
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

Master of Science in Computer Engineering

Master Degree Thesis

BlockChain Technology and
Smart Contracts to share

information

Supervisor
Prof. Guido Perboli

Candidate
Jacopo Maggio

Internship Tutors
BLUE Reply S.r.l.

Academic year 2024 – 2025

2

Abstract

Blockchain technology has emerged as a transformative tool for industries seeking en-
hanced transparency, security, and trust in multi-party transactions. Beyond its origins in
cryptocurrencies, blockchain (particularly through smart contracts) enables automated,
tamper-resistant agreements that minimize the need for central intermediaries. However,
practical integration of blockchain into enterprise environments poses challenges related
to scalability, regulatory compliance, data privacy, and interoperability with legacy sys-
tems.

This thesis focuses on Hyperledger Fabric, a leading permissioned blockchain frame-
work designed to meet the stringent requirements of industrial applications. We provide
a systematic analysis of Fabric’s architecture, emphasizing its modular structure, ro-
bust identity management, and support for customizable smart contracts (chaincode).
Through detailed case studies in railcar sharing and shared procurement, we investi-
gate how Fabric can improve operational efficiency, data integrity, and auditability while
enabling secure information sharing among stakeholders.

Experimental evaluation demonstrates that Hyperledger Fabric achieves strong perfor-
mance and resilience, satisfying the compliance and confidentiality standards necessary
for regulated sectors. We also address the technical and organisational barriers industries
face during blockchain adoption and propose practical risk mitigation strategies. Finally,
the thesis concludes by examining the economic and regulatory implications of permis-
sioned blockchains, suggesting pathways for future research and industrial innovation.

3

4

Contents

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 Background and Motivation . 13

1.1.1 Context of Blockchain Technologies 14
1.1.2 Motivation for Exploring Hyperledger Fabric in Industrial Appli-

cations . 15
1.1.3 Regulatory Evolution and Global Policy Trends 15

1.2 Problem Statement . 16
1.3 Research Objectives and Contributions 16

1.3.1 Research Design and Approach 17
1.3.2 Data Collection and Tools . 17
1.3.3 Evaluation Metrics and Experimental Setup 18
1.3.4 Risk Management . 18

1.4 Scope and Limitations . 18
1.5 Thesis Organisation (Outline) . 19

2 Extended Literature Review 21
2.1 Introduction . 21
2.2 Overview of Blockchain Technology . 21

2.2.1 Blockchain Fundamentals and Cryptography 22
2.2.2 Structural Components of a Blockchain 22
2.2.3 Consensus Mechanisms and Core Characteristics 23

2.3 Types of Blockchains . 24
2.3.1 Private, Consortium, and Public Blockchains 24
2.3.2 Permissioned vs. Permissionless 24

2.4 Regulatory, Ethical, and Legal Considerations 25
2.5 Related Work and Existing Solutions . 26

2.5.1 Comparison of Blockchain Platforms 26
2.5.2 Industry Adoption and Case Studies 27

2.6 Conclusion . 28

3 Smart Contracts 29
3.1 Introduction to Smart Contracts . 29
3.2 How Smart Contracts Work . 31

3.2.1 Mechanisms and Design Principles 32
3.2.2 Recent Developments in Smart Contract Technologies 33

5

Contents

3.3 Traditional Contracts vs. Smart Contracts 33
3.4 Use Cases and Applications . 34

3.4.1 Focus on Asset Management . 35
3.4.2 Business Process Automation . 35

3.5 Benefits and Potential of Smart Contracts 36
3.5.1 Trust Minimisation and Operational Streamlining 36
3.5.2 Transparency and Dynamic Value Exchange 36
3.5.3 Efficiency Gains and Scalable Automation 36
3.5.4 Governance Innovation and Emerging Applications 37

3.6 Challenges and Limitations . 38
3.6.1 Technical Challenges . 38
3.6.2 Legal and Regulatory Uncertainty 38
3.6.3 Operational Challenges . 39

3.7 Related Work and Existing Solutions . 39
3.7.1 Blockchain-enabled Smart Contract Applications 40

Public Sector and Industry Pilots 40
Enterprise Adoption and Private Blockchain Frameworks 40
Further Reading and Open Frameworks 41

3.8 Conclusion . 41
3.8.1 Summary of Findings and Present Implications 41
3.8.2 Future Directions and Strategic Considerations 42

4 Hyperledger Fabric 43
4.1 Introduction to Hyperledger Fabric . 43
4.2 Fabric Architecture Overview . 44

4.2.1 Modular Design and Configurable Components 45
4.2.2 Recent Innovations in Hyperledger Fabric Architecture 46
4.2.3 Gossip Data Dissemination . 46

4.3 Identity and Membership Management 47
4.3.1 Membership Service Provider (MSP) 47
4.3.2 On-channel vs. Off-channel Governance 48
4.3.3 Revocation and Certificate Rotation 48

4.4 Policies and Governance Model . 48
4.4.1 Policy Updates . 49

4.5 Network Components . 50
4.5.1 Peers, Orderers, and Channels . 50

4.6 Ledger and Data Model . 50
4.6.1 Blockchain Storage . 50
4.6.2 World State with CouchDB . 51
4.6.3 Channels as Parallel Ledgers . 51

4.7 Chaincode (Smart Contract) Lifecycle . 51
4.7.1 Development, Deployment, and Upgrade Processes 52
4.7.2 Containerised Execution Environment 52
4.7.3 Endorsement Policies . 53

4.8 Transaction Flow in Hyperledger Fabric 53
4.9 Security Considerations and Potential Risks 53

4.9.1 Non-deterministic Risks . 54
4.9.2 Privacy and Data Security Risks 54
4.9.3 Industry Adoption and Real-World Deployments 55

6

Contents

5 Case Study 57
5.1 Railcar Sharing . 57

5.1.1 Current State (’as-is’ Process) and Business Case 57
Stakeholders and Participants . 58
Asset and Transaction Analysis 60
Business Impact . 60

5.1.2 Proposed Blockchain-Based Solution (’to-be’ Process) 61
Solution Canvas . 62
Network Conceptual Design . 63
Integration with Legacy Systems 64

5.1.3 System Design and Implementation 65
Overall System Architecture . 65
IBM Blockchain Platform for PoC 65
Implementation of the Smart Contract 68
Supporting Infrastructure: Java Server and Angular Client 68

5.1.4 Evaluation and Analysis . 69
Deployment and Maintenance Costs 69
Scalability and Performance Testing 70
Performance Results on IBM Blockchain Platform 71

5.1.5 Security and Privacy Assessment 71
5.1.6 Regulatory and Ethical Considerations 72

5.2 Shared Procurement . 74
5.2.1 Current State (’as-is’ Process) and Business Case 74

Stakeholders and Participants . 76
Asset and Transaction Analysis 77
Business Impact . 78

5.2.2 Proposed Blockchain-Based Solution (’to-be’ Process) 78
Solution Canvas . 80
Network Conceptual Design . 80
Integration with Legacy Systems 81

5.2.3 System Design and Implementation 81
Overall System Architecture . 81
IBM Blockchain Platform for PoC 82
Implementation of the Smart Contract 84
Supporting Infrastructure: Java Server and Angular Client 85

5.2.4 Evaluation and Analysis . 86
Deployment and Maintenance Costs 86
Scalability and Performance Testing 86
Performance Results on IBM Blockchain Platform 87

5.2.5 Security and Privacy Assessment 87
5.3 Comparative Analysis: Railcar Sharing vs Shared Procurement 89

5.3.1 Overview . 89
5.3.2 Workload Differences . 89
5.3.3 Performance Comparison . 89
5.3.4 Latency and Throughput Analysis 89
5.3.5 Visual Comparison . 90
5.3.6 Interpretation . 90

7

Contents

6 Conclusions and Future Work 93
6.1 Summary of Findings and Contributions 93
6.2 Conclusions Drawn from the Research 94
6.3 Limitations of the Study . 95
6.4 Recommendations and Future Research Directions 95

Bibliography 97

8

List of Figures

1.1 Evolution of blockchain technology from Bitcoin to enterprise permissioned
frameworks . 14

2.1 Comparison between hashing and encryption. Source: [1]. 22
2.2 The structure of blocks (take Hyperledger Fabric as an example). Source:

[23] . 23

3.1 Timeline of Smart Contract Evolution 30
3.2 Smart Contract Flow: Trigger → Execution → On-Chain State Update . 31
3.3 Tokenisation Process: From Physical Asset to Digital Transfer via Smart

Contract . 35

4.1 “Hyperledger Greenhouse” overview. Source: [5] 43
4.2 Hyperledger Fabric model. Source: [28]. 45
4.3 A step-by-step flowchart for how MSP validates certificates, from CA is-

suance to revocation. 47
4.4 Managed Blockchain support for Hyperledger Fabric 2.2. Source: [2]. . . 52
4.5 Transaction flow in Hyperledger Fabric. Source: [26]. 54

5.1 Railcar sharing: general overview. 57
5.2 Railcar sharing: as-is process sequence diagram. 58
5.3 As-is process: typical transaction example. 61
5.4 Railcar sharing: as-is process sequence diagram. 62
5.5 Railcar sharing: solution canvas. 62
5.6 Railcar sharing: conceptual blockchain design. 63
5.7 Railcar sharing: conceptual blockchain transaction. 64
5.8 Railcar sharing: high level software architecture. 66
5.9 Railcar Sharing: Load-test results on IBM BP 72
5.10 Shared Procurement: as-is process sequence diagram. 75
5.11 Shared Procurement: to-be process sequence diagram. 79
5.12 Shared Procurement: solution canvas. 80
5.13 Shared procurement: high level software architecture. 82
5.14 Shared Procurement: Load-test results on IBM BP 88
5.15 Throughput under Load . 90
5.16 Latency under Load . 90

9

10

List of Tables

1.1 Research Objectives . 17

2.1 Comparison of Blockchain Types . 24
2.2 Comparison of Permissioned vs. Permissionless Blockchains 25
2.3 High-Level Comparison of Selected Blockchain Platforms (Example Data) 26
2.4 Community and Ecosystem Maturity of Selected Platforms 27

3.1 Traditional Legal Contracts vs. Smart Contracts 33
3.2 Smart Contract Benefits and Concrete Applications 37
3.3 Challenges and mitigation strategies for the adoption of smart contracts . 39
3.4 Smart Contracts at a Glance: Definition, Drivers, and Barriers 42

4.1 Key security risks in Fabric . 55

5.1 Railcar Sharing: Stakeholder Roles and Interests Matrix 59
5.2 Network node roles per organisation in the shared railcar solution 67
5.3 Key Performance Metrics (Railcar Sharing) 71
5.4 Shared Procurement: Stakeholder Roles and Interests Matrix 77
5.5 Network node roles per organisation in the shared procurement solution . 83
5.6 Key Performance Metrics (Shared Procurement) 87
5.7 Summary of Key Performance Metrics 89

11

12

Chapter 1

Introduction

Blockchain technology extends beyond cryptocurrency, enhancing transparency, au-
thenticity, and resilience across various industries. The increasing adoption of distributed
ledger technology (DLT) necessitates enterprise-grade solutions that comply with strin-
gent security and regulatory requirements. Hyperledger Fabric emerges as a notable
permissioned blockchain framework, employing a consortium model that allows precise
control over membership and transaction validation. Its combination of cryptography
and flexible structure can streamline corporate processes and address persistent trust is-
sues. Consequently, understanding the role of Fabric has become crucial in contemporary
industrial discourse and strategy development.

Still, there are questions about how blockchain can fit into existing systems, meet
data protection rules, and remain reliable in demanding environments. To answer these
questions, the Chapter 2 discusses the basics of blockchain technology.

1.1 Background and Motivation

Blockchain’s origins are often linked to Bitcoin, where a decentralised ledger demon-
strated the possibility of secure peer-to-peer transactions. After that, researchers ex-
plored other ways to use blockchain in many areas, like finance, healthcare, public record
management, and manufacturing. This wide interest shows blockchain’s flexibility as a
tamper-evident store for important data, able to handle transaction loads and use cryp-
tography to build trust among participants. Many industries now want solutions that fit
smoothly with current systems but still meet performance and regulatory requirements.

Industry’s growing demands and shifting regulations create the need to investigate
blockchain in more detail. Many organisations face challenges connecting old databases
with decentralised setups, so they need frameworks that can bridge these gaps. Mean-
while, frequent data breaches show the need for strong security measures. As a result,
businesses want systematic ways to deploy blockchain while meeting legal and regula-
tory needs. This research considers Hyperledger Fabric a leading platform that can meet
these requirements and fit well with enterprise goals. The next subsections discuss the
underlying reasons for this detailed study and the innovation behind it.

13

1 – Introduction

2008–2009: Bitcoin Genesis
Bitcoin whitepaper published (2008) and
network launched (2009), introducing de-
centralised digital currency.

2015: Ethereum
Ethereum launches, enabling smart con-
tracts and decentralised apps (dApps).

2016: Hyperledger
Linux Foundation introduces Hyperledger
for enterprise permissioned blockchain
frameworks.

2017: Enterprise Ethereum Alliance
EEA is formed to build enterprise-grade
applications on Ethereum.

2019: Microsoft CCF
Microsoft releases Confidential Consortium
Framework for secure enterprise blockchain
networks.

2022: Blockchain-as-a-Service
IBM, Microsoft, and Amazon promote
Blockchain-as-a-Service, simplifying enter-
prise adoption.

2023: Canton Network
Goldman Sachs, Microsoft, and others
launch a privacy-preserving financial
blockchain platform.

2024: Hyperledger in LF Decen-
tralised Trust
Hyperledger joins Linux Foundation’s initia-
tive for decentralised technologies.

2025: Enterprise Blockchain Maturity
Hybrid architectures and interoperability
standards make blockchain scalable for en-
terprise use.

Figure 1.1: Evolution of blockchain technology from Bitcoin to enterprise permissioned
frameworks

1.1.1 Context of Blockchain Technologies

To understand blockchain, we need to see how it moved from cryptocurrency to a
technology used by various industries. After Bitcoin showed that trustless transactions
could work, many new protocols appeared. One of them is Ethereum, which added smart
contract features. Each platform has its own consensus system—like Proof of Work, Proof
of Stake, or Byzantine Fault Tolerance. These systems affect how fast transactions can

14

1.1 – Background and Motivation

be processed, how much energy is used, and how secure the network is. They also impact
how practical the blockchain is for supply chains, financial services, and government
records. Research from academia and industry shows that for blockchain to be adopted
more widely, it must handle issues like throughput limits, data privacy, and regulatory
uncertainty on a global scale.

1.1.2 Motivation for Exploring Hyperledger Fabric in Industrial
Applications

Choosing a blockchain for industrial use means meeting strict performance require-
ments, dealing with many stakeholders, and following various compliance rules. Hyper-
ledger Fabric tackles these needs by using a permissioned model, where only approved
participants can join, creating trust in a closed environment. Unlike public blockchains
that depend on anonymous consensus, Fabric supports modular consensus protocols that
can handle different scenarios. It also splits transaction ordering, execution, and vali-
dation into separate stages. This approach supports high throughput without giving up
data confidentiality. Because of this precise level of control, Fabric is especially appealing
for large global companies with complex supply chains or in heavily regulated areas.

In industries like finance, healthcare, and insurance, regulatory compliance is critical
because data handling and privacy are tightly regulated. Hyperledger Fabric supports
private data collections and flexible membership services that help businesses meet strict
legal requirements. These features also reduce worries linked to public ledgers, especially
when dealing with trade secrets or personal data. As a result, companies are driven
to explore Fabric for both operational benefits and legal needs. This research looks at
how well Fabric can adapt in these contexts, while also offering strong audit trails and
controlled information sharing and governance.

1.1.3 Regulatory Evolution and Global Policy Trends
In recent years, regulations for blockchain have changed quickly in Europe and around
the world. A major development is the European Markets in Crypto-Assets Regula-
tion (MiCA), passed in 2023 and taking effect in 2024. MiCA is the first EU-wide set
of rules for digital assets, service providers, and market infrastructures. It focuses on
transparency, governance, user protection, and risk management, and it directly affects
companies, banks, and providers who want to use blockchain and smart contracts in
industry and finance [13].

At the same time, experts around the world are stressing the importance of coordinated
public policy and more attention to ethics and security in distributed ledger systems.
A recent white paper from the Center for Information Technology Policy at Princeton
University [7] says that as blockchain technology matures, it needs the right regulatory
tools to ensure interoperability, privacy, and resilience, especially in sensitive and highly
regulated areas.

Because of this, blending technological progress with regulatory rules is crucial for
industries adopting blockchain. This creates new design challenges for system architecture
(like managing personal data, respecting the right to erasure, and ensuring auditability)
and for governance of permissioned networks and consortia.

15

1 – Introduction

1.2 Problem Statement
The path to adopting blockchain in industry is complex, even for strong platforms like

Hyperledger Fabric. Issues with scalability, interoperability, and data security often clash
with how organisations are already set up. Some of the biggest barriers are:

• Scalability: In decentralised setups, consensus and cryptographic checks can cause
slowdowns, limiting throughput and raising latency.

• Interoperability with Legacy Infrastructures: Building a blockchain network
into existing enterprise systems often needs major redesign or dependable middleware
solutions.

• Data Confidentiality and Security: Keeping sensitive industrial data secure on
a distributed ledger is challenging and often needs fine-tuned permission models and
advanced encryption.

• Regulatory Compliance: Various legal rules (like GDPR) introduce questions
about how to handle, store, or remove data on an immutable ledger.

• Smart Contract Vulnerabilities: Errors or bugs in chaincode can disrupt impor-
tant operations or reveal proprietary information.

• Governance and Coordination: Networks with multiple organisations must agree
on membership rules, smart contract changes, and continuous risk management to
maintain trust.

These challenges highlight the gap between blockchain’s potential and the practical
realities of large, regulated industries. The next section sets out the research objectives
that aim to systematically address these issues and show how Hyperledger Fabric could
help solve major adoption problems.

Aside from scalability and interoperability, building secure but efficient smart contracts
is also a big challenge. Automatic code must be carefully designed to handle permissions,
data confidentiality, and potential weaknesses. Industrial settings often have vital pro-
cesses where contract bugs can disrupt supply chains or compromise sensitive data. In
addition, industry-specific regulations (for example, in finance or pharmaceuticals) need
strict governance. Proper risk management is essential because attacks or code mistakes
can lead to big financial losses or damage reputations. This thesis examines such con-
nected issues and explains why Hyperledger Fabric is a strong candidate for addressing
them effectively.

1.3 Research Objectives and Contributions
This study aims to see how a permissioned blockchain can meet the needs of industries

that rely on verifiable transactions and secure data. By focusing on Hyperledger Fabric,
we want to find out if its flexible structure can handle complex business logic, protect
confidentiality, and maintain good performance in real scenarios. We also look at how
Fabric’s customizable smart contracts might boost transparency and audits, increasing

16

1.3 – Research Objectives and Contributions

accountability among partners. The following subsections outline each research objective
and key contribution.

