
POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

M.Sc. Thesis

Constrained Reinforcement Learning
for Safe Quadruped Robot Locomotion

Supervisors Candidate
Prof. Raffaello Camoriano Paolo Magliano
Prof. Davide Tateo Prof. Jan Peters

Academic Year 2024-2025

Abstract

In recent years, robotic locomotion has made considerable advances, allowing
legged robots to walk successfully across a wide range of terrains. Many of the
most successful approaches utilize Reinforcement Learning (RL) as a framework
that allows robots to learn useful behaviors to achieve a goal through a trial-and-
error approach, specifying only the desired objective.

However, while RL has demonstrated impressive capabilities, it also presents
some limitations. One of the main concerns is the lack of safety during both the
learning process and the implementation of the resulting policy. In real-world
scenarios, unsafe behavior can damage the robot, harm the surrounding area, or
even become a risk to humans. So, ensuring safety is a fundamental requirement
for deploying RL-based strategies on physical robots.

Safe Reinforcement Learning addresses this issue by introducing constraints
that encourage safer and more controlled behavior, not only after training but
ideally during the learning process while maintaining the advantages of traditional
RL.

Furthermore, most current research focuses on training in simulation and then
transferring the policy to the physical robot using Sim-to-Real techniques. How-
ever, reaching a sufficient level of safety during learning opens up the possibility
of training directly on real robots, avoiding the potential mismatches caused by
simulation-to-reality transfer.

The thesis explores state-of-the-art Safe RL methods for quadruped locomotion
as a way to enforce safety constraints into the learning process. Specifically, it
examines the ATACOM method, which transforms a constrained RL problem into
an unconstrained one where the action space is mapped onto a manifold to limit
possible actions according to the desired safety requirements. These constraints
are derived from the robot model using the kinematic and geometric properties
provided by the Lie theory.

The study investigates the effectiveness of several safety restrictions and ana-
lyzes their impact on task learning and locomotion performance. The goal is to
determine which constraints support learning, identify the boundary conditions
that still allow successful walking, and observe how the walking style adapts un-
der different configurations. The considered constraints are joint position limits,
minimum and maximum height of the robot base, and desired feet position and
orientation.

The thesis compares the results of the constrained learning approach enabled
by ATACOM with state-of-the-art unconstrained locomotion policies, evaluating

trade-offs in terms of performance, safety, and robustness. It also extends the
ATACOM method by improving its effectiveness in the task by redesigning the
way the action space is morphed to ensure safety and by correcting the unsafe
actions with an improved error correction approach.

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Related works 5
2.1 Robot Locomotion . 5
2.2 Safe RL methods . 7

3 Background 9
3.1 Robot modeling and control . 9

3.1.1 Lie theory . 9
3.1.2 Position and orientation . 11
3.1.3 Homogeneous transformation 12
3.1.4 Robot model . 13
3.1.5 Kinematics . 14
3.1.6 Dynamics . 14
3.1.7 Robot control . 15

3.2 Reinforcement Learning . 16
3.2.1 Basics . 16
3.2.2 Reinforcement Learning algorithms 18
3.2.3 Deep Actor-critic Reinforcement Learning 19
3.2.4 Proximal Policy Optimization 20
3.2.5 Safe Reinforcement Learning 21
3.2.6 ATACOM: Acting on the Tangent Space

of the Constraint Manifold 21

4 Methodology 25
4.1 Low-level Control Adaptation . 25

4.1.1 Position-based Controller . 25

4.1.2 Velocity-based Controller . 26
4.2 Safe Locomotion Constraints . 26

4.2.1 Joint Position Constraint . 27
4.2.2 Foot Position Constraint . 27
4.2.3 Base Height Constraint . 29
4.2.4 Foot Orientation Constraint 30

4.3 ATACOM Extension . 31
4.3.1 Directional Constraints . 33
4.3.2 Exponential Moving Average Error Correction 34

5 Experimental Analysis 39
5.1 Quadruped Robot Locomotion Task 39

5.1.1 Robot Description . 39
5.1.2 Task Description . 40

5.2 Experimental Configuration . 42
5.2.1 Experimental Setup . 42
5.2.2 Metrics . 42
5.2.3 Unconstrained Baseline . 43

5.3 ATACOM Extension Ablation . 44
5.3.1 Directional Constraints . 44
5.3.2 Exponential Moving Average Error Correction 46

5.4 Learning Curve Comparison with vs. without Constraints 48
5.4.1 Base Height Constraint . 49
5.4.2 Joint Position Constraint . 49
5.4.3 Foot Orientation Constraint 50
5.4.4 Foot Position Constraint . 51

5.5 Constraints Safety Evaluation . 52
5.5.1 Constrained Walking Style 53

6 Conclusions 57

A Background Details 59
A.1 Lie theory formulas . 59

A.1.1 Special Euclidean group SE(3) 59

B Experimental Analysis Details 61
B.1 Hyperparameters . 61

B.1.1 PPO Hyperparameters . 61
B.1.2 ATACOM Hyperparameters 61

B.2 Additional Results . 62
B.2.1 ATACOM parallel implementation issue 62
B.2.2 EMAEC Ablation . 63

B.2.3 Velocity baseline behavior 63

List of Tables

5.1 Definition of reward terms. The z-axis is aligned with gravity.
ϕ(x) := exp

1
−∥x∥2

0.25

2
. Symbols definition: 41

B.1 PPO hyper-parameters used for the training of the tested policies.
The adaptive learning rate is based on the KL-divergence, the cor-
responding algorithm is taken from [3]. 61

B.2 ATACOM hyper-parameters used for the training of the constrained
tested policies. ∗ The EMAEC variables are used only when the
EMAEC feature is enable. 62

List of Figures

3.1 This image visualizes the connection between a Lie group and its
corresponding Lie algebra. The red plane represents the Lie alge-
bra TEM, which is the tangent space at the identity E of the Lie
group’s manifoldM, illustrated as a blue sphere. A straight line vt
in the Lie algebra maps to a curved path Exp(vt) on the manifold
through the exponential map, tracing the geodesic from the iden-
tity. Each group element can be associated with a point in the Lie
algebra, enabling complex, nonlinear operations on the manifold to
be performed within the simpler, linear structure of the Lie algebra.
Image taken from [32]. 10

3.2 Conceptual description of ATACOM. (a) The safe set is defined
by constraint functions in the original state space. (b) These con-
straints define the constraint manifold in an augmented state space
that captures the safe set. (c) At each point on the constraint
manifold, the corresponding tangent space is computed. (d) The
resulting trajectory evolves on these tangent spaces, ensuring that,
once projected back into the original state space, the motion remains
safe. Image taken from [1]. 22

4.1 Illustration of foot position constraint structure. The ellipse defines
the safe area for the foot in the xy-plane. The value k(q) represents
the distance of the foot from the ellipse boundary, shown by the
blue line. 28

4.2 Illustration of base height constraints structure. The blue line k(q))
represents the constraint value. In the case (a) the safe space is
described by states where the base is above the red plane. In the
case (b) the safe space is described by states where the base is below
the red plane. 29

4.3 Illustration of foot orientation constraint structure. Without rigor-
ous detail, it can be visualized as a cone centered on the desired
orientation, represented by the cone axis. The base diameter of the
cone increases or decreases with the height of the foot. The blue
arrow represents the constraint value k(q). 31

4.4 Four different actions near a constraint 35
4.5 Behavior of the contraction term with and without EMAEC 36
5.1 Unitree A1 . 40
5.2 Undiscounted cumulative return R across 5 seeds for the two un-

constrained methods based on Rudin’s setup. The position baseline
uses joint positions as actions, while the velocity baseline uses joint
velocities. 43

5.3 Undiscounted cumulative return for experiments with a minimum
base height constraint set to 0.05 m. Plot (a) shows results without
any ATACOM extensions, while (b) shows results with Directional
Constraints (DC) enabled. 45

5.4 Average violation [%] of the experiment with minimum base height
constraint set to 0.05 m. Plot (a) shows the setup without any
ATACOM extensions, while (b) shows the setup with Directional
Constraints (DC) enabled. 45

5.5 Violation distribution of the experiment with minimum base height
constraint set to 0.05 m. It shows orginal ATACOM and ATACOM
with Directional Constraints (DC). 46

5.6 Comparison of average constraint violation [%] for the minimum
base height set to 0.15 m. (a) uses only the Directional Constraints;
(b) combines both Directional Constraints and EMA Error Correction. 47

5.7 Violation distribution of the experiment with the minimum base
height constraint set to 0.15 m. It shows ATACOM with Directional
Constraints (DC) and ATACOM with Directional Constraints and
EMA Error Correction (DC and EC). 48

5.8 Undiscounted cumulative return for the experiment with minimum
height set to 0.25 m. 49

5.9 Undiscounted cumulative return of the experiment with joint posi-
tion constraint applied to the thigh, limited to 70% of its original
range. 50

5.10 Cumulative return over training epochs for the experiment with
the foot orientation constraint and Directional Constraints enabled.
The target orientation is set to −0.3 in the y-component of θtarget,
with αmax = π and αmin = π

2 . 51
5.11 Undiscounted cumulative return of the foot position constraint with

α = β = 0.2m. 52

5.12 Undiscounted cumulative return for experiments with unusual walk-
ing styles. Experiment (a) uses a maximum height constraint set to
0.15 m, while experiment (b) uses a minimum height constraint set
to 0.35 m. 53

5.13 Constraint violation distribution for experiments with unusual walk-
ing styles. Experiment (a) uses a maximum height constraint set to
0.15 m, while experiment (b) uses a minimum height constraint set
to 0.35 m. 54

5.14 Average constraint violation [%] for experiments with maximum
height constraint set to 0.15 m. Configuration (a) includes all viola-
tions, while configuration (b) applies an ϵ-margin of 0.1 m to ignore
minor violations within this threshold. 55

5.15 Average constraint violation [%] for experiments with minimum
height constraint set to 0.35 m. Configuration (a) includes all vi-
olations, while configuration (b) applies an ϵ-margin of 0.15 m to
ignore minor violations within this threshold. 55

B.1 The plot shows the time required to solve a linear system with in-
creasing batch size using different techniques. The approaches can
be grouped into two main categories: those that use the lstsq Torch
function directly (faster), and those that rely on SVD or the pseudo-
inverse (slower). Specifically, lstsq, vmap_lstsq, compiled_lstsq,
and compiled_vmap_lstsq belong to the first group, while svd_lstsq,
vmap_pseudo, and script_svd are in the second. Both groups scale
linearly with respect to batch size, suggesting a lack of full parallel
computation. 63

B.2 Undiscounted cumulative return for experiments with a minimum
base height constraint set to 0.15 m. Plot (a) shows results with Di-
rectional Constraints, while (b) shows results with both Directional
Constraints and EMAEC enabled. 64

B.3 Joint pos values during an episode controlled by velocity baseline. . 65
B.4 Foot position values during an episode controlled by velocity baseline. 66

List of Algorithms

1 Safe Reinforcement Learning with ATACOM 23
2 Extended ATACOM with Directional Constraints 34

Chapter 1

Introduction

Robotics is a discipline that arises from the intersection of multiple fields that work
together to design, develop, and operate autonomous machines capable of perform-
ing actions by processing information from sensors that capture the surrounding
environment.

In recent decades, technological advances have significantly enhanced the ca-
pabilities of robotic systems. Today, robots play a crucial role in a wide range
of applications, from industrial automation and medical surgery to autonomous
driving and the exploration of unstructured environments.

At the core of robotics lies motion planning and control, which enable robots
to perform tasks with high precision and efficiency, assisting humans in a variety
of activities. Modern research in robotics aims to develop robust and efficient be-
haviors in complex and dynamic environments, tackling increasingly challenging
tasks that would otherwise require considerable human effort. This complexity
also introduces uncertainty, making it difficult to rely only on model-based ap-
proaches, which often depend on simplifying assumptions to remain computation-
ally tractable.

Reinforcement Learning. Reinforcement Learning (RL) offers a promising al-
ternative. By allowing robots to learn from interaction, RL enables the devel-
opment of behaviors in environments too complex to be modeled analytically.
In particular, robotic locomotion has benefited significantly from this approach,
achieving significant results in recent years.

The RL paradigm exploits an iterative procedure that enables an agent to learn
a behavioral strategy, known as policy, from direct experience in an unknown envi-
ronment, guided by a feedback scalar signal called reward. This reward evaluates
the agent’s actions with the goal of accomplishing a given task. Such a struc-
ture allows the task to be defined only through the reward function, rather than
requiring a precise specification of each joint movement needed to complete it.

1

Introduction

Despite notable improvements over previous techniques, RL presents some in-
trinsic limitations due to its trial-and-error nature. Standard RL methods are
inherently stochastic and may exhibit behaviors that deviate from the intended
ones, especially during the learning phase. This can lead to serious damage to
the robot hardware or its surroundings, including potential risks to nearby hu-
mans. Safe Reinforcement Learning aims to provide safety guarantees during both
training and deployment by enforcing a set of constraints that the agent must
respect.

