
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

Temporal Resource Comparison Between
Classical Asymmetric Cryptosystems

and Post-Quantum Alternatives.

Supervisors
Prof. Danilo Bazzanella

Candidate
Pietro Mazza

Company Supervisor
Giulia Bracco

Academic Year 2024-2025

Acknowledgements

First, I would like to thank my family, who have always been by my side and supported me
in my choices and throughout my growth both academically and personally: my parents,
Laura and Angelo, and my brothers, Paolo and Michele. I also thank my grandparents
and uncles, who have always made every effort so that I could continue to grow and learn.

I warmly thank all my friends, those I’ve known my whole life and those I’ve met
more recently, both in academic settings and outside the university. Each of them has
helped push me to give my best and to improve.

I would also like to thank Professor Danilo Bazzanella for supervising me during the
writing of this thesis.

I am grateful to all my colleagues, particularly to Andrea and Giulia, at Spike Reply
for giving me the opportunity to do my internship and for the warm welcome I received.

Finally, I want to give a special thanks to my grandfather Franco, for having taught
me so much and for passing on the ideals that make our family united and always ready
to support each other.

2

Abstract

This thesis presents a quantitative investigation into the temporal performance of
asymmetric cryptographic schemes, addressing the urgent need to migrate from classi-
cal algorithms to post-quantum alternatives in the face of emerging quantum computing
threats. The core of this research is a comparative evaluation of the key-pair gener-
ation latency between established cryptosystems (RSA, ECDSA, EdDSA) and selected
post-quantum candidates standardized by NIST, specifically lattice-based (ML-DSA, ML-
KEM) and hash-based (XMSS, LMS) algorithms.

The study employs a rigorous experimental methodology conducted across two dis-
tinct environments: a production-grade Thales Luna Hardware Security Module (HSM)
and a corresponding Utimaco software simulator. By systematically measuring execution
times for classical algorithms on both platforms, a performance ratio was established to
account for hardware acceleration and network overhead. This ratio was subsequently
used to project the expected real-world performance of the post-quantum algorithms,
which were benchmarked on the simulator due to the lack of native HSM support at the
time of research.

The results reveal a significant performance dichotomy between the post-quantum
families. The lattice-based schemes, ML-DSA and ML-KEM, demonstrate remarkable
efficiency, with key generation times comparable to, or in some cases faster than, their
classical elliptic curve counterparts. In stark contrast, the stateful hash-based signature
schemes, XMSS and LMS, exhibit substantial computational overhead. Their key gen-
eration latency scales dramatically with security parameters, ranging from seconds to
several hours, highlighting a critical implementation trade-off between signature capacity
and pre-computation time.

In conclusion, this work provides a crucial quantitative baseline for organizations plan-
ning the transition to quantum-resistant cryptography. While the performance of lattice-
based algorithms suggests a pathway for a seamless migration for many applications, the
high latency of hash-based key generation necessitates strategic deployment models, such
as offloading and pre-computation. These findings underscore the importance of balanc-
ing security imperatives with operational performance constraints to ensure a robust and
practical defense against future quantum threats.

Contents

List of Figures 4

List of Tables 5

1 Public encryption as it stands 7
1.1 Mathematical Aspects . 8

1.1.1 Modular Arithmetic . 8
1.1.2 Prime Numbers . 8
1.1.3 Group Theory . 9
1.1.4 Use in cryptography . 10
1.1.5 Hardness Of The Mathematical Problems 11

1.2 Key Management and Diffie-Hellman . 11
1.2.1 Diffie-Hellman . 13

1.3 Public Key Encryption . 15
1.3.1 RSA . 16
1.3.2 CDH-DDH . 18

1.4 Digital Signature . 20
1.4.1 Signatures from the Discrete-Logarithm Problem 21
1.4.2 Signature From Hash Functions . 22

1.5 Factorization and Discrete Logarithm Computation 23
1.5.1 Factorization . 23
1.5.2 Discrete Logarithm . 24

1.6 PKC exploitation . 26

2 Quantum computers 27
2.1 Theoretical aspects . 29

2.1.1 Mathematical concepts . 29
2.1.2 Quantum mechanics . 30

2.2 Main practical concepts . 32
2.2.1 Qbits . 32
2.2.2 Bloch sphere . 35
2.2.3 Density matrix . 37
2.2.4 Quantum state initialization . 37
2.2.5 Quantum-gate . 38

2

2.2.6 Quantum measurement . 40
2.2.7 Fidelity . 41
2.2.8 Lifetime . 41

2.3 Today’s main algorithms . 42
2.3.1 Main category . 43
2.3.2 Quantum Fourier Transform . 44
2.3.3 Quantum search - Grover’s algorithm 48

2.4 Quantum Computing’s Impact on Cybersecurity 49

3 Quantum threats and Mitigations 53
3.1 Today’s performances . 53
3.2 Prediction for quantum hardware evolution 54
3.3 Threats Brought by Quantum Computers 59
3.4 Solutions to Quantum Threats . 61

3.4.1 PQC . 63

4 Execution’s time analyses of PQ and standard algorithms 67
4.1 Standard algorithms . 69

4.1.1 RSA . 69
4.1.2 ECDSA . 70
4.1.3 EdDSA . 71

4.2 Post Quantum Algorithms . 72
4.2.1 MLDSA . 72
4.2.2 MLKEM . 73
4.2.3 XMSS . 74
4.2.4 LMS . 75

5 Conclusion 79
5.1 Time comparison and projections . 79

Bibliography 89

3

List of Figures

3.1 Evolution in coherence time in quantum hardware since 1992 55
3.2 Evolution in coherence gain in quantum hardware since 2017 55
3.3 Projection of resources requirement for various cryptographic application 56
3.4 Potential of various physical implementation of quantum hardware 57
3.5 Expert’s estimates of likelihood of commercial applications for quantum

computers . 58
3.6 Prediction’s evolution about quantum computer’s probability to break

RSA-2048 in 24 hours . 59
3.7 Likelihood, Impact and Risk analysis of standard algorithm in a quantum-

enabled future . 61

5.1 RSA time requirement measured both on the simulator and the HSM . . 81
5.2 ECDSA and EdDSA time requirement measured both on the simulator

and the HSM . 82
5.3 MLDSA and MLDSA time estimation obtained by projection of simulation

results . 84
5.4 XMSS time estimation obtained by projection of simulation results 85
5.5 LMS time estimation obtained by projection of simulation results 87

4

List of Tables

4.1 RSA parameters and execution time . 70
4.2 ECDSA parameters and execution time 71
4.3 EdDSA paramenters and execution time 71
4.4 ML-DSA parameters and execution time 72
4.5 ML-KEM parameters and execution time 74
4.6 XMSS-SHA256 execution time . 75
4.7 XMSS-SHAKE execution time . 76
4.8 XMSS-SHAKE256 execution time . 76
4.9 LMS-SHA256 execution time . 77
4.10 LMS-SHAKE256 execution time . 77

5.1 ML-DSA estimated execution time on HSM 83
5.2 ML-KEM estimated execution time on HSM 83
5.3 XMSS-SHA256 estimated execution time on HSM 85
5.4 XMSS-SHAKE estimated execution time on HSM 85
5.5 XMSS-SHAKE256 estimated execution time on HSM 85
5.6 LMS-SHA256 estimated execution time on HSM 86
5.7 LMS-SHAKE256 estimated execution time on HSM 86

5

6

Chapter 1

Public encryption as it stands

Public-key cryptography represents a pivotal advancement in securing digital commu-
nications, enabling confidential information exchange over public channels without the
need for a shared secret key. This paradigm shift is deeply rooted in number theory,
particularly in the properties of prime numbers and modular arithmetic. A cornerstone
of public key cryptography is the concept of one-way functions, mathematical functions
that are computationally easy to evaluate in one direction but infeasible to reverse with-
out specific information. Two prominent examples are the integer factorization problem
and the discrete logarithm problem.

The RSA cryptosystem exemplifies the application of the integer factorization prob-
lem. In RSA, a user generates a public key by selecting two large prime numbers, p and q,
and computing their product, n = p× q. The security of RSA hinges on the difficulty of
factoring the large composite number n back into its prime factors, a task that becomes
computationally prohibitive as the size of n increases. Similarly, the Diffie-Hellman key
exchange protocol relies on the discrete logarithm problem. This problem involves finding
the exponent x in the equation gx ≡ h (mod p), where g and h are elements of a finite
cyclic group, and p is a prime modulus. While exponentiation in such groups is compu-
tationally efficient, the reverse operation-determining x given g, h, and p is believed to
be infeasible for sufficiently large p.

These cryptographic systems leverage modular arithmetic, where numbers "wrap
around" upon reaching a certain modulus. In the context of RSA, operations are per-
formed modulo n, the product of two primes, while Diffie-Hellman operates within the
multiplicative group of integers modulo a prime p. The mathematical structures of these
groups, particularly their cyclic nature and the distribution of prime numbers, are criti-
cal in ensuring the computational hardness that underpins the security of these systems.
Public Key Cryptography (PKC) is founded on this complex mathematical principles,
with its security derived from the intractability of specific number-theoretic problems.

7

Public encryption as it stands

1.1 Mathematical Aspects

1.1.1 Modular Arithmetic

Modular arithmetic, often referred to as "clock arithmetic," is a fundamental component
of public key cryptography, providing the mathematical framework for many encryption
and decryption processes. In this system, numbers wrap around upon reaching a specified
modulus, n, leading to the concept of congruence: two integers a and b are congruent
modulo n if a ≡ b (mod n), meaning n divides the difference a−b. This structure exhibits
properties such as closure, associativity, commutativity, and distributivity, and allows for
the existence of multiplicative inverses when two numbers are coprime. Key theorems in
modular arithmetic underpin the security of cryptographic algorithms. Fermat’s Little
Theorem states that if p is a prime number and a is an integer not divisible by p, then
ap−1 ≡ 1 (mod p). This theorem is instrumental in simplifying computations involving
large exponents in modular systems. Euler’s Theorem generalizes this result: for any
integer a coprime to n then aϕ(n) ≡ 1 (mod n), and ϕ(n) denotes Euler’s totient function,
representing the count of integers up to n that are coprime with n. These theorems
facilitate efficient computation of modular inverses and exponentiation, which are critical
operations in cryptographic protocols.

1.1.2 Prime Numbers

Prime numbers play a fundamental role in number theory and cryptography due to their
unique arithmetic properties. The Fundamental Theorem of Arithmetic establishes that
every integer greater than one has a unique prime factorization, up to the order of factors,
making primes the building blocks of the integer set. However, their distribution among
natural numbers is irregular, as described by the Prime Number Theorem, which approx-
imates the number of primes less than or equal to n as n

ln(n) , indicating their decreasing
density as n grows. This property is crucial in cryptographic applications, particularly
in public-key cryptosystems such as RSA, where security is based on the computational
difficulty of factoring large composite numbers into their prime components. To generate
cryptographic keys, efficient methods for producing large prime numbers are essential.
Since the probability of a randomly chosen n-bit integer being prime is roughly 1/(3n),
selecting primes involves generating random numbers and verifying their primality using
specialized tests. Primality testing algorithms are divided into deterministic and proba-
bilistic methods. The AKS (Agrawal-Kayal-Saxena) primality test, discovered in 2002,
provides a polynomial-time deterministic solution, but its computational overhead ren-
ders it impractical for cryptographic applications. Instead, probabilistic algorithms such
as the Miller-Rabin test are commonly used due to their efficiency. The Miller-Rabin test
is a strong pseudoprime test that takes advantage of modular arithmetic and Fermat’s
theorem. By checking for nontrivial square roots of unity, the test efficiently detects
compositeness, ensuring that numbers identified as prime have an extremely high prob-
ability of being so. Given an efficient mean of prime number generation, cryptographic
security assumptions can be established. The integer factorization problem assumes that
no polynomial-time algorithm can efficiently factor a product of two large primes, if this

8

1.1 – Mathematical Aspects

assumption were broken, an adversary could recover private keys by factoring the pub-
lic modulus N = pq, thereby compromising the security of encrypted communications.
Consequently, the robustness of public-key cryptography hinges on the mathematical in-
tractability of prime factorization and the careful selection of cryptographic primes using
rigorous number-theoretic techniques.

1.1.3 Group Theory

In public key cryptography, group theory provides a rigorous mathematical framework
essential for constructing secure and efficient cryptographic protocols. A group is an
algebraic structure consisting of a set G equipped with a binary operation ∗ that satisfies
four fundamental properties: closure (for any a, b ∈ G, a ∗ b ∈ G), associativity (for any
a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)), the existence of an identity element e (such that for
any a ∈ G, a ∗ e = e ∗ a = a), and the existence of inverse elements (for each a ∈ G,
there exists an a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e). Groups can be finite or infinite,
but in cryptographic applications finite groups are predominantly utilized due to their
well-defined structure and computational manageability. A particularly significant class
of groups in cryptography are cyclic groups. A group G is cyclic if there exists an element
g ∈ G such that every element h ∈ G can be expressed as h = gk for some integer k. The
order of a cyclic group is the number of distinct elements it contains, and for any element
h in a finite group of order m, it holds that hm = e, where e is the identity element. This
property is fundamental in many cryptographic algorithms that rely on exponentiation
within groups.

One of the cornerstone problems in public key cryptography is the Discrete Logarithm
Problem (DLP), which involves finding the integer x given g and h in a cyclic group G
such that gx = h. The computational difficulty of solving the DLP in appropriately
chosen groups underpins the security of various cryptographic protocols, including the
Diffie-Hellman key exchange and the ElGamal encryption scheme. Closely related is the
Computational Diffie-Hellman (CDH) problem, which entails computing gxy given gx and
gy without knowledge of x or y. An even stronger assumption is the Decisional Diffie-
Hellman (DDH) problem, which posits that distinguishing between the tuple (gx, gy, gxy)
and (gx, gy, gz) (where z is a random element) is computationally infeasible. The hardness
of these problems is contingent upon the algebraic structure of the underlying group and
the absence of efficient algorithms to solve them.

In practice, groups of prime order are favored in cryptographic applications because
they mitigate vulnerabilities associated with the factorization of the group order. The
Pohlig-Hellman algorithm, for instance, demonstrates that the difficulty of the DLP is
significantly reduced in groups whose orders have small prime factors. Therefore, selecting
groups with a large prime order enhances security by ensuring that the DLP remains
computationally intractable. A common choice is the multiplicative group of integers
modulo a prime p, denoted Z∗

p, which consists of all integers from 1 to p − 1 under
multiplication modulo p. This group is cyclic with order p− 1, and by selecting a prime
p such that p− 1 has a large prime factor, one can construct a subgroup of prime order
q within Z∗

p, thereby providing a suitable setting for cryptographic operations.
Elliptic Curve Cryptography (ECC) introduces an alternative group structure based

9

Public encryption as it stands

on the set of points on an elliptic curve over a finite field. An elliptic curve is defined by an
equation of the form y2 = x3+ax+b over a finite field Fp, and the group operation is point
addition, which has a geometric interpretation. The group formed by the points on an
elliptic curve, together with a point at infinity serving as the identity element, is abelian
and can be made cyclic by appropriate selection of the curve parameters. The primary
advantage of ECC is that it offers higher security per bit of key length compared to tradi-
tional groups like Z∗

p. This efficiency arises because the best-known algorithms for solving
the Elliptic Curve Discrete Logarithm Problem (ECDLP) have exponential complexity,
making ECC particularly attractive for environments with constrained computational re-
sources. The security of public key cryptographic systems hinges on the careful selection
of group parameters to ensure the intractability of underlying hard problems such as
the DLP and ECDLP. Advancements in mathematical research and computational capa-
bilities necessitate ongoing evaluation of these parameters to maintain the robustness of
cryptographic protocols. By leveraging this structures cryptographers can design systems
that achieve both high security and operational efficiency.

1.1.4 Use in cryptography

At its core, PKC utilizes asymmetric key pairs, public keys for encryption and private keys
for decryption, to ensure confidentiality, authenticity, and integrity of data. The security
of these systems is predicated on computational problems that are easy to perform in one
direction but infeasible to reverse without specific knowledge. The Diffie-Hellman key ex-
change protocol, one of the pioneering public-key cryptosystems, leverages the hardness
of the DLP in the multiplicative group of integers modulo a prime p. In this protocol, two
parties agree on a large prime p and a generator g of the multiplicative group Z∗

p. Each
party selects a private key, computes the corresponding public key by exponentiating g
to their private key, and exchanges public keys. The shared secret is then derived by
raising the received public key to the power of their own private key. The security of
this exchange relies on the difficulty of solving the DLP, ensuring that an eavesdropper
cannot feasibly compute the shared secret from the public information alone. Elliptic
Curve Cryptography (ECC) represents a modern advancement in PKC, offering equiva-
lent security with smaller key sizes by exploiting the algebraic structure of elliptic curves
over finite fields. The Elliptic Curve Discrete Logarithm Problem (ECDLP), finding an
integer k such that Q = kP , given points P and Q on the curve, is believed to be even
more intractable than the classical DLP. This increased difficulty allows ECC to achieve
comparable security to RSA and Diffie-Hellman with significantly smaller parameters,
resulting in faster computations and reduced storage requirements. Digital signature
algorithms also heavily rely on the principles of modular arithmetic and group theory.
The Digital Signature Algorithm (DSA) and its elliptic curve variant, the Elliptic Curve
Digital Signature Algorithm (ECDSA), utilize the hardness of the DLP and ECDLP, re-
spectively, to ensure that signatures cannot be forged without access to the private key.
In these schemes, a message is signed by generating a value derived from the private key
and the message hash, and verification is performed using the corresponding public key,
providing assurance of the message’s authenticity and integrity.

Furthermore, prime numbers and modular arithmetic are employed in the design of

10

1.2 – Key Management and Diffie-Hellman

cryptographic hash functions and pseudorandom number generators. For example, the
Secure Hash Algorithm (SHA) family utilizes modular addition and bitwise operations to
produce fixed-size hash values from arbitrary-length input data, ensuring data integrity
and authenticity. Pseudorandom number generators like the Mersenne Twister rely on
properties of prime numbers to produce sequences of numbers with long periods and good
statistical properties, essential for cryptographic applications such as key generation and
nonce creation.

1.1.5 Hardness Of The Mathematical Problems

The security of widely used cryptographic systems depends on the computational in-
feasibility of solving these mathematical problems with existing technology. However,
real-world data highlights the growing difficulty of maintaining security as computational
power advances. For example, in December 2019 researchers factored a 795-bit (240-
digit) RSA modulus using the general number field sieve (GNFS) algorithm, a process
that required approximately 4,000 core-years of computation on a cluster of CPUs [35].
Extrapolating from this, factoring a 1024-bit RSA key, still used in some legacy systems,
would take roughly 100,000 core-years, and a 2048-bit key, the current standard, remains
infeasible with classical methods. However, advancements in specialized hardware and
algorithms threaten this security assumption.

Similarly for the discrete logarithm problem that underpins Diffie-Hellman key ex-
change and ElGamal encryption. In 2016, researchers solved a 768-bit discrete logarithm
problem in a prime field, requiring an estimated 5,000 CPU-years [36]. Given current
progress in computational techniques, a 1024-bit key could be broken within decades,
prompting a shift towards 2048-bit or larger key sizes. Elliptic curve cryptography (ECC)
provides a more efficient alternative. A 256-bit ECC key offers security comparable to
a 3072-bit RSA key. The largest successfully solved ECDLP instance involved a 114-bit
key, taking 10,000 CPU-years, suggesting that breaking a standard 256-bit key remains
far beyond current capabilities. These real-world benchmarks illustrate the practical
difficulty of breaking cryptographic schemes today.

Despite extensive study, these hardness assumptions remain unproven; no mathemat-
ical proof currently confirms that integer factorization, DLP, or ECDLP are intractable
problems. Consequently, the security of PKC systems is based on the belief that no effi-
cient (polynomial-time) algorithms exist for these problems. This belief is supported by
decades of cryptanalytic efforts failing to find such algorithms.

1.2 Key Management and Diffie-Hellman
Key distribution is a pivotal aspect of cryptography, fundamentally influencing the se-
cure exchange of information between parties. In symmetric key cryptography, a single
secret key is employed for both encryption and decryption processes, necessitating a se-
cure method for key distribution to maintain system integrity. The primary challenge
lies in transmitting this key over potentially insecure communication channels; if an ad-
versary intercepts the key during transmission, the confidentiality of the encrypted data
is compromised, as the attacker would then be able to decrypt any messages encrypted

11

Public encryption as it stands

with that key. This issue becomes increasingly complex in expansive networks, where the
number of participants and required secure channels escalates. Asymmetric cryptography,
also known as public-key cryptography, offers an alternative by utilizing a pair of keys:
a public key for encryption and a private key for decryption. This approach simplifies
key distribution since the public key can be openly shared without compromising secu-
rity. However, symmetric key cryptography remains prevalent due to its computational
efficiency and speed advantages over asymmetric methods. Nonetheless, the challenges
associated with key distribution in symmetric systems are significant, particularly con-
cerning scalability, confidentiality, and integrity within large, distributed networks. As
the number of participants increases, the number of unique keys required for secure com-
munication between all parties grows exponentially, following the formula n(n−1)

2 for n
participants. This exponential growth results in substantial overhead, as each participant
must securely exchange a key with every other participant. In dynamic networks, where
users frequently join or leave, the logistical challenges of generating, distributing, and
managing keys are further amplified. To mitigate these issues, approaches such as Key
Distribution Centers (KDCs) have been developed. KDC acts as a trusted third party
responsible for generating and distributing keys to participants, reducing the number of
keys each participant must manage. However, this introduces a single point of failure; if
the KDC is compromised or becomes unavailable, the entire system’s security is jeopar-
dized. Additionally, the KDC must be inherently trustworthy and secure, which can be a
significant risk in distributed networks. Group key management protocols offer another
solution by managing keys for groups of participants, enabling secure communication
within a group without necessitating unique keys for every pair of participants. As par-
ticipants join or leave the group, the group key is updated and distributed securely. While
this reduces the number of keys that need to be exchanged, it introduces challenges in
efficiently updating and distributing group keys, especially in large and dynamic groups.
Moreover, ensuring that group keys are updated securely without allowing unauthorized
participants to access them can be a difficult problem. Logistical challenges in key man-
agement include not only secure distribution but also regular key rotation to mitigate the
risk of key compromise. Keys must be periodically replaced to ensure that an attacker
who has gained access to a key cannot continue to decrypt communications indefinitely.
However, key rotation introduces its own set of challenges, particularly when dealing with
large numbers of users and devices. Coordinating key rotation across all devices while
ensuring that the new keys are securely transmitted can be a complex task. Additionally,
key storage and revocation mechanisms must be implemented to prevent unauthorized
access to old or expired keys. The process of securely revoking compromised keys and
ensuring that they are no longer used for decryption is another critical challenge, par-
ticularly in environments with high mobility or frequent changes in network topology.
Backward compatibility poses another challenge; as cryptographic algorithms evolve and
key lengths increase to address advancements in computing power, older systems may no
longer support new key exchange protocols or key lengths. This creates a dilemma for
organizations that must maintain compatibility between legacy and newer systems while
ensuring all systems remain secure. Transitioning from one encryption scheme to an-
other, particularly in large-scale networks, can be a slow and resource-intensive process,

12

1.2 – Key Management and Diffie-Hellman

and during the transition period, vulnerabilities may arise as both old and new systems
coexist. The advent of wireless communication and the Internet of Things (IoT) further
complicates key distribution in large, dynamic networks. In these environments, devices
are often added or removed from the network frequently, and the communication channels
themselves may be more vulnerable to interception or eavesdropping. The challenge of
securely distributing keys to a large number of low-power, resource-constrained devices,
each with varying security capabilities, is an ongoing area of research. Solutions that
work in traditional wired networks may not be applicable in the context of IoT, where
devices may have limited processing power and memory and may operate in environments
with high levels of interference or physical security risks. In conclusion, key distribution
is a critical challenge for symmetric key systems, particularly in large, distributed, or dy-
namic networks. The need for secure channels to exchange keys, the exponential growth
of required keys as the network scales, and the complexities of key management all pose
significant obstacles to ensuring the security of encrypted communications. While vari-
ous techniques such as key distribution centers, group key management, and secure key
exchange protocols help mitigate these challenges, they introduce their own risks and
complexities. The evolution of cryptographic protocols must address these problems
while also adapting to the increasing demands of modern networks, which are charac-
terized by high scalability, dynamic membership, and varying levels of security. For all
these reasons, the most widely used solution is the Diffie-Hellman key exchange protocol.
Diffie-Hellman enables two parties to establish a shared secret over an insecure channel
without prior knowledge of each other, effectively addressing the key distribution prob-
lem inherent in symmetric key systems. This method allows for secure key exchange even
in large and dynamic networks, reducing the complexities associated with key manage-
ment and distribution. Consequently, Diffie-Hellman has become a cornerstone in modern
cryptographic practices, facilitating secure communications across various platforms and
applications.

1.2.1 Diffie-Hellman

The Diffie-Hellman key exchange protocol, introduced by Whitfield Diffie and Martin
Hellman in 1976, revolutionized secure communications by enabling two parties to estab-
lish a shared secret over an insecure channel without prior shared secrets. This protocol
laid the foundation for public-key cryptography, a paradigm shift from traditional sym-
metric encryption methods that required secure key distribution channels. At its core,
the Diffie-Hellman protocol leverages the mathematical principles of modular arithmetic
and the computational difficulty of the discrete logarithm problem. The protocol oper-
ates within a cyclic group G of prime order p, generated by a generator g. Both p and
g are publicly known parameters. The security of the protocol hinges on the difficulty of
solving the discrete logarithm problem in this group for appropriately chosen parameters.
The protocol proceeds as follows:

1. Parameter Selection:
Alice and Bob agree on a large prime number p and a generator g of the multiplica-
tive group of integers modulo p, denoted as Z∗

p. These parameters are public and

13

Public encryption as it stands

can be known to potential adversaries without compromising security.