Table 1.1: Research Objectives

Objective Contribution Metrics Chapters

Data security Use Fabric iden-
tity/private data
features to protect info

Data privacy level; reg-
ulatory alignment

Ch. 4, 5

Performance Empirical results on
throughput, latency,
resources

TPS, avg. confirma-
tion time

Ch. 4, 5

Vulnerability
analysis

Identify key risks and
propose mitigation

Risks identified; miti-
gations validated

Ch. 4, 5, 6

Compliance
& integration

Fabric integration with
legacy systems under
regulations

Successful legacy in-
tegration; compliance
proof

Ch. 5, 6

We start by studying how blockchain can protect sensitive industrial data with strong
encryption and permission controls. Next, we build a Hyperledger Fabric prototype to
measure transaction throughput, latency, and resource use under different workloads,
checking its performance. Then, we assess potential security dangers, from consensus
manipulation to smart contract exploits, and outline possible countermeasures. Finally,
we look at strategies for adhering to regulations when linking older systems, including
tools for handling identities and audits. Together, these goals reveal whether Hyper-
ledger Fabric can support critical tasks, paving the way for broader innovation in diverse
industrial settings around the globe.

1.3.1 Research Design and Approach
We use a mixed methods approach for this study, blending theory and structured

experiments. We start with a broad literature review to understand both blockchain
basics and key industry challenges. Based on this knowledge, we design our Hyperledger
Fabric prototype in steps to check its features under real-world conditions. We collect
data from performance tests, security checks, and scenario-based evaluations, so we can
view the results from different perspectives. Importantly, we focus on reproducibility, so
others can replicate or build on our work. This careful process adds to both the academic
and real-world value of the study.

1.3.2 Data Collection and Tools
This thesis uses data from several sources. First, we rely on simulations to set up

controlled environments where we can measure transaction speed and network latency.
In some cases, real datasets from industry partners add to these tests, reflecting actual
challenges like changing transaction sizes or busy periods. For simulations we also use
benchmarking tools, such as Hyperledger Caliper, to compare performance across various
setups. We record logs and network metrics for our quantitative analysis, and combine

17

1 – Introduction

them with feedback from users for qualitative insights. This blend of data helps us draw
strong, evidence-based conclusions that improve reliability.

1.3.3 Evaluation Metrics and Experimental Setup
When assessing a blockchain framework, we look at metrics that show both technical

strength and real-world practicality. For instance, transaction throughput shows how
many operations the network handles per given time, and latency measures how long it
takes for a transaction to finish. We also check CPU load, memory use, and network
bandwidth to see how efficient the system is. Security and resilience testing includes
running stress tests and looking for weaknesses by simulating attacks or network break-
downs. Our experimental setup uses different node configurations, starting with small
test networks and moving to larger ones, so our findings can apply to a wide range of
industries.

1.3.4 Risk Management
Effective risk management is essential for trusting blockchain in industrial environ-

ments. Although smart contracts are powerful, coding mistakes can let unauthorised
transactions happen or expose data. To prevent this, we conduct regular security checks
and code reviews to find and fix weaknesses before going live. We also run scenario tests
to see how the system handles node crashes, malicious nodes, or sudden traffic surges.
Beyond that, our risk mitigation strategy involves organisational policies, such as strict
access control. Altogether, these steps make the system more resilient and greatly reduce
the chance of harmful disruptions.

1.4 Scope and Limitations
While this study offers useful insights into blockchain’s industrial potential, certain real-

world factors limit how widely we can apply these findings. These constraints include
the size of our experiments, available resources, the fast pace of technology changes, and
varying regulations. Awareness of these limits is important for accurately applying the
results and avoiding assumptions that don’t fit every scenario.

• Experimental Scale: In test networks, we try to mimic real conditions, but pilot
setups can’t fully reflect the complexity and interconnectedness of large industrial
systems.

• Time and Resource Constraints: The study had a limited budget and time-
frame, so we couldn’t explore all workloads, network layouts, or the most extreme
scenarios.

• Evolving Blockchain Landscape: Consensus methods, SDKs, and security layers
change quickly, so our findings may lose relevance as the field evolves.

• Organisational Readiness: Enterprises differ in their digital readiness, existing
systems, and governance styles, all of which influence how easily they can adopt
blockchain.

18

1.5 – Thesis Organisation (Outline)

• Regulatory Variations: Different regions have different rules on data storage,
contract enforcement, and audit practices, which can shape how a permissioned
blockchain is used and deployed.

Key Real-World Constraints Affecting Generalizability

• Time and Scope Boundaries: The length of the study and the scale of the setup
limited multi-stage simulations and long-term resilience testing.

• Infrastructure Simplification: We used simpler ordering and peer setups, which did
not fully reflect enterprise-grade high-availability designs.

• Contextual Complexity: The chosen use cases may not capture all policy layers,
vendor relationships, or audit processes seen in real consortium projects.

• Regulatory Uncertainty: Changing rules about data sovereignty mean some of our
assumptions might not hold for long.

1.5 Thesis Organisation (Outline)
This thesis is organised to gradually show the main ideas behind blockchain, especially
smart contracts, and how they’re deployed for industrial use with Hyperledger Fabric.
Each chapter builds on the previous one, starting with theory, moving to real implemen-
tation, and ending with practical examples. The structure is outlined below:

• Chapter 2 – Extended Literature Review: A comprehensive review of current
research on blockchain, starting with basics like distributed ledgers, cryptography,
and consensus methods. It compares public, private, and consortium blockchains,
especially focusing on enterprise needs. The chapter also looks at how blockchain
is being used in different sectors, examines the ethical and regulatory environment,
and points out gaps in current knowledge that this thesis aims to address.

• Chapter 3 – Smart Contracts: This chapter covers smart contracts in detail. It
defines what they are, how they work, and when they apply. It also compares them
to traditional legal contracts and explores how they are enforced. There’s a review
of common uses in various industries, along with technical factors like programming
languages, deployment, and data sources. The chapter also addresses challenges
such as immutable code, security weaknesses, and keeping versions up to date.

• Chapter 4 – Hyperledger Fabric: This chapter describes Hyperledger Fabric
as a flexible blockchain platform designed for businesses. It explains Fabric’s archi-
tecture, including its main parts—peers, orderers, channels, endorsement policies,
and chaincode lifecycles. It’s especially interested in Fabric’s privacy, scalability,
and identity management features using Certificate Authorities. The chapter also
covers performance benchmarks, security measures, and compares Fabric with other
enterprise blockchain solutions.

• Chapter 5 – Case Study: This chapter shows the practical side of the the-
sis with two case studies that integrate Hyperledger Fabric into existing industrial

19

1 – Introduction

workflows. The first case covers a blockchain solution for Railcar Sharing, focus-
ing on traceability, accountability, and asset usage. The second focuses on Shared
Procurement, emphasizing gains like clearer audits, transparency, and less friction.
For each example, the chapter explains the business context, architecture, smart
contract design, and the results of deployment, integration, and performance.

• Chapter 6 – Conclusions and Future Work: The final chapter sums up the key
outcomes and relates them to the main research questions. It looks at what using
blockchain and smart contracts means for industry, reviews the strengths and weak-
nesses of the solutions presented, and suggests possible improvements or directions
for more study. This includes expanding the use cases, reinforcing security models,
and finding ways to work with other blockchain platforms.

Overall, this layout seeks to guide through the essential theories of blockchain into its
real-world applications, spotlighting the potential for using smart contracts in enterprise
environments.

20

Chapter 2

Extended Literature Review

2.1 Introduction
In this chapter, we present the core ideas required to evaluate Hyperledger Fabric in
enterprise settings. We start by discussing fundamental concepts like cryptography and
consensus design, then move on to blockchain typologies and permission models. We also
examine broader issues such as platform comparisons, regulations, and ethical consider-
ations to show how blockchain is adopted and challenged in real-world contexts. The
following roadmap outlines the main themes of this literature review:

• Cryptographic Foundations: Basic principles of hashing, digital signatures, and
Merkle trees.

• Blockchain Classifications: Public, private, and consortium models, and their
operational distinctions.

• Consensus Mechanisms: Overview of PoW, PoS, RAFT, PBFT and their trade-
offs.

• Permissioned vs. Permissionless Networks: Implications for Governance, Scal-
ability, and Trust.

• Legal and Ethical Dimensions: Compliance requirements, data sovereignty, and
evolving regulatory frameworks.

• Platform Comparisons: Technical and strategic differences between Hyperledger
Fabric, Ethereum, Corda, and others.

• Use Cases and Industry Adoption: Documented deployments and insights from
the recent academic literature.

We conclude by summarising key lessons and identifying gaps in the literature, setting
the stage for the methodological and empirical investigations in the following chapters.

2.2 Overview of Blockchain Technology
Blockchain serves as a distributed and tamper-resistant ledger that is maintained by a
network of participants. Following the launch of Bitcoin, the technology has matured

21

2 – Extended Literature Review

to handle broader computational tasks, including smart contracts and other advanced
features. This section covers the historical background of blockchain, its conceptual
design, and the attributes that make it potentially valuable across different sectors.

2.2.1 Blockchain Fundamentals and Cryptography

Figure 2.1: Comparison between hashing and encryption. Source: [1].

At its core, blockchain relies on cryptographic methods to maintain data security and
transaction integrity. Two major techniques, hash functions and public-key cryptography,
enable digital signatures and protect the chain from tampering. Hash functions (e.g.,
SHA-256) create a fixed-length output from a variable-length input, making it easier
to confirm that each block’s data remains unchanged. Public-key cryptography supports
token issuance and validates transactions, as node operators sign transactions with private
keys.

Because each block incorporates the hash of the previous block, the entire chain be-
comes resistant to modification. Altering any single block makes subsequent hashes in-
valid, alerting others in the network to the discrepancy. Together with decentralisation,
this structure provides the “trust minimisation” that is often highlighted as a defining
advantage of blockchain.

2.2.2 Structural Components of a Blockchain
A blockchain comprises distributed nodes (each storing the full ledger), blocks that hold
verified transactions, and a consensus protocol for transaction validation. Typically,
blocks include:

• Block Header: Includes the block version, previous block hash, Merkle root, times-
tamp, and unique nonce.

• Merkle Root: Derived from a Merkle tree to summarise all transactions in a block,
to aid in efficient verification.

• Transaction List: A collection of valid transactions appended to the ledger.

22

2.2 – Overview of Blockchain Technology

Figure 2.2: The structure of blocks (take Hyperledger Fabric as an example). Source:
[23]

Nodes broadcast new transactions to peers, and they collectively follow a consensus
procedure to validate which transactions are legitimate. Once a block is added, the
updated ledger is shared throughout the network. This distributed approach promotes
transparency, as all participants can view the transaction history, and increases resilience
by removing single points of failure.

2.2.3 Consensus Mechanisms and Core Characteristics
Consensus mechanisms specify how nodes agree on valid transactions and preserve a
consistent ledger. Common approaches include:

• Proof of Work (PoW): Nodes (miners) compete to solve a resource-intensive
puzzle, earning the right to add the next block. Although secure, PoW is criticised
for its high energy consumption.

• Proof of Stake (PoS): Validation rights are proportional to the stake (cryptocur-
rency holdings) of each node. PoS aims to reduce computational overhead relative
to PoW .

• Practical Byzantine Fault Tolerance (PBFT): Particularly relevant in permis-
sioned settings, PBFT requires nodes to communicate extensively, ensuring malicious
or faulty nodes do not undermine the system, provided a majority are honest [6].

Core characteristics of blockchain-based systems include:
• Decentralisation: Removes single points of failure and fosters trustless environ-

ments.

• Immutability: Altering historical records is computationally unrealistic due to
cryptographic links between blocks.

• Transparency: Copy of the ledger is maintained by all participating nodes.

• Security: Resilient to certain classes of cyberattacks; however, 51% attacks and
private-key theft are notable vulnerabilities.

23

2 – Extended Literature Review

2.3 Types of Blockchains
Blockchains are commonly categorised by their level of openness and governance models.
Although these groupings can overlap and depend on context, they largely revolve around
whether networks are permissioned and how participants interact.

2.3.1 Private, Consortium, and Public Blockchains
Public blockchains, such as Bitcoin and Ethereum, allow anyone to read and write
data on the ledger, making them widely accessible. They use economic rewards, like
transaction fees and block rewards, to support node participation and consensus [27].

Private blockchains limit network membership to a single organisation or a closely
controlled set of parties, making them suitable for applications that require strong se-
crecy. Under this structure, a single entity has more control over membership, transaction
validation, and governance, often opting for more centralised consensus to achieve greater
efficiency.

Consortium blockchains balance these models by splitting governance among a
smaller group of entities. This approach is frequently adopted in scenarios such as supply
chain consortia or financial settlement systems. Consortium blockchains often utilize
consensus mechanisms like PBFT or Raft, which allow quick finality while assuming a
certain level of trust among approved participants.

Table 2.1: Comparison of Blockchain Types

Attribute Public Consortium Private

Governance Decentralised; open
to all

Shared among se-
lect organisations

Centralised within
one entity

Consensus Style PoW, PoS, etc.
(energy-intensive)

PBFT, Raft (ef-
ficient, trusted
nodes)

Centralised or dele-
gated mechanisms

Performance Lower throughput,
high latency

Moderate to high
throughput, fast fi-
nality

High throughput,
low latency

Typical Use Case Cryptocurrency,
open dApps

Inter-
organisational
collaboration

Internal audit,
enterprise automa-
tion

2.3.2 Permissioned vs. Permissionless
Blockchain networks can also be labelled permissioned or permissionless, based on how
participants are verified and how transactions are submitted. In permissionless systems
(e.g., Bitcoin), node participation depends mainly on consensus rules, making them open
to anyone. By contrast, permissioned systems (e.g., Hyperledger Fabric) require new
nodes to be explicitly approved by a central authority or consortium.

Permissioned blockchains can provide improved scalability, faster transaction speeds,
and greater data protection, since they control membership and can implement detailed

24

2.4 – Regulatory, Ethical, and Legal Considerations

access rules [3]. However, this gain in efficiency and control may reduce openness and
raise questions on whether such systems stray from blockchain’s original decentralised
ideals.

Table 2.2: Comparison of Permissioned vs. Permissionless Blockchains

Criteria Permissionless Permissioned

Anonymity High Limited / None
Trust among participants Not required Required / Vetted
Membership control Open to all Restricted
Throughput / Scalability Limited Higher
Data privacy & access Public Fine-grained
Governance decentralisation High Potentially centralised

2.4 Regulatory, Ethical, and Legal Considerations
The rapid spread of blockchain-based applications has outpaced existing legal frameworks,
creating regulatory uncertainty and sparking ethical debates. Key considerations include:

1. Data Privacy and GDPR Compliance: Blockchains store transaction data in
an immutable ledger, potentially conflicting with regulations requiring data modifi-
cation or deletion (e.g., “the right to be forgotten” in GDPR).

GDPR vs. Blockchain

The General Data Protection Regulation (GDPR) grants EU citizens the right
to request data erasure. This is at odds with blockchain’s immutability princi-
ple. Solutions like off-chain storage, encryption, and hash anonymisation have
been proposed, but legal consensus on their adequacy is still emerging.

2. Cross-Jurisdictional Challenges: Laws vary across regions, leading to legal un-
certainties related to digital asset classification, taxation, and consumer protection.

Sarbanes-Oxley (SOX) and Auditable Records

The Sarbanes-Oxley Act mandates traceable and tamper-evident financial
record-keeping. Blockchain’s audit trails could support SOX compliance—if
implemented with proper access controls and validation layers—but questions
remain on how courts interpret blockchain logs.

3. Smart Contract Liability and Enforcement: Automated contracts executing
on a blockchain raise questions about the enforceability of code-based agreements
and liability in the event of contract failure or code vulnerabilities.

4. Ethical Considerations: Transparency and immutability can conflict with con-
cerns about privacy and anonymity. Unequal access to cryptographic tools or dis-
parate regulatory acceptance can exacerbate global inequalities.

25

2 – Extended Literature Review

HIPAA and Medical Blockchain Records

Under the Health Insurance Portability and Accountability Act (HIPAA),
healthcare providers must protect patient privacy and ensure data confiden-
tiality. Storing sensitive medical data directly on-chain risks noncompliance.
Hybrid architectures with encrypted off-chain storage and on-chain access con-
trol mechanisms offer a potential compromise.

In spite of these complexities, many policymakers are introducing measures like regu-
latory sandboxes to encourage innovation while still protecting consumers. Ethical frame-
works typically focus on designing blockchain systems with proportionality, accountabil-
ity, and inclusion in mind.

2.5 Related Work and Existing Solutions

This section explores various blockchain platforms, key insights from academic research,
and real-world applications. We begin by comparing major platforms, then review their
documented use cases in industries such as finance, supply chain, and healthcare.

2.5.1 Comparison of Blockchain Platforms

Multiple blockchain platforms provide different rationale, consensus methods, and gover-
nance approaches. Table 2.3 shows a high-level overview of common platforms [25].

Table 2.3: High-Level Comparison of Selected Blockchain Platforms (Example Data)

Platform Consensus Mecha-
nism

Type Key Features

Bitcoin Proof of Work (PoW) Public, Permis-
sionless

Simple scripting,
robust security

Ethereum PoS (from PoW) Public, Permis-
sionless

Smart contracts,
large developer
ecosystem

Hyperledger
Fabric

PBFT / CFT Permissioned Modular, private
data collections

Corda Notary-based Permissioned Focus on financial
workflows

Quorum PoA / IBFT Permissioned Ethereum-based,
privacy features

Hyperledger Fabric, the focal point of this thesis, is notable for its permissioned ar-
chitecture, offering detailed membership control and customizable consensus. Its flexible
ledger layout and support for private data collections suit heavily regulated industries
that handle sensitive data [3].

26

2.5 – Related Work and Existing Solutions

Table 2.4: Community and Ecosystem Maturity of Selected Platforms

Platform Community & Ecosystem Maturity
Bitcoin Very mature; global adoption and conservative develop-

ment culture
Ethereum Highly active; large contributor base, diverse dApp

ecosystem
Hyperledger
Fabric

Strong enterprise support; modular, actively developed

Corda Moderate; backed by financial institutions, less open-
source traction

Quorum Niche; supported by ConsenSys, Ethereum-compatible
tooling

2.5.2 Industry Adoption and Case Studies
Nowadays many sectors (such as supply chain, healthcare, and finance) are integrating
blockchain to enhance auditability and reduce data tampering. For instance:

• Supply Chain: Companies like Walmart and IBM have utilised Hyperledger Fabric
to track produce, resulting in quicker traceability and contamination detection .

• Healthcare: Blockchain-based solutions are being piloted to manage patient data
continuity, reduce insurance fraud, and ensure secure sharing of sensitive medical
records across multiple platforms and providers. Notably, pilot programs leveraging
Hyperledger Fabric have indicated faster data retrieval and improved compliance
with patient privacy regulations, although challenges remain regarding large-scale
interoperability and cost-effectiveness in healthcare settings.

• Finance: Financial institutions are exploring blockchains for cross-border payments
and settlement, reducing operational overhead and improving transaction speed. Re-
search indicates that permissioned blockchains like Corda and Hyperledger Fabric
can offer robust privacy models, making them attractive for interbank communica-
tions and regulatory reporting .

• Government Administration: Various government agencies are testing blockchain
for identity management, land registry, and public procurement. Such applications
aim to minimize corruption, mitigate bureaucratic inefficiencies, and promote trust
through transparent record-keeping systems [25].

Case Study: Walmart–IBM Food Trust
Walmart collaborated with IBM to deploy a Hyperledger Fabric-based platform for
tracing food origins. The solution reduced produce traceability from 7 days to 2.2
seconds, boosting food safety and operational transparency. It demonstrated how
blockchain could streamline supply chains while satisfying regulatory requirements.

27

2 – Extended Literature Review

Case Study: Maersk–IBM TradeLens
TradeLens, a blockchain shipping platform co-developed by Maersk and IBM, aims to
digitise global trade documentation. Despite onboarding more than 150 participants,
including port authorities and customs bodies, its adoption slowed due to reluctance
among key competitors and limited network effects. The project was cancelled in 2023,
illustrating the importance of ecosystem cooperation.