Acting on the Tangent Space of the Constraint Manifold. Several ap-
proaches have been developed to incorporate safety into the RL paradigm, typ-
ically by introducing soft or hard constraints. This thesis focuses on the Safe
RL method known as Acting on the Tangent Space of the Constraint Manifold
(ATACOM) [1], which builds a safe action space by computing the tangent space
relative to the constraint manifold, in this way, every action that belongs to it is
guaranteed to be safe. This particular design allows a constrained RL problem to
be reformulated as an unconstrained one by introducing a safe controller between
the agent and the environment. Consequently, the policy remains safe not only
during deployment but also throughout training, as every action executed by the
ATACOM controller belongs to the safe region.

ATACOM has been shown to perform particularly well with robotic manipula-
tors across various tasks [1], [2], demonstrating the ability to safely learn directly
in the real world without the need for prior simulation-based training. This the-
sis aims to investigate ATACOM’s potential by evaluating its performance in a
different domain, that is, quadruped robot locomotion.

Although in this thesis we consider the model-free RL setting, ATACOM relies
on the robot model to estimate constraint violations and prevent unsafe move-
ments. Therefore, the safety guarantees provided by the method hold only under
the assumption that the model accurately represents the system’s dynamics. A
large discrepancy between the model and the actual robot may result in safety
violations.

Contribution. The goal of this thesis is to understand whether the introduction
of constraints in the quadruped locomotion task could improve the efficiency of
the learning process by reducing the samples needed to solve the task and to
guarantee safety by respecting constraints that could be designed to help learning
or to impose different walking style.

The complexity of this new task revealed minor incompatibilities between AT-
ACOM and state-of-the-art locomotion methods, which have been addressed by
adapting both the method and the experimental environment. As a result, this
thesis contributes by:

2

Introduction

• Updating the state-of-the-art setup to enable ATACOM to allow the intro-
duction of safety constraints by modifying the low-level controller;

• Extending the ATACOM method to overcome design limitations in the con-
text of quadruped locomotion, improving its applicability to other domains;

• Designing and studying locomotion-specific constraints that leverage the robot
model to restrict joint movements, foot positions, and base height, and pro-
viding an extensive empirical analysis of their performance in simulation.

Overview. The structure of the thesis is briefly outlined to provide a general
overview.

• Chapter 2: presents state-of-the-art RL methods for robot locomotion, both
unconstrained and incorporating safety requirements.

• Chapter 3: introduces the background concepts and algorithms supporting
the main contributions of the thesis. It presents the foundations of robot
modeling and RL, including the notation and mathematical formulations used
throughout the work.

• Chapter 4: describes the key contributions of this thesis, detailing the pro-
posed low-level controller, the safety constraints design, and two extensions
introduced in ATACOM.

• Chapter 5: presents ablations for the proposed extensions and evaluates
the performance of constrained locomotion policies compared to the uncon-
strained baseline, in terms of both learning efficiency and safety guarantees.

• Chapter 6: provides a final summary, highlighting the main findings and
proposing possible directions for future research.

3

4

Chapter 2

Related works

2.1 Robot Locomotion

Quadruped robot locomotion is a challenging task that has been studied for decades
and has inspired a wide range of approaches. In recent years, one approach has
gained particular popularity due to its successful results and relative ease of im-
plementation: Reinforcement Learning (RL). RL, especially model-free RL, has
proven to be a strong competitor to traditional methods based on analytical mod-
els of kinematics and dynamics for control and planning.

Modern RL algorithms are capable of achieving quadruped locomotion over di-
verse terrains with obstacles such as steps, gaps, inclined surfaces, slippery patches,
and even rough, rocky ground. A strong baseline was established in the work
by Rudin et al. [3], which demonstrated the potential of RL applied to diverse
quadruped robotic platforms on complex terrains. The study highlighted key fac-
tors such as parallel training, which significantly accelerates learning, and Sim-to-
Real techniques like domain randomization, which enable the direct deployment
of policies trained in simulation into real hardware.

The success of RL in locomotion extends beyond quadrupeds to bipedal robots.
For instance, Rodriguez et al. [4] is one of the first to show the capabilities of a
RL agent applied to real-world bipedal robot locomotion. They effectively achieve
stable walking in multiple directions in simulation and real world. In a separate
study, Siekmann et al. [5] show that a bipedal agent could navigate stair-like
terrains using only proprioceptive sensors.

Locomotion extensions Building on these foundations, several works have fur-
ther expanded the capabilities of RL for robot locomotion. Margolis et al. [6]
achieved highly dynamic behaviors that resulted in very high locomotion speeds.

5

Related works

Other studies [7]–[9] explored a wide range of agile behaviors, including jump-
ing, sprinting, crawling, leaping, traversing tilted ramps, and even performing
handstands, demonstrating the robustness and versatility of RL-based locomotion
policies.

Other researchers, such as Miki et al. [10] and Aractingi et al. [11], improve upon
the previous work by Rudin et al. [3] by incorporating information from additional
sensors, combining proprioceptive and exteroceptive perception. The studies [12]–
[14] aim to enhance the adaptability of the agent by dynamically adjusting its
walking style in real time based on the surrounding terrain.

Smith et al. [15] achieve excellent results in real-world locomotion by training
directly in the physical environment, using a sample-efficient RL algorithm that
collects observations on the fly. Jenelten et al. [16] improve the learning process
by combining a model-based planner with a reinforcement learning algorithm,
where the planner rolls out reference motions tracked by the deep policy. Feng et
al. [17] develop general-purpose locomotion controllers deployable across multiple
quadruped platforms without requiring separate policies for each robot.

Implemented techniques The Proximal Policy Optimization (PPO) algorithm
by Schulman et al. [18] has proven to be one of the most effective in this domain,
being employed in many of the most relevant works [3]–[5], [7], [8], [10]–[12]. It
offers strong policy convergence through its trust region approach and performs
well in parallelized training environments. In contrast, Smith et al. [15] use an
extended version of the Soft Actor-Critic (SAC) algorithm by Haarnoja et al. [19],
which accelerates learning by reducing the total number of samples needed, an
essential feature for real-world training.

To achieve good results on challenging terrains, a curriculum-based approach
is often employed [3], [5], [11], [12]. The advantage of this method is its ability
to automatically increase the level of difficulty of the terrain when the agent has
mastered the current level, enabling the policy to adapt gradually to increasingly
complex scenarios. In contrast, training the agent directly on the most difficult
scenarios has been shown to be considerably harder than using a curriculum.

All the discussed works evaluate policy performance not only in simulation but
also in the real world, adopting Sim-to-Real techniques to transfer the simulated
policy into physical systems. Since simulators approximate and model real-world
dynamics and properties to keep computational costs feasible, a gap between simu-
lation and reality inevitably arises. To bridge this gap, the most effective technique
is Domain Randomization [20], which involves randomizing simulation parameters,
such as masses and friction coefficients, to make the agent generalize across a range
of conditions. This improves policy robustness and enables successful real-world
deployment, as shown in [3], [5], [7], [10]–[13]. An alternative approach is proposed
by Campanaro et al. [21], which replaces Dynamics Randomization with Extended

6

2.2 – Safe RL methods

Random Force Injection (ERFI). ERFI perturbs system dynamics during training
and produces policies that are more robust to variations in system dynamics.

2.2 Safe RL methods
Ensuring safety in Reinforcement Learning is not a straightforward task, and many
approaches have been developed over the years. Traditional methods enforce con-
straints by adding a penalty term to the reward or by using Lagrange multipliers
to trade off reward and constraint violation. However, the reward shaping pro-
cess can be highly sensitive to small changes in reward design and often requires
extensive tuning of weight coefficients [22].

A key distinction among Safe RL techniques lies in the type of constraints they
impose. These can be categorized as hard constraints [1], [23]–[26]; or soft con-
straints [8], [24]–[31]. Soft constraints promote safe behavior without guaranteeing
it, whereas hard ones enforce strict limits that must never be violated.

Due to the diversity of approaches, a wide variety of strategies have emerged to
ensure safety. Some methods, such as those by Liu et al. [1], Ames et al. [23], and
Yang et al. [29], exploit system models to analyze and predict safety violations.
Others, including Yang et al. [29] and He et al. [31], rely on two policies, one
trained with an unconstrained method for normal behavior, and a second designed
to recover from states near constraint violations. The final policy switches between
them when entering a critical state space region.

Other studies [24], [25], [27], [28], extend the RL algorithm itself by incor-
porating safety constraints directly into the optimization process, often using a
Lagrangian multiplier approach.

Chane et al. [26] employ a simple yet effective technique that terminates episodes
based on proximity to constraint violations and the associated risk. Smith et
al. [30] propose using a secondary neural network to evaluate the range of permis-
sible actions, which progressively becomes more permissive to allow wider explo-
ration.

ATACOM offers the advantage of being built on top of any unconstrained RL
method that best suits the task, as long as an accurate system model is available.
Another benefit, when compared to the approach by Ames et al. [23], is the reduced
computational cost: ATACOM only requires solving a least squares problem for a
linear system, rather than a full quadratic programming problem.

7

8

Chapter 3

Background

This Chapter introduces the essential background concepts that support and con-
textualize the analyses presented in the later chapters. Section 3.1 provides the
essential information needed to understand basic robot descriptions and motion.
Next, Section 3.2 presents the core concepts of the Reinforcement Learning (RL)
approach, outlining its key features across various methods, leading up to the one
adopted in this thesis.

3.1 Robot modeling and control
This Section introduces the basic concepts involved when working with robotic
systems. It covers the mathematical representation of the robot’s structure and
dynamics, as well as the control techniques used to drive its motion. These con-
cepts are essential for formulating the constraints and designing the low-level con-
trollers employed throughout this work. Being able to formally describe the sys-
tem’s evolution is also crucial for building reliable simulated environments that
closely replicate real-world behavior. Furthermore, having an accurate model of
the system is fundamental to respect the assumptions on which ATACOM relies.

3.1.1 Lie theory
A Lie group is a mathematical structure that combines the characteristics of the
group and the concept of a smooth manifold [32]. This means that its elements
satisfy the group axioms (closure, associativity, identity, and invertibility), and at
the same time, the set of elements forms a continuous, differentiable surface with
no sharp corners or edges (smooth manifold).

A manifold M is a space that has a curved structure such as the surface of a
sphere. The smoothness of the manifold allows us to define a tangent space at

9

Background

each point, which is a local linear approximation of the manifold and enables the
application of linear properties.

In the specific case of a Lie group, the manifold has a uniform shape that causes
all tangent spaces to be similar due to the group symmetry. The tangent space at
the identity element E of the group plays a special role and is called the Lie algebra
TEM of the Lie group. The Lie algebra captures the local, linear structure of the
group and allows us to study complex, nonlinear behavior using linear tools. The
figure 3.1 shows the graphical description of elements in these spaces.

Figure 3.1: This image visualizes the connection between a Lie group and its
corresponding Lie algebra. The red plane represents the Lie algebra TEM, which
is the tangent space at the identity E of the Lie group’s manifold M, illustrated
as a blue sphere. A straight line vt in the Lie algebra maps to a curved path
Exp(vt) on the manifold through the exponential map, tracing the geodesic from
the identity. Each group element can be associated with a point in the Lie algebra,
enabling complex, nonlinear operations on the manifold to be performed within
the simpler, linear structure of the Lie algebra. Image taken from [32].

The key operations that link a Lie group with its Lie algebra are the exponential
map and the logarithm map. They make it possible to obtain an element of the
Lie algebra from the corresponding one in the Lie group, and vice versa. The
exponential map Exp(τ) precisely transfers elements of the Lie algebra to the
group. Intuitively, Exp(τ) wraps the tangent element around the manifold. The
inverse map is the logarithm map Log(X), i.e., the unwrapping operation.

Exp(τ) : Rm →M Log(X) :M→ Rm.

10

3.1 – Robot modeling and control

The Jacobian defined on Lie groups extends the concept of derivatives to func-
tions on smooth manifolds. They are compatible with the classical chain rule,
which makes them especially powerful for computing complex derivatives through
composition. For a multivariate function f : Rm → Rn, the Jacobian matrix is
defined as the n×m matrix stacking all partial derivatives.

J = ∂f(x)
∂x

≜ lim
h→0

f(x + h)− f(x)
h

=


∂f1
∂x1

· · · ∂f1
∂xm...

∂fn

∂x1
· · · ∂fn

∂xm

 ∈ Rn×m.

Based on the standard definition, the Jacobian of a function f :M→N acting
on manifolds is

XDf(X)
DX

≜ lim
τ→0

Log (f(X)−1 ◦ f(X ◦ Exp(τ)))
τ

.

3.1.2 Position and orientation
The ability to work with robots relies on a fundamental understanding of how
to represent the position and orientation of a three-dimensional object, which is
essential to describe how each part of the robot affects the others. This Section in-
troduces the notation and operations used to represent the rotation and translation
of a rigid body, as required to model robot joints.

