v 333{'1iffff ;" P9|ite§niCO
{.ﬁiﬁiﬁiﬁ%ﬁi:i:; vy di Torino
\\‘\ 1859 d}'

m
1]}

Politecnico di Torino

Master’s degree in Computer Engineering
A.a. 2024/2025
Graduation Session 06 2025

Development of VR web-based
solutions to support aerospace
simulations

Supervisors: Author:
Andrea Sanna Sante Laera
Eugenio Topa

Abstract

3D simulations play a crucial role in the aerospace domain, both for visualizing
telemetry data and for enabling interactive operations based on acquired sensor
data. These simulations provide intuitive representations that support system
monitoring, anomaly detection, and structural analysis during mission planning
and execution.

This thesis, carried out at ALTEC, focuses on the development of a TypeScript
library and two web-based tools designed to support 3D data visualization and
reconstruction of simulated aerospace scenarios on web pages.

The TypeScript library enables the seamless integration of Unity WebGL builds
into Vue.js applications. It manages the Unity instance lifecycle and establishes
a bidirectional communication layer between the simulation environment and the
front-end. This facilitates the integration of interactive visualization within a web
interface.

The first tool is a benchmarking framework for evaluating surface reconstruction
algorithms applied to LiDAR-generated point clouds. Based on an existing library,
it includes a synthetic data generation pipeline using a virtual LiDAR simulator
and a dataset of CAD models representing real satellite structures. The framework
enables the systematic comparison of remeshing techniques and supports the
optimization of algorithm parameters to improve reconstruction quality. The final
goal of the tool is to provide ALTEC with an optimized remeshing algorithm.

The second tool is a visualization system for detecting geometric discrepancies
between scanned meshes and their reference CAD models. By computing devi-
ations and rendering them as a color-coded heatmap on the target surface, the
system highlights potential structural anomalies such as missing components or
deformations.

Together, these components form a complete pipeline for data processing and
visualization. A demonstration scenario simulating a satellite scanning operation
was developed to validate the tools and illustrate their integration in a realistic
aerospace context.

Table of Contents

List of Figures \Y%
1 Introduction 1
1.1 Context 1
1.2 ALTEC 2
1.3 Goals. 3
1.4 Requirements 4
1.5 Thesis structure Lo d
2 State of the art 6
2.1 Virtual reality and interactive applications 6
2.1.1 Virtual realityo oo 6
2.1.2 Applications of immersive technologies in the aerospace context 8
2.1.3 Web-Based Simulation 11
2.2 LiDAR Scanning 14
2.2.1 Operating Principles of LIDAR 14
2.2.2 Applications of LIDAR in Aerospace 16
2.2.3 Synthetic scanningo 16
2.3 Remeshing algorithms 17
2.3.1 Screened Poisson Surface Reconstruction (SPSR) 17

2.3.2 Robust and Efficient Surface Reconstruction from Range
Data (RESR) 19
2.3.3 Ball Pivoting Algorithm (BPA) 19
2.3.4 Advancing Front Surface Reconstruction (AFSR) 19
2.3.5 Scale-Space Surface Reconstruction (SSSR) 20
2.4 Mesh Difference Visualization 20
2.4.1 Point-to-Point Distance 20
2.4.2 Point-to-Face Distance 21
2.4.3 Heatmap-Based Visualization Tools 21

11

3 Unity in Vue.js 23

3.1 Motivation and Design Considerations 23
3.2 Requirements 24
3.3 Library Functionality 24
3.4 Implementation Details 25
3.4.1 Usage Overview 25
3.4.2 Unity Loading 26
3.4.3 Communication Channel 28

3.5 Handling multiple Unity instances 33
3.5.1 Isolated Channels for Different Unity Projects 33
3.5.2 Managing Multiple Instances of the Same Project 34

3.6 Performance testingo 36
3.6.1 Test Objectives 36
3.6.2 Unity Project Setup and Hardware 37
3.6.3 General Performance Testing 37
3.6.4 Multiple Unity Instances 40
3.6.5 Conclusion of General Testing 41

3.7 Message Throughput Testing 41
3.7.1 Event Listener Implementation Testing 43

3.8 Conclusion 45
4 3D LiDAR Reconstruction 46
4.1 Surface Reconstruction Algorithms 47
4.2 Design of the Evaluation Framework 49
4.3 LiDAR Simulation L 50
4.3.1 LiDAR Simulation Functionality 51
4.3.2 Implementation Details 54

4.4 Evaluation Metrics L oo 56
4.5 Dataset 57
4.6 Implementation Details of the Testing Framework o7
4.7 Testingo 62
471 Experimentso 62
4.7.2 Grid Search Parameters 63
4.7.3 LiDAR simulation parameters 65
474 Results.o 65
4.7.5 Qualitative Results 67
4.7.6 Execution Time oL 67
4.77 Conclusion 70

5 Structural defect visualization

5.1 Requirements

5.1.1 Web-Based Execution.
5.1.2 Client-Side Responsiveness
5.1.3 Server-Side Preprocessing

5.1.4 Model
5.2 Visualization

Independence
Methodo

5.3 Processing workflowo oo
5.3.1 Mesh Alignment
5.3.2 Mesh Sampling
5.3.3 Distance Computation,
5.3.4 Distance-to-Color Mapping
5.3.5 Texture Generation and Projection
5.3.6 Visualization and Overlay

5.4 Implementation Details
5.4.1 Back-End Preprocessing Module
5.4.2 Software Structure
5.4.3 Front-End Rendering Module

6 Demo
6.1 Page Layout

6.2 Back-end Implementation
6.3 Front-end Implementation
6.3.1 Telemetry Management with useTelemetry.ts
6.3.2 Vue component LoadAndScanModelUnity
6.3.3 Vue component ModelDiffUnity
6.3.4 Main View and User Interaction

6.3.5 Unity

7 Conclusions
7.1 Future Work

Glossary

Bibliography

Project Implementation

v

72
73
73
73
73
73
74
75
75
75
76
76
76
77
7
7
80
84

93
93
95
97
97
98
99
99
99

102
103

105

107

List of Figures

1.1

2.1

2.2

2.3
24

2.5

3.1
3.2
3.2

3.2

4.1

Example of a 3D simulation in a web application. On the left,
a simulation of a satellite being scanned by a LiDAR sensor is
visualized, while on the right, a table displays the telemetry data
used by the simulation. 0L

Virtual reality continuum. Image from https://creatxr.com/the-
virtuality-spectrum-understanding-ar-mr-vr-and-xr /reality-virtuality-
continuum-infographic-with-examples-2/
Example of PointCloudsVR showing a LiDAR point cloud VR. Image
from https://github.com/nasa/PointCloudsVR
Representation of how LiDAR works
Point cloud generated by different sampling techniques. Image from
Berger et al. [31]
Heatmap representation of the work proposed in Rodriguez-Garcia
et al. [41]. Image from [41]

High level communication workflow between Unity and Vue
Unity simulation used to conduct the tests.

Performances recorded using the Microsoft Edge’s performance tool:
(a) performances of the page generated by the Build and Run process
of the Unity editor; (b) performances of a minimal Vue project that
uses the library in analysis; (c) performances of a real-like Vue
project that uses the library in analysis. This image highlights that
there are few to no differences among the recorded data.

Performances recorded using the Microsoft Edge’s performance tool
on pages that integrate: (a) 2, (b) 3, (c¢) 4, instances in the same
page. This image highlights that memory increases linearly as the
number of instances increases.

Scheme of the LiDAR simulation scenario.

\Y%

4.2

4.3

4.4

5.1

5.2
5.3

5.4

9.5

5.6
5.7

6.1
6.2

6.3

Examples of point cloud generated from the lidar simulator. (a)
example of holes in point cloud, (b) example of density variation in
point cloud.o 52
Meshes generated using different remeshing algorithms with the
same point cloud. Different color is assigned to each face based on

the normal orientation, . 68
Execution time of the remeshing algorithms with respect of point
cloud size before (a) and after (b) optimization 70

Colored point cloud resulted from the sampling, distance calculation
and colorization steps. Points with blue color indicate missing parts 78

Dotted texture resulting from the point to texture mapping stage . 79
Example of trivial per-triangle UV parametrization of a complex 3D
model 81
Frames per second with respect of number of points used as input
of the shader 86

Example of color spilling on the edge of the faces. (a) On the left
the expected result and (b) on the right the actual outcome. The

green triangles on the right indicate the face edge 86
Colored pixel search workflow 90
Example of the final result of the heatmap shader. The heatmap

shows that the scanned model is missing a piece 92
Demo page 94
Demo simulation. A group of red rays is displayed to indicate the

scanning procedure Lo 101
Point cloud representing the scanned object 101

VI

Chapter 1

Introduction

1.1 Context

Three dimensional (3D) simulations have become indispensable in the aerospace
sector, offering valuable insights for the design, testing, and execution of missions.

One application of simulation in aerospace mission is to improve monitoring
and assessment of operational activities in ground control systems, an example of
such simulation is shown in Figure 1.1.

An example of this is the visualization of LIDAR information for object detection
and structural assessment. A potential scenario involves a satellite moving along a
specific orbital trajectory around another satellite or structure while performing a
LiDAR scan, with the objective of identifying defects or missing components. To
achieve this, a simulation that, after reconstructing the point cloud, can effectively
visualize any structural issues is needed. This process involves integrating three
main components: a tool for incorporating the simulation into a ground control
system, a mechanism for point cloud reconstruction, and a system to highlight
structural problems. Despite the apparent specificity, these tools can be adapted
and integrated into a wide range of aerospace missions.

The project was carried out at ALTEC S.p.A., a company that provides en-
gineering and logistics support for activities related to the International Space
Station and for the development and execution of planetary exploration missions
and other aerospace operations. The development of these tools is therefore aimed
at providing ALTEC with solutions that will facilitate the development of various
projects that need these simulation and visualization capabilities.

Introduction

Select a Model

Target

Telemetry Data
Timestamp |7 Position F
x: -15.3459 x

4.2918 y:-12.1141 y
7 -47.6979 z

Figure 1.1: Example of a 3D simulation in a web application. On the left, a
simulation of a satellite being scanned by a LiDAR sensor is visualized, while on
the right, a table displays the telemetry data used by the simulation.

1.2 ALTEC

ALTEC (Aerospace Logistics Technology Engineering Company)

'Is the Italian center of excellence for the provision of engineering and lo-
gistics services in support of operations related to the International Space
Station (ISS) and the development of planetary exploration missions."

As described on the company website [1].

ALTEC operates with activities involving European Space Agency (ESA) and
the German Aerospace Center (DLR), and also runs liaison offices at the National
Aeronautics and Space Administration (NASA).

ALTEC plays a central role in several key areas of the aerospace sector.

o They provide engineering and logistics support for the operation and utilization
of the International Space Station.

o They are involved in the design, development, and operation of mission control
centers for robotic planetary exploration and re-entry missions, as well as data
processing centers for space science missions.

o They support both scientific and commercial exploitation of various space
platforms.

o They contribute to the advancement of future space utilization and exploration
through a broad range of research activities.

ALTEC supports the ISS in various contexts. They provide support to the
Italian Space Agency (ASI) for the operations of the Permanent Multipurpose

2

Introduction

Module (PMM) on the ISS. In addition, ALTEC operates one of the Engineering
Support Centers (ESC) for the ISS. They also operate as Ground Logistics Center,
and they are also responsible for ISS Training Services to ESA.

One of ALTEC’s major responsibilities in the context of planetary exploration is
its participation in the ESA’s FroMars program. Specifically, they are in charge of
designing, developing, and operating the Rover Operations Control Center (ROCC),
which oversees both the system status and scientific operations of the ExoMars
rover on the Martian surface.

In recent years, ALTEC has also become a significant contributor to space-based
big data processing. They operate the Gaia Data Processing Center in Turin
(DPCT), one of ESA’s distributed data centers for the Gaia mission, which aims
to map more than a billion stars in the Milky Way. They also participated in the
Euclid mission, for which they manage the Italian Science Data Center.

ALTEC is also involved in the development and operational support of ESA’s
Space Rider program, an independent and reusable platform for access and return
from low orbit. In this context, ALTEC acts as both the Payload and Landing
Control Center, managing mission execution and vehicle recovery.

Beyond its operational roles, ALTEC participates in various research and de-
velopment initiatives. These include areas such as virtual and augmented reality,
machine learning, precision farming, small satellite operations and many more.

1.3 Goals

This thesis aims to develop a TypeScript library and two web-based software tools
for supporting aerospace simulations, with particular emphasis on 3D visualizations
and LiDAR 3D model reconstruction:

1. A TypeScript library that integrates Unity-based projects into a Vue.js web
application, facilitating the use of interactive simulations directly in the
browser.

2. A tool for reconstructing 3D models from LiDAR scans, a process that is
crucial for aerospace operations. Additionally, a custom LiDAR scanning
simulation has been developed to mimic a real-world scan.

3. A tool for visualizing anomalies in a scanned 3D model, comparing the
scanned model with a known CAD model, helping to identify inconsistencies
or structural issues.

Introduction

1.4 Requirements

To ensure the integration of the tools into larger software ecosystems, which
will be developed by ALTEC, a set of requirements served as the basis for their
development.

First, all front-end sections of the tools must be easily integrable into the web
application framework Vue.js. Vue is a JavaScript framework for building front-
end applications. It was chosen because it is the front-end technology adopted
by ALTEC, offers a performant, optimized rendering system that rarely requires
manual tuning. Its versatility also makes it suitable for both modular integration
and full-scale application development.

In addition, the tools and the library must be optimized to operate efficiently
in web environments, minimizing computational overhead and memory usage to
comply with the inherent limitations of WebGL applications. Particular care must
be taken to ensure the simulations and visualizations remain lightweight enough to
guarantee a fluid and responsive user experience.

Additionally, the tools are required to be modular and sufficiently general to
allow their incorporation into larger and more complex systems. They are designed
not as standalone applications, but as independent, reusable modules that can
be adapted to a variety of operational contexts and project requirements. To
support this modularity, the back-end components were containerized using Docker,
enabling isolated execution environments and simplifying integration into different
deployment pipelines. On the front-end side, particular attention was given to
the generalization of both the Vue.js and Unity implementations, ensuring that
the developed components could be easily reused and extended across multiple
applications.

For the simulation and visualization components, the tools must maintain a low
delay of interactions without excessive resource consumption. This involves efficient
management of resources and careful optimization of shader programs, therefore
ensuring compatibility with the constraints of web-based rendering pipelines.

The point cloud reconstruction tool, in particular, must process large-scale point
clouds of 100,000 points. The entire reconstruction process should be completed
within a reasonable amount of time when executed on a standard workstation.

Finally, the system integrating Unity-based simulations into the Vue.js web
application must ensure reliable bidirectional communication between the Unity
engine and the Vue.js front-end. It is required that this communication is capable
of sustaining message exchanges at high frequencies, without introducing latency
or causing any degradation in the simulation’s frame rate or responsiveness.

4

Introduction

1.5 Thesis structure

This thesis is structured as follows:

The chapter 2 presents the state of the art describing VR solutions in the
web world, remeshing algorithms, testing frameworks for these algorithms, and
methodologies for visualizing differences in 3D meshes.

The chapter 3 presents in detail the implementation, use, and testing of the
library that incorporates Unity in Vue.

The chapter 4 presents the implementation of a framework to test remesh
algorithms and the implementation of a LIDAR simulator.

The chapter 5 presents the implementation of the solution that visually shows
structural defects of a scanned model compared to a reference CAD.

The chapter 6 describe the implementation of a reference demo that integrates
the tools and the library.

The chapter 7 presents the conclusions and final analyses of the project and
illustrates its possible future developments.

Chapter 2

State of the art

This chapter provides an overview of the current state of the art in the domains
relevant to this work.

First, an overview of virtual reality technologies will be presented, with a focus
on their integration in web environments.

Subsequent sections will examine the functionality of LiDAR systems and their
use in aerospace operations and the implementations of virtual range scanning.

Analysis of surface remeshing algorithms will also be included.

Finally, a visualization of mesh differences with heatmap is analyzed.

2.1 Virtual reality and interactive applications

2.1.1 Virtual reality

Virtual Reality (VR) can be conceptualized as an interface to a plausible world
where real and virtual elements are seamlessly integrated.

According to Burdea and Coiffet [2], VR is a high-level human-machine interface
that leverages computer graphics for the real-time simulation of a realistic world. A
crucial aspect of this simulation is the ability to interact with the elements within
this synthetic environment through multiple sensory channels.

Burdea and Coiffet [2] define several characteristics inherent to this technology:

o Interactivity: The synthetic world presented in VR is dynamic and inter-
active. Interactions within this environment are instantaneous, meaning the
virtual world reacts immediately to user stimuli. This immediate feedback
is crucial as users perceive as real what they can influence and modify. The
effectiveness of this perception is significantly enhanced when the metaphors
for interaction closely mimic reality and are readily understandable by the
user.

State of the art

o Immersion: This characteristic quantifies the user’s sensation of being physi-
cally present within the virtual world. To maximize the sense of immersion,
it is essential to optimize computer graphics to render the environment as
photorealistic as possible. Furthermore, involving other sensory modalities,
including hearing, touch, and the visual system, substantially increases the
user’s perception of immersion. This concept is linked to the devices used by
the VR application to interface with the user.

e Presence: While related to immersion, presence is a distinct concept that
refers to the user’s sensation of belonging to the virtual world. A greater sense
of immersion generally correlates with a stronger sense of presence. However,
immersion alone is insufficient to convince the user of the synthetic world’s
reality. For a robust sense of presence, the synthetic environment must react
concretely and coherently to user stimuli. Additionally, the suspension of
disbelief plays a fundamental role.

A distinction with immersive technologies lies in the classification of different
forms of virtual reality, which vary primarily in terms of the level of immersion
they provide to the user, as described in the Figure 2.1. This spectrum is effectively
captured by the concept of the Reality—Virtuality Continuum, proposed in Milgram
et al. [3], which describes a gradual transition between the real environment and a
fully virtual one.

REALITY-VIRTUALITY CONTINUUM

AR AV VR

REAL ENVIRONMENT AUGMENTED REALITY AUGMENTED VIRTUALITY VIRTUAL REALITY

2o 3 1 ¥

DIRECT VIEW OF REALITY VIRTUAL OBJECTS OVERLAID REAL OBJECTS PROJECTED AND IMMERSION IN A FULLY
IN A REAL WORLD ENVIRONMENT CONTROLLED IN A VIRTUAL WORLD DIGITAL ENVIRONMENT

MIXED REALITY

XR

Figure 2.1: Virtual reality continuum. Image from https://creatxr.com/the-
virtuality-spectrum-understanding-ar-mr-vr-and-xr/reality-virtuality-continuum-
infographic-with-examples-2/

State of the art

At the end closest to the physical world lies Augmented Reality (AR), where
digital elements are superimposed onto the real environment, which remains the
dominant frame of reference. Moving along the continuum, there is Augmented
Virtuality (AV), where real-world components are embedded within a predominantly
virtual environment, for instance, through the integration of physical objects or
live video streams into a digital context.

Further along the continuum is Virtual Reality (VR) in the strict sense, in
which the user is fully immersed in a computer-generated environment, with
no direct perception of the surrounding physical world. Within this category,
however, different subtypes exist based on the degree of immersion facilitated
by the employed hardware. Notably, Desktop Virtual Reality refers to virtual
environments experienced via conventional display screens (e.g., computer monitors)
and standard input devices such as keyboards and mice. Although this form of
VR offers a lower level of sensory immersion compared to head-mounted displays
or spatial tracking systems, it remains the most widely adopted solution for
interactive applications, particularly in fields such as education, design, simulation,
and scientific visualization.

The focus of this thesis will be mostly on the field of desktop interactive
applications.

2.1.2 Applications of immersive technologies in the
aerospace context

The application of XR technologies represents a significant area of advancement in
various aspects of space exploration, ranging from fundamental scientific discovery
to the intricate processes of astronaut training, engineering design, and interactive
operational support [4].

The following is an analysis of the applications of these technologies in space
activities

Data visualization for scientific purposes

An example of VR applied to astrophysical research is NASA’s PointClouds VR[5,
a custom 3D simulation used to visualize the motion and direction of approximately
four million stars in the Milky Way. The Figure 2.2 shows an example of the
PointCloudVR system used for a LiDAR scan.

This immersive visualization tool allowed researchers to visualize complex
datasets, leading to enhanced classification of stellar groupings and the identi-
fication of previously misclassified stars. The spatial, interactive nature of the
simulation made it possible to intuitively explore associations between stellar clus-
ters, ultimately contributing to a more refined understanding of our local galactic

8

State of the art

neighborhood. This application demonstrates the importance of simulations and
visualization of computed data to help the analysis of such data.

Figure 2.2: Example of PointCloudsVR showing a LiDAR point cloud VR. Image
from https://github.com/nasa/PointCloudsVR

Astronaut Training

Immersive technologies are commonly used for astronaut training.

An example is the Virtual Reality Training Laboratory (VRL)[6]. It provides
astronauts with detailed simulations of spacecraft and mission environments.

A central focus of the VRL is the training for extravehicular activity. These
scenarios include practicing return maneuvers to the ISS after simulated detachment
events, significantly improving astronauts’ spatial cognition. The VR setup includes
a physical hand controller synchronized with real-time simulations and head-
mounted displays.

Another example of VR used for training is the Charlotte Mass Handling
Robot[4], which simulates the manipulation of massive payloads in microgravity
by incorporating force-torque sensors and realistic force feedback. This allows
astronauts to gain practical experience in mass handling well before entering orbit.

9

State of the art

ESA also employs VR for astronaut training through the JIVE system [7]. JIVE
helps astronauts visualize the 3D configuration of robotic arms and understand how
operations would occur in space. It also enables collaborative and remote teaching.

Real-time Operational Assistance

Immersive systems are increasingly employed to support operations and remote
control in space missions. Such technologies are designed to provide information and
alleviate the cognitive load on crew members by providing immediate, context-aware
assistance.

Examples include Sidekick, ARAMIS, and the Cold Atom Lab, all of which
leverage AR to overlay critical information directly into the astronaut’s field of
view [4]. This information may include holographic 3D schematics, procedural
guidance for maintenance and repairs, or real-time inventory tracking.

Engineering Design, Prototyping, and Human Factors Analysis

In spacecraft and mission system design, VR enables early-stage visualization,
iterative prototyping, and human factors evaluation without the need for costly
physical mock-ups. Human Factors Engineering (HFE) greatly benefits from VR,
as it allows engineers and users to experience and critique system layouts at an
early stage|8].

Designing habitats such as Deep Space Habitats (DSH)[9] requires an understand-
ing of how people will navigate and function in confined, microgravity environments.
VR facilitates rapid scenario analysis, enabling engineers to test different configura-
tions with full-scale models before committing to physical fabrication[8]. Similarly,
VR is integrated into the development of the Space Launch System in Kennedy
Space Center[10], particularly in evaluating ground operations and workspace
ergonomics.