Alongside these initial successes, studies report issues like limited throughput and
high latency that undermine the full potential of enterprise-level blockchain solutions.
Nonetheless, as industries push forward with digital transformation, blockchain testing
and deployment continue to gain momentum.

2.6 Conclusion
This extended literature review explored essential aspects of blockchain technology, in-
cluding its underlying structures, consensus methods, and classifications (public, pri-
vate, consortium, permissioned, and permissionless). It highlighted how cryptographic
safeguards and various consensus protocols address different requirements for security,
performance, and regulatory compliance.

We also looked at regulatory, ethical, and legal concerns, recognising that immutability
and decentralisation can clash with ever-evolving legal standards. Turning to practical
implementations—especially Hyperledger Fabric—underscored how permissioned archi-
tectures can address concerns about data privacy and throughput. Yet, real-world appli-
cations also reveal ongoing challenges like governance and scalability.
Key Takeaways:

• Immutability and Regulation: The permanence of blockchain data creates chal-
lenges to complying with evolving legal requirements such as the GDPR.

• Permissioned Systems for Enterprise Needs: Platforms such as Hyperledger
Fabric enable fine-grained access control, high throughput, and compliance, making
them suitable for regulated industrial environments.

• Consensus Mechanism Trade-Offs: Different algorithms offer varying balances
between security, scalability, and energy efficiency—no one-size-fits-all solution ex-
ists.

• Real-World Adoption is Growing—But Fragmented: Industry adoption is
expanding, but interoperability, governance, and ecosystem maturity remain barriers
to full-scale deployment.

These insights establish the basis for the investigations in the following chapters. In
particular, Chapter 5 describes the methodology applied in defining blockchain deploy-
ment and smart contract engineering in industrial use cases. This approach leans on
the theoretical and technical groundwork presented here, guiding a detailed study of
Hyperledger Fabric’s ability to satisfy enterprise-level needs in practice.

28

Chapter 3

Smart Contracts

Smart contracts have emerged as a transformative concept within blockchain ecosystems,
enabling agreements to self-enforce without the need for a central authority. Building on
the foundational ideas introduced in previous chapters, this chapter explores both the
theoretical underpinnings and practical implementations of smart contracts.

We begin with a comprehensive introduction, illustrating how certain contractual func-
tions can be automated through code-based rules. Following this, we delve into the op-
erational mechanics of smart contracts, examining their design principles and how they
relate to traditional legal frameworks.

Further discussion addresses the potential of smart contracts to reduce trust depen-
dencies, enhance security, and improve transparency. At the same time, we critically
evaluate the technical, regulatory, and organisational challenges they pose. Key issues
such as scalability limitations, code vulnerabilities, and the complexities of legal enforce-
ability are examined to provide a nuanced understanding of the technology’s capabilities
and constraints.

This chapter connect theoretical ideas with real-world applications, providing a bal-
anced perspective that can guide policymakers, global businesses, and researchers.

3.1 Introduction to Smart Contracts
Smart contracts mark a major shift in how agreements can be created and carried out,
reflecting the decentralised nature of blockchain. In the past, the idea of algorithmic
enforcement came up in theoretical computer science, but it was not until the last decade
that it really merged with decentralised consensus: modern smart contracts rely heavily
on cryptographic structures and distributed ledgers like Bitcoin and Ethereum.

Traditional contracts depend on legal texts and outside mediators, but smart contracts
work in decentralised systems, using code to serve as both mediator and judge of contract
conditions. Because smart contracts run automatically on a blockchain, they produce
results that are tamper-evident. As a result, participants benefit from lower transaction
costs, less need for trust, and built-in audit trails. However, these features can create
difficulties when trying to fit smart contracts into existing regulatory and organisational
frameworks, and they may demand specialised oversight.

To understand why smart contracts matter, we should place them in the broader story
of protocols that aim to reduce reliance on trust. In the past, parties forming contracts
had to handle high coordination, enforcement, and oversight expenses, especially in com-
plicated international deals. By using cryptography and decentralised validation, smart

29

3 – Smart Contracts

1994: Nick Szabo Proposes Smart
Contracts
Lays theoretical foundation for self-
executing agreements without intermedi-
aries.

2009: Bitcoin Launches
Introduces decentralised digital money.
Scriptable, but limited contract logic.

2013: Ethereum Whitepaper
Vitalik Buterin proposes a blockchain with
a Turing-complete smart contract platform.

2015: Ethereum Launch
Smart contracts go live on the Ethereum
blockchain using Solidity.

2016: DAO Hack and Ethereum Fork
A major exploit triggers a fork, splitting
Ethereum and Ethereum Classic.

2017–2020: DeFi and dApp Boom
Smart contracts power decentralised fi-
nance, NFTs, and DAOs.

2021–2022: Ethereum 2.0 Begins
Transition to Proof of Stake and scalability
upgrades.

2023–2025: Cross-chain, AI & Modu-
lar Apps
Smart contracts expand to L2s and other
chains; enhanced tooling, privacy, and inter-
operability.

Figure 3.1: Timeline of Smart Contract Evolution

contracts help cut this friction. This cost-saving argument has led many sectors, including
finance and supply chain, to explore smart contracts to reduce disagreements and lower
operational costs. Still, we must remember that they do not solve every problem. They
rely on strong coding practices, dependable consensus, and accurate external data. If
these fail, contracts can fail as well. These demands can open up new risks if the contract
logic or the blockchain platform is breached. For this reason, it’s crucial to examine how
software engineering best practices mesh with decentralised governance for a full review
of this technology.

In Chapter 1, we covered the broader context of blockchain technologies, and Chapter
2 went deeper into core ideas while examining external factors like regulations. In keeping
with that, this introduction treats smart contracts as both a separate yet integral part

30

3.2 – How Smart Contracts Work

of the broader blockchain picture. By exploring motives, historical background, and
known complexities, we set up the perspective for the following sections to examine their
main operating principles, compare them to standard contracts, and see how they might
reshape business and government.

From here on, we take a broad view of smart contracts, covering the technology it-
self, plus the social, organisational, and legal factors that matter for real deployments.
By carefully looking at the connections among code, consensus, enforcement, and real-
world challenges, we offer a framework for decision makers and those hesitant to adopt
new systems without strong assurances. Ultimately, this introduction sets the stage to
investigate how smart contracts operate and how they can drive new institutional op-
portunities, significant changes, and expansions across industries, highlighting the broad
future potential.

3.2 How Smart Contracts Work
To see how smart contracts actually work, we need to look at how their software code
runs on decentralised ledger systems to handle contracts automatically. Broadly, their
process includes several steps:

1. the initialisation phase, when the code goes onto the blockchain;
2. the triggers that activate specific functions;
3. the updates to on-chain states and any off-chain signals.

When a contract is deployed, it’s accessible to network participants who can call its
methods, as allowed by protocol permissions and consensus rules. By running determin-
istic code, these contracts guarantee outcomes that follow their predefined logic, offering
consistency and predictability. Also, because the blockchain ledger is immutable, there is
always a record of interactions that stakeholders can review. Meanwhile, consensus mech-
anisms like Proof of Work, Proof of Stake, or PBFT confirm these transactions, reducing
the need for a single authority. But this setup also has issues like limited computing re-
sources, transaction fees, and timing constraints. Developers have to balance how much
functionality they include with the need for efficiency. The way the code-driven events
work with distributed validation is exciting but requires a solid strategy.

Trigger Input (e.g. transaction or event)

Smart Contract Execution (code runs on-chain)

On-Chain State Update (ledger/state modified)

Figure 3.2: Smart Contract Flow: Trigger → Execution → On-Chain State Update

A key feature of smart contracts is that they can use external or off-chain data, typi-
cally provided by oracles, to expand their capabilities beyond what’s on the blockchain.

31

3 – Smart Contracts

Oracles: Bridge or Bottleneck?

Oracles serve as bridges between blockchains and the external world, injecting real-
world data (e.g., exchange rates, weather conditions, IoT sensor outputs) into smart
contract logic. However, they also create vulnerabilities such as:

• Single-point-of-failure: A centralised oracle can be manipulated or go offline.

• Sybil attacks: Malicious actors can pose as multiple oracles to distort consen-
sus.

• Data tampering: Intercepted or falsified input may corrupt contract be-
haviour.

• Latency and inconsistency: Timely and synchronised data delivery is critical
but not guaranteed.

Mitigations include decentralised oracle networks (e.g. Chainlink), cryptographic
proofs, and fallback data sources.

Used as bridges to the outside world, oracles (whether software or hardware) supply
things like exchange rates, weather data, or sensor inputs to the contract. But depending
on oracles introduces new trust challenges, since malicious or incorrect oracles can corrupt
the contract. This makes data validation and fail-safes essential. In addition, since
smart contracts run deterministically, they need to be designed carefully to account for
exceptions, uncertain conditions, and conflict resolution. Some frameworks add features
like multisignature or layered governance to allow authorised parties to pause or modify
a contract if something critical happens. Balancing automation with oversight is a big
design challenge. Overall, the interaction of on-chain code, off-chain data, and possible
centralisation reveals how flexible smart contracts can be for real-world applications.

3.2.1 Mechanisms and Design Principles
The success of smart contracts hinges on design principles that shape the code, archi-
tecture, and security. Principles like the following let contracts work as intended after
deployment and keep them safe from attacks:

1. determinism means every node running the same code with the same inputs should
get the same outputs, ensuring network-wide consistency;

2. minimal trust assumptions aim to ensure that contract execution doesn’t depend on
any single participant’s judgment;

3. verifiability means the code and transaction history are open for auditing, which
boosts accountability.

4. modularity matters, too, so that large tasks can be broken into smaller parts, each
verified on its own.

5. formal verification, static analysis, and layered testing can help prevent major ex-
ploits.

6. upgradeability features, especially in permissioned blockchains, let to evolve con-
tracts without ignoring the benefits of immutability.

32

3.3 – Traditional Contracts vs. Smart Contracts

All these design basics guide how developers create and maintain smart contracts, making
sure they remain stable even as networks grow or change. If these principles aren’t
followed, it could lead to financial and reputation loss, or bigger system-wide problems.

3.2.2 Recent Developments in Smart Contract Technologies
Smart contracts have evolved quickly recently, thanks to protocol improvements and new
languages or platforms emerging. Ethereum, the leading platform for programmable
blockchains, is seeing big changes like the Prague-Electra (Pectra) update and EIP-4844
(Proto-Danksharding), which aim to boost scalability and lower fees for layer-2 solu-
tions [16]. Ethereum’s Shapella upgrade and its move to Proof of Stake also strengthen
security and cut energy use [15, 14].

Meanwhile, new programming languages are popping up to make smart contracts
safer and more expressive. Flow’s Cadence [12] focuses on resource-oriented concepts to
avoid standard flaws, and Move (used by Aptos and Sui) emphasises asset safety and
formal checks. Solidity also keeps evolving, with updates and security reminders from
the Ethereum Foundation [29].

Security and reliability are still top priorities. Advanced auditing, formal verification,
and bug bounties are now typical for important contract deployments. And networks
like Chainlink [22] help connect smart contracts with external data, though they also
bring new potential risks. Taken together, these improvements tackle older challenges
like scalability, interoperability, and security, making the technology more appealing to
enterprises and institutions.

3.3 Traditional Contracts vs. Smart Contracts

Smart contracts are often compared to traditional legal contracts, raising questions about
their legal weight, legitimacy, and how code interacts with law. On the surface, both types
outline conditions and actions that govern relationships between parties, but traditional
contracts rely on text and legal rulings, while smart contracts use code that runs on
a blockchain. Moving from interpretation-based to algorithm-based enforcement affects
how fast deals are closed, how much they cost, and how disputes are settled. In traditional
cases, disputes often require lengthy court proceedings, whereas with smart contracts, the
code enforces outcomes instantly once certain triggers happen. But if the code has a bug
or the data is wrong, a contract could do something unintended, with little room for a
court to step in. So while automation is appealing, the lack of a human interpreter can
lead to surprising results.

Table 3.1: Traditional Legal Contracts vs. Smart Contracts

Aspect Traditional Contracts Smart Contracts
Enforcement Judicial system Deterministic code execution
Interpretability Subject to legal interpretation Executed exactly as written in code
Dispute Resolution Courts and arbitration Limited; pre-coded outcomes only
Modification Amendable by agreement Often immutable post-deployment
Error Handling Judges can assess intent Code runs regardless of context

33

3 – Smart Contracts

Law experts note that traditional contracts rely on principles like good faith and fair-
ness, and judges can interpret them in various contexts. In contrast, code-based contracts
enforce exactly what’s written, without that flexibility. This strictness is sometimes good
when parties want predictable results and don’t want to rely on personal judgment. But
it can be difficult if things change after the contract is deployed or if something unex-
pected happens that the code doesn’t address. Also, consumer protection is a concern
because not all users can read or understand contract code. Some places have started
writing rules for how code-based contracts fit into current laws, suggesting we may see
a hybrid model. The topic still spurs lots of academic debate, and creating universal
standards is tricky because laws differ so much from place to place.

To reconcile code and law, some have introduced Ricardian contracts, which pair
human-readable terms with machine code for clarity in disputes. We also see multi-
layer models that reference legal codes right inside the contract, blending computational
enforcement with recognised legal standards. In heavily regulated fields like finance or
healthcare, blockchain consortia work with legal experts to set best practices that bal-
ance efficiency with traditional protections. As they keep working together, how code-
based certainty blends with legal interpretation will keep shifting, affecting new forms
of contracts going forward. In short, while smart contracts offer big gains in efficiency,
meshing them with the flexibility and safeguards of standard legal systems is still a work
in progress. New case studies show how hybrid approaches are evolving through steady
trial and error.

Comparing traditional and smart contracts shows a field in transition, where law,
technology, and society all meet. For organisations ready to adopt them, these distinctions
require careful reviews of operational risks, regulations, and how to handle disagreements.
Supporters say even partial use can cut costs, reduce mistakes, and open up new ways
of doing business. Critics point out that the technology is still immature and can lock
in undesirable outcomes, especially if there’s no easy way to override a bad contract. A
middle ground suggests that smart and traditional contracts won’t simply replace each
other. Rather, they might grow alongside each other, influencing standards and protocols
as they go. The next section shows how different industries are actually putting these
ideas into practice, using smart contracts to speed up processes, boost trust, and test
new automated approaches. In the end, uniting these models calls for a cross-disciplinary
team, ongoing tech improvements, and constant dialogue among all parties.

3.4 Use Cases and Applications
The true benefits of smart contracts are clearest when we look at actual use cases across
many industries. From speeding up financial settlements to boosting transparency in sup-
ply chains, these contracts can transform traditional processes. By automating tasks that
rely on trust among different entities, they reduce manual errors and strengthen security.
Smart contracts manage trust-based workflows in ways that cut down errors, resist fraud,
and offer almost immediate verification. They’re flexible enough to be adapted to many
needs—like converting physical assets into tokens, settling insurance claims automati-
cally, or handling complex negotiations among multiple parties. Beyond these everyday
benefits, smart contracts open up new economic models, shaping how data ownership,
risk, and governance might be handled. Still, widespread use faces challenges: standards
are not always mature, legal guidelines remain hazy, and learning the technology can
be tough. In the next sections, we focus on two major areas—asset management and

34

3.4 – Use Cases and Applications

business process automation—to show how strong an impact smart contracts can have.
Each comes with its own hurdles, reflecting the range of issues when using automated
logic in real settings. But the progress so far points to a pivotal moment where theory
meets practical solutions, proving the broader potential of the technology.

3.4.1 Focus on Asset Management
Asset management, both at the institutional and retail levels, represents a significant
domain wherein smart contracts prove to be particularly efficacious.By embodying assets
such as stocks, bonds, real estate, or collectibles in the form of digital tokens, market
participants can benefit from accelerated transactions, fractional ownership, and simpli-
fied custody processes. Typically, asset transfers necessitate the involvement of numerous
intermediaries such as brokers, clearinghouses, or depositories, which can result in settle-
ment delays or errors. Through the utilisation of smart contracts, the majority of these
processes can be automated, ensuring that once a transaction satisfies specific conditions
(e.g., verified identity, sufficient collateral), ownership is transferred immediately and ir-
reversibly. This configuration is particularly advantageous in rapidly evolving markets as
it reduces liquidity risk and minimizes administrative complexities. Furthermore, com-
pliance checks can be integrated directly into the contract, assisting in the prevention
of unauthorised trading or illicit activities. Nevertheless, several questions remain unre-
solved: what is the legal validity of digital token-based ownership rights? Additionally,
what occurs if an individual loses their private keys or if they are stolen, rendering assets
inaccessible? Furthermore, extensive token markets may encounter abrupt disruptions
that pose heightened risks. In regulated sectors, there is a necessity for regulations that
are aligned with these novel methodologies.

Physical Asset (e.g., real estate, art, bonds)

Digital Token (representation on blockchain)

Smart Contract Execution (conditions validated)

Transfer of Ownership (instantaneous + programmable)

Figure 3.3: Tokenisation Process: From Physical Asset to Digital Transfer via Smart
Contract

3.4.2 Business Process Automation
Apart from finance and asset management, many companies also use smart contracts
to automate different operations. By programming rules and triggers in software, firms

35

3 – Smart Contracts

can coordinate tasks across departments, external suppliers, and regulatory checkpoints.
For instance, in supply chains, a smart contract might release payment only after goods
are confirmed delivered, or reorder items automatically once stock dips below a set level.
This removes the need for manual checks and speeds up transaction times. In health-
care, they can also regulate patient data exchanges between clinics, ensuring that only
authorised staff see sensitive records while improving both privacy and efficiency. In in-
surance, claims handling can get faster by encoding specific triggers—like shipping delays
or weather data—that automatically lead to payouts. This lowers friction and quickens
settlement. However, linking smart contracts to existing systems (like ERP software) and
older databases is key to frictionless operations. That often means reorganizing internal
processes and training staff. Organisations must also invest in development and ongoing
maintenance to reap these benefits. In the end, these changes can yield leaner services,
stronger data management, and more flexible supply chains.

3.5 Benefits and Potential of Smart Contracts

3.5.1 Trust Minimisation and Operational Streamlining
Smart contracts bring many benefits, with one of the biggest being better trust between
parties who don’t have a long history of working together. Because these contracts put the
deal’s terms into open, self-executing code, trust doesn’t hinge on third parties or external
enforcers as much. This approach speeds up transactions and can enable new collabo-
rations often stifled by fear of opportunistic behavior. Operationally, self-execution cuts
down admin work, since repeated checks and paperwork are replaced by code triggers. As
a result, organisations can shift resources away from routine tasks to high-level strategies,
boosting competitiveness. Additionally, the permanence of blockchain records helps with
auditing, which is especially useful in regulated sectors like finance or healthcare.

3.5.2 Transparency and Dynamic Value Exchange
Another key benefit is the extra transparency that a decentralised ledger can provide.
When essential contract details are on-chain, it’s easier to check that everyone follows
the terms, making it especially helpful in partnerships across different organisations. In
supply chains, for example, verifying a product’s origin, travel path, and status on an
unchangeable ledger can reduce scams. Regulators can also benefit from real-time mon-
itoring, saving on audit costs and spotting suspicious activities sooner. Smart contracts
additionally allow new ideas like flexible pricing, performance-driven service contracts,
and automated risk sharing, transforming standard deals into dynamic, event-based value
flows. By automating trust, participants face less uncertainty about each other.