An object in three-dimensional space is fully described by its position and orien-
tation, defined relative to the world reference frame FW using the object reference
frame Fo. The position is expressed as a vector t of Cartesian coordinates from
Fw to Fo.

wto =


wto,x
wto,y
wto,z

 .
The orientation is represented by expressing the axes of the rotated frame Fo in

the coordinates of the world frame Fw. The rotation matrix groups the components
for each axis.

wRo =


wxo,x

wyo,x
wzo,x

wxo,y
wyo,y

wzo,y
wxo,z

wyo,z
wzo,z

 ,
where wxo,y is the y component (w.r.t Fw) of the unit vector associated with

the x axis of object reference frame Fo.
Rotation matrices belong to the Special Orthogonal Lie group SO(3), which

means they satisfy the properties of a Lie group. The group acts on 3-vectors by

11

Background

rotation, and its tangent space elements can be identified with rotation vectors in
R3. The space R3 is where rotation rate vectors uw, and angle-axis representations
uθ are defined. The exponential and logarithm maps of a rotation matrix can be
formulated as follows:

Exp(θu) ≜ I + sin θ [u]× + (1− cos θ) [u]2× ∈ R3×3

θu = Log(R) ≜ θ(R −R⊤)∨

2 sin θ ∈ R3,

with θ = cos−1
A

trace(R)− 1
2

B
,

where [u]× denotes the skew-symmetric matrix associated with the vector u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 .
The Jacobian has a closed-form expression derived from the definition.

J(θ) = I− 1− cos θ
θ2 [θ]× + θ − sin θ

θ3 [θ]2×.

3.1.3 Homogeneous transformation
By combining translation and rotation, the coordinates of a point p in frame F0
can be expressed in terms of its coordinates in frame F1.

0p = 0t1 + 0R1
1p.

The homogeneous transformations provide a way to handle rotations and trans-
lations in 3D space using matrix operations, which simplifies the mathematical
treatment of rigid body motion.C

0p
1

D
=
C

0R1
0t1

0 1

D C
1p
1

D

0p̃ = 0T1
1p̃,

where

0T1 =
C

0R1
0t1

0 1

D
.

12

3.1 – Robot modeling and control

This transformation belongs to the Special Euclidean Lie group SE(3), in which
each element is represented by a transformation matrix T. The corresponding Lie
algebra is expressed as a 6D vector τ ∈ R6, which combines translational and
rotational components.

τ =
C
ρ
θ

D
∈ R6.

The relative exponential and logarithm maps are described in the Appendix A.1.1.

3.1.4 Robot model
A robot is composed of rigid bodies, called links, connected by joints to form
a kinematic chain. The most common types of joints are revolute, which allow
relative rotation, and prismatic, which allow relative linear motion along an axis.

The configuration of a robot is a complete specification of the position of all
its parts. The set of all feasible configurations defines the configuration space (C).
In most cases, the configuration can be fully described by the values of the joint
variables. Specifically, for a revolute joint, the variable is a joint angle θi; for a
prismatic joint, it is a joint offset di.

A robot with n joints has a configuration vector

q = [q1, q2, . . . , qn]⊤ ∈ Rn,

where qi = θi for revolute joints and qi = di for prismatic joints. Since the links are
assumed to be rigid and the base of the robot is fixed, knowledge of q determines
the position and orientation of any point on the robot.

The number of degrees of freedom (DoF) corresponds to the dimension of the
configuration space, and typically equals the number of joints. For comparison, a
rigid body in three-dimensional space has six DoF: three translational and three
rotational.

While the configuration describes the robot’s geometry at a specific instant, it
does not account for motion or dynamics. The state of a robot extends the config-
uration by incorporating dynamic quantities such as joint velocities. A common
representation of the state is a vector

s =
C
q
q̇

D
∈ R2n,

which includes both position and velocity components. The set of all such states
forms the state space, which, together with a dynamic model and control inputs,
allows prediction of future behavior.

13

Background

3.1.5 Kinematics
Kinematics studies the geometric and temporal aspects of a robot’s motion with-
out looking at the forces or torques that cause it. The goal is to establish the
relationship between the motion of each joint and the overall motion of the robot.

Forward Kinematics solves the problem of determining the position and ori-
entation of the end effector given the joint variables q. To perform kinematic
analysis, a coordinate frame is rigidly attached to each link. In particular, the
frame Fi is assigned to link i. Let Ai be the homogeneous transformation matrix
that expresses the pose of frame i with respect to frame i−1. This transformation
changes with the robot’s configuration and depends only on the joint variable qi,
under the assumption that joints are either revolute or prismatic.

The pose of the end effector, placed at the end of the n-th link and expressed
in the inertial frame F0, is given by combining the individual transformations:

0Tn = A1(q1) · · ·An(qn),

where each homogeneous transformation matrix Ai has the form:

Ai =
C

i−1Ri
i−1ti

0 1

D
.

The derivative of the forward kinematics equations with respect to time provides
the Jacobian matrix, which describes a linear relationship between the joint
velocities and the linear and angular velocity of the end effector. The Jacobian
J(q) is a 6×n matrix that captures the instantaneous mapping between the joint
space and the task space velocities. The joint space is an n-dimensional vector of
joint velocities, while the task space velocity is a 6-dimensional vector representing
linear and angular velocity of the end effector.

Inverse Kinematics solves the inverse problem, that is, computing the joint
variables q given the description of the desired position and orientation of the end
effector. This typically requires solving a system of nonlinear equations and may
not admit a unique or closed-form solution.

3.1.6 Dynamics
While kinematic equations describe the motion of a robot without considering
their causes, dynamic equations explicitly describe the connection between motion
and the forces and torques that produce it. A proper dynamic model is essential
for accurate simulation, animation, and control of robotic systems.

In most robotic applications, the dynamic equation is expressed in the following
standard form:

14

3.1 – Robot modeling and control

B(q) q̈ + C(q, q̇) q̇ + g(q) = τ . (3.1)

This model includes the following terms:

• B(q) ∈ Rn×n is the inertia matrix, a symmetric and positive definite matrix
that captures the mass and geometry of the robot in joint space.

• q, q̇, q̈ ∈ Rnare the vectors of generalized joint positions, velocities, and ac-
celerations, respectively.

• C(q, q̇) q̇ ∈ Rn is the vector of Coriolis and centrifugal forces.

• g(q) ∈ Rn is the vector of gravitational forces acting on the robot.

• τ ∈ Rn is the vector of generalized forces or torques applied at the joints.

The explicit dynamic model of a robot can be derived using different methods,
where Lagrange and Newton-Euler approaches are the most common.

The Lagrange method is based on the kinetic and potential energy of the system,
and applies the Euler–Lagrange equations to get the equations of motion in closed
form. In contrast, the Newton–Euler method relies on the direct application of
Newton’s laws to each link of the robot. It is a numerical and recursive approach
that propagates forces and torques along the kinematic chain.

3.1.7 Robot control
Motion control refers to the problem of determining how a robot moves. For the
purpose of the thesis, we describe only the goal of reaching a desired fixed config-
uration, expressed in joint space, and maintaining that configuration. Formally,
the goal is to achieve q = qd with q̇ = 0.

In this work, the focus is on a class of dynamical systems known as control-
affine systems. These are systems where the control input appears linearly and
the dynamics is described by a differential equation of the form:

ṡ = f(s) +G(s) us,

where:

• s ∈ S ⊂ Rn is the system state,

• us ∈ U ⊂ Rm is the m-dimensional control input,

• f : S → Rn represents the drift dynamics (i.e., the system behavior in the
absence of control),

15

Background

• G : S → Rn×m is the input matrix determining how the control input affects
the system.

Both f and G are assumed to be locally Lipschitz continuous functions.
To regulate the system, the proportional–integral–derivative controller (PID)

controller automatically compares the desired target value qd to the actual state
value q, reducing the distance between them through three components: propor-
tional, integral, and derivative.

The method defines the value of the control input u(t) to address the error
(qd − q):

u(t) = KP (qd − q) +KI

Ú t

0
(qd − q(τ)) dτ −KD q̇(t).

The proportional component KP (qd − q) outputs a corrective term that is
directly proportional to the current error, providing an immediate response that
quickly reduces the gap from the desired setpoint. The integral componentKI

s t
0(qd−

q(τ)) dτ is the sum of the error over time. It eliminates persistent steady-state
offsets by making a corrective action based on the integral term, minimizing long-
term error. The derivative component KD q̇(t) evaluates the rate of change of the
error to predict future states, with the goal of reducing overshooting and improving
stability, especially in systems subject to rapid movements.

3.2 Reinforcement Learning

3.2.1 Basics
The goal of Reinforcement Learning (RL) is to learn a behavior strategy (policy)
that maximizes the performance metric reward in an unknown, stochastic envi-
ronment. Unlike supervised learning, RL does not provide explicit target actions;
instead, the agent must infer effective behavior only from a delayed reward signal.
Moreover, data arrive sequentially (not i.i.d.), and each action influences future
observations and rewards.

The interaction between the agent and the environment in RL is modeled as a
Markov Decision Process (MDP), which assumes full observability that means the
current state fully describe all relevant past information. An MDP is defined by
the tuple

M = ⟨S,A,R,P , ι, γ⟩,
where

• S is the state space;

• A is the action space;

16

3.2 – Reinforcement Learning

• R : S ×A×S → R is the reward function, producing R(s, a, s′) when action
a in state s leads to s′;

• P : S × A × S → [0, 1] gives transition probabilities P(s, a, s′) = P(St+1 =
s′ | St = s, At = a);

• ι is the initial-state distribution;

• γ ∈ [0, 1) is the discount factor.

The Markov property asserts that the future is independent of the past given
the present state:

P(St+1 = s′ | St = s, St−1, . . .) = P(St+1 = s′ | St = s).

A policy π(a | s) specifies the agent’s behavior: for each state s, it gives the
probability of choosing action a. Under a policy π, the agent generates a trajectory
τ = (s0, a0, r1, s1, . . .), and accumulates rewards. The discounted return is defined
from time t as

Jt ≜ Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT −1Rt+T ,

where T may be finite (episodic tasks) or infinite (continuing tasks). When γ = 1
in a finite-horizon problem, this sum is often called the undiscounted return.

Policy performance is assessed using two fundamental functions:
The value function gives the expected return when starting in state s and following
π in the next steps.

V π(s) ≜ Eπ[Jt | St = s] = Eπ

C ∞Ø
k=0

γkRt+k+1

----St = s

D
,

and it also satisfies the following Bellman recursive equation:

V π(s) =
Ø
a∈A

π(a | s)
Ø
s′,r

P(s′, r | s, a) [r + γV π(s′)] .

The action-value function captures the expected return when the agent takes ac-
tion a in state s and then follows π:

Qπ(s, a) ≜ Eπ[Jt | St = s, At = a] = Eπ

C ∞Ø
k=0

γkRt+k+1

----St = s, At = a

D
.

17

Background

From these definitions, the following functions are defined:

• The optimal value function.

V ∗(s) ≜ max
π

V π(s)

• The optimal action-value function.

Q∗(s, a) ≜ max
π

Qπ(s, a)

• The advantage function, which measures how much better action a is com-
pared to the policy’s average in state s.

Aπ(s, a) = Qπ(s, a)− V π(s)
Solving an MDP means finding a policy π∗ that maximizes the expected dis-

counted return from every state.
Its Bellman recursive formulation is:

Qπ(s, a) =
Ø
s′,r

P(s′, r | s, a)
r + γ

Ø
a′∈A

π(a′ | s′)Qπ(s′, a′)
 .

From these definitions, the following functions are defined:
The optimal value function.

V ∗(s) ≜ max
π

V π(s).

The optimal action-value function.

Q∗(s, a) ≜ max
π

Qπ(s, a).

The advantage function, which measures how much better action a is compared to
the policy’s average in state s.

Aπ(s, a) = Qπ(s, a)− V π(s).

Solving an MDP means finding a policy π∗ that maximizes the expected dis-
counted return from every state.

3.2.2 Reinforcement Learning algorithms
Several RL algorithms have been developed to solve a wide range of tasks, from
trivial problems to highly complex ones. They can be classified according to five
key characteristics:

18

3.2 – Reinforcement Learning

Model-Based vs. Model-Free Model-based methods exploit the MDP’s tran-
sition function P and reward function R to compute the value function V ,
while model-free methods estimate V only through exploration.

Sampling vs. Planning Sampling methods improve policies or value estimates
by drawing samples (real or simulated trajectories), while planning methods
use a known model to perform look-ahead computations over possible future
states.

Bootstrapping vs. Episodic Bootstrapping methods update their estimates at
each time step using existing estimates (Temporal Difference), and do not
require an episode to terminate. Episodic (Monte Carlo) methods instead
wait until the end of an episode and use the full return.

Discrete vs. Continuous Discrete methods assume finite state and action spaces
(often handled via tabular representations), while continuous methods oper-
ate over infinite spaces and typically rely on function approximators (e.g.,
neural networks).

On-Policy vs. Off-Policy On-policy methods improve the same policy that they
use to collect data from the environment, while off-policy methods learn a
separate target policy from data generated by a different behavior policy.