Digital Twins for Autonomous Systems and Damage Detection

Digital twins are increasingly central to the development of autonomous space
systems. These virtual replicas of physical systems are continuously updated with
telemetry data, sensor input, and simulation models to support diagnostics and
decision making [11].

In the context of planetary rovers, digital twins serve as high-fidelity testbeds for
developing Health and Usage Monitoring Systems (HUMS). These systems emulate
real-world conditions providing an authentic testing ground for rover prototypes
and the development of damage detection algorithms by injecting anomalies such
as motor failures, thermal faults, or solar panel degradation[12].

10

State of the art

NASA has developed digital and physical twins MAGGIE[13] and OPTI-
MISM[14] for its Mars rovers, which are used to test commands and study opera-
tional constraints.

Another example of the use of digital twins for planetary exploration is the
DIGES project [12], which is modeled in MATLAB-Simulink with the aim to
simulate lunar exploration scenarios. This model includes subsystems for structure,
propulsion, power, and thermal control, offering a modular, adaptable platform for
planetary exploration technologies.

2.1.3 Web-Based Simulation

Web-based simulation (WBS), defined as the integration of the World Wide Web
with the field of simulation, has experienced significant growth and evolution[15].

As stated in Byrne et al. [15], Web-based simulation offers numerous advantages
over traditional simulation systems, contributing to its growing appeal, such as
ease of use, collaboration features, model reuse, ease access control and versioning,
customization, and maintenance.

3D simulations in web pages are experiencing revolutionary changes with the
rise of new web technologies. Its applications range from gaming to educational
platforms and virtual events. Web-based simulation is expected to gradually
replace mainstream 2D graphics technology, bringing revolutionary changes for
future internet applications [16].

Past Integration Methodologies

In the early stages of Web-based simulation, various integration methodologies

were explored. Java emerged as a dominant programming language for WBS due

to its platform independence, reusability of classes, and web capabilities.
Important features provided by Java that made it suitable for WBS are:

« JavaBeans Technology: [17] JavaBeans facilitated the development of
reusable software components that could be dynamically assembled using visual
development tools. This allowed skilled programmers to create components
(beans) that domain experts, with less technical expertise, could visually
assemble into custom applications.

o Platform Neutrality and Internet Capability: Java simulations could
be widely available, and applets could be retrieved and run without requiring
porting or recompilation across different platforms [18]. This brought a high
degree of dynamism to web applications.

e Sophisticated Animations: Java provided built-in support for animations,
which was crucial for visualizing simulation results dynamically.

11

State of the art

Several Java-based simulation environments and languages were developed, often
as Java versions of existing simulation languages:

o JSIM: [19] A Java-based simulation and animation environment that allows
models to be built as graphs. JSIM provides inherent animation capabilities
and incorporates database connectivity for storing simulation results, based
on the concept of Query Driven Simulation (QDS) [20]. It aims to provide a
flexible, platform-independent, user-friendly environment for developing and
running simulation models on the web.

o SimJava: [21] A process-based discrete event simulation package for build-
ing models of complex systems, including facilities for animated icons and
integration into web documents.

o JavaSim: [22] A set of Java packages for building discrete event process-based
simulations, implemented as a Java version of the C++ SIM toolkit [23].

o Silk: [24] A commercially available general-purpose simulation language
implemented in Java, designed for building reusable modeling components
and domain-specific simulators.

These early efforts laid the groundwork for future advancements in web-based
graphics and computation. The general direction is shifting toward WebGL appli-
cations.

WebGL

Today, WebGL (Web Graphics Library) [25] stands out as a cross-platform, royalty-
free open web standard for a low-level 3D graphics API, fundamentally based on
OpenGL ES [26]. It allows compatible web browsers to render interactive 3D and
2D graphics without the need for plug-ins, directly within the HTML5 Canvas
element. This technology supports GPU-accelerated rendering, which is crucial for
handling intricate graphics and visualizations within web pages.

Key features of WebGL include:

« Optimized Virtual Reality Experiences: WebGL enables developers
to create realistic and immersive virtual reality experiences directly in web
browsers by leveraging hardware-accelerated 3D graphics.

o Integration with Web Technologies: It seamlessly integrates with HTMLD5,
allowing interaction with DOM interfaces and other Web APIs. This enables
developers to use existing web development skills for WebGL applications and
combine them with features like data visualization, audio, and video.

12

State of the art

e Cross-Platform Compatibility: WebGL operates across diverse devices
and operating systems, including desktop computers, mobile devices, and
virtual reality devices, facilitating unified VR experiences across platforms.

While WebGL offers significant capabilities, a newer, high-performance web
graphics and computation API called WebGPU has emerged [27]. WebGPU
provides web developers with JavaScript access to a user’s device GPU for complex
graphical and computational operations. WebGPU generally outperforms WebGL,
exhibiting noticeably higher frame rates for similar applications, likely due to better
hardware utilization and performance enhancements [28].

This indicates that WebGPU is a better choice for high-performance, graphics-
intensive web applications.

In this thesis, WebGL was adopted due to its relative ease of integration. The
simulations were developed using Unity, a platform that offers considerable flexibility
in project export options, including seamless support for WebGL deployment.

Web Simulations in Aerospace Applications

Web-based visualization tools are proving increasingly valuable for aerospace sim-
ulations, providing efficient means to visualize complex system dynamics. These
tools leverage advanced visualization capabilities to help engineers and developers
understand simulation results and empower end-users with interactive experiences.

An example involves a generic web-based visualization tool specifically designed
for aerospace simulations, utilizing the Cesium JavaScript library [29]. This tool
benefits from the core advantages of web-based technologies, including platform
independence, accessibility, maintainability, and interoperability.

Key features and capabilities of the above-mentioned web simulation tool include:

o Integration with Simulation Tools: They offer an interface for commonly
used simulation tools and languages such as Matlab, Simulink, Scilab, and
Octave, allowing commands to be sent from these platforms to the visualization
application.

o 3D Visualization: The tools provide rich, 3D representation of simulation
outputs, which is critical for visualizing data from various domains including
chemical, transportation, defense, and aerospace.

» Real-time Data Integration: These tools can receive real-time data from
live systems via telemetry, radar, or similar technologies that transmit data
using UDP or TCP messages. This data can also be recorded in a specific file
format for later replay.

13

State of the art

e Distributed Architecture: The tool is implemented with a distributed
architecture composed of a visualization tool built in HTML and JavaScript,
a web server, and a data server.

o User Interaction and Customization: Users can interact with the visual-
ization to extend and refine models, observe the current state, change camera
options, and modify settings.

e Support for Multiple Platforms: It can provide real-time visualization on
various platforms, including desktop computers, mobile devices, and virtual
reality glasses, offering immersive visual experiences.

2.2 LiDAR Scanning

Light Detection And Ranging (LiDAR) systems are widely employed for advancing
autonomous capabilities in space missions, particularly for spacecraft relative
navigation [30].

Their robustness and precision make them particularly suitable for aerospace
applications.

In the context of this thesis, a virtual LiDAR simulator was developed to
replicate the functionality of a physical scanner within a controlled simulation
environment.

The following section presents an overview of the application of LiDAR sensors in
aerospace scenarios, as well as existing approaches to virtual scanning for simulation
and evaluation purposes.

2.2.1 Operating Principles of LiDAR

As explained by Christian and Cryan [30], a LIDAR is an active remote sensing
device that fundamentally operates by illuminating a target with light, typically a
laser, and measuring the time it takes for the emitted signal to return to the sensor,
as shown in the Figure 2.3. This time-of-flight (ToF) measurement is then used to
compute the range (r) from the sensor to a point on the target object using the
formula:

c-t
2

r =

(2.1)

where c is the speed of light, and ¢ is the laser time-of-flight.
14

State of the art

Observed
Object
Laser scans scene according to

some pattern (not necessarily
—~ the raster scan shown here)

Narrow laser transmitted by LIDAR is O i
reflected by the object and returns to | -
the receive optics et

LIDAR \

Figure 2.3: Representation of how LiDAR works

Classification of LIDAR Systems

LiDAR systems can be broadly categorized into three major groups based on their
illumination and sensing mechanisms for a 3D scene:

Scanning LIDARs These sensors use a narrow laser beam that is swept over the
sensor’s FOV to obtain range measurements. The return from this laser typically
illuminates a single detector. By combining knowledge of the laser’s direction and
the measured range, a three-dimensional (3D) point cloud of the scene can be
constructed.

This type of lidar is simulated in the developed LiDAR virtual sensor.

Detector Array LIDARs These systems utilize a broad laser pulse to illuminate
the entire scene at once (flood illumination). They then measure the laser ToF
individually for each pixel on a detector array.

Similar to scanning LIDARs, a 3D point cloud is constructed by combining the
known line-of-sight direction for each pixel with its associated laser ToF.

Spatial Light Modulator (SLM) LIDARs This emerging class of LIDAR,
still under development, uses SLMs to sequentially illuminate subsets of the scene
with a sequence of known patterns. The time history of the laser return from the
entire scene (for each pattern) is then measured by a single detector.

By combining assumptions on scene geometry, an approximation of the 3D scene
can be reconstructed from the time history of the returns.

15

State of the art

2.2.2 Applications of LIDAR in Aerospace

LiDAR technology is extensively utilized in space applications, as described by
Christian and Cryan [30], main application scenarios are:

Autonomous servicing and refueling of existing orbital assets, e.g., the ISS.
On-orbit assembly.

Providing information on the relative state of two spacecraft, including distance
and relative position and attitude.

Autonomous rendezvous and docking.

Deployments of LIDAR in space missions

Historically, LIDARs have been successfully deployed on various spacecraft.
Some examples, provided by Christian and Cryan [30], are:

Trajectory Control Sensor (TCS): the TCS is a scanning LiDAR equipped
on the Space Shuttle. It was used as a relative navigation aid during rendezvous
with the Mir Space Station, the Hubble Space Telescope (HST), and the ISS.
Its use was instrumental in the development of the Rendezvous, Proximity
Operations Program (RPOP).

Videometer (VDM): Used by the ESA’s Automated Transfer Vehicle (ATV),
the VDM provides range, line-of-sight measurements for docking, and relative
position and attitude. It operates similarly to a Flash LiDAR, using laser
diodes to strobe the target and measure returns.

RendezVous Sensor (RVS) The RVS is the primary relative navigation
sensor on H-II Transfer Vehicle (HTV) resupply spacecraft, and it is also used
for fault detection, isolation, and recovery on ESA’s ATV. Both are scanning
LiDARs that require retro-reflectors on the target.

2.2.3 Synthetic scanning

In the domain of surface reconstruction from point cloud data, virtual scanning
techniques are employed to synthetically generate point clouds that accurately
emulate the characteristics of real-world scan data. This approach is fundamental
for benchmarking the performance of surface reconstruction algorithms.

Unlike uniform sampling, virtual scanning uses principles of range scans to
capture sensor-specific characteristics.

16

State of the art

An example of virtual range scanning implementation is provided by Berger
et al. [31].

The virtual scanner simulates the functioning of an optical laser-based scanning
system, incorporating both random and systematic error to realistically emulate
the characteristics of real-world range scans. The methodology replicates physical
laser scanning processes by projecting laser stripes onto an implicit surface and
synthesizing the resulting radiance images.

To model random noise, the system first generates noise-free range data by ray
tracing the implicit surface from a virtual camera’s perspective, accounting for
visibility constraints. Then it applies the random noise and the systematic noise
models to generate the noisy data. A representation of the point cloud is provided
in the Figure 2.4

The provided implementation, however, requires that the 3D model used in the
scanning procedure meets a set of specifications:

o« Watertight Surfaces: To properly generate the scans, the mesh must be
watertight. A watertight mesh is characterized by having no holes, thus
uniquely defining an enclosed volume with a clear interior and exterior.

o Manifold Surfaces: Furthermore, the mesh must be a manifold surface.
This means that the model is topologically well-behaved, implying that it does
not contain problematic geometric ambiguities such as:

— Self-intersections

— Isolated vertices

— Edges that are part of more than two faces

2.3 Remeshing algorithms

Surface reconstruction from an unstructured point cloud aims to generate a plausible
surface that accurately approximates the input points. However multiple surfaces
can potentially be generated from the same point data. Over the years, a wide
range of approaches have been developed to address this problem. The following
sections examine some of the algorithms in this field.

2.3.1 Screened Poisson Surface Reconstruction (SPSR)

SPSR. [32] is an implicit surface reconstruction technique that builds upon the
Poisson surface reconstruction algorithm. SPSR extends the traditional Poisson

17

State of the art

WOEeVVUYS ! S

fodeo2%0ug iy 4
09900005,
9.—3'JJJJJJ':-’%
y0999990g4e
9999900g4g,
a,=_.';JJJJ_,JJj
099900,y
w9999 1w

(c) Virtual range scanning with noise

Figure 2.4: Point cloud generated by different sampling techniques. Image from
Berger et al. [31]

reconstruction by explicitly incorporating the input points as interpolation con-
straints. It reinterprets the surface reconstruction problem as solving a screened
Poisson equation. The traditional Poisson method posits that the inward-pointing
normal field of a solid’s boundary can be viewed as the gradient of its indicator
function, and it seeks a scalar function whose gradients best match a vector field
derived from oriented point samples.

o SPSR augments the energy function of the original Poisson formulation with a
screening term that penalizes deviations from zero at the sample points. This
term makes surfaces smoother.

o The algorithm discretizes the system using B-spline basis functions, allowing
for high-resolution detail near the surface.

o A multigrid approach is employed to efficiently solve the resulting linear system,
progressing from coarser to finer octree depths.

e The implementation also supports Neumann boundary conditions, which
are less restrictive than Dirichlet conditions, particularly when dealing with
incomplete data.

18

State of the art

2.3.2 Robust and Efficient Surface Reconstruction from
Range Data (RESR)

The RESR[33] algorithm frames the surface reconstruction problem as an energy
minimization task.

The initial step involves computing the 3D Delaunay triangulation of the merged
range scan points.

The method minimizes an energy function by optimally labeling Delaunay
tetrahedra as inside or outside the object. The energy function minimizes two
terms:

o Surface Visibility: This term allows the correct labeling based on the
approximate lines of sight.

o Surface Quality Term: Designed to prevent distorted triangles from forming
part of the surface.

The reconstructed surface is defined as the boundary between tetrahedra with
different labels, creating a watertight mesh.

2.3.3 Ball Pivoting Algorithm (BPA)

BPA[34] is a conceptually simple and efficient surface reconstruction technique that
builds a triangle mesh by rolling a virtual ball over the point cloud.

The algorithm computes a triangle mesh that interpolates a given point cloud.
Its fundamental principle is that three points form a triangle if a ball of a user-
specified radius (p) can touch them without containing any other point. Starting
from an initial seed triangle, the ball pivots around an edge, seeking a new point to
form another triangle. The algorithm then incrementally grows the mesh: for each
edge on the current mesh boundary, the ball pivots around it while maintaining
contact with its endpoints. The pivoting motion is constrained, with the ball’s
center describing a circle. The first new point encountered by the ball during this
motion forms a new triangle with the pivoting edge’s endpoints.

To address issues like uneven sampling or holes, the BPA can be applied in
multiple passes with increasing ball radii.

2.3.4 Advancing Front Surface Reconstruction (AFSR)

The AFSR[35] algorithm, implemented in CGAL, is a surface-based Delaunay
method that iteratively selects triangles to grow a surface.

AFSR sequentially selects triangles to build a surface, using previously selected
triangles to guide the selection of a new triangle. This greedy selection aims to

19

State of the art

generate an orientable manifold triangulated surface that plausibly approximates
the input points.

The process begins with the construction of a 3D Delaunay triangulation of the
input point set. The algorithm initializes its surface with the triangle that has the
smallest radius. The boundary of this initial triangle becomes the advancing front.
At each step, the algorithm extracts the most plausible candidate triangle adjacent
to the current surface’s boundary. New candidates are dynamically selected as new
boundary edges appear

Strict topological constraints are enforced to ensure the output is a manifold
surface.

The algorithm includes heuristics to discard uneven triangles.

2.3.5 Scale-Space Surface Reconstruction (SSSR)

SSSR[36] is a CGAL package that takes an unordered point set as input and
computes a triangulated surface mesh that interpolates the points. This method is
able to manage noise and outliers.

SSSR. creates a reconstruction using a scale-space. Increasing the scale smooths
the underlying surface described by the point set. The overall process involves
reconstructing the point set at a coarse scale and then reverting the mesh’s points
back to their original locations. The method operates in two main phases:

o Scale-Space: The point set is smoothed by iteratively increasing the scale
using Weighted PCA smoother and Jet smoother operator

o Meshing: After smoothing, a triangulated surface mesh is computed with
advancing front mesher at the coarse scale, and the connectivity is propagated
back to the original point cloud.

2.4 Mesh Difference Visualization

In the scope of this thesis, accurately quantifying geometric discrepancies between
3D meshes is a fundamental task to correctly implement the mesh difference
visualization tool. Several techniques have been proposed to compute the distance
metrics between geometries. As discussed in Ren et al. [37], among the most
common approaches are Point-to-Point (P2P) and Point-to-Face (P2F) distance
metrics.

2.4.1 Point-to-Point Distance

Point-to-Point (P2P) metrics typically operate by sampling both meshes into point
clouds and computing distances between the corresponding points. Two widely

20

State of the art

adopted metrics in this category are the Earth Mover’s Distance (EMD)[38] and
the Chamfer Distance (CD)[39]. These methods establish pairwise correspondences
between points and compute aggregate distances across the entire surface. As
described in Ren et al. [37], while effective in many contexts, P2P methods can
suffer from significant limitations due to their reliance on discrete sampling. This
approach disregards the continuous nature of the surface, which may result in
incomplete or misleading estimations.

2.4.2 Point-to-Face Distance

Point-to-Face (P2F)[40] metrics present an alternative strategy. In this approach,
points are sampled from one surface, and the shortest distance from each sampled
point to the faces of the opposing mesh is computed. The aggregate of these
minimum distances provides a measure of surface dissimilarity. P2F methods reduce
some limitations of P2P techniques by avoiding point-to-point correspondence and
making better use of the mesh geometry.

2.4.3 Heatmap-Based Visualization Tools

A practical implementation of mesh comparison is presented in Rodriguez-Garcia
et al. [41], which introduces a Blender plugin for visualizing geometric discrepancies
using color-coded heatmaps, as shown in Figure 2.5. The plugin supports the
analysis of distance deviations between two meshes. The computed distances are
encoded as vertex weights and visualized in weight painting mode or exported as
texture attributes. The heatmaps use customizable color palettes, and thresholds
are adjustable according to the model scale.

Figure 2.5: Heatmap representation of the work proposed in Rodriguez-Garcia
et al. [41]. Image from [41]

The plugin operates by comparing each vertex of the low-resolution mesh against
the high-resolution counterpart. For each vertex in the low-poly mesh, a cone is
projected along the normal in both directions to identify a corresponding point on

21

State of the art

the high-poly mesh. If no intersection is found, the cone aperture is increased up
to a threshold, after which a default distance of zero is assigned. The resulting
distances are mapped to a [0, 1] range using user-defined thresholds, and the data
is stored in a new vertex group.

In this thesis, a heatmap-based method for mesh comparison was developed,
inspired by the concepts presented in the aforementioned plugin and literature.
However, instead of relying on vertex-based comparison, the technique implemented
in the thesis work uses a uniform resampling of the mesh surfaces to compute
distances. This approach improves the robustness and accuracy of the comparison,
as it avoids dependency on the mesh resolution or vertex layout.

22

Chapter 3
Unity in Vue.js

One of the earliest steps in developing 3D simulations or visualizations in a web-
based environment is the integration of a game engine such as Unity into the
application front-end. In the context of this thesis, the front-end architecture
is Vue.js, as ALTEC uses this framework for its projects. A custom TypeScript
library was developed to allow the embedding of a Unity build into a Vue.js web
application. The primary goals of the library are to manage the lifecycle of the
Unity instance and enable bidirectional communication between the Vue front-end
and the Unity engine.

3.1 Motivation and Design Considerations

The architectural separation of concerns led to the choice to keep the responsibilities
for data management, user interaction, and API connection in Vue.js while isolating
the simulation logic within Unity. The front-end system is responsible for all aspects
of Ul rendering, API communication, authentication, and state management.
Integrating part of this logic within Unity would lead to redundancy, potential
security issues (e.g., duplicate authentication handling), and a less maintainable
codebase.

Furthermore, communication between the two systems is important, for example,
in aerospace simulation scenarios, such as those involving the visualization of
telemetry data. In this scenario, the Vue application handles API calls to retrieve
telemetry data from a back-end service. Once received, these data must be passed
to Unity to update the simulation in real time. In the opposite direction, Unity may
also need to emit events such as simulation states, user actions, or error messages
that the Vue interface must handle appropriately.

For these reasons, the integration requires a lightweight communication bridge
that provides interactive message exchange between the two environments while

23

Unity in Vue.js

minimizing performance overhead.

3.2 Requirements

The development of the library was guided by a set of requirements.

o Lightweight footprint: The library must avoid the inclusion of unnecessary
external dependencies and keep its codebase minimal to reduce the size of the
final web application bundle.

e« Minimal overhead: Communication between Vue and Unity should not
introduce noticeable latency or consume excessive system resources.

o Bidirectional communication: The library must provide APIs to:
— Send messages from Vue to Unity (e.g., telemetry data updates or simula-
tion instructions).
— Receiving events from Unity in Vue (e.g., simulation events or interaction

callbacks).

o Unity Lifecycle Management: The library must handle the lifecycle of a
Unity instance embedded within a Vue component. This includes initialization,
loading, execution, shutdown, and cleanup of the Unity environment.

3.3 Library Functionality

The core functionalities of the library are summarized as follows.

o Unity Loader Component: A Vue component that dynamically loads a
Unity WebGL build from a specified URL and embeds it into the DOM. This
component handles the initialization of the Unity instance.

o Message Channel: A messaging interface that allows Vue components to
send messages to Unity and to listen to events from it.

o Lifecycle Manager: APIs that control the Unity instance’s lifecycle. Includ-
ing methods to initialize, retrieve loading status, dispose of the Unity runtime,
and ensure proper resource cleanup.

24

Unity in Vue.js

3.4 Implementation Details

This section describes the implementation of the TypeScript library.

Unity supports the generation of WebGL builds that can be executed directly
in a web browser. A typical Unity WebGL build consists of several files: a .data
file containing binary assets, a .framework.js file responsible for running the
Unity engine logic in JavaScript, a .wasm file that holds the compiled C# code in
WebAssembly format, and a .loader. js script that bootstraps the Unity instance
in the web page. Taking advantage of this functionality, the library will use the
compiled WebGL application and instantiate a canvas element with the Unity
instance.