3.5.3 Efficiency Gains and Scalable Automation
Another perk is cutting administrative tasks. Traditional contracts often involve re-
peated drafting, review, and manual updating, leaving room for human error and delays.
In contrast, a smart contract automatically proceeds to the next stage once specific re-
quirements are fulfilled, removing the need for constant management. This streamlined
flow also speeds up transactions and lowers costs. Banks can use smart contracts to

36

3.5 – Benefits and Potential of Smart Contracts

automate loan payments, margin calls, or collateral management, reducing risk from hu-
man oversights. Startups, especially in developing areas, also gain from easier market
entry because the tech can be launched quickly with fewer middlemen. Still, achieving
these efficiencies calls for significant expertise, thorough testing, and collaboration across
different fields, or else the tech might be adopted haphazardly.

3.5.4 Governance Innovation and Emerging Applications

Finally, smart contracts are not just about operational improvements. They can also
usher in new governance and organisational models. For example, Decentralised Au-
tonomous Organisations (DAOs) rely on smart contracts for voting, funding decisions,
and policy enforcement, boosting participation but also posing risks if they’re poorly
designed. Similarly, microinsurance services in developing areas use smart contracts to
pay out automatically if weather or location data meets certain conditions, extending
coverage to underserved populations. These examples show how flexible such contracts
are: once thoroughly written and checked, they can also handle corporate structures and
even public-private partnerships. But strong oversight, backup planning, and keeping
the code updated are vital to avoid becoming stuck with flawed governance or permanent
coding errors. Together, these possibilities mark the leading edge of what’s possible with
smart contracts.

Table 3.2: Smart Contract Benefits and Concrete Applications

Benefit Real-World Example
Trust Minimisation Peer-to-peer lending platforms like Aave automate

loan terms, ensuring fund release only after collat-
eral is locked.

Administrative Efficiency JPMorgan’s Onyx blockchain reduces trade settle-
ment times from days to minutes using smart con-
tract automation.

Transparency IBM Food Trust allows stakeholders to track food
supply chains immutably, helping detect fraud or
contamination sources.

Regulatory Oversight Chainalysis tools assist regulators in real-time
monitoring of blockchain-based financial activity
for AML compliance.

Innovative Pricing Models Ride-sharing DApps use demand-responsive smart
contracts to dynamically adjust pricing based on
usage or fuel costs.

Performance-Based Pay-
ments

Insurtech startups offer crop insurance where
smart contracts auto-disburse payouts if satellite
data shows drought.

New Governance Models DAOs like MakerDAO enable token holders to vote
on protocol changes without centralised leader-
ship.

37

3 – Smart Contracts

3.6 Challenges and Limitations
Even though they’re on the rise, smart contracts still face challenges and limitations.
Real-world use often shows complexities that theory alone doesn’t capture, as integrating
code with legal, social, and organisational aspects can be tough. Smart contracts follow
the code exactly, giving little room for human judgment in unexpected situations: this can
be a strength but also a weakness. Also, some contract relationships are too complex or
interpretative to be fully coded. Traditional dispute resolution can be tricky to replicate in
purely automatic systems. At the same time, laws around smart contracts vary by region,
causing uncertainty for international projects or highly regulated sectors. Recognizing
these constraints is key to responsible use, ensuring the technology fits real-world needs
and meets legal or compliance rules.

For example, complicated agreements that cross borders can run into conflicting rules,
making it hard to encode every legal detail into code. And depending on oracles means
there might be new ways for hackers to undermine trust if these data feeds fail or get
compromised. Because of all these issues, it’s crucial to balance big aspirations with
caution when launching smart contract projects.

3.6.1 Technical Challenges
Technical barriers are often the biggest roadblock for smart contracts. For example,
blockchain networks have limited throughput and can get congested, slowing down con-
tract operations. Additionally, coding flaws are a huge worry, since any bug can cause
big losses or damage a project’s reputation. Unlike typical software that you can up-
date easily, permanent smart contracts usually need to be perfect from the start or have
carefully planned fallback methods. Advanced strategies like layer-2 scaling or off-chain
computations aim to ease stress on the main network, but that also adds system com-
plexity. We have more security audits, analysis tools, and bounty programs than ever,
but guaranteeing no bugs is still tough. Even small mistakes like integer overflows or
incomplete fallback functions can lead to big trouble. Also, consensus methods can fail
if there’s a 51% attack or a network fork, which threatens the trust model behind the
whole system.

Finally, plugging into existing IT setups is never straightforward, as data formats or
older infrastructures may not match the demands of blockchain-based solutions.

3.6.2 Legal and Regulatory Uncertainty
Laws and regulations remain unclear for a lot of areas in smart contract use, especially
across different countries. Some places have passed laws or given guidelines saying these
code-based deals can be legally binding, but other places haven’t. This uneven landscape
complicates the pursuit of uniform global adoption. In addition, data rules like GDPR
can conflict with blockchain immutability, raising doubts about how to handle a ’right to
be forgotten’ in a ledger that can’t be changed. There are also ongoing discussions about
protecting consumers, since they might sign off on terms they don’t fully understand in
code. Resolving conflicts is trickier if there’s no built-in code for it or if a court doesn’t
easily intervene. So it’s clear that we need continuous cooperation between lawmakers,
industry, and developers to ensure that innovation doesn’t outpace our ability to regulate
it responsibly.

38

3.7 – Related Work and Existing Solutions

For example, certain places might not consider a contract binding if crucial parts can’t
be read in plain text. Such differences make it hard to have consistent rules worldwide.

3.6.3 Operational Challenges
Companies also face operational problems when trying to align old systems with newer
blockchain setups. Shifting tasks or data onto a decentralised network is rarely simple. It
can require rewriting processes, training employees, and rethinking internal governance
rules. There’s also the issue that different blockchain platforms might have different
consensus protocols, transaction formats, or languages, making it hard to exchange data
between them. Corporate leaders might not like losing direct control, especially in indus-
tries used to top-down oversight, so they worry about risking compliance if tasks shift to
automated scripts. There’s also a cultural hurdle: employees and executives alike must
understand the technology’s potential effects and what it means to rely on decentralised
systems. Even if pilot projects show early promise, taking them to full scale requires care-
ful audits, broad consensus among stakeholders, and often a big investment. In short,
fitting smart contract protocols into existing workflows highlights that success depends
as much on how flexible an organisation is as on how advanced the technology is.

These challenges grow stronger in global firms dealing with varied rules and older, in-
consistent systems. This underscores the point that deploying smart contracts effectively
calls for readiness across the board.

Table 3.3: Challenges and mitigation strategies for the adoption of smart contracts

Category Main Challenges Mitigation Strategies

Technical Code vulnerabilities (e.g.,
reentrancy, overflow); net-
work congestion and scal-
ability issues; difficulties
integrating with legacy
systems

Formal verification, code au-
dits, and bug bounty pro-
grams; scalability solutions
(layer-2, off-chain); standard-
ised middleware and APIs for
integration

Legal and Regula-
tory

Jurisdictional uncertainty;
conflicts between GDPR
and immutability; diffi-
culty understanding coded
terms by users

Hybrid contracts (code + legal
prose); blockchains with selec-
tive privacy; improved user in-
terfaces with legal annotations

Operational Integration with existing
infrastructure; cultural re-
sistance to decentralisa-
tion; low blockchain liter-
acy

Change management and
training programs; incremen-
tal pilot implementations;
multi-stakeholder governance
models

3.7 Related Work and Existing Solutions
Research on smart contracts is moving fast, driven by academic studies, open-source com-
munities, and corporate pilots. Many frameworks, patterns, and recommended practices

39

3 – Smart Contracts

have emerged, each tackling different problems like security gaps, scaling, or legal compli-
ance. One notable trend is trying to combine formal verification, which mathematically
confirms code correctness, with the iterative style of normal software development. Bugs
like reentrancy or unchecked call stacks keep appearing, so there’s constant research on
new debugging tools or advanced static analyzers to catch these issues early. At the
same time, the conversation isn’t just about code. Legal experts, sociologists, and policy
folks also weigh in on how code-based agreements work with existing laws. Standards
groups and industry alliances produce guidelines that try to define requirements for in-
teroperability and reduce the complexity of adoption. As a result, there’s a wide range
of evolving approaches, all aiming to improve how we build, test, and manage smart con-
tracts. Academic publications often share case studies of new frameworks claiming key
improvements in reliability or efficiency, but there’s no single consensus yet, reflecting
the ongoing growth in this field.

3.7.1 Blockchain-enabled Smart Contract Applications

Public Sector and Industry Pilots

Across the research scene, many blockchain-based projects show how smart contracts
might change private and public sectors alike. In finance, decentralised exchanges (DEXs)
run purely on contract code, matching buy-sell orders, while liquidity pools and auto-
mated market makers allow continuous trading. Such platforms suggest a future where
everything from derivatives to insurance might be offered, traded, and settled on the
blockchain. In healthcare, we’ve seen pilots testing how to verify prescriptions, trace drug
origins, or manage patient consent forms with a single tamper-resistant ledger. Govern-
ment services, known for heavy bureaucracy, may also benefit. For instance, property
registries, licensing, or welfare payments can be simplified, reducing administrative costs
and corruption risk. These varying trials show how flexible the contract logic can be,
though most real implementations remain in testing phases. There are important ques-
tions about how to expand them beyond controlled pilots, since production-level systems
demand more reliability than test setups. Also, balancing innovation with legal require-
ments is a key strategic hurdle.

Enterprise Adoption and Private Blockchain Frameworks

In businesses, more case studies are popping up on how consortiums run private or per-
missioned blockchains for data sharing, automated payments, and bridging separate IT
systems. For instance, Hyperledger Fabric is popular among large companies seeking
robust identity management and customizable consensus options. In this environment,
chaincode offers a specialised path to smart contracts, focusing on privacy and detailed
access settings. R3 Corda puts privacy first, exchanging data directly between parties,
making it appealing for highly regulated financial markets. Though some academics cri-
tique permissioned networks for bringing back some aspects of centralisation, supporters
argue these setups better fit real-world needs, where parties want to know each other and
comply with regulations. Industry alliances are forming to set best practices for these
solutions, possibly leading to standardised approaches. On top of that, cloud services
now provide blockchain-as-a-service, making it easier for businesses to adopt, though it
does raise questions about mixing decentralisation with central hosting. Within these
different ecosystems, real-time interoperability is still a big issue: can blockchains talk to

40

3.8 – Conclusion

each other or will they stay isolated? As a result, progress in cross-chain technologies,
side-chains, and bridging solutions is closely watched by practitioners and researchers.

Further Reading and Open Frameworks

To grasp the variety of methods in the smart contract field, you can check out these
open-source frameworks beyond Ethereum:

• Hyperledger Fabric – A modular permissioned framework for enterprise, empha-
sizing identity, privacy, and plug-in consensus.

• R3 Corda – A ledger built for regulated settings, supporting code-based contracts
and direct data exchange with strong privacy.

• Substrate (by Parity) – A framework behind Polkadot, letting developers build
customizable, interoperable chains with built-in contract capabilities via ink! or
EVM.

• TRON – A fast, EVM-compatible chain focusing on content distribution and DeFi
use cases.

• Cardano (Plutus) – Uses the Haskell-based Plutus language, grounded in formal
methods, aiming at high-assurance apps.

• Tezos – A blockchain that can update itself, offering Michelson-based contracts
(plus SmartPy or Ligo for easier syntax).

• Algorand – Has two contract layers: stateless for transactions, and stateful for
complex logic, prioritizing quick finality and low fees.

• NEO – A chain supporting several contract languages, with an emphasis on digital
identity, regulatory compliance, and scalable dApps.

• Flow – Made by Dapper Labs, Flow uses Cadence, a resource-focused language
designed for ease and security.

• Solana – Famed for its speed and low latency, Solana supports Rust-based contracts
and a parallel execution model.

Together, these platforms show how smart contracts continue to evolve, each with its
own tradeoffs in performance, design, and developer tools.

3.8 Conclusion

3.8.1 Summary of Findings and Present Implications
In this chapter, we demonstrated that smart contracts are not merely advanced software
tools, but integral components of broader socio-technical systems that hold significance for
a vast array of stakeholders. By integrating cryptographic security with automation, they
present a novel approach to fostering trust without the need for traditional intermediaries.
The primary attributes of smart contracts were examined, including their reliance on de-
terministic on-chain logic and the use of oracles for acquiring external data, in conjunction

41

https://www.hyperledger.org/use/fabric
https://www.r3.com/corda-platform/
https://substrate.io/
https://developers.tron.network/
https://developers.cardano.org/docs/smart-contracts/
https://docs.tezos.com/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/
https://developers.neo.org/
https://flow.com/developers
https://docs.solana.com/developing/programming-model/overview

3 – Smart Contracts

with a comparison to more conventional contractual methods. While applications such
as asset tokenisation and automated supply chains reveal both the potential and chal-
lenges associated with their widespread implementation, they indeed offer transparency,
reduced overheads, and a diminished dependence on trust. However, they are not without
significant obstacles, including software vulnerabilities, ambiguous legal frameworks, and
resistance from established organisations. Nonetheless, the extensive array of ongoing
research and the development of contemporary tools indicate that these challenges are
being approached from various perspectives. Anticipations for improvement are plausible
as legislative frameworks become more defined, developer tools advance, and additional
pilot projects are initiated. This progression signifies a substantive transformation in the
management of contracts and automation.

3.8.2 Future Directions and Strategic Considerations
It’s evident that the future of smart contracts depends on how blockchain scales, how
privacy is addressed, and how the law evolves. Both public and private players will in-
fluence and be influenced by how we balance strict code rules against the need to adjust
to real-world changes. To see real institutional adoption, we’ll need strong governance
approaches that allow upgrades, handle disputes, and link to off-chain systems. Effective
standards and clearer global regulations can smooth out conflicts and make it easier to
use these contracts across borders. As the tech progresses, future work should look at
performance over time, any ethical concerns, and whether new organisational designs
will arise from these code-based agreements. Bringing together technical experts, pol-
icymakers, and ethicists is key to making sure the benefits of automated, transparent
enforcement come along with suitable safeguards. In essence, smart contracts lie at the
intersection of creative solutions and practical demands, prompting us to rethink how we
organize business and society.

Table 3.4: Smart Contracts at a Glance: Definition, Drivers, and Barriers

Aspect Summary
What Smart
Contracts Are

Self-executing agreements encoded on a blockchain, combining
cryptographic assurance with automated execution to enforce
predefined conditions without intermediaries.

Key Drivers • Automation of business logic
• Trust minimisation via deterministic code
• Transparency and auditability
• Reduced reliance on traditional intermediaries
• Potential for cost and time savings in execution

Key Barriers
• Technical vulnerabilities (e.g., bugs, oracle attacks)
• Legal and regulatory uncertainty
• Organisational resistance and legacy constraints
• Difficulty encoding complex or interpretive agreements
• Challenges in scalability and interoperability

42

Chapter 4

Hyperledger Fabric

4.1 Introduction to Hyperledger Fabric
Hyperledger Fabric is considered one of the largest permissioned, enterprise-grade blockchain
frameworks. It follows a modular design that meets real-world organisational demands
for customizability, clarity, and security. Developed under the Linux Foundation’s Hyper-
ledger project, Fabric stands apart from public, permissionless blockchains like Bitcoin
and Ethereum because it has a permissioned infrastructure, advanced identity manage-
ment, and flexible consensus mechanisms. Its core principles (confidentiality, pluggable
architectures, and integrated membership services) suit industries that require tight con-
trol over access to data, must observe strict regulatory standards, and need seamless
integration with current IT systems.

Figure 4.1: “Hyperledger Greenhouse” overview. Source: [5]

Many academic studies show that Fabric was partly designed to overcome issues found
in earlier blockchain models. For instance, some permissionless blockchains rely on asyn-
chronous consensus methods that can limit performance. By contrast, Fabric’s “execute-
order-validate” approach separates transaction execution from ordering, which improves
scalability and deterministic behavior. Also, fields such as healthcare, finance, and supply
chain management require that only authorised parties can endorse or view transaction
data. Fabric addresses these needs by enforcing a membership system that gives each
participant a cryptographic identity associated with a specific organisation. Researchers

43

4 – Hyperledger Fabric

describe Fabric as a flexible solution for multi-party contexts demanding reliable, shared
ledgers based on carefully managed trust boundaries.

Though other permissioned platforms exist, Hyperledger Fabric is often highlighted in
research for its consensus plugin framework, channel-based privacy features, and chain-
code (smart contract) lifecycle controls that collectively support many usage scenarios.
For example, machine-component manufacturers have tested Fabric-based ledgers to se-
curely handle data from various suppliers. Similarly, the insurance industry has intro-
duced pilot programs to automate claims and improve cross-company verification without
disrupting internal systems. The goal is to leverage blockchain’s immutability and trust
features while still maintaining reliability, privacy, and regulatory compliance. Fabric’s
modular structure also ensures that organisations in a consortium can select only the com-
ponents they need, including customised membership services and specialised chaincode
environments.

This chapter explores Hyperledger Fabric in detail by examining its architecture, iden-
tity and membership system, governance model, ledger setup, chaincode lifecycle, order-
ing process, and the usual transaction flow through a security lens. Our analysis offers
both theoretical and practical insights for researchers and professionals. Previous chap-
ters introduced blockchain basics, cryptographic techniques, and various blockchain types.
Building on that foundation, here we delve into the key ideas and real-world implementa-
tions that position Hyperledger Fabric as a leading enterprise platform. In the upcoming
sections, we will look at each core component, from the membership service provider
(MSP) that authenticates users to the details of how gossip data is shared, and show how
these elements fit together in real deployments.

4.2 Fabric Architecture Overview
The Hyperledger Fabric architecture relies on a network of authorised nodes that operate
under a shared setup. Its design focuses on several core ideas:

• A modular approach that allows core parts, such as the ordering service, mem-
bership system, and databases, to be swapped or updated.

• A gossip-based communication protocol that spreads newly created blocks
among peers efficiently.

• A layered transaction flow that separates execution, ordering, and validation for
performance and predictable results.

• A channel concept that divides the ledger into smaller subledgers for privacy and
organisational needs.

It can help to imagine a layered model when thinking about the architecture:

• At the highest level is the application layer, where client apps use an SDK to com-
municate with the ledger.

• Below that is the network layer, which features membership service providers (MSPs)
and the ordering service.

• The ledger layer is where the blockchain data and the world-state are stored, often
backed by a local database.

44

4.2 – Fabric Architecture Overview

• In parallel, the chaincode layer provides the environment to run smart contracts
(chaincode) carrying business logic.

Researchers note that properly using these layers calls for an in-depth understanding
of connections among identity management, policy rules, and secure consensus. In cer-
tain applications, such as big data analysis or intricate supply chain tasks, specialised
chaincode runtimes or custom database designs may be needed.

Figure 4.2: Hyperledger Fabric model. Source: [28].

4.2.1 Modular Design and Configurable Components
Fabric’s modularity is often hailed as a key benefit because different organisations can
adapt the framework to fit their own needs. In particular:

• Consensus Plugin: Early versions of Fabric included Apache Kafka for crash fault
tolerance (CFT). The current default is Raft-based ordering. Yet Fabric can also
integrate more advanced BFT algorithms if a consortium needs stronger protection
against malicious nodes. Researchers are also looking at how plugin-based consensus
can satisfy regional rules and use hardware security modules (HSMs) to speed up
cryptography.

• Membership Service Provider (MSP): Fabric uses PKI certificates for identity
management, but the MSP can be replaced. That means organisations can install
a custom certificate authority or tie in an existing corporate identity system if they
wish.

