
ing, subsection 2.3.1). Moreover, we did not consider those that decompose the
convolutions, like low-rank factorization (subsection 2.3.3). Therefore, we turned
to model design (subsection 2.3.5) and knowledge distillation (subsection 2.3.4).
The first reduces the computational complexity of the architecture, although it
comes at a performance cost. The second compensates for the loss in accuracy by
transferring baseline knowledge to the compact model.
We first redesigned Cellpose via structural changes, then performed knowledge
distillation.

We applied the following compression techniques to streamline baseline architec-
ture:

1. Removing redundant layers

2. Replacing standard convolutions with more efficient variants

3. Reducing the number of feature map channels

As noted in subsection 2.2.2, inference time also includes a component due to
mask reconstruction. This process can be optimized by adjusting the number of
iterations for "follow the flows" and resizing the flow-vector field, as proposed by
FastCellpose [19].

24

Methodology

3.3.1 Dilated Cellpose
We began compressing the downsample (encoding) path.
As we described in subsection 2.2.2, a spatial block consists of four convolutions.
The first step was to remove two convolutional layers in each encoding unit, reducing
also the number of residual additions to one. After this change, the output feature
map has a 5 × 5 receptive field, smaller than 9 × 9 one with four 3 × 3 convolutions.
To capture more context of the feature map without adding layers, we introduced
dilation in some convolutional layers. The dilated convolution (or “atrous
convolution”) expands the receptive field without increasing the number of param-
eters or reducing spatial resolution [66, 67]; dilation inserts spaces between kernel
element [67]. Given a kernel size k and a dilation rate d, the effective kernel size is

k̂ = k + (k − 1)(d − 1)

Given the chain of two layers, we replaced the second layer with a dilated convolution
(dilation = 2). We set the dilation rate of the second convolution layer to 2
to increase the receptive-field size. Instead of a 5 × 5 receptive field, the new
configuration provides an output feature map with a 7 × 7 receptive field. It
represents a trade-off between the two convolutions chain (5 × 5 receptive field)
and a four convolutions chain (9 × 9 receptive field). Furthermore, we adjusted
padding so that each dilated convolution preserves feature map size. This aligns
with the Hybrid Dilated Convolution (HDC) approach, a stack of convolutions
with progressive higher dilation rates [68, 69].
With these changes, we reduced the number of parameters by 23.78% and the
number of MACs by 23.85%, compared to the original Cellpose architecture. It
is possible to get predictions from this model by loading the weights from a pre-
trained model. Despite removing two convolutional layers per spatial block in
the downsample path and introducing dilation, the model still works, albeit less
accurately than the baseline (a drop between 20 % and 40% relative to Cellpose in
terms of F1 score).

3.3.2 Upsample Cellpose
We compressed the upsample (decoding) path as in the downsample path.
In fact, we removed two convolutions from each block in the decoder.

In Cellpose backbone, upsampling (unpooling) layers are employed to increase
the feature map size; these layers use the Nearest-Neighbor approach. The interpo-
lation smoothens the feature maps, especially around edges, and it often misses
out on thin details [70].
To better control the feature map restoration, we replaced the unpooling layers with
transposed convolutional layers, also known as fractionally strided convolutions.

25

Methodology

Compared to standard convolutions, the transposed ones work oppositely: they
produce an output feature map larger than the input. Moreover, forward and
backward operations are swapped [67].
The main disadvantage of transposed convolutions is the introduction of zero-
padding in input and of learnable parameters in the neural network (unlike un-
pooling layers). In transposed convolution layers, overlaps may happen during
the computations, due to stride and kernel size hyper-parameters. In particular,
the “uneven overlap” occurs when the kernel size is not divisible by the stride
[71] or when the stride is smaller than the filter size [70]. This unevenness creates
checkerboard-like artifacts in the output. To avoid this “grid”, we used a kernel
size that is divisible by the stride.
We combined upsampling layers and a transposed convolutionals: in this way,
we leverage the strengths of both techniques, while mitigating their individual
drawbacks.
To double the feature map size, we explored various hyper-parameter configurations.
We selected those configurations that had a kernel size divisible by the stride. We
chose the one that introduces the lowest number of learnable parameters [70]:

• Kernel size = 2

• Padding = 0

• Dilation = 1

• Stride = 2

• Output padding = 0

Using this setup, we reduced the number of parameters by 22.23% and the number
of MACs by 23.22%, compared to the original Cellpose architecture.
The learnable parameters of the new transposed convolution layers were initialized
with Kaiming approach: it consists of applying a Normal distribution with µ = 0
and σ = 2

n
where n is the number of inputs to the node.

As with Dilated Cellpose (subsection 3.3.1), the pre-trained weights were loaded,
but the introduction of new layers with randomly initialized weights prevented
acceptable predictions. Therefore, it was necessary to find a new set of weights for
this model, avoiding training and fine-tuning steps.

3.3.3 Compressed Cellpose
Based on our previous findings, we applied the compression methods on both
downsample and upsample paths. This further reduced the number of parameters
and multiply-accumulate computations.

26

Methodology

By removing two convolutional layers per spatial block, introducing dilation and
interleaving with unpooling and transposed convolutions, we obtained a model
with 46.01% fewer parameters and 46.87% fewer MACs.

3.3.4 Cellpose with depthwise separable convolutions
However, removing convolutional layers alone is not sufficient. Inspired by Xception
[63] and MobileNet [60], we replaced all the convolutional layers of Cellpose backbone
with depthwise separable convolutional layers (section 2.3.5). In this way,
each convolutional layer yields a parameter reduction of

1
M

+ 1
D2

K

The number of parameters dropped by 81.06% and the number of MACs dropped
by 84.11%.

3.3.5 Compressed Cellpose with depthwise separable con-
volutions

To further streamline the previous version, we simplified the encoder-decoder
architecture as done in Compressed Cellpose. Specifically, we removed additional
convolutions and some upsampling layers, and introduced dilated and transposed
convolutions. In upsampling, we inserted depthwise separable deconvolutions
[72] instead of transposed convolutions. While depthwise separable convolution
consists of depthwise convolution followed by pointwise one, our decoding variant
uses transposed convolution for each channel followed by 1 × 1 convolution. As
in Compressed Cellpose, we alternated unpooling layers with depthwise separable
transposed convolutions to avoid artifacts and limit the increasing of parameters.
We reduced the number of parameters to less than a million. In particular, we
removed 89.89% of parameters relative to the original architecture. The number of
MACs decreased by a factor of approximately 10.

3.3.6 FasterCellpose
The methodologies we applied were not sufficient to obtain a CNN smaller than
FastCellpose (section 2.4).

The authors of FastCellpose presented an operation to further streamline Cell-
pose backbone: the number of feature map channels was halved at each level of
the U-Net. Instead of having four depth scales with 32 → 64 → 128 → 256 output
feature map channels (and the reverse in upsampling), the new architecture used
four depth scales with 16 → 32 → 64 → 128 channels. This single action reduces

27

Methodology

the computational complexity by approximately 4×.
Therefore, we halved the number of channels and then we resorted to depth-
wise separable convolution. This compact model represents the first version of
FasterCellpose, surpassing FastCellpose in both parameter count and MACs.
FasterCellpose has 95.42% drop in parameters compared to Cellpose. It is 1.73×
smaller than FastCellpose.

Based on the compression techniques explored previously, we developed a second
version that is also lightened in both the downsample and upsample paths. It has
97.15% fewer parameters and 97.19% fewer MACs than Cellpose.

A third version was also implemented by using only depthwise separable
transposed convolutions instead of the interleaving of these ones and unpooling
layers. Compared to the previous version, we gained in terms of computational
complexity, but artifacts may occur during upsampling. This version has a reduction
of 98.24% in parameter count and 98.5% in computation count than the baseline.

3.3.7 Computational Complexity Analysis
Table 3.5 presents Cellpose, its lightweight models, and FastCellpose in terms
of computational metrics. All compact models are compared to the baseline in
terms of number of learnable parameters and Multiply-Accumulate Computations
(MACs) on a 1024 × 1024 tensor, since most 2D images have this resolution. Notice
that each successive model reduces both metrics relative to the baseline. As shown
in Figure 3.1, models follow an approximately linear relationship between the
number of learnable parameters and the number of MACs. Rather than applying
only compression techniques based on weights (e.g., pruning, quantization), we
redesigned the convolutional layers to reduce both parameters and operations [46].