2. Private Key Generation:
Alice selects a private key a randomly from the set {1, 2, ..., p− 2}.
Bob selects a private key b independently from the same set.

3. Public Key Computation:
Alice computes her public key A = ga mod p.
Bob computes his public key B = gb mod p.

4. Public Key Exchange:
Alice and Bob exchange their public keys A and B over the insecure channel.

5. Shared Secret Computation:
Alice computes the shared secret SA = Ba mod p.
Bob computes the shared secret SB = Ab mod p.

Due to the properties of modular exponentiation, both computations yield the same
result:

A = (gb mod p)a mod p = gba mod p = gab mod p

B = (ga mod p)b mod p = gab mod p

Thus, SA = SB = gab mod p, establishing a mutual shared secret S between Alice and
Bob.

The security of this exchange is predicated on the computational difficulty of the
discrete logarithm problem for a sufficiently large value of p. This infeasibility ensures
that an eavesdropper, who has access to g, p, A, and B, cannot feasibly compute the
shared secret S without knowledge of the private keys a or b.

However, the basic Diffie-Hellman protocol is susceptible to man-in-the-middle (MITM)
attacks. In such an attack, an adversary intercepts the public keys exchanged between
Alice and Bob, substituting them with their own public keys. Consequently, the ad-
versary establishes separate shared secrets with both Alice and Bob, enabling them to
decrypt and potentially alter the messages exchanged. To mitigate this vulnerability, the
protocol is often augmented with authentication mechanisms, such as digital signatures
or certificates, to verify the identities of the communicating parties and ensure the in-
tegrity of the key exchange process. Furthermore, the standard Diffie-Hellman protocol
does not inherently provide perfect forward secrecy (PFS). If an adversary later compro-
mises the private keys a or b, they can retroactively compute the shared secret S for past
communications. To address this limitation, the ephemeral Diffie-Hellman (EDH) variant
is employed, wherein ephemeral (temporary) private and public keys are generated for
each session and discarded afterward. This approach ensures that the compromise of
long-term private keys does not jeopardize the confidentiality of past sessions.

In practical applications, the Diffie-Hellman key exchange is widely used in proto-
cols such as Transport Layer Security (TLS) to secure internet communications. Diffie-
Hellman key exchange protocol represents a seminal advancement in cryptography, en-
abling secure key establishment over insecure channels.

14

1.3 – Public Key Encryption

1.3 Public Key Encryption

In a typical public-key encryption scheme, the receiver generates a key pair consisting of
a public key (pk) and a private key (sk). The public key is disseminated widely, enabling
any sender to encrypt messages intended for the receiver. However, only the receiver,
possessing the corresponding private key, can decrypt these messages. The security of
this system hinges on the confidentiality of the private key; if an adversary gains access to
it, the security of the entire communication is compromised. Public-key encryption offers
several advantages over symmetric encryption. Foremost, it resolves the key distribution
problem, as parties can establish secure communication without needing to share a secret
key beforehand. This is particularly advantageous in scenarios where multiple senders
need to communicate securely with a single receiver, such as in e-commerce transactions
where an online merchant must process sensitive information from numerous customers.
The merchant can maintain a single private key while enabling secure communication with
all potential customers. Additionally, the sender’s identity need not be predetermined
at the time of key generation, enhancing the system’s flexibility. However, public-key
encryption is computationally more intensive than symmetric encryption, often being
several orders of magnitude slower, which can make it impractical for resource-constrained
devices or applications requiring high throughput. Consequently, symmetric encryption is
generally preferred when feasible due to its superior efficiency. A critical aspect of public-
key cryptography is the secure distribution of public keys. For this reason Public Key
Infrastructures (PKIs) are employed, which involve a set of roles, policies, and procedures
needed to create, manage, distribute, use, store, and revoke digital certificates and manage
public-key encryption. A certificate authority (CA) within the PKI vouches for the
identities assigned to specific private keys by producing a digital certificate. However,
the security of PKIs depends on the trustworthiness of the CAs; if a CA is compromised,
an attacker could issue fraudulent certificates, facilitating man-in-the-middle attacks.
Therefore, the integrity of the certification hierarchy is crucial in deploying public-key
systems.

Normally, a public-key encryption scheme consists of three algorithms: a key-generation
algorithm (Gen), an encryption algorithm (Enc), and a decryption algorithm (Dec). The
key-generation algorithm produces a pair of keys (pk, sk) based on a given security
parameter. The encryption algorithm uses the public key to encrypt a message, produc-
ing a ciphertext, while the deterministic decryption algorithm utilizes the private key
to recover the original message. Correctness requires that decryption should success-
fully recover the original message with overwhelming probability, except in cases where
the encryption process introduces negligible errors. A fundamental security criterion for
public-key encryption is security against chosen-plaintext attacks (CPA-security). In this
model, an adversary is given access to the public key and allowed to choose two messages
of equal length, one of which is encrypted and provided as a challenge ciphertext. The
adversary’s task is to determine which message was encrypted. A scheme is considered
CPA-secure if no probabilistic polynomial-time adversary can succeed in this task with
probability significantly better than random guessing. This definition encapsulates the
notion of indistinguishable encryptions, meaning that an adversary cannot differentiate

15

Public encryption as it stands

between ciphertexts corresponding to different plaintexts. Importantly, this level of secu-
rity inherently implies that public-key encryption must be probabilistic, as deterministic
schemes would allow an adversary to infer the original message simply by encrypting
candidate messages and comparing them to the observed ciphertext. An extension of
CPA-security is security under multiple encryptions, which ensures that even when mul-
tiple messages are encrypted using the same public key, an adversary remains unable
to distinguish them. In the public-key setting, single-message security suffices to guar-
antee multi-message security due to the inherent asymmetry of key usage. This result
simplifies security analysis, as proving CPA-security for a single message automatically
extends to multiple messages. Despite CPA-security providing a robust foundation for
public-key encryption, additional security considerations arise when adversaries can ma-
nipulate ciphertexts. Chosen-ciphertext attacks (CCA-security) model scenarios where
an adversary has access to a decryption oracle, allowing them to decrypt arbitrary ci-
phertexts except for the challenge ciphertext. This security notion is particularly rele-
vant in real-world applications where an attacker might intercept and modify encrypted
messages. CCA-security ensures that even in such scenarios, an adversary cannot gain
meaningful information about the original message. This level of security is crucial for
preventing attacks such as padding-oracle attacks, malleability exploits, and adaptive
chosen-ciphertext attacks.

1.3.1 RSA

The RSA encryption algorithm, named after its inventors Rivest, Shamir, and Adleman,
is a cornerstone of asymmetric cryptography, leveraging the mathematical properties of
large prime numbers to facilitate secure data transmission. The algorithm’s security is
predicated on the RSA assumption, which posits that factoring the product of two large
prime numbers is computationally infeasible.

Key Generation :

1. Select two distinct large prime numbers, p and q.
2. Compute their product to obtain the modulus: N = p× q.
3. Calculate the totient function: ϕ(N) = (p− 1) × (q − 1).
4. Choose a public exponent e such that 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1,

ensuring e and ϕ(N) are coprime.
5. Determine the private exponent d as the modular multiplicative inverse of e

modulo ϕ(N), satisfying d× e ≡ 1 (mod ϕ(N)).
6. The public key is (N, e); the private key is (N, d).

Encryption :

1. Represent the plaintext message m as an integer in the range 0 ≤ m < N .
2. Compute the ciphertext c using the public key: c = me (mod N).

16

1.3 – Public Key Encryption

Decryption :

1. Compute the original message m using the private key: m = cd (mod N).

2. This decryption works because (me)d ≡ m (mod N), a property derived from
Euler’s theorem.

Despite its theoretical elegance, plain RSA encryption is deterministic and thus vul-
nerable to various attacks. For instance, an adversary can perform a chosen-plaintext
attack by encrypting potential plaintexts and comparing the resulting ciphertexts to the
target ciphertext. Additionally, if a small public exponent e, such as 3, is used, and
the plaintext m is small enough that me < N , the ciphertext c equals me, allowing the
adversary to recover m by taking the integer e-th root of c. Coppersmith’s attack fur-
ther exploits scenarios where parts of the plaintext are known or have specific structures,
enabling efficient recovery of the remaining plaintext. Moreover, when the same message
is encrypted under multiple public keys sharing the same small exponent, the Chinese
Remainder Theorem can be applied to recover the plaintext, a vulnerability known as
the "broadcast attack."

To mitigate these vulnerabilities, padding schemes have been developed to introduce
randomness into the plaintext before encryption, thereby achieving probabilistic encryp-
tion. The PKCS #1 v1.5 padding scheme, for example, prepends a structured padding
string to the plaintext, ensuring that the input to the RSA function is sufficiently large
and randomized. However, PKCS #1 v1.5 has been shown to be susceptible to adaptive
chosen-ciphertext attacks, notably Bleichenbacher’s attack [8], which exploits the padding
structure to progressively decrypt a ciphertext. To address these shortcomings, the Opti-
mal Asymmetric Encryption Padding (OAEP) scheme was introduced. OAEP employs a
Feistel-like construction using hash functions to generate a padded message that is both
randomized and resistant to chosen-ciphertext attacks. In OAEP, the plaintext is first
padded with zeros and then processed through a series of masking operations involving
hash functions and random seeds, resulting in a ciphertext that is indistinguishable from
random values under the RSA assumption in the random oracle model.

Beyond padding schemes, RSA-based Key Encapsulation Mechanisms (KEMs) have
been developed to securely transmit symmetric keys. In RSA-KEM, a random integer r
is selected uniformly from the range [0, N − 1] and encrypted using the recipient’s public
key to produce the ciphertext c = re (mod N). A symmetric key k is then derived from
r using a key derivation function H, such that k = H(r). The ciphertext c is transmitted
to the recipient, who decrypts it using their private key to recover r and subsequently
derives the symmetric key k. This method decouples the encryption of data from the
encryption of keys, providing semantic security under the RSA assumption.

In practical implementations, the efficiency of RSA decryption can be enhanced using
the Chinese Remainder Theorem (CRT). By computing separate exponentiations modulo
p and q, and then combining the results using CRT, the computational load is signifi-
cantly reduced. However, this approach necessitates of careful implementation to prevent
side-channel attacks, such as fault attacks, where induced errors during computation
can leak information about the prime factors of N . Ensuring the use of high-quality

17

Public encryption as it stands

randomness during key generation is also critical, as poor entropy can lead to the gener-
ation of weak keys with shared factors, making them susceptible to factorization attacks.
Despite its widespread adoption, RSA is increasingly being supplanted by cryptosystems
based on the Computational Diffie-Hellman (CDH) and Decisional Diffie-Hellman (DDH)
assumptions, primarily due to the larger key sizes required for RSA to maintain secu-
rity against advancing computational capabilities. Elliptic Curve Cryptography (ECC),
for instance, offers comparable security with significantly smaller key sizes, resulting in
improved performance and reduced resource consumption.

1.3.2 CDH-DDH

The ElGamal encryption scheme, introduced by Taher ElGamal in 1985, is a seminal
asymmetric key encryption algorithm that extends the Diffie-Hellman key exchange pro-
tocol to enable secure message transmission. Operating over a cyclic group G of prime
order q with a generator g, the scheme’s security is predicated on the computational hard-
ness of the Decisional Diffie-Hellman (DDH) problem within G. The DDH assumption
posits that distinguishing between the tuple (ga, gb, gab) and (ga, gb, gc), where a, b, c are
randomly chosen exponents, is computationally infeasible.

Key Generation : Alice, the recipient, selects a private key x uniformly at random
from the set {1, . . . , q− 1} and computes the corresponding public key h = gx. The
public key is the tuple (G, q, g, h), while x remains confidential as the private key.

Encryption : To encrypt a message m (which must be an element of G) for Alice, the
sender, Bob, performs the following steps:

1. Ephemeral Key Generation: Selects a random ephemeral key y from
{1, . . . , q − 1}.

2. Ciphertext Computation: Calculates c1 = gy and c2 = m · hy.

The resulting ciphertext is the pair (c1, c2).

Decryption : Upon receiving the ciphertext (c1, c2), Alice decrypts it as follows:

1. Shared Secret Computation: Computes the shared secret s = cx1 = (gy)x =
gxy.

2. Message Recovery: Derives the original message by computing m = c2/s =
c2/g

xy.

The security of ElGamal encryption is underpinned by the DDH assumption, ensuring
that the ciphertext components c1 and c2 do not reveal information about the plaintext
m without knowledge of the private key x. However, practical deployment of ElGamal
encryption necessitates addressing certain limitations:

Message Space Restriction : The scheme requires that messages be elements of the
group G. To encrypt arbitrary bit strings, messages must be mapped to G, which

18

1.3 – Public Key Encryption

can be inefficient. A common solution is to employ hybrid encryption, where El-
Gamal encrypts a randomly chosen symmetric key, and this symmetric key is then
used to encrypt the actual message using a symmetric cipher.

Ciphertext Expansion : ElGamal encryption results in ciphertexts that are twice the
size of the plaintext, due to the pair (c1, c2). This expansion can be mitigated
by using a Key Encapsulation Mechanism (KEM), where the shared secret is used
to derive a symmetric key for encrypting the message, reducing the ciphertext
overhead.

Malleability : The scheme is inherently malleable; an adversary can alter a ciphertext
(c1, c2) to (c1, α · c2), resulting in the decryption of α ·m. This vulnerability renders
ElGamal encryption insecure against chosen-ciphertext attacks (CCA).

To enhance security against CCA, the Diffie-Hellman Integrated Encryption Scheme
(DHIES) and its elliptic curve variant, the Elliptic Curve Integrated Encryption Scheme
(ECIES), have been developed. These schemes integrate ElGamal-like encryption with
symmetric encryption and Message Authentication Codes (MACs) to provide authenti-
cated encryption.

DHIES/ECIES Encryption Process :

1. Ephemeral Key Generation: The sender generates a random ephemeral
private key r and computes the corresponding public key R = rG, where G is
the generator of the elliptic curve group.

2. Shared Secret Computation: Computes the shared secret S = Px, where
P = r ·KB and KB is the recipient’s public key.

3. Key Derivation: Derives symmetric encryption and MAC keys from S using
a Key Derivation Function (KDF): kE∥kM = KDF(S∥S1), where S1 is optional
shared information.

4. Message Encryption: Encrypts the plaintext message m using a symmetric
encryption algorithm E with key kE : c = E(kE ;m).

5. MAC Computation: Computes the MAC d = MAC(kM ; c∥S2), where S2 is
additional optional shared information.

6. Ciphertext Formation: The final ciphertext is the concatenation of R, c,
and d.

Decryption Process :

1. Shared Secret Reconstruction: The recipient computes the shared secret
S = Px using their private key kB and the sender’s ephemeral public key R:
P = kB ·R.

2. Key Derivation: Derives kE and kM from S∥S1 using the same KDF.
3. MAC Verification: Verifies the MAC d; if invalid, decryption fails.
4. Message Decryption: Decrypts c.

19

Public encryption as it stands

1.4 Digital Signature
Digital signature schemes are fundamental cryptographic constructs that ensure the au-
thenticity, integrity, and non-repudiation of digital communications within public-key
infrastructures. Unlike public-key encryption, which aims to maintain the confidentiality
of messages, digital signatures provide assurances that a message originates from a spe-
cific sender and remains unaltered during transmission. This capability is crucial across
various applications, including secure software distribution, financial transactions, and
legal document verification. A digital signature scheme is formally defined by a triplet of
probabilistic polynomial-time algorithms: key generation (Gen), signing (Sign), and ver-
ification (Vrfy). The key generation algorithm Gen, upon input of a security parameter
1k, outputs a pair of keys: a public verification key pk and a private signing key sk. The
signing algorithm Sign takes as input the private key sk and a message m, producing a
signature σ. The verification algorithm Vrfy, given the public key pk, a message m, and
a signature σ, outputs a boolean value indicating the validity of the signature. For cor-
rectness, it is required that for all valid key pairs generated by Gen and for all messages
m, the verification algorithm accepts the signature produced by the signing algorithm:

Pr[Vrfy(pk,m, Sign(sk,m)) = accept] = 1

The security of a digital signature scheme is characterized by its resistance to existential
forgery under adaptive chosen-message attacks. This means that even if an adversary can
obtain signatures for messages of their choosing, it remains computationally infeasible to
forge a valid signature for any new message not previously signed by the legitimate signer.
This property is formalized as:

Pr[Vrfy(pk,m′, σ′) = accept | (m′, σ′) /∈ Q] < negl(k)

here Q denotes the set of message-signature pairs queried during the attack, and negl(k)
represents a negligible function in the security parameter k.

Digital signatures offer several advantages over symmetric-key-based message authen-
tication codes (MACs). Notably, they provide public verifiability, allowing any party to
confirm the authenticity of a signed message using the public key, and non-repudiation,
ensuring that a signer cannot plausibly deny having signed a message. These properties
are essential in scenarios where trust and accountability are paramount, such as in le-
gal agreements and digital certificates. A prevalent method to enhance the efficiency of
digital signatures is the hash-and-sign paradigm.

Directly signing long messages can be computationally intensive; therefore, a cryp-
tographic hash function H is employed to compute a fixed-size digest of the message,
h = H(m), which is then signed. This approach not only improves performance but also
abstracts the signing process from the message length. The security of this paradigm
hinges on the collision resistance of the hash function, ensuring that it is computationally
infeasible to find two distinct messages m and m′ such that H(m) = H(m′).

Various digital signature schemes have been developed based on different hard math-
ematical problems. In the RSA-based signature scheme, for instance, a message digest h
is signed by computing σ = hd mod N , where d is the private exponent, and verified by

20

1.4 – Digital Signature

checking whether h ≡ σe mod N , with e being the public exponent. However, plain RSA
signatures are vulnerable to existential forgery attacks, as an adversary can potentially
compute valid signatures for arbitrary messages. To mitigate this, schemes like RSA Full-
Domain Hash (RSA-FDH) have been proposed, where the message is first hashed into an
element of the appropriate domain before signing. DSA-FDH has been proven secure in
the random oracle model under the assumption that the RSA problem is hard. Another
class of signature schemes is based on the hardness of the discrete logarithm problem.
The Digital Signature Algorithm (DSA), standardized by NIST in the Digital Signature
Standard (DSS), operates over finite fields and involves parameters such as a prime mod-
ulus p, a subgroup order q, and a generator g. The private key is a randomly selected
integer x, and the public key is y = gx mod p. Signing a message involves generating a
per-message secret value k, computing the signature components r and s, and ensuring
that k remains secret to prevent private key recovery. Elliptic Curve Digital Signature
Algorithm (ECDSA) is a variant of DSA that operates over elliptic curve groups, offering
equivalent security with smaller key sizes, which is advantageous for performance and
storage efficiency.

Implementing digital signature schemes requires careful attention to key management,
parameter selection, and protection against side-channel attacks. The security of the
scheme is contingent upon the secrecy of the private key and the integrity of the signing
process.

1.4.1 Signatures from the Discrete-Logarithm Problem

A foundational example is the ElGamal signature scheme, introduced by Taher ElGamal
in 1985. In this scheme, the global parameters consist of a large prime p and a generator
g of the multiplicative group Z∗

p. The signer selects a private key x uniformly at random
from the set {1, 2, . . . , p− 2} and computes the corresponding public key y = gx mod p.
To sign a message m, the signer chooses a random ephemeral key k from {1, 2, . . . , p− 2}
such that gcd(k, p−1) = 1, ensuring that k is coprime with p−1. The signer then computes
r = gk mod p and s = k−1(H(m) − xr) mod (p− 1), where H denotes a cryptographic
hash function, and k−1 represents the modular inverse of k modulo p− 1. The signature
is the pair (r, s). Verification involves checking that 0 < r < p, 0 < s < p − 1, and that
gH(m) ≡ yrrs mod p. The security of the ElGamal signature scheme is predicated on
the intractability of the DLP and the computational Diffie-Hellman problem within the
multiplicative group of integers modulo p.

Building upon the ElGamal framework, the Digital Signature Algorithm (DSA) was
standardized by the U.S. National Institute of Standards and Technology (NIST) in 1994
as part of the Digital Signature Standard (DSS). DSA operates within a subgroup of Z∗

p of
prime order q, where q divides p−1. The parameters include a prime p, a prime divisor q of
p−1, and a generator g = h(p−1)/q mod p, where h is any integer satisfying 1 < h < p−1
and h(p−1)/q /≡ 1 mod p. The private key x is selected uniformly from {1, 2, . . . , q − 1},
and the public key is y = gx mod p. To sign a message m, the signer picks a random
k from {1, 2, . . . , q − 1}, computes r = (gk mod p) mod q, and s = k−1(H(m) + xr)
mod q. The signature is the pair (r, s). Verification entails ensuring 0 < r < q, 0 < s < q,
and computing w = s−1 mod q, u1 = H(m)w mod q, u2 = rw mod q, and checking

21

Public encryption as it stands

that (gu1yu2 mod p) mod q = r. The security of DSA is contingent upon the hardness
of the DLP in the chosen subgroup.

An advancement in efficiency is exemplified by the Schnorr signature scheme, proposed
by Claus Schnorr in 1989. This scheme operates in a subgroup of Z∗

p with prime order
q. The signer selects a private key x from {0, 1, . . . , q − 1} and computes the public key
y = gx mod p. To sign a message m, the signer chooses a random k from {1, 2, . . . , q−1},
computes r = gk mod p, and derives the challenge e = H(m ∥ r) mod q, where ∥
denotes concatenation. The response is s = (k − xe) mod q. The signature is the pair
(s, e). Verification involves computing r′ = gsye mod p and checking that e = H(m ∥ r′)
mod q. The Schnorr scheme is lauded for its simplicity and efficiency, producing shorter
signatures and requiring fewer computational resources compared to DSA. Its security is
based on the hardness of the DLP and is proven in the random oracle model. The Elliptic
Curve Digital Signature Algorithm (ECDSA) is an adaptation of DSA that operates over
elliptic curve groups, offering equivalent security with smaller key sizes. The domain
parameters include an elliptic curve E defined over a finite field Fp or F2m , a base point G
of prime order n, and associated field parameters. The private key d is a randomly selected
integer in {1, 2, . . . , n−1}, and the public key is the point Q = dG. To sign a message m,
the signer selects a random integer k from {1, 2, . . . , n − 1}, computes the elliptic curve
point R = kG, and derives r = Rx mod n, where Rx is the x-coordinate of R. If r = 0,
the process is repeated with a new k. The signer then computes s = k−1(H(m) + dr)
mod n, where H is a cryptographic hash function, and k−1 is the modular inverse of k
modulo n. The signature is the pair (r, s). Verification involves ensuring 0 < r < n,
0 < s < n, and computing w = s−1 mod n, u1 = H(m)w mod n, and u2 = rw
mod n. The verifier then computes the elliptic curve point R′ = u1G + u2Q and checks
that r = R′

x mod n, where R′
x is the x-coordinate of R′. ECDSA’s security relies on the

hardness of the elliptic curve discrete logarithm problem (ECDLP), which is believed to be
significantly more challenging than the DLP in finite fields, allowing for shorter key sizes
without compromising security. This efficiency makes ECDSA particularly well-suited for
resource-constrained environments, such as embedded systems and mobile devices, where
computational power and storage are limited.

1.4.2 Signature From Hash Functions

A particularly compelling class of these schemes is hash-based digital signatures, which
leverage the properties of cryptographic hash functions to provide security without relying
on number-theoretic assumptions, making them resistant to quantum attacks. These
schemes encompass various constructions, including one-time signatures, stateful, and
stateless schemes, each with distinct mechanisms and security considerations.

One-time signature (OTS) schemes form the foundational layer of hash-based signa-
tures. Introduced by Leslie Lamport in 1979, the Lamport OTS is a seminal example that
utilizes cryptographic hash functions. In this scheme, the private key comprises pairs of
random values, and the public key consists of the corresponding hash values. To sign a
message, each bit of the message determines which value from each pair is revealed; for
a bit ’0’, the first value is disclosed, and for a bit ’1’, the second. Verification involves
hashing the revealed values and comparing them to the public key. The security of the

22

1.5 – Factorization and Discrete Logarithm Computation

Lamport OTS hinges on the preimage resistance of the hash function, ensuring that an
adversary cannot feasibly invert the hash to forge a signature. However, a significant
limitation is that each key pair is secure for only one single message; reusing keys com-
promises security since previously revealed parts of the private key can aid in forging new
signatures. To extend the applicability beyond single-use keys, stateful hash-based sig-
nature schemes have been developed. These schemes require the signer to maintain state
information to ensure each one-time key pair is used only once. A prominent example is
the Merkle Signature Scheme (MSS), proposed by Ralph Merkle. In MSS, a large number
of OTS key pairs are generated, and their public keys are organized into a binary tree
structure known as a Merkle tree. The root of this tree serves as the global public key. To
sign a message, an unused OTS key pair is selected, and along with the OTS signature,
an authentication path is provided. This path consists of the sibling nodes required to
reconstruct the root of the Merkle tree, allowing the verifier to confirm the validity of
the OTS public key used. While MSS enables multiple signatures, it necessitates careful
state management to prevent key reuse, which can be complex and error-prone.

Addressing the challenges of state management, stateless hash-based signature schemes
have been introduced. A notable example is SPHINCS (Stateless Practical Hash-based
Incredibly Nice Cryptographic Signature), which eliminates the need for state tracking
by employing a hierarchical structure of multiple layers of Merkle trees. SPHINCS uses
a few-time signature (FTS) scheme at the lowest layer, allowing each key pair to sign a
limited number of messages securely. The upper layers of Merkle trees certify the public
keys of the layers below. To sign a message, SPHINCS selects a random subset of OTS
key pairs, reducing the risk of key reuse and distributing security uniformly. The security
of SPHINCS relies on the underlying hash function’s properties, particularly collision re-
sistance and pseudorandomness. While SPHINCS offers the advantage of being stateless,
it comes with trade-offs in terms of larger signature sizes and increased computational
overhead compared to stateful schemes.