• Database Backends: Fabric supports LevelDB or CouchDB for the state database,
each with its own pros and cons regarding performance and query powers. Some
advanced labs even use SQL engines or specialised big-data layers for unique use
cases.

• Chaincode Runtimes: The default container environment uses Docker, but in
theory, other container platforms or even serverless frameworks could be used, so
long as chaincode can be launched reliably in these new environments.

45

4 – Hyperledger Fabric

Besides these main parts, organisations can change block size, endorsement policies,
and channel settings to make the ledger more direct, scalable, or open to change.

4.2.2 Recent Innovations in Hyperledger Fabric Architecture
Hyperledger Fabric versions 3.0 and 3.1 introduced major updates focused on scalability,
security, and interoperability for enterprise users [17, 18]. A key addition is SmartBFT,
a Byzantine Fault Tolerant consensus protocol that allows networks to handle malicious
or failing nodes, offering greater reliability for critical apps. This new consensus option
adds more deployment flexibility alongside the established Raft protocol [20].

Further changes include faster batch processing for chaincode, refined endorsement
policy handling, and more advanced channel configuration functionality. These improve-
ments boost transaction throughput and provide granular control of network rules. Tests
show Fabric 3.x can reach higher throughput and lower latency than earlier versions, and
in some use cases is on par with permissioned Ethereum networks [10].

IBM Blockchain Platform, built on Fabric, currently serves over 120,000 organisations
worldwide with enterprise tools, managed services, and integration frameworks. An ex-
panding ecosystem of open-source code samples and deployment scripts also supports
rapid adoption [19].

All these enhancements now make Fabric a strong choice for scalable, secure, and
regulation-friendly blockchain use in areas like finance, supply chain, and healthcare.

4.2.3 Gossip Data Dissemination
Hyperledger Fabric aims for reliability and strong performance by using a gossip protocol
to distribute blocks among peers. Once the ordering nodes finalize a new block of trans-
actions, they pass it to chosen peers, who then spread it using Fabric’s membership-based
gossip mechanism so that all legitimate peers in a channel get the block.

Key parts of the gossip process include:

• Membership Tracking: Only peers validated through the membership author-
ity (i.e., those owning valid certificates) can join the gossip network. This stops
unauthorised peers from listening or interfering.

• Push / Pull Mechanisms: Fabric gossip merges push and pull methods, which
speeds up spreading new blocks while controlling bandwidth. A peer that receives
a block pushes it to nearby peers, who can relay it further.

• Dead Peer Detection and Fan-out Controls: Gossip logic manages peers that
go offline and prevents endless re-sending. It also ensures global coverage even when
some peers have downtime.

Studies in distributed systems note that gossip-based replication can offer better fault
tolerance, though it can add overhead in extremely large networks. Production networks
using Fabric gossip sometimes adopt layered layouts, assigning specific peers as anchor
peers or “config experts” to handle advanced tasks. Overall, gossip frees the ordering
service from having to deliver blocks individually to all peers, improving both scalability
and fault tolerance.

46

4.3 – Identity and Membership Management

4.3 Identity and Membership Management
A major difference in Hyperledger Fabric is that it uses an identity framework. Each
participant has a digital certificate that encodes organisational details, roles, and per-
missions. Unlike permissionless systems that allow anonymous or pseudonymous actors,
Fabric aims to blend the benefits of distributed ledgers with the accountability expected
in business settings. Many real-life consortia rely on formal agreements, so the ability to
trace each node to a known organisation fosters trust.

4.3.1 Membership Service Provider (MSP)
The Membership Service Provider (MSP) is the foundation of Fabric’s identity system.
The MSP handles a few functions:

• Identity Verification: It confirms that an X.509 certificate belongs to an accepted
entity. This can use the built-in fabric-ca or external CAs.

• Role Assignments: Certificates can carry attributes like “OU” (Organisational
Unit) that declare roles such as peer, admin, or client. The MSP enforces access
rules based on these roles.

• Revocation and Renewal: If an organisation revokes a certificate (for instance,
if a key is compromised or an employee leaves), the MSP references the new CRL
(Certificate Revocation List). That certificate can no longer endorse transactions.

CA Issues Certificate

MSP Valid?

Certificate Rejected

Check Revocation Status

Revoked?

Certificate Accepted

Yes

No

Yes

No

Figure 4.3: A step-by-step flowchart for how MSP validates certificates, from CA issuance
to revocation.

Research indicates that MSP configurations are highly adaptable. For example, hav-
ing multiple MSPs per channel allows separate trust domains or different cryptographic

47

4 – Hyperledger Fabric

policies. This flexibility ensures that cross-region networks can satisfy local legal require-
ments around identity and data.

4.3.2 On-channel vs. Off-channel Governance
Organisations often mix on-chain and off-chain governance practices:

• On-channel Measures: Changing a channel involves a “config transaction,” which
channel members must sign off on. The updated configuration block is then stored
in the ledger so it remains transparent.

• Off-channel Approaches: Many consortia also use formal contracts or guidelines
that define how they settle conflicts or manage compliance. While the ledger enforces
technical policies, these external frameworks detail data liability and how audits are
handled. Sometimes, references to off-chain documents are maintained on-chain for
proof of governance actions.

By combining channel-level rules with off-chain agreements, Fabric networks can stay
aligned with typical corporate processes and also meet real-world regulatory needs.

4.3.3 Revocation and Certificate Rotation
A key advantage of permissioned ledgers is the ability to revoke credentials to exclude
compromised or unauthorised nodes:

• Certificate Revocation Lists (CRLs): If a private key is leaked or an employee
leaves, the CA updates its CRL. The MSP refers to that list, so any attempt to
endorse a transaction with that certificate will fail.

• Periodic Certificate Rotation: Because cryptographic best practice calls for keys
to be changed regularly, Fabric supports scheduled certificate updates. Each organ-
isation can replace old certificates and re-register them. This reduces the chance of
long-term key compromises.

Some setups also add chaincode-based features to record or notify network admins
when certain endorsements fail repeatedly. This shows how identity controls can integrate
with larger security processes.

4.4 Policies and Governance Model
Fabric employs a policy-based system that shapes how consortium members coordinate,
define chaincode endorsement rules, and manage channel configurations without losing
trust. Instead of fixed configuration files, Fabric puts these policies in channel data that
is stored on the ledger. This means that governance decisions become part of the ledger
and can be easily verified. The system also allows administrators to propose updates,
gather signatures, and record these decisions, effectively baking trust into the platform.

• Governance by Signature Policies: Endorsement policies can say that transac-
tions must be signed by a certain number of peers from each organisation. For more
sensitive activity, like chaincode deployment, multiple organisation admins might
need to sign.

48

4.4 – Policies and Governance Model

• Implicit Meta-Policies: In some settings, simpler hierarchical rules exist, telling
Fabric to “look up” signature policy details from parent channels or broader consor-
tium guidelines. This avoids having many overlapping rules in large networks.

• Dynamic Reconfiguration: A unique Fabric feature is that policies can be up-
dated during network operation. If a new organisation joins or endorsement rules
change, the new policy is included in the ledger as an update transaction.

4.4.1 Policy Updates
Updating a policy in Fabric happens in stages:

1. Proposal Creation: Authorised users propose an updated policy block for the
channel.

2. Endorsement: Relevant organisations sign the proposal according to the current
policy.

3. Ordering and Commit: The ordering service adds the update to a block, which
peers then validate and commit. The new policy applies after validation.

Because all steps are recorded on the ledger, no single party can secretly alter the
policy. Researchers emphasize that such clear tracking of configuration changes bene-
fits large consortia, which often evolve over time. Smooth governance transitions are
critical for a blockchain network to stay viable under shifting membership or regulatory
considerations.

Example: Minimal Policy Update in Fabric Configuration (YAML Snippet)
Appl i ca t ion :

Organ i sa t i ons :
− &Org1

Name : Org1MSP
P o l i c i e s :

Admins :
Type : S ignature
Rule : "OR('Org1MSP . admin ') "

P o l i c i e s :
Readers :

Type : Impl ic i tMeta
Rule : "ANY Readers "

Writers :
Type : Impl ic i tMeta
Rule : "ANY Writers "

Admins :
Type : Impl ic i tMeta
Rule : "MAJORITY Admins "

This snippet shows how a policy (for example, ‘Admins‘) is structured and submit-
ted as part of the channel configuration. It uses either ‘Signature‘ or ‘ImplicitMeta‘
logic. In practice, this YAML is bundled into a configuration transaction using tools like
‘configtxlator‘ or the Fabric SDK.

49

4 – Hyperledger Fabric

4.5 Network Components
A Hyperledger Fabric network involves specialised nodes working together to ensure the
ledger remains correct. In multi-organisation setups, each group typically runs at least
one certificate authority, a few endorsing peers, and may also run ordering components.
These parts need to integrate properly to keep operations consistent and fault-tolerant.

4.5.1 Peers, Orderers, and Channels
Peers are the core of Fabric:

• Endorser peers execute chaincode for transaction proposals, producing read/write
sets and usually needing greater compute resources.

• Committer peers inspect final blocks and update the ledger. All peers can commit,
but only endorsers run chaincode.

• Anchor peers help with peer discovery between different organisations. In large net-
works, they reduce overhead by maintaining partial membership details and letting
other nodes find each other.

Ordering service nodes build transaction blocks. These nodes gather endorsed
transactions from clients and put them in a deterministic order, then broadcast the blocks
to every peer in the channel. Raft is the most common consensus algorithm in Fabric,
tolerating node crashes. Experimental projects have explored Byzantine fault-tolerant
ordering as well.

Channels divide the ledger so that different groups have separate histories. This al-
lows privacy: A private channel might include only two organisations exchanging sensitive
data, while a more open channel might involve all consortium members. Channels define
which peers are included, how MSPs are configured, and what chaincodes are deployed.

4.6 Ledger and Data Model
Hyperledger Fabric’s ledger records all valid transactions in a channel, including the his-
tory of blocks and the latest world-state. Unlike blockchains that re-run smart contracts
for every query, Fabric stores a materialised world state that acts like a key-value store,
speeding up reads.

4.6.1 Blockchain Storage
Within each channel, Fabric peers maintain an unbroken chain of blocks:

• Every block holds a collection of valid transactions, plus block metadata and a header
linking to the previous block’s hash.

• Once appended, a block cannot be changed. Any modification would conflict with
the chain of hashes that follows.

• This ledger is effectively append-only, preserving the chronological order of transac-
tions for audits and oversight.

50

4.7 – Chaincode (Smart Contract) Lifecycle

In real-world use, organisations may store blocks on local drives, copy them to off-
site archives, or even back them up in the cloud. Regardless, each peer can provide
cryptographic proof that its ledger copy matches the canonical channel’s chain.

4.6.2 World State with CouchDB
Along with the block log, Fabric creates a “world state” database by applying each valid
transaction in sequence. The result is a snapshot of all key-value data at the latest
block height. Administrators can pick LevelDB (a simpler key-value store) or CouchDB
(a document store). CouchDB is popular in many enterprise contexts because:

• Chaincode storing data in JSON can be indexed for flexible queries, avoiding full
ledger scans.

• Built-in secondary indexes and Fabric’s range query features reduce the need for
separate search services.

• Developers can implement more complex logic for queries and sorting using nested
JSON structures.

However, if a chaincode generates large JSON documents often, performance may
suffer. Best practices advise designing ledger schemas to balance how granular records
are, which indexes to use, and how heavy the chaincode logic can be. Enterprises also
weigh whether storing large files in the immutable ledger is worth the associated overhead.

4.6.3 Channels as Parallel Ledgers
An important innovation is the ability to maintain multiple channels at once.

• Each channel has its own blockchain and state database, entirely separate from other
channels.

• Organisations can join certain channels and not others, which restricts who can
see the data. This is useful for meeting regional data rules or handling certain
agreements.

• Cross-channel transactions require special handling. Because there is no built-in
atomic cross-channel logic, developers often rely on chaincode bridging or off-chain
orchestrators to move assets between channels.

Thanks to these parallel ledgers, a single Fabric network can handle many scenarios.
For example, a banking consortium could have one channel for inter-bank settlements,
another for reporting to regulators, and another for handling derivatives trading, each
with distinct policies and memberships.

4.7 Chaincode (Smart Contract) Lifecycle
Hyperledger Fabric refers to its smart contracts as chaincode. Chaincode defines how
transactions update ledger states. Its lifecycle is designed for decentralised management
of deployment and version control, preventing any single party from unilaterally updating
code or undermining trust. This is especially vital for multi-organisation setups where
no single entity should impose changes unilaterally.

51

4 – Hyperledger Fabric

Figure 4.4: Managed Blockchain support for Hyperledger Fabric 2.2. Source: [2].

4.7.1 Development, Deployment, and Upgrade Processes
Developers typically write chaincode in languages like Go, Node.js, or Java. They define
how the chaincode takes input parameters, reads or updates the ledger, and returns
results:

• Initialisation Functions: Optional setup logic that runs when chaincode is first
installed or instantiated.

• Transaction Functions: The main methods for business logic, covering actions
like token transfers, record changes, or data checks.

After packaging the chaincode, each installing peer registers it locally, and the con-
sortium collectively approves the chaincode definition. The final name, version, and
endorsement rules must match what all parties expect. Once there are enough endorse-
ments, the chaincode definition is committed to the channel. Any future upgrade follows
a similar process, but with an updated version number or parameters. In regulated in-
dustries, these definitions and the accompanying signatures serve as clear evidence of who
approved the chaincode at each step.

4.7.2 Containerised Execution Environment
By default, Fabric starts the chaincode in a Docker container, giving:

• Isolation from the core peer process, so if the chaincode crashes, it does not bring
down the entire peer.

• Easier dependency management, as each chaincode instance can have the correct
language runtime or libraries.

• Support for concurrent usage, letting the peer run multiple chaincode containers if
needed to balance endorsement requests.

Some research explores running chaincode in Kubernetes pods or serverless deploy-
ments, which might lower costs for apps that only need chaincode services sporadically.

52

4.8 – Transaction Flow in Hyperledger Fabric

But container orchestration has to be managed so it does not disrupt response times or
overload resources.

4.7.3 Endorsement Policies
Every chaincode must have an endorsement policy defining how many and which peers
must endorse a transaction before it can be ordered. Some common examples:

• “One peer from both Org1 and Org2 must endorse.”

• “Any two peers from a set of three organisations must endorse.”

• “Chaincode can only be updated if admins from Org3 and Org4 both approve.”

These policies ensure that the organisations involved must collectively validate any
transaction changes, which prevents one compromised peer from falsifying data.

4.8 Transaction Flow in Hyperledger Fabric
A highlight of Hyperledger Fabric is its “execute-order-validate” transaction flow. Instead
of having every node run each transaction in lockstep, Fabric uses three separate steps:

• Execute: The client sends a transaction proposal to the endorsing peers, which run
the chaincode and generate a read set (keys and versions) plus a write set (proposed
updates). If the code executes successfully, endorsers sign the proposal.

• Order: The client gathers these signed endorsements and sends them to the ordering
service. The ordering layer combines transactions from multiple clients into a block
and distributes it to peers on the channel.

• Validate: Each peer checks the block’s endorsements against the chaincode policy
and verifies the read set is still current (i.e., it has not changed since endorsement).
Transactions are marked valid or invalid, and valid ones are used to update the local
world state. The entire block, including invalid transactions, is appended to the
blockchain.

By doing ordering after execution, Fabric lets endorsers run chaincode in a distributed
or parallel manner without forcing every node to run every transaction. Experiments
show that this structure significantly increases throughput, making Fabric well-suited for
enterprise demands that might include hundreds or thousands of transactions in a short
span.

4.9 Security Considerations and Potential Risks
Even though Hyperledger Fabric’s permissioned approach and emphasis on identity man-
agement provide a strong security foundation, there are still issues that need attention.
Network operators, system admins, and chaincode authors should recognize possible
weaknesses and use best practices to control them. Some security reviews suggest that
minor mistakes in policy settings or chaincode logic could result in data tampering or
unauthorised access.

53

4 – Hyperledger Fabric

Figure 4.5: Transaction flow in Hyperledger Fabric. Source: [26].

4.9.1 Non-deterministic Risks
Fabric endorsers must all arrive at the same read/write sets, which requires chaincode to
be deterministic. Any use of random numbers, timestamps, or external data sources can
cause differences in results and lead to invalid transactions. Recommended steps include:

• Deterministic Code: Make sure the chaincode always produces the same result
for the same input and ledger state. If randomness is necessary, use off-chain oracles
or commit to a fixed value that all peers see.

• External Data Management: Chaincode should not call external APIs directly.
Instead, let a client or an oracle service gather the data and pass it to chaincode so
that every endorser sees the same input.

• Testing and Simulation: Thoroughly test chaincode to make sure any sources of
nondeterminism are removed before going live.

Researchers also caution that concurrency or parallel runs can cause nondeterminism
if the chaincode depends on states that are changing. To avoid this, chaincode developers
must carefully structure data access and updates.

4.9.2 Privacy and Data Security Risks
While Fabric supports channels and private data collections to keep transaction data
confidential, there are still safety concerns:

• Channel Misconfigurations: If a channel is set up incorrectly—either accidentally
or on purpose—unauthorised peers may gain access. Regular MSP checks and multi-
party governance help avoid this.

• Transaction Visibility: Even when a channel is private, some metadata might
still be visible in block headers or transaction details. To protect privacy further,
zero-knowledge proof techniques or off-chain encryption can be used to store only
references or hashes on-chain .

54

4.9 – Security Considerations and Potential Risks

• Private Data Collections: Only peers in that collection can read the data, but if
the collection is large or a member is compromised, it risks exposure. Some consortia
use data retention or ephemeral storage so information is only accessible briefly.

• Cryptographic Key Management: As with all cryptosystems, if private keys
are lost or stolen, attackers can sign illegal transactions. Hardware security modules
(HSMs) or strong key vaults are recommended to keep keys safe.

On top of that, certain regulations require removing personal data on request. Because
blockchains are append-only, meeting “right to be forgotten” rules can be challenging.
Fabric’s privacy methods can store just a hash or part of the data on-chain. In some
cases, encrypting the data and discarding the key later is the only way to effectively
hide it. However, balancing immutability against privacy rules remains a key subject in
blockchain research.

Security Risk Checklist and Mitigation Strategies

Risk Area Recommended Mitigation Strategy
Non-deterministic Chain-
code

Ensure logic is fully deterministic. Avoid time-
based functions, randomness, or external API
calls. Use oracles or commitment schemes when
external input is required.

External Data Dependency Feed external data through clients or oracles in-
stead of fetching inside chaincode. All endorsers
must receive the same data input.

Chaincode Deployment Er-
rors

Use automated testing and simulations to detect
non-deterministic behaviour or edge cases before
deployment.

Channel Misconfiguration Perform multi-party configuration reviews. Val-
idate MSP definitions and apply distributed ap-
proval policies.

Metadata Leakage Minimise sensitive data in transaction headers.
Use ZKPs or encrypt off-chain payloads, storing
only hashes on-chain.

Private Data Exposure Apply least-privilege principles to private data col-
lections. Implement ephemeral storage or expira-
tion policies for sensitive info.

Key Compromise Protect signing keys using HSMs or secure vaults.
Reset credentials regularly and audit usage logs.

Data Erasure Compliance Encrypt personal data off-chain; destroy encryp-
tion keys to simulate erasure. Avoid storing com-
plete personal records on the chain.