Recalling from section 2.3 that

#Parameters = N · M · DF · DF

#MACs = N · M · DG · DG · DF · DF

it follows that the relationship between parameters and weights is

#MACs = D2
G · #Parameters

From section 2.3.5 we identified a reduction of parameters and computations using
depthwise separable convolutions as follows

1
M

+ 1
D2

K

Because we removed entire convolutional layers and replaced others with depthwise
separable convolutions, both parameter count and MACs decrease approximately

28

Methodology

M
od

el
#

pa
ra

m
et

er
s

pa
ra

m
s

ra
tio

w
rt

C
el

lp
os

e
(%

)
#

M
A

C
s

M
A

C
s

ra
tio

w
rt

C
el

lp
os

e
(%

)
C

el
lp

os
e

6,
60

0,
84

3
10

0.
00

32
6,

83
7,

31
3,

53
6

10
0.

00
D

ila
te

d
C

el
lp

os
e

(d
ow

ns
am

pl
e)

5,
03

1,
24

4
76

.2
2

24
6,

65
8,

99
8,

27
2

75
.4

7
U

ps
am

pl
e

C
el

lp
os

e
(u

ps
am

pl
e)

5,
13

3,
16

4
77

.7
7

25
0,

95
3,

71
9,

80
8

76
.7

8
C

om
pr

es
se

d
C

el
lp

os
e

(d
ow

ns
am

pl
e

+
up

sa
m

pl
e)

3,
56

3,
56

5
53

.9
9

17
3,

64
4,

30
8,

48
0

53
.1

3
C

el
lp

os
e

w
ith

de
pt

hw
ise

se
pa

ra
bl

e
co

nv
ol

ut
io

ns
1,

25
0,

01
9

18
.9

4
51

,9
42

,6
29

,3
76

15
.8

9
C

om
pr

es
se

d
C

el
lp

os
e

w
ith

de
pt

hw
ise

se
pa

ra
bl

e
co

nv
ol

ut
io

ns
72

0,
10

0
10

.9
1

33
,9

23
,6

53
,6

32
10

.3
8

Fa
st

C
el

lp
os

e
56

4,
80

7
8.

56
30

,1
02

,5
50

,5
28

9.
21

Fa
st

er
C

el
lp

os
e

v1
32

6,
53

1
4.

95
14

,9
84

,2
43

,2
00

4.
58

Fa
st

er
C

el
lp

os
e

v2
18

6,
86

5
2.

83
9,

18
7,

65
3,

63
2

2.
81

Fa
st

er
C

el
lp

os
e

v3
11

5,
96

9
1.

76
4,

91
2,

60
9,

28
0

1.
50

T
ab

le
3.

5:
C

om
pa

ris
on

of
C

el
lp

os
e,

Fa
st

C
el

lp
os

e
an

d
lig

ht
we

ig
ht

m
od

el
s

in
te

rm
s

of
co

m
pu

ta
tio

na
lc

om
pl

ex
ity

29

Methodology

0246
params 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M

AC
s

1e11 Network compression

Cellpose
Dilated CP
Upsample CP
Compressed CP
CP with depthwise sep. convs
Compr. CP with depthw. sep. convs
FastCP
FasterCP v1
FasterCP v2
FasterCP v3

Figure 3.1: Models in terms of number of parameters and MACs

linearly across our model variants. However, Upsample Cellpose is computation-
ally more complex than Dilated Cellpose due to the introduction of transposed
convolutions [67].

3.4 Knowledge Distillation on Cellpose
The knowledge distillation stage follows the Cellpose compression stage. As de-
scribed in subsection 2.3.4, the goal is for the student model to closely mimic the
teacher model in performing the instance segmentation task.
The pre-trained Cellpose model on nuclei bio-marker images served as the teacher.
We adopted the lightweight models obtained in the previous stage as students.
Most of the student models were initialized with Kaiming approach.
Since Cellpose does not natively support teacher-student learning, we implemented
a knowledge distillation method inspired by its codebase.

We adopted response-based knowledge and offline approach to update the weights
of all student’s layers, using teacher’s reliable predictions. As mentioned in sec-
tion 3.1, we used a dataset of 2D patches for these. Since our dataset is unlabeled,
we could use only soft targets derived from teacher predictions.
Given the acquisition of fluorescence images at different magnifications, we trained
a separate model for each objective.

30

Methodology

To evaluate models’ output, we were unable to use instance segmentation masks
due to compatibility issues with tensors. Instead, we used segmentation masks
coming from cell probability maps. However, using segmentation masks may lead
to not separate two touching objects.

Metrics We used Intersection over Union (IoU) [73, 74] to compare teacher and
student cell probability masks. This metric ranges from 0 (no overlap) to 1 (perfect
overlap). To obtain binary segmentation masks, we applied a threshold of 0.5 to
both probability maps. This value allows to identify pixels most confidently labeled
as nuclei. Teacher’s binary output serves as pseudo ground-truth. Formally:

IoU = TP

TP + FP + FN

where

• TP is the number of pixels assigned to nuclei class by both teacher and student

• FP is the number of pixels assigned to nuclei class by the student, but labeled
as background class by the teacher

• FN is the number of pixels assigned to background class by the student, but
labeled as nuclei by the teacher.

A similar metric is Dice [74]:

Dice = 2 · TP

2 · TP + FP + FN

This metric has a specific loss, called Dice loss.
In our experiments, we reported only IoU.

Distillation Settings We ran teacher-student learning for each student at least
for 100 epochs over all the training samples, using Adam optimizer [75]. At the
end of each epoch, IoU was computed on the training dataset. The frequency of
IoU computation on the validation set can be user-defined.
We implemented an early stopping criterion to terminate the teacher-student
training session. It triggers when the validation IoU value decreases by more than
5 points (overfitting) or stagnates for three validation steps (plateau).
Given the large size of our dataset, we did not consider regularization techniques,
such as data augmentation, during student training.

31

Methodology

Loss definition In subsection 2.2.2, we described Cellpose loss function and we
mentioned λ scaling parameter [18, 42]. By default, this parameter is set to 5, as
supervised training involves converting label masks into flow representations with
values between 0 and 1. In our case, we set λ to 1 because we compared directly
the vector fields of teacher and student models.

3.4.1 Hyper-parameter optimization
A crucial hyper-parameter for Cellpose is diameter, which is used to rescale
the input image before segmentation. Other important hyper-parameters for the
knowledge distillation process are learning rate and batch size. We performed
a K-Fold Cross Validation by splitting the dataset into four folds. For each fold,
we ran knowledge distillation for 15 epochs and collected the validation IoU to
determine which hyper-parameter configuration yielded the highest IoU.

3.5 Evaluation
We used DAccuracy tool (Eric Débreuve, DAccuracy, 2024, https://src.koda.
cnrs.fr/eric.debreuve/daccuracy) to evaluate the predictions against the an-
notations on 2D slices. This tool computes performance metrics, such as Precision,
Recall, and F1 score [73].

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 = 2 · Precision · Recall

Precision + Recall

Masks are always images, while GT can be either images or .csv files containing
object coordinates. If GT is provided as a comma-delimited text file, users must
specify which columns correspond to row–column (or x–y) coordinates. Furthermore,
DAccuracy can display the predictions over the ground truth (GT) for visual
inspection.

Each model was evaluated on the corresponding magnification level it was
trained for.

The limitation of this tool is represented by the evaluation of 3D volumes, which
is extremely time-consuming on CPU. Moreover, we did not annotate 3D images,
as noted in subsection 3.1.1. So, no 3D quantitative evaluation was performed.

32

https://src.koda.cnrs.fr/eric.debreuve/daccuracy
https://src.koda.cnrs.fr/eric.debreuve/daccuracy

Chapter 4

Results

This chapter reports both quantitative and qualitative outcomes of Cellpose and
distilled lightweight models across various datasets. First, we conduct a comparative
analysis of segmentation performance on our data, followed by evaluations on two
benchmarks: DAPI [76] and BitDepth [77] datasets. We display some graphs
that represent the evaluation of predictions against ground-truths in terms of F1
score and parameter count. Next, we shift our focus to 3D segmentation. The
evaluation of 2D masks is straightforward, assessing predictions on 3D volumes is
more challenging. Therefore, we also include a qualitative analysis of the masks
and we show how inference time drops from Cellpose to FasterCellpose v3.