1.5 Factorization and Discrete Logarithm Computation

1.5.1 Factorization

The security of RSA encryption is fundamentally anchored in the computational difficulty
of factoring large composite integers, a problem that has been extensively studied within
number theory and cryptography. In RSA, the public key comprises a modulus N , which
is the product of two large prime numbers p and q. The security of the system hinges
on the infeasibility of deducing these prime factors from N . Over the years, several
algorithms have been developed to tackle the integer factorization problem, each with
varying degrees of efficiency and applicability depending on the size and nature of N .

One of the earliest and simplest methods is trial division, which involves dividing N by
successive integers to find factors. While straightforward, this approach is computation-
ally prohibitive for large N , as its time complexity is exponential relative to the number
of digits in N . Consequently, trial division is impractical for the large integers typically
used in cryptographic applications. To improve upon this, Pollard’s rho algorithm [28],

23

Public encryption as it stands

introduced by John Pollard in 1975, offers a probabilistic method that is particularly ef-
fective for numbers with small prime factors. The algorithm generates a pseudo-random
sequence of numbers modulo N and employs cycle detection techniques, such as Floyd’s
cycle-finding algorithm, to identify a non-trivial factor. Its expected time complexity is
O(N1/4), making it more efficient than trial division but still inadequate for the large
semiprimes used in RSA keys. For larger integers, the quadratic sieve algorithm [29],
developed in the early 1980s, represented a significant advancement. This algorithm
searches for numbers x such that x2 mod N is a smooth number (i.e., a number with
only small prime factors). By collecting enough of these smooth numbers, one can use
linear algebra techniques over finite fields to find a non-trivial factor of N . The quadratic
sieve has a sub-exponential time complexity of O

(︂
exp

(︂
(logN)1/2(log logN)1/2

)︂)︂
, mak-

ing it effective for numbers up to about 100 digits. However, its efficiency diminishes for
larger integers. The most powerful classical algorithm for factoring large integers is the
general number field sieve (GNFS), which has become the standard for factoring large
semiprimes, such as those used in RSA encryption. The GNFS operates by selecting a
polynomial with a root modulo N and constructing two number fields. It then searches
for relations between these fields that lead to a congruence of squares modulo N . The
algorithm involves several complex steps, including sieving to find smooth relations, ma-
trix reduction to find dependencies, and square root extraction in the number field. Its
heuristic time complexity is O

(︂
exp

(︂
(64/9)1/3(logN)1/3(log logN)2/3

)︂)︂
, making it the

most efficient known algorithm for factoring large integers. Notably, in 2020, a 250-
digit (829-bit) RSA number, known as RSA-250, was factored using the GNFS, requiring
approximately 2,700 core-years of computation.

Despite these advancements, the GNFS and other classical algorithms remain compu-
tationally intensive for factoring integers of the size commonly used in RSA keys today.
To maintain security against these evolving factorization methods, cryptographic stan-
dards have progressively increased recommended key sizes. As of recent guidelines, a
minimum key size of 2048 bits is recommended for RSA, providing an estimated security
strength of 112 bits. For applications requiring higher security, 3072-bit keys are advised,
corresponding to a security strength of 128 bits. These recommendations aim to balance
security with computational efficiency, acknowledging that larger key sizes offer greater
security margins but also incur higher computational costs.

1.5.2 Discrete Logarithm

The discrete logarithm problem (DLP) is a cornerstone of modern cryptography, under-
pinning the security of numerous protocols such as Diffie-Hellman key exchange, ElGamal
encryption, and various elliptic curve cryptosystems. Normally, given a finite cyclic group
G with a generator g and an element h in G, the DLP entails finding an integer x such
that gx ≡ h mod p, where p is a prime number and g is a primitive root modulo p.
The presumed computational intractability of solving the DLP for large p ensures the
security of these cryptographic systems. Over time, several algorithms have been de-
veloped to address the DLP, each with varying degrees of efficiency depending on the
group structure and size. Among the foundational methods are the Pohlig-Hellman and

24

1.5 – Factorization and Discrete Logarithm Computation

baby-step/giant-step algorithms.
The Pohlig-Hellman algorithm [27], introduced by Steven Pohlig and Martin Hellman

in 1978, exploits the factorization of the group order to decompose the DLP into smaller,
more manageable subproblems. Specifically, if the order of the group |G| factors into small
prime powers, the algorithm reduces the original DLP to multiple DLPs in these smaller
subgroups. By solving each subproblem and combining the results using the Chinese
Remainder Theorem, the overall problem becomes more tractable. The efficiency of this
algorithm is contingent upon the factorization of |G|; it is particularly effective when |G|
has small prime factors but offers no advantage when |G| is a large prime, a common
choice in cryptographic applications to mitigate this very vulnerability.

In contrast, the baby-step/giant-step algorithm, proposed by Daniel Shanks in 1971,
provides a general solution to the DLP without relying on specific group factorizations.
This algorithm employs a meet-in-the-middle strategy to achieve a time complexity of
O(

√
n), where n is the order of the group. The method involves precomputing a table

of "baby steps" (successive powers of the generator g) and then searching for matches
using "giant steps" (multiples of the group order). While more efficient than brute-
force approaches, the baby-step/giant-step algorithm requires significant computational
resources and storage, rendering it impractical for groups with large orders typically used
in cryptographic settings.

Building upon these foundational algorithms, more advanced methods have been de-
veloped to tackle the DLP in specific contexts. The index calculus algorithm, for instance,
offers sub-exponential running times for certain cyclic groups by leveraging the represen-
tation of group elements and factoring techniques. This method involves generating a
system of linear equations involving logarithms of small prime factors and solving for the
unknowns using linear algebra. The preprocessing step of generating these equations can
be reused across multiple DLP instances within the same group, enhancing efficiency.
The index calculus algorithm is particularly effective in groups like Z∗

p, the multiplicative
group of integers modulo p, where it serves as the basis for the number field sieve-the
most efficient known method for computing discrete logarithms in large prime fields.
Recent advancements have further refined these approaches. For example, the double
index calculus algorithm has been proposed to solve the DLP in finite prime fields
more efficiently. Additionally, significant progress has been made in computing discrete
logarithms in finite fields of small characteristic, raising concerns about the security of
cryptographic schemes that rely on such groups.

In contrast, the elliptic curve discrete logarithm problem (ECDLP) remains resis-
tant to sub-exponential attacks, making elliptic curve cryptography (ECC) an attractive
option for secure communications. ECC offers comparable security to traditional sys-
tems like RSA but with significantly smaller key sizes, leading to improved performance
and reduced computational overhead. For instance, a 256-bit key in ECC is considered
to provide a security level equivalent to a 3072-bit key in RSA. The selection of ap-
propriate cryptographic key lengths is crucial to maintaining security against evolving
computational capabilities. Organizations such as the National Institute of Standards
and Technology (NIST) provide guidelines on key sizes to ensure robust security. For ex-
ample, NIST recommends a minimum of 2048-bit keys for RSA and 256-bit keys for ECC

25

Public encryption as it stands

to achieve an adequate security level. These recommendations are periodically updated
to reflect advancements in algorithmic techniques and increases in computational power.

1.6 PKC exploitation
While current public key cryptography (PKC) systems remain secure against classical
algorithmic attacks, they are not impervious to other forms of exploitation. Side-channel
attacks, for instance, leverage unintended information leakage, such as timing discrepan-
cies, power consumption variations, or electromagnetic emissions during cryptographic
operations-to extract secret keys or sensitive data. Man-in-the-middle (MITM) attacks
present another significant threat. In these scenarios, attackers intercept and potentially
alter communications between two parties who believe they are directly communicating
with each other. This can compromise the integrity and confidentiality of the exchanged
information. MITM attacks can be particularly effective during the key exchange process,
where the attacker can negotiate cryptographic parameters with both parties, thereby
gaining unauthorized access to the communication channel.

To mitigate these risks, it is essential to implement robust security measures. This
includes employing constant-time algorithms to prevent timing attacks, integrating hard-
ware countermeasures against power analysis, and ensuring proper authentication proto-
cols to thwart MITM attempts. Regularly updating cryptographic libraries and staying
informed about emerging vulnerabilities are also crucial steps in maintaining the secu-
rity of PKC systems. By proactively addressing these challenges, we can enhance the
resilience of public key cryptography against non-algorithmic threats.

26

Chapter 2

Quantum computers

Quantum computing represents a groundbreaking advancement in computation, harness-
ing the principles of quantum mechanics to process and store information in fundamen-
tally different ways compared to classical computers. While classical computing relies on
bits, which are confined to binary values of ’0’ or ’1’, quantum computing uses qubits,
which can exist simultaneously in both states, thanks to quantum superposition. This
allows quantum computers to access a vastly larger computational space, offering the po-
tential to solve certain problems exponentially faster than classical computers. Quantum
properties like superposition, interference, and entanglement enable quantum computers
to explore many computational paths at once, dramatically increasing efficiency for spe-
cific tasks, such as prime number factorization, quantum simulations, and data search.
The ability of quantum computers to outperform classical systems is exemplified by Shor’s
algorithm, which can factor large numbers much faster than traditional methods, posing a
significant challenge to current cryptographic protocols that rely on the difficulty of such
tasks. This has led to widespread interest in the field, particularly from cryptography
experts concerned about the future of secure communication.

The development of quantum computing has been heavily influenced by the work
of early pioneers such as Richard Feynman, who first proposed the idea of a quantum
computer in 1981, and David Deutsch, who in 1985 formalized the concept of a univer-
sal quantum computer. In the 1990s, the field gained significant momentum with the
development of algorithms like Shor’s and Grover’s, which demonstrated the potential
for quantum computers to solve certain problems more efficiently than classical systems.
Shor also introduced Quantum Error Correction (QEC) in 1995, showing that informa-
tion from one logical qubit can be encoded onto multiple physical qubits, protecting it
from errors. Shor’s work demonstrated the possibility of executing quantum computa-
tions reliably with noisy quantum hardware. Further research has revealed that noise
and quantum scaling are related, so if errors and noise are below a certain threshold
then it’s theoretically possible to scale up quantum computers to larger sizes. These
breakthroughs sparked a wave of interest from both academia and industry, with major
companies like IBM, Google, and Microsoft investing heavily in quantum research. In
2019 Google demonstrated quantum supremacy, where a quantum computer performed
a specific task faster than a classical supercomputer [13]. Moreover, there has been

27

Quantum computers

rapid progress in quantum algorithms, with hybrid quantum-classical approaches like the
Variational Quantum Eigensolver (VQE) [26] gaining traction. These algorithms, which
combine the strengths of both classical and quantum computing, have shown promise
in areas like quantum chemistry simulations and quantum artificial intelligence. In fact,
quantum computing has the potential to significantly accelerate machine learning tasks,
though it remains to be seen whether quantum algorithms will ultimately outperform
classical techniques in all areas. The field also saw progress in quantum cryptography,
with the development of protocols like BB84 [19] and advances in entanglement-based
secure communication. As of 2025, the field continues to grow rapidly, with quantum
computing becoming one of the most discussed areas of research. A wide range of compa-
nies are working on developing quantum hardware and software. In addition to hardware
advancements, several quantum programming languages and libraries, such as Qiskit,
Cirq, and PennyLane, are available to facilitate the development of quantum algorithms.
These tools allow researchers to create quantum circuits and test algorithms on available
quantum devices.

Despite its potential, quantum computing is still in its early stages, currently entering
the Noisy Intermediate-Scale Quantum (NISQ) era. At this point, quantum computers
are not yet fault-tolerant and are subject to noise and imperfections, which limit their
practical capabilities nonetheless they are already sufficiently reliable for solving certain
problems more efficiently than classical computers. Researchers are working on error cor-
rection techniques and hardware improvements to make quantum devices more reliable.
The NISQ era provides valuable opportunities to refine quantum algorithms, explore error
correction, and test quantum hardware, paving the way for scalable, fault-tolerant quan-
tum computers in the future. Progress has been made with various quantum computing
platforms, including superconducting qubits, trapped ions, and topological qubits, each
offering unique advantages and challenges. However, there is no clear consensus on the
best approach, and the diversity of research reflects the exploratory nature of the field.
Current quantum devices are primarily limited by issues like decoherence, where qubits
lose their quantum coherence when interacting with the environment, making it a ma-
jor obstacle for large-scale quantum computing. NISQ devices are designed to cope with
these imperfections, but developing error correction procedures and reducing decoherence
rates remain key research goals.

The field of quantum computing is diverse, with several paradigms being explored.
The most popular are measurement-based quantum computing, adiabatic quantum com-
puting (implemented as quantum annealing), and gate-based quantum computing, which
uses the quantum circuit model. The quantum circuit model, in particular, is flexible
and programmable, making it a feasible approach for many quantum computing applica-
tions. In this model, quantum algorithms are expressed as sequences of quantum gates,
which manipulate qubits to perform computations. These gates can be combined to form
quantum circuits that solve complex problems.

28

2.1 – Theoretical aspects

2.1 Theoretical aspects

2.1.1 Mathematical concepts

Quantum mechanics often feels daunting at first, not only because of its counterintuitive
principles but also due to its reliance on unfamiliar notation and abstract linear algebraic
structures. These mathematical tools, however, form the bedrock of the theory, enabling
precise descriptions of quantum states and their evolution. At its core, the framework
builds on vector spaces, particularly Cn, the space of complex n-tuples where vectors
can be combined through addition or scaled by complex numbers. The zero vector, for
instance, acts as a neutral element in this algebraic system. Within these spaces, vector
subspaces, subsets that themselves satisfy the axioms of a vector space allow us to isolate
smaller, self-contained regions of interest.

Dirac notation streamlines these ideas with elegant symbolism: a vector is written
as |ψ⟩ (a ket), its dual (conjugate transpose) as ⟨ψ| (a bra), and their inner product as
⟨φ|ψ⟩, which quantifies their "overlap" in the space. This notation extends naturally to
operations like the tensor product (e.g., |φ⟩ ⊗ |ψ⟩), which combines vectors from separate
spaces into composite states. For matrices, the Hermitian conjugate (A†), a combina-
tion of complex conjugation and transposition, generalizes the notion of transposition to
complex-valued operators, ensuring compatibility with quantum mechanics’ probabilistic
structure.

A vector space’s structure is deeply tied to its spanning sets and bases. A spanning set
acts as a "generator" for the space: any vector can be expressed as a linear combination
of its elements. However, redundancy often exists in such sets. A basis eliminates this
redundancy by being a minimal spanning set of linearly independent vectors, vectors that
cannot be expressed as combinations of one another. The number of basis vectors defines
the space’s dimension, a measure of its complexity. Operators, represented by matrices,
act linearly on these vectors.

Inner products elevate vector spaces to Hilbert spaces, a complete inner product space,
by assigning complex numbers to vector pairs, encoding geometric relationships like an-
gles and lengths. Two vectors are orthogonal if their inner product vanishes (⟨φ|ψ⟩ = 0),
and an orthonormal basis ensures every basis vector is a unit vector and mutually or-
thogonal. The Gram-Schmidt procedure systematically transforms any basis into such an
orthonormal set, simplifying computations and ensuring stability in quantum algorithms.

Key operator properties emerge through their interactions with vectors and other
operators. The outer product |w⟩⟨v|, for instance, maps vectors via linear transforma-
tions, acting as a "building block" for more complex operators. The completeness relation
(∑︁i |i⟩⟨i| = I) formalizes the idea that an orthonormal basis fully spans the space: any
vector can be reconstructed from its projections onto the basis. Meanwhile, inequali-
ties like Cauchy-Schwarz (|⟨v|w⟩|2 ≤ ⟨v|v⟩⟨w|w⟩) set fundamental limits on correlations
between states, reflecting quantum mechanics’ probabilistic nature.

Eigenvalues and eigenvectors reveal an operator’s scalar invariants: an eigenvector
|v⟩ satisfies A|v⟩ = λ|v⟩, where λ is the eigenvalue. Solving the characteristic equation
(det(A − λI) = 0) uncovers these eigenvalues, while diagonalization decomposes oper-
ators into their spectral form (A = ∑︁

i λi|i⟩⟨i|). This is possible for normal operators

29

Quantum computers

(AA† = A†A), a class that includes Hermitian operators (A† = A), which model physical
observables with real eigenvalues, and unitary operators (U †U = I), which preserve inner
products and describe reversible quantum evolution.

Composite quantum systems rely on tensor products to merge spaces (V ⊗ W) and
operators (A ⊗ B). For example, if A acts on qubit 1 and B on qubit 2, their tensor
product A ⊗ B acts on the combined system, with (A ⊗ B)(|v⟩ ⊗ |w⟩) = A|v⟩ ⊗ B|w⟩.

The Kronecker product mirrors this abstract operation for matrices: for A =
[︄
a b
c d

]︄
and

B, A ⊗ B =
[︄
aB bB
cB dB

]︄
, scaling each element of A by the entire matrix B. This block

structure is indispensable for modeling multi-qubit gates in quantum circuits.
Operators also decompose into simpler, interpretable forms. The polar decomposition

(A = UJ or A = KU) splits an operator into a unitary U (representing rotation) and
a positive operator J/K (representing stretching). The singular value decomposition
(A = UDV) factors matrices into two unitaries (U , V) and a diagonal matrix D of
non-negative singular values, offering geometric insight into linear transformations.

Finally, the trace (sum of diagonal elements) acts as a scalar invariant of operators, un-
affected by basis changes, while commutators ([A,B] = AB−BA) and anti-commutators
({A,B} = AB + BA) quantify operator relationships. Commuting Hermitian operators
([A,B] = 0) share eigenbases, enabling simultaneous diagonalization, a property critical
for measuring compatible observables like position and momentum in classical physics,
but restricted in quantum theory by the uncertainty principle.

Together, these concepts weave a mathematical tapestry that underpins quantum
mechanics, transforming abstract definitions into tools for modeling superposition, en-
tanglement, and measurement. By grounding quantum phenomena in linear algebra’s
rigor, we gain both computational power and conceptual clarity.

2.1.2 Quantum mechanics

Quantum mechanics provides a fundamental mathematical framework for understand-
ing physical systems, defining the principles that govern quantum states, evolution, and
measurement.

The first postulate establishes that any isolated physical system is associated with a
complex vector space endowed with an inner product where the system’s state is repre-
sented by a unit vector. The simplest quantum system, the qubit, has a two-dimensional
state space spanned by orthonormal basis vectors {|0⟩, |1⟩}, with an arbitrary state vec-
tor expressed as |ψ⟩ = a|0⟩ + b|1⟩, where a and b are complex numbers satisfying the
normalization condition |a|2 + |b|2 = 1. This superposition principle differentiates qubits
from classical bits, allowing them to exist in states that are not definitively |0⟩ or |1⟩ but
rather a combination of both.

The second postulate that a closed quantum system changes in time by applying a spe-
cial kind of "perfectly reversible" transformation U that always keeps the total probability
equal to one, which means U †U = I. Mathematically, this is captured by the Schrödinger

30

2.1 – Theoretical aspects

equation iℏ d
dt |ψ(t)⟩ = H|ψ(t)⟩, where the Hamiltonian H is a Hermitian operator repre-

senting the system’s total energy and ensuring real energy values. When H doesn’t change
with time, you can solve this equation exactly to get U(t2, t1) = exp

(︁
− i

ℏH (t2−t1)
)︁
, which,

if you break H into its energy eigenstates H = ∑︁
E E |E⟩⟨E|, shows that each energy state

simply picks up a phase factor e−iE(t2−t1)/ℏ. In everyday terms, the system’s state vector
"rotates" in a way that conserves probability, can be reversed by running time backward,
and makes any observable that commutes with H remain unchanged over time.

The third postulate of quantum mechanics formalizes the inherently probabilistic na-
ture of quantum measurement. At its heart, this postulate asserts that measuring a
quantum system is governed by a set of mathematical entities called measurement op-
erators {Mm}, which act on the system’s state space. Suppose the system is initially
in a state |ψ⟩. When a measurement is performed, each possible outcome m is tied
to a specific operator Mm. The probability of observing outcome m is calculated as
p(m) = ⟨ψ|M †

mMm|ψ⟩, reflecting how the operator Mm "overlaps" with the state. After
the measurement, the system’s state collapses to Mm|ψ⟩√

p(m)
, a process that highlights the

abrupt, discontinuous nature of quantum observation. To ensure consistency with prob-
ability theory, these operators must satisfy the completeness relation ∑︁mM

†
mMm = I,

where I is the identity operator. This equation guarantees that the probabilities of all
possible outcomes sum to one, preserving the probabilistic framework of quantum theory.
A pivotal special case arises with projective measurements, where the operators {Mm}
are replaced by orthogonal projectors {Pm}. These projectors satisfy PmPn = δmnPm,
meaning they partition the state space into mutually exclusive, non-overlapping sub-
spaces. Each projector Pm corresponds to a distinct eigenvalue of a Hermitian observable
M , which represents a physical quantity like energy or spin. The observable can be
decomposed as M = ∑︁

mmPm, linking measurement outcomes to eigenvalues m. The
expectation value ⟨M⟩ = ⟨ψ|M |ψ⟩ quantifies the average outcome of many measurements
on identically prepared states, while the uncertainty ∆M =

√︁
⟨M2⟩ − ⟨M⟩2 measures the

statistical spread of results. These concepts underpin the famous Heisenberg uncertainty
principle, which states that for two incompatible observables A and B, the product of
their uncertainties is bounded by ∆A∆B ≥ 1

2 |⟨[A,B]⟩|, where [A,B] = AB − BA is
their commutator. This principle encodes the fundamental trade-off in precision when
measuring non-commuting quantities, such as position and momentum.

The fourth postulate addresses composite quantum systems, stating that the state
space of a composite system is the tensor product of the state spaces of its compo-
nent systems. If system i is in state |ψi⟩, the joint state of the composite system is
|ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩, a crucial principle for understanding entanglement. An entangled
state cannot be written as a product of individual states, as exemplified by |ψ⟩ = |00⟩+|11⟩√

2 ,
which underpins quantum computation and communication protocols such as quantum
teleportation and superdense coding. The measurement postulate extends to general
measurements described by Positive Operator-Valued Measures (POVMs), a set of pos-
itive operators {Em} satisfying ∑︁mEm = I, which generalizes projective measurements
and is particularly useful for optimizing state discrimination in quantum information pro-
cessing. The concept of phase in quantum mechanics plays a crucial role in interference
effects, where a quantum state |ψ⟩ can acquire a global phase factor eiθ without affecting

31

Quantum computers

measurement outcomes, while relative phase differences between superposition compo-
nents lead to physically observable effects. The inability to directly observe the state
vector, the invasive nature of quantum measurement, and the probabilistic collapse of
the wavefunction highlight the departure of quantum mechanics from classical intuition.
These principles form the theoretical foundation for quantum computing and quantum
communication.

2.2 Main practical concepts
The following presents some important concepts commonly used in the field of quantum
computing.

2.2.1 Qbits

In classical computing, a bit is analogous to a binary light switch, capable of assuming
only two discrete states, 0 or 1. In contrast, a qubit functions more like a dimmer
switch, existing in an intermediate state as a linear combination of 0 and 1, weighted
by probability amplitudes. A qubit’s wave-like nature follows the Schrödinger equation,
theoretically existing in an infinite-dimensional Hilbert space. However, for practical
purposes, it is often represented in a two-dimensional Hilbert space using Dirac’s braket
notation. In an N -dimensional Hilbert space a quantum system’s state is expressed as a
linear combination of basis vectors:

ψ = (c0, c1, . . . , cN−1)⊤ = c0|0⟩ + c1|1⟩ + . . .+ cN−1|N − 1⟩,

where the basis vectors such as |0⟩, |1⟩, |2⟩, . . ., |N − 1⟩ represent distinct quantum
states. These basis states are orthonormal, satisfying ⟨i|j⟩ = 0 if i /= j and ⟨i|j⟩ = 1 if
i = j, where |j⟩ is its Hermitian conjugate is the complex conjugate transpose of ⟨j| and
⟨i|j⟩ represents the inner product (or scalar product) between two quantum states. The
inner product gives a scalar value that quantifies the similarity between the two quantum
states. The state vector must be normalized so that the sum of the squared magnitudes
of its coefficients equals one:

⟨ψ|ψ⟩ = |c0|2 + |c1|2 + . . .+ |cN−1|2 = 1

, this encapsulates quantum superposition. The probability of measuring the system in a
particular state |i⟩ is given by |ci|2, ensuring that the total probability sums to one. This
concept is famously illustrated by Schrödinger’s cat thought experiment, where a cat is
considered to be in a superposition of being both alive and dead until an observation
collapses the state. The qubit is therefore mathematically described as

|ψ⟩ = α|0⟩ + β|1⟩,

where α and β are complex numbers satisfying the normalization condition |α|2+|β|2 = 1.
Physical implementations of qubits include the polarization states of photons, spin states
of electrons, and energy levels of atoms, allowing controlled manipulation for quantum
information processing.

32

2.2 – Main practical concepts

A two-qubit system has computational basis states |00⟩, |01⟩, |10⟩, and |11⟩, with a
general two-qubit state expressed as

|ψ⟩ = α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩,

where the coefficients determine probability amplitudes. Generally, an n-qubit system
is described as a superposition of 2n computational basis states, requiring 2n complex
numbers to fully specify its state, highlighting the exponential scaling of quantum state
space and its potential computational power over classical systems. However, harnessing
this power necessitates precise control over quantum operations and measurements, with
quantum algorithms and error correction methods playing a crucial role.

In February 2025, physicists unveiled an eight-qubit topological quantum processor,
marking a substantial leap forward in the field. Additionally, IBM’s recent unveiling of
the Condor processor, with its 1,121 superconducting qubits, showcases the progress in
scaling quantum processors.