To keep the bundle size of the Vue.js integration library minimal, advanced
abstractions such as Vue’s Composition API were avoided. Instead, a low-level
implementation using the defineComponent function and the h() rendering helper
was adopted. Given that the component’s purpose is to render a single HTML
canvas element for the Unity simulation, this choice appears simple enough to be
implemented with low-level functions.

The following subsections describe in detail how Unity is loaded into the Vue
application, how the communication channel is structured, how resource are cleaned
up, and how mouse and keyboard focus handling are implemented.

3.4.1 Usage Overview

Once integrated into a Vue.js project, the library is used via a dedicated component
named <UnityComponent />. This component acts as the interface between the
Vue application and the Unity WebGL build. Configuration parameters related to
the Unity build must be provided to the component. Additionally, the component
supports lifecycle event hooks to monitor the initialization process of the Unity
instance.

An example of how the component is used within a Vue template is shown in
the Listing 3.1

The emitted lifecycle events are:

o beforeLoad — Emitted immediately before the Unity WebGL instance begins
to load. This can be used to display loading indicators or temporarily disable
UI elements.

o progress — Continuously emitted during the loading phase, providing a
numeric value between 0 and 1 that indicates the current progress. This allows
the application to render progress bars or other visual feedback.

e loaded — Emitted once the Unity instance has successfully completed its
loading process and is ready for interaction. This event provides access to

25

N O Ot s W N

Unity in Vue.js

a UnityChannel object, which is a communication interface with the Unity
engine.

o error — Emitted if an error occurs at any point during the loading phase.
The associated payload includes an Error object with the error’s details.

The UnityChannel object, provided through the loaded event, exposes methods to
send messages, subscribe to Unity-generated events, and terminate the simulation.

<UnityComponent
:unityConfigs="configs" width="950px" height="600px"
@beforelLoad="onBeforelLoad"
O@progress="onProgress"
@loaded="onLoaded"
Qerror="onError"

/>
Listing 3.1 Example of UnityComponent usage

3.4.2 Unity Loading

The Unity engine provides official support for WebGL builds, which can be embed-
ded and executed directly within a browser, as described in the Unity documentation
[42]. To load a Unity WebGL project on the client side, Unity generates a set of
JavaScript and binary files during the build process. Among these, the loader. js
file exposes the CreateUnityInstance function globally, which initializes the Unity
runtime and attaches the instance to a given HTML canvas element.

In the context of this library, it cannot be assumed that the host application has
already included the loader. js script in the HT'ML document. For this reason,
the script must be loaded dynamically at run-time. To achieve this, the library
creates a new <script> element using the standard DOM API as shown in the
listing 3.2

Once the script is successfully loaded, the globally available
CreateUnityInstance function becomes accessible. This function is then invoked
with the target canvas element, the configuration object, and a callback function
used to report the progress of the loading operation.

The loading process is summarized as follows:

26

=W NN =

Unity in Vue.js

e The canvas element is created with the h() function, and a reference to it is
stored in the Vue state.

e The CreateUnityInstance function is called with the canvas and the Unity
build configuration.

o Unity begins loading the WebAssembly and data files. During this phase, the
provided callback is invoked repeatedly with a progress value between 0 and 1.

o Once the loading is complete, the function resolves and returns a reference to
the Unity instance.

o If any error occurs during this process (e.g., missing files or incompatible
browser), an exception is thrown and must be caught to handle the failure
gracefully.

This runtime loading approach ensures that the Unity environment is only initialized
when needed and does not require the host application to modify its HTML structure
or statically include Unity scripts.

const script = document.createElement (’script’);
script.src = unityloaderUrl;
[...]

document .body.appendChild (script);
Listing 3.2 Creation of script tag in JavaScript

However, the following issues can emerge:

e Duplicate script insertions: Each time the Unity component is mounted,
a new <script> tag pointing to the Unity loader may be inserted into the
document. If not properly managed, this can lead to the accumulation of
redundant scripts.

» Global scope conflicts: The CreateUnityInstance function is injected into
the global scope when the loader script is executed. If multiple Unity WebGL
builds are used within the same application, especially builds generated from
different Unity versions, then the global function may be overwritten or point
to the wrong version, causing compatibility issues.

To mitigate these problems, the library implements a custom strategy to integrate
the loading scripts.

27

Unity in Vue.js

o When a loader script is requested for the first time, the library dynamically

creates and appends a <script> tag as described earlier. Afterwards, the
corresponding CreateUnityInstance function is stored in a map, which
associates loader URLs with their respective function references, and deleted
from the global scope.

Before attempting to load any new script, the library checks whether the
requested loader URL has already been loaded. If it has, no new script tag
is added to the document, and the previously cached CreateUnityInstance
reference is reused.

o When initializing a Unity instance, the library retrieves the correct function

for the specific loader that was used, ensuring that the instantiation process is
aligned with the appropriate Unity build. This prevents accidental use of an
incorrect global function.

This mechanism guarantees that each Unity WebGL build is correctly loaded.

3.4.3 Communication Channel

Once the Unity instance has been successfully initialized, the library provides a
communication interface called UnityChannel. This object serves as an abstraction
layer for bidirectional messaging between the Vue application and the Unity simu-
lation. Its purpose is to simplify interaction by encapsulating the Unity WebGL
messaging API and exposing a set of methods to send commands and receive
events.

The UnityChannel interface implements the following methods:

Method Invocation: The call() method allows Vue to invoke methods
defined in Unity scripts. It targets a specific Unity GameObject identified
by name and calls the specified method, optionally passing parameters. This
mechanism is built on top of Unity’s standard SendMessage API.

Event Subscription: The subscribe() method allows the Vue application
to listen for events triggered from Unity. When Unity emits a message (via a
JavaScript function call), all registered subscribers for the corresponding event
are notified. The unsubscribe() method can be used to remove a registered
event listener.

Instance Termination: The quit () method shuts down the Unity instance,
releases associated resources, and clears all active event subscriptions.

Fullscreen Control: The setFullscreen() method allows the Vue applica-
tion to toggle Unity’s fullscreen mode.

28

Unity in Vue.js

Implementation Details of Unity Channel

In order to support communication between the Unity WebGL instance and
the Vue.js application, it is necessary to establish a shared communication layer
accessible from both environments. Since Unity WebGL builds communicate with
the browser via JavaScript through custom . jslib file, a global object is exposed
to serve as the bridge between the two runtimes.

The library defines a global communication object and attaches it to the window
object using a reserved namespace. This object acts as a centralized message bus,
allowing Unity to emit events that can later be intercepted by the Vue application.
As long as both Unity and Vue are aware of the global namespace, they can
exchange messages.

Internally, the communication layer is composed of two classes:

e UnityGlobalChannel: This is the actual global object exposed under the
reserved namespace in window. It is designed to be accessed only by Unity,
allowing Unity-side scripts to publish events to the global channel. It maintains
a mapping of subscribers and broadcasts messages to all registered listeners
for a given event name

e UnityChannel: This is the object provided by the Vue component once
Unity is initialized. It serves as the main entry point for the Vue application
to communicate with Unity. Internally, it encapsulates a reference to the
corresponding UnityGlobalChannel instance and exposes methods for event
subscription, unsubscription, and method invocation.

This approach allows Unity to emit events through the UnityGlobalChannel,
while Vue interacts with the UnityChannel interface. This design prevents misuse
of internal methods.

Unity Channel Usage

The following is an explanation of how to use the UnityGlobalChannel and
UnityChannel.

Calling Unity from Vue The UnityChannel object is provided through the
loaded lifecycle event of the Vue component. Through this object, the front-end can
invoke methods defined within Unity simply by using the SendMessage function.

The workflow is described in the top section of the Figure 3.1.
29

Unity in Vue.js

Receiving Events from Unity in Vue The communication channel is also
designed to receive events from Unity. In WebGL builds, Unity allows communica-
tion with the browser’s JavaScript context via . jslib files. These JavaScript files
act as bridges, allowing C# scripts to trigger functions defined in JavaScript.

To send data back to Vue, Unity calls a function in the . js1ib file, which then
interacts with the global JavaScript object managed by the library. This object is
automatically created by the library and corresponds to an instance of the internal
UnityGlobalChannel class. This global instance exposes a publish method, used
to emit events to the Vue application.

On the Vue side, the UnityChannel exposes a subscribe method that allows
the registration of one or more callback functions to a specific event. When Unity
publishes an event, all registered callbacks are executed, and any return value from
the last callback can be passed back to Unity if needed.

The workflow is described in the bottom section of the Figure 3.1.

Unity Script to Simplify Communication

A custom Unity script is developed to reduce the complexity of event publishing. In
standard WebGL builds, Unity requires a separate JavaScript function, defined in
a . jslib file, for each event that needs to be sent to the JavaScript context. These
functions must also handle data conversion (e.g., converting C# strings or arrays
to valid JavaScript formats), leading to the creation of several similar functions for
every event.

In fact, a C# helper class named JsChannelBinding was implemented. This
class acts as an abstraction layer over the raw implementation, allowing Unity
to emit events with reduced complexity. The class JsChannelBinding exposes a
set of methods that allow the publishing of events to JavaScript. These methods
accept a single parameter, which may be of type int, float, string, float[] or
any serializable C# object. In the case of complex objects, the class handles JSON
serialization on the Unity side; the corresponding listener on the JavaScript side
receives the data already deserialized. The complete communication workflow is
described in Figure 3.1

Dynamic Channel Binding Since the global JavaScript object name may vary
depending on the configuration passed to the library from Vue, the class must be
initialized with the correct channel name. The recommended way to achieve this is
to first transmit the channel name from Vue using the call method exposed by
the UnityChannel. Unity then stores this value and uses it when instantiating the
JsChannelBinding object, ensuring that all published events are correctly routed
to the corresponding Vue instance.

30

Unity in Vue.js

Unity | Global

WebGL Channel Vue.js

From Vue To Unity

Object
- Function()

UnityChannel
- call("Object",
"Function")

Calls Function

From Unity To Vue

GlobalChannel
eventListeners:

[{"event", callBack}] Add
listener:

UnityChannel

+ subscribe("event",

- subscribe(event, callBack)

—_— callBack)
Object ;
- Publish("event", '

stringParam)
JsChannelBinding
- Publish(event, str)

— GlobalChannel

(T\ i eventListeners:

- PublishString(event | Find [{"event", callBack}] | Execute _
’ callbacks

str) ilisteners
—

+ callBack(str)

- publish(event,
param)

Figure 3.1: High level communication workflow between Unity and Vue

This configuration is important in projects where simulations may run con-
currently on the same page. The ability to bind to a specific channel avoids
cross-communication. Other Solution to the multiple instance problem are de-

scribed in the section 3.5

Cleanup

To ensure proper resource management and avoid memory leaks, a dedicated

cleanup function has been implemented in the UnityChannel class.

The UnityChannel class exposes a quit() method, which is responsible for
terminating the Unity simulation and releasing all associated resources. The cleanup
process manages the destruction of both the Unity WebGL canvas instance and

31

Unity in Vue.js

the underlying communication channel. Moreover, the UnityChannel object itself
must no longer be usable after the cleanup.

The first step in the cleanup process involves invoking the Quit method provided
by the standard Unity API in the UnityInstance object.

The Quit method initiates the shutdown of the Unity engine and deallocates its
internal resources, including the rendering context attached to the canvas element.

Subsequently, the global communication channel is cleared. This involves
unregistering all event listeners bound to the channel. Since the global channel
is implemented as a global variable, clearing it is a crucial step not only to free
memory, but also to avoid unintended behaviors when initializing a new Unity
instance.

Despite the cleanup of Unity and its communication channel, the UnityChannel
object remains available to external components, as it cannot be explicitly destroyed
from within the library’s scope (e.g., via delete). The private flag isActive is
used to prevent further use of the invalid object. This flag is set to false when the
quit () method is invoked. All public methods of the class check the state of this
flag before executing any logic, and if isActive is false, an error is thrown. This
mechanism ensures that any subsequent attempt to use the UnityChannel after
cleanup results in a failure, providing a signal to the developer that the object is
no longer in a valid state.

Finally, the canvas element must be destroyed. This is handled with the use of
the render functionality of Vue. Vue components are rendered programmatically at
every state change, this is the default reactive behavior of the framework. Leveraging
this functionality, it is possible to render the canvas element conditionally: when
the channel is active, the <canvas> element is rendered, otherwise an empty element
is displayed. This mechanism ensures that the unused HTML element is removed
from the page, cleaning up memory and avoiding showing a freeze-frame of the
simulation.

Mouse and Keyboard Focus

In simulations, user inputs via mouse and keyboard are essential for interaction
within the simulated environment. However, in the context of the developed library
the simulation typically coexists with other user interface components of the web
page (e.g., text inputs, buttons, form elements), which also rely on the same input
devices.

By default, Unity WebGL builds capture all keyboard input and lock the cursor
to the canvas element when it receives focus. This behavior can interfere with the
functionality of other Ul components by redirecting all keystrokes to the Unity
instance, regardless of the user’s actual intent. To avoid such interference, a specific
focus management is needed.

32

Unity in Vue.js

The core idea is to restrict mouse and keyboard input to the Unity simulation
only when the user explicitly interacts with it, and to release control when the user
either presses the Esc key or interacts with another element outside the simulation
canvas.

On the implementation side, the Vue library assigns a default tabindex value of
-1 to the Unity canvas element. This makes the canvas focusable while preventing
it from being part of the normal tab navigation order. The tabindex can be
overridden via a component prop if needed.

To enable proper keyboard delegation, the Unity WebGL application must
disable global keyboard capture by setting:

WebGLInput.captureAllKeyboardInput = false;

This directive should be issued as early as possible in the Unity application
lifecycle, ideally within the Start () method of the main controller script. Addi-
tionally, to prevent the cursor from being locked upon interaction with the canvas,
the sticky cursor behavior can be disabled by setting:

WebGLInput.stickyCursorLock = false;

With this setup, the Unity instance captures input only when active, preserving
the expected behavior of other Ul elements on the web page.

3.5 Handling multiple Unity instances

An important aspect of integrating Unity WebGL into a Vue web application using
the developed library is the ability to manage multiple Unity instances running at
the same time on the same web page. The resolution of this issue requires adjusting
the default usage of UnityChannel.

Due to the fact that the GlobalUnityChannel is injected into the window as a
global object, all Unity instances running on the same page will access and use the
same communication object. As a result, it is not possible to distinguish the origin
of the Unity instance that emits an event when multiple Unity builds use the same
event names.

3.5.1 Isolated Channels for Different Unity Projects

One strategy to mitigate these conflicts, particularly when dealing with different
Unity projects (i.e., builds generated from distinct Unity projects), is to assign each
instance a unique channel name. This is achieved by modifying both the Vue.js
configuration and the Unity WebGL . jslib file.

33

© 0 N O Ut ke W NN =

Unity in Vue.js

On the front-end side, each Unity component is provided with a dedicated
configuration object that specifies a unique channelName. An example is reported
in Listing 3.3

const unityConfigsl: UnityConfigs = {
channelName: ’_FIRST_PROJECT_’

b

const unityConfigs2: UnityConfigs = {

channelName: ’_SECOND_PROJECT_’

}

Listing 3.3 Assigning unique channel names in Vue.js

In the Unity .jslib files, events must be routed through the specific channel,
as shown in the Listing 3.4.

mergelnto(LibraryManager.library, {
example: function (str) {
window._FIRST_PROJECT_.publish(’example’, str); // for
the first instance
},
1)

Listing 3.4 Using distinct channels in Unity .jslib

This setup ensures that each Unity instance communicates exclusively through
its own isolated channel, avoiding naming collisions and ensuring correct event
routing.

3.5.2 Managing Multiple Instances of the Same Project

A more complex scenario appears when multiple instances of the same Unity
project (generated from the same source code and build configuration) must run

34

S Ut e W N

Unity in Vue.js

simultaneously on the same page. In this case, the assignment of distinct channel
names is not feasible, as the underlying WebGL build is identical.

To address this, upon initialization, Vue.js sends a unique postfix string to each
Unity instance, which is then used to differentiate events at runtime. This approach
involves calling a specific method in Unity to send the postfix and adjusting the
subscription to account for the modified event name; an example is provided in
Listing 3.5

channel.call("JSCommunicationHandler", "SetEventPostfix",
postfix);

channel.subscribe(’HelloJS’ + postfix, () => { alert(’Game
Start’) });

Listing 3.5 Subscribing to events with a unique postfix

On the Unity side, a singleton component named JsCommunicationHandler
stores the received postfix and exposes it to other parts of the application.

In the . jslib code, every published event must include this postfix, as shown
in Listing 3.6

mergeInto (LibraryManager.library, {
HelloJS: function (postfix) A
postfix = UTF8ToString(postfix);
window._UNITY_CHANNEL.publish(’HelloJS’ + postfix);
3,
IO

Listing 3.6 Publishing events with a postfix in .jslib

Finally, Unity scripts invoking these JavaScript functions use the stored postfix
as a parameter.

This solution allows multiple Unity instances to coexist and communicate
independently without interference.

35

Unity in Vue.js

3.6 Performance testing

This section details the methodology and results of the performance testing con-
ducted on the developed library. The primary goals of this evaluation are to assess
performance indicators such as memory usage, Unity’s frame rate and the number of
messages that could be sent per second between the Vue application and the Unity
instance with regard to the default implementation of WebGL builds generated by
Unity.

For web-specific performance, Google Lighthouse is a widely recognized de
facto standard for testing web pages performances, providing performance metrics,
such as page loading information. However, a more specific analysis of individual
features provided by the developed library was required for this specific evaluation.
Performance metrics were also collected using the Microsoft Edge performance
monitor tool. This tool, in addition to the web vitals metrics, also provides a
representation of memory and CPU usage, as described in the official documentation
[43] .

3.6.1 Test Objectives

The performance evaluation aimed to achieve the following specific objectives:

1. Compare memory usage and frame rate across different configurations.

o A standalone HTML file generated by the Build and Run function of
Unity editor (serving as a control).

e A minimal Vue project integrating Unity using the developed library.
e A more realistic Vue project that incorporates a Unity project along with
additional UTI elements, such as forms and buttons.

2. Evaluate message throughput:

e Measure the maximum number of messages that could be sent from
JavaScript (Vue) to Unity per second without negatively impacting the
game’s performance.

o Measure memory usage and frame rate while utilizing different implemen-
tations for the global communication channel responsible for handling
event listeners from Unity to Vue.

3. Evaluate different implementations of event listener handling.

36

Unity in Vue.js

3.6.2 Unity Project Setup and Hardware

The Unity scene used for testing was designed to represent a scenario that involved
complex environments and physics. The scene included a third-person controllable
character, an interior environment with multiple light sources and assets (such as
chairs and tables), and interactable physics cubes, as shown in Figure 3.2.

Figure 3.2: Unity simulation used to conduct the tests.

The tests were conducted using Microsoft Edge as the browser environment. The
hardware characteristics of the test machine included an Intel i7-8750H processor
and an NVIDIA GeForce RTX 2060 graphics card.

3.6.3 General Performance Testing

Different scenarios were created to evaluate performance variations compared to
the default Unity build, which served as control.

Unity Build (Control)

A production build of the Unity project was run directly using the "Build and Run'
option in Unity, configured to open in Microsoft Edge.
Key metrics observed for this control scenario included:

o Time to load the page and start the game: 5.04 seconds.
o Peak heap size: 10.9 MB.

« Total network loading time: 1010 ms (The Unity Wasm and data files required
the longest loading time, highlighting that the majority of the time is dedicated
to Unity build files).

o CPU usage, as shown in the Figure 3.2: 100%.
37

Unity in Vue.js

o Maximum memory used, as shown in the Figure 3.2: 20 MB.
o Framerate: Stable at over 100 fps.

o GPU memory usage: Maxed at 537 MB.

(a) Unity Build

(b) Minimal Vue project

38

Unity in Vue.js

(c) Real-like Vue Project

Figure 3.2: Performances recorded using the Microsoft Edge’s performance tool:
(a) performances of the page generated by the Build and Run process of the Unity
editor; (b) performances of a minimal Vue project that uses the library in analysis;
(c) performances of a real-like Vue project that uses the library in analysis. This
image highlights that there are few to no differences among the recorded data.

Minimal Vue Project

This scenario involved a Vue project containing only an App component configured
to initialize the Unity build using the developed library.
The metrics for the minimal Vue project included:

o Time to load the page and start the game: 5.1 seconds.

e Peak heap size: 13.8 MB.

» Total network loading time: 1050 ms.

o CPU usage, as shown in the Figure 3.2: 100%.

e Maximum memory used, as shown in the Figure 3.2: 20 MB.
« Framerate: Stable at over 100 fps.

o GPU memory usage: Maxed at 540 MB.
39

Unity in Vue.js

Instantiating Unity within a Vue project using the developed library was observed
to not introduce significant overhead. All the recorded metrics are almost identical
to those of the control scenario, with a slightly higher heap size and networking
time, likely due to Vue overhead.

Real-like Vue Project

This test scenario expanded upon the minimal Vue project by including additional
UI elements within the Vue template, such as buttons and forms.
The metrics for the real-like Vue project included:

o Time to load the page and start the game: 5.5 seconds.

Peak heap size: 12 MB.

Total network loading time: 1080 ms.
CPU usage, as shown in the Figure 3.2: 100%.

Maximum memory used, as shown in the Figure 3.2: 20 MB.

Framerate: Stable at over 100 fps.
e GPU memory usage: Maxed at 572 MB.

The addition of UI elements was found to have no significant impact on per-
formance. In fact, the recorded values are almost identical to the minimal Vue
scenario.

3.6.4 Multiple Unity Instances

To assess the performance as the number of Unity instances on the page increases,
the tests described in this subsection were carried out.

The tests were conducted with Vue projects running 2, 3, and 4 simultaneous
Unity instances using the developed library.

The results for multiple instances were as follows:

» 2 instances: Page loading times were identical to the single instance case, but
memory usage increased to a maximum of 30MB (as shown in the Figure 3.2),
and the frame rate dropped to 95 fps. Network loading time nearly tripled to
3490 ms due to loading duplicate Unity build files.

» 3 instances: Page loading times remained similar to the single-instance case.
Memory usage reached almost 40MB (as shown in the Figure 3.2), and the
frame rate dropped to 60 fps. Network loading time increased slightly to 3.7
seconds.

40

Unity in Vue.js

« 4 instances: Page loading times were similar to the single instance case.
Memory usage was slightly higher, nearing 50 MB (as shown in the Figure 3.2),
and the frame rate dropped to 45 fps. Network loading time was 6.8 seconds.

Performance was observed to decrease linearly with respect to the number of
instances. This is due to the resources being shared across multiple instances. Not
only is this trend expected, but it also demonstrates that the library in use does
not introduce significant overhead when handling multiple instances.