4.1 Hardware specifications
As mentioned in section 1.4, we aimed to obtain a lightweight model that segments
biomedical images efficiently on the CPU.

We performed knowledge distillation using a high-performing GPU, which
enabled faster training on a large number of samples and the use of larger batch
sizes (e.g., batch size of 8 samples). The average training time per epoch on 200,000
samples is around 40-50 minutes. Table 4.1 shows specifications for this stage.

Component Specification
CPU AMD EPYC 7313 @ 3.0GHz
RAM 512 GB
GPU NVIDIA A100 PCIe (40GB VRAM)
Storage 31.8TB
Operating System Ubuntu 24.04 LTS (Noble Numbat)

Table 4.1: Hardware specifications used for knowledge distillation

33

Results

For prediction, we used the CPU because we would like to emulate a laboratory
environment that is not provided with a GPU. Indeed, the inference time is related
to the specific hardware: the average inference time is around 15 seconds per
1024 × 1024 image using Cellpose. Table 4.2 shows CPU specification.

Component Specification
CPU Intel(R) Xeon(R) E-2186M @ 2.90 GHz
RAM 64 GB
Operating System Windows 10 Pro 22H2

Table 4.2: Hardware specifications used for inference

4.2 Results from internal K-Fold Cross Valida-
tion

As mentioned in subsection 3.4.1, we performed internal K-Fold Cross Validation
(K=4, 15 epochs per fold, Adam optimizer [75]) to identify the best hyperparameter
configuration (subsection 3.4.1). We ran this on each dataset of patches (section 3.1),
using the Cellpose pre-trained model as teacher.

First, we used Dilated Cellpose (subsection 3.3.1) as our student model, since it
was the first developed lightweight variant. The Cellpose pre-trained weights were
loaded onto this student.

Next, we used FastCellpose (section 2.4) with randomly initialized weights, as
our goal was to focus exclusively on nuclear biomarker images rather than glomeruli.

The optimal hyperparameter values for each student model and dataset are
summarized in Table 4.3

Student Dataset Learning Rate Batch Size Diameter Validation IoU (%)
Dilated CP 20× 10-3 8 25 85.53
Dilated CP 40× 10-3 8 25 84.39

FastCP 20× 10-3 8 25 82.17
FastCP 40× 10-3 8 25 80.82

Table 4.3: Results from K-Fold Cross Validation (K=4; # epochs per fold = 15;
patches = 10,000 per magnification)

To confirm that the best diameter is 25, we computed the optimal diameter size
on the patches of different phenotypic classes. As shown in Figure 4.1, this value

34

Results

fits well with most of the patches.

Cauliflower Compact Cystic
Phenotypic classes

10
20
30
40
50
60
70
80

Di
am

et
er

 (p
x)

Avg diameter in 20X dataset

Cauliflower Compact Cystic
Phenotypic classes

10

20

30

40

50

Di
am

et
er

 (p
x)

Avg diameter in 40X dataset

Figure 4.1: Average diameter value for each phenotype and magnification

4.3 Performance of Cellpose and StarDist
Based on the considerations in subsection 2.2.3, we performed a further analysis of
Cellpose and StarDist on 2D slices. Using annotated 2D slices at each magnification
level, we collected performance statistics of models’ predictions against the ground
truth. As shown in Figure 4.2, Cellpose outperforms StarDist across all phenotypic
classes and both 20× and 40× magnification levels.

Cauliflower Compact Cystic
Phenotypic classes

0

20

40

60

80

100

F1
 sc

or
e

(%
)

Performance on 20X dataset

CP
StarDist (DSB)
StarDist (vers. fluo)

Cauliflower Cystic
Phenotypic classes

0

20

40

60

80

100

F1
 sc

or
e

(%
)

Performance on 40X dataset

CP
StarDist (DSB)
StarDist (vers. fluo)

Figure 4.2: Quantitative comparison between Cellpose and StarDist in terms of
F1 score on 2D slices per each phenotypic class at 20× and 40× magnifications
in terms of F1 score. On fluorescence nuclear-biomarker images, there is one
pre-trained model for Cellpose (’nuclei’) and two pre-trained models for StarDist
(one on solely DSB [16], another also on other images)

In Figure 4.3, we qualitatively compare Cellpose and StarDist segmentation
masks. Cellpose produces more accurate detections than StarDist. Figure 4.3b and
Figure 4.3c are respectively the masks obtained with StarDist pre-trained model

35

Results

’DSB’ and ’versatile_fluo’: StarDist captures spheroidal objects, but often these
shapes are incorrectly assigned to nuclei, increasing the number of false positives
detections. By contrast, in Figure 4.3a Cellpose consistently traces precise contours,
and effectively separates well touching objects into distinct instances.

(a) Cellpose (b) StarDist (DSB) (c) StarDist (fluo)

Figure 4.3: Qualitative comparison between Cellpose and StarDist predictions on
a slice. The blue contours represent the predicted object boundaries, the red dots
represent the ground-truth nuclei centroids

4.4 Performance on our dataset

We compared Cellpose with various lightweight and distilled models to assess
whether they can match baseline performance.
Loading pre-trained Cellpose weights into the lightweight architectures resulted in
poor segmentation masks, as expected. Layer removal causes a performance drop,
and the insertion of new layers (transposed convolutions and depthwise separable
convolutions) requires well-tuned weights to yield good segmentation.
We thus applied knowledge distillation to adjust the weights of each model on our
training set. We evaluated the distilled models on annotated 2D test slices.
These results confirm that our students learnt effectively from the teacher. We
observe in Table 4.4 the results on cystic samples with magnification 40×. Compared
to the baseline, Dilated Cellpose had a drop of around 22 % in the F1 score, but after
applying knowledge distillation, performance was largely restored. Furthermore,
we observed that FasterCP v3 delivers a 3.89× speedup in inference time over the
original Cellpose.

36

Results

Model Precision (%) Recall (%) F1 score (%) net. inference time (s)
Cellpose 91.45 ± 7.13 91.37 ± 3.73 91.34 ± 5.13 12.69 ± 0.72

Dilated Cellpose 99.79 ± 0.47 54.02 ± 10.73 69.55 ± 9.48 11.00 ± 0.77
Distill. Dilated Cellpose 89.66 ± 6.50 96.00 ± 1.95 92.60 ± 3.31 10.75 ± 0.72

Distill. Upsample Cellpose 97.68 ± 1.71 43.74 ± 19.71 58.45 ± 18.96 10.48 ± 0.76
Distill. Compressed Cellpose 91.66 ± 3.28 82.55 ± 19.67 85.65 ± 12.80 9.32 ± 0.51

Distill. Cellpose with depthw. sep. convs 93.85 ± 3.40 90.03 ± 5.91 91.80 ± 3.48 7.85 ± 0.62
Distill. Compr. Cellpose with depthw. sep. convs 92.80 ± 5.29 91.45 ± 6.31 91.94 ± 3.70 6.63 ± 0.38

Distill. FastCellpose 92.65 ± 2.56 92.99 ± 4.76 92.76 ± 2.71 4.55 ± 0.23
FasterCP v1 93.85 ± 2.95 91.04 ± 5.88 92.33 ± 3.32 4.75 ± 0.28
FasterCP v2 91.75 ± 5.68 92.17 ± 4.25 91.85 ± 3.55 3.76 ± 0.30
FasterCP v3 94.01 ± 3.43 90.05 ± 6.78 91.89 ± 4.31 3.26 ± 0.20

Table 4.4: Evaluation of the model on 2D slices with magnification 40× coming
from Cystic phenotypic class (5 slices)

Figure 4.4 and Figure 4.5 clearly illustrate the performance of the models
in F1 score on different magnification and phenotype, while decreasing their
computational complexity. Only once Figure 4.4b, the distilled models achieved a
higher F1 score than the baseline.