Superposition Quantum superposition is a fundamental principle of quantum mechan-
ics stating that a quantum system can exist in multiple states simultaneously until it is
measured. Quantum superposition allows qubits to encode and process multiple states at
once, enabling quantum computers to explore a vast computational space exponentially
larger than that of classical systems. This exponential growth in computational power
arises because each additional qubit doubles the number of possible states the system
can represent. However, the power of superposition comes with a critical caveat: when a
qubit is measured, its superposition collapses to one of the basis states, |0⟩ or |1⟩, with
probabilities determined by the squared magnitudes of the coefficients α and β. This
collapse is a fundamental aspect of quantum mechanics and underscores the probabilistic
nature of quantum systems.

Entanglement In classical computing, the state of one bit is independent of another,
but in quantum systems, entanglement creates dependencies between qubits. In a multi-
qubit quantum system, entanglement occurs when the state of the composite system
cannot be expressed as a product of individual qubit states. For example, consider a
two-qubit system whose state is described by

|ψ⟩ = c0 |00⟩ + c1 |01⟩ + c2 |10⟩ + c3 |11⟩ .

If this state can be factored into the product of two single-qubit states, such as

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ = (a1 |0⟩ + b1 |1⟩) ⊗ (a2 |0⟩ + b2 |1⟩),

then it is not entangled. However, if such a factorization is impossible, the state is entan-
gled. Examples of unentangled states include |00⟩ and 1√

2(|00⟩ + |01⟩), while entangled
states include 1√

2(|01⟩ + |10⟩) and 1√
2(|00⟩ + |11⟩). These entangled states, often referred

to as Bell states or EPR (Einstein-Podolsky-Rosen) pairs, exhibit correlations that are
stronger than any classical system can achieve. For instance, the Bell state

|ϕ⟩ = 1√
2

(|00⟩ + |11⟩)

33

Quantum computers

cannot be separated into individual qubit states, meaning the measurement of one qubit
instantaneously determines the state of the other, regardless of the distance between
them. This non-local correlation, famously highlighted by Einstein, Podolsky, and Rosen,
challenges classical intuitions and has profound implications for quantum communication
and computation.

This property has many practical application, for example in quantum communica-
tion protocols like quantum key distribution (QKD), where entanglement ensures secure
information transfer by detecting eavesdropping attempts. Entanglement also enable
"quantum parallelism," where multiple computations can be performed simultaneously.
For example, applying a Hadamard gate to three qubits initially in a superposition of |0⟩
and |1⟩ creates a state that represents all eight possible combinations of three-bit values
(000, 001, 010, ..., 111) at once. This state cannot be decomposed and any change in
one qubit’s state immediately affects the other. This exponential scaling of the state
space allows quantum computers to process vast amounts of information in parallel,
providing a significant computational advantage over classical systems. Unlike classical
bits, where combining two bits increases information linearly, entangling qubits multiplies
their dimensions, exponentially expanding the computational possibilities. This property
is harnessed in quantum algorithms like Shor’s algorithm for factoring large numbers and
Grover’s algorithm for unstructured search. Entanglement also plays a central role in
quantum error correction, where information from one logical qubit is encoded across
multiple physical qubits to protect against errors. For example, Shor’s error-correcting
code uses entanglement to distribute quantum information redundantly, allowing errors
to be detected and corrected without directly measuring the qubits. This is crucial for
building fault-tolerant quantum computers capable of performing reliable computations
despite noise and decoherence.

Interference Quantum interference is a fundamental phenomenon that arises from the
wave-like nature of quantum particles, such as electrons or photons. While qubits are
often represented mathematically using braket notation or visualized on the Bloch sphere,
these are merely abstract representations of their underlying quantum states. In reality,
a qubit’s state is described by a quantum wavefunction, a mathematical entity that sat-
isfies the Schrödinger equation and encapsulates the complex probability amplitudes of
the system. These probability amplitudes determine the likelihood of the qubit being in a
particular state upon measurement. When multiple qubits are involved, their individual
wavefunctions combine to form an overall wavefunction that describes the resultant states
of the quantum system. This process of combining wavefunctions is known as quantum in-
terference. Interference occurs when two or more quantum wavefunctions overlap, leading
to constructive or destructive interference. Constructive interference amplifies the prob-
ability amplitudes of certain states, while destructive interference diminishes or cancels
them out. This alteration of the resultant wavefunction directly affects the probability
distribution of the quantum system’s states, enabling quantum computers to perform
computations in ways that classical systems cannot.

Interference is exploited to manipulate probability amplitudes and achieve computa-
tional advantages. For example, in the quantum Fourier transform, a key component

34

2.2 – Main practical concepts

of Shor’s algorithm, interference is used to extract periodicity information from quan-
tum states. In Grover’s algorithm interference is harnessed to amplify the probability
amplitudes of correct solutions while suppressing those of incorrect ones.

Noise Quantum noise refers to the uncertainty and fluctuations that arise in quantum
systems due to the probabilistic nature of quantum mechanics. It poses significant chal-
lenges in quantum computing, even at low temperatures. Unlike classical noise, which
is often associated with random variations in signals or disturbances caused by exter-
nal factors, quantum noise can have more complex and detrimental effects. In classical
systems, noise typically adds random errors to a signal. In contrast, when a quantum
system is in a superposition state, its outcome upon measurement is not deterministic but
is determined by the probability distribution of the quantum states. Noise and errors can
affect the outcome due to the quantum system’s interaction with the external environ-
ment. This interaction can lead to the loss of quantum properties-such as superposition,
entanglement, and interference-over time, thereby affecting the performance of quantum
circuits. Quantum noise manifests in several ways within quantum systems, impacting
various aspects of quantum computing. Common examples include:

• Measurement Noise: When measuring a quantum system, the act of measurement
can cause the system to lose its quantum superposition, collapsing the quantum
state into one of its possible outcomes. This process introduces uncertainty due to
the probabilistic nature of quantum measurements.

• Decoherence: Interactions with the environment can cause quantum systems to
lose coherence, leading to the loss of superposition, entanglement, and interference.
Decoherence significantly affects the performance of quantum algorithms and is a
major obstacle to developing practical quantum computers.

To address the challenges posed by quantum noise, researchers have been developing
quantum error correction (QEC) techniques. These techniques are essential for preserving
quantum states against the detrimental effects of measurement noise and decoherence.
Unlike classical error correction, which often employs redundancy, QEC involves encoding
quantum information across multiple physical qubits to detect and correct errors with-
out directly measuring the quantum information, thus avoiding further disturbance to
the system. Implementing effective QEC is crucial for achieving fault-tolerant quantum
computing, where computations can proceed reliably despite the presence of noise.

2.2.2 Bloch sphere

The Bloch sphere is a geometric representation that provides an intuitive and powerful
way to visualize the state of a single qubit, the fundamental unit of quantum information.
Any pure quantum state of a qubit can be expressed in the form:

|ψ⟩ = eiγ
[︃
cos

(︃
θ

2

)︃
|0⟩ + eiϕ sin

(︃
θ

2

)︃
|1⟩
]︃

35

Quantum computers

where γ is a global phase factor, θ and ϕ are angles that define the state’s orientation, and
|0⟩ and |1⟩ are the computational basis states. The global phase eiγ has no observable
effect on the system, so it can be neglected, simplifying the state to:

|ψ⟩ = cos
(︃
θ

2

)︃
|0⟩ + eiϕ sin

(︃
θ

2

)︃
|1⟩

This state can be represented as a unit vector on the surface of the Bloch sphere, a
three-dimensional sphere with radius one, where the vector’s coordinates are given by:

(sin θ cosϕ, sin θ sinϕ, cos θ)

The angles θ and ϕ determine the direction of this unit vector, with θ representing the
polar angle measured from the positive z-axis and ϕ representing the azimuthal angle in
the xy-plane.

On the Bloch sphere, specific points correspond to well-known quantum states. For
example, the unit vector pointing in the positive z-direction represents the |0⟩ state,
while the vector pointing in the negative z-direction represents the |1⟩ state. Similarly,
the vector pointing in the positive x-direction corresponds to the state |0⟩+|1⟩√

2 , and the
vector pointing in the positive y-direction corresponds to |0⟩+i|1⟩√

2 . The difference between
these two states lies in their relative phase ϕ, which is 0◦ for |0⟩+|1⟩√

2 and 90◦ for |0⟩+i|1⟩√
2 .

This relative phase is a crucial aspect of quantum states, as it influences interference
effects and the outcomes of quantum operations.

While pure states lie on the surface of the Bloch sphere, mixed states, which represent
statistical mixtures of pure states, lie inside the sphere. A mixed state is described by
a density matrix and can be visualized as a point within the sphere, with its position
determined by the probabilities and phases of the constituent pure states.

The Bloch sphere is not only a valuable tool for visualizing single-qubit states but
also for understanding and analyzing single-qubit operations. Quantum gates, such as the
Pauli-X, Pauli-Y, and Pauli-Z gates, can be interpreted as rotations on the Bloch sphere.
For instance, the Pauli-X gate performs a 180◦ rotation around the x-axis, flipping the
state |0⟩ to |1⟩ and vice versa. Similarly, the Hadamard gate, which creates superpositions,
can be visualized as a rotation that maps states between the z-axis and the x-axis. These
rotations are described by the following operators:

Rx(θ) = e(−i θ
2X) = cos

(︃
θ

2

)︃
I − i sin

(︃
θ

2

)︃
X

Ry(θ) = e(−i θ
2Y) = cos

(︃
θ

2

)︃
I − i sin

(︃
θ

2

)︃
Y

Rz(θ) = e(−i θ
2Z) = cos

(︃
θ

2

)︃
I − i sin

(︃
θ

2

)︃
Z

The Bloch sphere also aids in understanding relaxation and decoherence processes, where
a qubit’s state evolves from a pure state on the surface of the sphere toward a mixed
state inside the sphere due to interactions with the environment. This visualization helps

36

2.2 – Main practical concepts

researchers design error mitigation strategies and develop quantum error correction tech-
niques to preserve the coherence of qubits. It is also used to design and optimize quantum
algorithms, as it provides a clear geometric interpretation of quantum states and oper-
ations. Furthermore, the Bloch sphere is instrumental in quantum state tomography,
a technique used to reconstruct the density matrix of an unknown quantum state by
performing measurements along different axes of the sphere. This process is essential
for characterizing and calibrating quantum devices, ensuring their reliability and perfor-
mance. The Bloch sphere is limited to representing single-qubit states and cannot directly
visualize multi-qubit systems, which require more complex mathematical frameworks.

2.2.3 Density matrix

The density matrix is used to describe both pure and mixed quantum states, providing
a comprehensive representation of a quantum system’s statistical properties. For a pure

state |ψ⟩ =
[︄
a
b

]︄
, the density matrix is defined as ρ = |ψ⟩⟨ψ|, where ⟨ψ| =

[︂
a∗ b∗

]︂
is the

conjugate transpose of |ψ⟩. In matrix form, this becomes

ρ =
[︄
|a|2 ab∗

a∗b |b|2

]︄
,

where the diagonal elements |a|2 and |b|2 represent the probabilities of measuring the
system in the |0⟩ and |1⟩ states, respectively, while the off-diagonal elements ab∗ and a∗b
capture the coherence between these states. For mixed states, which arise when the exact
state of the system is unknown or when the system interacts with its environment, the
density matrix generalizes to

ρ =
∑︂
i

pi|ϕi⟩⟨ϕi|,

where pi ≥ 0 and ∑︁i pi = 1. Here, pi represents the probability of the system being in
the pure state |ϕi⟩. The density matrix is Hermitian, meaning ρ = ρ†, and its trace (the
sum of its diagonal elements) is always 1, reflecting the normalization of probabilities.
A pure state satisfies Tr(ρ2) = 1, while a mixed state satisfies Tr(ρ2) < 1, indicating
the presence of statistical mixtures. In practice, mixed states are more common due to
decoherence, where interactions with the environment cause the off-diagonal elements of
the density matrix to decay, transforming a pure state into a mixed one. This process
underscores the importance of the density matrix in describing real-world quantum sys-
tems, where environmental interactions and noise are inevitable. By capturing both the
probabilistic nature and coherence of quantum states, the density matrix is an essential
tool for analyzing quantum systems and designing quantum algorithms.

2.2.4 Quantum state initialization

Quantum state initialization is a critical first step in quantum computing, ensuring that
qubits start in a well-defined and known state before any computation begins. Similar
to classical computing, where bits are typically initialized to a known value (often 0),

37

Quantum computers

quantum computing commonly starts with qubits in the |0⟩ state. For a single qubit,
this initial state corresponds to the density matrix ρ = |0⟩⟨0| = 1

2I + 1
2σz, where I is

the identity matrix and σz is the Pauli-Z operator. The polarization, or ⟨σz⟩, of this
state is 1, representing a fully polarized state, as the maximum possible value of |⟨σz⟩|
is 1. The goal of quantum initialization is to maximize the purity or polarization of
the system, ideally achieving a value of 1, which corresponds to a pure state. However,
achieving this ideal initialization can be challenging and often depends on the specific
physical system used to implement qubits. For example, in liquid-state nuclear magnetic
resonance (NMR) systems, the thermal equilibrium state at room temperature has ex-
tremely low polarization, making it difficult to achieve true initialization. As a result,
these systems often rely on pseudo-pure states, which mimic the behavior of pure states
for computational purposes. In diamond color center systems, initialization is frequently
accomplished through fluorescence techniques, which prepare the qubit in the ground
state |0⟩. In superconducting qubit systems, one common initialization method involves
performing a projective measurement, which collapses the qubit into either the |0⟩ or |1⟩
state. The |0⟩ state is then selected and further processed for quantum computation.
Each physical platform has its own unique challenges and methods for initialization, but
the overarching goal remains the same: to prepare qubits in a well-defined, high-purity
state to ensure the reliability and accuracy of subsequent quantum operations.

2.2.5 Quantum-gate

Quantum gates are fundamental building blocks in quantum computing, serving as op-
erations that transform one quantum state into another by manipulating qubits. These
gates are analogous to classical logic gates but leverage the principles of quantum mechan-
ics, such as superposition and entanglement, to perform computations. The evolution of
quantum states is governed by the Schrödinger equation:

iℏ
d

dt
|ψ⟩ = H|ψ⟩

where H is the system Hamiltonian. By controlling H and the evolution time, quantum
gates can be implemented as unitary matrices U , which map an initial state |ψ1⟩ to a final
state |ψ2⟩ through U |ψ1⟩ = |ψ2⟩. For density matrices, this transformation is expressed
as Uρ1U

† = ρ2. The unitary matrix U is derived from the time-ordered exponential:

U = T exp
(︃

− i

ℏ

∫︂ t2

t1
H(t) dt

)︃
which accounts for both time-independent and time-dependent Hamiltonians. In an n-
qubit system U is a 2n × 2n matrix, reflecting the exponential scaling of quantum state
space.

Quantum gates can be categorized into single-qubit and multi-qubit gates. Single-
qubit gates, such as the Hadamard gate (H), the phase gate (P (π/4)), and rotation gates
(R), manipulate individual qubits. The Hadamard gate, represented by:

H = 1√
2

(︄
1 1
1 −1

)︄
38

2.2 – Main practical concepts

creates equal superpositions of the basis states |0⟩ and |1⟩, transforming |0⟩ to |0⟩+|1⟩√
2 and

|1⟩ to |0⟩−|1⟩√
2 . The phase gate P (π/4), represented by:

P (π/4) =
(︄

1 0
0 eiπ/4

)︄

introduces a phase shift of π/4 to the |1⟩ state without altering the probability distribu-
tion. Rotation gates, defined as:

R = exp
(︃

−iθ2(nxσx + nyσy + nzσz)
)︃

perform rotations on the Bloch sphere around an axis (nx, ny, nz) by an angle θ. These
gates are essential for creating and manipulating superpositions and phases, which are
critical for quantum algorithms.

Multi-qubit gates, such as the controlled-NOT (CNOT) gate and the SWAP gate,
operate on multiple qubits and are crucial for creating entanglement and performing
complex computations. The CNOT gate, represented by:

CNOT =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
flips the target qubit if the control qubit is in the |1⟩ state, leaving it unchanged otherwise.
This gate is fundamental for entangling qubits and is a key component in constructing
universal quantum circuits. The SWAP gate, which exchanges the states of two qubits,
can be implemented using three CNOT gates and is represented by:

SWAP =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠
Another important multi-qubit gate is the Toffoli (CCNOT) gate, a three-qubit gate
that flips the target qubit only if both control qubits are in the |1⟩ state. This gate is
represented by an 8 × 8 matrix and is involutory.

Quantum gates also include phase shift gates, such as the T gate (P (π/4)), the S
gate (P (π/2)), and the Pauli-Z gate (P (π)), which introduce specific phase shifts to
qubit states. The Pauli-X (X), Pauli-Y (Y), and Pauli-Z (Z) gates, based on the Pauli
matrices, perform rotations around the x, y, and z axes of the Bloch sphere, respectively.
The Pauli-X gate, also known as the NOT gate, flips |0⟩ to |1⟩ and vice versa, while the
Pauli-Z gate introduces a phase flip, leaving |0⟩ unchanged and flipping the phase of |1⟩.
These gates are also involutory, meaning applying them twice returns the qubit to its
original state. The identity gate:

I =
(︄

1 0
0 1

)︄
39

Quantum computers

leaves the qubit unchanged and is used primarily for mathematical completeness. Con-
trolled gates, such as the controlled-U gate, generalize the concept of the CNOT gate by
applying an arbitrary unitary operation U (Unitary operator is a linear transformation
acting on a Hilbert space that preserves the norm of quantum states, so leaving the state’s
probability amplitude intact. Mathematically:

U †U = UU † = I,

) to the target qubit if the control qubit is in the |1⟩ state. These gates are essential
for constructing complex quantum circuits and algorithms, as they enable conditional
operations based on the state of other qubits.

2.2.6 Quantum measurement

Quantum measurements differ from classical measurements in several ways. In quantum
mechanics, any measurement corresponds to a Hermitian operator, and the eigenstates
of this operator can be used as a set of basis vectors in the quantum state space. When a
measurement is made on a quantum state, the state of the system will randomly collapse
to one of the eigenstates of the measurement operator, and the measurement result will
be the corresponding eigenvalue. This probabilistic nature of quantum measurements is a
key feature of quantum mechanics. Quantum systems also have angular momenta, which
are quantized and can take only discrete values. Spin is a type of angular momentum, and
nuclear spin is usually expressed by the symbol I. Considering nuclei with I = 1/2, they
can have (2I + 1) = 2 discrete values along a specified axis. These two discrete values
correspond to two states of a spin, i.e., parallel or anti-parallel along a specified axis.
Without loss of generality, the two states with spin components parallel and antiparallel
to the z-axis are denoted as |0⟩ and |1⟩. Any pure state of the qubit can be expressed as a
vector in the state space spanned by |0⟩ and |1⟩. The matrix expressions of spin operators
Ix, Iy, and Iz, which are the x, y, and z components of the spin angular momentum, are
given as

σx =
[︄
0 1
1 0

]︄
, σy =

[︄
0 −i
i 0

]︄
, σz =

[︄
1 0
0 −1

]︄
,

with Ii = (ℏ/2)σi for i = x, y, z. These are known as Pauli matrices. For the state
a|0⟩ + b|1⟩, measuring the z component of the spin operator, Iz, yields the eigenstate |0⟩
with probability |a|2 and measurement result ℏ/2, while the eigenstate |1⟩ appears with
probability |b|2 and measurement result −ℏ/2. Both |0⟩ and |1⟩ are eigenstates of Iz, with
corresponding eigenvalues of ℏ/2 and −ℏ/2, respectively. Measuring Iz multiple times on
many copies of the state a|0⟩ + b|1⟩ results in the expectation value

⟨Iz⟩ = |a|2(ℏ/2) − |b|2(ℏ/2) = Tr(Izρ),

where ρ is the density matrix. This expectation value can be obtained using the quantum
mechanical trace rule, which states that the expectation value of a measurement is the
trace of the product of the density matrix and the measurement operator. In quantum
computing, measurement is a fundamental operation that provides a way to extract in-
formation from a quantum system. When a quantum measurement is performed on a

40

2.2 – Main practical concepts

qubit, it yields a classical result, collapsing the superposition states of the qubit into one
definite state, either 0 or 1, based on the probability distribution of the qubit states. This
collapse, known as the measurement problem in quantum mechanics, converts multiple
probabilistic states into a single definite state, eliminating the existence of other states
and superpositions.

2.2.7 Fidelity

The concept of distance in state space is useful for expressing the degree of similarity
between quantum states, particularly when evaluating the closeness between the final
state obtained after applying a quantum gate and the theoretically expected target state.

A commonly used metric for this purpose is quantum state fidelity, which quantifies
the overlap between two quantum states. If the two states are identical, the overlap
reaches its maximum value of 1, whereas if they are completely different, such as |0⟩ and
|1⟩, the fidelity reaches its minimum value of 0. The mathematical definition of fidelity
depends on the nature of the quantum states being compared. For two pure states |ϕ⟩
and |φ⟩, the fidelity is given by:

F (|ϕ⟩, |φ⟩) = |⟨ϕ|φ⟩|2

When comparing a pure state |ϕ⟩ with a mixed state ρ, the fidelity is expressed as:

F (|ϕ⟩, ρ) = ⟨ϕ|ρ|ϕ⟩

The most general formulation, applicable to two mixed states ρ and σ, is given by:

F (ρ, σ) =
(︃

Tr
√︂√

ρσ
√
ρ

)︃2

which, in special cases, simplifies to the previous equations. This measure plays a crucial
role in assessing the accuracy of quantum operations and the reliability of quantum
information processing.

2.2.8 Lifetime

In an ideal scenario where a qubit is completely isolated from the environment, and
spontaneous emission is not considered, its state is entirely determined by the initial
state, Hamiltonian, and evolution time. If the Hamiltonian is the identity matrix, the
state of the qubit will remain unchanged. However, in practice, qubits cannot be entirely
isolated from the environment; thus, the state of a qubit will always change due to its
interaction with external factors, leading to a finite quantum state lifetime. This change
is typically a relaxation process determined by the environment. There are two common
types of relaxation: transverse and longitudinal.

As an example, consider a single-qubit NMR system. Suppose the static magnetic
field is along the z direction. In the thermal equilibrium state, the nuclear spins align
along the direction of the magnetic field due to their interaction with it. The probability
distribution of the different energy levels of the qubit follows the Boltzmann distribution.

41

Quantum computers

In this case, the expectation value of the z component of the spin operator is nonzero,
but the x and y components are zero, i.e., ⟨σz⟩ /= 0, ⟨σx⟩ = 0, ⟨σy⟩ = 0. If we apply
pulses to the system and rotate the spin operator to the xy-plane, we have ⟨σz⟩ = 0,
⟨σx⟩ /= 0, ⟨σy⟩ /= 0. In this situation, transverse relaxation will result in both ⟨σx⟩ and
⟨σy⟩ approaching 0, while longitudinal relaxation will cause a change in ⟨σz⟩ such that
the system approaches the thermal equilibrium state determined by the temperature of
the environment.

Both relaxation processes have characteristic times, denoted by T2 and T1, respec-
tively. T2 is the time it takes for ⟨σx⟩ and ⟨σy⟩ to decay to 1/e of their initial values, and
T1 is the time it takes for ⟨σz⟩ to recover to (1−1/e) of its equilibrium value. Notably, T1
relaxation involves energy exchange with the environment (spin-lattice relaxation), while
T2 relaxation is associated with loss of phase coherence among spins (spin-spin relax-
ation). Typically, T1 is longer than or equal to T2 in most systems. Transverse relaxation
is also known as decoherence and is detrimental to quantum computing as it transforms
a pure state into a mixed state, leading to information loss and computational errors. On
the other hand, longitudinal relaxation is often utilized to initialize qubits by increasing
their polarization to the maximum allowed by the environment, i.e., by maximizing |⟨σz⟩|
to prepare for subsequent quantum computing tasks.

2.3 Today’s main algorithms

In the early 20th century, mathematical logicians such as Hilbert, Turing, and Gödel
formalized the concept of algorithms, laying the foundation for modern computing. With
the advent of electronic computers, algorithm design became crucial. At its core, an
algorithm is a step-by-step process for completing a task within a finite amount of time.
A computing machine starts with an input and follows a well-defined sequence of steps,
constrained by the rules and states permitted by its design. Mechanical and electronic
computing rely on classical physics laws, which dictate the allowed states and transfor-
mations. However, quantum computing based on quantum mechanics has the potential
to radically change how we process information, providing new algorithmic opportunities.
Quantum computing takes advantage of quantum mechanical principles such as super-
position and entanglement, offering a fundamentally different approach to computation.
Quantum algorithms, having evolved from quantum physics models to contemporary
computer science applications, now hold the promise of solving problems that classical
computers struggle with. A significant step toward practical quantum computing is the
development of industrial-scale quantum computers, which could transform various sec-
tors, including cybersecurity. Recent advancements have been made in this area. For
instance, Microsoft’s Azure Quantum team has reported the creation of a quantum chip
powered by a topological core architecture, utilizing Majorana quasiparticles. This de-
velopment brings the prospect of utility-scale quantum computers closer to reality.

Daniel Simon introduced the first quantum method to outperform classical algorithms
in terms of efficiency. This laid the groundwork for several foundational quantum algo-
rithms, including the Deutsch-Josza, Bernstein-Vazirani and Shor’s algorithms. Numer-
ous quantum algorithms, including those for quantum machine learning, simulation and

42

2.3 – Today’s main algorithms

search, leverage amplitude amplification, a technique that boosts the probability of cor-
rect results to solve complex challenges more effectively than traditional approaches. In
addition, recent developments have introduced quantum approximate optimization al-
gorithms aimed at solving graph theory problems, often using hybrid quantum-classical
systems. These advancements highlight the diversity and breadth of quantum computing
applications.