3.6.5 Conclusion of General Testing

Overall, the integration of Unity into a Vue project using the developed library
did not introduce significant performance penalties, particularly when a single
Unity instance was used. However, managing multiple Unity instances concurrently
presented challenges related to memory usage and framerate, with performance
decreasing linearly as the number of instances increased. Nonetheless, this is to be
expected given that the same resources are shared by several instances.

3.7 Message Throughput Testing

The objective of this test is to determine the maximum number of Unity method
calls that could be initiated from JavaScript (Vue) per second without negatively
affecting the game’s performance.

The methodology involved repeatedly calling a specific Unity method for a
duration of 5 seconds. The chosen function moved a cube within the scene,
representing an action that performs an actual change in the simulation and is thus
representative of functions used in a real application. The average number of calls
per second was then calculated.

The tests compared the throughput in the standalone Unity HTML Build, the
Minimal Vue project, and the Realistic Vue project with one instance. Message
throughput was also evaluated for multiple instances.

Results

The average numbers of calls per second observed for one instance scenarios are
indicated in the Table 3.1
For multiple instances, the average calls per second are reported in the Table 3.2.
The tests indicated that the library could handle an average of approximately
140 calls per second without causing the Unity instance to freeze. The results
suggest that the Vue library does not introduce significant overhead in this process
compared to Unity’s default implementation. In scenarios with multiple instances,

41

Unity in Vue.js

the total number of calls is distributed among the instances. Even with more
than three instances, no major performance drop related to message handling was
observed within the individual instance capacity.

(a) 2 instances in the same page

(b) 3 instances in the same page

42

Unity in Vue.js

(c) 4 instances in the same page

Figure 3.2: Performances recorded using the Microsoft Edge’s performance tool
on pages that integrate: (a) 2, (b) 3, (c) 4, instances in the same page. This image
highlights that memory increases linearly as the number of instances increases.

Run Type Average Calls/sec
Unity HTML Build 137.15
Minimal Vue 144.25
Realistic Vue (1 instance) 143.55

Table 3.1: Performance comparison of different run types

Instances | Average Calls/sec
2 82.4
3 35.93
4 32.65

Table 3.2: Average Calls per Second by Number of Instances

3.7.1 Event Listener Implementation Testing

This test aimed to evaluate the execution time and memory usage associated with
different implementations for handling event listeners in the GlobalChannel. This
object manages the event listeners registered in Vue and emitted by Unity. Different
implementations for this listener mechanism were tested:

43

Unity in Vue.js

1. Direct calls (Direct): Unity directly invokes a method defined in Vue via
GlobalChannel .method (). This implementation does not support executing
multiple callbacks for a single Unity event.

2. Arrays of callback (Array): Allows registering multiple callbacks for a specific
Unity event. Callbacks are stored in an array and executed sequentially when
Unity publishes an action.

3. Map of callback (Map): Similarly to the Array implementation, but utilizes a
Map data structure to store event-callback associations instead of an array of
callbacks.

These implementations were evaluated in two scenarios: a single listener and
multiple listeners (specifically, 100 listeners tested with the Map and Array imple-
mentations). The metrics collected were the execution time for the publication of
events and the memory usage of the UnityGlobalChannel.

Results

The results for average execution time and memory usage are listed in the Table 3.3.

Single Listener
Listener Type | Listeners | Average Execution Time | Memory Usage

Map Single 0.57 ms 708 B
Array Single 0.66 ms 832 B
Direct Single 0.59 ms 596 B

Multiple Listeners
Listener Type | Listeners | Average Execution Time | Memory Usage

Map 100 23.01 ms 8.64 KB
Array 100 26.11 ms 9.48 KB
Direct 100 Not Supported Not Supported

Table 3.3: Execution Time and Memory Usage by Listener Type and Scenario

For scenarios requiring the handling of multiple listeners, the Map implementa-
tion demonstrated the most efficient performance, exhibiting minimal overhead in
terms of both execution time and memory usage. In single listener scenarios, the
Map implementation performed comparably to the Direct implementation while
requiring only a marginal increase in memory (approximately 100 B).

The Map implementation for event listeners was identified as the most efficient
approach for handling events from Unity, as it can handle scenarios with multiple
listeners while adding a moderate overhead compared to the Direct implementation.

44

Unity in Vue.js

3.8 Conclusion

The developed library provides a convenient solution for integrating Unity sim-
ulations into Vue.js applications. By ensuring bidirectional communication and
lifecycle management, the library allows Unity to be used as a rendering engine
within web-based systems where front-end logic remains under Vue’s control.

In addiction, based on the performance evaluation, the integration of a Unity
WebGL build with a Vue project using the developed library performs comparably
to Unity’s native HTML build when operating with a single instance. The library
also successfully enables the possibility of implementing multiple instances on
the same page. Although managing concurrent instances introduces challenges
related to memory consumption and frame rate, the library does not introduce
a considerable overhead; in fact, performance decreases linearly as expected due
to resource sharing. Furthermore, the library facilitates efficient communication
between the Vue application and the Unity instance, handling a high volume of
messages per second without causing performance degradation.

45

Chapter 4

3D LiDAR Reconstruction

The use of LIDAR sensors in the aerospace domain is widespread. Applications
range from distance estimation to the scanning of structures for object detection,
structural diagnosis, or relative pose estimation.

A LiDAR sensor emits laser pulses and records the time it takes for the light to
return after bouncing off surfaces. This process generates a point cloud, a set of
spatially distributed points in three-dimensional space representing the geometry
of the scanned object. While certain calculations and analyses can be performed
directly on the point cloud this representation is not always optimal for visual
interpretation or further processing.

Point clouds lack explicit topological information; that is, the relationships
between individual points are not defined a priori. This absence of structure makes
the direct visualization of point clouds complicated, especially in contexts requiring
an intuitive or detailed understanding of the scanned geometry. When rendered as
separate points in three-dimensional space, the perception of the underlying object
can be misleading or incomplete.

To overcome these difficulties, surface reconstruction techniques are adopted to
infer a continuous 3D model from the point cloud data. The goal is to estimate a
geometric surface that both precisely represents the scanned object and is visually
pleasant. However, surface reconstruction is an inherently ill-posed problem:
multiple valid surfaces can be inferred from the same point cloud, and it becomes
exponentially more complex when the data is incomplete or noisy.

Various remeshing techniques exist to address this problem. These algorithms
typically operate under certain assumptions, for example, enforcing smoothness
constraints or filling in missing regions. For this work, a selection of traditional
remeshing methods suitable for generic 3D models was adopted. Machine learning-
based approaches were intentionally excluded due to the unavailability of large,
domain-specific datasets required for training. In addition, prior research [44]
has shown that machine learning models trained on general-purpose datasets may

46

3D LiDAR Reconstruction

underperform in specialized contexts when compared to traditional methods.

The primary objective of the tool developed in this work is to evaluate the
performance of different remeshing algorithms and identify optimal parameter
configurations that yield high-quality reconstructions. To achieve this, a simulation
and benchmarking framework was implemented, based on the library provided by
the authors of A Survey and Benchmark of Automatic Surface Reconstruction from
Point Clouds[44].

The development process began with the design and implementation of a LiDAR
simulator capable of producing synthetic point clouds from virtual scans. A set of
CAD models representing satellite structures from real space missions (provided
by ALTEC and other aerospace sources) was selected to ensure the relevance
and representativeness of the test cases. Subsequently, a suite of functions and
procedures was developed to facilitate the systematic testing and optimization of
the remeshing algorithms.

Finally, the remeshing methods that offered the best result base on the metrics
used for testing were identified.

4.1 Surface Reconstruction Algorithms

In this work, a selection of classical surface reconstruction algorithms was evaluated
to determine their performance in reconstructing 3D surfaces from LiDAR-generated
point clouds. These algorithms were chosen for their general applicability across
various scanning conditions and object geometries.

Neural network-based surface reconstruction methods typically do not outper-
form classical methods unless specific training is performed on domain-relevant
datasets [44]. An exception is the Implicit Geometric Regularization (IGR) [45]
method because training is executed with the CAD model itself, which can surpass
traditional techniques but is not practical in the scenario under analysis due to its
high computational requirements.

Given the lack of sufficiently large or representative datasets, this study focused
exclusively on traditional reconstruction techniques. These methods, although
unable to learn priors from data, offer stable and interpretable performance and do
not require training.

The five surface reconstruction algorithms considered in this study are described
below.

Screened Poisson Surface Reconstruction (SPSR) The Screened Poisson
Surface Reconstruction algorithm [32] builds on the classical Poisson reconstruction
method, generating watertight and smooth surfaces from point clouds. SPSR is
particularly suitable for scenarios involving noisy or incomplete data, as it can

47

3D LiDAR Reconstruction

produce coherent and continuous surfaces even when the scan does not fully capture
the geometry of the object.

Robust and Efficient Surface Reconstruction (RESR) RESR [33] formu-
lates surface reconstruction as an energy minimization problem that explicitly
models the scanning process. RESR is specifically developed to handle noisy
and sparse point clouds, such as those typically produced by real-world scanning
systems.

It is capable of filling missing regions and dealing with imperfections in the data
by leveraging geometric consistency heuristics.

Ball Pivoting Algorithm (BPA) The Ball Pivoting Algorithm [34] constructs
a triangle mesh by iteratively "rolling" a virtual ball of user-defined radius over the
input point cloud. A triangle is formed when three points are touched simultaneously
by the ball without including any other point inside.

The Ball Pivoting Algorithm is a simple and memory-efficient technique. BPA
performs well on uniformly sampled and complete point clouds; however, it is
highly sensitive to the choice of the pivoting radius. This sensitivity limits its
robustness in the presence of noise, outliers, or non-uniform sampling density. As a
result, BPA may struggle to produce accurate reconstructions in scenarios where
the scanned object contains holes or regions with insufficient point coverage.

Advancing Front Surface Reconstruction (AFSR) AFSR [35] uses a surface-
based Delaunay triangulation approach to incrementally build a mesh from the
point cloud.

This methodology promotes the generation of orientable, manifold surfaces and
allows the reconstruction process to adapt locally to the structure of the input
data.

Scale Space Surface Reconstruction (SSSR) The SSSR method [36] recon-
structs surfaces by first simplifying the point cloud through a scale-space smoothing
process. At a coarser resolution, a triangulated surface is generated, and the result
is then gradually mapped back to the original scale. This approach is particularly
robust to noise and can handle moderate amounts of outliers.

However, it does not attempt to infer missing geometry in undersampled regions
(e.g., occlusions), as it avoids speculative surface generation. SSSR excels in
scenarios where data quality is reasonable but may suffer when large gaps or
uneven distributions are present in the point cloud.

48

3D LiDAR Reconstruction

4.2 Design of the Evaluation Framework

The goal of this work is to develop a testing framework capable of evaluating
the performance of different surface reconstruction algorithms in terms of both
reconstruction accuracy and execution time. Additionally, the framework must
include an automated parameter optimization algorithm to identify the best-
performing configuration for a given dataset. This enables systematic comparisons
across algorithms and provides reliable guidelines for future applications.

Ultimately, the insights obtained from this evaluation process are intended to
inform the integration of the most effective remeshing method into ALTEC’s future
projects. To support this, the framework must not only produce benchmarking
results but also include integration guidelines and a Docker-based deployment setup
for easy reuse and reproducibility chapter 6.

To meet these objectives, the framework was designed to implement the following
core functionalities:

o Automatic loading of 3D models from the input dataset,
o Generation of synthetic LiDAR scans using a virtual scanning simulator,
« Postprocessing of the scans to create point cloud of various size,

» Execution of surface reconstruction for each model using the remeshing algo-
rithms described above and their default parameters,

o Computation of evaluation metrics for each reconstruction result,
o Parameter optimization to improve reconstruction quality,
e Re-evaluation using the optimized parameter sets.

The framework is built upon the structure introduced in the paper A Survey and
Benchmark of Automatic Surface Reconstruction from Point Clouds [44]. While
the original purpose of that benchmark was to systematically compare traditional
and learning-based surface reconstruction methods on predefined datasets, its
architecture provided a solid foundation for this work.

In particular, the referenced project offers utilities for integrating new remesh-
ing algorithms and evaluating them using standardized metrics. However, the
framework developed in this thesis is designed to operate on a custom dataset,
rather than relying on the benchmark’s predefined datasets, and on specific remesh
algorithms.

To enable this flexibility, a generalized pipeline was defined. This includes:

 Standardization of the input model format (using the OFF format),
49

3D LiDAR Reconstruction

o Definition of general-purpose scripts and evaluation functions to compute
relevant metrics and store the results in a reusable format.

The developed tool can be easily adapted to work with any other dataset in the
future, making it reusable beyond the specific scope of this thesis.

4.3 LiDAR Simulation

The first step in evaluating remeshing algorithms involves the generation of realistic
point clouds that closely resemble those acquired in real-world scenarios. Since no
suitable public datasets containing point clouds of satellites objects are available,
and acquiring real LiDAR scans is often impractical or costly, a custom LiDAR
simulation tool has been developed for this purpose.

This virtual scanner enables the generation of synthetic point clouds from 3D
models, which serve as input for the reconstruction algorithms under test. The
motivations behind this choice are:

« Dataset flexibility: Using a simulation-based approach allows full control
over the geometry and variety of the models included in the dataset. This
enables testing the reconstruction algorithms on models relevant to the studied
scenario without being limited by the availability of real scans.

o Practical constraints: Performing real LiDAR scans is often unfeasible due
to hardware limitations, logistical difficulties, and the unavailability of the
target object for physical scanning.

o Evaluation consistency: A virtual LIDAR scanner ensures that the gener-
ated point clouds remain consistent with the underlying 3D models used as
ground truth. This allows accurate evaluation of the reconstruction results,
since all metrics can be computed with respect to the known reference geome-
try, while still retaining the noise, sparsity, and occlusion patterns typical of
real scans.

Other methods for generating point clouds from 3D models do exist, but the
goal was to develop a customizable simulator suitable for the scenarios described
in this thesis. Existing LiDAR simulators do not meet the specific requirements of
this study and either require extensive modifications [46] or come with licensing
costs.

There are also synthetic scanning tools that do not rely on raycasting simulations
[31][47], but these require manifold, watertight meshes. Since complex meshes are
rarely manifold, such tools cannot be applied to datasets used in this study.

The following subsections describe the internal logic, implementation details,
and usage workflow of the developed LiDAR simulator.

50

3D LiDAR Reconstruction

4.3.1 LiDAR Simulation Functionality

The LiDAR simulator was implemented using Unity’s raycasting capabilities and
is designed to emulate realistic scanning conditions similar to those encountered in
space missions. The simulation models a sensor that follows a circular orbital path
around the target object, mimicking a fly-around acquisition trajectory. The sensor
can complete multiple full orbits, with the orbital plane that can tilt after each
orbit to increase coverage and realism; a scheme of this scenario is shown in the
Figure 4.1. This scanning setup allows the generation of point clouds that naturally
incorporate real-world defects such as occlusions and irregular sampling densities.

LiDar sensor

= Sensor path

Scanned points

Figure 4.1: Scheme of the LiDAR simulation scenario

Point Cloud Characteristics

The simulated point clouds exhibit features that closely resemble those obtained
from real LiDAR scans. Due to the fixed scanning trajectory and the geometry of
the sensor, certain areas of the 3D model may remain occluded or only partially
observed. This results in the presence of holes in the point cloud, particularly in
regions consistently shadowed from the sensor’s line of sight, as shown in Figure 4.2.

Moreover, the density of the sampled points varies across the model surface.
Areas that remain farther from the sensor during the scan tend to be covered by
fewer rays, leading to sparser point distributions Figure 4.2.

These characteristics are essential for evaluating the robustness of surface recon-
struction algorithms under challenging conditions.

Scene Architecture

The simulation scene is composed of three key components:

51

3D LiDAR Reconstruction

Figure 4.2: Examples of point cloud generated from the lidar simulator. (a)
example of holes in point cloud, (b) example of density variation in point cloud.

o A sensor: Emits rays according to a configurable angular resolution and field
of view, centered towards the scanning trajectory.

o The path: A spline defining the orbital trajectory of the sensor around the
target model. After each full orbit, a tilt is applied to the path to simulate
different observation angles.

o Model Loader: A mechanism that automatically loads and positions 3D models
at the center of the orbit. All models are normalized to fit inside the unit
cube to ensure consistent scaling across scans.

Sensor and path parameters can be adjusted via command-line arguments,
making the simulation highly flexible and adaptable to different test conditions.

Workflow

Upon initialization, the simulator reads a list of 3D models to be processed. Each
model is loaded individually, scaled to fit inside the unit cube, and positioned
at the center of the scanning trajectory. The sensor then begins the acquisition
process by performing a full circular orbit around the model.

After each session is completed, the sensor path is tilted along a defined axis
by the amount given as a parameter. This operation is repeated for a predefined
number of times to obtain a comprehensive scan.

During the scan, the sensor captures a series of frames, each representing a
snapshot of rays emitted within the sensor’s field of view. For every frame, the
rays intersect with the model surface, generating a corresponding set of 3D points.

For each captured frame, two versions of the data are saved:

52

3D LiDAR Reconstruction

e A clean version that stores the exact 3D coordinates of the intersection points.

» A noisy version, obtained by applying the Gaussian noise model described in
section 4.3.1 to the clean points.

The outputs of the simulation are the clean and noisy final merged point cloud
(representing the complete scan) and all intermediate per-frame clean and noisy
point sets. This structure provides traceability over the data generation process
and allows for in-depth analysis not only of the final point cloud but also of all the
intermediate frames. In the end, all the point clouds are saved in OFF file format
in a designated folder.

By saving both clean and noisy point clouds, it is possible to evaluate not only
remeshing performance based on noise levels but also the effect that different noise
parameters could have on the point cloud.

Noise Model

To approximate real-world sensor behavior, a noise model is used to perturb the
original position of each point in the scan. The noise model is designed to produce
results similar to real scans without introducing too much complexity. The noise
model is a simplification of the model described in the paper LiDAR Data Noise
Models and Methodology for Sim-to-Real Domain Generalization and Adaptation in
Autonomous Driving Perception [48]

The applied noise follows a zero-mean Gaussian distribution, where the standard
deviation is a function of the distance between the sensor and the intersection
point:

noise = N'(p,0), =0, 0=0pase+d-0q
where oy, 18 & fixed base noise level and oy is a scaling factor based on the distance
d from the sensor to the target point.

The perturbation is applied to the point along the scanning direction because
the majority of the error is often in the sensor’s estimated distance.

In addition to the noise model, the LiDAR simulator also handles outliers. An
outlier probability parameter is used to determine the likelihood that a scanned
point is an outlier. When a point is classified as an outlier, it is randomly relocated
within the unit cube. Although this approach does not reflect a physically accurate
model of outliers, it is straightforward to implement and still provides a useful
means of evaluating the robustness of remeshing algorithms in the presence of
outliers.

Simulation Parameters

The simulation is designed to be highly configurable to accommodate various
application scenarios. The main parameters are listed below:

53

3D LiDAR Reconstruction

o Path radius: Radius of the sensor’s orbital path.

o Frames per rotation: Number of sensor frames acquired during each full
rotation.

o Number of rotations: Total number of orbits performed by the sensor.

o Path tilt: Angular rotation applied to the orbital plane after each orbit is
completed.

e Ohase. Base standard deviation of the Gaussian noise model.
o o4 Noise intensity factor proportional to the point-to-sensor distance.
o Outliers: Probability of injecting outlier points in the scan.

« Field of view (FOV): Angular range of the sensor’s horizontal and vertical
scanning window.

« X resolution / Y resolution: Number of rays emitted in horizontal and
vertical directions, respectively.

The total number of rays per frame is given by the product of X and Y resolution.
Rays are uniformly distributed across the solid angle defined by the sensor’s FOV.

4.3.2 Implementation Details

The LiDAR simulator has been developed using the Unity engine, leveraging its
physics system and ray casting functionality. The core idea behind the implementa-
tion is to produce a standalone executable that can be launched from the command
line, allowing automated and configurable scan sessions.

Command-Line Interface

To support headless execution and parameter configuration via CLI, the simulator
integrates the UnityCommandLineParser library. This component handles the
parsing of command-line arguments, enabling users to define key parameters such
as the simulation settings, input model directory, and output data path.

Models to be scanned are specified in a list file (.1st), located in the input
directory. This file enumerates the names of OBJ-format 3D models to be processed.
At runtime, the simulator reads the list and sequentially loads each model.

54

3D LiDAR Reconstruction

Model Loading and Scene Preparation

The loading process uses a custom ObjImporter component, which imports each
model, normalizes it to fit inside the unit cube, and positions it at the center of
the scene. As the models are loaded at runtime, each imported object (and its
sub-objects) is dynamically assigned a MeshCollider. This component is essential
for enabling ray-based intersection detection, as it allows Unity’s physics system to
compute accurate ray-mesh collisions.

Sensor Motion and Animation

The movement of the LiDAR sensor is governed by a circular spline path con-
structed using Unity’s spline system. To animate the sensor along this path, a
SplineAnimate component is attached to the sensor GameObject. The speed of
animation is calculated based on the frames per rotation parameter, ensuring that
a scan is performed at each step of the path.

After completing a full orbit, the sensor path is tilted according to the user-
defined rotation increment. This step simulates different observation angles.

LiDAR Scanning and Raycasting

The core of the simulation involves synthetic raycasting. A custom scanning script
attached to the sensor emits rays uniformly spread along a frustum, defined by the
sensor’s FOV and resolution parameters.

Each ray is tested for intersection with the target model. If a hit is detected,
the following data are recorded:

The exact intersection point (clean point).

The surface normal at the intersection.

A noisy version of the point, obtained by applying a Gaussian noise model
with parameters op,se and o4 (distance-dependent component).

e A noisy normal, distorted using the same noise logic.

In addition, each point has a probabilistic chance of being replaced by an outlier.
For visualization and debugging purposes, an arrow is rendered in the scene for
each ray, pointing in the direction of the normal at the hit point.

Output and Logging

For every scan frame, both the clean and noisy point data are saved. These are
organized in subfolders, enabling full traceability of each frame. At the end of the

59

3D LiDAR Reconstruction

scanning process for each model, the final complete point clouds are saved in the
specified output directory.

The simulator also produces detailed logs indicating the progress of the scan
session and highlighting any encountered errors, making it suitable for batch
processing and integration in automated pipelines.

Automation and Batch Processing

The overall system is designed for scalability and automation. Once the .1st file
and command-line parameters are set, the simulator autonomously loads and scans
each model. This allows for the rapid generation of large datasets without manual
intervention.

4.4 Evaluation Metrics

To evaluate the quality of the mesh reconstructed by the algorithms used in the
framework, a set of evaluation metrics has been used. These metrics are drawn
from literature and benchmark studies on 3D shape reconstruction and surface
approximation [44],[49].