37

Results

0246
params 1e6

40

50

60

70

80

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(a) Cystic phenotype (6 slices)

0246
params 1e6

40

50

60

70

80

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(b) Compact phenotype (7 slices)

0246
params 1e6

20

30

40

50

60

70

80

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(c) Cauliflower phenotype (5 slices)

Figure 4.4: Performance on 2D slices of 20× magnification
38

Results

0246
params 1e6

60

65

70

75

80

85

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(a) Cystic phenotype (5 slices)

0246
params 1e6

65

70

75

80

85

90

95

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(b) Cauliflower phenotype (5 slices)

Figure 4.5: Performance on 2D slices of 40× magnification (no samples for
compact phenotype)

Figure 4.6 shows the models in terms of parameters and network inference times.
Again, we observe an approximately linear relationship between the number of
parameters and inference time.

39

Results

0246
parameters 1e6

4

6

8

10

12
In

fe
re

nc
e

tim
e

(s
)

Ratio # paramaters and inference times

Cellpose
Dilated CP
Upsample CP
Compressed CP
CP with depthw. sep. convs
Compr. CP with depthw. sep. convs
FastCP
FasterCP v1
FasterCP v2
FasterCP v3

Figure 4.6: Comparison of models in terms of number of parameters and inference
time on our dataset

4.5 Performance on benchmarks
In the previous section, we assessed the performance of the distilled models on the
test sets of our dataset. To determine whether the students can generalize as well
as the teacher, we tested them on two widely used public datasets:

• DAPI dataset [76]: it contains 79 fluorescence images of densely packed nuclei
of various tissues, sampled with multiple microscopies and magnifications.
Expert biologists labeled these pictures. The main challenge is represented by
touching nuclei: deciding whether a group of pixels consists of one or multiple
nuclei.

• BitDepth dataset [77]: labeled fluorescence-nuclear images from five mouse
organs, captured at multiple magnifications. The grayscale images are available
at 8-bit and 16-bit resolutions.

Figure 4.7 and Figure 4.8 confirm that distilled models perform like the baseline.
We observed a small drop in F1 score is present for FasterCellpose v3 compared to
the baseline F1 score in Figure 4.7b. These graphs show that knowledge distillation
from pre-trained Cellpose model enables our student models to generalize as
effectively as the teacher on nuclear-biomarker images.

40

Results

0246
params 1e6

50

60

70

80

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(a) 20× magnification

0246
params 1e6

20

30

40

50

60

70

80

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(b) 40× magnification

Figure 4.7: Performances on DAPI dataset

41

Results

0246
params 1e6

50

60

70

80

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(a) 20× magnification

0246
params 1e6

50

60

70

80

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(b) 40× magnification (air immersion)

0246
params 1e6

50

55

60

65

70

75

80

85

90

F1
 sc

or
e

(%
)

Ratio # params and F1 scores

Cellpose
Dilated CP
Dist. Dilated CP
Dist. Upsample CP
Dist. Compress. CP
Dist. CP with depthw. sep. convs
Dist. Compr. CP with depthw. sep. convs
Dist. FastCP
FasterCP v1
FasterCP v2
FasterCP v3

(c) 40× magnification (oil immersion)

Figure 4.8: Performances on BitDepth dataset
42

Results

4.6 Performance on 3D images

Since our goal was to segment efficiently 3D volumes, we also compared the baseline
and distilled models on 3D images. As observed in section 3.5, quantitative
evaluation of 3D masks is challenging due to the scarcity of annotations. However,
we estimated their quality through a qualitative visual comparison and measured
inference times.
In Table 4.5, we listed the corresponding inference time for each model. Figure 4.9
summarizes 3D segmentation by plotting parameter count versus inference time on
a sample with 237 slices 1024 × 1024 pixels sized.

Model Network inf. time (min) Percentage net. inf. time (%)
Cellpose 82.67 100.00

Dilated CP 63.54 76.86
Upsample CP 62.41 75.49

Compressed CP 51.26 62.00
CP with depthwise separable convs 39.36 47.61

Compr. CP with depthw. sep. convs 26.16 31.65
FastCP 20.11 24.32

FasterCP v1 16.53 20.00
FasterCP v2 12.50 15.12
FasterCP v3 9.79 11.84

Table 4.5: Comparison of network inference time on 3D volumes

Figure 4.10 and Figure 4.11 represent the mask and the crops respectively
obtained by Cellpose and FasterCellpose v3. We observe also in Figure 4.11 that
both models detect all nuclei, but their prediction differ with adjacent objects. On
the XY plane both models recognize well the nuclei; but in one case two touching
objects were merged into a single instance. On the YZ and XZ planes, Cellpose
successfully splits some touching nuclei, whereas FasterCP v3 can not. Overall, this
qualitative evaluation suggests that FasterCP v3 produces masks (Figure 4.10b)
that appear reliable as those of Cellpose (Figure 4.10a).

43

Results

0246
parameters 1e6

10

20

30

40

50

60

70

80
In

fe
re

nc
e

tim
e

(m
in

)
Ratio # paramaters and inference times

Cellpose
Dilated CP
Upsample CP
Compressed CP
CP with depthw. sep. convs
Compr. CP with depthw. sep. convs
FastCP
FasterCP v1
FasterCP v2
FasterCP v3

Figure 4.9: Comparison of models in terms of number of parameters and inference
time on a 3D sample

0

512

1023

XY plane (slice=60)

0 512 1023
XZ plane

0

118

236

0 118 236

YZ
 p

la
ne

(a) Cellpose

0

512

1023

XY plane (slice=60)

0 512 1023
XZ plane

0

118

236

0 118 236

YZ
 p

la
ne

(b) FasterCellpose v3

Figure 4.10: Qualitative comparison between Cellpose and FasterCP v3 on 3D
segmentation. The blue contours are the predicted object boundaries. The dotted
yellow line on YZ and XZ planes represents the slice showed on XY plane.

44

Results

XY plane (Z=60) YZ plane (X=512) XZ plane (Y=512)

Cellpose

FasterCP v3

Figure 4.11: Qualitative comparison between Cellpose and FasterCP v3 predic-
tions on crops of 3D volume. Each row represents the segmentation model, each
column represents the plane of the 3D volume. The blue contours are the predicted
object boundaries.

4.6.1 Mask reconstruction optimization
As mentioned in section 3.3, mask reconstruction in post-processing can be opti-
mized by resizing the vector field and/or reducing the number of "follow
the flows" iterations. Table 4.6 presents how these optimization techniques affect
mask reconstruction time using FasterCellpose v2.

Model Resize factor (×) # grad. tracking iter. Mask reconstruction time (s) Percent. mask reconst. time (%)
FasterCP v2 1 200 2231.49 100.00
FasterCP v2 2 200 331.85 14.87
FasterCP v2 1 50 637.06 28.55
FasterCP v2 2 50 113.48 5.09

Table 4.6: Optimization on mask reconstruction time using FasterCellpose v2

Furthermore, Figure 4.12 shows nuclear segmentation with and without mask
optimization. In both cases, the objects were correctly segmented. More specifically,
Figure 4.13 highlights the differences in a 256 × 256 crop. Vector field resize
brings some changes in the mask reconstruction: with the classic post-processing

45

Results

approach, we obtain smooth contours for each labeled object (Figure 4.13a), whereas
downsampling the vector field and upsampling the mask yields rougher contours
(Figure 4.13c). Depending on the number of gradient tracking iterations, a single
nucleus could be split into multiple instances (Figure 4.13d) or considered as a
single instance (Figure 4.13a).

(a) without optimization (b) # iterations = 50

(c) Resize factor = 2 (d) Resize factor = 2, # iterations = 50

Figure 4.12: Comparison of masks with and without mask optimization techniques

46

Results

(a) Without optimization (b) # iterations = 50

(c) Resize factor = 2 (d) Resize factor = 2, # iterations = 50

Figure 4.13: Mask optimization technique on a portion of 2D slice

4.7 Applications on 3D segmentation pipelines

As mentioned in section 1.4, we aimed also to accelerate the pipelines that include
3D instance segmentation. This task represents a bottleneck for the workflow.
Therefore, we adopted our distilled lightweight model, FasterCellpose v3, for
instance segmentation stage to speed up the application pipelines.