The most suitable algorithm for the locomotion task handles continuous state
and action spaces. It is model-free, as the dynamics model of the environment
is not trivial to obtain and therefore relies on sampling interactions to gather
experience. It employs bootstrapping updates and an off-policy learning scheme
to maximize flexibility.

3.2.3 Deep Actor-critic Reinforcement Learning
An Actor-Critic algorithm is composed of two core elements: the actor, which
selects actions based on the policy, and the critic, which estimates the value of those
actions using an approximated value function. The actor is responsible for making
decisions, while the critic provides feedback to improve the policy. Both handle
high-dimensional spaces with deep neural networks, in fact, they have learnable
parameters adjusted during training.

The policy is defined as a parametric function πθ(a | s), where θ represents
the learnable parameters. The objective of policy optimization is to determine the
parameters θ that maximize the expected episodic reward J(θ). In practice, the
policy is often rappresented as a Gaussian distribution over the state space:

πθ(a | s) = N (a | µθ(s),Σθ(s)).

19

Background

Policy gradient methods offer a way to optimize J(θ) by performing gradient as-
cent on the policy gradient ∇J(θ). The Policy Gradient Theorem (PGT) provides
a way to compute the gradient of the policy given the Q-value function:

∇θJ(θ) ∝ E(s,a)∼dπθ ,πθ
[∇θ log πθ(a | s)Qπθ(s, a)] .

Deep Actor-Critic methods trade off rigorous mathematical formulation for per-
formance, because the PGT formulation is difficult to apply in the context of deep
neural networks. This is due to the fact that the original loss function is very
complex to optimize as the state distribution depends on the current policy. The
most commonly used surrogate loss is:

L(πθ) = Es∼dq

a∼π

è
Â(s, a)

é
,

where πθ is the updated policy and q is the current one being used. Â is an estimate
of the advantage function, Â(s, a) ≈ Aq(s, a). The approximation is accurate when
πθ ≈ q, and dq is the discounted state distribution.

3.2.4 Proximal Policy Optimization
The state-of-the-art RL algorithms introduce the concept of entropy related to a
policy π in a state s. It is defined as:

H(π(· | s)) = −
Ø
a∈A

π(a | s) log π(a | s) = −Ea∼π[log π(a | s)].

This quantity measures the amount of randomness in the policy. To encourage
exploration, entropy regularization can be added to the surrogate loss:

Lreg
α (θ) = L(θ) + αEs∼uq [H(π(· | µ(s),Σ(s)))] .

Entropy regularization prevents the policy from becoming too deterministic, main-
taining exploration.

The Proximal Policy Optimization (PPO) [18] algorithm exploits the concept
of trust regions. The approach is formalized as a simple optimization of a modified
surrogate loss:

L(θ) = E(s,a)∼q,P

C
min

A
πθ(a | s)
q(a | s) Â(s, a), clip

A
πθ(a | s)
q(a | s) , 1− ϵ, 1 + ϵ

B
Â(s, a)

BD
.

The clipping of the importance sampling ratio πθ(a|s)
q(a|s) prevents policy updates

from deviating excessively from the sampling distribution. This acts as an implicit
mechanism to enforce a trust region.

20

3.2 – Reinforcement Learning

3.2.5 Safe Reinforcement Learning
In Safe Reinforcement Learning, the environment is modeled as a Constrained
Markov Decision Process (CMDP). A CMDP is defined by the tuple ⟨S,A,R,P , ι, γ, µ0,K⟩,
where ⟨S,A,R,P , ι, γ⟩ corresponds to a standard MDP, and K is the set of con-
straint functions:

K := {ki : S → R | i ∈ {1, . . . , K}}.

To ensure safe exploration, the objective is to avoid constraint violations through-
out the learning process. This is done by solving the following constrained opti-
mization problem:

π∗ = arg max
π

Eτ∼π

C
TØ

t=1
γtr(st, at)

D
, s.t. ki(st) ≤ 0, ∀i ∈ {1, . . . , K},

where the trajectory τ = [s0, a0, . . . , sT], with states st ∈ S ⊂ Rn, and actions
at ∈ A ⊂ Rm, is sampled from the policy π. The inequality constraints ki : S → R
define the safety requirements that must be satisfied at each time step across all
trajectories.

3.2.6 ATACOM: Acting on the Tangent Space
of the Constraint Manifold

The Acting on the Tangent Space of the Constraint Manifold (ATACOM) frame-
work provides a method that achieves safe exploration by leveraging knowledge
of the system’s dynamics and constraints. At its core, ATACOM introduces the
notion of a constraint manifold, transforming the original constrained optimization
problem into an unconstrained one defined over this manifold.

To maintain safety, the action space is redefined as the tangent space of the
constraint manifold. This guarantees that any action selected in the safe space
will always satisfy the system’s constraints, ensuring safety during the learning
process. A visual representation of the method is provided in Figure 3.2.

Based on the definition of the constraints, the safe region within the state space
is characterized by the set C, defined as:

C := {s ∈ S ⊂ Rn | k(s) ≤ 0} .

To enable a more flexible formulation of the constraints, a vector of slack variables
µ ∈ [0,+∞)K is introduced. This leads to the augmented constraint function:

c(s,µ) := k(s) + µ.

21

Background

Figure 3.2: Conceptual description of ATACOM. (a) The safe set is defined by
constraint functions in the original state space. (b) These constraints define the
constraint manifold in an augmented state space that captures the safe set. (c)
At each point on the constraint manifold, the corresponding tangent space is com-
puted. (d) The resulting trajectory evolves on these tangent spaces, ensuring that,
once projected back into the original state space, the motion remains safe. Image
taken from [1].

The corresponding constraint manifold is then defined as the set of all state-
slack pairs that satisfy the equality condition:

M := {(s,µ) ∈ D | c(s,µ) = 0} .

Here, D := S × [0,+∞)K ⊂ RN denotes the augmented state space, with dimen-
sionality N = n+K, where n represents the dimension of the original state space
S. The set C represents the projection of the manifold M onto the original state
space. This implies that for every pair (s,µ) belonging toM, the associated state
s lies within the safe set C.

To control the slack variables µ, a virtual dynamical system is defined. For
each component i ∈ {1, . . . , K}:

µ̇i = αi(µi)uµ,i,

where αi is a class-K function that is locally Lipschitz continuous, and uµ ∈ RK

denotes the virtual control input vector.
By incorporating these dynamics, the augmented system can be written as:C

ṡ
µ̇

D
=
C
f(s)

0

D
+
C
G(s) 0

0 A(µ)

D C
us
uµ

D
,

where A(µ) ∈ RK×K is a diagonal matrix with elements Aii = αi(µi), and uµ =
[uµ,1, . . . , uµ,K]⊤ is the corresponding control input.

The safe controller ensures that the system respects the constraint manifold. If
the augmented state remains on the manifold, the original system state stays within
the safe set. To achieve this, the controller is designed to adjust the augmented

22

3.2 – Reinforcement Learning

state along directions that remain tangent to the constraint manifold. In other
words, the velocity vector

è
ṡ µ̇

é⊤
must belong to the tangent space T(s,µ)M.

Under this condition, the safe control input is defined as:C
us

uµ

D
= −Ju

†ψ − λJu
†c + Buu, (3.2)

where Ju
† is the pseudoinverse of Ju =

è
Jk(s)G(s) A(µ)

é
, the constraint drift

ψ = Jk(s)f(s) is induced by the system drift f(s) and Bu is the tangent space
basis in the matrix form such that JuBu = 0. The function u is the task-specific
feedback controller i.e., the RL agent.

The first term −Ju
†ψ is the drift compensation term, which corrects the drift

caused by the system dynamics. The second term −λJu
†c is the contraction term,

responsible for pulling back the state toward the manifold. The final term Buu
is the tangential term, which generates a vector field lying in the tangent space of
the constraint manifold.

In this way, the RL agent learns the policy directly from the safe action space
rather than the original one. This allows the use of any RL algorithm, as the
ATACOM controller simply reshapes the action, ensuring that the sampled actions
operate only within the tangent space that is the safe subset of the action space.
The complete algorithm is described in Algorithm 1.

Algorithm 1 Safe Reinforcement Learning with ATACOM
1: Initialize: policy π, replay buffer D, number of steps N
2: for k ← 1 to N do
3: Sample action u ∼ π(·|s)
4: Obtain safe control us ← ATACOM(s,u) ▷ Alg. 2
5: Execute us and obtain s′ and reward r
6: Update replay buffer D ← (s,u, s′, r)
7: Update RL agent using the replay buffer D
8: end for

23

24

Chapter 4

Methodology

This chapter outlines the primary contributions of this thesis, which enable the
application of ATACOM to the quadruped locomotion setting. Section 4.1 details
the low-level controller developed to track joint velocities instead of joint positions.
Next, Section 4.2 introduces the constraints designed for the locomotion task,
providing a description of each constraint function and its corresponding Jacobian.
Finally, Section 4.3 motivates and presents the proposed ATACOM extensions.

4.1 Low-level Control Adaptation
The original ATACOM formulation is based on the assumption that the control
dynamics is modeled by a velocity-controlled system ṡ = f(s) + G(s) us. Thus,
the control input u must be expressed as desired joint velocities q̇d, which in this
case correspond to the RL agent’s actions. Consequently, the ATACOM state s is
expressed by the joint positions q.

This work adopts the approach of Rudin et al. [3] as a baseline on which the
ATACOM method is applied, and then evaluates the resulting performance by
comparing it with the unconstrained version. To ensure a more unbiased evalua-
tion of the constraint contribution, Rudin’s configuration is modified as little as
possible.

4.1.1 Position-based Controller
In the work of Rudin et al., the RL policy outputs actions that represent the
desired joint positions of the robot. To convert the position commands into torque
commands applied to the robot’s actuators, a PD controller is employed. Its role
is to compute the appropriate torque to effectively track the target joint positions.
The controller is formulated as follows:

25

Methodology

u(t) = KP (qd − q(t)) +KDq̇(t) (4.1)

where qd is the desired joint position, q(t) is the current joint position, and q̇(t)
is the current joint velocity. The proportional term aims to quickly reduce the
tracking error between the desired and actual joint positions, while the derivative
term penalizes excessively fast responses that may cause overshooting and lead to
oscillatory behavior around the target.

4.1.2 Velocity-based Controller
To apply ATACOM, actions must represent desired joint velocities. To meet this
requirement, a new low-level controller is proposed to replace the previously dis-
cussed position-based controller. The objective is to track joint velocities directly,
in order to compute the appropriate joint torques. For this purpose, a PI controller
is designed as follows:

u(t) = KP (q̇d − q̇(t)) +KI

Ú t

0
(q̇d − q̇(τ)) dτ,

where q̇d is the desired joint velocity and q̇(t) is the current joint velocity. The
proposed controller uses a proportional term as the main source of error correction
and an integral term to compensate for constant disturbances such as gravity.

This approach enables the transformation of actions, i.e., joint velocities, into
torques, thereby replacing the original controller introduced by Rudin. The results
presented later in Section 5 are strongly influenced by this design choice, which is
required by the ATACOM method.

Since actions now represent desired joint velocities instead of desired joint posi-
tions, the reward function must be adjusted accordingly, specifically when penal-
izing metrics related to the actions. Further details about the reward function are
provided in Section 5.1.2.

4.2 Safe Locomotion Constraints
The design of constraints aims to support the learning process by reducing the
full action space to a smaller safe subset C and avoiding undesirable behaviors
that could cause damage to the robot or its surroundings, or simply waste energy
exploring uninformative states.

Each constraint function k(q) depends only on the state, i.e., the joint positions
q. The result is a vector with one or more elements, which, when concatenated,
form the constraint space RK . The constraint function must satisfy a simple

26

4.2 – Safe Locomotion Constraints

requirement: the values associated with desired safe states must be negative, i.e.,

k(q) ≤ 0 ∀q ∈ C.

To build the safe controller, the constraint Jacobian J(q) is required in order
to predict how the constraints will change in response to the control input. This
Jacobian maps joint velocities to constraint velocities, resulting in a matrix of size
K × n.

4.2.1 Joint Position Constraint
The joint position constraint is relatively simple and acts directly on the values of
the joint positions, imposing a limit on the allowable range for each joint. This
ensures that each joint remains within its minimum and maximum bounds.

The main advantage is to constrain the robot to more useful configurations,
avoiding awkward or misleading positions that could slow down the learning pro-
cess or cause crashes. The goal is to select limits that do not restrict natural
movement patterns conducive to successful locomotion, while excluding less rele-
vant ones. Since analyzing each trajectory explored by the robot would be overly
complex, plausible bounds are estimated by observing the distribution of joint
positions during training epochs. The values that remain prevalent in the final
learned policy are assumed to be the most important.

In this case, the constraint functions and their Jacobians are straightforward
to define. Two separate constraint functions are used: one to enforce the upper
bounds and one to enforce the lower bounds.

kmax(q) = q − qmax Jmax(q) = I,
kmin(q) = qmin − q Jmin(q) = −I

.

The only parameters to be tuned are the joint limits qmax and qmin.