The aim is to quantify how closely the reconstructed mesh approximates the
original reference geometry, with attention to aspects such as surface coverage,
local accuracy, and continuity. The selected metrics are:

» Intersection over Union (IoU): This metric measures the volumetric
overlap between the reconstructed mesh and the ground truth. It is computed
by voxelizing both meshes and calculating the ratio between the intersection
and union of the occupied voxels. A higher IoU indicates that the reconstructed
shape captures the general structure and topology of the original object.

o Chamfer Distance: The Chamfer Distance evaluates the average bidirec-
tional distance between the surfaces of the ground truth and the reconstructed
mesh. For each point on one surface, the closest point on the other is identi-
fied, and the distances are averaged. This metric is sensitive to local surface
deviations and provides a measure of geometric accuracy.

o« Normal Consistency: This metric compares the orientation of surface
normals between the two meshes. It is computed by averaging the cosine
similarity of normals at corresponding points. A high normal consistency
implies that the local surface smoothness and curvature are preserved in the
reconstruction.

56

3D LiDAR Reconstruction

o Execution Time: Beyond accuracy, the computational performance of the
reconstruction process is also taken into account. The total execution time
includes pre-processing, reconstruction, and post-processing.

4.5 Dataset

To evaluate the performance of the reconstruction framework, a set of 3D models
representing various satellite configurations were used. The primary goal is to
reconstruct a mesh from synthetic LIDAR scans, assessing how well the system
generalizes to different types of objects commonly found in space missions utilizing
LiDAR technology.

To support this objective, a small dataset was created, composed of 3D models
of different satellites with diverse geometries and structural features. These models
serve to test the robustness and flexibility of the reconstruction process under
varying conditions.

Since the original models may contain an excessively high number of vertices
and complex mesh structures, a preprocessing step was introduced to simplify the
geometry while preserving the overall shape and topology. This was achieved using
Blender:

e The models are first imported into Blender, where the centroid of each mesh is
computed based on its surface geometry. The mesh is then translated so that
the centroid aligns with the center of the scene, ensuring consistency across
different samples.

o A wozel remeshing modifier is applied, with parameters adjusted to produce a
regularized mesh that closely approximates the original geometry.

o The resulting mesh is further simplified using a decimation algorithm, reducing
the vertex count to a maximum of 100,000 vertices. This ensures that the
models remain computationally manageable while retaining sufficient detail
for meaningful reconstruction.

The final processed models are exported in the OFF format using MeshLab,
making them compatible with the analysis tools used throughout the evaluation
pipeline.

4.6 Implementation Details of the Testing
Framework

The performance evaluation framework was developed in Python, using libraries for
3D data processing. In particular, Open3D and PyMeshLab were adopted as the core

57

3D LiDAR Reconstruction

tools for mesh manipulation and analysis. These libraries provide a comprehensive
set of functionalities for point cloud handling, mesh processing, and geometric
computations, making them well-suited for the requirements of this study.

The structure of the project is organized into modular components, each respon-
sible for a specific set of tasks within the evaluation pipeline. The key elements are
as follows:

« DSR Benchmark: The framework is built upon a modified version of
the DSR benchmark, an open-source platform for 3D shape reconstruction
evaluation. In this implementation, the original repository was customized to
retain only the components essential for the proposed tool, primarily focusing
on the computation of evaluation metrics such as Chamfer Distance, Normal
Consistency, and Intersection over Union (IoU).

o BaseDataset: This Python class encapsulates all the functionalities required
to process a full reconstruction pipeline. It manages the loading and organiza-
tion of scan data, the remeshing of point clouds, the computation of evaluation
metrics, and the generation of summary results for each reconstruction algo-
rithm.

o Externals: A dedicated directory that contains all external libraries and
tools used for the remeshing step. The remeshing libraries were modified and
adapted to be executed in the context of this project.

DSR-Benchmark Integration

The evaluation module integrated into the testing framework is based on the DSR-
Benchmark. This benchmark provides a standardized set of tools and methods for
assessing the quality of 3D mesh reconstructions, particularly focusing on geometric
accuracy and surface consistency.

In the context of this project, only the components related to metric evalua-
tion were retained and adapted. These components form the core of the quality
assessment pipeline and are responsible for computing the evaluation metrics.

The fundamental concept behind the metric computation is that these quanti-
ties cannot be directly calculated from the continuous surface of 3D models. For
instance, computing the volumetric overlap (IoU) between two meshes or evalu-
ating distances (Chamfer Distance) and normal orientation similarities (Normal
Consistency) requires a discrete representation. To address this, each mesh is first
sampled to generate a set of representative points over its volume or surface. These
sampled points are then used as a basis for metric computation.

The IoU is computed through volumetric sampling. First, the axis-aligned
bounding box (AABB) of the mesh is calculated. A uniform grid of sample points

58

3D LiDAR Reconstruction

is generated within this volume. Then, using the check_mesh contains function
from the libigl library, points that lie outside the mesh are discarded. This
operation is performed independently for both the ground truth mesh and the
reconstructed mesh. The remaining valid points are treated as voxels, and the [oU
is computed as the ratio between the size of the intersection and the size of the
union of these two voxel sets.

For the Chamfer Distance and Normal Consistency, uniform sampling is per-
formed across the surface of both meshes. For each point in one set, the nearest
neighbor in the other set is found. The Chamfer Distance is then computed as the
average of the squared distances between these closest point pairs, while the Normal
Consistency is calculated as the average cosine similarity between the normals of
the corresponding points.

The implementation relies primarily on the MeshEvaluator class and its eval ()
method. This method expects as input a structured dictionary containing paths to:

e The original ground truth mesh.
e The mesh produced by the reconstruction algorithm.

o A pre-sampled version of the original mesh (to ensure consistency across
remeshing methods).

An example usage of this method is the following:
mesh_evaluator.eval(self.model_dicts, outpath=path, method="SPSR")

Upon execution, the method loads the pre-sampled ground truth mesh and
performs a new sampling on the mesh to be evaluated. It then computes the
aforementioned metrics and saves the results in CSV format. This output includes
a row for each evaluated model, with the corresponding metric values and method
name, allowing for easy comparison and aggregation of results.

BaseDataset Class

The BaseDataset class represents the core component of the evaluation framework
and is responsible for managing the entire testing pipeline. It is designed to be
dataset-agnostic and is initialized by specifying the path to the dataset directory.

A key design principle of this class is to store as many intermediate results as
possible, reducing the need for redundant computations across multiple runs. This
significantly accelerates repeated evaluations and facilitates testing under different
configurations.

The class also maintains all the necessary references to external tools and
remeshing methods. These are encapsulated within the class to allow seamless
invocation of each remeshing algorithm during the evaluation stages.

The main responsibilities of the BaseDataset class include:

59

3D LiDAR Reconstruction

Data Structure Initialization Upon instantiation, it creates a data object that
stores all relevant paths to the models, intermediate files, and output directories.
This structured approach simplifies subsequent access to the data and ensures
consistency across the evaluation steps.

Model Preparation for Evaluation The method make eval() is responsible
for preparing each model for metric evaluation. It performs point sampling on the
ground truth meshes and stores the resulting point clouds in a temporary directory.
These sampled versions are later used in metric computation to ensure consistency
across remeshing methods. Additionally, the method _scale() is employed to
normalize all models, scaling them to fit within a unit cube.

Model Scanning via LIDAR Simulation The class also provides the scan_lidar ()
method, which handles synthetic LiDAR scanning of each model using the simu-
lation parameters described in Section 4.3.1. The method produces one or more
point clouds per model by emulating a scanning trajectory and sensor behavior. It
also applies a set of post-processing steps to generate multiple variants of the point
cloud. These variants are modified to reflect different reconstruction scenarios and

are further detailed in the testing methodology section.

Remeshing and Metric Evaluation For each remeshing algorithm integrated
into the framework, the BaseDataset class includes dedicated methods to:

o Execute the reconstruction algorithm on the point cloud data.
o Evaluate the resulting mesh using the metrics described above.

o Perform grid search over hyperparameters to identify optimal settings for each
method.

Externals

The externals directory contains all third-party libraries required to execute the
mesh reconstruction algorithms. Each library has been integrated into the project
with minimal modifications to ensure compatibility and correct execution within
the evaluation pipeline.

Where necessary, deprecated functions have been replaced or updated to align
with current versions of the dependencies. Additionally, a dedicated installation
procedure has been defined for each library, along with a validation script that
runs test reconstructions on pre-saved sample models. This script serves to verify
the correct installation and functionality of all algorithms prior to execution within
the main framework.

60

3D LiDAR Reconstruction

The external libraries included in the project are:

« RESR: mesh-tool is a C++ library that provides a collection of mesh
manipulation scripts, including an implementation of the RESR algorithm.
This library relies on CGAL (Computational Geometry Algorithms Library)
as a core dependency. The original repository has been slightly adapted to
ensure compatibility with the new version of CGAL.

o SPSR: The official implementation provided by the authors of the reference
paper is used. A custom Makefile has been added to facilitate building the
project on Linux systems, allowing it to be executed as a command-line tool
within the pipeline.

o BPA: This algorithm is natively included in the Open3D library. It is directly
accessed from within the Python codebase using the provided API functions.

o« AFSR and SSSR.: These methods are part of the C++ CGAL library. To
integrate them, a dedicated C++ wrapper script was developed. This script
accepts the necessary remeshing parameters via the command line, executes
the reconstruction process, and exports the resulting mesh. The script is
invoked from Python using standard subprocess calls, making the integration
both modular and transparent.

All remeshing tools are accessible either natively from Python or via command-
line interface (CLI) wrappers.

Testing Scripts

The previously described framework components provide the foundation for the
implementation of two core testing scripts: one focused on performance evaluation
of the reconstructed models and the other dedicated to measuring execution time.

The first script is responsible for evaluating the quality of the reconstructed
meshes before and after parameter optimization. Initially, it performs a baseline
evaluation using default parameter values for each remeshing algorithm, applied to
point clouds with varying characteristics (described in detail in the testing section).
Subsequently, a grid search is executed to identify the optimal set of parameters
for each method, after which the evaluation is repeated to assess performance
improvements.

The grid search procedure systematically explores a predefined range of values
for the remeshing algorithm parameters, aiming to identify the configuration that
yields the best reconstruction results. The goodness of a mesh is defined by a
value that could be a composition of the before-described metrics or a single one
of them. Although an initial attempt was made to guide the optimization using

61

3D LiDAR Reconstruction

a composite score that combines all evaluation metrics, this approach presented
several challenges.
The proposed composite metric was defined as follows:

1
S = IoU - . N 1Consist .
core = [oU - wy + ChamferDistance + 1 ws + NormalConsistency - ws

w1 = 04, Wy = 04, w3 = 0.2

The weights wq, wy, and w3 were arbitrarily chosen to emphasize the importance
of the Intersection over Union and Chamfer Distance metrics. However, this
approach proved to be impractical. The fundamental incompatibility between the
scales of the involved metrics, such as comparing normalized percentages (e.g.,
IoU) with absolute distances (e.g., Chamfer Distance), led to inconsistencies in the
evaluation. In some cases, the composite score resulted in suboptimal configurations
that degraded individual metric performance.

As a result, the final implementation relies solely on the IoU metric to guide the
optimization process. This choice simplifies the evaluation and has shown more
consistent improvements across the tested configurations.

4.7 Testing

The objective of this testing phase is to assess the performance of various surface
reconstruction algorithms under different point cloud conditions. In particular, the
experiments aim to evaluate how reconstruction quality varies depending on the
density and noise level of the input data, and to identify optimal parameters for
each scenario. This evaluation reflects the real-world variability of LIDAR scans
and ensures the robustness and generalizability of the tested methods.

4.7.1 Experiments

To investigate the impact of different point cloud characteristics, three experiments
were designed, each based on a distinct configuration of input data. The variations
were introduced either by using the noisy scan or by reducing their density through
post-processing.

o Experiment 0: High-density point cloud without noise.
o Experiment 1: Low-density point cloud with noise.

o Experiment 2: High-density point cloud with noise.

62

3D LiDAR Reconstruction

The point clouds for Experiments 0 and 2 are obtained directly from the LiDAR
scan simulation, with Experiment 2 incorporating the simulated noise model. For
Experiment 1, the base point cloud is further processed using the Point Cloud
Simplification tool available in MeshLab. This tool attempts to reduce the number
of points to a target value of 10,000 while preserving the overall geometry of the
model as much as possible. However, the final number of points can vary depending
on the specific geometric properties of the mesh and the original resolution of the
scan.

Point Cloud Sizes

The point cloud sizes vary from 22000 points to 270000 for the original size and
from 2000 to 21000 for the simplified ones.

The observed differences in point cloud sizes are strongly influenced by the
geometry of the models. Objects with elongated structures or thin appendages
typically produce sparser point clouds, whereas more compact geometries tend
to yield denser scans. These variations highlight the importance of evaluating
reconstruction algorithms under diverse conditions to ensure consistent performance
across different structural configurations.

4.7.2 Grid Search Parameters

To determine the optimal configuration for each surface reconstruction algorithm, a
grid search was performed over a predefined range of parameter values. The chosen
parameters reflect those commonly used in the literature.

The following summarize the parameters explored during the optimization phase
for each reconstruction method.

SPSR

Parameter Values
Depth of octree 6, 8, 10, 12
Boundary conditions | Dirichlet, Neumann, Free

Table 4.1: Parameters used for SPSR during grid search.

63

3D LiDAR Reconstruction

RESR
Parameter | Values
o 16, 32, 48
o 0.001, 0.01, 0.1, 1
A 1.5, 2.5, 5, 10
Table 4.2: Parameters used for RESR during grid search.
BPA

For BPA, the radius of the ball used in the algorithm is derived from the average
distance between points in the point cloud. This base radius is then multiplied by
specific weights to produce multiple pivoting radii. The algorithm supports the
use of multiple radius values to improve mesh reconstruction over surfaces with
varying curvature.

Parameter Values
Mean distance weight | 1, 2, 3
1st radius weight 0.01, 0.1
2nd radius weight 0.2, 0.5
3rd radius weight 1,2

4th radius weight 2,5

Table 4.3: Parameters used for BPA during grid search.

AFSR (Anisotropic Feature-Sensitive Reconstruction)

Parameter Values
Radius ratio bound | 0.5, 1, 2, 4
I} 0.01, 0.1, 0.5

Table 4.4: Parameters used for AFSR during grid search.

SSSR (Smooth Signed Scalar Reconstruction)

Parameter Values
Smoothing iterations 1,2,3,4
Maximum facet length | 0.5, 1, 2, 5, 10

Table 4.5: Parameters used for SSSR during grid search.

64

3D LiDAR Reconstruction

4.7.3 LiDAR simulation parameters

For the validation and testing of the implemented reconstruction pipeline, a syn-
thetic dataset was generated using the simulator described in previous sections.
The simulation parameters were selected to approximate, as closely as possible, the
expected characteristics of a real LiDAR sensor, within the constraints of publicly
available information.

Since the precise specifications of the target sensor are not known a priori, both
resolution and noise characteristics were estimated based on literature and common
configurations of real sensors. In particular, no outliers were introduced during
the simulation, under the assumption that the onboard processing of a real sensor
would filter them out prior to point cloud generation.

The Table 4.6 summarizes the parameter values used during the test sessions.

Parameter Value

Path radius 50 units
Frames per rotation 10 frames
Number of rotations 4 full rotations
Path tilt after each rotation | 5°

Obase 03%

04 0.1% of distance
Outliers 0

Field of view 20°

X resolution 128 rays

Y resolution 128 rays

Table 4.6: Simulation parameters used for testing

The combination of moderate frame count and path tilting provides sufficient
model coverage while still preserving realistic occlusion patterns.

4.7.4 Results

This section presents the outcomes of the testing phase for the reconstruction
framework. The evaluation focuses on three main metrics: Intersection over Union
(IoU), Chamfer Distance (CD), and Normal Consistency (NC). Special attention
is paid to comparing the performance with default remeshing parameters versus
optimized ones, obtained through a grid search.

65

3D LiDAR Reconstruction

Experiment 0

In the first experiment, the optimization process led to an overall improvement
of approximately 3% across all metrics. The Ball Pivoting algorithm showed the
highest benefit from parameter tuning, with a 7% increase in IoU. SPSR and
RESR achieved the best average IoU values, though RESR had significantly higher
Chamfer Distance. On the other hand, Ball Pivoting consistently performed better
in minimizing Chamfer Distance.

Method | IoU 1 | CD (*10°2) | | NC 1
SPSR 0.584 0.297 0.840
RESR 0.623 0.528 0.785
BPIVOT | 0.461 0.270 0.870
AFSR 0.495 0.363 0.826
SSSR 0.508 0.316 0.826

Table 4.7: Mean performance values for Experiment 0 with optimized parameters

Experiment 1

In the second experiment, the optimization step had a more limited impact, leading
to an average improvement of only 1.4%. Notably, SPSR showed no change
after optimization. IoU values remained highest for SPSR and RESR, while Ball
Pivoting again achieved the lowest Chamfer Distance. These results indicate stable
performance of the reconstruction algorithms across different point cloud densities.

Method | IoU 1 | CD (¥10°2) | | NC 1
SPSR 0.561 0.397 0.820
RESR | 0.610 2.190 0.746
BPIVOT | 0.449 0.321 0.838
AFSR | 0.446 0.435 0.815
SSSR 0.398 0.589 0.751

Table 4.8: Mean performance values for Experiment 1 with optimized parameters

Experiment 2

In the third experiment, the optimization step resulted in an average improvement
of nearly 4%, with Ball Pivoting again benefiting the most (up to 10%). The
outcomes closely align with those of Experiment 0, confirming the robustness of
the methods to moderate noise levels.

66

3D LiDAR Reconstruction

Method | IoU 1 | CD (*10°2) | | NC 1
SPSR 0.580 0.300 0.835
RESR | 0.628 0.777 0.771
BPIVOT | 0.457 0.516 0.842
AFSR | 0.488 0.343 0.788
SSSR 0.515 0.248 0.793

Table 4.9: Mean performance values for Experiment 2 with optimized parameters

4.7.5 Qualitative Results

The Figure 4.3 illustrates the qualitative results of the five reconstruction methods
tested.

Among the methods evaluated, RESR and SPSR consistently deliver the
highest visual quality. These approaches exhibit fewer reconstruction artifacts
such as holes and incorrect normals, and SPSR. in particular tends to generate
notably smoother mesh surfaces. On the other hand, BPIVOT, AFSR, and
SSSR struggle to maintain normal consistency and surface continuity. The meshes
produced by these algorithms are less accurate and tend to display jagged features,
which diminish their overall fidelity and aesthetic quality.

4.7.6 Execution Time

All reconstruction times include both preprocessing and post-processing stages.
Benchmarks were executed on a system equipped with an Intel i7-8750H CPU, an
NVIDIA GeForce RTX 2060 GPU, and 16 GB of RAM.

Original Point Cloud (Experiment 2) Table 4.10 presents the average execu-
tion time (in seconds) for each method when applied to the original, unmodified
point cloud.

Method | Unoptimized (s) | Optimized (s)
SPSR 2.15 11.48
RESR 11.90 12.20
BPIVOT 12.47 5.42
AFSR 7.02 7.11
SSSR 14.85 8.28

Table 4.10: Mean execution time for each method using the original point cloud
(Experiment 2)

67

3D LiDAR Reconstruction

SSSR

Figure 4.3: Meshes generated using different remeshing algorithms with the same
point cloud. Different color is assigned to each face based on the normal orientation

Simplified Point Cloud (Experiment 1) Table 4.11 shows the average ex-
ecution time for each algorithm when working with the simplified point cloud

68

3D LiDAR Reconstruction

dataset.
Method | Unoptimized (s) | Optimized (s)
SPSR 1.45 1.09
RESR 1.17 0.94
BPIVOT 0.34 1.16
AFSR 0.42 0.47
SSSR 3.66 1.01

Table 4.11: Mean execution time for each method using the simplified point cloud
(Experiment 1)

As expected, execution times are significantly reduced when using simplified
data. While SPSR and RESR remain relatively efficient even on the full-resolution
dataset, methods like BPIVOT and SSSR demonstrate much greater sensitivity to
input size, with SSSR being the most computationally expensive in its unoptimized
form.

The application of parameter optimization reveals varied effects in the recon-
struction methods. As shown in Tables 4.10 and 4.11, the variation in execution
times due to optimization depends strongly on the underlying algorithm.

In particular, methods such as BPIVOT and SSSR. benefit noticeably from
optimization, resulting in a considerable reduction in execution time. For instance,
in the case of BPIVOT, the mean time decreases from 12.47 s to 5.42 s when
processing the original point cloud.

In contrast, SPSR demonstrates a marked increase in execution time after
optimization, more than doubling its processing duration.

AFSR, on the other hand, shows minimal sensitivity to parameter changes, with
negligible differences observed between optimized and unoptimized configurations.

Execution Time and Point Cloud Size

Execution time is significantly influenced by the size of the input point cloud. As
expected, a larger number of points leads to increased computational load across all
methods. This trend is clearly observable in Figure 4.4, where execution times grow
rapidly with point cloud size, particularly for algorithms like BPIVOT, RESR,
and SSSR.

When using simplified point clouds, the execution time decreases considerably.
This reduction is evident across all methods.

Most algorithms exhibit consistent trends between optimized and unoptimized
configurations, as shown in Figure 4.4. However, SPSR. deviates from this pattern.
While its unoptimized version scales linearly with point cloud size, the optimized

69

3D LiDAR Reconstruction

Execution Time vs Point Cloud Size
—e— SPSR (Original)

RESR (Original)
—e— BPIVOT (Original)
—e— AFSR (Original)
—e— SSSR (Original)
-—- SPSR (Simplified)

RESR (Simplified)
=== BPIVOT (Simplified)
=== AFSR (Simplified)
-—- SSSR (Simplified)

5

= N N w w
« =] @ S [l

Execution Time (s)

=
o

104 10°
Point Cloud Size

(a)

Optimized Execution Time vs Point Cloud Size

30| —* SPSR (Original, Optimized)
RESR (Original, Optimized)

—e— BPIVOT (Original, Optimized)

—e— AFSR (Original, Optimized)

25 —e— SSSR (Original, Optimized)

-—-- SPSR (Simplified, Optimized)
RESR (Simplified, Optimized)

-=-- BPIVOT (Simplified, Optimized)

201 ___ AFSR (Simplified, Optimized)
--- SSSR (Simplified, Optimized)
15
) //
5

Execution Time (Optimized, s)

Point Cloud Size

(b)

Figure 4.4: Execution time of the remeshing algorithms with respect of point
cloud size before (a) and after (b) optimization

configuration appears to follow a more polynomial trend, aligning more closely
with the behavior of the other algorithms.

However, the execution time of SPSR does not grow as fast as other algorithms,
for example RESR, as the size of the point cloud grows.