47

Results

4.7.1 Application to GNN
Our work supported “Organoid Phenotypes Mapping and Modeling: Toward an
Endocrine Disruptors Classification” project, led by MORPHEME team: one goal
is to analyze organoids using graphs. Graph Neural Network (GNN) builds graphs
from instance segmentation masks. Cell Graph Convolutional Network (CGC-Net)
is an example of GNN that builds the graph from a segmented histology mask, with
the nuclei as nodes and the cellular interactions as edges [78]. Although CGC-Net
was developed for histological images, MORPHEME team applies a similar GNN
architecture on confocal masks of organoids, using the nuclei as nodes and the
interactions as edges.
The objective is to analyze cell structure and functionality via the graph, and then
to classify the sample in a specific phenotype.

State-of-the-art models failed to produce accurate masks in a low amount of
time, so MORPHEME team looked to some efficient alternatives.
The team initially used the ellipsoidal model, a model-based segmentation approach,
to compute 3D segmentation masks by fitting ellipsoids to each nuclei. Its key
benefit is the speed to perform the task. However, it does not segment accurately
as Cellpose or StarDist. An example of ellipsoidal model is FitEllipsoid [79].
Therefore, we tested FasterCellpose v3 capabilities to improve the quality of the
predictions, by maintaining a low inference time for segmentation stage.

The Figure 4.14 shows a qualitative comparison between the graphs obtained
from the ellipsoidal model and FasterCellpose: the images contain nodes and edges,
where the marker size represents the nuclei dimensions. The graph belonging to
ellipsoidal model mask (figure on the left) contains plenty of nodes, but there are
some areas where nodes are missing. Furthermore, the detected nuclei have a small
size. Whereas, the graph on FasterCellpose mask (figure on the right) has a lower
number of nodes, but some of them are larger than the ones in the other graph.
Moreover, the empty areas encountered with ellipsoidal model graph were filled by
nodes and connections.

MORPHEME team assessed that the graph obtained on FasterCellpose mask
(Figure 4.15) represents well the organoid, while taking only a couple of minutes
for segmentation.

The use of this distilled lightweight model allowed the GNN to cluster organoid
phenotypes on more accurate masks and in short time (few minutes per 3D volume).

48

Results

Figure 4.14: Comparison of graphs obtained by ellipsoidal model and FasterCP
segmentation masks. On the left, the graph obtained by ellipsoidal model mask.
On the right, the graph computed from FasterCP mask.

49

Results

Figure 4.15: 3D representation of the graph obtained on FasterCP v3 segmentation
mask

50

Chapter 5

Discussion

5.1 Overview

Given 3D confocal images with nuclear biomarker of mice prostate gland, we aimed
to obtain a lightweight model that performs well in instance segmentation on CPU.
We adopted Cellpose (subsection 2.2.2) as baseline because of its ease of use and of
its pre-trained models. To achieve this goal we applied compression techniques on
its architecture and we obtained two set of weights for each compact model using
knowledge distillation (chapter 3).

5.2 Lightweight architecture design

Concerning lightweight model design, as shown in Table 3.5, FasterCellpose v3 is
significantly lighter than both Cellpose (subsection 2.2.2) and FastCellpose (sec-
tion 2.4). To our knowledge, no other compression frameworks for Cellpose beyond
FastCellpose appeared before this work. Replacing every standard convolution
with depthwise separable convolution (section 2.3.5) reduced the computational
complexity by a factor of 5×: in fact, we passed from 6.6 M parameters and 326.8
G MACs to 1.2 M parameters and 51.9 G MACs. Next, halving the number of
feature map channels at each depth scale significantly decreased the parameter
count and the number of operations. Eventually, to achieve the final lightweight
architecture many convolutional layers were removed; dilated convolutions and
transposed ones were introduced to preserve mask quality.
Consequently, FasterCellpose v3 achieves significantly reduced inference times for
both 2D and 3D segmentation. FasterCellpose v3 produce a 2D and a 3D mask in
around 15 seconds and 15 minutes, respectively.

51

Discussion

5.3 Distilled models and their performance
Before applying knowledge distillation, we loaded pre-trained Cellpose weights
to the lightweight models, if possible. Among them, Dilated Cellpose performed
relatively well, but Upsample Cellpose did not, even when using only unpooling
layers instead of transposed convolutions in the upsample path. FastCellpose also
failed, since it was trained to segment glomeruli images rather than our images.
Therefore, we leveraged the knowledge distillation to adjust lightweight models’
weights. In terms of quantitative performance (Precision, Recall and mainly F1
score), section 4.4 show that the distilled variants match baseline performance on
our dataset, on both 20× and 40× magnifications. Moreover, we observed that
they are also able to generalize to other nuclear-image datasets, as described in
section 4.5.
It means that distilled models learn to accurately segment not only the dataset
they were trained on, but also samples they have never seen, thanks to the baseline
expertise.
Occasionally, the distilled models even outperformed the baseline. We attributed
this to random weight initialization and the optimizer converging to a different
(local or global) optimum.

5.3.1 Considerations on Dilated Cellpose
In subsection 3.3.1 we presented dilated convolutions. These layers compute
convolution by inserting spaces between kernel elements to increase the receptive
field [67].
For each spatial block, we used two 3 × 3 convolutional layers where the first is a
standard convolution, while the second is a dilated convolution. The result is a
feature map with 7 × 7 receptive field, a trade-off between 3 × 3 using two standard
convolutions and 9 × 9 using four standard convolutions.
However, there is a possibility to achieve an output feature map with 9×9 receptive
field using two convolutions: the solution is to use two layers with dilation = 2.
Although two 3 × 3 dilated convolutions (d = 2) would match a 9 × 9 receptive
field, we avoided this configuration because consecutive dilated convolutions can
amplify gridding artifacts in the output feature map [80].
There are several solutions to avoid these artifacts, such as adding convolutional
layers with progressively lower dilation until reaching dilation = 1 [80] or using a
Hybrid Dilated Convolution (HDC) composed by n consecutive convolutions with
progressively higher dilation [68, 69]. Other solutions employ dilated convolutions
in parallel to capture more context [69].
We concluded that the HDC proposal is the best option to have fewer artifacts,
better preservation of detail, and a progressive context aggregation.

52

Discussion

5.3.2 Considerations on Upsample Cellpose
We developed several lightweight models based on U-Net backbone. The U-Net
backbone is symmetric and consists of an encoder for feature extraction and a
decoder for detail reconstruction [81]. Dilated and Upsample Cellpose are two
intermediate models obtained by compressing one part of the network and not the
whole network.

In Upsample Cellpose (subsection 3.3.2), we introduced transposed convolutions
to better control the image restoration. However, they can introduce checkerboard
artifacts. To avoid this gridding style, we interleaved transposed convolutions and
unpooling layers in decoding.

The graphs of section 4.4 and section 4.5 showed that Upsample Cellpose
model does not reach satisfying results, even after distillation. In contrast, Dilated
Cellpose, an encoding-compressed model, achieved good results even by loading
pre-trained Cellpose weights.
We attributed the Upsample Cellpose inefficiency mainly to an under-powered
decoder. With only two convolutions per block and with transposed convolutions
and unpooling layers, it can not progressively restore segmentation maps from high-
dimensional abstract features. Consequently, the decoder suffers both interpolation
and transposed convolution artifacts, and degraded feature map quality [81].

Compressed Cellpose presents two convolutions per unit on both encoder and
decoder and preserves the prediction quality employing dilation and transposed
convolution layers.
The excellent results with distilled Compressed Cellpose confirmed that maintaining
the symmetry of U-Net architecture is crucial for robust segmentation under
compression.

Furthermore, instead of transposed convolutions, a solution is to perform nearest-
neighbor upsampling followed by a standard convolution [71].

5.4 Reduction of memory footprint
Although these findings are encouraging, we should also keep in mind that model
compression does not necessarily reduce memory usage. Indeed, as observed in
a study [48], although parameter and computation counts drop with MobileNet
depthwise separable convolutions, it can inadvertently lead to an increase in memory
usage due to larger activation maps. This impacts training more than inference.

Cellpose weights and activations are represented by 32-bit floating point values.
To save memory we can change the value representation by applying quantization
(subsection 2.3.2).