4.2.2 Foot Position Constraint
The foot position constraint limits the x and y coordinates of the feet within
a restricted area, described by an ellipse centered under the corresponding hip.
Figure 4.1 illustrates the shape of this constraint.

The constraint is designed to improve learning by preventing foot placements
that are too far from the associated hip and not aligned with natural walking
patterns. In this way, the action space is reduced and the robot can explore more
efficiently.

The constraint design involves two components: the ellipse function and the
foot position function. These are combined to compute the foot’s distance from

27

Methodology

Figure 4.1: Illustration of foot position constraint structure. The ellipse defines
the safe area for the foot in the xy-plane. The value k(q) represents the distance
of the foot from the ellipse boundary, shown by the blue line.

the ellipse given the joint positions. The foot position is obtained from the robot’s
kinematic model using the homogeneous transformation of the foot f with respect
to the hip h:

fpose(q) = hTf = hTb · bTf ,

where hTb = (bTh)−1 and b denotes the robot base frame.

fx(q) = [fpose(q)]0,3 fy(q) = [fpose(q)]1,3 .

The constraint value is defined as the square root of the ellipse equation to
ensure linear growth rather than quadratic. The Jacobian is derived using the chain
rule, combining the Jacobian of the forward kinematics Jf (q) and the Jacobian of
the root ellipse function:

k(q) = s(q)− 1

J(q) =
è

fx(q)
α2s(q)

fy(q)
β2s(q)

é CJfx(q)
Jfy(q)

D

s(q) =
ó
fx(q)2

α2 + fy(q)2

β2 .

28

4.2 – Safe Locomotion Constraints

(a) Minimum base height (b) Maximum base height

Figure 4.2: Illustration of base height constraints structure. The blue line k(q))
represents the constraint value. In the case (a) the safe space is described by states
where the base is above the red plane. In the case (b) the safe space is described
by states where the base is below the red plane.

The adjustable parameters are α and β, which define the size and shape of the
ellipse. An enhanced version of this constraint scales these parameters propor-
tionally to the commanded velocity, adapting the ellipse to better suit the desired
movement direction.

4.2.3 Base Height Constraint
This constraint can be divided into two components, both of which aim to regulate
the height of the robot’s base from the ground. They are visually described in
Figure 4.2. The first limits the minimum distance and can be visualized by placing
a virtual plane below the base that pushes back and supports the robot when it
gets too close to the ground. The second acts in the opposite direction, enforcing
a maximum height limit that can be imagined as a plane above the robot, keeping
it below a certain threshold.

The expected benefit of the second constraint is not related to faster learning
or improved walking behavior. Instead, it is introduced to evaluate whether and
how the robot is able to adapt its walking style in confined environments or in
the presence of overhead obstacles. In contrast, the minimum height constraint is
expected to provide structural support to prevent falls, encouraging the robot to
return to a standing position and helping it to quickly learn how to stabilize itself.

The constraint function approximates the height of the base from the ground
by computing the vertical distance between the lowest foot and the base. This is

29

Methodology

a valid approximation under the assumption that at least one foot is in contact
with the ground. Although this condition is not always guaranteed, it is typically
satisfied during normal operation.

The distance between the base and the foot, along with its Jacobian, is com-
puted using forward kinematics:

kmax(q) = h(q)− hmax kmin(q) = hmin − h(q)
Jmax(q) = Jh(q) Jmin(q) = −Jh(q)

,
where

h(q) = max
feet

[fpose(q)]2,3 , Jh(q) = max
feet

è
Jfpose(q)

é
2,:
.

The parameters hmax and hmin define the height of the constraint planes.

4.2.4 Foot Orientation Constraint
The foot orientation constraint forces each foot to approach the terrain with a
desired angle. It reduces the range of allowed orientations when the foot is closer
to the ground while permitting more freedom when the foot is farther from it. The
angle margin should not be too narrow, in order to support long steps that require
a wide range of orientations. The benefits are similar to the previous constraints:
reducing useless movements and encouraging those beneficial for walking.

The constraint function exploits the tangent space of SO(3) to measure the
distance between the current foot orientation and the desired one. The norm of
the Lie algebra element expresses how close the foot is to the target orientation.

The margin around the desired orientation that defines the safe area is qualita-
tively shown in Figure 4.3. It is linearly proportional to the foot’s height. Using the
same assumption as before, the height can be approximated as the foot’s distance
from the ground (i.e., the furthest foot).

αthreshold = d(q) · αmax − αmin

dmax
+ αmin,

where d(q) is the vertical distance of the foot from the ground. The value αthreshold
denotes the maximum allowable deviation angle between the desired and current
orientation. The current angle is computed as follows:

αfoot =
...Log

1
Rfoot · Exp(θtarget)⊤

2... ,
where Rfoot = [fpose(q)][:3,:3], and θtarget is the desired foot orientation expressed in
Lie algebra coordinates.

30

4.3 – ATACOM Extension

Figure 4.3: Illustration of foot orientation constraint structure. Without rigorous
detail, it can be visualized as a cone centered on the desired orientation, represented
by the cone axis. The base diameter of the cone increases or decreases with the
height of the foot. The blue arrow represents the constraint value k(q).

The actual constraint function and its Jacobian are then described as:

k(q) = αfoot − αthreshold

J(q) = Jαfoot(q)− Jαthreshold(q)

Jαfoot(q) =
Log

1
Rfoot · Exp(θtarget)⊤

2
αfoot

· JRfoot

Jαthreshold(q) = Jd(q) · αmax − αmin

dmax
.

The parameters used to adjust the constraint are αmax and αmin, which define
the allowable angular margin around the desired orientation when the foot is ele-
vated (αmax) and when it is in contact with the ground (αmin). The value θtarget
specifies the desired foot orientation.

4.3 ATACOM Extension
This thesis enhances the ATACOM method by improving the design of both the
tangential term and the contraction term in the safe controller (3.2). These mod-
ifications allow the robot to better explore the entire safe action space. The need
to update the ATACOM controller arises from the inherent instability of the lo-
comotion task, which presents an environment where the robot begins training

31

Methodology

from an unbalanced initial condition. This is in contrast with previously tested
manipulation tasks, such as Air Hockey, where the robotic arm starts from a stable
default position, and the safe space is neither high-dimensional nor complex.

An other important issue is about the mismatch between the desired and the
current joints velocity due to the implication about exploits a PI controller. It
tracks the desired velocity by reacting on the base of this discrepancy by quickly
reducing it. Despite that, there are many moments where the action, i.e., the
desired joint velocity does not correspond to the actual one because the controller
still has to reach it. This problem reflects on the capability of ATACOM to control
the action based on the system dynamics. The safe action provided by ATACOM
is the desired joint velocity, and meanwhile it is reached, the actual joint velocity
is not actually controlled by ATACOM, therefore there is no guarantee that it is
safe. So the agent performs an approximate safe action that will approximate not
violate the constraints and that is why constraint violation could occur more often
than expected.

In locomotion, constraints provide an attractive but only partial solution to the
early lack of equilibrium. The robot’s initial sub-goal is simply to remain upright
and take its first steps in the desired direction. Constraints are particularly effec-
tive in achieving this sub-goal, especially the minimum height constraint, which
provides immediate support to prevent falls and helps stabilize the robot in a
balanced configuration, although not necessarily the optimal one.

Indeed, the robot gains immediate benefit from this assistance, but it compli-
cates further exploration toward discovering a more effective policy. This occurs
because the robot tends to learn a suboptimal posture that increases the cumula-
tive return by preventing episode termination, but, in the meantime, it builds a
poor foundation for learning to walk.

This phenomenon occurs to varying degrees with all of the proposed constraints
and is caused by the way in which ATACOM modifies the action space near the
constraint boundaries. Specifically, the method transforms the RL agent’s action
by rotating it into the slack variable space µ, according to the constraint values.
This has the effect of scaling down the action in proportion to its distance from
the constraint boundary.

While this mechanism is useful when the robot is pushing against a constraint,
discouraging unsafe motion, it becomes a limitation when the quadruped attempts
to move away from that boundary, thus encouraging overly conservative behavior
near already discovered stable configurations.

Directional Constraints and Exponential Moving Average Error Correction are
proposed in this thesis to address this limitation, enabling more effective explo-
ration and ultimately convergence to an optimal policy.

32

4.3 – ATACOM Extension

4.3.1 Directional Constraints
To address the issue of symmetric morphing, the Directional Constraints mecha-
nism is implemented. The goal is to eliminate the effect that scales down every
action near the constraint boundary, regardless of whether the action would lead
the agent to violate the constraint or move toward a safer region.

To achieve this result, we modify the safe controller (3.2), specifically the tan-
gential term Buu. This term is the only one that depends on the agent’s action u.
While the other two terms are responsible for keeping the state on the constraint
manifold, the tangential term transforms the RL action so that it lies within the
tangent space. This is achieved by removing from the action all components or-
thogonal to the tangent space and retaining only the tangential components. This
projection is performed by multiplying the agent’s action by the matrix Bu, which
is a basis of the tangent space satisfying JuBu = 0. As a result, the projected
action lies entirely in the tangent space.

This multiplication is the key mechanism for morphing the action, and the
matrix Bu determines which components are suppressed to maintain safety. Di-
rectional Constraints provide a method to build the tangent space basis using only
a subset of the full constraint set, selecting only the constraints that prevent the
agent from entering unsafe regions. The decision of which constraints to retain is
made by evaluating the constraint derivatives ċ(q), which describe how the con-
straint values evolve based on the current action. If the derivative is positive, the
constraint value is increasing; otherwise, it is decreasing. The constraint derivative
is computed as follows:

ċ(s) = Jk(s)G(s) u(s).

Once the constraints derivative are computed, we can select the equivalent con-
straints based on the derivative sign, keeping the one with positive sign. The
overall extended ATACOM procedure to compute safe actions is described in Al-
gorithm 2, where the highlighted part (steps 4 and 5) implements the proposed
Directional Constraints.

This solution allows us to morph only the actions that would increase the con-
straint value, by temporarily removing the constraints that are guaranteed not
to be violated, because the robot moves in the opposite direction. A comparison
between the original and the Directional Constraints approach is illustrated in
Figure 4.4. Both (b) and (c) ensure constraint satisfaction, unlike case (a), where
ATACOM is not applied. Additionally, Directional Constraints (c) selectively scale
down only the actions that move towards the constraint. In contrast, the original
ATACOM method (b) also modifies the other actions, causing the agent to stay
closer to the boundary than in (c).

In conclusion, the Directional Constraints extension offers an improved version

33

Methodology

Algorithm 2 Extended ATACOM with Directional Constraints
1: Input: s, u ▷ At each step
2: Determine the slack variable

µ← max(−k(s), tol)
3: Compute the Jacobians and the drift

JG ← Jk(s)G(s)
Ju(s, µ)←

è
JG(s) A(µ)

é
ψ(s)← Jk(s)f(s)

4: Compute constraints derivative
ċ(s)← Jk(s)G(s) u(s)

5: Select Jacobians with positive derivative
Jpos ← Ju IF ċ(s) ≥ 0

6: Compute the tangent space basis
Bu ← SmoothBasis(Jpos)

7: Compute the constraint value
c(s, µ)← k(s) + µ

8: Compute safe control output us ▷ Eq. 3.2
9: Output: us

of ATACOM, enabling the agent to freely explore the safe action space without
unnecessary interference.

4.3.2 Exponential Moving Average Error Correction
The Exponential Moving Average Error Correction (EMAEC) modifies the safe
ATACOM controller (3.2) to increase the strength of error correction when one or
more constraints are violated. To specifically achieve this objective, we focus on
the contraction term −λJ†

uc, which is primarily responsible for forcing the agent
back into the safe region. Whenever a state no longer belongs to the tangent
space of the constraint manifold, this term actively pushes the state back onto the
manifold.

The required corrective action is determined using the constraint Jacobian
pseudo inverse J†

u, which indicates whether the constraint value is increasing (pos-
itive) or decreasing (negative). The magnitude of this correction is proportional
to the constraint value c, representing the severity of the violation, and it is scaled
by a constant gain λ, which is a task-dependent hyperparameter. This correction
is then combined with the other two controller’s terms, drift compensation and
tangential terms, to compute the final safe action applied to the environment.

EMAEC enhances the contraction term by adding a new component. While

34

4.3 – ATACOM Extension

(a) Unconstrained (b) ATACOM (c) ATACOM with Direc-
tional Constraints

Figure 4.4: Four different actions near a constraint (red line), handled by three
methods:
(a) Unconstrained method without ATACOM:

each action is shown as sampled from the agent without modification.
(b) With ATACOM applied:

all actions are scaled down in their orthogonal component,
while tangential components are preserved.