Fundamentally, quantum computing models fall into two main categories: the quan-
tum gate model and quantum annealing. The quantum gate model operates by applying
quantum gates to qubits, which manipulate them in ways similar to classical logic gates,
but with the added advantage of exploiting quantum phenomena. This universal model
supports a broad range of applications,however challenges like decoherence and the need
for error correction are significant obstacles in implementing this model effectively. In
contrast, quantum annealing uses an adiabatic approach to approximate solutions to
optimization problems, relying on the natural tendency of quantum systems to find low-
energy states. It is more resilient to certain computational errors compared to the gate
model, as it takes advantage of the quantum system’s inherent properties, such as tun-
neling, to arrive at solutions. Despite being less sensitive to errors, quantum annealing
still requires maintaining coherence throughout the process to function effectively.

2.3.1 Main category

Quantum algorithms primarily fall into three categories that leverage unique quantum me-
chanical phenomena. The first category, rooted in the quantum Fourier transform (QFT).
The QFT, analogous to the classical discrete Fourier transform (DFT) but exponentially
faster on quantum hardware, operates by transforming quantum state superpositions into
frequency-domain representations, enabling the detection of periodic patterns critical for
solving problems like the hidden subgroup problem. While the classical fast Fourier trans-
form (FFT) requires O(N logN) operations for N elements, the QFT accomplishes this
in O((logN)2) steps, a speedup that becomes transformative for large-scale problems.
However, extracting meaningful results from the QFT’s output remains challenging due
to quantum measurement constraints. This limitation underscores a recurring theme
in quantum computation: the interplay between algorithmic speedups and the inherent
fragility of quantum information. The second category, quantum search algorithms, is
exemplified by Grover’s algorithm. By employing amplitude amplification to iteratively
enhance the probability of locating a target state, Grover’s algorithm reduces the clas-
sical O(N) complexity to O(

√
N), offering significant advantages for database queries,

optimization tasks, and machine learning applications. Though less dramatic than expo-
nential speedups, this quadratic improvement becomes increasingly valuable as problem
scales grow, particularly in domains like cryptography and combinatorial search where
brute-force classical approaches are impractical. The third category, quantum simulation
algorithms, exploits quantum systems’ natural ability to model other quantum phenom-
ena efficiently, a task that strains classical resources due to the exponential growth of state
space with particle count. Where classical simulations require O(cn) bits to describe n-
particle systems, quantum computers achieve this with O(n) qubits, enabling accurate
modeling of molecular interactions, material properties, and quantum chemical processes

43

Quantum computers

that defy classical computation. This capability holds profound implications for drug
discovery, materials science, and fundamental physics, though practical challenges persist
in designing measurement protocols that extract actionable insights without collapsing
delicate quantum states.

The computational power of these algorithms is contextualized through quantum
complexity theory, which introduces classes like BQP (bounded-error quantum poly-
nomial time) to describe problems efficiently solvable by quantum computers. While
BQP is known to encompass classical polynomial-time problems (P) and reside within
polynomial-space bounds (PSPACE), its relationship to NP , the class of classically
hard verification problems, remains unresolved. Quantum algorithms like Shor’s demon-
strate that certain NP problems (e.g., factoring) can be solved efficiently, but whether
this extends to all NP -complete problems remains unknown. This theoretical landscape
highlights quantum computing’s nuanced potential: while not a panacea for all computa-
tional challenges, it provides targeted exponential or polynomial speedups for problems
with specific structural features, such as periodicity (exploited by QFT) or unstructured
search spaces (addressed by amplitude amplification). The field’s evolution is tightly
coupled with hardware advancements, as error correction, qubit coherence times, and
scalable architectures determine when theoretical speedups translate to practical advan-
tages. Current research focuses not only on developing new algorithms but also on hybrid
approaches that integrate quantum and classical processing, particularly in near-term
noisy intermediate-scale quantum (NISQ) devices. As hardware matures, quantum com-
puting’s impact is anticipated to grow across cryptography, optimization, and scientific
simulation, though fundamental questions persist about the ultimate limits of quantum
advantage and the physical realizability of fault-tolerant systems.

2.3.2 Quantum Fourier Transform

The Quantum Fourier Transform is a quantum analogue of the classical discrete Fourier
transform (DFT). For an orthonormal basis |0⟩, . . . , |N − 1⟩, the QFT acts as

|j⟩ → 1√
N

N−1∑︂
k=0

e2πijk/N |k⟩,

transforming a quantum state ∑︁N−1
j=0 xj |j⟩ into ∑︁N−1

k=0 yk|k⟩, where yk are the DFT coef-
ficients of xj . The QFT can be efficiently implemented on a quantum computer using
O(n2) gates for n qubits, compared to the classical fast Fourier transform (FFT), which
requires O(n2n) operations. However, the QFT does not directly speed up classical DFT
computations because of the impossibility of direct measurement; instead, its power lies
in enabling quantum algorithms like phase estimation, order-finding, and factoring.

Phase estimation is a key application of the QFT, allowing the estimation of the
eigenvalue e2πiφ of a unitary operator U given an eigenstate |u⟩. The algorithm uses
two registers: the first stores t qubits initialized to |0⟩, and the second stores |u⟩. The
procedure involves creating a superposition in the first register, applying controlled-U2j

operations, and then performing an inverse QFT to estimate φ. The accuracy of the
estimate depends on t, with t = n+ ⌈log(2 + 1

2ϵ)⌉ qubits ensuring an n-bit approximation

44

2.3 – Today’s main algorithms

with success probability at least 1−ϵ. Phase estimation is a subroutine in many quantum
algorithms.

Order-finding involves determining the smallest positive integer r such that xr ≡ 1
mod N for integers x and N . This problem is classically hard but can be solved efficiently
on a quantum computer using phase estimation. The algorithm prepares a superposition
of states |j⟩|xj mod N⟩, applies the QFT, and measures the first register to obtain an
estimate of s/r, where s is an integer. The continued fractions algorithm is then used
to extract r from this estimate. The success probability is high because, for randomly
chosen s, s and r are likely coprime. The algorithm requires O(L3) operations for an L-
bit number N , making it exponentially faster than the best-known classical algorithms.
Factoring is reduced to order-finding by leveraging the relationship between the order
of an element x modulo N and the prime factors of N . If x is chosen randomly and
coprime to N , and its order r is even with xr/2 /= −1 mod N , then gcd(xr/2 ± 1, N)
yields non-trivial factors of N .

The QFT also underpins algorithms for solving the hidden subgroup problem (HSP),
a generalization of period-finding and order-finding. In the HSP, a function f maps a
group G to a finite set X and is constant on cosets of a hidden subgroup K ⊆ G. The
goal is to find a generating set for K. For finite Abelian groups, the HSP can be solved
efficiently using quantum algorithms that generalize the QFT. The algorithm involves
creating a superposition over group elements, applying the function f , and performing a
QFT to extract information about K. The success of the algorithm relies on the ability
to decompose G into cyclic groups of prime power order, which can be done efficiently
using quantum techniques.

Other applications of the QFT include period-finding and discrete logarithms. Period-
finding involves determining the period r of a function f(x+r) = f(x), while the discrete
logarithm problem involves finding s such that as = b for given a and b. Both problems can
be reduced to instances of the HSP and solved using quantum algorithms that leverage
the QFT. The discrete logarithm algorithm, for example, uses a quantum black box
to compute f(x1, x2) = bx1ax2 mod N and applies the QFT to estimate s. The hidden
subgroup problem provides a unifying framework for many quantum algorithms, including
Deutsch’s problem, Simon’s problem, and graph isomorphism.

Recent advancements have led to the development of hybrid quantum-classical algo-
rithms that combine the flexibility of digital quantum computation with the robustness of
analog quantum simulation. These digital-analog quantum algorithms offer potential im-
provements in implementing the QFT, especially under noisy intermediate-scale quantum
(NISQ) conditions.

Deutsch-Jozsa algorithm Deutsch’s algorithm addresses a fundamental problem in
computational complexity by determining whether a binary function is constant or bal-
anced with unparalleled efficiency. The problem, formalized as Deutsch’s problem, chal-
lenges a computer to classify a function f : {0,1}n → {0,1} as either constant (pro-
ducing identical outputs for all inputs) or balanced (yielding 0 and 1 equally often)
using minimal evaluations. For the simplest case of a single-bit input (n = 1), classical
computation requires two function evaluations to compare f(0) and f(1), but Deutsch’s

45

Quantum computers

quantum algorithm achieves this with a single evaluation through the strategic use of
superposition, quantum parallelism, and interference. The process begins by initializ-
ing two qubits in the state |01⟩, which undergoes transformation via Hadamard gates
into the superposition

[︂
|0⟩+|1⟩√

2

]︂ [︂
|0⟩−|1⟩√

2

]︂
. Applying the function-specific unitary operation

Uf entangles the qubits, yielding (−1)f(x)|x⟩
[︂

|0⟩−|1⟩√
2

]︂
, where the phase factor (−1)f(x)

encodes the function’s output. A final Hadamard gate on the first qubit collapses the
state to ±|f(0)⊕f(1)⟩

[︂
|0⟩−|1⟩√

2

]︂
, allowing measurement of the first qubit to directly reveal

f(0)⊕f(1). If the result is 0, f is constant; if 1, f is balanced. This single-step evaluation
starkly contrasts with classical methods, demonstrating quantum advantage through the
exploitation of superposition and interference.

The algorithm’s significance extends beyond its immediate application through its
generalization in the Deutsch-Jozsa algorithm, which scales the problem to n-bit inputs.
Here, the initial state |0⟩⊗n|1⟩ is transformed via Hadamard gates into a uniform superpo-
sition∑︁x∈{0,1}n

|x⟩√
2n

[︂
|0⟩−|1⟩√

2

]︂
. After applying Uf , the state becomes∑︁x

(−1)f(x)|x⟩√
2n

[︂
|0⟩−|1⟩√

2

]︂
,

with phases reflecting f ’s behavior. A subsequent Hadamard transform on the query reg-
ister produces interference patterns in the state ∑︁z

∑︁
x

(−1)x·z+f(x)|z⟩
2n

[︂
|0⟩−|1⟩√

2

]︂
, where x · z

denotes the bitwise inner product modulo 2. Measurement collapses this to either all
zeros (constant function) or a non-zero result (balanced function), resolving the problem
in one quantum evaluation versus the classical worst-case requirement of 2n/2+1 evalua-
tions. While the problem itself lacks direct practical relevance, the algorithm’s theoretical
implications are profound: it illustrates quantum computing’s ability to extract global
function properties through interference, a capability absent in classical systems.

Critically, the quantum advantage in these algorithms is nuanced. Classical proba-
bilistic approaches can achieve high-confidence solutions with a small number of random
evaluations, diminishing the perceived gap in practical settings. However, the deter-
ministic certainty of quantum results-achieved without sampling-highlights a qualitative
distinction. The core innovation lies in quantum parallelism, where a single Uf operation
processes all possible inputs simultaneously, and interference effects distill the relevant
global property. For example, in the single-qubit case, the Hadamard gates create su-
perpositions that allow Uf to encode both f(0) and f(1) into a single state. The final
Hadamard gate then induces constructive or destructive interference depending on f ’s
parity, collapsing the system to a definitive answer. This mechanism, while elementary,
underpins more advanced quantum protocols, showcasing how quantum systems can ma-
nipulate information in ways that transcend classical limitations. Despite its simplicity,
Deutsch’s algorithm remains a pedagogical cornerstone, crystallizing the principles of
superposition, entanglement, and interference that define quantum computational ad-
vantage.

Bernstein-Vazirani algorithm The Bernstein-Vazirani algorithm is a quantum algo-
rithm designed to determine an unknown binary sequence efficiently using parity checks.
In classical algorithms, discovering an n-bit binary number requires n queries, whereas
the Bernstein-Vazirani quantum algorithm accomplishes this task with just one query
by leveraging quantum superposition. Unlike some quantum algorithms, this variant

46

2.3 – Today’s main algorithms

does not require entanglement, yet it still demonstrates a significant quantum speedup.
The core problem involves a hidden n-bit binary number a ∈ {0,1}n, where each bit ai
represents part of the sequence. A query function f(x) returns the modulo-2 sum of
the bits where both a and the input binary number x are 1, expressed mathematically as
f(x) = a·x (mod 2) = ∑︁n

i=1 aixi (mod 2). Classically, determining the secret string a re-
quires n function evaluations with carefully chosen inputs x to isolate each bit of a. In con-
trast, the quantum approach encodes the query function into a quantum state by prepar-
ing a uniform superposition of all possible inputs. The algorithm initializes an n-qubit sys-
tem in the state |0⟩⊗n and applies the Hadamard transformation H⊗n, producing an equal
superposition of all possible computational basis states: |ϕ⟩ = 1√

2n

∑︁
x∈{0,1}n |x⟩. Apply-

ing the oracle function Uf , which imparts a phase based on f(x), transforms the state into:
1√
2n

∑︁
x∈{0,1}n(−1)f(x)|x⟩ = 1√

2n

∑︁
x∈{0,1}n(−1)a·x|x⟩. Since the Hadamard transform is

its own inverse, applying H⊗n again yields: H⊗n
(︂

1√
2n

∑︁
x∈{0,1}n(−1)a·x|x⟩

)︂
= |a⟩, allow-

ing for the direct measurement of a in a single query. The unitary transformation Uf can
be decomposed into the direct product of n single-qubit gates, where Ui = I if ai = 0
and Ui = σz if ai = 1, with σz being the Pauli-Z matrix. This decomposition facilitates
efficient implementation of Uf without entanglement, relying solely on quantum super-
position to achieve the speedup over classical methods. The Hadamard transformation
itself is also a product of single-qubit gates, enhancing the algorithm’s scalability.

Beyond its fundamental implications for quantum speedup, the Bernstein-Vazirani
algorithm has practical applications in cryptography and computational optimization.
Although it does not offer an exponential advantage like Shor’s algorithm, its efficiency
highlights the power of quantum mechanics in computational tasks, particularly those
involving structured data retrieval. The absence of entanglement in this variant makes it
an excellent candidate for near-term quantum devices, where limited qubit connectivity
and noise remain challenges. Recent developments have further expanded the algorithm’s
applications. For instance, MicroAlgo Inc. has designed a quantum register based on the
Bernstein-Vazirani algorithm, enabling efficient storage and processing of qubits, and
implementing FULL adder functionality through quantum gate operations [34].

Simon’s algorithm

Simon’s algorithm is a quantum protocol that solves the problem of identifying a hidden
bitstring defining a periodic function with exponential speedup over classical methods.
The problem involves a function f : {0,1}n → {0,1}n, promised to satisfy f(x) = f(y)
if and only if y = x ⊕ s, where s ∈ {0,1}n is a secret string and ⊕ denotes bitwise
XOR. Classically, determining s requires up to O(2n/2) queries, but Simon’s quantum
algorithm achieves this in O(n) queries by exploiting superposition and interference. The
algorithm initializes two n-qubit registers to |0⟩⊗n|0⟩⊗n, applies Hadamard gates to the
first register, creating the state 1√

2n

∑︁
x∈{0,1}n |x⟩|0⟩, and evaluates f(x) via an oracle

Uf , yielding 1√
2n

∑︁
x |x⟩|f(x)⟩. Measuring the second register collapses the first regis-

ter to a superposition of x and x ⊕ s: 1√
2(|x⟩ + |x ⊕ s⟩). Applying Hadamard gates

to the first register produces interference patterns dependent on s, resulting in a state

47

Quantum computers

1√
2n−1

∑︁
y·s=0(−1)x·y|y⟩, where y · s = 0 denotes the bitwise inner product modulo 2. Re-

peated measurements yield linearly independent equations constraining s, which is then
determined via Gaussian elimination. The algorithm’s quantum advantage arises from its
ability to extract global periodicity through interference, bypassing the classical necessity
of exponentially many queries.

Simon’s algorithm has been employed to analyze the security of symmetric cryp-
tographic primitives, such as Feistel networks, revealing vulnerabilities in certain con-
figurations. The algorithm also inspired Shor’s factoring algorithm, which adapts its
period-finding framework to solve integer factorization. Unlike the Bernstein-Vazirani al-
gorithm, which avoids entanglement, Simon’s protocol inherently leverages entanglement
between registers during the oracle evaluation phase. This distinction underscores the
versatility of quantum resources in solving diverse computational problems, even as both
algorithms exemplify the power of structured quantum interference.

Shor’s algorithm

Shor’s algorithm [31] is a landmark quantum protocol that achieves an exponential
speedup for integer factorization by casting the problem into period finding. Given a
composite integer N , one picks a random base a coprime to N and considers the func-
tion f(x) = ax mod N, which is guaranteed to be periodic with some unknown period r.
Classically, determining r requires super-polynomial time, but Shor’s quantum algorithm
finds r in polynomial time O((logN)2 log logN log log logN) by harnessing superposition,
entanglement, and the quantum Fourier transform (QFT). The procedure initializes two
registers-one of m ≈ 2⌈logN⌉ qubits in |0⟩⊗m and a second of ⌈logN⌉ qubits in |0⟩⊗⌈logN⌉,
applies Hadamard gates to the first to create 1√

2m

∑︁2m−1
x=0 |x⟩|0⟩, and computes f(x) via a

modular-exponentiation oracle Uf , yielding 1√
2m

∑︁
x |x⟩|ax mod N⟩. Measuring the sec-

ond register collapses the state of the first to a superposition of all x consistent with a
single function value, i.e. x ≡ x0 (mod r), and applying the QFT to the first register pro-
duces interference peaks at integer multiples of 2m/r. A final measurement returns a value
y from which one extracts a candidate fraction y/2m ≈ k/r; classical continued-fractions
analysis then recovers r. After a few repetitions to ensure independence and co-prime
checks, one obtains nontrivial factors of N via gcd(ar/2 ± 1, N). Shor’s algorithm thus
transforms the intractable classical task of factoring into a sequence of efficiently solvable
quantum subroutines, modular exponentiation, QFT, and continued-fractions extraction,
demonstrating how structured quantum interference and entanglement can collapse ex-
ponential search spaces into polynomial-time solutions.

2.3.3 Quantum search - Grover’s algorithm

Grover’s algorithm, introduced by Lov Grover in 1996, addresses the fundamental chal-
lenge of unstructured search in computer science, where a specific item must be located
within an unsorted database of N elements. Classical algorithms require O(N) opera-
tions in the worst case, as each entry must be checked sequentially, but Grover’s quantum
algorithm achieves this with O(

√
N) operations, a quadratic speedup that becomes pro-

foundly significant for large datasets. This efficiency stems from quantum superposition

48

2.4 – Quantum Computing’s Impact on Cybersecurity

and amplitude amplification, which enable parallel evaluation of multiple states. The
algorithm begins by initializing an n-qubit system (where n = log2N) into an equal
superposition of all possible states via the Hadamard transform, ensuring each index is
represented with equal probability. The core of the algorithm lies in the iterative applica-
tion of the Grover iteration, a quantum subroutine comprising two critical operations: the
oracle and the diffusion operator. The oracle, a unitary operator, marks the target state
by inverting its phase, mathematically expressed as |x⟩ → (−1)F (x)|x⟩, where F (x) = 1
if x is a solution. This phase shift does not alter probabilities directly but prepares the
system for interference. The diffusion operator then amplifies the marked state’s ampli-
tude through an inversion about the mean, represented as R2 = 2|φ⟩⟨φ| − I, where |φ⟩ is
the uniform superposition state. Geometrically, this process rotates the quantum state
vector toward the solution subspace, with each iteration increasing the probability of
measuring the target. After approximately O(

√︁
N/M) iterations (where M is the num-

ber of solutions), the probability of collapsing to a solution state nears certainty. This
optimality is intrinsic: no quantum algorithm can solve the unstructured search problem
with fewer than Ω(

√
N) oracle calls, as demonstrated by bounding the deviation caused

by the oracle and analyzing the polynomial relationships between classical and quantum
query complexities. While the quadratic speedup does not resolve NP-complete prob-
lems in polynomial time, it enables significant efficiency gains; For example, reducing the
complexity of brute-force searches for problems like Hamiltonian cycles from O(2n logn)
classically to O(2n logn/2) quantumly. Beyond basic search, Grover’s framework extends
to applications like quantum counting, which estimates the number of solutions M us-
ing phase estimation techniques. Experimental validations of the algorithm highlight
its practicality, including a recent milestone achieving 98.9% accuracy on a four-qubit
silicon processor without error correction, as detailed in a 2025 Nature Nanotechnology
study [37]. As a benchmark for quantum hardware, Grover’s algorithm underscores the
transformative potential of quantum mechanics in computation, balancing theoretical
limits with tangible advancements in solving classically intractable problems.

2.4 Quantum Computing’s Impact on Cybersecurity

The emergence of quantum computing represents a paradigm shift with profound impli-
cations for cybersecurity, challenging the foundations of classical cryptographic systems
rooted in computational intractability. At the heart of this disruption lies Shor’s algo-
rithm, which exploits quantum parallelism and the quantum Fourier transform to solve
integer factorization and discrete logarithm problems in polynomial time, a capability
that threatens public-key cryptosystems like RSA and ECC. Since its discovery in 1994,
the theoretical potential of Shor’s algorithm has driven both algorithmic refinements
and sobering realizations about practical implementation challenges. Early estimates
projected staggering resource demands, with breaking RSA-2048 initially requiring ∼1
billion physical qubits and months of runtime due to rudimentary error-correction models
and limited gate fidelities. These projections have evolved dramatically through decades
of research, with modern estimates stabilizing at ∼15 million physical qubits and 8-hour
runtimes for the same task, a hundredfold improvement enabled by surface code error

49

Quantum computers

correction, optimized modular arithmetic, and parallelized circuit designs [11] [18].
The trajectory of Grover’s algorithm follows a distinct but complementary arc. Offer-

ing a quadratic speedup for unstructured search problems, it reduces the effective security
of symmetric cryptographic standards like AES-128 to 64 bits, necessitating doubled key
lengths for quantum resistance. Initially, hardware platforms faced prohibitive noise and
scalability challenges (e.g., requiring ∼ 106 qubits for useful database tasks). However,
recent six-qubit Grover experiments on trapped-ion systems, with randomized compiling
and error-detection mitigation, have attained single- and two-qubit fidelities around 99%,
demonstrating significant algorithm-level improvements [2] [5]. Yet the algorithm’s loga-
rithmic scaling of qubits relative to search space size underscores a persistent challenge:
maintaining coherence and gate precision across thousands of qubits remains beyond cur-
rent noisy, intermediate-scale quantum (NISQ) devices, relegating practical threats to
symmetric cryptography to the medium-term horizon.

Resource estimation trends reveal a field maturing from theoretical abstraction to
engineering pragmatism. Initial projections in the 1990s, such as factoring 2048-bit RSA
moduli with 104 logical qubits and 107 physical qubits, reflected idealized assumptions
about quantum parallelism and nascent error-correction schemes. The formalization of
surface codes in the 2010s marked a turning point, enabling fault-tolerant computation
with reduced physical-to-logical qubit ratios. Subsequent breakthroughs in windowed
arithmetic, coset representations, and lattice surgery techniques further halved logical
qubit requirements, while tools like Microsoft’s Azure Quantum Resource Estimator intro-
duced granular analysis of gate counts and routing overhead. Recent resource estimations
for factoring 2048-bit RSA have fallen to the range of ∼4,000-20,000 logical qubits and
∼20 million physical qubits, thanks to co-design approaches that integrate surface-code
error correction, modular-arithmetic circuit reductions, and hardware compilation [7].

Three interconnected drivers underpin this progress: algorithmic optimizations, error-
correction advancements, and realistic hardware modeling. Modular exponentiation sub-
routines, once naively implemented, now leverage oblivious carry runways and Karatsuba
multiplication to reduce circuit depths by 30-50%. Concurrently, surface code thresholds
achieving 99.99% gate fidelity and explorations of qLDPC codes have redefined fault-
tolerance benchmarks, while superconducting and trapped-ion platforms deliver qubits
with < 0.1% error rates and second-long coherence times. These innovations feed into
iterative refinements of the "quantum resource stack", where each layer, from logical
qubit design to photonic interconnects, contributes to shrinking the space-time volume
of computations.

The cybersecurity implications are urgent yet paradoxical. While current quantum
processors remain far from factoring even 128-bit integers, the downward trend in Shor’s
resource estimates has expedited PQC standardization. Algorithms like CRYSTALS-
Kyber (standardized as FIPS 203 in August 2024) and Falcon are prompting widespread
adoption of hybrid encryption systems. Additionally, twin-field QKD has achieved secure
transmission over 500-1000 km, although achievable key rates are in the order of bits per
second, not megabits-restrictions largely due to photon loss and infrastructure demands,
making QKD viable only in high-security and specialized deployments.

Hardware diversification further shapes the landscape. Superconducting qubits lead in

50

2.4 – Quantum Computing’s Impact on Cybersecurity

scalability, exemplified by IBM’s 1,121-qubit Condor processor (2023), while trapped ions
excel in error resilience with 99.9% gate fidelities. Photonic and neutral-atom platforms
hint at future distributed quantum networks but face developmental hurdles. Across all
modalities, the million-qubit threshold for cryptographically relevant computations looms
as both a technical and economic challenge, necessitating breakthroughs in qubit multi-
plexing, 3D integration, and classical control systems capable of exascale error decoding.

As the field transitions from laboratory experiments to utility-scale engineering, the
interplay between algorithmic innovation and hardware progress continues to redefine
timelines. Projections suggest fault-tolerant quantum computers capable of breaking
RSA-2048 may emerge by the late 2030s, driven by qubit factories and photonic in-
terconnects. Meanwhile, quantum machine learning and hybrid variational algorithms
demonstrate near-term potential for tasks like intrusion detection, albeit constrained by
NISQ-era noise. This duality, between existential risks and incremental opportunities,
underscores the need for cryptographic agility, sustained investment in PQC migration,
and international collaboration on quantum security standards. The evolution of quan-
tum computing from theoretical curiosity to applied technology demands a proactive
reimagining of global cybersecurity infrastructures, ensuring resilience against a future
where Shor’s and Grover’s algorithms transition from academic marvels to operational
tools.