Otherwise, pruning can be applied to have a sparse model from an over-
parametrized neural network (subsection 2.3.1).

53

Discussion

5.5 Lack of annotated 3D dataset
Another limitation is due to the annotation of 3D samples (subsection 3.1.1): labels
for 3D volumes would be really useful to evaluate segmentation masks.
Manual annotation of 3D images is time-consuming. Tools such as Labkit [82]
support dense manual labeling or sparse annotation followed by automated seg-
mentation via random forest pixel classification. However, because full manual
annotation in 3D is very laborious and semi-automatic annotation is not as reliable
as expert biologists’ labeling, we chose to not use Labkit in this project.

54

Chapter 6

Future works

In the previous chapter, we demonstrated the strengths and the weaknesses of
our work. Albeit the efficiency of FasterCellpose v3, it takes up memory space.
Furthermore, we worked on unlabeled 3D images. It would be interesting to
annotate samples with tools that we have already cited.

6.1 Reduction of memory footprint

We demonstrated how to get a lightweight and effective model to perform segmen-
tation on nuclear biomarker images like Cellpose. Although FasterCellpose v3 is
56 × smaller than the baseline, this model still takes up memory space during
execution. Since our goal is to deploy this model also on low-performing CPU,
reducing computational complexity can not be sufficient, but it would be necessary
to reduce the memory storage.
The main techniques to reduce the space in memory are two:

• Pruning removes redundant parameters (subsection 2.3.1)

• Quantization converts weights and activations from high precision to low
precision (subsection 2.3.2)

Quantization is likely more effective, since it shrinks both parameter count and
forward/backward pass size, while pruning mainly reduces parameter size.
As future work we could cast value from floating point to integer data type and
reduce the number of bits to represent the values. Furthermore, we could apply
unstructured pruning to remove redundant weights without losing in accuracy,
otherwise to structured pruning with a further training.

55

Future works

6.2 Annotation of 3D images
Another issue is the lack of labeled 3D images. Indeed, in our work we resorted to
unsupervised learning approach to train small networks on these samples. Some
public tools can annotate 3D images in a semi-automatic way, like Labkit [82].
Since we can not rely solely on labels automatically applied by a tool, we would like
expert biologists to annotate these confocal image stacks. These annotations would
enable not only the application of supervised techniques, but also the quantitative
evaluation of 3D segmentation masks.

56

Chapter 7

Conclusion

This work demonstrated how to obtain lightweight neural network that segments
efficiently 3D confocal images on CPU.
FasterCellpose was designed from the Cellpose architecture by removing layers
and feature map channels, and replacing all standard convolutions with depthwise
separable ones. Our latest model is 5× smaller than FastCellpose, the latest com-
pressed version of Cellpose of our knowledge.
We trained this compact model on unlabeled dataset of confocal images with nuclear
biomarker through knowledge distillation: we adopted the offline approach, where
the teacher is the pre-trained Cellpose model and the students are the lightweight
models. The results indicated that the distilled models achieve baseline performance
not only on our confocal images, but also on other fluorescence image benchmarks,
showing effective generalization across datasets.
The network inference time decreased on both 2D and 3D segmentation: Faster-
Cellpose v3 is 8.44× faster than Cellpose on CPU, producing a 3D mask in around
15 minutes.
Building on these gains, future work will focus on making this model lighter in
memory via pruning and quantization.

57

Bibliography

[1] Claude Monneret. «What is an endocrine disruptor?» In: Comptes Rendus.
Biologies 340.9-10 (2017), pp. 403–405 (cit. on p. 1).

[2] Andrea C Gore, Vesna A Chappell, Suzanne E Fenton, Jodi Anne Flaws,
Angel Nadal, Gail S Prins, Jorma Toppari, and R Thomas Zoeller. «EDC-2:
the endocrine society’s second scientific statement on endocrine-disrupting
chemicals». In: Endocrine reviews 36.6 (2015), E1–E150 (cit. on pp. 1, 2).

[3] Eva Rahman Kabir, Monica Sharfin Rahman, and Imon Rahman. «A review
on endocrine disruptors and their possible impacts on human health». In:
Environmental toxicology and pharmacology 40.1 (2015), pp. 241–258 (cit. on
pp. 1, 2).

[4] Omar ML Alharbi, Rafat A Khattab, Imran Ali, et al. «Health and envi-
ronmental effects of persistent organic pollutants». In: Journal of Molecular
Liquids 263 (2018), pp. 442–453 (cit. on pp. 1, 2).

[5] Ruth Lehmann et al. «Human organoids: a new dimension in cell biology».
In: Molecular biology of the cell 30.10 (2019), pp. 1129–1137 (cit. on pp. 2, 3).

[6] Thomas K Nelson. «ARE HUMAN CELL LINES HUMAN?» In: European
Scientific Journal (2015) (cit. on p. 2).

[7] Aurélie Lacouture, Camille Lafront, Cindy Peillex, Martin Pelletier, and
Étienne Audet-Walsh. «Impacts of endocrine-disrupting chemicals on prostate
function and cancer». In: Environmental Research 204 (2022), p. 112085
(cit. on pp. 2, 3).

[8] Giuliana Rossi, Andrea Manfrin, and Matthias P Lutolf. «Progress and
potential in organoid research». In: Nature Reviews Genetics 19.11 (2018),
pp. 671–687 (cit. on p. 2).

[9] Siqi Yang et al. «Organoids: The current status and biomedical applications».
In: MedComm 4.3 (2023), e274. doi: https://doi.org/10.1002/mco2.274.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/mco2.274.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/mco2.274
(cit. on pp. 2, 3).

58

https://doi.org/https://doi.org/10.1002/mco2.274
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mco2.274
https://onlinelibrary.wiley.com/doi/abs/10.1002/mco2.274

BIBLIOGRAPHY

[10] Ravian L van Ineveld, Hendrikus CR Ariese, Ellen J Wehrens, Johanna F
Dekkers, Anne C Rios, et al. Single-cell resolution three-dimensional imaging
of intact organoids. MyJove Corporation, 2016 (cit. on p. 4).

[11] Adaobi Nwaneshiudu, Christiane Kuschal, Fernanda H Sakamoto, R Rox
Anderson, Kathryn Schwarzenberger, and Roger C Young. «Introduction to
confocal microscopy». In: Journal of Investigative Dermatology 132.12 (2012),
pp. 1–5 (cit. on p. 4).

[12] Anne C Rios and Hans Clevers. «Imaging organoids: a bright future ahead».
In: Nature methods 15.1 (2018), pp. 24–26 (cit. on p. 4).

[13] Amicia D Elliott. «Confocal microscopy: principles and modern practices».
In: Current protocols in cytometry 92.1 (2020), e68 (cit. on p. 4).

[14] Tony Wilson. «Spinning-disk microscopy systems». In: Cold Spring Harbor
Protocols 2010.11 (2010), pdb–top88 (cit. on p. 4).

[15] Thomas Klonisch, Landon Wark, Sabine Hombach-Klonisch, and Sabine Mai.
«Nuclear imaging in three dimensions: a unique tool in cancer research». In:
Annals of Anatomy-Anatomischer Anzeiger 192.5 (2010), pp. 292–301 (cit. on
p. 4).

[16] Juan C Caicedo et al. «Nucleus segmentation across imaging experiments: the
2018 Data Science Bowl». In: Nature methods 16.12 (2019), pp. 1247–1253
(cit. on pp. 4, 9, 11, 13, 35).

[17] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene My-
ers. «Star-convex polyhedra for 3D object detection and segmentation in
microscopy». In: Proceedings of the IEEE/CVF winter conference on applica-
tions of computer vision. 2020, pp. 3666–3673 (cit. on pp. 6, 10).

[18] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. «Cell-
pose: a generalist algorithm for cellular segmentation». In: Nature methods
18.1 (2021), pp. 100–106 (cit. on pp. 6, 9, 11, 12, 32).

[19] Yutong Han et al. «FastCellpose: a fast and accurate deep-learning framework
for segmentation of all glomeruli in mouse whole-kidney microscopic optical
images». In: Cells 12.23 (2023), p. 2753 (cit. on pp. 6, 19, 24).