(c) With ATACOM extended with Directional Constraints:
only actions directed toward the constraint (a1 and a2) are scaled in
their orthogonal component;
actions heading toward the safe region (a3 and a4) remain unchanged.

it still uses J†
u, it no longer depends only on the constraint value c. Instead, it

incorporates an error signal e(c), computed as the Exponential Moving Average
(EMA) of c, which estimates the average magnitude of recent violations, giving
more weight to recent samples. The error signal at step t is defined recursively as:

e(ct) = 1
W

ct +
3

1− 1
W

4
e(ct−1),

where the smoothing factor 1
W

acts as a moving window of size W over recent
violations. With this new term, the safe controller can be reformulated as:C

us

uµ

D
= −Ju

†ψ − Ju
†λ(c) + Buu, (4.2)

where the updated contraction term Ju
†λ(c) consists of the Jacobian pseudo-

inverse and a new function λ(c) that combines the original correction with the
EMA-based term:

35

Methodology

Figure 4.5: Behavior of the contraction term with and without EMAEC when
violations occur:
(a) Constraint value k(q): the contraction term is active when positive.
(b) Magnitude of the original contraction term λcc.
(c) EMA error contribution λee: solid line shows active violation response;

dotted line shows running average over time.
(d) EMAEC: combination of (b) and (c), that is λ(c).

λ(c) = λcc + λee(c),

with λc and λe being hyperparameters that control the relative strength of each
component. The addition of the EMA error e(c) allows the controller to respond
more aggressively to repeated violations: its value increases quickly upon violations
and decays slowly otherwise.

Figure 4.5 displays a demonstrative example of the difference between the orig-
inal approach (b) and the EMAEC approach (d). Specifically, plot (c) isolates the
e(c) contribution and illustrates how the correction strength gradually increases
with successive constraint violations: the first violation at step 35 reaches approx-
imately 0.2, which is lower than (b), around 0.4. By the last hit at step 65, after
several violations, the value climbs close to 1, becoming dominant compared to
(b), which remains around 0.4, the same as at the beginning.

In conclusion, EMAEC improves the behavior of the contraction term in the

36

4.3 – ATACOM Extension

ATACOM controller, particularly when the robot state lies outside the safe re-
gion, i.e., when the state no longer lies on the constraint manifold and must be
corrected. The updated contraction term becomes more responsive during suc-
cessive violations, resulting in stronger corrections. The same results cannot be
achieved simply by increasing λ, as this could lead to overcorrection in situations
where excessive force is unnecessary, potentially causing undesirable instability.

37

38

Chapter 5

Experimental Analysis

This chapter evaluates the performance of the constrained approaches in compar-
ison to the unconstrained one. Section 5.1 introduces the robot structure and
defines the quadruped locomotion task. Next, Section 5.2 outlines the experi-
mental setup, the metrics used to evaluate performance, and the unconstrained
baseline adopted as a starting point. Section 5.3 then analyzes the contribution of
the two ATACOM extensions. Afterwards, Section 5.4 compares the performance
of the proposed constraint-based approaches with the unconstrained baseline in
terms of learning curves. Finally, Section 5.5 compares these approaches in terms
of constraint violations.

5.1 Quadruped Robot Locomotion Task
This Section presents the specifications of the robot structure and the locomotion
task, detailing the observation space, the action space, and the reward function.
Additionally, it covers the domain randomization strategy employed to improve
the robustness and generalization of the learned policies.

5.1.1 Robot Description
The quadruped robot used in this thesis is the Unitree A1, designed for research
and development in autonomous systems. The robot can be modeled as a floating
base with four legs, each consisting of three revolute joints, for a total of 12 degrees
of freedom. Figure 5.1 shows a the

The kinematic structure of each leg begins with the hip joint, which connects
the base to the hip link. The thigh joint is attached between the hip link and the
thigh link, followed by the calf joint, which connects the thigh link to the calf link.
At the end of the calf link is the foot, which makes contact with the ground to

39

Experimental Analysis

Figure 5.1: Unitree A1

support the robot.
All joints are revolute and controlled by torque, so the robot’s configuration

can be described by the joint angles θ ∈ R12.
The kinematic chain of a leg is defined by the sequence of homogeneous trans-

formations between each joint and its corresponding link. The forward kinematics
of the foot with respect to the base frame Fb is given by:

bTf = bTh · hTt · tTf

Each transformation iTj ∈ SE(3) includes both rotation and translation, and
is a function of the corresponding joint angle θi.

5.1.2 Task Description
The objective of the task is to train a quadruped robot to walk on flat terrain
while tracking a target velocity. The simulation environment is designed to sup-
port parallelized episodes, allowing the agent to learn from batches of trajectories
collected simultaneously. The whole configuration replicates the work of Rudin et
al. [3].

At the start of each episode, the robot is initialized in a randomized configura-
tion close to its default pose. The velocity command is also randomized in the x
and y directions and yaw component, allowing the policy to generalize over varying
targets and initial conditions. The commands have a probability of 0.2% of being
resampled at every environment step.

The policy receives a 48-dimensional observation vector composed of proprio-
ceptive and command measurements. These include linear and angular velocities
of the base (R3 each), the gravity vector (R3), commanded velocities (R3), joint

40

5.1 – Quadruped Robot Locomotion Task

Term Definition Weight

Linear velocity tracking ϕ(v∗,xy
b − vxy

b) 1dt
Angular velocity tracking ϕ(ω∗,z

b − ωz
b) 0.5dt

Linear velocity penalty −v2
b,z 4dt

Angular velocity penalty −∥ωxy
b ∥2 0.05dt

Joint motion −∥q̈j∥2 − ∥q̇j∥2 0.001dt
Joint torques −∥τ j∥2 0.00002dt
Joint position rate −∥q∗

j∥2 0.25dt
Action rate −∥q̇∗

j∥2 0.25dt
Collisions −ncollision 0.001dt
Feet air time q4

f=0(tair,f − 0.5) 2dt

Table 5.1: Definition of reward terms. The z-axis is aligned with gravity.
ϕ(x) := exp

1
−∥x∥2

0.25

2
. Symbols definition:

qj, q̇j, q̈j: joint positions, velocities, and accelerations
q∗

j , q̇∗
j : target joint positions and velocities

τ j: joint torque vector
vb, ωb: base linear and angular velocities
v∗

b , ω∗
b : commanded linear and angular velocities

ncollision: number of collisions
tair: feet air time
dt: environment time step

positions and velocities (R12 each) and the previously applied action (R12). Each
observation component is normalized, and all inputs include added noise except
for the most recently applied action and the commanded velocities.

Episodes terminate when the robot enters an absorbing state, defined as any
state in which the trunk makes contact with the ground plane, indicating a fall or
loss of stability.

The reward function is a weighted sum of ten components listed in Table 5.1.
The main terms encourage tracking of the commanded velocity while minimizing
motion along undesired directions. Additional terms promote smooth and natural
locomotion by penalizing joint torques, joint accelerations, changes in joint targets,
and undesired collisions. An extra reward term incentivizes longer steps, leading
to more visually appealing gaits.

The action space consists of 12 dimensions, corresponding to target joint posi-
tions. A low-level PD controller converts the position error into motor torques to
drive the actuators accordingly.

41

Experimental Analysis

To allow sim-to-real transfer, domain randomization techniques are applied dur-
ing training. These include randomizing the ground friction and applying unex-
pected pushes to the robot. Specifically, the robot’s base is accelerated in both x
and y directions, to teach them a more stable walking style. The details of the
randomization parameters are provided in the supplementary material.

5.2 Experimental Configuration
This Section provides details about the hardware and software setup used to run
the experiments. It also lays the groundwork for the constraint-based experiments
by introducing the evaluation metrics and the baseline configuration.

5.2.1 Experimental Setup
The experimental setup relies on the ISAAC Sim simulator [33], which provides
a parallel simulation environment for the Unitree A1 robot. The agent is trained
using the Proximal Policy Optimization (PPO) algorithm [18] that leverages the
implementation provided by the MushroomRL library [34]. Training is conducted
on a GPU NVIDIA RTX 2080 with 11 GB of VRAM, which enables efficient
storage and handling of data from parallel simulations.

A total of 4096 environments are simulated in parallel. The training consists
of 15 epochs, each comprising 4.915.200 steps, calculated as 4096 robots running
for 1200 steps per epoch. All plots and reported results are obtained by evaluat-
ing the same configuration across five different random seeds to ensure statistical
consistency.

5.2.2 Metrics
The metrics used for evaluating the experiments are the undiscounted cumulative
returnR, which measures the policy’s ability to complete the task, and the average
constraint violation. The latter represents the percentage of steps in which the
constraint is violated, i.e., when k(s) ≥ 0, relative to the total number of steps.
This metric reflects how frequently the constraint boundary is breached.

Each of these metrics is typically visualized in plots with respect to another
quantity, usually epochs. For instance, the learning curve in Figure 5.2 shows the
values of R across epochs. Similarly, the average violation is plotted over epochs,
as shown in Figure 5.4.

To further understand the severity of constraint violations, the actual violation
values k(s) are measured and plotted to represent their distribution. These plots
(e.g., Figure 5.5) show the violation magnitude on the x-axis and the percentage

42

5.2 – Experimental Configuration

Figure 5.2: Undiscounted cumulative return R across 5 seeds for the two un-
constrained methods based on Rudin’s setup. The position baseline uses joint
positions as actions, while the velocity baseline uses joint velocities.

of occurrences relative to the total number of violations on the y-axis, effectively
acting as a probability density function of violation severity.

Further details about the context and specific purposes of these metrics are
provided in the experimental analysis.

5.2.3 Unconstrained Baseline
The baseline provides the starting point against which all experiments are com-
pared, in order to assess the benefits of adopting a strategy different from it. In
this case, the baseline serves as a reference for the unconstrained approach.

The most unbiased baseline mirrors the ATACOM setup without applying any
constraints. As previously described in Section 4.1, actions are represented as
desired joint velocities to be compatible with the ATACOM method and are con-
verted into torques using a PI controller. This configuration is referred to as the
velocity baseline.

Despite multiple attempts, the velocity-controlled baseline converges more slowly
than the state-of-the-art approach by Rudin, which uses desired joint positions as
actions. Figure 5.2 compares the velocity and position baselines based on the
undiscounted cumulative return R.

While both baselines eventually complete the task with comparable final re-
wards, their learning dynamics differ significantly. The position baseline rapidly

43

Experimental Analysis

converges to a high-reward policy in just a few epochs and then plateaus. In
contrast, the velocity baseline shows a more gradual learning curve with a wider
confidence interval across runs, indicating lower consistency and higher sensitivity
to stochastic conditions during training.

In the rest of the analysis, we primarily compare the results with the veloc-
ity baseline to evaluate the improvement gained by adopting constraints. Sub-
sequently, the best results are compared to the position baseline to assess their
performance against the state of the art.

5.3 ATACOM Extension Ablation
This Section describes the contribution of the two new features integrated into
ATACOM that are introduced in Section 4.3.1 and in Section 4.3.2, designed to
address the problem of the agent getting stuck near constraint boundaries and
being unable to escape, which limits its ability to explore effectively. The exper-
iments provide problematic situations that are solved by enabling the ATACOM
extension. A comparison between ATACOM with and without extension is used
to evaluate its benefits.

5.3.1 Directional Constraints
The chosen setup to evaluate the performance of the Directional Constraints ex-
tension includes a minimum base height constraint. The constraint parameter hmin
is set to 0.05 m, while the average base height of the baseline walking policy is
approximately 0.22 m (ranging from 0 m to 0.45 m). The expected behavior of the
agent is to initially exploit the constraint to avoid falling and then progressively
learn to walk properly by rising above it. It should not intact the final policy, thus
quite far from the baseline walking behavior.

Figure 5.3 reports the undiscounted cumulative return R, showing a significant
improvement of our proposed ATACOM with Directional Constraints compared
to the original ATACOM.

The original ATACOM approach does not behave as desired. Figure 5.4, which
reports the average constraint violation over training epochs, highlights persistent
violations throughout the entire learning process, including the final policy. This
suggests that the agent remains consistently around or below the minimum height
of 0.05 m, failing to reach the average height of the baseline policy.

To investigate more deeply the behavior of the policy without extensions, we
analyze the distribution of constraint violations to assess their magnitude. Fig-
ure 5.5 shows that almost 70% of the violations exceed the constraint by less than
0.02 m, indicating that the agent remains constantly near or in contact with the
constraint plane.

44

5.3 – ATACOM Extension Ablation

(a) Original ATACOM (b) ATACOM w/ Directional Constraints

Figure 5.3: Undiscounted cumulative return for experiments with a minimum base
height constraint set to 0.05 m. Plot (a) shows results without any ATACOM
extensions, while (b) shows results with Directional Constraints (DC) enabled.

(a) Original ATACOM (b) ATACOM w/ Directional Constraints

Figure 5.4: Average violation [%] of the experiment with minimum base height
constraint set to 0.05 m. Plot (a) shows the setup without any ATACOM exten-
sions, while (b) shows the setup with Directional Constraints (DC) enabled.