51

52

Chapter 3

Quantum threats and Mitigations

3.1 Today’s performances

The quantum computing landscape has witnessed remarkable advancements across mul-
tiple technological platforms, each pushing the boundaries of computational capability
through distinct approaches. Leading this charge, Google Quantum AI achieved a piv-
otal milestone with its Willow processor, demonstrating below-threshold error correction
and quantum supremacy by solving a specialized problem in minutes-a task theoretically
requiring millennia on classical supercomputers [4]. This dual focus on raw power and
reliability underscores the industry’s pursuit of fault-tolerant systems. IBM Quantum
complements this progress through sheer scale, breaking the 1,000-qubit barrier with its
Condor processor while introducing the Heron generation, which triples performance via
tunable couplers and crosstalk elimination. Their Quantum System Two architecture
envisions modular, scalable quantum-centric supercomputing, marrying increased qubit
counts with enhanced connectivity [9]. Quantinuum’s trapped-ion H2-1 system exem-
plifies precision, executing 4,600 two-qubit gates across 56 qubits without noise-induced
failure, while its planned 100-logical-qubit system by 2027 signals aggressive strides to-
ward fault tolerance. Microsoft’s topological Majorana 1 chip introduces hardware-level
error resistance via Majorana particles, aiming for million-qubit chips within years rather
than decades, a potential paradigm shift in scalability [1]. Diverse qubit architectures
each address unique challenges. Superconducting qubits, exemplified by IBM and Google,
leverage semiconductor-like fabrication for rapid gate operations (99.9% single-qubit fi-
delity in China’s Zuchongzhi-3 [10]) but face coherence limitations (72 microseconds)
and cryogenic demands. Trapped ions, championed by Quantinuum and IonQ, excel in
coherence (seconds) and all-to-all connectivity, though slower gates complicate scaling.
Photonic systems, advanced by PsiQuantum and Xanadu, thrive at room temperature
with minimal decoherence, yet grapple with photon control precision. Neutral atoms, as
seen in Microsoft-Atom Computing collaborations, balance scalability (hundreds of qubits
in 2D arrays) and fidelity (99.6% two-qubit gates) [12], while topological and diamond
qubits explore error-resistant and portable designs.

This architectural diversity reflects strategic trade-offs: superconducting qubits priori-
tize industrial scalability, trapped ions favor algorithmic depth, photonics target quantum

53

Quantum threats and Mitigations

networking, and neutral atoms blend modularity with precision. Algorithmic innovations
amplify hardware progress. Shor’s algorithm epitomizes quantum threat to cryptography,
with IBM factoring 48-bit numbers via superconducting qubits, a precursor to breaching
RSA-2048 (In collaborazione con un gruppo di ricerca cinese, IBM ha fattorizzato numeri
piú piccoli), theoretically feasible with 4,000 error-corrected logical qubits [11]. Grover’s
quadratic speedup, demonstrated at 98.9% accuracy on silicon processors, pressures sym-
metric cryptography, effectively halving AES-256’s security. Hybrid algorithms like VQE
and QAOA bridge NISQ-era limitations, enabling practical applications in chemistry
and optimization. Error correction breakthroughs, from Google’s surface codes [3] to
Microsoft’s logical qubit entanglement, are critical enablers: Willow’s distance-5 code
reduced logical errors, while Quantinuu’s H2 maintained coherence across deep circuits.
These software strides, coupled with metrics like quantum volume (exponentially out-
pacing classical scaling) and coherence gain (0.7 Log10 robustness), signal accelerating
maturity. Performance benchmarks reveal both promise and hurdles. While trapped ions
lead in gate fidelity (99.9% single-qubit, 99.65% two-qubit) and coherence, supercon-
ducting platforms dominate qubit counts (IBM’s 1,121 vs. Quantinuum’s 56). Photonic
advances, like Quandela’s 100,000-fold component reduction for fault tolerance, hint at
disruptive scalability. Neutral atoms, though nascent, showcase error-corrected logical
qubits and 99.9% single-gate fidelity. Yet universal fault tolerance remains elusive: error
rates necessitate millions of physical qubits per logical unit, and photonic/phononic in-
terconnects are vital for modular scaling. Cybersecurity implications loom large, while
current hardware cracks only trivial RSA keys, projections suggest 2048-bit vulnerabilities
within decades, urging cryptographic migration. Coherence times, though improving to
seconds in ions, still lag behind algorithmic demands, emphasizing the need for dynamic
decoupling and materials innovation. The field’s trajectory hinges on converging architec-
tures, algorithms, and error mitigation. As superconducting systems scale, trapped ions
refine deep-circuit reliability, photonics enable quantum networks, and topological qubits
reimagine fault tolerance. Algorithm-architecture co-design, such as tailoring Shor’s to
ion-trap coherence or optimizing QAOA for superconducting speed, will drive near-term
utility. With quantum volume doubling annually and error rates plummeting, the transi-
tion from laboratory curiosities to industry-grade tools accelerates, reshaping fields from
drug discovery to cryptography. Yet the true inflection point awaits error-corrected, mod-
ular systems blending qubit types, where photonic links merge superconducting speed
with ion-trap precision. This symbiotic evolution, rather than any singular technology,
will unlock quantum computing’s transformative potential, heralding an era where prob-
lems once deemed intractable succumb to coordinated quantum-classical orchestration.

3.2 Prediction for quantum hardware evolution

Quantum decoherence remains the most persistent barrier, as qubits, highly sensitive
to thermal fluctuations, electromagnetic interference, and vibrational noise, lose their
quantum states within microseconds to milliseconds, curtailing computation depth and
reliability.

54

3.2 – Prediction for quantum hardware evolution

Figure 3.1. Evolution in coherence time in quantum hardware since 1992

Figure 3.2. Evolution in coherence gain in quantum hardware since 2017

This fragility demands extreme environmental controls: superconducting qubits op-
erate near absolute zero in multi million dollar dilution refrigerators, while trapped ions
require ultra-high vacuums and laser precision, creating resource-intensive systems largely

55

Quantum threats and Mitigations

confined to research facilities.

Figure 3.3. Projection of resources requirement for various cryptographic application

Scalability compounds these issues, with increasing qubit counts exacerbating crosstalk
and control complexity. Current architectures struggle to balance growth with perfor-
mance, IBM’s Condor processor reached 1,121 superconducting qubits, yet error rates
(∼ 1% per gate) and limited connectivity hinder practical utility. Error correction in-
troduces further overhead, requiring hundreds or thousands of physical qubits per log-
ical qubit to achieve fault tolerance, a threshold even industry leaders like Google and
Quantinuum have only preliminarily demonstrated with small-scale implementations. De-
spite these hurdles, incremental progress suggests a path forward. Materials innovation
aims to extend coherence times, with diamond-based qubits showing promise for room-
temperature operation, potentially reducing reliance on cryogenics. IBM’s roadmap em-
phasizes hardware-software co-development, introducing metrics like gate operations to
track control fidelity improvements alongside qubit count. Early commercial applications
hint at niche viability: IBM’s quantum-enhanced fraud detection reduced false negatives
by 5%, while QC Ware and Goldman Sachs achieved quantum advantage in Monte Carlo
simulations for financial modeling. Such proofs-of-concept, though laboratory-bound, val-
idate hybrid quantum-classical approaches that leverage current noisy intermediate-scale
quantum (NISQ) devices. Industry timelines remain contentious, IBM projects main-
stream adoption within 6-10 years, but McKinsey surveys reveal skepticism, with 28%
of experts anticipating fault-tolerant systems only post-2040. Gartner offers a middle
ground, predicting that 25% of enterprises will gain competitive edges through quantum-
inspired algorithms by 2027, even without full-scale quantum supremacy. Standardization

56

3.2 – Prediction for quantum hardware evolution

and talent gaps complicate this trajectory. The absence of unified programming frame-
works and middleware forces organizations to hedge bets across competing platforms
like Qiskit, Cirq, and PennyLane, inflating development costs. Meanwhile, cryogenic
infrastructure demands pose environmental and economic challenges as systems scale-
each dilution refrigerator consumes ~25 kW, rivaling data center energy footprints. Yet
strategic investments persist: Crédit Agricole’s quantum credit-scoring model matched
classical accuracy with 96% fewer classifiers, demonstrating efficiency gains that could
justify early adoption.

Figure 3.4. Potential of various physical implementation of quantum hardware

BCG posits 2025 as an inflection point for enterprise value generation, contingent on
sustained hardware roadmaps and algorithmic refinements. Ultimately, quantum hard-
ware evolution hinges on parallel advances-suppressing decoherence through topological
qubits, optimizing error correction overhead, and developing modular architectures that
distribute qubits across photonic networks or cryogenic modules. While universal fault
tolerance remains distant, the convergence of these incremental breakthroughs suggests a
gradual rather than revolutionary adoption curve, where quantum accelerators enhance
specific workflows long before displacing classical infrastructure.

57

Quantum threats and Mitigations

Figure 3.5. Expert’s estimates of likelihood of commercial applications for quantum computers

58

3.3 – Threats Brought by Quantum Computers

Figure 3.6. Prediction’s evolution about quantum computer’s probability to break
RSA-2048 in 24 hours

3.3 Threats Brought by Quantum Computers

The emergence of quantum computing presents a profound and potentially existential
threat to the cybersecurity landscape, fundamentally challenging the cryptographic un-
derpinnings currently secure digital communications, data storage, and online transac-
tions. While offering unprecedented computational power for solving complex problems,
this capability directly targets the mathematical difficulties upon which contemporary
cryptographic algorithms rely. The foundation of modern cybersecurity is built upon sys-
tems like the RSA algorithm, which depends on the intractability of factoring large prime
numbers, and Elliptic Curve Cryptography (ECC), based on the algebraic structure of
elliptic curves over finite fields. These methods are considered secure against classical
computers because the computational effort required to break them is prohibitively vast.
However, quantum computers, leveraging principles such as superposition and entangle-
ment, can perform calculations at speeds far exceeding those of classical machines. This
advancement poses a direct vulnerability, primarily through quantum algorithms like
Shor’s algorithm that render RSA and ECC effectively obsolete in a quantum-enabled
future, and Grover’s algorithm which, although less devastating than Shor’s, it can ef-
fectively halve the key length of symmetric cryptographic systems, significantly reducing

59

Quantum threats and Mitigations

their security margin. The threat extends beyond the immediate breaking of established
encryption methods. A critical concern is the "Harvest Now, Decrypt Later" (HNDL)
attack, where malicious actors are already collecting and storing large volumes of cur-
rently encrypted data. They anticipate that once powerful quantum computers become
available in the future, they will be able to decrypt this sensitive information en masse.
This strategy involves capturing encrypted network traffic or data at rest, often along
with associated public keys and digital signatures, and waiting for the technological ma-
turity of quantum systems. Upon the advent of sufficiently powerful quantum computers,
these attackers could deploy algorithms like Shor’s or Grover’s to break the underlying
cryptographic primitives and unlock the stored data. This poses an immense risk, par-
ticularly for sensitive information that retains its value over time, such as government
secrets, intellectual property, financial records, and healthcare data. The implications
are profound, highlighting that data encrypted today under classical assumptions could
be exposed by future quantum capabilities, underscoring the urgency for developing and
adopting quantum-resistant cryptographic methods. Beyond HNDL, quantum comput-
ing facilitates several other immediate cyber threats. Secure channel decryption becomes
possible as encrypted network communications can be broken, allowing attackers to in-
tercept and "listen in" on sensitive conversations in real-time. Signature impersonation
is another risk, where quantum power enables attackers to forge signed digital certifi-
cates, leading to consequences like widespread malware distribution and sophisticated
targeted phishing campaigns. Furthermore, the potential for yet unknown quantum al-
gorithms to break existing cryptographic systems and the inherent difficulties associated
with the global transition to quantum-resistant cryptography introduce new "Zero-Day"
vulnerabilities.

Integrating quantum computing into cyber-attack strategies could result in more so-
phisticated malware and threats, exploiting vulnerabilities at unprecedented speeds. Spe-
cific areas of cybersecurity are particularly vulnerable.

Public-key cryptography, fundamental to secure online communication, digital sig-
natures, and key exchange protocols like Diffie-Hellman, is directly threatened by Shor’s
algorithm, jeopardizing confidentiality and integrity. Symmetric-key algorithms like AES,
while not directly broken by Shor’s, face a reduced security margin due to Grover’s al-
gorithm, necessitating larger key sizes to maintain current security levels. Digital signa-
tures, vital for verifying the authenticity and integrity of digital documents and transac-
tions, could be forged by quantum computers targeting underlying algorithms like RSA
and DSA, enabling impersonation. Blockchain technologies and cryptocurrencies, which
rely heavily on cryptographic hash functions and public-key cryptography for security
and wallet protection, face threats from quantum capabilities that could potentially find
hash collisions or derive private keys from public ones, risking transaction manipulation,
double-spending, and unauthorized access to digital assets.

Network authentication protocols used in VPNs, SSL/TLS, and Wi-Fi security (like
WPA2) rely on public-key cryptography and could be compromised, leading to unautho-
rized access and man-in-the-middle attacks. The security of SSL/TLS certificates and
the entire Public Key Infrastructure (PKI) system could also be undermined, enabling
the forging of certificates.

60

3.4 – Solutions to Quantum Threats

The security of Internet of Things (IoT) devices, often utilizing lightweight crypto-
graphic protocols due to resource constraints, is highly susceptible to quantum attacks,
potentially compromising entire ecosystems. Even advanced privacy-preserving technolo-
gies like Homomorphic Encryption, which allows computations on encrypted data without
decryption, and Zero-Knowledge Proofs (ZKPs), used for verifying information without
revealing the data itself, could see their underlying cryptographic assumptions challenged
by quantum attacks. Homomorphic encryption enables secure data processing in sensi-
tive fields, while ZKPs, used in blockchain for privacy and scalability (e.g., zk-SNARKs
in Zcash), maintain privacy in scenarios requiring trust without direct information shar-
ing. Potential vulnerabilities, even in quantum key distribution (QKD) systems designed
to enhance security, could be exploited, raising concerns about the overall reliability of
quantum communication methods.

In recognition of these significant threats, organizations like the National Institute
of Standards and Technology (NIST) are actively evaluating and standardizing post-
quantum cryptographic algorithms specifically designed to resist quantum attacks. The
transition to quantum-resistant cryptography is not merely a technical undertaking but
a complex logistical and strategic imperative. It requires a comprehensive audit and
update of current infrastructures, the global adoption of new protocols, and significant
investment in research, development, and implementation to ensure a seamless shift to
a post-quantum secure world and mitigate the pervasive risks posed by the advent of
powerful quantum computers.

Figure 3.7. Likelihood, Impact and Risk analysis of standard algorithm in a
quantum-enabled future

3.4 Solutions to Quantum Threats

Addressing the existential risks posed by quantum computing to global cybersecurity
requires a multi-layered defense strategy combining cryptographic innovation, infrastruc-
ture modernization, and proactive policy frameworks. At the core of this paradigm shift
lies the development and deployment of post-quantum cryptography (PQC), mathemati-
cal systems designed to withstand both classical and quantum attacks through problems
resistant to Shor’s and Grover’s algorithms. Transitioning to PQC demands more than
algorithm substitution; it necessitates full-stack cryptographic agility, the capability to

61

Quantum threats and Mitigations

dynamically update encryption protocols across hardware security modules, network pro-
tocols, and legacy systems without service disruption. This agility is being operational-
ized through hybrid systems that combine classical and quantum-resistant algorithms
during the transition period, as demonstrated in Google’s New Hope integration with
TLS 1.3 [6], [39], which maintained backward compatibility while testing lattice-based
key exchange. Complementing algorithmic upgrades, Quantum Key Distribution (QKD)
introduces physics-based security to symmetric key exchange by encoding cryptographic
keys in quantum states of photons. Through protocols like BB84 and E91 [19], QKD
exploits the no-cloning theorem and quantum entanglement to detect eavesdropping at-
tempts via perturbations in quantum bit error rates, any interception attempt inherently
introduces detectable anomalies. Commercial deployments like China’s 4,600 km Beijing-
Shanghai quantum backbone [17] and the European Quantum Communication Infrastruc-
ture (EuroQCI) initiative demonstrate terrestrial QKD’s viability for metropolitan-scale
networks, though technical constraints persist. Fiber-based QKD faces distance limita-
tions (∼ 100 km without quantum repeaters) [40] and integration challenges with existing
DWDM optical networks, while satellite-based systems like Micius achieve intercontinen-
tal ranges but suffer from limited transmission windows and atmospheric interference. To
overcome these limitations, researchers are developing trusted-node networks and quan-
tum repeaters using memory-based entanglement swapping, with recent breakthroughs
achieving 50 km entanglement distribution through multiplexed quantum memories. In-
terim defense measures include cryptographic hygiene practices such as elongating sym-
metric key lengths, doubling AES from 256-bit to 512-bit effectively reduce the effects
of Grover’s quadratic speedup, and implementing crypto-periodic key rotation policies to
limit exposure windows for harvested data. However, these stopgap solutions merely buy
time; organizations must concurrently audit cryptographic inventories using tools like
the NSA’s Commercial Solutions for Classified (CSfC) program checklist, identifying vul-
nerable systems from PKI certificate authorities to IoT device authentication protocols.
Critical infrastructure sectors are adopting migration frameworks like the NIST Cyber-
security Framework’s Quantum Readiness profile, which prioritizes securing long-lived
systems (e.g., power grid SCADA, financial transaction archives) through crypto-agile
design patterns and quantum-safe pseudorandom number generators. Strategic policy
initiatives amplify technical countermeasures. The U.S. National Security Memorandum-
10 mandates federal agencies to achieve quantum-resistant cryptography by 2030, while
the EU’s Cyber Resilience Act imposes PQC compliance requirements on connected de-
vice manufacturers. Cross-industry consortia like the Quantum Safe Security Working
Group are developing interoperability standards for PQC implementation across cloud
platforms (AWS Hybrid Post-Quantum TLS, Azure Quantum-Safe), blockchain networks
(Quantum Resistant Ledger), and 5G/6G infrastructures. Education and workforce de-
velopment form another pillar, with academic programs integrating PQC into curricula
and vendor certification schemes like Utimaco’s Quantum-Safe HSM Engineer ensuring
operational readiness.

62

3.4 – Solutions to Quantum Threats

3.4.1 PQC

The advent of quantum computing, with its potential to perform complex calculations
exponentially faster than classical computers by harnessing phenomena like superposi-
tion and entanglement, necessitates a fundamental shift in cryptographic practices. The
threat became particularly clear with mathematician Peter Shor’s demonstration in the
1994s that a theoretical quantum computer could effortlessly break widely used public key
encryption (PKE) algorithms, prompting a global investigation into new cryptographic
systems. Post-quantum cryptography (PQC), also known as quantum-resistant encryp-
tion, refers to cryptographic algorithms specifically designed to be secure against attacks
by quantum computers while typically remaining secure against classical computers as
well [16] [20]. Unlike traditional methods susceptible to quantum algorithms like Shor’s
for factoring and discrete logarithms, and Grover’s for database searching, PQC algo-
rithms are based on mathematical problems believed to be hard for both classical and
quantum computers. This field focuses on securing classical computer systems against the
advanced computational capabilities of quantum computing. One of the most important
steps to mitigate the quantum threat is thus to transition to these quantum-resistant
cryptographic algorithms. This involves using encryption methods and digital signatures
that remain secure even in the presence of powerful quantum computers. Organiza-
tions should plan for a seamless migration to post-quantum cryptographic standards as
they are developed and standardized. Current research into PQC is pursuing various
approaches based on such seemingly intractable mathematical problems. Among the
leading candidates are lattice-based cryptography, hash-based cryptography, code-based
cryptography and multivariate polynomial cryptography. These cryptographic systems
offer a promising path towards maintaining confidentiality and integrity in the quantum
era. Lattice-based cryptography (LBC) [30] [25] is currently one of the most promis-
ing and prominent areas of research in PQC, distinguished by its reliance on complex
computational problems in mathematical lattices. A lattice is a discrete subgroup of an
n-dimensional real vector space, meaning it’s a set of points where you can add any two
points and get another lattice point, and there’s a minimum distance between any two
distinct points, preventing them from being arbitrarily close. This structure resembles an
infinite grid, becoming exceedingly complex to navigate in high dimensions (e.g., 400).
The security of lattice-based schemes is based on the assumed difficulty of solving certain
computational problems in these lattices, such as the Shortest Vector Problem (SVP),
finding a non-zero lattice vector closest to the origin or the Learning With Errors (LWE)
problem. While SVP is relatively easy in low dimensions, no efficient classical or quan-
tum algorithms are known to solve it efficiently in higher dimensions for general lattices.
Modern LBC schemes are often based on problems like LWE, where one is given a "noisy"
linear system (b = As + e (mod q)) and must find the secret vector s, with e being a
"short" error vector. The LWE problem can be shown to be asymptotically at least as
hard as a variant of SVP given suitable parameters. The work of Ajtai is of fundamental
theoretical importance in this area, proving "worst-case to average-case" reductions for
certain lattice problems. Early lattice-based schemes included the relatively inefficient
Ajtai-Dwork scheme. In search of practical solutions, schemes like NTRU (based on
problems in structured lattices) and a cryptosystem inspired by Ajtai-Dwork (Goldreich,

63

Quantum threats and Mitigations

Goldwasser, Halevi) were introduced. While the standard NTRU problem’s hardness isn’t
definitively proven to be equivalent to worst-case lattice problems, NTRU-based meth-
ods have not been broken when parameters are chosen suitably. A major milestone was
Regev’s introduction of the LWE problem in 2005, forming the basis for many of today’s
lattice-based encryption and key agreement schemes. Variants like ring LWE and module
LWE were developed to increase efficiency and reduce key sizes, based on the assumption
that lattice problems remain hard even with additional algebraic structure. Structured
lattices, while offering efficiency gains, also carry the risk of potentially providing further
attack vectors, an important research question. Lattice-based cryptosystems have gained
significant attention, notably since Google’s experimental testing of "New Hope" in the
Chrome browser, and they constitute a large part of the finalists in the current NIST
standardization process for core cryptographic primitives like encryption, key encapsu-
lation, and digital signature schemes, with examples including CRYSTALS-KYBER for
encryption and CRYSTALS-Dilithium for digital signatures. LBC is a leading solution for
post-quantum encryption and offers strong security guarantees while enabling functionali-
ties like fully homomorphic encryption (FHE). Hash-based cryptography is a generic term
for cryptographic constructions primarily focused on digital signatures whose security is
based on the security properties of cryptographic hash functions [33]. A hash function is a
compression function that maps input data of any length to a fixed-length output, known
as a digest (typically 256-512 bits). Cryptographic hash functions possess security prop-
erties like one-way function (preimage resistance, hard to find input for a given output),
weak collision resistance (second preimage resistance, hard to find a second input with
the same output as a given input), and strong collision resistance (hard to find any two
different inputs with the same output). Common constructions include Merkle-Damgård
(SHA-2) and Sponge (SHA-3). Hash-based signature schemes are constructed using hash
trees (Merkle trees) and one-time signature (OTS) schemes. OTS schemes, like Lamport-
Diffie or Winternitz OTS, allow a private key pair to be used only once to generate a
signature; using it multiple times compromises security and allows forgery. While highly
unpractical for frequent signing in a multilateral environment due to the need for a large
set of key pairs, Ralph Merkle solved this in 1979 with the invention of the hash tree.
In a Merkle tree, public keys (or hashes of data blocks at the leaves) are compressed in
pairs using a hash function recursively until a single value, the root, is reached. This root
serves as the single "master" public key for all the individual private keys at the leaves.
To sign a message, the corresponding private key (or keys for a binary encoded message)
and the path in the tree needed to recompute the root from the leaf are revealed, allowing
verification. Merkle signatures have very well-understood security properties and, in their
current forms (LMS, XMSS), are considered mature quantum-safe signature schemes. A
key drawback is their statefulness: the signer must meticulously track which one-time
signature keys have been used, as any error leads to a loss of security and imposes high
requirements on implementation and usage. Additionally, the number of possible signa-
tures is limited, requiring a trade-off between signature size and the number of signatures
during key generation. Despite this, stateful hash-based signatures like LMS and XMSS
are particularly suitable for future-proof software update concepts where statefulness can

64

3.4 – Solutions to Quantum Threats

be managed and the maximum number of signatures estimated. They have been stan-
dardized by the IETF (RFC8554 for LMS, RFC8391 for XMSS) and adopted by NIST (SP
800-208), finding their way into formats like Cryptographic Message Syntax (CMS) and
Concise Binary Object Representation (COSE) used in S/MIME and IoT. As a stateless
variant, SPHINCS (based on Goldreich’s design) has been developed. While it elimi-
nates the need for state tracking, this statelessness results in efficiency disadvantages,
such as larger signature sizes, compared to LMS and XMSS, requiring assessment in
concrete application scenarios. Recent schemes like XMSS, LMS, SPHINCS, and BPQS
offer improved performance, with most being stateful except SPHINCS. NIST’s decision
to standardize three digital signature algorithms for quantum-safe signatures includes
the hash-based SPHINCS+ alongside CRYSTALS-Dilithium and FALCON, based on the
well-established understanding and quantum safety of hash-based signatures. Code-based
cryptography centers on developing cryptographic systems using error-correcting codes,
which make it possible to detect and correct errors in stored or transmitted data and
have a history going back to pioneers like Hamming and Shannon [38]. These codes are
used widely in various communication and storage technologies. The general decoding
problem, decoding a received message based on a random or unstructured code, is known
to be NP-hard, forming the basis for the security of code-based schemes. The most promi-
nent representative is the McEliece cryptosystem [32], an asymmetric encryption scheme
introduced in 1978 by Robert McEliece. Its security relies on two assumptions: that
the binary Goppa codes it uses are indistinguishable from random linear codes, and that
random linear codes can only be decoded with exponential effort due to the General De-
coding Problem, for both classical and quantum computers. After more than 40 years of
research, and despite analyses considering modern computing power (like the 2008 attack
on originally proposed parameters), no structural weakness has been found when binary
Goppa codes are used, making McEliece one of the oldest unbroken quantum-safe pro-
posals. A major disadvantage is its large public key size, which remains in the megabyte
range for high-security applications, even with variants like the one described by Harald
Niederreiter in 1986. However, code-based key agreement schemes offer very small cipher-
texts (around 200 bytes), and encryption/decryption is much more efficient than RSA or
ECC-based asymmetric schemes. Recent proposals using more structured codes aimed
to reduce public key size, but some have faced successful attacks. Traditional code-based
signature schemes have exhibited significant efficiency problems and are mostly of theo-
retical interest, with more efficient approaches based on coding theory still in early stages.
Code-based cryptography aims to create algorithms that are rapid, secure, and efficient
against quantum threats. Other important family is Multivariate Polynomial Cryptogra-
phy, which involves systems of multivariate polynomial equations over finite fields whose
solution is assumed to be hard, offering a different approach to secure communications.
Given the complexity and ongoing development of PQC algorithms, a strategic approach
involves hybrid encryption, combining traditional encryption methods with post-quantum
algorithms. This layered approach provides enhanced security by leveraging the strengths
of both systems. For example, a system might use RSA for immediate encryption needs
while simultaneously employing a post-quantum algorithm to secure the same data for
the long term. By combining algorithms, organizations can reduce the risk of a complete

65

Quantum threats and Mitigations

security breach; if one algorithm is compromised, the other can still protect sensitive data.
This allows organizations to implement post-quantum algorithms alongside existing sys-
tems, enabling a gradual transition rather than a complete overhaul. This approach also
offers flexibility in adapting to various security needs and regulatory requirements, espe-
cially in industries with stringent compliance standards. Standardized PQC algorithms
aim to be compatible with existing communication protocols and networks, facilitating
this transition. Companies are investing in PQC to offer quantum-resistant solutions and
safeguard systems from potential quantum computer-based attacks.