[20] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. «A survey on instance
segmentation: state of the art». In: International journal of multimedia infor-
mation retrieval 9.3 (2020), pp. 171–189 (cit. on pp. 6, 9).

[21] Wenchao Gu, Shuang Bai, and Lingxing Kong. «A review on 2D instance seg-
mentation based on deep neural networks». In: Image and Vision Computing
120 (2022), p. 104401 (cit. on pp. 6–8).

59

BIBLIOGRAPHY

[22] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM
Smeulders. «Segmentation as selective search for object recognition». In:
2011 international conference on computer vision. IEEE. 2011, pp. 1879–1886
(cit. on p. 7).

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. «Mask r-cnn».
In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2961–2969 (cit. on p. 7).

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. arXiv: 1505 . 04597
[cs.CV]. url: https://arxiv.org/abs/1505.04597 (cit. on p. 7).

[25] Ilya Levner and Hong Zhang. «Classification-driven watershed segmentation».
In: IEEE Transactions on Image Processing 16.5 (2007), pp. 1437–1445 (cit.
on p. 7).

[26] Peigeng Li. «A Comparative Analysis of Single-Stage Detectors from the
Perspectives of Anchor-Free and Anchor-Based Approaches». In: Highlights
in Science, Engineering and Technology 72 (Dec. 2023), pp. 774–782. doi:
10.54097/s37sgq58 (cit. on pp. 7, 8).

[27] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun. «Instance-
sensitive fully convolutional networks». In: Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part VI 14. Springer. 2016, pp. 534–549 (cit. on p. 7).

[28] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. «Yolact: Real-
time instance segmentation». In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, pp. 9157–9166 (cit. on p. 7).

[29] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. «Fcos: Fully convolutional
one-stage object detection». In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, pp. 9627–9636 (cit. on p. 8).

[30] Yong He, Hongshan Yu, Xiaoyan Liu, Zhengeng Yang, Wei Sun, Saeed Anwar,
and Ajmal Mian. «Deep learning based 3D segmentation: A survey». In: arXiv
preprint arXiv:2103.05423 (2021) (cit. on p. 8).

[31] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and
Olaf Ronneberger. «3D U-Net: learning dense volumetric segmentation from
sparse annotation». In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2016: 19th International Conference, Athens, Greece,
October 17-21, 2016, Proceedings, Part II 19. Springer. 2016, pp. 424–432
(cit. on pp. 8, 10).

60

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.54097/s37sgq58

BIBLIOGRAPHY

[32] Yichi Zhang, Qingcheng Liao, Le Ding, and Jicong Zhang. «Bridging 2D
and 3D segmentation networks for computation-efficient volumetric medical
image segmentation: An empirical study of 2.5 D solutions». In: Computerized
Medical Imaging and Graphics 99 (2022), p. 102088 (cit. on pp. 8, 9).

[33] Amarjeet Kumar et al. «A flexible 2.5 D medical image segmentation approach
with in-slice and cross-slice attention». In: Computers in Biology and Medicine
182 (2024), p. 109173 (cit. on p. 9).

[34] Yuxing Wang, Junhan Zhao, Hongye Xu, Cheng Han, Zhiqiang Tao, Dawei
Zhou, Tong Geng, Dongfang Liu, and Zhicheng Ji. «A systematic evaluation of
computational methods for cell segmentation». In: Briefings in Bioinformatics
25.5 (2024), bbae407 (cit. on p. 9).

[35] Ping Liu, Jun Li, Jiaxing Chang, Pinli Hu, Yue Sun, Yanan Jiang, Fan Zhang,
and Haojing Shao. «Software Tools for 2D Cell Segmentation». In: Cells 13.4
(2024), p. 352 (cit. on p. 9).

[36] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. «Cell
detection with star-convex polygons». In: Medical image computing and
computer assisted intervention–MICCAI 2018: 21st international conference,
Granada, Spain, September 16-20, 2018, proceedings, part II 11. Springer.
2018, pp. 265–273 (cit. on p. 9).

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 10).

[38] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. «Learning spatio-
temporal features with 3d residual networks for action recognition». In:
Proceedings of the IEEE international conference on computer vision work-
shops. 2017, pp. 3154–3160 (cit. on p. 10).

[39] Vladimír Ulman, Zoltán Orémuš, and David Svoboda. «TRAgen: a tool for
generation of synthetic time-lapse image sequences of living cells». In: Image
Analysis and Processing—ICIAP 2015: 18th International Conference, Genoa,
Italy, September 7-11, 2015, Proceedings, Part I 18. Springer. 2015, pp. 623–
634 (cit. on p. 11).

[40] Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and Eugene Myers.
«A 3D digital atlas of C. elegans and its application to single-cell analyses».
In: Nature methods 6.9 (2009), pp. 667–672 (cit. on p. 11).

[41] Frederike Alwes, Camille Enjolras, and Michalis Averof. «Live imaging reveals
the progenitors and cell dynamics of limb regeneration». In: Elife 5 (2016),
e19766 (cit. on p. 11).

61

BIBLIOGRAPHY

[42] Kwanyoung Lee, Hyungjo Byun, and Hyunjung Shim. «Cell Segmentation
in Multi-modality High-Resolution Microscopy Images with Cellpose». In:
Competitions in Neural Information Processing Systems. PMLR. 2023, pp. 1–
11 (cit. on pp. 12, 13, 32).

[43] Giona Kleinberg, Sophia Wang, Ester Comellas, James R Monaghan, and
Sandra J Shefelbine. «Usability of deep learning pipelines for 3D nuclei
identification with Stardist and Cellpose». In: Cells & development 172
(2022), p. 203806 (cit. on p. 13).

[44] Marius Pachitariu and Carsen Stringer. «Cellpose 2.0: how to train your own
model». In: Nature methods 19.12 (2022), pp. 1634–1641 (cit. on p. 13).

[45] Giosué Cataldo Marinó, Alessandro Petrini, Dario Malchiodi, and Marco
Frasca. «Deep neural networks compression: A comparative survey and choice
recommendations». In: Neurocomputing 520 (2023), pp. 152–170. issn: 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2022.11.072. url: http
s://www.sciencedirect.com/science/article/pii/S0925231222014643
(cit. on pp. 14, 16).

[46] Zhuo Li, Hengyi Li, and Lin Meng. «Model compression for deep neural
networks: A survey». In: Computers 12.3 (2023), p. 60 (cit. on pp. 14–18, 28).

[47] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. «Bench-
mark Analysis of Representative Deep Neural Network Architectures». In:
IEEE Access 6 (2018), pp. 64270–64277. doi: 10 . 1109 / ACCESS . 2018 .
2877890 (cit. on p. 14).

[48] Nandan Kumar Jha, Sparsh Mittal, and Govardhan Mattela. «The ramifica-
tions of making deep neural networks compact». In: 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on Em-
bedded Systems (VLSID). IEEE. 2019, pp. 215–220 (cit. on pp. 14, 53).

[49] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra
Peste. «Sparsity in deep learning: Pruning and growth for efficient inference
and training in neural networks». In: Journal of Machine Learning Research
22.241 (2021), pp. 1–124 (cit. on p. 15).

[50] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. «A survey on deep
neural network pruning: Taxonomy, comparison, analysis, and recommenda-
tions». In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2024) (cit. on p. 15).

[51] Sunil Vadera and Salem Ameen. «Methods for pruning deep neural networks».
In: IEEE Access 10 (2022), pp. 63280–63300 (cit. on p. 15).

[52] JT O’Neill. «An survey of neural network compression». In: arXiv preprint
arXiv:2006.03669 (2020) (cit. on pp. 15, 16).

62

https://doi.org/https://doi.org/10.1016/j.neucom.2022.11.072
https://www.sciencedirect.com/science/article/pii/S0925231222014643
https://www.sciencedirect.com/science/article/pii/S0925231222014643
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890

BIBLIOGRAPHY

[53] Pierre Vilar Dantas, Waldir Sabino da Silva Jr, Lucas Carvalho Cordeiro,
and Celso Barbosa Carvalho. «A comprehensive review of model compres-
sion techniques in machine learning». In: Applied Intelligence 54.22 (2024),
pp. 11804–11844 (cit. on pp. 15, 17, 18).