Table 4.1: Key security risks in Fabric

4.9.3 Industry Adoption and Real-World Deployments
Multiple large-scale commercial blockchain projects have successfully deployed Hyper-
ledger Fabric or similar frameworks. For instance, IBM Food Trust, using Fabric, offers
farm-to-table product tracking, with retailers like Walmart cutting traceability times

55

4 – Hyperledger Fabric

from days to mere seconds [11, 8]. In logistics, the TradeLens platform (by IBM and
Maersk) uses blockchain to digitize shipping files and track containers, leading to better
collaboration and transparency for global shipping partners [9].

The healthcare sector has tested permissioned blockchains for secure, auditable, and
privacy-oriented data exchange, as described in a MIT Media Lab whitepaper [4]. These
efforts confirm the feasibility and value of Hyperledger Fabric, encouraging further designs
and use cases such as those detailed in the next chapter.

56

Chapter 5

Case Study

5.1 Railcar Sharing
This section describes a blockchain-based railcar sharing system that reduces inefficiencies
in rail transportation for automotive logistics. By looking at the complexities of ’as-is’
processes and demonstrating a new ’to-be’ approach grounded in distributed ledger tech-
nology, the following sections show how multiple stakeholders in the railcar ecosystem,
from car manufacturers to carriers, can achieve cost savings, operational transparency,
and stronger accountability. The solution uses a permissioned blockchain architecture
that offers robust identity management and scalable consensus mechanisms, effectively
solving typical supply chain challenges like partially used wagons, asynchronous schedul-
ing, and clashing incentives. The explanations, architectural design, and pilot implemen-
tation details presented here combine technical rigor with real-world expertise to create
a practical system. A further review of deployment overhead, performance, security, and
regulatory factors highlights the wide range of elements needed for a real-world blockchain
rollout.

Figure 5.1: Railcar sharing: general overview.

5.1.1 Current State (’as-is’ Process) and Business Case
The current ’as-is’ model relies on one carrier to manage vehicle transport over potentially
multiple rail segments. The cost is generally calculated based on the number of freight

57

5 – Case Study

wagons (often called railcars) rather than charging for each vehicle. As a result, this
structure causes inefficiencies and suboptimal usage, weakening the supply chain. The
following subsections outline the main participants and assets, along with their roles in
the transaction workflow, culminating in how partial railcar usage and scheduling delays
drive up operating costs.

Figure 5.2: Railcar sharing: as-is process sequence diagram.

Typical friction points in the current process:

• Data siloing across OEMs, logistics providers, and rail operators slows planning
and blocks transparency.

• Cost-sharing disputes occur when multiple clients split a partly filled wagon.

• Lack of real-time tracking causes scheduling mismatches and idle capacity.

• Manual reconciliation of transport records delays invoicing and dispute resolution.

Stakeholders and Participants

In traditional rail logistics for automotive shipments, there are usually two main stake-
holder groups. The first are car manufacturers (one or more) that produce vehicles to be

58

5.1 – Railcar Sharing

shipped from point A to point B. The second are carriers, who organize the rail transport.
However, in practice, things are often more complex:

• Car manufacturer(s): They usually operate large storage yards for new vehicles
and set schedules to move inventories across regions or to dealerships. While they
may negotiate with one carrier, several carriers might actually manage different parts
of the overall route.

• Primary Carrier Entity: This group manages direct cost negotiations and billing
with the manufacturer. They often subcontract other rail operators without involv-
ing the manufacturer.

• Subcontracted Carriers (Optional): In multi-leg shipments, these providers run
parts of the transport chain but stay financially hidden from the manufacturer.

• Regulatory Bodies (Potential Stakeholders): They enforce safety rules and
sometimes demand wagon usage logs for accident investigations or environmental
checks.

In many industrial settings, having only one party handle negotiations leads to limited
competition and low cost visibility, which often disadvantages the manufacturer. Over
time, partial loads, empty railcar space, and waiting days for wagon consolidation drive
up costs across the network. These factors cause unpredictable shipment delays, extra op-
erational overhead, and tension between the main manufacturer and the carriers. Studies
show that sharing resources among multiple manufacturers can reduce these problems if
managed correctly.

Table 5.1: Railcar Sharing: Stakeholder Roles and Interests Matrix

Stakeholder Interest / Influence
Car Manufacturer(s) They want to lower transport costs and ensure deliver-

ies are on schedule. Limited insight into subcontracted
routes can raise total costs and slow reactions to prob-
lems. Working together with others can reduce idle
wagon time and improve route efficiency.

Primary Carrier Entity Aims to maximize profit by consolidating loads and sub-
contracting. They control transport operations and how
costs are set, and might oppose transparency that re-
stricts their pricing freedom.

Subcontracted Carriers They want stable shipment volumes and timely opera-
tions. They usually have weaker bargaining power and
limited information about high-level deals. Standard-
ised records or digital trust systems can help them.

Regulatory Bodies They oversee safety rules, emissions tracking, and fair
competition. They need reliable, unchangeable records
of wagon usage and multi-party deals for compliance
checks or incident investigations.

59

5 – Case Study

Asset and Transaction Analysis

In rail freight, assets mainly fall into two categories. One is the vehicles or cargo to be
moved, each identified by a unique ID or VIN if we’re talking about cars. The other is
the railcars, which are the wagons that carry the vehicles. In the ’as-is’ system, older
databases store several fields, such as:

• Vehicle details (VIN, model, storage location, shipping timeline).

• Railcar capacity, type, availability, and occupant status.

• Contract terms explaining how costs are calculated (daily wagon rent, route-based
fees, or a combination).

Right now, transactions usually happen in central systems. When the manufacturer
asks for a shipment, the carrier schedules wagons internally, tries to fill them efficiently,
and later sends an invoice based on how many wagons were used. If a wagon isn’t
completely full, the manufacturer still pays for the entire thing. This arrangement doesn’t
encourage the carrier to quickly move a partially filled wagon, which leads to:

• Stale Data Risks: The manufacturer’s system might list a shipping date that
doesn’t match reality if the wagon remains partly unfilled.

• Transaction Delays: Since key confirmations and cost updates stay on the carrier’s
side, updates to the manufacturer can be slow or missing.

• Double-Counting or Overbooking Potential: Without a shared ledger, the
carrier might accidentally assign the same railcars to several shipments, especially if
multiple manufacturers are using them.

Furthermore, data discrepancies can lead to disputes over final billing amounts, as each
side might interpret wagon usage differently. Intangible friction from these repetitive ne-
gotiations and validations can hamper trust, requiring additional overhead in reconciling
records .

Business Impact

Basing costs on whole railcars instead of actual vehicle counts often increases what the
manufacturer pays. A half-full wagon raises the per-vehicle cost. Beyond the direct
expense, late shipments bring hidden costs. Car makers usually plan their next logistics
steps around expected arrival times. Delays throw off marketing, dealership schedules,
and delivery to end customers. Meanwhile, carriers must keep half-filled wagons in storage
longer, creating more planning overhead.

From a business standpoint, these issues appear in the following ways:

• Excessive Freight Costs: Unused capacity pushes up per-vehicle costs.

• Lost Time Opportunity: Waiting to fill railcars can lead to long delays, cutting
into profits for both the manufacturer and the carrier, which is paid later too.

• Constrained Scalability: Relying on open railcar space and a single negotiation
path limits agility and hinders just-in-time or lean approaches in today’s manufac-
turing supply chains.

60

5.1 – Railcar Sharing

Figure 5.3: As-is process: typical transaction example.

Overall, the “As-is” setup makes a strong case for exploring systems that allow shared
railcar usage, cost splitting, and near-real-time data sharing. Blockchain suits these goals
well, given its tamper-proof ledger, role-based security, and ability to automate processes
with smart contracts.

5.1.2 Proposed Blockchain-Based Solution (’to-be’ Process)

Moving from the ’as-is’ model to a more collaborative, open, and efficient ecosystem means
rethinking how railcar space is allocated and how data are shared among stakeholders who
may compete or collaborate. A permissioned blockchain provides the trust foundation
and multi-party data updates needed for these changes.
By building a consortium of car manufacturers and carriers, the solution unifies railcar
booking, tracking, and settlement on a single verifiable platform. This approach simplifies
logistic processes and improves cargo usage, cost sharing, and error reduction.

61

5 – Case Study

Figure 5.4: Railcar sharing: as-is process sequence diagram.

Solution Canvas

Figure 5.5: Railcar sharing: solution canvas.

62

5.1 – Railcar Sharing

Network Conceptual Design

In the conceptual blueprint, a blockchain network is the backbone of a shared railcar
scheduling and settlement system. Key design components include

• Multiple Car Manufacturers: Each has a node or membership identity so they
can submit shipping requests, accept partial capacity offers, and follow real-time
railcar updates on routes.

• Carrier(s): They publish train routes, wagon capacities, partial fill levels, and
scheduling constraints. They also get compensated according to usage or distance
instead of a single wagon fee.

• Smart Contracts (Chaincode): These automate cost-sharing among multiple
manufacturers in one railcar, block overbooking, and keep final settlement data.

• Policy-based Access Control: Endorsement rules say who must approve adding
or updating capacity data or finalizing joint trips, ensuring key stakeholders sign off
and trust each other.

Figure 5.6: Railcar sharing: conceptual blockchain design.

In this model, a manufacturer who finds a partly empty wagon requests adding more
vehicles at a proportional cost, subject to the carrier’s approval. If one manufacturer
alone cannot fill the wagon, the system offers the remaining room to others. Over time,
this raises occupancy and lowers cost per vehicle. For the carrier, a shared ledger shows in
real time how many vehicles from different manufacturers are on a wagon, which prevents
double-booking. In addition, any contract logic or pricing function is visible to relevant
parties, supporting faster dispute resolution. Cryptographically verified transactions dis-
courage tampering and build trust throughout the network.

63

5 – Case Study

Figure 5.7: Railcar sharing: conceptual blockchain transaction.

Integration with Legacy Systems

Putting a blockchain solution into practice means connecting it with existing systems. In
railcar sharing, these older systems manage:

• Vehicle Manifests: Often stored in relational databases or specialised ERP tools,
these list each vehicle’s ID, owner, and shipping timetable.

• Scheduling Tools: Carriers rely on internal route planners for feasible rail paths,
wagon assignments, maintenance, and staff.

• Financial Systems: Invoicing or accounting modules control cost allocation and
produce final bills for the manufacturer.

Since it’s unlikely these systems will be replaced, the blockchain was connected through
API layers:

1. Data Synchronisation Layer: Any new shipment or partial wagon booking on
the chain updates the carrier’s scheduling tool. Updates from those planning tools
also post back to the chain so manufacturers have immediate insights.

2. Off-Chain Storage Links: For large or private data, references or hashes are
kept on the ledger, letting participants confirm data integrity without storing huge
volumes on-chain.

64

5.1 – Railcar Sharing

3. Event Triggers and Notification Services: The blockchain sends events to
legacy systems, prompting invoice generation or vehicle tracking changes.

In the pilot, the new system ran in parallel with the existing “As-is” approach. This let
participants compare real outcomes, find issues, and plan a gradual shift to the “To-be”
method.

5.1.3 System Design and Implementation
After exploring the reasons behind using blockchain in rail logistics, we shifted to the
technical design and tested a pilot version. This section covers our reference architecture,
showing how Hyperledger Fabric manages user identities, how chaincode encodes cost-
sharing logic, and how external frameworks (a Java-based middleware server and an
Angular front end) provide a consistent user experience linked to the ledger data. We
highlight the synergy among these layers to show how an abstract concept can be turned
into an operational system.

Overall System Architecture

The railcar sharing solution uses a layered design:

• Hyperledger Fabric Network: A group of peers spread over several organisations
(each manufacturer is one, plus at least one for the carriers), with a shared ordering
service for transaction sequencing. Channels define which data each group sees, and
more private channels can protect sensitive data like certain routes or prices.

• Java-based Middleware (REST Layer): This server works with the Fabric SDK
to issue or endorse transactions that modify data through chaincode. It also secures
operations (token-based authentication, TLS) and translates high-level commands
(e.g., “reserve five wagon slots”) into detailed Fabric requests.

• Angular Front-end Client: This interface lets users browse upcoming shipments,
partial wagon capacity, cost splits, and finalize reservations. Carriers can publish
route schedules and wagon availability, or accept multi-manufacturer bookings.

In our basic demo setup, the network had two car manufacturers, one carrier, and a
single organisation managing the ordering service. For real production, we added more
ordering nodes (like a Raft cluster) and improved membership services for certificate
updates at scale. Diagrammatically, the architecture places a Raft ordering cluster at the
center, with each organisation’s peers connected as spokes, and the Java REST service
managing user interactions.

IBM Blockchain Platform for PoC

We used Hyperledger Fabric to build the blockchain network and deployed it on the IBM
Blockchain Platform (a BaaS model). This approach simplified infrastructure tasks and
provided an enterprise-style scale.

The network we set up included three main organisations:

• org1.example.com and org2.example.com, representing two car manufacturers;
• carrier.example.com, a shared entity representing logistics carriers.

65

5 – Case Study

Figure 5.8: Railcar sharing: high level software architecture.

In each organisation, we set up the needed Fabric components:

• Two peer nodes (peer0 and peer1) for endorsement and communication;

• A certificate authority (CA) for identities;

• One or more anchor peers to enable cross-organisation data sharing.

There was also an ordering service node (orderer.example.com) shared by all organ-
isations for transaction ordering and block creation.

To encourage carriers, who often resist new infrastructure, we introduced carrier.example.com
as a shared interface. It was managed and paid for by the manufacturers so carriers could
join without hosting their own infrastructure.

66

5.1 – Railcar Sharing

Table 5.2: Network node roles per organisation in the shared railcar solution

Organisation Node Note

org1.example.com
peer0.org1.example.com Anchor peer
peer1.org1.example.com Endorser
ca.org1.example.com Certification authority

org2.example.com
peer0.org2.example.com Anchor peer
peer1.org2.example.com Endorser
ca.org2.example.com Certification authority

carrier.example.com
peer0.carrier.example.com Anchor peer
peer1.carrier.example.com Endorser
ca.carrier.example.com Certification authority

All orderer.example.com Orderer

For our real-world, production-grade network implementation, we chose the IBM
Blockchain Platform available on IBM Cloud. This decision allowed us to avoid managing
on-site servers and provided us with a set of development and management tools.

The IBM Blockchain Platform uses a pricing model based on Virtual Processor Core
(VPC) hours. During our implementation, the rate was $0.29 USD per VPC-hour. We
could deploy resources gradually, keep track of use in real time, and fine-tune performance
settings dynamically.

Using a BaaS solution significantly lowered our setup and maintenance time. It also
gave us a central dashboard to monitor, scale, and manage everything.

While implementing, we tested two realistic usage cases to estimate the load and plan
resources:

• Best Case Scenario: Aggregated Shipment Requests
In the optimal use case, car manufacturers sent all information related to a ship-
ment (e.g., vehicle details, delivery destination, carrier data) in a single blockchain
transaction. Based on historical data:

– Each manufacturer managed approximately 10,000 shipments per year,
– With 2 manufacturers, the network processed 20,000 write transactions per year,
– Including additional logistics metadata, total write operations reached 30,000

transactions/year,
– This corresponded to an average of ∼ 83 transactions per day.

• Worst Case Scenario: Per-Vehicle Shipment Requests
In a more granular scenario, manufacturers submitted one request per vehicle within
a shipment:

– Each manufacturer handled approximately 171,000 car movements/year,
– Doubling for two manufacturers yielded 342,000 transactions/year,
– With shipment-level metadata, the total reached 352,000 write transaction-

s/year,
– Averaging ∼ 965 transactions per day.

67

5 – Case Study

In both scenarios, we tested read transactions (to retrieve statuses) and extra write
operations (like editing or cancelling shipments). Our load tests showed that IBM
Blockchain Platform’s auto-scaling could handle spikes while making costs more efficient
during slow periods.

Implementation of the Smart Contract

At the core of the railcar-sharing system is a dedicated chaincode that manages capacity
allocation, route participation, and cost distribution among manufacturers. Implemented
in Java, it ensures consistent state transitions and enforces collaborative logistics logic.
Key components include:

• Data Structures:

– Railcar: Holds metadata such as total capacity, departure schedule, route seg-
ments, and assigned manufacturers.

– Shipment: Represents a unique request for vehicle space initiated by a manu-
facturer.

– Reservation: Tracks individual manufacturers’ bookings against a shipment,
including reserved capacity and share of cost.

– OccupancyState: Maintains real-time availability per railcar to support con-
current booking attempts.

• Transaction Functions:

– CreateShipment: Registers a new shipment request with associated vehicle ca-
pacity requirements and assigns a unique identifier.

– JoinShipment: Allows additional manufacturers to join an existing shipment if
capacity is available.

– ReserveCapacity: Updates reservation data, adjusts cost allocation, and en-
forces capacity constraints to prevent overbooking.

– FinalizeSettlement: Calculates each participant’s share of the cost post-
departure, factoring in actual load ratios and route-related charges.

• Endorsement Policies: Critical functions such as settlement and shipment cre-
ation are protected by endorsement policies requiring signatures from multiple or-
ganisations. This safeguards against unilateral modifications to booking or cost
data.

• State Management: Each railcar is stored as a JSON object within the ledger.
Hyperledger Fabric’s versioning ensures that only the first valid booking transaction
is accepted when multiple parties attempt to reserve the same space concurrently,
maintaining data integrity during high contention periods.

Supporting Infrastructure: Java Server and Angular Client

Although not absolutely necessary for testing, we built a Java server and an Angular
client to improve usability and support enterprise integration.
The Java server:

68

5.1 – Railcar Sharing

• Encapsulates Fabric SDK Logic: Minimizes direct Fabric calls from the front
end, reducing the complexity of membership or certificate handling.

• Provides REST Endpoints: Letting users “reserve capacity,” “publish availabil-
ity,” or “generate an invoice.” These map to chaincode actions or queries.

• Manages Session and Identity: Links Fabric-issued identities with a broader
corporate Single-Sign-On (SSO) if needed.

On the front end, an Angular app provides:

• Dashboard Pages: Show departure times, railcar occupancy, and cost metrics.

• Interactive Booking Tools: Let users specify how many vehicles to ship, the
dates, and the route segment.

• Notifications and Alerts: Use WebSockets to display status changes like new
route openings or finalised bookings.

These front-end features make the system easier for real operators to use. Without
them, the blockchain solution could remain too technical or hard to fit into everyday
workflows.

5.1.4 Evaluation and Analysis
We reviewed many areas: costs for setup and ongoing use, performance, security, and
legal compliance. This big-picture view was important for moving beyond a pilot into a
real system that connects multiple manufacturers and carriers on a single platform.

Pilot Evaluation Metrics:

• Average Invoice Settlement Time: Reduced from 12 days to 3.5 days.

• Dispute Resolution Rate: Improved by 68% compared to the pre-pilot baseline.

• User Satisfaction Score: 84% rated the platform as effective or highly effective.

• Onboarding Time per Participant: Averaged 2.1 days with guided deployment
templates.

Deployment and Maintenance Costs

Rolling out a blockchain solution in automotive rail involved up-front spending on design,
pilot testing, and later expansion. Key cost factors were:

• Platform Setup: Installing Fabric networks that include orderers, peers, and multi-
ple organisations. Some chose on-premises servers, others used cloud-based systems.

• Chaincode Development and Testing: Crafting or adapting the chaincode for
cost-related logic, partial capacity sharing, endorsement requirements, and optional
private data collections.

• Middleware Development: Implementing the Java REST server and integration
tools for carrier scheduling or ERP systems.

69

5 – Case Study

• Front-End Development: Building Angular (or other) clients for dashboards and
booking capabilities.