4.7.7 Conclusion

The experimental results indicate that SPSR and RESR consistently deliver
superior mesh reconstructions compared to other methods. These two approaches

70

3D LiDAR Reconstruction

produce smoother surfaces with fewer topological artifacts, such as holes or incor-
rectly oriented normals. Among them, SPSR typically generates the smoothest
meshes.

Although BPA performs well in terms of chamfer distance, the generated meshes
are often jagged and with holes. As a result, qualitatively, BPA performs poorly
compared to SPSR and RESR.

SSSR and AFSR exhibit issues similar to those of BPA but also present
additional problems related to surface normals. Specifically, these algorithms
generate inverted normals in certain regions of the mesh compared to the original
mesh.

In conclusion, SPSR. is the best-performing algorithm overall, considering both
quantitative metrics, qualitative results, and execution time. While its qualitative
outputs are comparable to those of RESR, SPSR offers an advantage in terms
of scalability, as its execution time increases more slowly than RESR with the
growth of the point cloud size.

Regarding parameter optimization, the results suggest that its impact is limited.
In many cases, the performance difference between optimized and unoptimized
configurations is marginal. This may be attributed to the initial parameters being
already well-tuned for general performance, or it could indicate the need for a more
extensive parameter search to uncover potential improvements.

71

Chapter 5

Structural defect
visualization

In the context of 3D reconstruction from real-world objects, it is often helpful to
add to the resulting models additional visual information that facilitates analysis
and interpretation. In addition to geometric reconstruction of the scanned object,
the ability to visually highlight structural inconsistencies or deviations can be
valuable, particularly in applications related to space missions.

A representative scenario is the maintenance of satellites. In such cases, the
ability to visually verify the structural integrity of components by identifying
missing or extra parts can support maintenance procedures or anomaly detection.
For instance, during autonomous inspection, it may be crucial to determine whether
all expected elements of a satellite are present and undamaged, at least from a
surface-level analysis.

To support such tasks, this work explores a visualization approach that enables
the detection of structural defects through a comparative analysis between two
3D models: a reference CAD model and a mesh obtained from 3D scanning of
the physical object. The reference model represents the expected geometry of the
object, often available in aerospace applications due to the necessity of accurate
digital designs during manufacturing. The scanned model, instead, captures the
actual state of the object, potentially revealing discrepancies caused by physical
damage or structural wear.

The core idea is to compute the geometric differences between the scanned and
reference meshes and to encode such differences as visual cues directly on the 3D
surface. This is achieved by highlighting areas that deviate excessively using a
color-coded scheme. As a result, the operator or analyst can immediately identify
potentially problematic areas that may require further inspection.

It is important to acknowledge that this comparison is sensitive not only to

72

Structural defect visualization

real structural defects but also to reconstruction inaccuracies, such as remeshing
artifacts or partial occlusions during scanning. These limitations must be considered
when interpreting the results of the visualization.

5.1 Requirements

The tool must be compatible with a web-based environment and adhere to perfor-
mance and usability considerations that are critical in this context.

5.1.1 Web-Based Execution

A fundamental requirement is that the tool must be executable directly within a
web browser. This constraint arises as the tool will be used inside Unity and built
in WebGL to be included in a Vue project. Consequently, all client-side operations
must be implemented in a way that ensures compatibility with the Unity WebGL
runtime and respects the performance limitations of in-browser execution.

5.1.2 Client-Side Responsiveness

Given the interactive nature of the visualization, client-side operations must be
computationally lightweight and capable of delivering a responsive user experience.

5.1.3 Server-Side Preprocessing

While real-time operations on the client are constrained, more computationally
intensive tasks can be delegated to the server side. The system must support the
execution of preprocessing routines on the server, such as computing geometric
differences between models or generating auxiliary data structures required for
visualization. These preprocessing tasks may take several minutes to complete but
should be executed only once per model pair. The resulting data must be stored
and retrievable, allowing subsequent client sessions to load precomputed results
without repeating the entire processing pipeline.

5.1.4 Model Independence

The tool must be designed to be model-agnostic, with support for dynamically
loading different mesh pairs at runtime. This includes both the scanned model
and the reference model, which may vary across different use cases. The system
should therefore provide mechanisms for importing arbitrary models and managing
associated preprocessing results.

73

Structural defect visualization

5.2 Visualization Method

To effectively convey the differences between the scanned mesh and the reference
model, a heatmap-based visualization strategy was adopted. This approach encodes
the deviation information using a color scale directly mapped onto the surface
of the scanned model. Regions exhibiting significant geometric discrepancies are
highlighted using different colors. This form of visual encoding provides immediate
perceptual feedback and enables rapid identification of potentially defective or
altered regions.

The colored scanned mesh can be combined with a semi-transparent rendering
of the reference model. This layered visualization allows a direct spatial compar-
ison between the expected and observed geometries, allowing the user to better
contextualize anomalies and understand their structural implications. The use of
transparency ensures that both meshes remain visible without occlusion, supporting
a more comprehensive inspection.

Alternative visualization and processing techniques were considered but ulti-
mately deemed less effective in this context. For example:

o Side-by-side rendering: Presenting the reference and scanned models in
separate viewports allows for isolated inspection but lacks spatial correlation,
making it harder to assess localized deviations.

» Difference meshes: Visualizing the direct subtraction between the two
geometries may highlight volumetric changes, but it often results in fragmented
or non-intuitive structures that are difficult to interpret without further post-
processing.

e Volumetric representation: Using volumetric rendering to render the two
models. By overposing the models and using a volumetric rendering, different
colors could be assigned to volumes between deviated surfaces. However, this
solution could be computationally intensive and require complex preprocessing.

e 2D descriptors: An alternative strategy involves computing the differences
between the two models using local visual features such as SIF'T descriptors
[50]. This method consists of rendering both the scanned and reference
meshes ensuring the presence of sufficient visual features, and then extracting
descriptors from the resulting images. The differences between the descriptors
can be interpreted as a proxy for geometric discrepancies. One advantage
of this approach is the invariance of such descriptors to transformations,
potentially offering robustness to small misalignment between the two meshes.
However, this method also presents several limitations. First, since descriptors
operate in image space, they are unable to retain a meaningful correspondence

74

Structural defect visualization

with the 3D geometry. For this reason and because the descriptors depend on
the specific rendered view, it is not possible to precompute the SIFTs. This
introduces performance challenges, especially in web-based environments with
limited computational resources, as the computation must be executed on
each frame. Additionally, to be viable in interactive applications, descriptor
extraction and comparison must be implemented in Unity shaders compatible
with WebGL, a constraint that could result to a complex implementation.
Finally, as the matching is performed in 2D, the estimated discrepancies may
lack geometric precision, particularly in the presence of depth ambiguities or
occlusions.

In contrast, the heatmap overlay computed based on the distances between sampled
points in each model offers a balance between clarity, interpretability, and rendering
efficiency. It allows users to intuitively understand where deviations occur and how
severe they are.

5.3 Processing workflow

To render the heatmap as described in previous sections, the visualization tool
follows the steps described below:

5.3.1 Mesh Alignment

The first step consists of aligning the two meshes as accurately as possible. Since
the reference model (typically a CAD mesh) and the scanned model are generated
through different processes, their origins and coordinate systems generally do not
coincide. Even using common heuristics such as aligning the center of mass or
the geometric centroid may not suffice, especially in the presence of partial scans,
occlusions, or inherent discrepancies between the real object and its virtual model.

Moreover, orientation differences must be addressed: the pose of the scanned
mesh depends on the relative position between the scanner and the object, which
cannot be determined a priori. Consequently, an alignment procedure is required;
the Iterative Closest Point (ICP) is used as a co-registration method.

5.3.2 Mesh Sampling

Since direct surface-to-surface comparison is computationally impractical, a discrete
sampling of both meshes is required. There are two primary strategies:

e Uniform surface sampling, where points are distributed evenly across the
mesh surface, regardless of vertex distribution.

75

Structural defect visualization

o Vertex-based sampling, where the existing mesh vertices are used as sample
points.

While vertex-based sampling is computationally cheaper, it may result in uneven
spatial coverage, especially in meshes with irregular face sizes. Uniform sampling,
on the other hand, ensures more accurate distance measurements at the cost of
additional preprocessing.

5.3.3 Distance Computation

Once a set of sample points has been generated, the next step is to compute
the distance from each point on the scanned mesh to its nearest neighbor on the
reference mesh. However, this computation alone yields unsigned distances: it is
not possible to determine whether a point is located outside or inside relative to
the reference surface.

To obtain a signed distance, surface normals can be employed. For each sample
point p on the scanned mesh, let g be the nearest point on the reference mesh and
U = q — p the displacement vector. If -7 p < 0, where . p is the normal at p,
then p is considered to be inside the reference surface, and the distance is assigned
a negative sign.

To fully capture discrepancies in both directions, a symmetric operation is
performed by computing distances from points on the reference mesh to the
scanned mesh. This bidirectional comparison follows the approach used in Chamfer
Distance calculations and ensures that deviations such as protrusions or missing
parts are properly detected.

5.3.4 Distance-to-Color Mapping

The computed distances are mapped to colors using a predefined look-up table
(LUT). This LUT assigns colors to distance ranges (thresholds), with interpolation
applied for intermediate values. The resulting color encoding creates a visual
heatmap of geometric deviation across the model’s surface.

5.3.5 Texture Generation and Projection

To render the heatmap as a surface texture, each sampled point must be mapped to
2D UV coordinates. This process involves either UV unwrapping or UV projection
of the 3D mesh. Once the UV coordinates of each point are computed, the
corresponding pixel in the texture is colored based on the point’s deviation value.

As samples may not cover the texture uniformly, a scattered set of colored pixels
is initially obtained. These are then interpolated to produce a continuous texture,

76

Structural defect visualization

filling gaps with the color of the nearest valid point. This results in a smooth
texture that reflects the spatial distribution of geometric errors.

5.3.6 Visualization and Overlay

Finally, the texture is rendered onto the scanned 3D model using shading tech-
niques. Visual cues such as lighting and shadows are preserved to maintain depth
perception and enhance spatial understanding. The heatmap rendering is also
designed to support transparency and overlay: the reference model can be ren-
dered semitransparent, allowing users to visually compare both shapes in a single
integrated view.

This visualization mode facilitates the rapid identification of structural anomalies,
missing components, or unexpected protrusions, which is particularly relevant in
the context of space missions where surface integrity is critical.

5.4 Implementation Details

The implementation of the visualization tool is divided into two main components:
a back-end preprocessing module and a front-end rendering module. This allow
the separation of computationally intensive operations from interactive rendering.

The back-end module, developed in Python, is responsible for computing the
geometric differences between the reference and scanned meshes. It performs mesh
alignment, surface sampling, and distance calculation as described in the previous
sections. Based on a predefined color mapping scheme, the module produces a
sparse texture that encodes the computed distances in color form.

The front-end component is implemented in Unity, designed to be compatible
in WebGL. This module dynamically loads both 3D models and the precomputed
texture from the server. It also performs texture completion, filling in the gaps in
the sparse texture to create a continuous heatmap, and handles the visual rendering
of the model with appropriate shading and lighting effects.

The following subsections provide further details on the implementation of both
components.

5.4.1 Back-End Preprocessing Module

The back-end preprocessing component is implemented as a Python script, designed
to be executed from the command line and parametrized via console arguments. It
is responsible for the core geometric computations and for generating the heatmap
texture used by the visualization tool. The script is modular and optimized to
reduce redundant computations through intermediate result caching.

At a high level, the script follows the steps listed below:

7

Structural defect visualization

1. Mesh loading and simplification: The source (scanned) and target (ref-
erence) meshes are loaded from disk. Optionally, mesh simplification can be
applied to reduce computational load during subsequent processing.

2. UV mapping: UV coordinates are generated for both meshes.

3. Mesh sampling: Points are sampled from both meshes. Uniform surface
sampling is used. Sampled points are stored in cache to avoid re-sampling.

4. Optional alignment (ICP): If enabled, an Iterative Closest Point (ICP)
algorithm is applied to align the source mesh to the target mesh. This step
addresses possible discrepancies in translation and rotation between the two
models.

5. Distance computation: Point-to-surface distances are computed in both
directions (source-to-target and target-to-source), effectively implementing a
bidirectional Chamfer distance. Computed distances are cached for reuse.

6. Normalization and color mapping: The raw distances are normalized
according to a specified scale and mapped to colors using a breakpoint system.
This results in a color-coded representation of deviations. The result of this
step is shown in the Figure 5.1

7. Texture generation: Colored distance values are projected onto the UV
space, resulting in a sparse texture (dotted texture) encoding the colorized
distances. The outcome is displayed in the Figure 5.2

Figure 5.1: Colored point cloud resulted from the sampling, distance calculation
and colorization steps. Points with blue color indicate missing parts

To optimize execution time and enable incremental workflows, all intermediate
results are saved as cache files. When using the same mesh configuration, the

78

Structural defect visualization

Figure 5.2: Dotted texture resulting from the point to texture mapping stage

script avoids repeating steps such as sampling and distance computation. Proper
management of the output and cache directories is essential to ensure the caching
mechanism works as intended; different mesh pairs must be processed using separate
output paths.

The script produces the following output files in the specified output directory:

e source.obj: The processed source mesh with UV mapping.

target.obj: The processed target mesh with UV mapping.

points.png: A dotted texture encoding color-mapped distance values.

positions.png: A dotted black-and-white texture encoding sample positions.

info. json: A JSON file containing additional information.
In addition, the following cache files are stored:
o sampled_source.npz: Sampled data from the source mesh.

o sampled_target.npz: Sampled data from the target mesh.

o distances.npz: Computed distances between sampled points.

79

Structural defect visualization

5.4.2 Software Structure

The implementation is divided into a main script and two supporting classes:

e MeshTools: This class encapsulates functionalities related to loading, trans-
forming, and managing 3D mesh data. It handles operations such as simplifi-
cation and UV unwrapping.

e SampledMesh: This class manages the sampled point cloud derived from the
mesh surfaces. It is responsible for performing the sampling operation (e.g.,
uniform surface sampling), storing the resulting points, computing point-to-
surface distances with respect to another mesh, and associating normal vectors
when needed for sign estimation. It also provides caching functionalities to
store and reload previously sampled data.

The main parses input arguments, initializes instances of the above classes, and
handles the sequence of operations required to preprocess the input data.

Model Load and Simplification

The first step in the preprocessing pipeline involves loading and simplifying the two
meshes. This operation is performed using the Open3D library. Upon loading the
mesh, a simplification step is applied via the simplify_quadratic_decimation
function, which reduces the number of vertices to a maximum of 100,000. This
threshold was chosen to find a balance between preserving sufficient geometric
detail and maintaining computational efficiency during subsequent processing.

Following simplification, the mesh is unwrapped to generate UV coordinates.
This operation is performed using a function provided by the pymeshlab library,
which applies a "trivial per-triangle" UV mapping strategy. In this scheme, each
triangular face of the mesh is independently mapped to a corresponding triangle in
UV space. These triangles are arranged in a grid-like pattern, each separated by a
fixed spacing of 3 pixels to prevent texture bleeding during rasterization.

The size of each UV triangle is proportional to the size of the corresponding
3D face, controlled by a stepwise scaling mechanism that categorizes faces into
size classes. This ensures that larger faces receive proportionally more texture
resolution, while smaller faces are compacted accordingly, as illustrated in the
Figure 5.3.

Although this trivial unwrapping method is computationally efficient and
straightforward to implement, it introduces certain limitations. Notably, since
no geometric projection or distortion minimization is performed, the resulting
UV layout may lead to texture stretching on irregular or highly distorted faces.
However, in the context of this application, such distortions have limited impact

80

Structural defect visualization

Figure 5.3: Example of trivial per-triangle UV parametrization of a complex 3D
model

on the final visualization, where the emphasis lies on detecting the presence and
location of surface deviations rather than rendering photorealistic textures.

The processed mesh with its associated UV coordinates is saved to disk in the
cache folder.

The same workflow is computed for both the source and target mesh.

Sampling

Once the mesh is loaded and UV-mapped, it is converted into a SampledMesh
instance by SampledMesh.from mesh(mesh, num_samples) method. This step
performs uniform sampling of the mesh surface, where the total number of sampled
points is defined as a configurable parameter.

The adopted sampling strategy ensures that the distribution of points is propor-
tional to the surface area of each face, thereby capturing geometric detail uniformly
across the model. Specifically, the area of each triangle is first computed, and the
number of points assigned to each face is determined in proportion to its relative
area with respect to the entire mesh. To guarantee full coverage, even the smallest
faces are assigned at least one sample point. For these cases, a single point is
deterministically placed at the centroid of the face to make downstream processing
work better, in particular the texture filling operation performed on the client side.

Uniform sampling over triangular faces is implemented using barycentric coordi-
nates. For each point to be sampled, three random barycentric coefficients (u, v, w)
are generated such that v +v +w =1 and u, v, w > 0. These values are then used
to interpolate a position within the triangle, yielding a uniformly distributed point

81

Structural defect visualization

over its surface.

An attempt was made to parallelize the sampling procedure using multithreading
to improve performance. However, due to the overhead associated with Python’s
thread management, this optimization did not provide significant gains.

Nonetheless, the current implementation remains performant, largely thanks to
efficient use of vectorized operations provided by the NumPy library.

At the end of the operation, the SampledMesh class retains the sampled points,
their corresponding surface normals, and the index of the face from which each
point was generated. This data is later used in the point-to-texture mapping stage
to correctly associate sampled data with surface topology.

ICP Registration

If enabled via configuration parameters, an additional alignment step is performed
using the Iterative Closest Point (ICP) algorithm. This operation aims to reduce
misalignments between the scanned mesh and the reference mesh, which may result
from differences in acquisition pose, scale, or local geometric inconsistencies.

The registration process is carried out using the point clouds obtained through
the sampling procedure described earlier. Specifically, the centroids of both the
source and target point clouds are computed and used to apply an initial coarse
alignment based on translation. This translation brings the two point sets roughly
into the same coordinate frame before the ICP refinement.

Subsequently, the fine registration is performed using the registration_icp
function from the Open3D library, configured with the
TransformationEstimationPointToPlane mode. This method minimizes the
point-to-plane distances between the two point clouds.

Once the optimal rigid transformation is estimated, the computed translation
and rotation are applied back to the original triangle meshes. In this way, the
alignment step influences not only the sampled point clouds but also the source
and target mesh geometry.

Distance Computation

Once the source and target meshes are aligned and sampled, the next step in
the preprocessing pipeline consists in computing the distances between the two
surfaces to identify geometrical deviations. This is done in two stages, capturing
the discrepancy from both perspectives: from the source to the target, and vice
versa.

In the first stage, for each sampled point on the source mesh, the nearest
point on the target mesh is retrieved using the search_knn_vector_3d method
provided by the Open3D library. The unsigned Euclidean distance is then computed.
To introduce directional information, the sign of the distance is determined by

82

N O Ot e W N

Structural defect visualization

evaluating the dot product between the distance vector (from the source point to
the target point) and the surface normal of the source point. If this dot product is
close to zero (indicating near-perpendicularity between the vector and the normal),
the normal of the nearest target point is used instead. This fallback strategy
improves robustness in regions of ambiguous local geometry. The final signed
distance is negative when the point lies "inside" the target surface and positive
otherwise. The implementation is described in the Listing 5.1

dist_vector = nearest_point - point
dot_product = np.dot(dist_vector, normal)
if abs(dot_product) <= 0.15:
dot_product = np.dot(dist_vector, nearest_point_normal)
signed_distance = dist if dot_product >= 0 else -dist

Listing 5.1 Signed distance computation

In the second stage, the same procedure is repeated in reverse. For each point in
the target point cloud, the five nearest neighbors on the source mesh are identified.
For each of these neighbors, the signed distance is computed using the same method
described above. The newly computed distances are averaged with the previously
stored ones (of the source point cloud) from the first pass. This bidirectional
approach, inspired by the Chamfer distance computation, helps ensure that both
protrusions and indentations are captured effectively, including regions that might
otherwise be missed in a one-directional comparison.

Colorize by Distance

After computing the signed distances between the source and target meshes, each
point in the source point cloud is associated with the distance value. To enable a
meaningful visual representation of these values, a colorization process is applied
based on threshold parameters provided via command-line input.

Specifically, two sets of three threshold values are defined: one for positive
distances and one for negative distances. These thresholds serve as breakpoints for
mapping the distance values to corresponding color intervals. Positive distances are
mapped to a warm color palette (e.g., yellow to red). On the other hand, negative
distances are mapped to a cold color palette (e.g., light blue to dark blue).

83

Structural defect visualization

Each distance value is assigned a color by linearly interpolating between the
corresponding breakpoints within the appropriate palette. This approach ensures a
smooth and continuous gradient that highlights the extent of deviation across the
surface. Distances close to zero, which indicate good alignment between the two
meshes, are mapped to white.

The computed colors are stored within the SampledMesh class, maintaining
the association between each sampled point and its respective color value. These
colored points are later used to generate the final texture.

Point Color to Texture Mapping

The final operation performed by the back-end involves the generation of a sparse
texture that encodes the per-point color information in the two-dimensional UV
space of the mesh. This mapping enables the transfer of 3D distance information
onto a texture that can be rendered efficiently in the visualization stage.

For each sampled point, the triangle (face) on which the point lies is retrieved
using the face indices stored during the sampling process. The barycentric coordi-
nates of the point with respect to its corresponding triangle are then computed.
These coordinates are used to interpolate the UV coordinates of the triangle’s
vertices, thereby obtaining the precise UV position of the point.

Once the UV position is determined, it is mapped to discrete texture coordinates
(in pixel space), and the corresponding pixel in the texture image is colored using
the RGB value previously assigned to the point during the colorization phase.

In addition to this per-point mapping, each vertex of the triangle is also assigned
the color of the first sampled point associated with the face. This fallback color
is stored to be used later during the rendering stage, particularly in cases where
the interpolated texture may lack coverage or where shading artifacts need to be
mitigated.

5.4.3 Front-End Rendering Module

The front-end component of the system is implemented in Unity, with particular
attention paid to the constraints imposed by WebGL builds, especially for custom
shaders.

The primary responsibility of the front-end module is to render the processed 3D
models and to reconstruct a continuous heatmap texture starting from the sparse,
point-based texture generated by the back-end. This reconstructed texture is then
mapped onto the surface of the 3D model using the UV coordinates computed
during preprocessing.

In addition to visualization, the front-end manages the dynamic loading of assets
from the server, including both geometry and associated texture maps. Lighting and

84

Structural defect visualization

shading are configured to enhance the readability of the heatmap while preserving
the geometric detail of the object. Where appropriate, transparency and overlay
techniques are used to allow the visual comparison between reconstructed and
reference models.

Design Constraints

In order to implement the texture filling operation efficiently, a custom shader
was developed to use GPU-based computation, which is inherently optimized for
operations on textures and rendered surfaces. However, utilizing such computations
introduces several constraints, primarily due to the use of WebGL builds and the
requirement for interactive rendering within a browser environment.