[54] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. «Model compression
and acceleration for deep neural networks: The principles, progress, and
challenges». In: IEEE Signal Processing Magazine 35.1 (2018), pp. 126–136
(cit. on p. 16).

[55] Dong-Hyun Lee et al. «Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks». In: Workshop on challenges in
representation learning, ICML. Vol. 3. 2. Atlanta. 2013, p. 896 (cit. on p. 16).

[56] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. «Distilling the knowledge in a
neural network». In: arXiv preprint arXiv:1503.02531 (2015) (cit. on p. 16).

[57] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. «Knowl-
edge distillation: A survey». In: International Journal of Computer Vision
129.6 (2021), pp. 1789–1819 (cit. on pp. 16, 17).

[58] Zonglei Lyu, Tong Yu, Fuxi Pan, Yilin Zhang, Jia Luo, Dan Zhang, Yiren
Chen, Bo Zhang, and Guangyao Li. «A survey of model compression strategies
for object detection». In: Multimedia tools and applications 83.16 (2024),
pp. 48165–48236 (cit. on pp. 17, 18).

[59] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William
J Dally, and Kurt Keutzer. «SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size». In: arXiv preprint arXiv:1602.07360
(2016) (cit. on p. 18).

[60] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:
Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on pp. 18, 19, 27).

[61] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. «Shufflenet:
An extremely efficient convolutional neural network for mobile devices». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 6848–6856 (cit. on p. 18).

[62] Weiming Zhi, Zhenghao Chen, Henry Wing Fung Yueng, Zhicheng Lu, Seid
Miad Zandavi, and Yuk Ying Chung. «Layer removal for transfer learning
with deep convolutional neural networks». In: Neural Information Processing:
24th International Conference, ICONIP 2017, Guangzhou, China, November
14-18, 2017, Proceedings, Part II 24. Springer. 2017, pp. 460–469 (cit. on
p. 18).

63

BIBLIOGRAPHY

[63] François Chollet. «Xception: Deep learning with depthwise separable con-
volutions». In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1251–1258 (cit. on pp. 19, 27).

[64] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and
Liang He. «A survey of human-in-the-loop for machine learning». In: Future
Generation Computer Systems 135 (2022), pp. 364–381 (cit. on p. 20).

[65] Johannes Schindelin et al. «Fiji: an open-source platform for biological-image
analysis». In: Nature methods 9.7 (2012), pp. 676–682 (cit. on pp. 21, 23).

[66] Fisher Yu and Vladlen Koltun. «Multi-scale context aggregation by dilated
convolutions». In: arXiv preprint arXiv:1511.07122 (2015) (cit. on p. 25).

[67] Vincent Dumoulin and Francesco Visin. «A guide to convolution arithmetic
for deep learning». In: arXiv preprint arXiv:1603.07285 (2016) (cit. on pp. 25,
26, 30, 52).

[68] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou,
and Garrison Cottrell. «Understanding convolution for semantic segmenta-
tion». In: 2018 IEEE winter conference on applications of computer vision
(WACV). Ieee. 2018, pp. 1451–1460 (cit. on pp. 25, 52).

[69] Zhengyang Wang and Shuiwang Ji. «Smoothed dilated convolutions for im-
proved dense prediction». In: Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 2018, pp. 2486–2495
(cit. on pp. 25, 52).

[70] Shashank Agnihotri, Julia Grabinski, and Margret Keuper. «Improving sta-
bility during upsampling–on the importance of spatial context». In: arXiv
preprint arXiv 2311 (2023) (cit. on pp. 25, 26).

[71] Augustus Odena, Vincent Dumoulin, and Chris Olah. «Deconvolution and
Checkerboard Artifacts». In: Distill (2016). doi: 10.23915/distill.00003.
url: http://distill.pub/2016/deconv-checkerboard (cit. on pp. 26,
53).

[72] Huaping Zhou, Qi Zhao, and Kelei Sun. «D2-Net: Dilated Contextual Trans-
former and Depth-wise Separable Deconvolution for Remote Sensing Imagery
Detection.» In: International Journal of Advanced Computer Science & Ap-
plications 14.11 (2023) (cit. on p. 27).

[73] Irem Ulku and Erdem Akagündüz. «A survey on deep learning-based ar-
chitectures for semantic segmentation on 2d images». In: Applied Artificial
Intelligence 36.1 (2022), p. 2032924 (cit. on pp. 31, 32).

[74] Dominik Müller, Iñaki Soto-Rey, and Frank Kramer. «Towards a guideline
for evaluation metrics in medical image segmentation». In: BMC Research
Notes 15.1 (2022), p. 210 (cit. on p. 31).

64

https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard

BIBLIOGRAPHY

[75] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-
mization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on pp. 31, 34).

[76] Florian Kromp et al. «An annotated fluorescence image dataset for training
nuclear segmentation methods». In: Scientific Data 7.1 (2020), p. 262 (cit. on
pp. 33, 40).

[77] Amirreza Mahbod, Gerald Schaefer, Christine Löw, Georg Dorffner, Rupert
Ecker, and Isabella Ellinger. «Investigating the impact of the bit depth of
fluorescence-stained images on the performance of deep learning-based nuclei
instance segmentation». In: Diagnostics 11.6 (2021), p. 967 (cit. on pp. 33,
40).

[78] Maciej Krzywda, Szymon Łukasik, and Amir H Gandomi. «Graph neural
networks in computer vision-architectures, datasets and common approaches».
In: 2022 International Joint Conference on Neural Networks (IJCNN). IEEE.
2022, pp. 1–10 (cit. on p. 48).

[79] Bastien Kovac, Jérôme Fehrenbach, Ludivine Guillaume, and Pierre Weiss.
«FitEllipsoid: a fast supervised ellipsoid segmentation plugin». In: BMC
bioinformatics 20 (2019), pp. 1–8 (cit. on p. 48).

[80] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. «Dilated residual net-
works». In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 472–480 (cit. on p. 52).

[81] Weibin Yang, Longwei Xu, Pengwei Wang, Dehua Geng, Yusong Li, Mingyuan
Xu, and Zhiqi Dong. «More complex encoder is not all you need». In: arXiv
preprint arXiv:2309.11139 (2023) (cit. on p. 53).

[82] Matthias Arzt, Joran Deschamps, Christopher Schmied, Tobias Pietzsch, Deb-
orah Schmidt, Pavel Tomancak, Robert Haase, and Florian Jug. «LABKIT:
labeling and segmentation toolkit for big image data». In: Frontiers in com-
puter science 4 (2022), p. 777728 (cit. on pp. 54, 56).

65

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Endocrine Disrupting Chemicals
	EDCs on prostate cancer

	Organoids
	Definition
	EDC effects on prostate organoids growth

	Image acquisition and microscopes
	Issues with 3D images

	Goals

	Related works
	Instance segmentation
	2D instance segmentation
	3D instance segmentation
	2.5D instance segmentation

	State-of-the-art segmentation models
	StarDist
	Cellpose
	Comparison between Cellpose and StarDist

	Neural Network Compression
	Pruning
	Quantization
	Low-Rank Decomposition
	Knowledge Distillation
	Lightweight Model Design

	FastCellpose

	Methodology
	Dataset
	Annotation

	Baseline definition
	Cellpose compression
	Dilated Cellpose
	Upsample Cellpose
	Compressed Cellpose
	Cellpose with depthwise separable convolutions
	Compressed Cellpose with depthwise separable convolutions
	FasterCellpose
	Computational Complexity Analysis

	Knowledge Distillation on Cellpose
	Hyper-parameter optimization

	Evaluation

	Results
	Hardware specifications
	Results from internal K-Fold Cross Validation
	Performance of Cellpose and StarDist
	Performance on our dataset
	Performance on benchmarks
	Performance on 3D images
	Mask reconstruction optimization

	Applications on 3D segmentation pipelines
	Application to GNN

	Discussion
	Overview
	Lightweight architecture design
	Distilled models and their performance
	Considerations on Dilated Cellpose
	Considerations on Upsample Cellpose

	Reduction of memory footprint
	Lack of annotated 3D dataset

	Future works
	Reduction of memory footprint
	Annotation of 3D images

	Conclusion
	Bibliography