• Training and Onboarding: Employees needed to learn peer operations, certificate
management, chaincode logs, and ledger updates.

Once live, operational costs included:

• Infrastructure Maintenance: Payment for cloud service (or on-site servers), plus
node monitoring for reliability.

• License Fees or Subscriptions: If using enterprise support or managed services.

• Upgrades and Patches: Routine chaincode revisions, Fabric updates, or new
consensus strategies.

One advantage seen in the PoC was automatic resource scaling from the IBM Blockchain
Platform. By tracking transaction throughput and VPC stats, we tuned the setup to scale
resources dynamically:

• Handling spikes during peak periods (e.g., quarter-end shipping surges),

• Saving money during low-activity times,

• Maintaining high reliability and fault tolerance without overprovisioning.

This proved that the design could be both practical and cost-effective for real-world
use. A shared-cost model, where manufacturers fund a joint infrastructure, also encour-
aged more carriers to join the network.

Scalability and Performance Testing

Scalability was crucial because car manufacturers could ship hundreds of thousands of
vehicles a year. If partial wagon use prompts multiple updates, the ledger must han-
dle them quickly. Fabric can process hundreds to thousands of transactions per second
under good conditions, but real performance depends on endorsements and chaincode
complexity. Our approach to scaling included:

• Parallel Channels: Splitting data by route or organisation to reduce contention.

• Chaincode Optimisations: Keeping read/write sets as small as possible and
avoiding non-deterministic code.

• Gossip Tuning: Adjusting block size, batch durations, and membership settings
so block distribution isn’t a bottleneck.

We ran load tests simulating peak times, like quarter-end production surges. If the
network performance was too low, we modified certain parts or looked into advanced
scaling (e.g., sidechains or sharding), though those add challenges when channels require
privacy.

70

5.1 – Railcar Sharing

Performance Results on IBM Blockchain Platform

We deployed a 2–Org, 2-peer per Org Fabric network with Raft ordering on IBM Blockchain
Platform and measured performance under a simple RailcarAsset chaincode using both
built-in monitoring and Hyperledger Caliper.

• Testbed:

– Peers: 4 (0.7 vCPU, 2 GB RAM each)
– Orderers: 3 (Raft)
– Endorsement: Org1 ∧ Org2
– Chaincode: Java

• Workload:

– Write transactions (asset updates)
– Peak offered load: 200 TPS

• Monitoring:

– IBM Console Metrics
– IBM Cloud Monitoring / Prometheus & Grafana

• Benchmarking: Hyperledger Caliper

Table 5.3: Key Performance Metrics (Railcar Sharing)

Metric Value Unit Notes
Throughput (sustained) 50–150 TPS under 200 TPS load
End-to-end latency (95th pct.) 100–300 ms
Peer CPU utilization 50–70 % of 0.7 vCPU at peak load
Peer memory consumption 1–2 GB chaincode in Go
Transaction success rate 99–100 % no overload, endorsement met

5.1.5 Security and Privacy Assessment
Security is critical in a system that brings together multiple companies, some of which
are competitors. Potential risks include compromised credentials, errors in private data
setup, or vulnerabilities in chaincode logic. Hyperledger Fabric addresses these with:

• Permissioned Access: MSP-based certificates ensure only recognised organisa-
tions can run peers or send transactions.

• Endorsement Policies: Certain ledger updates require endorsements from multi-
ple separate organisations, blocking single-actor tampering.

• Immutable Chain: Once data is in a block, it cannot be quietly removed or altered,
allowing audits to detect anomalies.

71

5 – Case Study

50 100 150 20040

60

80

100

120

140

160

Offered Load (TPS)

M
ea

su
re

d
T

hr
ou

gh
pu

t
(T

PS
)

Railcar Sharing: Throughput vs Load

(a) Throughput under increasing load

50 100 150 200

150

200

250

300

Offered Load (TPS)

95
th

-p
ct

La
te

nc
y

(m
s)

Railcar Sharing: Latency vs Load

(b) Latency under increasing load

Figure 5.9: Railcar Sharing: Load-test results on IBM BP

Still, companies also focused on:

• Physical Security of Nodes: If nodes run in various data centers, each location
must be protected from hardware intrusion.

• Chaincode Vulnerabilities: Logic bugs might miscalculate costs or produce con-
flicting data.

• Privacy Strategies: For sensitive data, a mix of private data collections, channel-
based segmentation, and encryption was used.

So security testing included penetration tests, code reviews of chaincode, revoking
certificates to see if that worked, and scenario-based checks (like one dishonest node
trying to falsify records). Good governance meant regular certificate rotations, with only
authorised staff holding admin rights.

5.1.6 Regulatory and Ethical Considerations
Rail logistics is subject to various laws, and blockchain doesn’t remove those obligations.
It can give better traceability but also adds some new complexities:

• Data Protection: Some regions require protection of personal data (e.g., driver
info). Because such data might appear on the ledger, compliance with GDPR or
local privacy rules is achieved by data minimisation or encryption.

• Antitrust Concerns: A railcar-sharing group among manufacturers must not be-
come price-fixing or anti-competitive. The open ledger approach encourages fair
cooperation without sharing overly strategic data.

• Cross-Border Shipments: When routes cross regions, customs might require par-
tial data disclosure, so we use specialised channels or proofs that verify cargo au-
thenticity without exposing unnecessary data.

72

5.1 – Railcar Sharing

Collaborating can prompt concerns regarding fairness for smaller manufacturers. Our
framework ensures these manufacturers are not marginalized due to chaincode mechan-
ics. An on-chain dispute resolution mechanism aids in resolving issues related to costs
or timings, preventing prolonged legal disputes. Additionally, our goal is to maintain
an inclusive consortium, allowing smaller or newer manufacturers to join if they fulfill
membership requirements, thereby avoiding a monopoly of only the largest players.

73

5 – Case Study

5.2 Shared Procurement

In this section, we provide a comprehensive examination of a shared procurement use
case based on Hyperledger Fabric smart contracts. The scenario focusses on two dif-
ferent organisations that retain ongoing operational ties through common investments
and shared expenses. Such situations arise, for instance, when a company spins off a
subsidiary (or merges with a partner), yet continues to coordinate certain procurement
activities. By setting up a unified blockchain infrastructure, these entities have reduced
administrative overhead, mitigated inter-company disputes regarding expense allocations,
and automated procurement workflows. The increasingly distributed nature of corporate
structures across industries, including manufacturing, healthcare, and technology, under-
scores both the relevance and the timeliness of this problem.

In order to clarify this use case, we begin by analysing the current (’as-is’) process
from the perspectives of both organisations and then highlight the key stakeholders in-
volved. We then examine the business need, that is, the rationale for transitioning to
a blockchain-based model. Following this, we show how a future state (’to-be’) design
based on Hyperledger Fabric has been deployed to eliminate redundancy and enhance
trust within the procurement life cycle. Subsequently, details on system design and im-
plementation are provided, focussing on chaincode logic, a Java-based back-end server
for orchestrating processes, and an Angular client for end-user interaction. Finally, we
evaluate costs, performance, security, scalability, and regulatory matters, concluding with
a critical reflection on the practical suitability of the approach and potential extensions.

The motivation behind the problem was the absence of a centralised system to com-
plete and reconcile procurement data. Since the two organisations lacked a unified ledger,
they experienced duplication efforts in invoice processing, misunderstandings of partial
payment arrangements, and a labour-intensive reconciliation stage at every financial clos-
ing. By entrusting these functionalities to a blockchain-based solution, the potential for
after-the-fact tampering or misalignment of data was greatly reduced. The system pro-
vided an immutable ledger, combined with peer-based validation and chaincode-based
logic, strengthening the procurement life cycle and offering tangible cost and accuracy
benefits. In the pages that follow, we dissect all relevant components of this integrated
solution, drawing on existing academic discourse on blockchain systems in supply chain,
procurement, and coalition-based enterprise resource planning (ERP).

5.2.1 Current State (’as-is’ Process) and Business Case

The initial step in evaluating the feasibility of implementing a blockchain-based procure-
ment platform necessitates an in-depth understanding of the extant issues and inefficien-
cies inherent in current processes. Historically, each of the two companies, designated
here as Company A and Company B, have utilised their own distinct internal procure-
ment regulations, systems, and invoice management methodologies. Notwithstanding a
separation in some form, such as a spin-off, asset sale, or partial divestiture, both enti-
ties continue to collaborate frequently in joint purchasing endeavors for shared supplies,
organizational events, and personnel training sessions.

74

5.2 – Shared Procurement

Figure 5.10: Shared Procurement: as-is process sequence diagram.

Typical friction points in the current process:

• Manual invoice matching across systems led to delays and human error.

• Data siloing between companies resulted in inconsistent or outdated records.

• Cost-sharing disputes arose when there was ambiguity in the allocation of shared
expenses.

• Lack of a shared audit trail complicated reconciliation and eroded mutual trust.

Because companies did not share a single ERP or procurement system, reconciling the
question of who spent what, how costs should be allocated, and whether the agreed
formula for cost sharing was followed became increasingly difficult.

When an expense was incurred by one company on behalf of the other, perhaps pur-
chasing a bulk order of office supplies or paying for a shared marketing initiative, the
purchaser had to invoice the other party after the fact. Key data points such as invoice
number, approval date, or cost centre reference were often stored in each company’s siloed
database or ERP. Any discrepancy between these records caused confusion as to who was
responsible for a given expense. Such disputes were a recurring obstacle each month

75

5 – Case Study

or quarter, requiring additional managerial time to resolve, diminishing operational har-
mony, and straining the partnership.

The prevailing conditions underscored the necessity for an integrated digital system.
In the absence of a unified, tamper-resistant repository of shared procurement events,
stakeholders were compelled to make managerial and financial decisions predicated on
incomplete or somewhat outdated information. The ledger presently facilitates real-
time updates with each occurrence of order creation, approval, modification, or payment.
Within this framework, disputes concerning cost allocation or partially fulfilled purchase
requests have been significantly curtailed, as stakeholders are presented with an identical
set of records. By adopting a blockchain-based solution for these functions, the likelihood
of post hoc tampering or data misalignment is substantially diminished.

Stakeholders and Participants

The implementation of a blockchain-based procurement platform affects multiple stake-
holder groups both within and outside the two involved companies. Each participant
interacts with the system differently, depending on their responsibilities and level of ac-
cess. The primary categories of stakeholders include:

• Procurement Officers: These stakeholders initiate purchase requests, manage
approval chains, and oversee order reconciliation across entities. They are among
the most frequent users of the platform.

• Department Managers: Responsible for approving procurement requests within
their respective domains, these individuals ensure that spending aligns with internal
budgets and strategic goals.

• Finance Departments: These teams reconcile cost allocations, monitor compli-
ance with intercompany agreements, and manage invoicing between the two organ-
isations. They depend on synchronised, tamper-proof records to verify that the
agreed cost-sharing formulas have been applied.

• Suppliers and Third-party Vendors: Although external to the companies, these
stakeholders benefit from improved communication and access to shared records.
With proper permissions (e.g., read-only interfaces), they can directly check order
statuses, shipment confirmations, or delivery logs, reducing reliance on back-and-
forth emails or phone calls.

• Senior Management and Executive Sponsors: These stakeholders use dash-
boards and aggregate views for strategic oversight. They may revise cost-sharing
rules, define approval thresholds, or reconfigure governance logic when corporate
structures change (e.g., additional spin-offs or mergers).

Each stakeholder category brings distinct interests and levels of influence to the platform.
The matrix below summarises their roles and what they gain or risk from adopting the
blockchain solution.

76

5.2 – Shared Procurement

Table 5.4: Shared Procurement: Stakeholder Roles and Interests Matrix

Stakeholder Interest / Influence
Procurement Officers Initiate and approve purchase orders. Interested in

faster approval cycles, accurate shared records, and less
reliance on emails or manual tracking. High influence
on daily transaction flow.

Finance Departments Ensure correct cost-splitting, reconciliation, and compli-
ance with intercompany agreements. Interested in data
consistency and auditability. Blockchain helped to re-
duce disputes and improve reporting accuracy.

Suppliers / Third-party
Vendors

External participants who benefit from better trans-
parency in order status and fewer communication bottle-
necks. Gaining read-only access or interface-based vis-
ibility into their transactions. Low influence, but high
operational impact.

Senior Management /
Executives

Use aggregate dashboards for strategic decision mak-
ing and budget forecasting. Influence policy-level rules
such as cost-sharing formulas or approval thresholds.
Blockchain provides trusted metrics for governance and
restructuring.

Asset and Transaction Analysis

Multiple definitions of “assets” and “transactions” exist in the field of blockchain-based
procurement, but we focus on four main aspects.

1. purchase requests have been treated as easy-to-track digital records, representing
an internal department’s need to acquire certain goods or services. Each request
includes details such as item descriptions, quantities, recipient departments, and
proposed cost allocations between the two companies. These requests are eventually
subject to approval workflows involving designated managers or administrators.

2. purchase orders (POs) function as binding commitments to place an order with
a supplier. In the previous “as-is” process, a PO was created in the internal system
of one party and had to be communicated to the other party if cost sharing was
expected. A mismatch between PO references or incomplete transfer of PO data
often resulted in incorrectly or unsettled transactions. By placing these POs on a
shared ledger, each participant verifies the details of the order, including contractual
obligations and the portion of costs attributed to each party.

3. budget allocations and cost centres are critical assets that represent how each
organisation accounts for a transaction from a financial perspective. Managers en-
sure that any shared expense is charged to the correct cost centres in each company’s
structure. By storing cost-centre references on the blockchain, the system helps unify
naming conventions or code sets, ensuring that Company A cost centre 100-X is con-
sistently associated with the corresponding code in Company B’s system, say 200-Y.

4. invoice confirmations or payment confirmations represent the final transac-
tions in the procurement life cycle. The two organisations must reconcile these

77

5 – Case Study

confirmations so that payment is delivered to vendors and the correct journal en-
tries are created in each finance system. Previously, these confirmations required
repeated manual checks, sometimes involving an exchange of physical documenta-
tion. Ensuring that the final status of each invoice is recorded on a distributed
ledger automates much of the accounts payable process, reducing lead times and
error margins.

Business Impact

The earlier situation posed multiple business obstacles, from direct cost overhead to less
tangible impacts such as strained relationships and operational inefficiencies. From a
cost perspective, time spent by accountants on reconciling data, resolving disputes, or
chasing missing invoices was substantial. These tasks diverted resources from core fi-
nance functions, generating higher operational overhead. Meanwhile, departments risked
overspending without accurate real-time data on shared budgets.

The new blockchain-based approach has alleviated many of these issues. Aggregated
spending data are now available to both companies in near-real-time, improving forecast-
ing and budget controls. Disputes regarding partial charges are rare, because both parties
draw on the same ledger records. Furthermore, suppliers appreciate streamlined interac-
tions, as purchase orders, acknowledgment of deliveries, and final invoices are consistently
logged in a shared, tamper-resistant format.

In highly regulated industries, the newfound ability to produce a time-stamped, tamper-
resistant record of all purchase events supports compliance and can preempt costly audits
or penalties. By contrast, the former system relied on a patchwork of spreadsheets, PDFs,
or ad-hoc ERP extracts that were difficult to align. Taken together, these improvements
reduce friction in joint procurement operations, reinforcing trust across company bound-
aries.

5.2.2 Proposed Blockchain-Based Solution (’to-be’ Process)
The ’to-be’ process leverages Hyperledger Fabric to manage procurement transactions
between the two cooperating companies. The solution highlights key blockchain bene-
fits: distributed consensus, immutability, and programmable chaincode logic. By imple-
menting a smart contract that automates cross-company approval flows, real-time cost
splitting, and final settlement confirmations, the new system replaces or greatly reduces
manual tasks prone to errors with a trustworthy and decentralised mechanism.

The solution directly resolves the deficiencies of the ’as-is’ approach. Rather than
relying on duplicated data entry and after-the-fact invoices, each transaction (whether it is
a purchase request, partial approval, or a final invoice payment) becomes a unique record
in the shared ledger. This record is validated by the peers of both organisations before
being appended to the blockchain. If approval thresholds are not met or if cost-splitting
formulas violate pre-set rules, the chaincode rejects the transaction. This enforcement
ensures that no participant can unilaterally update procurement data, thereby minimising
the potential for internal procedural disputes.

A permissioned blockchain network, such as Hyperledger Fabric, suits the enterprise
context, thanks to its flexible data privacy controls. Companies A and B defined a private
channel for sensitive procurement details, ensuring that only authorised peers accessed
the ledger data. If a third organisation or a specific set of external stakeholders joined

78

5.2 – Shared Procurement

the consortium later, the channel architecture was reconfigured without compromising
previous transactions or their integrity.

By encoding all relevant business rules in chaincode (e.g., cost allocation schedules,
approval hierarchies, invoice finalisation logic), the solution enforces consistent proto-
cols across both organisations. Data transfers to legacy ERPs are facilitated through
standardised APIs, allowing each company to maintain internal processes with minimal
disruptions. With every event stored on-chain, the system captures a transparent, real-
time audit trail visible to authorised participants.

Figure 5.11: Shared Procurement: to-be process sequence diagram.

79

5 – Case Study

Solution Canvas

Figure 5.12: Shared Procurement: solution canvas.

Network Conceptual Design

A high-level conceptual design includes multiple layers:

• Infrastructure Layer: Hyperledger Fabric nodes (peers) operated by both Com-
pany A and Company B. Each company administers its own Certificate Authority
(CA) to issue identities to users and services.

• Network and Governance: A blockchain consortium in which Companies A and
B share membership. Consortium rules define endorsement policies and data privacy
requirements.

• Smart Contract Layer: Chaincode modules orchestrate the creation, approval,
and settlement of purchase requests and orders. These modules codify cost-splitting
formulas (e.g., 50/50 or proportional splits).

• Integration Layer: APIs connect the chaincode layer to each company’s internal
systems. Approved requests and invoice data are pushed to local ERPs or finance
systems.

• User Interaction Layer: A front-end application guiding authorised personnel
through request creation, approvals, dispute handling, and settlement steps, com-
plete with dashboards summarising cross-company expenses.

In the initial MVP, a simplified approval workflow was created, in which one manager
from each company had to approve purchase requests before they became purchase orders,

80

5.2 – Shared Procurement

and a basic expense-splitting policy was enforced. Over time, the chaincode was extended
to handle flexible policies, including tiered signatories and conditional approvals.

Integration with Legacy Systems

Implementing the solution required interoperability with existing ERP and procurement
platforms. Rather than displacing legacy systems, the blockchain network operates as a
synchronisation layer that ensures cross-company events remain consistent.

During implementation, application adapters or microservices were developed using
the Hyperledger Fabric SDK. These adapters translate RESTful API calls from an ERP
system into blockchain transactions. For example, when a procurement officer enters a
new purchase request in Company A’s SAP instance, the adapter forwards the request
to the chaincode. According to the endorsement policy, a validating peer from Company
B endorses the transaction. Once validated and committed, the blockchain notifies the
SAP instance, ensuring local records match the ledger state. Similar flows exist for invoice
issuance, cost-splitting modifications, or final payment confirmations.

This interoperability facilitated a phased rollout without requiring abrupt changes to
established ERP solutions. Finance managers can still view or reconcile data in their
familiar local system, confident that intercompany records align in real time on the un-
derlying distributed ledger.

5.2.3 System Design and Implementation
The design and implementation work for the shared procurement use case encompassed
deploying a Hyperledger Fabric network, configuring channels for relevant data exchange,
developing chaincode (smart contracts) to handle procurement logic, and constructing
user-facing components. Below, we outline the fundamental architectural considerations,
the chaincode design, and the supporting infrastructure that together create a production-
ready environment.