An initial evaluation of different implementation strategies was conducted to
balance performance and visual accuracy. The first approach involved a fragment
shader that receives as input a vector of 3D points (coordinates z,y, z) and an
associated vector of color values. For each fragment, the shader transforms the
UV coordinates into object space and identifies the closest point to determine the
appropriate color. While this method is conceptually straightforward, it proved
to be poorly scalable: as the number of input points increases, the computational
cost for nearest neighbor search grows significantly, resulting in severe performance
degradation. As shown in the Figure 5.4, with more than 20,000 points, the project
is less and less interactive.

To address this limitation, a second strategy was developed in which the fragment
shader operates directly in UV space. Instead of comparing with all input points,
each fragment searches for the nearest colored pixel in a progressively expanding
neighborhood. This approach is computationally efficient and scales well, as a
higher point density results in a shorter search. However, this method suffers from
visual artifacts due to UV space topology: adjacent UV regions do not necessarily
correspond to neighboring regions in 3D space. Consequently, fragments near
triangle edges may sample colors from unrelated, nearby faces. An example of this
issue is shown in the Figure 5.5

To mitigate this artifact, a constrained search strategy was introduced, whereby
the nearest-colored pixel is searched only within the face to which the fragment
belongs. This requires identifying the triangle in which the fragment lies. To achieve
this, a geometry shader was employed to output the three vertex coordinates of each
triangle to a data structure accessible in the fragment shader. These coordinates are
then used to constrain the filling logic. Unfortunately, this solution is incompatible
with WebGL, which does not support geometry shaders.

The final implementation maintains the principle of nearest-colored pixel search,
but without using the geometry shader. Specifically, Unity’s Graphics.Blit ()
function is employed to simulate a compute shader using a fragment shader. This

85

Structural defect visualization

150

100

FPS

" ~

20000 40000 60000 80000 100000

Momep

N of Points

Figure 5.4: Frames per second with respect of number of points used as input of
the shader

(a) (b)

Figure 5.5: Example of color spilling on the edge of the faces. (a) On the left the
expected result and (b) on the right the actual outcome. The green triangles on
the right indicate the face edge

function executes a full-screen render pass where each pixel of the output texture
is computed independently using custom logic defined in the shader. Through
this mechanism, GPGPU-style parallelism is achieved within the limitations of the
WebGL pipeline, enabling efficient texture reconstruction with high visual fidelity.

86

N O Ot =W N

Structural defect visualization

Implementation Details

The front-end rendering module is structured around a main controlling script and
two dedicated shaders that respectively perform the computation and visualization
of the heatmap.

The central component is the ModelDiffVisualizer script, which orchestrates
the loading of resources and initialization of materials. This script is responsible for
managing interactions between the different modules and handling data exchange
between CPU and GPU memory.

The texture filling logic is implemented in the HeatmapCompute.shader, a
fragment shader that simulates GPGPU-style computations via a full-screen pass.
This shader is executed through Unity’s Graphics.Blit() function.

Finally, the HeatmapVisualize.shader is responsible for rendering the final
result on the 3D mesh by applying the filled texture and mapping it onto the mesh
surface according to the UV layout. This shader also includes the shading logic to
enhance visual readability of the reconstructed texture.

In the following sections, the specific implementation strategies for each of these
components are described in detail.

HeatmapCompute.shader The HeatmapCompute.shader is a GPU shader
employed within Unity’s Graphics.Blit () function, effectively acting as a compute
operation on a per-pixel basis over a render texture. The shader consists of a
basic vertex shader and a fragment shader. The vertex shader performs a standard
transformation of vertices using the built-in UnityObjectToClipPos, also assigning
the UV coordinates to the output struct. Since no 3D geometry is actually rendered
in this context, the vertex shader is effectively preparing a full-screen quad for
fragment processing. The vertex shader function is illustrated in the Listing 5.2

v2f vert (appdata v)

{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
0o.uv = v.uv;
return o;
3

Listing 5.2 Vertex shader of HeatmapCompute.shader

The core logic is implemented in the fragment shader, where the computation

87

T o W N =

© 00 g O

10
11

Structural defect visualization

proceeds pixel by pixel in UV space. The shader receives multiple inputs:

A point texture containing the colors assigned to sampled 3D points;

A position mask texture where white pixels correspond to valid colored points
in the point texture;

A UV texture encoding the UV coordinates of triangle vertices in a packed 2D
format;

o A mazimum radius defining the search extent in pixels.

Due to WebGL limitations, vertex UVs could not be passed directly as arrays
or buffers. Instead, a workaround was adopted, converting the UV coordinate list
into a floating-point 2D texture, where each texel stores a float2 corresponding
to a UV coordinate. The C# code used to generate this UV texture is reported in
Listing 5.3.

int texWidth = Mathf.NextPowerOfTwo (
Mathf .CeilToInt (Mathf.Sqrt (uvCount))
) s
int texHeight = Mathf.CeilToInt ((float)uvCount / texWidth);
Texture2D uvTex = new Texture2D (texWidth, texHeight,
TextureFormat .RGFloat, false);

for (int i = 0; i < uvCount; i++) {

int x = i % texWidth;

int y = 1 / texWidth;

uvTex.SetPixel(x, y, new Color(uv[il.x, uv[il.y, 0));
}
uvTex . Apply O);

Listing 5.3 Generation of the UV coordinate texture in Unity

The UV values are retrieved in the shader with a dedicated function, shown in
Listing 5.4, which reconstructs the UV coordinates from the packed texture using
the index and the known texture resolution.

The first computational step in the fragment shader consists of identifying the
triangle in UV space to which the current fragment belongs. This is achieved by
iterating through sets of three UV vertices at a time and checking whether the

88

S U e W N =

Structural defect visualization

float2 getUV(uint index)

{
uint x = index 7 (int) _UVTexSize.x;
uint y = index / (int) _UVTexSize.x;
float2 uv = (float2(x, y) + 0.5) / _UVTexSize;
return tex2D(_UVTex, uv).rg;
}

Listing 5.4 Reconstructing UV coordinates in the shader

fragment’s UV lies inside the triangle defined by them. Upon finding a match, the
three UV vertices of the corresponding triangle are cached.

Following the triangle detection, the shader performs a spiral search in UV
space, centered on the fragment’s coordinates. The search progressively expands
in concentric square layers, checking each neighbor pixel until a colored point is
found. Each candidate pixel is validated against three conditions: it must be inside
the UV bounds, it must be marked as colored in the position texture, and it must
lie inside the triangle identified in the previous step. The checking condition is
illustrated in the Listing 5.5.

if (uvInBound (searchUV) &&
is_colored(get_color (_Positions, searchUV)) &&

pointInTriangle (searchUV, uvO, uvl, uv2))

return get_color (_PointsTex, searchUV);

}
Listing 5.5 Check executed for the closest colored point inside the triangle

The colored pixel search is explained in the Figure 5.6.

Once a matching colored point is found, its color is written to the output texture.
If no point is found within the maximum radius, the output pixel is assigned a
transparent value. This strategy guarantees interactive performance and visual
coherence while respecting the rendering constraints imposed by WebGL builds.

89

Structural defect visualization

Colored pixel [C1 Chosen pixel
Start pixel X Discarted pixel
» Search direction = Face edge

.........................

...

Figure 5.6: Colored pixel search workflow

HeatmapVisualize.shader The HeatmapVisualize.shader is responsible for
correctly displaying the heatmap texture over the corresponding 3D model. It is
implemented as a custom multi-pass shader, structured into three distinct passes:
a depth-only pass, the main color rendering pass, and an outline post process pass.

o Pass 1 — Depth Pass: This pass writes only to the depth buffer, discarding
any color output. Its purpose is to ensure that the model is properly occluded
and can be rendered with transparency without showing internal faces or
artifacts from back-facing geometry.

o Pass 2 — Main Rendering Pass: This is the core of the heatmap visu-
alization logic. It samples the heatmap texture using the fragment’s UV
coordinates. If the sampled color is transparent, a fallback color is applied by
interpolating the per-vertex fallback colors, which are passed from the vertex
shader. The result is then modulated with a diffuse lighting model to enhance
the 3D perception of the surface. The lighting is calculated using the dot
product between the surface normal and the light direction, corresponding to
Lambertian diffuse shading [51]. The shaded color is then re-modulated with

90

© 0 N O Ut ke W NN =

e e e e
=~ W N o= O

Structural defect visualization

arbitrary weights to achieve a clearer visualization, as shown in the Listing 5.6.

half4 baseColor = color;

half3 normal = normalize(i.normal);

// diffuse lighting

half3 lightDir = normalize(_WorldSpaceLightPosO0.xyz);
half diff = max(0, dot(mormal, lightDir));

half inverse_diff = max (0, dot(normal, -lightDir));

half3 lighting = baseColor.rgb * 0.02 +
0.98 * (baseColor.rgb * _WorldColor.rgb
+ diff * baseColor.rgb *x 0.9 -

inverse_diff * baseColor.rgb * 0.1);

return half4(lighting, baseColor.a);

Listing 5.6 Diffuse lighting applied to heatmap color

Although this shading model is neither physically-based nor photorealistic, it
was designed to improve depth perception and ensure color uniformity across
the model. This avoids overly bright or dark regions that could impair the
readability of the heatmap.

o Pass 3 — Outline Pass: The final rendering pass introduces a stylized outline
around the model to improve edge visibility and silhouette clarity. To achieve
this, the mesh is rendered a second time in black, slightly enlarged in clip
space. This is done by displacing each vertex outward along its normal before
projection. As a result, the outline appears as a black border beneath the
primary model surface.

The end result is displayed in the Figure 5.7

ModelDiffVisualizer The ModelDiffVisualizer script handles the loading and
preparation of 3D models and associated data required for the correct rendering of
the heatmap.

91

Structural defect visualization

Figure 5.7: Example of the final result of the heatmap shader. The heatmap
shows that the scanned model is missing a piece

Initially, the source and target models are loaded based on URLs provided
as input parameters. This operation is performed using a customized version of
Unity’s OBJImporter asset, which was extended to also import per-vertex color
information, ensuring consistency with the preprocessing pipeline.

After the models are loaded, the script downloads the auxiliary textures produced
during the back-end processing stage: the points, positions, and UVs textures.
The UV texture is constructed programmatically, as described in previous sections,
by encoding the UV coordinates of the face vertices into a texture.

Once all data is prepared, a call to Graphics.Blit () is issued using the material
configured with the HeatmapCompute.shader. This operation simulates a GPGPU
computation, producing the final heatmap texture by executing the fragment shader
logic on a per-pixel basis across the render target.

Finally, the generated heatmap texture is applied to the source model using
the HeatmapVisualize material, enabling the colored visualization of differences.
The target model is assigned a semi-transparent material, allowing its shape to
remain perceptible while not interfering with the readability of the source model’s
heatmap.

92

Chapter 6

Demo

To validate the developed tools and to provide a comprehensive example of their
integration, a demonstration scenario has been implemented. This demo serves
both as a practical usage case and as a guideline for the application of the proposed
framework in aerospace-related projects.

The primary goal of the demonstration is to illustrate the complete pipeline,
from data acquisition to real-time visualization, using the components developed
in this thesis. The scenario is based on a simulated operation in which a LiDAR
sensor rotates around a satellite and acquires 3D scans of its surface. The operation
is intentionally fictitious yet representative of potential use cases in space missions
involving close-range inspection or servicing tasks.

The architecture of the system follows a client-server paradigm. The server
component is responsible for handling telemetry and reconstruction. It transmits
live telemetry data to the client, which visualizes the scanning operation in real time.
Once the acquisition phase is completed, the server performs the 3D reconstruction
of the target and sends the resulting mesh to the client. On the client side, the
reconstructed model is rendered using the heatmap visualization.

The final demo page is shown in the Figure 6.1

6.1 Page Layout

The demonstration interface is organized into three main sections.

The upper portion of the page shows the reference model used to make the
comparison with the scanned one, selected in the middle section. The middle
portion of the page focuses on the live simulation. The user can select a specific
model to scan,1 and then it displays a real-time visualization of the scanning
process and includes a telemetry table. This table presents a tabular view of the
data transmitted during the simulated mission, such as the current sensor position,

93

Demo

= ALTEC <

This is the reference model used for the comparison

Select a model to be scanned in the simulation
Soloct a Model

Target missing panels

LiDAR simulation
Telemetry Data

Timestamp |7 Position Rotation
x: 22.7415 x: 270.5553

10.3593 y: 0.485 y: 332.9198
z:-44.4782 2: 269.9998

Visualization of the difference between the reference model and the scanned selected model

Toggle Ground truth Toggle Reconstructed

Figure 6.1: Demo page

rotation, or time stamps. The simulation provides users with a clear understanding
of the acquisition workflow and the evolution of the scanning process over time.
The lower portion of the interface hosts an embedded Unity instance responsible
for rendering the reconstructed model using the developed heatmap visualization
technique. This area allows users to inspect the results of the 3D reconstruction and
to interpret deviations or inconsistencies with respect to the reference geometry.
At the beginning of the simulation, users are prompted to select a model that
will serve as the target for the scanning process. The reference object will be always
the same; the selected model, however, represents the scanned geometry and is
crucial for evaluating the effectiveness of the heatmap visualization. By choosing

94

Demo

different target models, users can observe how geometric discrepancies influence
the color patterns of the heatmap.

6.2 Back-end Implementation

The back-end component of the system is implemented using the NestJS framework.
Its responsibilities are limited to providing access to 3D models, simulating live
telemetry, and executing scripts for mesh reconstruction and preprocessing for
heatmap visualization.

The back-end exposes the following endpoints:

o /api/meshes: Returns the URLs of the 3D meshes used as satellite targets
for the simulation. These files are publicly accessible and can be downloaded
by the client.

o /api/reconstruct: Triggers the reconstruction of the scanned mesh. It
assumes the availability of the raw point cloud data on the server and returns
the URL to the resulting reconstructed model.

e /api/generate-difference: Performs preprocessing required for heatmap
visualization. It assumes the reconstructed model is already present on the
server and returns the paths to the generated texture and model.

o WebSocket: a WebSocket is provided for streaming telemetry data to the
client in real time.

Further explaining the WebSocket functionalities, upon connection, the server
waits for a start-stream message. Once received, it reads a set of mock telemetry
records and sends them to the client, respecting the original time intervals between
consecutive data entries, as shown in the Listing 6.1

Each telemetry packet includes information such as the timestamp, the position
and orientation of the satellite carrying the LiDAR sensor, and the rotation of the
joints on which the sensor is mounted. When the data stream is complete, an end
message is emitted.

The /api/reconstruct endpoint executes a script that performs the surface
reconstruction using Screened Poisson Surface Reconstruction (SPSR), which was
identified as the best-performing method during algorithm benchmarking. The
script assumes that the input point cloud is available in a known directory. The
output mesh is saved in a dedicated directory that changes based on the selected
target model. If the output already exists, the reconstruction is skipped. Each model
has a unique identifier passed to the endpoint to correctly select the corresponding
paths.

95

Demo

if (prevTimestamp) {

await this.timeout ((row.Timestamp - prevTimestamp) *
1000) ;
}
prevliimestamp = row.Timestamp;
this.server.emit(’telemetryData’, this.telemetryToDto (row));

Listing 6.1 Telemetry data emission with timing control

Similarly, the /api/generate-difference endpoint runs a script that prepro-
cesses geometric differences and generates the necessary textures for heatmap
rendering. This script is based on the method described in chapter 5. Output files
are cached and reused if they already exist.

Internally, the back-end integrates the reconstruction and preprocessing scripts
directly. The reconstruction script is a Python wrapper around a modified C++
implementation of SPSR. The wrapper validates input files, converts formats as
needed (from PLY to OBJ and vice versa), and launches the reconstruction with
optimized parameters identified during previous testing.

The back-end is designed to be containerized using Docker, allowing ALTEC
to deploy the complete system in a reproducible environment. A docker-compose
setup is provided, structured in two stages:

o The first stage builds an image (build-externals) that installs external
dependencies and compiles the SPSR C++ project.

o The second stage uses this image as a base, adds the NestJS project, and
launches the back-end service.

An excerpt of docker-compose.yml configuration is reported in the Listing 6.2

Two Dockerfiles are used: one for building the external tools, and one for
configuring the full NestJS service. The build-externals Dockerfile installs Python
dependencies for mesh comparison and compiles the SPSR executable, as explained
in the Listing 6.3

This setup ensures that all necessary libraries and scripts are available within the
container, enabling a smooth deployment of the back-end services and reconstruction
pipelines.

96

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Demo

services:
nestjs:
C...)
depends_on:
- extermnals-scripts
volumes:
...
- externals-volume:/app/PoissonRecon
externals-scripts:
image: build-externals
volumes:
- externals-volume:/app/Poisson
Recon
volumes:

externals-volume:

Listing 6.2 Docker Compose configuration

6.3 Front-end Implementation

The front-end web application was developed using the Vue.js framework. The
project is composed of a main view that orchestrates the overall layout and
logic, supported by a set of auxiliary components. Two of these components
encapsulate the Unity WebGL instances used respectively for the live simula-
tion (LoadAndScanModelUnity.vue) and for the mesh difference visualization
(ModelDiffUnity.vue). These components make use of the Unity-Vue integration
library developed as part of this thesis project.

Additionally, the front-end includes a network service class for managing API
interactions and a composable module, useTelemetry.ts, for handling real-time
telemetry data.

6.3.1 Telemetry Management with useTelemetry.ts

The useTelemetry composable is designed to manage the connection with the
back-end WebSocket and handle the telemetry stream. It is built to be reusable by
both the Unity simulation component and the telemetry table component. Upon
initialization, the composable establishes the WebSocket connection and registers

97

© 00 N O Ut ke W NN =

T
W N = O

N S R

Demo

a listener for telemetry data messages. When new data is received, a callback
function is invoked, and the data is appended to a local telemetry history buffer.

To optimize performance and reduce excessive reactivity updates, the history is
updated periodically using Vue’s throttling mechanism. As shown in the Listing 6.4,
buffered data is committed to the reactive array every 300 ms.

FROM node:22 AS base

C...)
FROM python:3.11-slim AS python-deps
C...)

COPY mesh-difference/Pipfile

RUN pipenv install

FROM base AS mesh-reconstruction

COPY --from=python-deps /.venv /.venv

ENV PATH="/.venv/bin:$PATH"

RUN 1n -sf $(which python3) /usr/local/bin/python
FROM mesh-reconstruction

C...)

RUN make poissonrecon -j 3

Listing 6.3 Multi-stage Dockerfile for installing external libraries

const handleNewData = Utils.throttle(() => {
telemetryHistory.value.push(...historyBuffer) ;
historyBuffer = [];

}, 300);

Listing 6.4 Throttled data handler for telemetry history updates

6.3.2 Vue component LoadAndScanModelUnity

This component manages the WebGL instance for the real-time simulation. Initially,
it constructs a configuration object with the URL of the Unity WebGL build to be

98

Demo

passed to the Unity component. During initialization, it displays a loading spinner
showing the current loading progress of the Unity instance.
Externally, the component exposes:

« an event indicating when the model has been successfully loaded,
 a function to trigger Unity’s model loading process,

e and a function to start the simulation.

6.3.3 Vue component ModelDiffUnity

Similarly, this component configures the Unity WebGL instance and manages its
loading status using a progress indicator. Once loaded, it exposes several methods
to the parent view:

« a method to invoke Unity’s function for visualizing differences between the
source and target meshes,

« methods to toggle the visibility of the source and target models, facilitating a
clearer interpretation of the heatmap.

6.3.4 Main View and User Interaction

The main view coordinates the entire interface. Displays the reference model,
presents a dropdown selector to choose the target satellite model, and buttons
to initiate both the simulation and the reconstruction process. It also includes
controls for toggling the visibility of the source and target meshes in the second
Unity instance. This layout allows the user to simulate the full pipeline, from
selecting a model and visualizing the simulated LiDAR scan to comparing the
reconstructed mesh using heatmap visualization.

6.3.5 Unity Project Implementation

The Unity project developed for the demo project supports both real-time simulation
of the LiDAR scanning operation and visualization of differences between 3D models.
In order to maintain a unified codebase, both functionalities were implemented
within a single Unity project. The two use cases were structured as separate scenes
and compiled into distinct WebGL builds, each dedicated to a specific functionality.

99

Demo

Simulation Scene

This scene manages the simulation of the scanning operation. It displays the
target satellite model and updates the sensor’s position and orientation in real time
according to telemetry data received from the Vue frontend.

To support dynamic model loading, the simulation scene includes a script that
loads the 3D model at runtime based on a URL received from the frontend. This
operation is performed using the GLTFast library, as shown in the Listing 6.5

var gltf = loader.AddComponent<GltfAsset>();

var result = await gltf.Load(url);

Listing 6.5 Loading of a GLTF model at runtime

The main control script, GameManager, exposes the method UpdateSimulation,
which is invoked by the Vue application. This function accepts a telemetry object
serialized in JSON due to the restriction that Unity WebGL can only receive
primitive types from JavaScript.

Upon receiving a new telemetry object, Unity stores it without immediately
updating the simulation state. Instead, the system performs a temporal interpo-
lation between consecutive telemetry updates. Specifically, the time difference
between the current and previous telemetry timestamps is calculated, and the
sensor’s position and rotation are smoothly interpolated over this interval. This
ensures a visually smooth transition between updates and prepares the simulation
for the next interpolation cycle upon receiving a new telemetry sample.

To enhance the visual representation of the LiDAR scanning operation, a
collection of rays is displayed emanating from the sensor module, simulating the
laser beams of a LiDAR device, as illustrated in the Figure 6.2.

At the end of the simulation, the point cloud resulting from the scan is displayed
as shown in the Figure 6.3. The point cloud is visualized using a set of spheres
whose brightness varies depending on the orientation of the surface normal relative
to the camera view: points whose normals face the camera appear brighter, while
those facing away appear darker. This approach provides a visual cue for the
orientation of the points.

GPU instancing, via the Unity DrawMeshInstanced () function, is used to render
the point cloud efficiently. A custom shader was implemented that takes as input
a vector of normals and a set of 4 x 4 transformation matrices representing the
spatial position and orientation of each point.

The vertex shader computes the dot product between each point’s normal and
the camera’s view direction. Each point is then rendered by transforming a base

100

Demo

Figure 6.2: Demo simulation. A group of red rays is displayed to indicate the
scanning procedure

LIiDAR simulation

Figure 6.3: Point cloud representing the scanned object

sphere mesh using the corresponding matrix. Additionally, the scale of the spheres
is dynamically adjusted according to the camera’s distance, ensuring that points
do not appear disproportionately small or large when zooming. Finally, the color
intensity is derived from the dot product result, linearly mapped to a brightness
range between 0.1 and 1.