In contrast, the policy with Directional Constraints enabled exhibits a substan-
tially different behavior, displaying consistency with the velocity baseline. Indeed,
both the cumulative return and the average violations closely follow the trajectory
of the baseline policy. This behavioral difference is likely due to the insufficient
incentive for the agent without extensions to move away from the constraint. Once

45

Experimental Analysis

Figure 5.5: Violation distribution of the experiment with minimum base height
constraint set to 0.05 m. It shows orginal ATACOM and ATACOM with Direc-
tional Constraints (DC).

the agent learns to stay close to the constraint, finding it a stable and easy solu-
tion, it becomes difficult to stand up again due to the action space being morphed
in a way that suppresses the orthogonal components of the action, including those
necessary for rising.

5.3.2 Exponential Moving Average Error Correction
The experiment to evaluate the benefits of introducing EMAEC is conducted under
the same setup as the Directional Constraints experiments. The minimum base
height constraint is set to 0.15 m to investigate whether this threshold again leads
the agent to learn a sub-optimal policy by lying down. We compare the method
that uses only the Directional Constraints extension with the one that combines
both extensions: Directional Constraints and EMAEC, to assess whether EMAEC
introduces any significant improvements.

To immediately assess the behavior of the policies with respect to the con-
straint, Figure 5.6 illustrates the difference in average violations between the two
approaches. Despite the Directional Constraints being enabled, the policy still
exhibits the same issue that the extension is designed to address. In this case,
however, it is not sufficient, and therefore the EMAEC extension is introduced
to handle such situations. The policy using only Directional Constraints remains
below the constraint for nearly 90% of the time in each epoch, while the one with
both extensions exhibits a behavior similar to the baseline, reaching around 25%

46

5.3 – ATACOM Extension Ablation

(a) ATACOM w/ Directional Constraints (b) ATACOM w/ both extensions

Figure 5.6: Comparison of average constraint violation [%] for the minimum base
height set to 0.15 m. (a) uses only the Directional Constraints; (b) combines both
Directional Constraints and EMA Error Correction.

of violations in the final policy.
The cumulative return plots of both approaches are shown in Appendix B.2.2,

as they do not reveal significant differences. Both methods perform similarly to
each other and also compared to the baseline. The only notable distinction is the
narrower confidence interval in the setup with both extensions, suggesting greater
reliability across different training runs.

To better understand the reason behind the frequent violations of the approach
with Directional Constraints, the violation distribution of the policy is shown in
Figure 5.7. The violations are evenly distributed within 0.1 m below the constraint
plane, indicating that the error correction is not sufficient to force the agent to
detach from the constraint. This suggests that the policy learns to walk in the
region just below the constraint by possibly exploiting the constraint contraction
force to counteract gravity. In contrast, the policy with both extensions behaves
almost identically to the baseline. The EMAEC extension provides additional
support to enhance safety guarantees through stronger corrective action.

A drawback of EMAEC is that its aggressive corrective force, intended to
discourage constraint violations, can introduce instability due to sharp reactive
pushes. This is especially problematic in fragile configurations. For instance, en-
forcing a relatively low maximum base height may lead to instability during early
training epochs, as the strong corrections might push the robot toward the ground,

47

Experimental Analysis

Figure 5.7: Violation distribution of the experiment with the minimum base height
constraint set to 0.15 m. It shows ATACOM with Directional Constraints (DC)
and ATACOM with Directional Constraints and EMA Error Correction (DC and
EC).

degrading performance. Although EMAEC is designed to gradually scale the cor-
rection strength depending on repeated violations, its effectiveness still depends
on careful parameter tuning. Moreover, there is no guarantee that suitable values
for λc and λe can be found for every scenario.

5.4 Learning Curve Comparison with vs. with-
out Constraints

The constraints experiments are designed to evaluate their benefits based on their
specific characteristics. In particular, we investigate whether they can improve the
learning process.

All the results presented are from experiments that do not include the EMAEC
feature, as it can often slightly degrade performance when not properly tuned for a
given constraint. To ensure an unbiased comparison among constraint types, with-
out introducing additional variability due to EMAEC configuration, this feature
has been excluded from these experiments.

48

5.4 – Learning Curve Comparison with vs. without Constraints

Figure 5.8: Undiscounted cumulative return for the experiment with minimum
height set to 0.25 m.

5.4.1 Base Height Constraint
The experiment based on the base height constraint aims to accelerate learning
by supporting the robot with a minimum height constraint set near the average
height of the baseline policy. The best performance is observed when the height
parameter hmin is set to 0.25 m.

As shown in Figure 5.8, the results for this configuration exceed the velocity
baseline in terms of learning speed, policy performance, and consistency across
experiments. As hypothesized, the constraint helps counteract gravity, accelerating
the learning process during the early epochs. Additionally, it improves stability
by reducing the likelihood of falling or initializing in poor configurations. Despite
these results, the final policy does not reach the reward level or learning speed of
the position baseline proposed by Rudin et al.

5.4.2 Joint Position Constraint
The experiment related to the joint position constraint begins with the analysis of
the joint position distribution provided in Appendix B.2.3. This analysis highlights
that, under the unconstrained baseline policy, the thigh joint operates within a
narrower range than physically allowed, whereas the hip and calf joints exploit
most of their available motion range.

Based on this observation, the experimental setup introduces a constraint that
restricts the thigh joint’s motion to 70% of its original range.

49

Experimental Analysis

Figure 5.9: Undiscounted cumulative return of the experiment with joint position
constraint applied to the thigh, limited to 70% of its original range.

Figure 5.9 presents the performance results of this configuration. While the
learning curve closely follows the velocity baseline in terms of average cumulative
return, a notable difference emerges in the width of the confidence intervals. Specif-
ically, the narrower confidence band observed in the constrained setup indicates
improved consistency across training runs. This suggests that the joint position
constraint contributes to a more stable optimization trajectory. By reducing the
size of the viable action space in a targeted and informed manner, the constraint
appears to filter out unstable behaviors.

5.4.3 Foot Orientation Constraint
The setup for constraining foot orientation involves configuring several parameters.
The key parameter is the desired angle θtarget, expressed as a vector in the Lie
algebra of SO(3). Determining this value, along with the auxiliary parameters
αmax and αmin, is non-trivial for two main reasons.

First, the final policy’s foot orientation is significantly different from the default
pose. Consequently, setting the target orientation directly to that value may push
an untrained agent into an unstable configuration early in training, resulting in
frequent falls.

Second, the velocity commanded in the final policy introduces additional com-
plexity. The reward function encourages the agent to move quickly, which leads
to rapid and wide leg movements that continuously alter the feet’s orientation.

50

5.4 – Learning Curve Comparison with vs. without Constraints

Figure 5.10: Cumulative return over training epochs for the experiment with the
foot orientation constraint and Directional Constraints enabled. The target orien-
tation is set to −0.3 in the y-component of θtarget, with αmax = π and αmin = π

2 .

Therefore, the tolerance margins around the target orientation need to be suffi-
ciently wide to account for the natural variation in foot pose that occur during
fast locomotion.

Considering these factors, the constraint is implemented in a more relaxed and
general form. Instead of enforcing a rigid orientation, it encourages a preferred
and commonly observed orientation, while still allowing for natural variability.
The selected parameters are:

θtarget =

 0
−0.3

0

 αmax = π

αmin = π

2

Figure 5.10 shows the results of the experiment. The most evident outcome
of applying this constraint is improved stability in the learning process, which
becomes more consistent and predictable. However, the constraint does not lead
to a significant improvement in learning speed.

5.4.4 Foot Position Constraint
The experiment to evaluate the performance of the foot position constraint is
designed based on the analysis of the foot position distribution under the baseline
policy, included in Appendix B.2.3. Figure 5.11 shows the learning curve for an

51

Experimental Analysis

Figure 5.11: Undiscounted cumulative return of the foot position constraint with
α = β = 0.2m.

experiment in which the constraint is set just below the threshold that covers the
majority of the foot positions produced by the baseline, namely α and β are set
to 0.2 m. The results are nearly indistinguishable from the baseline and do not
provide any additional benefits.

Although several values for the ellipse size are tested, none significantly im-
proved learning performance. Larger values have no impact on the task, while
smaller ones overly restrict the robot’s movements without yielding any benefits.
Even the version that scales α and β proportionally to the command velocity
performs approximately the same as the original formulation.

In conclusion, the constraint neither supports nor enforces any notable behavior
that would justify its integration into the task.

5.5 Constraints Safety Evaluation
This Section analyzes the overall behavior of the constraints in terms of safety,
specifically, whether ATACOM is able to guarantee compliance with the imposed
limits during both training and deployment of the final policy. This is particularly
relevant since ATACOM enforces hard constraints, in contrast to soft constraints,
which merely encourage safe behavior without strictly ensuring it.

To assess constraint-driven safety behaviors, we investigate scenarios in which
conventional walking styles are restricted by the constraints. In such cases, the
agent is expected to learn a challenging locomotion strategy that remains within

52

5.5 – Constraints Safety Evaluation

(a) Max height constraint (b) Min height constraint

Figure 5.12: Undiscounted cumulative return for experiments with unusual walking
styles. Experiment (a) uses a maximum height constraint set to 0.15 m, while
experiment (b) uses a minimum height constraint set to 0.35 m.

the prescribed limits.
The safety evaluation is performed in the most challenging configuration to

demonstrate a non-trivial case in which the agent must find a solution that both
enables locomotion and satisfies the imposed constraints. The results presented
below can be generally extended to many other setups with looser constraints,
where the agent is expected to complete the task while remaining within the safe
space without significant difficulty.

5.5.1 Constrained Walking Style
The experiments that evaluate constraint violations leverage the base height con-
straint to enforce either a low or high-stance walking posture. The first experiment
introduces a maximum base height constraint hmax = 0.15 m, which confines the
robot below a plane positioned just above the ground. The second experiment
applies a high minimum height constraint hmin = 0.35 m, compelling the agent to
maintain a high-stance gait.

Figure 5.12 shows that both policies are able to accomplish the task successfully.
While the minimum height setup demonstrates great stability across experiments,
the maximum height configuration presents greater difficulty in consistently achiev-
ing a high-reward policy. This is due to the challenging requirement that forces
the agent to remain very close to the ground without falling.

In both cases, the constraint violation distributions shown in Figure 5.13 in-
dicate that the majority of violations are concentrated within 0.1 m and 0.15 m
beyond the constraint limits, respectively. This makes it interesting to analyze
the average violations under a relaxed criterion, where small violations within a

53

Experimental Analysis

(a) Max height constraint (b) Min height constraint

Figure 5.13: Constraint violation distribution for experiments with unusual walk-
ing styles. Experiment (a) uses a maximum height constraint set to 0.15 m, while
experiment (b) uses a minimum height constraint set to 0.35 m.

tolerance margin are not counted.
Figure 5.15 for the minimum height setup and Figure 5.14 for the maximum

height setup show that the average constraint violation becomes nearly zero when
an ϵ-margin is applied. In contrast, the results without a margin clearly indicate
persistent violations. Using a tolerance margin allows for distinguishing between
minor acceptable deviations and substantial violations, such as those observed in
the velocity baseline.

Ultimately, these findings suggest that ATACOM can provide safety within an
ϵ-margin), accounting for model approximations and observation noise. Moreover,
enabling EMAEC or tuning ATACOM’s parameters, such as the action space
morphing strength or error correction gain, can further reduce the necessary ϵ-
margin, potentially approaching zero.

54

5.5 – Constraints Safety Evaluation

(a) No margin (b) ϵ-margin

Figure 5.14: Average constraint violation [%] for experiments with maximum
height constraint set to 0.15 m. Configuration (a) includes all violations, while
configuration (b) applies an ϵ-margin of 0.1 m to ignore minor violations within
this threshold.

(a) No margin (b) ϵ-margin

Figure 5.15: Average constraint violation [%] for experiments with minimum height
constraint set to 0.35 m. Configuration (a) includes all violations, while config-
uration (b) applies an ϵ-margin of 0.15 m to ignore minor violations within this
threshold.

55

56

Chapter 6

Conclusions

This thesis investigates the implications of adopting constraints into the locomo-
tion task through the ATACOM method, which enforces hard constraints both
during learning and in policy deployment.

The contributions of the study include two key extensions to the original ATA-
COM framework, addressing its limitations in handling highly unstable tasks such
as locomotion. Directional Constraints and EMA Error Correction alleviate the
undesired attraction to states near constraint boundaries, which may be stable but
suboptimal for walking. These improvements open new possibilities for exploring
safety across multiple domains and tasks.

The designed locomotion constraints were found to be competitive with the
velocity baseline in terms of learning speed, generally improving reliability across
different experiments and, in the best cases, accelerating the learning process. In
the worst cases, their performance remained comparable to the baseline.

Among the evaluated constraints, the minimum height constraint consistently
led to faster learning. However, it still falls short of the performance achieved by
the state-of-the-art approach of Rudin et al. [3], which remains both faster and
more robust than any of the constrained configurations tested. The gap between
Rudin’s results and those obtained with ATACOM is primarily due to the subop-
timal velocity-based policy used as the foundation for all constrained experiments.