66

Chapter 4

Execution’s time analyses of PQ
and standard algorithms

In this comprehensive and methodically structured experimental investigation, the tem-
poral performance characteristics associated with cryptographic key-pair generation for
both well-established classical cryptographic schemes and a selection of emerging post-
quantum algorithms were rigorously quantified, analyzed, and compared. The investiga-
tion was conducted across two distinct and technically diverse execution environments:
a production-grade, network-connected hardware security module (HSM) and its corre-
sponding locally hosted software-based emulator. The primary objective was to establish
a robust and trustworthy baseline for key-generation performance using traditional algo-
rithms, derive precise comparative metrics that highlight the efficiency differences between
hardware-accelerated and purely software-based cryptographic operations, and ultimately
project realistic and data-driven estimates of execution times for post-quantum primitives
when implemented on physical HSM hardware, assuming future native support.

The principal hardware platform used throughout the study was the Thales Luna Net-
work HSM 7, equipped with firmware version 7.9.0, securely interfaced via TCP/IP within
the company’s dedicated network to naturally incorporate authentic network round-trip
latency, internal security policies, and hardware-accelerated cryptographic functionality.
Complementing this setup, the Utimaco HSM Simulator was deployed on a virtualized
Ubuntu 22.04 LTS environment provisioned with eight virtual CPUs and 4 GB of RAM;
this simulator provides full compatibility with the PKCS#11 API specification imple-
mented by the Thales Luna HSM but lacks hardware acceleration and network latency,
offering a consistent and controllable software-based cryptographic testing environment
ideal for development, debugging, and algorithmic performance assessment.

In each environment, namely the Thales Luna HSM and the Utimaco software simu-
lator, an automated and reproducible Python-based testing framework invoked the stan-
dard ‘C_GenerateKeyPair’ interface defined by the PKCS#11 cryptographic token in-
terface standard. A total of 100 discrete and independent key-generation operations were
performed for each selected classical algorithm, including RSA with 2048- and 4096-bit
key lengths and ECDSA over the NIST P-256, P-384, P-521, secp256k1, and Ed25519
curves, with high-resolution timing data captured via Python’s ‘time.time()’ API, which

67

Execution’s time analyses of PQ and standard algorithms

provides nanosecond-level precision and low overhead.

Immediately after each key-pair generation, the generated key material was securely
destroyed and, where necessary, cryptographic sessions were explicitly closed and re-
initialized to ensure consistent test conditions and avoid memory accumulation or execution-
state interference between iterations. The raw timing data were systematically logged and
exported, then processed using Python with the matplotlib and NumPy libraries to com-
pute comprehensive statistical summaries, specifically, central tendency metrics including
the arithmetic mean (µ) and the median (m), alongside measures of dispersion such as
the standard deviation (σ), to provide a detailed view of both average performance and
variability across runs.

To enable a direct and quantifiable comparison between hardware and software envi-
ronments, a dimensionless acceleration ratio for each classical algorithm was calculated as
R = µHSM/µSim, where µHSM represents the average key-generation time on the Thales
Luna HSM and µSim represents the corresponding average time on the Utimaco simula-
tor. This ratio quantifies the combined effects of hardware acceleration, cryptographic
processing efficiency, and network-induced delays in the real HSM context relative to
the locally hosted software environment, with higher values of R indicating a more sig-
nificant time overhead when moving from simulator to hardware, a factor essential for
extrapolating simulator-based measurements to real-world HSM usage scenarios.

Building upon this foundation of classical algorithm benchmarking and cross-platform
comparison, the investigation was extended to include four representative post-quantum
cryptographic algorithms reflecting different theoretical and structural paradigms: the
eXtended Merkle Signature Scheme (XMSS) and the Leighton-Micali Signature Scheme
(LMS), both stateful or stateless hash-based digital signature algorithms, and the Module-
Lattice-based Digital Signature Algorithm (MLDSA) and the Module-Lattice-based Key-
Encapsulation Mechanism (MLKEM), representing advanced lattice-based or hybrid cryp-
tographic constructions. These post-quantum algorithms were evaluated exclusively within
the Utimaco simulator, as the Thales Luna HSM does not yet natively support them; how-
ever, due to strict time constraints and the exceptionally high computational demands
associated with some configurations of XMSS and LMS-requiring several hours to com-
plete a single key-pair generation, only a single iteration per algorithm was executed to
capture representative timing values. Although this adjustment limits the statistical ro-
bustness of the post-quantum performance data, it still offers meaningful insight into the
order of magnitude of key-generation durations, with the standard high-resolution timing
and logging methodology applied to ensure that even individual measurements remained
as accurate and comparable as possible within the project timeline.

With the raw performance data for XMSS, LMS, MLDSA, and MLKEM obtained,
simulated mean execution times for each post-quantum algorithm were scaled using the
previously computed RRSA and RECDSA ratios to produce a bounded range of estimated
execution times reflecting the likely overhead imposed by a transition from a local emula-
tor to a real hardware platform, accounting for potential hardware acceleration discrep-
ancies as well as systemic delays related to secure network communication, concurrency
handling, and operational integrity safeguards inherent in HSM architectures.

68

4.1 – Standard algorithms

4.1 Standard algorithms

4.1.1 RSA

In FIPS 186-5 [21], the security parameter L specifies the bit length of the RSA modulus
n = p ∗ q, where p and q are large prime numbers, with standardized options of 2048,
3072, and 4096 bits. These values correspond approximately to NIST-defined security
strengths of 112, 128, and 152 bits, respectively. This guidance aims to help implementers
choose key sizes that maintain a practical balance between cryptographic robustness and
system performance, especially in long-term deployments where future-proofing against
evolving computational capabilities, including quantum threats, is a growing concern.

The RSA key-generation process begins by invoking a NIST-approved random bit
generator to produce two large integers, each approximately ⌊L/2⌋ and ⌈L/2⌉ bits in
length. These candidate integers are subjected to trial division against small primes,
followed by multiple rounds of probabilistic primality testing, typically the Miller-Rabin
test with sufficient random bases to ensure a negligible probability of error. This sequence
is repeated until two strong primes p and q are identified, ideally differing significantly in
magnitude to thwart certain factoring optimizations.

After generating p and q, the public exponent e is selected, often fixed to 65537 for
its low Hamming weight and strong security history. This value must be verified to be
co-prime with ϕ(n) = (p−1)∗(q−1), the Euler totient of the modulus. Once verified, the
private exponent d = e−1modϕ(n) is computed using the extended Euclidean algorithm,
ensuring correct decryption and signature capabilities.

The most computationally intensive part of RSA KeyGen lies in the repeated primal-
ity testing of large random integers, a process whose expected runtime increases super-
linearly with L. This is primarily due to the decreasing density of prime numbers among
larger integers and the higher cost of modular arithmetic with big integers.

Empirical key-generation benchmarks executed on the simulator, and so not run-
ning on specific accelerated hardware shows and execution time of several hundreds of
milliseconds while the same algorithm when run on dedicated hardware show a 4x, for
RSA2048, and 6x, for RSA4096, speed-up. Considering negligible the delay introduced
by the network due to its small value compared with execution time.

Therefore, FIPS 186-5’s specification of key lengths through L encapsulates a classic
and fundamental trade-off between security and efficiency. Larger moduli dramatically
increase the work factor for integer factorization attacks, thus strengthening RSA’s re-
sistance to both conventional cryptanalysis and hypothetical quantum threats posed by
algorithms, even though in a quantum-enabled future this algorithm could be poten-
tially broken by sufficiently capable quantum computers. However, this increased se-
curity comes at the price of slower key generation, greater computational load during
encryption, decryption, signing, and verification operations, and increased memory and
bandwidth usage.

69

Execution’s time analyses of PQ and standard algorithms

RSA2048 RSA4096
n (Bytes) 2048 4096

Signature (Bytes) 256 512
Time Simulator (ms) 664.362 7538.685

Time HSM (ms) 166.002 1118.986

Table 4.1. RSA parameters and execution time

4.1.2 ECDSA

In FIPS 186-5 [21], the Elliptic Curve Digital Signature Algorithm (ECDSA) derives
its cryptographic strength from the selection of standardized elliptic curves defined over
prime fields. The primary curves recommended by NIST for federal use are secp256r1
(also known as P-256), secp384r1 (P-384), and secp521r1 (P-521). These curves provide
classical security levels of approximately 128, 192, and 256 bits respectively, and their
selection effectively determines the security parameter for ECDSA operations.

The ECDSA key pair generation process starts by randomly selecting a private scalar
d from the interval [1, n − 1], where n denotes the order of the curve’s base point G.
This randomness must be derived using a NIST-approved deterministic or true random
bit generator to ensure sufficient entropy and compliance with federal standards. The
associated public key Q is then calculated as Q = d ∗ G, a scalar multiplication opera-
tion that forms the cornerstone of elliptic curve cryptography. Scalar multiplication is
typically implemented using algorithms such as double-and-add, windowed non-adjacent
form (wNAF), or fixed-window techniques, which optimize the number of required elliptic
curve point operations. The time complexity of this operation scales roughly logarithmi-
cally with the size of n (i.e., O(logn)), primarily in terms of finite-field multiplications
and additions.

During the signing phase, ECDSA relies on the generation of a fresh per-message
ephemeral scalar k, which must also be sampled securely and uniquely for each message
to prevent private key leakage. From this, a new curve point R = k ∗ G is derived, and
the signature components (r, s) are computed through a series of finite-field operations,
including modular inversion and multiplication within the underlying field GF (p). This
design introduces sensitivity to both randomness quality and arithmetic performance in
constrained environments.

Empirical performance measurements that, as expected, the time increase with the
order of the curve n. The times taken from the simulator show an execution time ex-
tremely short of few milliseconds. The same goes for the time required by the HSM even
though in this case, working with time of the same order of magnitude as the network’s
delay, we see worst performances across all the curves due to dealy introduced by the
TLS protocol as all the data that travel to and from the HSM have to be encrypted.

Compared to traditional public-key schemes like RSA, ECDSA provides a significant
reduction in key sizes and computational burden for equivalent security levels, especially
in bandwidth-sensitive and embedded environments. Its efficiency, coupled with strong
security guarantees under widely studied mathematical assumptions, positions it as a

70

4.1 – Standard algorithms

favored choice for digital signatures in modern cryptographic systems.

P-256 P-384 P-521 secp256k1
Public Key (Bytes) 65 97 133 65
Private Key (Bytes) 32 48 66 32
Signature (Bytes) 64 96 132 64

Time Simulator (ms) 3.734 8.792 15.814 3.575
Time HSM (ms) 10.984 11.819 13.338 14.474

Table 4.2. ECDSA parameters and execution time

4.1.3 EdDSA

In NIST SP 800-186 [15], the Edwards-curve Digital Signature Algorithm (EdDSA) us-
ing curve 25519 with SHA-512, commonly referred to as Ed25519, defines its security
parameter through the underlying field size and hash output length of 256 bits, yielding
approximately 128 bits of classical collision resistance and 128-bit preimage resistance.
Key pair generation involves sampling a 32-byte random seed via a NIST-approved ran-
dom bit generator, which is then expanded with SHA-512 to derive a "clamped" scalar
d by masking specific bits to enforce subgroup order and cofactor requirements. The
public key A is obtained by computing the scalar multiplication A = d ∗ B, where B
is the standard base point on the Montgomery form of curve25519. This single scalar
multiplication dominates the KeyGen cost and scales as O(logl) finite-field operations,
where l = 2252 + 27742317777372353535851937790883648493 is the group order.

Signature generation in Ed25519 is entirely deterministic: the message is first hashed
with the secret-expanded seed to produce a per-message scalar r, and a second scalar
multiplication R = r ∗B is computed. The signature pair (R,S) is formed by computing
S = (r+H(R||A||M) ∗ d)modl, requiring only one additional scalar multiplication and a
small number of modular additions. Verification similarly requires two scalar multiplica-
tions to check the equality [S]B = R+H(R||A||M) ∗A.

The experiment shows that, also in this case, working with time so short penalizes
the HSM due to the delay introduced by the TLS protocol and by the network. We are
working, indeed, with time in the order of few milliseconds and burden of the network
represent a significant part of the total measured time.

Ed25519
Public Key (Bytes) 32
Private Key (Bytes) 32
Signature (Bytes) 64

Time Simulator (ms) 5.371
Time HSM (ms) 13.698

Table 4.3. EdDSA paramenters and execution time

71

Execution’s time analyses of PQ and standard algorithms

4.2 Post Quantum Algorithms

4.2.1 MLDSA

In FIPS 204 [22] the parameter k ∈ {2, 3, 5} is the principal selector for one of three
MLDSA security categories: Category 2 offering approximately 128-bit classical security
and a conservative level of post-quantum resistance, Category 3 approximately 192-bit
strength and Category 5 of about 256-bit strength. The parameter directly determines the
variant names "MLDSA-44", "MLDSA-65" or "MLDSA-87" respectively. This selection
not only denotes a target security level in line with NIST’s post-quantum standardization
goals, but also dictates the underlying module dimension parameters k, which expand
from (4,4) for k = 2, through (6,5) for k = 3, to (8,7) for k = 5, thereby influencing the
size and complexity of all subsequent arithmetic operations.

During the Key Generation algorithm, the implementation must generate a full k ∗ l
matrix of secret polynomials and corresponding error distributions by invoking an ex-
tendable output function (XOF) to ensure sufficiently uniform randomness, followed by
multiple Number-Theoretic Transform (NTT) and inverse-NTT operations to translate
between coefficient and evaluation representations. As the module dimensions grow, the
total number of coefficients subject to NTT processing increases from 16 in the smallest
configuration to 30 and 56 in the larger ones, leading to an approximate 7x rise in trans-
form counts from k = 2 to k = 3, and a 10x increase when moving to k = 5, with each
transform costing approximately O(NlogN) arithmetic steps over the ring modulus.

Empirical hardware benchmarks runned on the simulator demonstrate that this trans-
lated complexity results in a key-generation time slightly increased. Since the increasing
in time from one algorithm to the other is in the order of hundreds of microseconds,
we can assume that the majority of the time is introduced by our setup that though
represent an actual work environment. Nevertheless we see that increasing the security
parameter, increase the execution time of 400 microseconds from k = 2 to k = 3 and of
700 microseconds to k = 5.

Consequently, the choice of a higher k value in FIPS 204 produces a quantifiable
trade-off: while elevating the cryptographic margin against both classical and quantum-
threat models, it also incurs a significant, and roughly linear, penalty in key-generation
latency that must be balanced against application performance requirements.

ML-DSA-44 ML-DSA-65 ML-DSA-87
k 2 3 5

Public Key (Bytes) 1312 1952 2592
Private Key (Bytes) 2560 4032 4896
Signature (Bytes) 2420 3309 4627

Time (ms) 2.068 2.483 2.743

Table 4.4. ML-DSA parameters and execution time

72

4.2 – Post Quantum Algorithms

4.2.2 MLKEM

In FIPS 203 [23] the security parameter k ∈ {2, 3, 4} serves as the fundamental designator
for the three standardized MLKEM variants: MLKEM-512 (k = 2), MLKEM-768 (k = 3)
and MLKEM-1024 (k = 4), each corresponding to increasing levels of post-quantum secu-
rity roughly equivalent to AES-128, AES-192, and AES-256 strength, respectively, while
simultaneously fixing the key-encapsulation mechanism’s internal module dimensions.
This parameter is not merely symbolic, it directly influences the mathematical struc-
ture and computational demands of the cryptographic scheme, particularly in the key
generation phase, which is a critical component in any secure communication protocol.

Specifically, the algorithm’s KeyGen routine must sample a k ∗ k matrix Â of polyno-
mials from the ring Zq[x]/(xn+1), where n = 256 and q = 3329 is a small, carefully chosen
prime modulus. Alongside this matrix, the algorithm generates secret vectors and error
vectors, each of length n, adhering to noise distributions that preserve security guar-
antees. These polynomials are instantiated using a NIST-approved extendable-output
function (XOF), such as SHAKE128 or SHAKE256, ensuring cryptographic randomness
and determinism as required. Once the sampling is completed, the implementation must
perform multiple forward and inverse Number-Theoretic Transforms (NTTs) to switch be-
tween the coefficient domain and the evaluation domain, facilitating efficient polynomial
arithmetic operations essential to lattice-based cryptography.

Because each NTT of length n has computational complexity O(n logn), the overall
workload imposed by these transforms increases substantially as k increases. More pre-
cisely, the number of transforms involved scales with k2 for the matrix Â and linearly
with k for the associated vectors, resulting in a rapid escalation of computational cost.
For example, when k = 2, as in MLKEM-512, the transform count is relatively modest,
4 forward and 1 inverse NTT, totaling 5. When k = 3 (MLKEM-768), the number of
transforms increases to 7, and at k = 5 (MLKEM-1024), the count rises further to ap-
proximately 9 or more, depending on implementation optimizations and the structure of
the arithmetic circuit. These counts imply increasing workload multipliers of approxi-
mately 1x, ≈ 1x, and 1.3x respectively, suggesting non-linear but manageable growth in
complexity.

Practical benchmarks executed on the simulator reinforce these theoretical insights.
For work environment the overhead introduced by the network and by all the layers
that sits in between the actual HSM (or the Simulator in this case) and the final client
make the difference in execution time almost negligible in fact in my testing the time
difference between ML-KEM-512 and ML-KEM-768 is almost completely obscured by
all the overhead. The computational difference is of greater impact in embedded system
environment.

Hence, in FIPS 203, the choice of k encapsulates a classical cryptographic trade-
off between higher security and lower efficiency. While increasing k significantly boosts
resilience against both classical and quantum attacks, particularly due to the enlarged
module lattice dimension and increased entropy of the public and secret components, it
also introduces latency during the KeyGen process. This latency, although acceptable in
many contexts, becomes a critical factor in constrained environments such as embedded
systems or high-frequency transaction settings. Implementers must therefore carefully

73

Execution’s time analyses of PQ and standard algorithms

balance their choice of k based on the specific performance and security requirements of
their target deployment scenario.

ML-KEM-512 ML-KEM-768 ML-KEM-1024
k 2 3 5

Encapsulation Key (Bytes) 800 1184 1568
Decapsulation Key (Bytes) 1632 2400 3168

Cyphertext (Bytes) 768 1088 1568
Shared Secret Key (Bytes) 32 32 32

Time (ms) 1.881 1.887 2.163

Table 4.5. ML-KEM parameters and execution time

4.2.3 XMSS

In FIPS 205 [24], the security of the XMSS (eXtended Merkle Signature Scheme) algo-
rithm is governed by a variety of parameters, among which the tree height h and the
Winternitz parameter w are central in determining the trade-off between signature size,
signing and verification time, and overall security margin. XMSS is a stateful hash-based
signature scheme that relies on the Merkle tree construction, where each leaf represents a
one-time signature key, and the internal nodes are computed using a cryptographic hash
function in a hierarchical binary tree structure. The overall security level is primarily
determined by the length of the output of the underlying hash function n, typically set
to 256 or 512 bits, corresponding roughly to 128-bit and 256-bit security respectively,
along with structural parameters that control how the tree is traversed and how many
signatures are possible.

The height of the Merkle tree, denoted by h, determines the total number of one-time
signatures (OTS) that can be issued from a single key pair, since the total number of leaves
equals 2h. For example, with h = 10, the scheme supports 1024 signatures; for h = 16, up
to 65,536 signatures are possible and for h = 20 we reach 1,048,576 signature available.
As h increases, the total number of usable signatures increases exponentially, but so does
the size of the authentication path in each signature, which must include one hash value
per level of the tree. This results in longer signatures and higher computational overhead
for both signing and verifying, especially since XMSS must manage a secure state to avoid
reusing OTS keys, which would compromise security.

Another critical parameter is the Winternitz parameter w, which is a trade-off lever
between signature size and computational speed. A smaller w leads to shorter signatures
but slower signing and verification operations, as it requires more hash function calls to
encode the same amount of data. Conversely, a larger w reduces the number of hash
operations needed, speeding up computation but producing larger signatures. Common
choices include w ∈ {4, 16, 256}, with w = 16 offering a balanced compromise between
signature size and performance. The selection of w also influences the structure of the
Winternitz One-Time Signature (WOTS+) scheme used at each leaf of the Merkle tree,

74

4.2 – Post Quantum Algorithms

affecting how efficiently messages are encoded and how many hash chains must be tra-
versed. For the Utimaco implementation w is not a usable paramenter but its value is
set to 16.

The KeyGen procedure in XMSS involves generating a large number of WOTS+ key
pairs (one per tree leaf), calculating the corresponding public keys, and building the full
Merkle tree by hashing upward from the leaves to compute the root, which serves as the
public key. This process requires 2h evaluations of the hash function just to compute the
leaves, and an additional 2h−1 evaluations for the internal nodes. As h increases, this cost
becomes substantial, especially in constrained devices or systems where key generation
needs to be repeated often. However, in most applications, key generation is performed
infrequently and amortized over a large number of signatures, making it acceptable in
many deployment scenarios.

Benchmark data taken form the simulator’s execution shows that, for a typical setting
of n = 256, h = 16 and w = 16, XMSS key generation can take several hundred millisec-
onds to several seconds on standard CPUs depending on optimization, while signature
generation and verification each take tens of milliseconds per operation. With smaller h
values, performance improves significantly, though at the cost of allowing fewer total sig-
natures. These performance figures, however, remain within acceptable limits for many
applications that require robust long-term security and can tolerate statefulness.

In conclusion, the parameters h and w in FIPS 205 are pivotal in balancing the effi-
ciency, security, and practicality of XMSS deployments. Larger tree heights enable greater
signature capacity and stronger security under forward-secrecy models, but incur greater
computational cost and larger signatures. Meanwhile, the Winternitz parameter tunes
the trade-off between signature compactness and the speed of cryptographic operations.
Proper selection of these parameters must reflect the needs of the deployment context-
whether that is high-throughput transaction processing, resource-constrained embedded
devices, or long-term document signing, while always ensuring that the key state is se-
curely managed to maintain XMSS’s post-quantum security guarantees.

n
192 256 512

h
10 1.73 s 3.37 s 14.72 s
16 118.92 s 171.22 s 1040.65 s
20 1891.26 s 2891.25 s 15591.25 s

Table 4.6. XMSS-SHA256 execution time

4.2.4 LMS

In FIPS 205 [24], the LMS (Leighton-Micali Signature) algorithm is presented alongside
XMSS as a stateful hash-based signature scheme designed to provide strong post-quantum
security guarantees. LMS operates by combining the Leighton-Micali One-Time Signature
(LM-OTS) scheme with a Merkle tree of a specified height h, forming a hierarchical
structure that enables multiple signature generations from a single public key. The key

75

Execution’s time analyses of PQ and standard algorithms

n
256 512

h
10 4.65 s 19.41 s
16 341.25 s 1241.26 s
20 5170.65 s 19431.25 s

Table 4.7. XMSS-SHAKE execution time

n
192 256

h
10 3.53 s 4.76 s
16 221.22 s 301.26 s
20 3820.66 s 5171.24 s

Table 4.8. XMSS-SHAKE256 execution time

security parameters that influence both the performance and security of LMS are the
tree height h, the hash function output length n, and the LM-OTS typecode, which
encapsulates parameters like the Winternitz coefficient w and the length of the hash-
based signature.

The parameter h, representing the height of the Merkle tree, determines the total
number of allowable one-time signatures. Each LMS private key can generate up to 2h
signatures, since each leaf of the Merkle tree corresponds to a distinct LM-OTS key pair.
For example, if h = 10, the LMS key pair supports 1024 signatures, whereas h = 20
enables 1,048,576 signatures. Larger h values allow more signatures but result in longer
authentication paths in each signature and increased computational overhead during key
generation and verification, as the Merkle tree must be traversed to compute or validate
the path from the leaf to the root.