Model Difference Scene

The second scene focuses on the visualization of structural differences between the
reference and reconstructed models. This component builds upon the Unity-based
tool described in chapter 5. At runtime, both the source and target 3D models
are loaded, along with the corresponding texture maps. These assets are retrieved
using URLs provided by the Vue frontend.

Once loaded, the scene exposes a set of functions that allow the user to toggle
the visibility of the source and target models.

101

Chapter 7
Conclusions

Two tools and a library have been developed as part of this work, conducted at
ALTEC, to support the analysis, reconstruction, and visualization of 3D data in
simulated aerospace scenarios.

First, a custom TypeScript library was implemented to embed Unity WebGL
builds into a Vue.js web application. The library abstracts the complexities of
managing the Unity instance lifecycle and establishes a communication layer that
enables bidirectional data exchange between the front-end and the simulation
environment. This design facilitates the integration of interactive Unity content
into a web page. Tests were also conducted to evaluate the performance of the
library.

Second, a test and benchmarking framework was designed to evaluate and
compare remeshing algorithms under controlled and reproducible conditions. The
framework extends an existing open-source benchmark and includes a synthetic
data generation pipeline based on a virtual LiDAR simulator. This framework
enables systematic parameter exploration and metric-based evaluation of the quality
of the reconstruction.

Third, a method for visualizing geometric discrepancies between 3D models
was developed to support the detection of potential structural anomalies. The
approach is based on computing deviations between a scanned mesh and its CAD
counterpart and encoding the differences through a heatmap representation directly
rendered on the 3D surface. This technique provides immediate visual feedback and
facilitates the identification of missing parts, deformations, or unexpected artifacts
in the scanned geometry.

Finally, a demonstration scenario was created to integrate and validate the
developed tools. The demo simulates a LiDAR scanning operation, where telemetry
is streamed from the back-end to the client application, which then visualizes the
process in real time. After the reconstruction phase, the resulting mesh is displayed
alongside its reference model using the proposed heatmap visualization, offering a

102

Conclusions

complete end-to-end representation of the pipeline.

These contributions provide ALTEC with a foundation for future research and
development in the field of 3D reconstruction and model comparison for aerospace
applications and simulations. The tools developed in this work facilitate the
integration of simulation, evaluation, and visualization within a web framework.
Modular architecture and dockerization promote extensibility and ease of integration
into broader mission support systems.

7.1 Future Work

Several options are available to extend and improve the tools developed in this
work, both in terms of functionality and performance. This section outlines the
most relevant enhancements identified during the development process.

Unity Integration Library. One promising extension of the TypeScript library
for Unity integration is the implementation of a reload mechanism for Unity
instances.

This would allow developers to reset or reload a simulation without requiring a
full page refresh.

LiDAR Simulator and Remeshing Framework. Future work on the simula-
tion and benchmarking framework could explore the adoption of more advanced
reconstruction techniques. For instance, neural network-based remeshing algorithms
trained on custom datasets may provide improved generalization and robustness,
especially when dealing with noisy or partial data.

Furthermore, the LiDAR simulator can be refined by evaluating the influence of
different acquisition parameters, such as sensor path inclination, resolution, number
of revolutions, frame rate, and final point cloud density.

The noise model could also be adjusted to more closely approximate the behavior
of real-world depth sensors, incorporating factors such as surface reflectivity and
incidence angles.

Visualization Tools. At present, modifying breakpoints requires recomputa-
tion of the color mapping server-side; moving this logic to the GPU via shader
programming would make the process fully interactive and more responsive.

The current visualization approach could be extended by delegating the gener-
ation of a continuous intermediate map to the back-end. This would enable the
front-end to render the heatmap with interactive controls selecting color palettes
and adjusting value breakpoints without reprocessing.

103

Conclusions

Additional improvements include allowing users to select from different distance
metrics (e.g., point-to-point, point-to-plane, etc.), as well as offering customizable
color schemes to better adapt the visualization to specific analytical needs or visual
preferences.

104

Glossary

LiDAR

Laser Detection and Ranging

3D

Three dimensional

CAD
Computer-aided design

WebGL
Web-based Graphics Library

API

Application programming interface

Ul

User Interface

CPU

Central Processing Unit

FOV
Field Of View

GPU
Graphics Processing Unit

VR
Virtual Reality

105

Glossary

AR
Augmented Reality

XR
Extended Reality

MR
Mixed Reality

AV
Augmented Virtuality

WBS

Web-based simulation

SIFT

Scale-Invariant Feature Transform

106

Bibliography

ALTEC Website | project. en-US. URL: https ://www . altecspace . it/
(visited on 05/12/2025) (cit. on p. 2).

Grigore C. Burdea and Philippe Coiffet. Virtual Reality Technology. en. John
Wiley & Sons, June 2003. 1SBN: 978-0-471-36089-6 (cit. on p. 6).

Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. « Aug-
mented reality: a class of displays on the reality-virtuality continuum». In:
Telemanipulator and Telepresence Technologies. Vol. 2351. SPIE, Dec. 1995,
pp. 282-292. pOI: 10.1117/12.197321. URL: https://www.spiedigitall
ibrary.org/conference-proceedings-of-spie/2351/0000/Augmented-
reality--a-class-of-displays-on-the-reality/10.1117/12.197321.
full (cit. on p. 7).

Yevgeniy Zhivotovskiy, Emily Stratton, Shean Phelps, and Josef Schmid.
The Reality of Space: Exploring Virtual, Augmented, and Mized Realities and
the Future of Spaceflight. NTRS Author Affiliations: Arkansas College of
Osteopathic Medicine, The University of Texas Medical Branch at Galveston,
Johnson Space Center NTRS Document ID: 20240005474 NTRS Research
Center: Johnson Space Center (JSC). URL: https://ntrs.nasa. gov/
citations/20240005474 (cit. on pp. 8-10).

Better than Reality: NASA Scientists Tap Virtual Reality to Make a Scientific
Discovery - NASA. en-US. Section: Goddard Technology. Jan. 2020. URL:
https://www.nasa.gov/technology/goddard-tech/virtual-reality-
enables-discovery/ (visited on 06/08/2025) (cit. on p. 8).

Angelica D. Garcia, Jonathan Schlueter, and Eddie Paddock. «Training
Astronauts using Hardware-in-the-Loop Simulations and Virtual Reality». en.
In: AIAA Scitech 2020 Forum. Orlando, FL: American Institute of Aeronautics
and Astronautics, Jan. 2020. 1SBN: 978-1-62410-595-1. DOI: 10.2514/6.2020-
0167. URL: https://arc.aiaa.org/doi/10.2514/6.2020-0167 (visited on
06/08/2025) (cit. on p. 9).

107

BIBLIOGRAPHY

[10]
[11]

[12]

[13]

[14]

[15]

[16]

Ready, set, go for COVID-conscious astronaut training. en. URL: https:
//www .esa.int/About _Us/EAC/Ready_set_go_for_COVID-conscious_
astronaut_training (visited on 06/08/2025) (cit. on p. 10).

Tanya Andrews, Brittani Searcy, and Brianna Wallace. «Using Virtual Reality
and Motion Capture as Tools for Human Factors Engineering at NASA
Marshall Space Flight Center». en. In: Advances in Artificial Intelligence,
Software and Systems Engineering. Ed. by Tareq Ahram. Vol. 965. Series Title:
Advances in Intelligent Systems and Computing. Cham: Springer International
Publishing, 2020, pp. 399-408. DOI: 10.1007/978-3-030-20454-9 41. URL:
http://link.springer.com/10.1007/978-3-030-20454-9_41 (visited on
06/08/2025) (cit. on p. 10).

Deep Space Habitation Overview. en-US. Apr. 2016. URL: https://www.
nasa.gov/humans-in-space/deep-space-habitation-overview/ (cit. on
p. 10).

Kennedy Space Center - NASA. en-US. URL: https://www.nasa . gov/
kennedy/ (cit. on p. 10).

What Is a Digital Twin? en. Aug. 2021. URL: https://www.ibm.com/think/
topics/what-is-a-digital-twin (cit. on p. 10).

Lucio Pinello, Lorenzo Brancato, Marco Giglio, Francesco Cadini, and Giuseppd
Francesco De Luca. «Enhancing Planetary Exploration through Digital Twins:
A Tool for Virtual Prototyping and HUMS Design». en. In: Aerospace 11.1
(Jan. 2024), p. 73. 1SSN: 2226-4310. DOI: 10.3390/aerospace11010073. URL:
https://www.mdpi . com/2226-4310/11/1/73 (visited on 06/08/2025)
(cit. on pp. 10, 11).

Interplanetary Twins. en. URL: https://www.sfmagazine.com/technotes/
2021/march/interplanetary-twins/ (cit. on p. 11).

NASA Readies Perseverance Mars Rover’s Earthly Twin - NASA. en-US. Sept.
2020. URL: https://www.nasa.gov/centers-and-facilities/jpl/nasa-
readies-perseverance-mars-rovers-earthly-twin/ (cit. on p. 11).

James Byrne, Cathal Heavey, and P. J. Byrne. «A review of Web-based
simulation and supporting tools». In: Simulation Modelling Practice and
Theory 18.3 (Mar. 2010), pp. 253-276. 1SSN: 1569-190X. DOI: 10.1016/j.
simpat.2009.09.013 (cit. on p. 11).

Zhongming Zhang, Jian Xu, Xun Shen, Hailing Zhao, and Yaohui Niu.
«WebGL-based virtual reality technology construction and optimizationy.
In: International Conference on Optics, Electronics, and Communication
Engineering (OECE 2024). Vol. 13395. SPIE, Nov. 2024, pp. 393-400. DOT:
10.1117/12.3048388. URL: https://www.spiedigitallibrary.org/con

108

BIBLIOGRAPHY

ference-proceedings-of-spie/13395/133951L/WebGL-based-virtual-
reality-technology- construction-and-optimization/10.1117/12.
3048388.full (cit. on p. 11).

Enterprise JavaBeans Technology. URL: https://www.oracle.com/java/
technologies/enterprise-javabeans-technology.html (cit. on p. 11).

Applets. URL: https://www.oracle.com/java/technologies/applets.
html (cit. on p. 11).

GitHub - martimy/JSim: JSim is a Java-based discrete event simulator of
an M/M/s queue system. URL: https://github.com/martimy/JSim (cit. on
p. 12).

R. Nair. «JSIM: A Java-Based Query Driven Simulation and Animation
Environment». In: 1997. URL: https://www.semanticscholar.org/paper/
JSIM:-A-Java-Based-Query-Driven-Simulation-and-Nair/c91905e178
5dfeab34cf50c8fa16503£02b700ea (cit. on p. 12).

SimJava. URL: https://www.dcs.ed.ac.uk/home/hase/simjava/ (cit. on
p. 12).

Mark Little. nmcl/JavaSim. Java. May 2025. URL: https://github. com/
nmcl/JavaSim (cit. on p. 12).

Bradben. SIM toolkit commands - Windows drivers. en-us. URL: https://
learn.microsoft.com/en-us/windows-hardware/drivers/network/sim-
toolkit-commands (cit. on p. 12).

R.A. Kilgore. «Silk, Java and object-oriented simulationy. In: 2000 Winter
Simulation Conference Proceedings (Cat. No.00CHS37165). Vol. 1. Dec. 2000,
246-252 vol.1. DOI: 10.1109/WSC.2000.899725. URL: https://ieeexplore.
ieee.org/document /899725 (cit. on p. 12).

WebGL - Low-Level 3D Graphics API Based on OpenGL. en. July 2011. URL:
https://www.khronos.org/webgl/ (cit. on p. 12).

OpenGL ES - The Standard for Embedded Accelerated 3D Graphics_2011. en.
July 2011. URL: https://www.khronos.org// (cit. on p. 12).

GPU web | WebGPU. it-x-mtfrom-en. URL: https://developer . chrome.
com/docs/web-platform/webgpu?hl=it (cit. on p. 13).

Satyadhyan Chickerur, Sankalp Balannavar, Pranali Hongekar, Aditi Prerna,
and Soumya Jituri. « WebGL vs. WebGPU: A Performance Analysis for
Web 3.0». In: Procedia Computer Science. 5th International Conference on
Innovative Data Communication Technologies and Application (ICIDCA
2024) 233 (Jan. 2024), pp. 919-928. 1SSN: 1877-0509. DOI: 10.1016/j.procs.
2024.03.281 (cit. on p. 13).

109

BIBLIOGRAPHY

[29]

[31]

32]

[33]

[34]

[35]

[36]

Ozlem Demirtas and Bilge Kaan Gériir. «A Generic Web-Based Visualization
Tool for Aerospace Simulationsy. In: 2019 9th International Conference on
Recent Advances in Space Technologies (RAST). June 2019, pp. 599-606.
DOI: 10.1109/RAST.2019.8767779. URL: https://ieeexplore.ieee.org/
document/8767779/ (cit. on p. 13).

John A. Christian and Scott Cryan. «A Survey of LIDAR Technology and its
Use in Spacecraft Relative Navigation». en. In: AIAA Guidance, Navigation,
and Control (GNC) Conference. American Institute of Aeronautics and As-
tronautics, Aug. 2013. 1SBN: 978-1-62410-224-0. DOI: 10.2514/6.2013-4641.
URL: https://arc.aiaa.org/doi/10.2514/6.2013-4641 (cit. on pp. 14,
16).

Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin,
and Claudio T. Silva. « A benchmark for surface reconstruction». In: ACM
Trans. Graph. 32.2 (Apr. 2013), 20:1-20:17. 1ssN: 0730-0301. por: 10.1145/
2451236.2451246 (cit. on pp. 17, 18, 50).

Michael Kazhdan and Hugues Hoppe. «Screened poisson surface reconstruc-
tion». en. In: ACM Transactions on Graphics 32.3 (June 2013), pp. 1-13.
1SSN: 0730-0301, 1557-7368. DOI: 10.1145/2487228.2487237 (cit. on pp. 17,
47).

P. Labatut, J.-P. Pons, and R. Keriven. «Robust and Efficient Surface Recon-
struction From Range Data». en. In: Computer Graphics Forum 28.8 (Dec.
2009), pp. 2275-2290. 1sSN: 0167-7055, 1467-8659. DOI: 10.1111/j. 1467~
8659.2009.01530.x (cit. on pp. 19, 48).

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. «The
ball-pivoting algorithm for surface reconstruction». In: IEEE Transactions
on Visualization and Computer Graphics 5.4 (1999), pp. 349-359. DoOI: 10.
1109/2945.817351 (cit. on pp. 19, 48).

CGAL 6.0.1 - Advancing Front Surface Reconstruction: User Manual. URL:
https://doc.cgal.org/latest/Advancing front_surface_reconstruct
ion/index.html (visited on 05/26/2025) (cit. on pp. 19, 48).

CGAL 6.0.1 - Scale-Space Surface Reconstruction: User Manual. URL: https:
//doc.cgal.org/latest/Scale_space_reconstruction_3/index.html
(visited on 05/26/2025) (cit. on pp. 20, 48).

Siyu Ren, Junhui Hou, Xiaodong Chen, Hongkai Xiong, and Wenping Wang.
«DDM: A Metric for Comparing 3D Shapes Using Directional Distance Fields».
en. In: arXiv:2401.09736 (Apr. 2025). arXiv:2401.09736 [cs|. DOI: 10.48550/
arXiv.2401.09736. URL: http://arxiv.org/abs/2401.09736 (cit. on
pp. 20, 21).

110

BIBLIOGRAPHY

[38]

[40]

[41]

[42]

[43]

[44]

[45]

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. «The Earth Mover’s
Distance as a Metric for Image Retrieval». en. In: International Journal
of Computer Vision 40.2 (Nov. 2000), pp. 99-121. 1sSN: 1573-1405. DOI:
10.1023/A:1026543900054 (cit. on p. 21).

H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. «Paramet-
ric correspondence and chamfer matching: two new techniques for image
matching». In: Proceedings of the 5th international joint conference on Arti-
ficial intelligence - Volume 2. IJCAI’77. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1977, pp. 659663 (cit. on p. 21).

Mark Jones. «3D Distance from a Point to a Triangle». In: (Jan. 1995) (cit. on
p. 21).

Bruno Rodriguez-Garcia, Laura Corchia, Federica Faggiano, Diana Garcia-
Tejerina, and Lucio Tommaso De Paolis. « A Tool for the Analysis and Virtual
Reality Visualization of the Virtual Restoration of Cultural Heritage 3D
Models». en. In: Extended Reality. Ed. by Lucio Tommaso De Paolis, Pasquale
Arpaia, and Marco Sacco. Cham: Springer Nature Switzerland, 2024, pp. 173~
184. 18BN: 978-3-031-71710-9. DOI: 10.1007/978-3-031-71710-9_13 (cit. on
p. 21).

Unity Technologies. Unity - Manual: Interaction with browser scripting. en.
URL: https://docs.unity3d.com/2023.2/Documentation/Manual/webgl-

interactingwithbrowserscripting.html (visited on 05/05/2025) (cit. on
p. 26).

Microsoft Website | Measure runtime performance of a page using the Perfor-
mance monitor tool - Microsoft Edge Developer documentation | Microsoft
Learn. en-US. URL: https://learn.microsoft.com/en-us/microsoft-
edge /devtools-guide-chromium/performance-monitor/performance-
monitor-tool (visited on 05/18/2025) (cit. on p. 36).

Raphael Sulzer, Renaud Marlet, Bruno Vallet, and Loic Landrieu. « A Survey
and Benchmark of Automatic Surface Reconstruction from Point Clouds». In:
arXiv:2301.13656 (Dec. 2024). arXiv:2301.13656 [cs]. DOI: 10.48550/arXiv.
2301.13656. URL: http://arxiv.org/abs/2301.13656 (cit. on pp. 46, 47,
49, 56).

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman.
«Implicit Geometric Regularization for Learning Shapes». In: arXiv:2002.10099
(July 2020). arXiv:2002.10099 [cs|. DOI: 10.48550/arXiv.2002.10099. URL:
http://arxiv.org/abs/2002.10099 (cit. on p. 47).

In-12. In-12/blainder-range-scanner. Python. May 2025. URL: https://gith
ub.com/1n-12/blainder-range-scanner (cit. on p. 50).

111

BIBLIOGRAPHY

[47]

[48]

[50]

[51]

Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Marlet, and Bruno
Vallet. «Deep Surface Reconstruction from Point Clouds with Visibility In-
formation». In: arXiv:2202.01810 (Feb. 2022). arXiv:2202.01810 [cs]. DOL:
10.48550/arXiv.2202.01810. URL: http://arxiv.org/abs/2202.01810
(cit. on p. 50).

Joao Espadinha, Ivan Lebedev, Luka Lukic, and Alexandre Bernardino. «Li-
DAR Data Noise Models and Methodology for Sim-to-Real Domain Gen-
eralization and Adaptation in Autonomous Driving Perception». In: 2021
IEEFE Intelligent Vehicles Symposium (IV). July 2021, pp. 797-803. DOI:
10.1109/1V48863.2021.9576034. URL: https://ieeexplore.ieee.org/
document /9576034 (cit. on p. 53).

Anis Farshian, Markus Gotz, Gabriele Cavallaro, Charlotte Debus, Matthias
Niefiner, Jon Atli Benediktsson, and Achim Streit. «Deep-Learning-Based 3-D
Surface Reconstruction—A Survey». In: Proceedings of the IEEE 111.11 (Nov.
2023), pp. 1464-1501. 1sSN: 1558-2256. DOI: 10.1109/JPROC.2023.3321433
(cit. on p. 56).

D.G. Lowe. «Object recognition from local scale-invariant features». In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision.
Vol. 2. 1999, 1150-1157 vol.2. DOI: 10.1109/ICCV.1999.790410 (cit. on
p. 74).

TOM McREYNOLDS and DAVID Blythe. « CHAPTER 15 - Lighting Tech-
niques». In: Advanced Graphics Programming Using OpenGL. Ed. by TOM
McREYNOLDS and DAVID Blythe. The Morgan Kaufmann Series in Com-
puter Graphics. San Francisco: Morgan Kaufmann, Jan. 2005, pp. 317—
359. ISBN: 978-1-55860-659-3. DOI: 10.1016/B978-155860659-3.50017 -

2. URL: https ://www . sciencedirect . com/ science /article /pii/
B9781558606593500172 (cit. on p. 90).

112

	List of Figures
	Introduction
	Context
	ALTEC
	Goals
	Requirements
	Thesis structure

	State of the art
	Virtual reality and interactive applications
	Virtual reality
	Applications of immersive technologies in the aerospace context
	Web-Based Simulation

	LiDAR Scanning
	Operating Principles of LiDAR
	Applications of LIDAR in Aerospace
	Synthetic scanning

	Remeshing algorithms
	Screened Poisson Surface Reconstruction (SPSR)
	Robust and Efficient Surface Reconstruction from Range Data (RESR)
	Ball Pivoting Algorithm (BPA)
	Advancing Front Surface Reconstruction (AFSR)
	Scale-Space Surface Reconstruction (SSSR)

	Mesh Difference Visualization
	Point-to-Point Distance
	Point-to-Face Distance
	Heatmap-Based Visualization Tools

	Unity in Vue.js
	Motivation and Design Considerations
	Requirements
	Library Functionality
	Implementation Details
	Usage Overview
	Unity Loading
	Communication Channel

	Handling multiple Unity instances
	Isolated Channels for Different Unity Projects
	Managing Multiple Instances of the Same Project

	Performance testing
	Test Objectives
	Unity Project Setup and Hardware
	General Performance Testing
	Multiple Unity Instances
	Conclusion of General Testing

	Message Throughput Testing
	Event Listener Implementation Testing

	Conclusion
	3D LiDAR Reconstruction
	Surface Reconstruction Algorithms
	Design of the Evaluation Framework
	LiDAR Simulation
	LiDAR Simulation Functionality
	Implementation Details

	Evaluation Metrics
	Dataset
	Implementation Details of the Testing Framework
	Testing
	Experiments
	Grid Search Parameters
	LiDAR simulation parameters
	Results
	Qualitative Results
	Execution Time
	Conclusion

	Structural defect visualization
	Requirements
	Web-Based Execution
	Client-Side Responsiveness
	Server-Side Preprocessing
	Model Independence

	Visualization Method
	Processing workflow
	Mesh Alignment
	Mesh Sampling
	Distance Computation
	Distance-to-Color Mapping
	Texture Generation and Projection
	Visualization and Overlay

	Implementation Details
	Back-End Preprocessing Module
	Software Structure
	Front-End Rendering Module

	Demo
	Page Layout
	Back-end Implementation
	Front-end Implementation
	Telemetry Management with useTelemetry.ts
	Vue component LoadAndScanModelUnity
	Vue component ModelDiffUnity
	Main View and User Interaction
	Unity Project Implementation

	Conclusions
	Future Work

	Glossary
	Bibliography