Although the constraints did not significantly enhance learning performance,
they succeeded in delivering the desired safety guarantees. In these terms, ATA-
COM functions as expected, ensuring safety from the beginning of training through
to the final deployable policy. As discussed in the experiments, this safety is guar-
anteed within an ϵ-margin that depends on various configuration aspects, partic-
ularly the mismatch between the model and the real system.

In conclusion, the thesis lays the foundations for future research in constrained
locomotion based on ATACOM. Future directions may include: developing ad-hoc
low-level controllers that translate target joint velocities into torque commands

57

Conclusions

with performance comparable to position-based approaches such as Rudin’s work;
modifying the control assumption toward an acceleration-controlled system with
tailored low-level controllers; designing new constraints, such as self-collision or
terrain adaptation; and exploring Sim-to-Real strategies for deploying real-world
policies or even enabling direct training on physical systems.

58

Appendix A

Background Details

A.1 Lie theory formulas

A.1.1 Special Euclidean group SE(3)
The exponential and logarithm maps are defined as:

Exp(τ) ≜
C
Exp(θ) V(θ) ρ

0 1

D

Log(T) ≜
C
V−1(θ) t
Log(R)

D
.

where θ = Log(R) and

V(θ) = I + 1− cos θ
θ2 [θ]× + θ − sin θ

θ3 [θ]2×

59

60

Appendix B

Experimental Analysis
Details

B.1 Hyperparameters

B.1.1 PPO Hyperparameters
PPO hyperparameters Table B.1.

Batch size 98304 (4096×24)
Mini-batch size 6144 (4096×1.5)

Number of epochs 5
Clip range 0.2

Entropy coefficient 0.01
Discount factor 0.99

GAE discount factor 0.95
Desired KL-divergence kl∗ 0.01

Learning rate α adaptive∗

Gradient norm clipping 1

Table B.1: PPO hyper-parameters used for the training of the tested policies. The
adaptive learning rate is based on the KL-divergence, the corresponding algorithm
is taken from [3].

B.1.2 ATACOM Hyperparameters
ATACOM hyperparameters Table B.2.

61

Experimental Analysis Details

Slack dynamics Exponential
Slack β 10

error correction coefficient λc 2
EMAEC coefficient λ∗

e 0.5
EMAEC window W ∗ 100

Table B.2: ATACOM hyper-parameters used for the training of the constrained
tested policies. ∗ The EMAEC variables are used only when the EMAEC feature
is enable.

B.2 Additional Results

B.2.1 ATACOM parallel implementation issue

The ATACOM controller is implemented on top of the PyTorch library, leveraging
its functionalities to build efficient parallel operations and optimize GPU computa-
tion, thereby reducing training time. To compute the safe action us, the following
linear system must be solved, yielding the safe controller as previously discussed:

ψ(s) + Ju(s,µ)
C
us

uµ

D
= 0

The lstsq() function from PyTorch’s torch.linalg module is used to solve
the least squares problem associated with this system. In this context, 4096
batched linear systems are expected to be solved in parallel. However, in the cur-
rent implementation, this parallelism is not achieved, and the computation time
grows linearly with the number of systems, suggesting they are being processed
sequentially.

Several alternative implementations were tested to overcome this limitation.
These included using SVD decomposition and pseudo-inverse solutions in com-
bination with vector mapping, compilation, and scripting techniques, aiming to
replace the direct use of the lstsq function. Figure B.1 presents a comparative
analysis of the computation time for each method.

This bottleneck drastically increases the total training time, vanishing much
of the benefit provided by the parallelized environment setup. Experiments using
ATACOM require approximately five times more time compared to unconstrained
baselines. Developing a truly parallel version of the lstsq function would yield sig-
nificant improvements in terms of both computation time and resource efficiency.

62

B.2 – Additional Results

Figure B.1: The plot shows the time required to solve a linear system with increas-
ing batch size using different techniques. The approaches can be grouped into
two main categories: those that use the lstsq Torch function directly (faster),
and those that rely on SVD or the pseudo-inverse (slower). Specifically, lstsq,
vmap_lstsq, compiled_lstsq, and compiled_vmap_lstsq belong to the first
group, while svd_lstsq, vmap_pseudo, and script_svd are in the second. Both
groups scale linearly with respect to batch size, suggesting a lack of full parallel
computation.

B.2.2 EMAEC Ablation
Here are reported the plots of the cumulative return of ATACOM with only Di-
rectional Constraints enables and ATACOM with both extensions.

B.2.3 Velocity baseline behavior
Analysis of the joints and feet position distribution when the agent uses the velocity
baseline policy.

63

Experimental Analysis Details

(a) Directional Constraints (b) Both extensions

Figure B.2: Undiscounted cumulative return for experiments with a minimum base
height constraint set to 0.15 m. Plot (a) shows results with Directional Constraints,
while (b) shows results with both Directional Constraints and EMAEC enabled.

64

B.2 – Additional Results

Figure B.3: Joint pos values during an episode controlled by velocity baseline.

65

Experimental Analysis Details

Figure B.4: Foot position values during an episode controlled by velocity baseline.

66

Bibliography

[1] P. Liu, H. Bou-Ammar, J. Peters, and D. Tateo, «Safe reinforcement learning
on the constraint manifold: Theory and applications», IEEE Transactions on
Robotics, 2025.

[2] P. Liu, K. Zhang, D. Tateo, et al., «Safe reinforcement learning of dynamic
high-dimensional robotic tasks: Navigation, manipulation, interaction», in
2023 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2023, pp. 9449–9456.

[3] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, «Learning to walk in minutes
using massively parallel deep reinforcement learning», in Conference on Robot
Learning, PMLR, 2022, pp. 91–100.

[4] D. Rodriguez and S. Behnke, «Deepwalk: Omnidirectional bipedal gait by
deep reinforcement learning», in 2021 IEEE international conference on robotics
and automation (ICRA), IEEE, 2021, pp. 3033–3039.

[5] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, «Blind bipedal stair
traversal via sim-to-real reinforcement learning», arXiv preprint arXiv:2105.08328,
2021.

[6] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, «Rapid lo-
comotion via reinforcement learning», The International Journal of Robotics
Research, vol. 43, no. 4, pp. 572–587, 2024.

[7] K. Caluwaerts, A. Iscen, J. C. Kew, et al., «Barkour: Benchmarking animal-
level agility with quadruped robots», arXiv preprint arXiv:2305.14654, 2023.

[8] Z. Zhuang, Z. Fu, J. Wang, et al., «Robot parkour learning», arXiv preprint
arXiv:2309.05665, 2023.

[9] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, «Extreme parkour with legged
robots, 2023», URL https://arxiv. org/abs/2309.14341.[15] S. Kareer, N.
Yokoyama, D. Batra, S. Ha, and J. Truong. Vinl: Visual navigation and
locomotion over obstacles, 2023.

67

BIBLIOGRAPHY

[10] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
«Learning robust perceptive locomotion for quadrupedal robots in the wild»,
Science robotics, vol. 7, no. 62, eabk2822, 2022.

[11] M. Aractingi, P.-A. Léziart, T. Flayols, J. Perez, T. Silander, and P. Souères,
«Controlling the solo12 quadruped robot with deep reinforcement learning»,
scientific Reports, vol. 13, no. 1, p. 11 945, 2023.

[12] A. Kumar, Z. Fu, D. Pathak, and J. Malik, «Rma: Rapid motor adaptation
for legged robots», arXiv preprint arXiv:2107.04034, 2021.

[13] G. B. Margolis and P. Agrawal, «Walk these ways: Tuning robot control
for generalization with multiplicity of behavior», in Conference on Robot
Learning, PMLR, 2023, pp. 22–31.

[14] S. Choi, G. Ji, J. Park, et al., «Learning quadrupedal locomotion on de-
formable terrain», Science Robotics, vol. 8, no. 74, eade2256, 2023.

[15] L. Smith, I. Kostrikov, and S. Levine, «A walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning», arXiv preprint
arXiv:2208.07860, 2022.

[16] F. Jenelten, J. He, F. Farshidian, and M. Hutter, «Dtc: Deep tracking con-
trol», Science Robotics, vol. 9, no. 86, eadh5401, 2024.

[17] G. Feng, H. Zhang, Z. Li, et al., «Genloco: Generalized locomotion controllers
for quadrupedal robots», in Conference on Robot Learning, PMLR, 2023,
pp. 1893–1903.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, «Proximal
policy optimization algorithms», arXiv preprint arXiv:1707.06347, 2017.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, «Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor», in
International conference on machine learning, Pmlr, 2018, pp. 1861–1870.

[20] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, «Sim-to-real
transfer of robotic control with dynamics randomization», in 2018 IEEE
international conference on robotics and automation (ICRA), IEEE, 2018,
pp. 3803–3810.

[21] L. Campanaro, S. Gangapurwala, W. Merkt, and I. Havoutis, «Learning
and deploying robust locomotion policies with minimal dynamics randomiza-
tion», in 6th Annual Learning for Dynamics & Control Conference, PMLR,
2024, pp. 578–590.

[22] Y. Kim, H. Oh, J. Lee, et al., «Not only rewards but also constraints: Appli-
cations on legged robot locomotion», IEEE Transactions on Robotics, 2024.

68

BIBLIOGRAPHY

[23] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, «Control barrier functions: Theory and applications», in 2019 18th
European control conference (ECC), Ieee, 2019, pp. 3420–3431.

[24] S. Gangapurwala, A. Mitchell, and I. Havoutis, «Guided constrained policy
optimization for dynamic quadrupedal robot locomotion», IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3642–3649, 2020.

[25] C. Xuan, F. Zhang, F. Yin, and H.-K. Lam, «Constrained proximal policy
optimization», arXiv preprint arXiv:2305.14216, 2023.

[26] E. Chane-Sane, P.-A. Leziart, T. Flayols, O. Stasse, P. Souères, and N.
Mansard, «Cat: Constraints as terminations for legged locomotion reinforce-
ment learning», in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2024, pp. 13 303–13 310.

[27] J. Achiam, D. Held, A. Tamar, and P. Abbeel, «Constrained policy opti-
mization», in International conference on machine learning, PMLR, 2017,
pp. 22–31.

[28] Y. Liu, J. Ding, and X. Liu, «Ipo: Interior-point policy optimization under
constraints», in Proceedings of the AAAI conference on artificial intelligence,
vol. 34, 2020, pp. 4940–4947.

[29] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu, «Safe reinforcement
learning for legged locomotion», in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2022, pp. 2454–2461.

[30] L. Smith, Y. Cao, and S. Levine, «Grow your limits: Continuous improve-
ment with real-world rl for robotic locomotion», in 2024 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2024, pp. 10 829–
10 836.

[31] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, «Agile but safe: Learn-
ing collision-free high-speed legged locomotion», arXiv preprint arXiv:2401.17583,
2024.

[32] J. Sola, J. Deray, and D. Atchuthan, «A micro lie theory for state estimation
in robotics», arXiv preprint arXiv:1812.01537, 2018.

[33] V. Makoviychuk, L. Wawrzyniak, Y. Guo, et al., «Isaac gym: High per-
formance gpu-based physics simulation for robot learning», arXiv preprint
arXiv:2108.10470, 2021.

[34] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, «Mushroomrl:
Simplifying reinforcement learning research», Journal of Machine Learning
Research, vol. 22, no. 131, pp. 1–5, 2021. [Online]. Available: http://jmlr.
org/papers/v22/18-056.html.

69

http://jmlr.org/papers/v22/18-056.html
http://jmlr.org/papers/v22/18-056.html

	List of Tables
	List of Figures
	Introduction
	Related works
	Robot Locomotion
	Safe RL methods

	Background
	Robot modeling and control
	Lie theory
	Position and orientation
	Homogeneous transformation
	Robot model
	Kinematics
	Dynamics
	Robot control

	Reinforcement Learning
	Basics
	Reinforcement Learning algorithms
	Deep Actor-critic Reinforcement Learning
	Proximal Policy Optimization
	Safe Reinforcement Learning
	ATACOM: Acting on the Tangent Space of the Constraint Manifold

	Methodology
	Low-level Control Adaptation
	Position-based Controller
	Velocity-based Controller

	Safe Locomotion Constraints
	Joint Position Constraint
	Foot Position Constraint
	Base Height Constraint
	Foot Orientation Constraint

	ATACOM Extension
	Directional Constraints
	Exponential Moving Average Error Correction

	Experimental Analysis
	Quadruped Robot Locomotion Task
	Robot Description
	Task Description

	Experimental Configuration
	Experimental Setup
	Metrics
	Unconstrained Baseline

	ATACOM Extension Ablation
	Directional Constraints
	Exponential Moving Average Error Correction

	Learning Curve Comparison with vs. without Constraints
	Base Height Constraint
	Joint Position Constraint
	Foot Orientation Constraint
	Foot Position Constraint

	Constraints Safety Evaluation
	Constrained Walking Style

	Conclusions
	Background Details
	Lie theory formulas
	Special Euclidean group SE(3)

	Experimental Analysis Details
	Hyperparameters
	PPO Hyperparameters
	ATACOM Hyperparameters

	Additional Results
	ATACOM parallel implementation issue
	EMAEC Ablation
	Velocity baseline behavior