Key generation in LMS involves creating 2h LM-OTS key pairs, each consisting of
a set of n-byte strings that serve as the secret components, along with a public key
derived through iterated hashing. These LM-OTS public keys are then hashed to form
the leaves of the Merkle tree. The internal nodes of the tree are computed recursively by
hashing pairs of child nodes until the root is obtained, which serves as the LMS public
key. The cost of this operation scales linearly with the number of LM-OTS keys, i.e., with
2h. Thus, increasing h directly affects the time required for key generation, making it a
significant factor when assessing the feasibility of LMS in real-time or resource-constrained
environments.

The LM-OTS parameters themselves also play a crucial role in determining the sig-
nature size and efficiency. The Winternitz parameter w controls the trade-off between
the signature length and the number of hash computations required to sign or verify a
message. Smaller w values lead to shorter signatures but involve more hash operations,
whereas larger w values reduce the hash count but increase the size of the signature.
Common values include w = 1, 2, 4 and 8, with w = 4 offering a balanced compromise.

76

4.2 – Post Quantum Algorithms

For each message signed, the LM-OTS scheme must hash the message digest and associ-
ated checksum values a number of times dependent on w, meaning that the choice of w
has a tangible impact on the speed of signing and verifying.

Benchmark runned on the simulator shows that LMS key generation time can range
from milliseconds to several seconds depending on the chosen tree height h and the
number of hash operations involved in generating and compressing the LM-OTS keys
into the Merkle root. For example, using h = 10 with w = 4 and a 256-bit hash function,
key generation can be completed in under a second, while h = 20 may require several
minutes.

In the context of FIPS 205, LMS provides a secure and practical post-quantum sig-
nature mechanism, where the security and performance characteristics are primarily gov-
erned by the Merkle tree height h and the LM-OTS parameters encapsulated in the
typecode. A larger h increases signature capacity but also computational and memory
demands, while the Winternitz parameter w tunes the trade-off between signature size
and processing efficiency. These parameters must be carefully selected based on the spe-
cific requirements of the target deployment, whether that involves embedded systems,
software update signing, or document authentication, ensuring that LMS’s statefulness
and performance constraints are properly managed to maintain both usability and long-
term security resilience against quantum adversaries.

h
5 10 15 20 25

n,w

24,1 11.054 ms 244.858 ms 8.209 s 261.27 s 8231.285 s
24,8 104.821 ms 3.096 s 98.986 s 3360.647 s 105381.244 s
32,1 14.146 ms 329.693 ms 10.881 s 341.285 s 10911.245 s
32,8 130.005 ms 3.947 s 123.938 s 4150.644 s

Table 4.9. LMS-SHA256 execution time

h
5 10 15 20 25

n,w

24,1 29.616 ms 851.712 ms 27.619 s 891.245 s 28231.257 s
24,8 385.994 ms 12.518 s 372.187 s 12720.645 s
32,1 39.372 ms 1.119 s 41.462 s 1231.269 s 39271.253 s
32,8 534.152 ms 16.798 s 511.245 s 17191.249 s

Table 4.10. LMS-SHAKE256 execution time

77

78

Chapter 5

Conclusion

5.1 Time comparison and projections

In this master’s thesis, I have undertaken a comprehensive quantitative analysis of the
temporal resources required for the execution of asymmetric cryptographic algorithms,
comparing classical schemes with their emerging post-quantum counterparts. By meticu-
lously measuring and recording the execution times of established algorithms-specifically
RSA, ECDSA, and EdDSA, I established a robust threshold value that serves as a refer-
ence benchmark. This benchmark enables a rigorous and meaningful performance com-
parison with post-quantum algorithms such as ML-DSA, ML-KEM, XMSS, and LMS,
which differ substantially in mathematical structure and computational complexity.

The experimental investigation was carried out across two complementary execution
environments. The first environment comprised a physical Luna Hardware Security Mod-
ule (HSM) manufactured by Thales, deployed in the corporate infrastructure of Spike Re-
ply, where I completed my internship and conducted the bulk of the measurements. The
second environment was a software HSM simulator provided by Utimaco. The inclusion
of a simulated environment was necessitated by the absence, at the time of data collec-
tion, of Thales firmware and software with native support for post-quantum algorithms.
Consequently, I measured the execution times of classical algorithms in both the real and
simulated HSM contexts, deriving performance ratios across different algorithmic com-
plexity classes. Thereafter, I executed the post-quantum algorithms within the Utimaco
simulator and, by integrating these measurements with the network and TLS-induced la-
tency profile observed on the physical HSM, I extrapolated the expected execution times
on dedicated HSM hardware once post-quantum support becomes available.

A key methodological consideration in this study pertains to the presence of end-
to-end overheads introduced by network components, transport-layer protocols, and in-
termediate infrastructure between the client application and the HSM. Although these
delays were inherently included in all timing measurements, their relative consistency
throughout the experimentation phase allowed for a comparative analysis based on dif-
ferential timing metrics. By focusing on relative performance deltas rather than absolute
times, the influence of extraneous variables was effectively neutralized, ensuring that the
comparative assessment reflects the intrinsic computational demands of each algorithmic

79

Conclusion

family.
The empirical results reveal that current post-quantum algorithms incur a substan-

tially higher temporal overhead compared to classical asymmetric schemes. In enterprise
environments equipped with dedicated HSMs, where scaling computing resources may
be constrained by budgetary and administrative limitations, the execution time emerges
as a critical performance indicator. Nonetheless, the transition to post-quantum crypto-
graphic standards is indispensable to maintain data security in the advent of practical
quantum computing capabilities.

Looking ahead, the development and release of official firmware and software updates
for mainstream HSMs with built-in post-quantum algorithm support will be paramount.
Such advancements will enable empirical validation of the projected performance esti-
mates and facilitate the optimization of cryptographic offloading procedures. Future
research should also expand the scope of resource analysis to include memory consump-
tion, hash operation costs, and the impact on key management protocols. Moreover, it
will be essential to investigate side-channel resistance and potential countermeasures in
post-quantum implementations.

Only through an integrated, multidisciplinary approach, encompassing hardware en-
gineering, protocol design, and security analysis, can the temporal overhead of post-
quantum cryptography be mitigated to levels acceptable for high-performance opera-
tional settings. In conclusion, this thesis provides a clear quantitative framework for
understanding the temporal challenges associated with migrating to post-quantum cryp-
tographic solutions, thereby laying the groundwork for informed decision-making in the
adoption of quantum-resistant data protection strategies.

Performances of standard algorithms

The execution of classical cryptographic algorithms exhibited a diverse spectrum of tim-
ing results, revealing the intricate balance between algorithmic complexity, hardware
acceleration, and communication latency. For each algorithm, I collected a statistically
significant number of samples (n = 100) to compute not only mean execution times but
also standard deviations, and median values. This comprehensive statistical treatment
ensures a robust characterization of performance under both typical and peak-load con-
ditions.

RSA

RSA-2048: On the Luna HSM, signature generation and decryption operations showed an
average latency of approximately 160ms (±15ms), with a standard deviation of ±100ms.
The simulator, by comparison, yielded mean execution times around 650ms (±30ms)
with a standard deviation of ±200ms and exhibited higher variance, with occasional
peaks above 1200ms. These measurements translate into an HSM speed-up factor of
roughly 4x for RSA-2048.

RSA-4096: Scaling up to a 4096-bit modulus amplified computational demands sub-
stantially: the HSM’s mean operation time increased to around 1100ms (±85ms), while
the simulator averaged close to 7500ms ±400 ms and a standard deviation of 4000 ms,

80

5.1 – Time comparison and projections

corresponding to a speed-up of about 6.5x. The simulator’s broader variance is indicative
of its reliance on general-purpose CPU scheduling and memory management.

These results highlight the effectiveness of specialized cryptographic co-processors
integrated into HSMs. Because the network and TLS handshake overhead (approximately
6ms) constitutes less than 3% of total RSA runtime, its impact on overall latency is
minimal and can be safely amortized across batches of operations.

Figure 5.1. RSA time requirement measured both on the simulator and the HSM

ECDSA

The performance landscape shifts noticeably for elliptic-curve operations, where raw com-
putational times often approach or fall below communication latency thresholds.

Curves P-256 and secp256k1: The Luna HSM exhibited end-to-end times averaging
10ms and 14ms (±0.2ms), while with the simulator 3.73 and 3.57 ms (±0.2ms).

Curves P-384 and P-521: For higher-security curves, the HSM’s hardware accelera-
tors gain prominence. Raw HSM latencies were measured at 11ms (±0.2ms) for P-384
and 13ms (±0.3ms) for P-521, compared to 9ms (±0.3ms) and 16ms (±0.4ms) on the
simulator, respectively.

An important factor to consider while analyzing this result is their order of magni-
tude. With execution time so small we need to also consider the delay introduced by the
network, that we measured being approximatively 6ms. Another time overhead seems to
be introduced by some security function internal to the HSM. Even though this was not
investigated in too much detail this value should be around 4ms. Combining this two
values gives a total setup time of about 10ms. We can see, then, that the boost in raw
computational performances is comparable to the one calculated for RSA and oscillates
between 4 and 6.5 times.

81

Conclusion

EdDSA

Ed25519 demonstrates a unique profile characterized by uniform execution steps and
simpler arithmetic:

End-to-end latency: The HSM recorded an average of 13ms (±0.1ms), while the sim-
ulator measured 5ms (±0.2ms). After removing the combined 10ms overhead introduced
by network/TLS and HSM initialization, the adjusted HSM computation time show a
significant increase in performances slightly inferior to the one calculated earlier of ap-
proximately 1.7 times.

These classical performance baselines serve as critical reference points for the subse-
quent analysis of post-quantum algorithms, enabling a nuanced assessment of the addi-
tional temporal investments required to achieve quantum-resistant security.

Figure 5.2. ECDSA and EdDSA time requirement measured both on the
simulator and the HSM

Performances of PQ algorithms

Transitioning to post-quantum cryptographic schemes necessitates a thorough under-
standing of not only their theoretical security guarantees but also their operational per-
formance characteristics in practical environments. In this study, we analyze four repre-
sentative post-quantum algorithms: ML-DSA, ML-KEM, XMSS and LMS, using simula-
tion data from Utimaco’s HSM emulator and extrapolations to dedicated hardware. All
projected end-to-end latencies incorporate an estimated network/TLS overhead (∼6ms)
and hardware initialization cost (∼4ms) derived from classical ECDSA benchmarks.

82

5.1 – Time comparison and projections

ML-DSA

ML-DSA leverages structured lattice problems to achieve security against both classical
and quantum adversaries. Its signature generation phase consists of sampling lattice
vectors and performing a small number of polynomial multiplications:

The simulation results show key generation times of 2ms (k=2), 2.5ms (k=3) and
3ms (k=5), where k denotes the root-Hermite factor influencing security. Given this data
we can extrapolate the time required by that HSM. Dividing by the classical ECDSA
speed-up factor (∼ 5x for small operations) suggests raw computation times of ∼0.5ms,
∼0.6ms, and ∼0.7ms, respectively. Including the 10ms combined latency, predicted total
times are all very close to 11ms.

ML-DSA-44 ML-DSA-65 ML-DSA-87
k 2 3 5

Time (ms) 10.517 10.621 10.686

Table 5.1. ML-DSA estimated execution time on HSM

ML-KEM

ML-KEM employs a variant of the bounded distance decoding problem for key encapsu-
lation. Its performance exhibits minimal sensitivity to the security parameter k due to
fixed-size polynomial operations:

Simulation stability: runtime variance under 0.1ms across k values 2, 3, and 5 (≈2ms
baseline). With this data, even applying a more conservative 1.7x speed-up the obtained
yield is ≈1.2ms of raw computation. After accounting for the netword ant setup overhead
become very close to 11ms end-to-end latency.

ML-KEM-512 ML-KEM-768 ML-KEM-1024
k 2 3 5

Time (ms) 10.47 10.472 10.541

Table 5.2. ML-KEM estimated execution time on HSM

83

Conclusion

Figure 5.3. MLDSA and MLDSA time estimation obtained by projection of simulation results

XMSS

XMSS is a stateful hash-based signature system relying on Merkle trees to achieve forward
security. Its key-generation phase requires computing 2h leaf hashes and intermediate
nodes, where h is the tree height. The impact of the height parameter gives us a 10
times increase at each step. For example for the XMSS-SHA256 algorithm with n = 512
changing h from 10 to 16 and to 20 gives execution times of ≈14 s, ≈1040 s and ≈ 15590
s (4 hours and 20 minutes). The same pattern can be seen with different hash functions
and different values of the n parameter. On the other hand n makes the time change
differently according to the hash function that is being used, and can vary a lot. For all
this reasons, since all the measured times are well above the second, we can just ignore
the contribution given by the network and setup overhead. For the ratio to use instead
I applied the value of 6.5x given by RSA4096, since as for that case also here we have a
many repeated computation and so the gain given by the dedicated hardware becomes
significant. With this value we can see that despite still requiring a very long time to be
executed, especially when compared with standard algorithm’s time, XMSS becomes a
little more manageable requiring ∼50 minutes in the worst case.

However, because XMSS is stateful and requires careful leaf index tracking, practical
deployments often pre-generate key pairs during off-peak windows and store them for on-
demand signing, effectively decoupling key-generation latency from real-time operational
requirements.

84

5.1 – Time comparison and projections

n
192 256 512

h
10 280 ms 530 ms 2.26 s
16 18.3 s 26.34 s 160.1 s
20 290.96 s 444 s 2398 s

Table 5.3. XMSS-SHA256 estimated execution time on HSM

n
256 512

h
10 730 ms 2.99 s
16 52.5 s 190.96 s
20 795 s 2989 s

Table 5.4. XMSS-SHAKE estimated execution time on HSM

n
192 256

h
10 540 ms 740 ms
16 34.04 s 46.36 s
20 587 s 795 s

Table 5.5. XMSS-SHAKE256 estimated execution time on HSM

Figure 5.4. XMSS time estimation obtained by projection of simulation results

85

Conclusion

LMS

LMS is a stateful, hash-based scheme built on the Leighton-Micali one-time signature
framework, whose key generation constructs a layered tree governed by parameters (h, n,w).
In my most extreme test, using SHA-256 with h = 25, n = 24, and w = 8, building the
tree required approximately 105300s (≈29hours), vividly illustrating the steep time cost
of this approach. Unlike XMSS, LMS allows a wider choice of h values, producing ex-
ecution times that range from tens of milliseconds (approx10ms at h = 5) up to hours
at h = 20 or 25. The Winternitz parameter w doubles the number of chained hashes
per leaf when increasing from 4 to 8, thereby halving signature size at the expense of
computation, while the hash output length n scales runtime linearly. Extrapolating from
these simulation results, and applying the same 6.5x speedup factor observed for XMSS
on an HSM, reduces the worst-case key-generation time to about 4h30min. Although this
remains orders of magnitude slower than conventional schemes, it supports over 33mil-
lion signatures per key. To mitigate such latency in practice, parallel tree construction,
hardware pipelining, and segmented key-generation jobs are recommended.

h
5 10 15 20 25

n,w

24,1 11.701 ms 48 ms 1.27 s 40.2 s 1266 s
24,8 26.126 ms 486 ms 15.24 s 517 s 16212 s
32,1 12.176 ms 61 ms 1.68 s 50.5 s 1678 s
32,8 30.001 ms 617 ms 19.08 s 638 s

Table 5.6. LMS-SHA256 estimated execution time on HSM

h
5 10 15 20 25

n,w

24,1 14.56 ms 141 ms 4.25 s 137 s 4343 s
24,8 69.38 ms 1.94 s 57.27 s 1957 s
32,1 16.06 ms 182 ms 6.4 s 189 s 6041 s
32,8 92.18 ms 2.59 s 78.66 s 2644 s

Table 5.7. LMS-SHAKE256 estimated execution time on HSM

86

5.1 – Time comparison and projections

Figure 5.5. LMS time estimation obtained by projection of simulation results

In light of the temporal resource measurements presented in this work, it is clear that
the four NIST-selected post-quantum schemes demand a use-case-driven balancing of se-
curity level against computational cost. Although our analysis has focused exclusively on
key-generation latency in an environment unconstrained by processing power or memory,
the literature indicates that both CRYSTALS-Dilithium (ML-DSA) and CRYSTALS-
Kyber (ML-KEM) exhibit negligible signing and verification overhead, even on com-
modity hardware, and that tree-based schemes like XMSS and LMS similarly achieve
sub-millisecond signature verification and low-millisecond signing times once their initial
structures are built. Consequently, it is both feasible and advisable to offload the in-
tensive key-generation phase, often involving millions of cryptographic hash invocations,
to a high-performance host such as an HSM or dedicated server, and then provision the
resulting keys to resource-limited endpoints.

However, for applications in tightly constrained environments (e.g., embedded sys-
tems, IoT devices, or edge sensors), even this offload model may prove inadequate. Our
simulator-running on a modest laptop, required substantially longer to generate high-
security parameter sets than the HSM, underscoring that vastly less capable embedded
hardware would struggle to meet similar demands without extended latency or risking

87

Conclusion

thermal and power constraints. In the hash-based arena, although LMS and XMSS can in-
cur hours of latency at maximum parameter selections, their one-to-many key-generation
output (amassing upwards of 107 one-time keys per tree) means that system designers
can tailor tree height (h) and Winternitz parameter (w) to match provisioning windows,
trading off between precomputation time, signature size, and post-quantum security level.
Moreover, hierarchical variants such as HSS further mitigate latency by enabling incre-
mental key-generation across layered trees, allowing even compact devices to maintain an
ample pool of precomputed certificates over extended operational periods.

Beyond discrete algorithmic performance, broader architectural strategies will be
paramount. Network-wide key management frameworks must support seamless rota-
tion and renewal of PQC keys, ideally integrating with existing PKI ecosystems to
facilitate hybrid classical/quantum-resistant trust anchors. Parallelization of tree con-
struction, hardware pipelining of modular-arithmetic units, and field-programmable gate
array (FPGA) accelerators for polynomial arithmetic are promising avenues to compress
critical path durations further. Comprehensive benchmarks on representative embed-
ded platforms should be a priority for future work, ensuring that published performance
claims translate reliably to target deployments.

Looking ahead, expert forecasting models for fault-tolerant quantum computers ca-
pable of undermining RSA-2048 continue to place their arrival in the 2040s, with median
projections clustering around the mid-2040s under optimistic technology scaling scenar-
ios. Yet, given the extended duration required to standardize, implement, and deploy
post-quantum algorithms, compounded by their sharply increased resource footprints and
integration complexities, organizations and governments cannot afford to defer migration.
Early adoption of hybrid classical/PQC schemes, strategic offloading of key-generation
workloads, and careful parameter selection will be essential to safeguard sensitive data
against the quantum threat before it materializes. Only through proactive planning, rigor-
ous performance validation, and adaptive security architectures can stakeholders navigate
the transition to a post-quantum future with confidence and operational continuity.

88

Bibliography

[1] David Aasen and Morteza Aghaee. Roadmap to fault tolerant quantum computation
using topological qubit arrays, 2025.

[2] Rajeev Acharya, Dmitry A. Abanin, and Laleh Aghababaie-Beni. Quantum error
correction below the surface code threshold. Nature, 638(8052):920–926, December
2024.

[3] Google Quantum AI. Suppressing quantum errors by scaling a surface code logical
qubit. Nature, 614(7949):676–681, Feb 2023.

[4] Google Quantum AI and Collaborators. Quantum error correction below the surface
code threshold. Nature, 638(8052):920–926, Feb 2025.

[5] Frank Arute, Kunal Arya, and Ryan Babbush. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):505–510, Oct 2019.

[6] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.
Opensslntru: Faster post-quantum tls key exchange, 2021.

[7] Michael E. Beverland, Prakash Murali, Matthias Troyer, Krysta M. Svore, Torsten
Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram,
and Alexander Vaschillo. Assessing requirements to scale to practical quantum ad-
vantage, 2022.

[8] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs#11.

[9] Castelvecchi Davide. Ibm releases first-ever 1,000-qubit quantum chip, 2023.
[10] Dongxin Gao and Daojin Fan. Establishing a new benchmark in quantum com-

putational advantage with 105-qubit zuchongzhi 3.0 processor. Phys. Rev. Lett.,
134:090601, Mar 2025.

[11] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using
20 million noisy qubits. Quantum, 5:433, April 2021.

[12] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys,
Georges-Olivier Reymond, and Christophe Jurczak. Quantum computing with neu-
tral atoms. Quantum, 4:327, September 2020.

[13] Gil Kalai, Yosef Rinott, and Tomer Shoham. Google’s quantum supremacy claim:
Data, documentation, and discussion, 2023.

[14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chapman
& Hall/CRC, second edition, November 2014.

[15] Chen Lily, Moody Dustin, Regenscheid Andrew, Robinson Angela, and Randall
Karen. Recommendations for discrete logarithm-based cryptography: Elliptic curve

89

Bibliography

domain parameters. Technical Report NIST SP 800-186, National Institute of Stan-
dards and Technology, 2023.

[16] Chen Lily, Jordan Stephen, Liu Yi-Kai, Moody Dustin, Peralta Rene, Perlner Ray,
and Smith-Tone Daniel. Report on post-quantum cryptography. Technical Report
NIST IR 8105, National Institute of Standards and Technology, 2016.

[17] XIN Ling. The world’s first integrated quantum communication network, 2021.
[18] Daniel Litinski. A game of surface codes: Large-scale quantum computing with

lattice surgery. Quantum, 3:128, March 2019.
[19] SujayKumar Reddy M and Chandra Mohan B. Comprehensive analysis of bb84, a

quantum key distribution protocol, 2023.
[20] NIST. Post-quantum cryptography.
[21] National Institute of Standards and Technology. Digital signature standard (dss).

Technical Report FIPS 186-5, National Institute of Standards and Technology, 2023.
[22] National Institute of Standards and Technology. Module-lattice-based digital sig-

nature standard. Technical Report FIPS 204, National Institute of Standards and
Technology, 2024.

[23] National Institute of Standards and Technology. Module-lattice-based key-
encapsulation mechanism standard. Technical Report FIPS 203, National Institute
of Standards and Technology, 2024.

[24] National Institute of Standards and Technology. Stateless hash-based digital sig-
nature standard. Technical Report FIPS 205, National Institute of Standards and
Technology, 2024.

[25] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Paper
2015/939, 2015.

[26] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5(1), July 2014.

[27] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
overgf(p)and its cryptographic significance (corresp.). IEEE Transactions on In-
formation Theory, 24(1):106–110, 1978.

[28] J.M. Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,
1975.

[29] Carl Pomerance. The quadratic sieve factoring algorithm. In Thomas Beth, Nor-
bert Cot, and Ingemar Ingemarsson, editors, Advances in Cryptology — EURO-
CRYPT 84, volume 209 of Lecture Notes in Computer Science, pages 169–182.
Springer, 1985.

[30] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy, 2024.

[31] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
October 1997.

[32] Harshdeep Singh. Code based cryptography: Classic mceliece, 2020.
[33] Vikas Srivastava, Anubhab Baksi, and Sumit Kumar Debnath. An overview of hash

based signatures. Cryptology ePrint Archive, Paper 2023/411, 2023.

90

Bibliography

[34] Matt Swayne. Company claims quantum algorithm implements full adder operations
on quantum gate computers, 2025.

[35] Emmanuel Thomé. 795-bit factoring and discrete logarithms, 2019.
[36] Kleinjung Thorsten, Diem Claus, Lenstra Arjen K., Priplata Christine, and Stahlke

Colin. Computation of a 768-bit prime field discrete logarithm. IACR, 2017.
[37] I. Thorvaldson, D. Poulos, and C. M. Moehle. Grover’s algorithm in a four-qubit sili-

con processor above the fault-tolerant threshold. Nature Nanotechnology, 20(4):472–
477, Apr 2025.

[38] Violetta Weger, Niklas Gassner, and Joachim Rosenthal. A survey on code-based
cryptography, 2024.

[39] Jieyu Zheng, Haoliang Zhu, Yifan Dong, Zhenyu Song, Zhenhao Zhang, Yafang Yang,
and Yunlei Zhao. Faster post-quantum tls 1.3 based on ml-kem: Implementation and
assessment, 2024.

[40] Yang Zhou, Jing-Yang Liu, Chun-Hui Zhang, Hua-Jian Ding, Xing-Yu Zhou, Jian
Li, and Qin Wang. Experimental side-channel-secure quantum key distribution over
200 km, 2025.

91

	List of Figures
	List of Tables
	Public encryption as it stands
	Mathematical Aspects
	Modular Arithmetic
	Prime Numbers
	Group Theory
	Use in cryptography
	Hardness Of The Mathematical Problems

	Key Management and Diffie-Hellman
	Diffie-Hellman

	Public Key Encryption
	RSA
	CDH-DDH

	Digital Signature
	Signatures from the Discrete-Logarithm Problem
	Signature From Hash Functions

	Factorization and Discrete Logarithm Computation
	Factorization
	Discrete Logarithm

	PKC exploitation

	Quantum computers
	Theoretical aspects
	Mathematical concepts
	Quantum mechanics

	Main practical concepts
	Qbits
	Bloch sphere
	Density matrix
	Quantum state initialization
	Quantum-gate
	Quantum measurement
	Fidelity
	Lifetime

	Today's main algorithms
	Main category
	Quantum Fourier Transform
	Quantum search - Grover's algorithm

	Quantum Computing's Impact on Cybersecurity

	Quantum threats and Mitigations
	Today's performances
	Prediction for quantum hardware evolution
	Threats Brought by Quantum Computers
	Solutions to Quantum Threats
	PQC

	Execution's time analyses of PQ and standard algorithms
	Standard algorithms
	RSA
	ECDSA
	EdDSA

	Post Quantum Algorithms
	MLDSA
	MLKEM
	XMSS
	LMS

	Conclusion
	Time comparison and projections

	Bibliography