A core principle of the deployment was modularity: chaincode logic, back-end server,
and front-end code were cleanly separated. This approach minimised ripple effects across
components whenever a feature was added or changed. It also aligns with best practices
for software reuse, enabling incremental enhancements to the cost-splitting logic or role-
based permissions without forcing a complete rebuild of the user interface.

Overall System Architecture

The network topology features:

• Hyperledger Fabric Peers: Company A and Company B each host at least one
peer node, which validates transactions and maintains the ledger state.

• Certificate Authorities: Each organisation manages digital identities for its em-
ployees, administrators, and services.

• Ordering Service: A fault-tolerant ordering service (e.g., Raft) that batches trans-
actions into blocks and disseminates them to peers.

• Java Server: Responsible for constructing transactions, gathering endorsements,
and interacting with corporate identity solutions.

81

5 – Case Study

Figure 5.13: Shared procurement: high level software architecture.

• Angular Front-end: A web application that acts as the user-facing portal, facili-
tating actions such as “create purchase request,” “approve cross-company expense,”
and “view invoice status.”

Once a user initiates an action via the Angular front-end, the Java server packages the
request as a Fabric transaction proposal, sends it to endorsing peers, and finally submits
it to the ordering service. If the transaction meets endorsement policy requirements, it
is appended to a new block and broadcast to all peers. The front-end then updates the
user interface accordingly.

IBM Blockchain Platform for PoC

We used IBM Hyperledger Fabric to build the blockchain network and deployed it on a
managed Blockchain-as-a-Service (BaaS) platform. This approach simplified infrastruc-
ture management and provided enterprise-grade scalability, reliability, and monitoring.

The network we set up included three main organisations:

82

5.2 – Shared Procurement

• companyA.example.it and companyB.example.it, representing the two collaborat-
ing companies;

• supplier.example.it, a shared entity representing key suppliers or third-party
vendors.

In each organisation, we set up the necessary Fabric components:

• Two peer nodes (peer0 and peer1) for endorsement and communication;

• A certificate authority (CA) for identity management;

• At least one anchor peer to enable cross-organisation data sharing.

There was also an ordering service node (orderer.example.it) shared by all organi-
sations for transaction ordering and block creation.

To encourage supplier participation—since suppliers are often reluctant to manage
new infrastructure—we introduced supplier.example.it as a shared interface. This
node was managed and paid for by the two companies, allowing suppliers to join the
network and access procurement data without hosting their own infrastructure.

Table 5.5: Network node roles per organisation in the shared procurement solution

Organisation Node Note

companyA.example.it
peer0.companyA.example.it Anchor peer
peer1.companyA.example.it Endorser
ca.companyA.example.it Certificate Authority

companyB.example.it
peer0.companyB.example.it Anchor peer
peer1.companyB.example.it Endorser
ca.companyB.example.it Certificate Authority

supplier.example.it
peer0.supplier.example.it Anchor peer
peer1.supplier.example.it Endorser
ca.supplier.example.it Certificate Authority

All orderer.example.it Orderer

As done for the railcar sharing use case, to support the network implementation in a
real-world, production-grade environment, we opted for IBM Blockchain platform. This
eliminated the need for on-premise server management and provided a central dashboard
for monitoring, scaling, and managing the network.

Using a BaaS solution significantly reduced setup and maintenance time, and provided
robust tools for network management and scaling.

During implementation, we tested two realistic usage scenarios to estimate load and
plan resources:

• Best Case Scenario: Aggregated Procurement Requests
In the optimal use case, procurement officers submitted all information related to a
purchase (e.g., items, cost allocation, approvals) in a single blockchain transaction.
Based on historical data:

83

5 – Case Study

– Each company processed approximately 5,000 shared procurement events per
year,

– With 2 companies, the network handled 10,000 write transactions per year,
– Including supplier-side updates, total write operations reached 12,000 transac-

tions/year,
– This corresponded to an average of ∼ 33 transactions per day.

• Worst Case Scenario: Per-Item Procurement Requests
In a more granular scenario, each line item in a purchase order was submitted as a
separate request:

– Each company managed approximately 40,000 line items/year,
– Doubling for two companies yielded 80,000 transactions/year,
– With supplier-side confirmations, the total reached 90,000 write transaction-

s/year,
– Averaging ∼ 247 transactions per day.

In both scenarios, we also tested read transactions (to retrieve order statuses) and ad-
ditional write operations (such as approvals, modifications, or payment confirmations).
Our load tests showed that the BaaS platform’s auto-scaling features could handle trans-
action spikes efficiently, optimizing costs during periods of lower activity.

Implementation of the Smart Contract

At the core of the shared procurement application is the chaincode handling purchase
requests, approvals, and final invoice records. Implemented in Java, it manages state
transitions through well-defined functions. Key components are:

• Data Structures:

– PurchaseRequest: Contains a unique ID, item descriptions, quantities, cost
centre references, and the cost-splitting approach.

– PurchaseOrder: Generated from an approved request, including finalised sup-
plier details and cost breakdowns.

– InvoiceRecord: Logged once the supplier’s invoice is paid, automatically re-
flecting any shared expense splits.

• Transaction Functions:

– CreateRequest: Stores a new request on the ledger.
– ApproveRequest: Marks a request as approved if the user’s role and threshold

conditions are met.
– GeneratePO: Moves a request from approved state to a purchase order.
– RecordPayment: Finalises an invoice record, allocating costs to each party’s

portion.

84

5.2 – Shared Procurement

• Endorsement Policies: The chaincode requires endorsements from both compa-
nies for key transactions (e.g., issuing a major purchase order), ensuring no single
party can alter the procurement ledger unilaterally. Configuration files define which
peers must sign off for a transaction to be considered valid.

• State Management: Hyperledger Fabric enforces version checks on ledger keys,
preventing conflicting updates if two users attempt to modify the same request
concurrently. This concurrency control ensures reliable operation even under high
transactional load.

Supporting Infrastructure: Java Server and Angular Client

A Java-based back-end was developed to streamline identity management and facilitate
interactions with the underlying chaincode. Authentication is managed through single
sign-on (SSO), ensuring that a user’s organisational role is verified before any transaction
is submitted. Domain-level actions—such as “I want to allocate 40% of this invoice to
Company B”—are automatically translated into cryptographically signed proposals for
Fabric peers.

The Angular front-end provides a role-sensitive interface:

• Procurement officers can view and act only on requests they are authorised to
create or approve.

• Finance managers access consolidated expense reports and cost breakdowns across
companies.

• Department heads and users with limited privileges can review cost allocations
without needing to understand blockchain logic.

Real-time notifications are displayed when:

• Cross-company approvals are pending.

• An invoice with partial payments changes status.

This layered architecture simplifies the user experience. End-users interact with a fa-
miliar web interface and intuitive dashboards, while the Java middleware and Hyperledger
Fabric network handle:

• Endorsement logic,

• Role-based permission checks,

• Data immutability, and

• Cross-organisational consistency guarantees.

85

5 – Case Study

5.2.4 Evaluation and Analysis
To measure the success of the blockchain-based shared procurement system, a systematic
evaluation was conducted, focussing on performance metrics, governance viability, secu-
rity posture, privacy controls, and regulatory compliance. This evaluation aligned with
standard best practices for enterprise blockchain rollouts.

Early pilot programs demonstrated that monthly dispute frequency dropped signifi-
cantly, invoice settlement times improved, and cost allocation accuracy rose. User feed-
back indicated that the system was more transparent and user-friendly compared to the
previous email and spreadsheet-driven processes, although training was initially needed
to familiarise users with the new front-end application.

Key Pilot Evaluation Metrics:

• Average Invoice Settlement Time: Reduced from 10 days to 3.2 days.

• Error Rate in Cost Allocation: Dropped by 72% thanks to chaincode-enforced
logic checks.

• User Acceptance Rating: 86% of participants rated the system as “indispensable”
post-deployment.

• Monthly Dispute Frequency: Declined from 18 cases to fewer than 5 across the
same period.

Deployment and Maintenance Costs

A major consideration was total cost of ownership. Setting up Hyperledger Fabric peers,
ordering services, and certificate authorities for both organisations required infrastructure
investments and staff training. The chaincode had to be thoroughly tested to encapsulate
cost formulas and approval rules accurately. Integration with diverse ERP systems—SAP
for Company A and Microsoft Dynamics for Company B—was nontrivial, necessitating
a custom Java-based middleware.

However, once deployed, operational expenses involved ongoing cloud costs, peer mon-
itoring, and chaincode updates for new business requirements. Training was an ongoing
but diminishing overhead as more employees became familiar with the system. Despite
these challenges, the reduction in manual reconciliation, dispute resolution, and data
fragmentation offset much of the initial capital outlay. Shared governance arrangements
were used to split costs fairly.

Scalability and Performance Testing

With the system fully deployed, performance tests examined throughput and latency
under realistic loads. Dozens of concurrent users triggered purchase requests or approvals,
quickly driving up transaction volume. Thanks to chaincode optimisations, the network
sustained several hundred transactions per second without incurring problematic delays.
The results remained within acceptable ranges for typical procurement cycles.

Stress tests revealed that peer endorsement policies had the strongest effect on latency,
as requiring signatures from multiple peers across geographically distant sites introduced
network round trips. Nonetheless, the system scaled horizontally by adding more peers,
distributing the endorsement load when needed. Monitoring dashboards tracked CPU

86

5.2 – Shared Procurement

usage, block generation intervals, and transaction commit rates, alerting operators if any
performance thresholds were breached.

Performance Results on IBM Blockchain Platform

• Testbed:

– Peers: 4 (0.7 vCPU, 2 GB RAM each)
– Orderers: 3 (Raft)
– Endorsement: Org1 ∧ Org2 ∧ Org3
– Chaincode: Java

• Workload:

– Complex write transactions (PO approval, invoice commit)
– Sustained offered load: 100 TPS
– Read-only queries (status checks)

• Monitoring: same as Section 5.1

• Benchmarking: Hyperledger Caliper

Table 5.6: Key Performance Metrics (Shared Procurement)

Metric Value Unit Notes
Throughput (write) 30–100 TPS depends on payload size
Throughput (read) 800–1,200 TPS simple queries, sub-50 ms latency
Average latency (write) 200–500 ms 95th pct. 600 ms
Peer CPU utilization 70–80 % of 0.7 vCPU Java runtime incurs moderate load
Peer memory consumption 2–3 GB includes chaincode runtime overhead
Transaction success rate ≈99 % endorsement failures ≲0.5 %

As shown in Figure 5.14, the system exhibits a near-linear increase in average write latency
as the offered load approaches 100 TPS. This trend reflects the behavior of queueing
systems, where incoming transactions accumulate in buffers at the endorsement, ordering,
and validation stages. According to Little’s Law, the relationship between average latency
L, arrival rate λ, and service time W follows L = λ · W [24]. When service capacity
remains stable, a rising arrival rate results in a proportionate increase in latency. This
phenomenon has been empirically confirmed in studies of Hyperledger Fabric [30], and
IBM recommends monitoring such queue build-up via Prometheus metrics and Grafana
dashboards to detect overload early and trigger resource scaling [21].

5.2.5 Security and Privacy Assessment
Robust security underpins the shared procurement network. Because the consortium
includes distinct legal entities, each organisation uses a separate Certificate Authority.

87

5 – Case Study

50 60 70 80 90 10040

60

80

100

Offered Load (TPS)

W
rit

e
T

hr
ou

gh
pu

t
(T

PS
)

Procurement: Write Throughput vs Load

(a) Write throughput under load

50 60 70 80 90 100

200

300

400

500

Offered Load (TPS)

Av
er

ag
e

La
te

nc
y

(m
s)

Procurement: Latency vs Load

(b) Latency under load

Figure 5.14: Shared Procurement: Load-test results on IBM BP

Role-based access control in chaincode ensures that only users with appropriate privi-
leges can implement purchase allocations above certain thresholds or finalise major bud-
get items. Private data collections safeguard confidential pricing and supplier details,
allowing only relevant peers to access those entries.

Security testing included static code analysis, chaincode audits, scenario-based pen-
etration tests, and certificate revocation drills. The results confirmed that the permis-
sioned nature of the network, combined with the endorsement policies, makes unilateral
ledger manipulation highly unlikely . Potential threats, such as compromised user creden-
tials or insider tampering, were mitigated by multi-factor authentication and consistent
chaincode-based validation rules. Logging facilities maintain a forensic trail of all access
attempts, easing compliance audits and incident investigations.

88

5.3 – Comparative Analysis: Railcar Sharing vs Shared Procurement

5.3 Comparative Analysis: Railcar Sharing vs Shared
Procurement

5.3.1 Overview

Both the Railcar Sharing and Shared Procurement use cases were deployed on the IBM
Blockchain Platform using Hyperledger Fabric, leveraging the same base infrastructure—4
peers (0.7 vCPU, 2GB RAM each), a 3-node Raft ordering service, and endorsement poli-
cies across organisations. However, despite the architectural similarity, notable differences
in throughput, latency, and resource utilization emerged during load testing.

5.3.2 Workload Differences

• Railcar Sharing involved simpler write transactions for asset updates (e.g., wagon
bookings) with Java chaincode, which led to lower CPU usage and more predictable
scaling.

• Shared Procurement required more complex multi-party approvals and involved
richer payloads and deeper endorsement chains, implemented in Java chaincode.

5.3.3 Performance Comparison

Table 5.7: Summary of Key Performance Metrics

Metric Railcar Sharing Shared Procurement
Sustained Throughput (write) 50–150 TPS 30–100 TPS
Peak Offered Load 200 TPS 100 TPS
Average Latency (95th pct.) 100–300 ms 200–600 ms
Peer CPU Utilization 50–70% 70–80%
Peer Memory Usage 1–2 GB 2–3 GB
Success Rate 99–100% ≈ 99%

5.3.4 Latency and Throughput Analysis

The latency profiles differed significantly. In the shared procurement case, write latency
exhibited a near-linear increase as load approached the 100 TPS threshold, a typical
behaviour of queueing systems approaching saturation. This trend aligns with queueing
theory, notably Little’s Law, where latency L = λ · W increases with higher transaction
arrival rates λ, assuming a fixed service capacity W .

In contrast, the railcar sharing solution handled up to 200 TPS with a more resilient
latency curve, thanks to lighter endorsement policies and chaincode routines optimised
for low contention and deterministic execution.

89

5 – Case Study

5.3.5 Visual Comparison

50 100 150 2000

50

100

150

Offered Load (TPS)

T
hr

ou
gh

pu
t

(T
PS

)

Railcar Sharing

(a) Throughput vs Load

25 50 75 1000

20

40

60

80

100

120

Offered Load (TPS)
T

hr
ou

gh
pu

t
(T

PS
)

Shared Procurement

(b) Throughput vs Load

Figure 5.15: Throughput under Load

50 100 150 2000

100

200

300

Offered Load (TPS)

La
te

nc
y

(m
s)

Railcar Sharing

(a) Latency vs Load

25 50 75 1000

200

400

600

Offered Load (TPS)

La
te

nc
y

(m
s)

Shared Procurement

(b) Latency vs Load

Figure 5.16: Latency under Load

5.3.6 Interpretation
The comparative analysis reveals:

• The simpler endorsement logic and lower payload complexity of Railcar Sharing led
to better scalability and reduced resource consumption.

90

5.3 – Comparative Analysis: Railcar Sharing vs Shared Procurement

• Shared Procurement’s rich business logic and multilateral approvals introduced en-
dorsement bottlenecks and higher computational costs.

• IBM Blockchain Platform’s monitoring and auto-scaling capabilities allowed both
systems to avoid failure under stress, but only Railcar Sharing showed efficient hor-
izontal scaling without rising latencies.

These findings validate the importance of chaincode design, endorsement configuration,
and load distribution when deploying smart contract solutions. Even within identical
infrastructures, application-specific characteristics define scalability ceilings.

91

92

Chapter 6

Conclusions and Future Work

6.1 Summary of Findings and Contributions
This thesis investigated the use of permissioned blockchain technology, especially Hy-
perledger Fabric, in enterprise contexts. The work produced several key findings and
contributions, which are summarised below:

• Systematic Framework for Blockchain Use Cases: A step-by-step approach
was developed to map heterogeneous process, uncover inefficiencies, and see how
blockchain features could address them. This framework identified key pain points
(such as underutilised wagon capacity, inefficient scheduling, and slow cost reconcil-
iation) and linked them to blockchain capabilities like endorsement policies, channel
partitioning, and chaincode-based business logic.

• Practical Platform Blueprint: The thesis presented a comprehensive design for
twp blockchain-based sharing platforms. This included both the technical architec-
ture and governance models, explaining how stakeholders can establish a consortium,
how chaincode modules can be used for capacity scheduling and cost distribution,
and how the platform can connect with existing ERP systems. The modular nature
of chaincode was a main advantage, allowing flexible adaptation as business needs
change.

• Empirical Validation through Proof-of-Concept: A proof-of-concept (PoC)
implementation was built and tested, demonstrating that the proposed solutions
are viable. The PoC evaluated transaction throughput, data synchronisation be-
tween different organisations, and how well it could manage daily shipping requests.
Results showed that a modest Hyperledger Fabric network can support typical op-
erational loads and can be scaled for higher volumes as required.

• Cost Analysis and Economic Rationale: The research provided an initial cost
assessment by comparing Blockchain-as-a-Service (BaaS) expenses to inefficiencies
found in traditional logistics and procurement. Although blockchain introduces new
costs, these can be balanced by fewer production delays, lower reconciliation over-
head, and simpler dispute resolution. The consortium approach also allows partici-
pants to share costs.

93

6 – Conclusions and Future Work

• Organisational and Governance Insights: The study emphasized how impor-
tant it is to have solid governance, including clear guidelines for joining the con-
sortium, updating chaincode, and managing data privacy. It noted that technology
alone is not enough; robust governance is essential for building trust and maintaining
long-term success.

• Broader Applicability and Case Study Results: The methods and solutions
created go beyond rail logistics and can be applied to other supply chain areas,
such as container shipping or warehouse management. Real-world trials showed
significant improvements: invoice settlement times dropped from 12 to 3.5 days,
dispute resolution rates improved by 68%, and user satisfaction exceeded 80%. In
shared procurement, there were notable reductions in cost allocation errors and
disputes.

6.2 Conclusions Drawn from the Research
From this research, several main conclusions can be drawn about using blockchain in
logistics, procurements and similar settings:

• Suitability of Permissioned Blockchains: Permissioned blockchains like Hy-
perledger Fabric are well-suited for multi-party networks. They offer a good mix
of transparency (for collaboration and audits) and privacy (for protecting sensitive
information) through features such as endorsement policies, private data collections,
and role-based access controls.

• Consortium-Based Adoption is Essential: Blockchain provides the most ben-
efits when many stakeholders share the same ledger. Consortium-based adoption
promotes shared capacity, cooperative cost allocation, and synchronised scheduling,
breaking down traditional barriers and encouraging collaboration.

• Integration with Legacy Systems is Critical: To deliver real operational value,
blockchain solutions need to integrate closely with existing enterprise systems (ERP,
scheduling, finance, etc.). Middleware can sync blockchain events with internal
systems, minimizing errors and removing the need for repeated data entry.

• Economic Incentives and Tokenisation: Successful shared capacity models rely
on fair and open economic incentives. Cost-sharing methods and future token-based
incentives could align different parties’ interests, especially when financial benefits
outweigh the extra technological effort.

• Scalability and Adaptability: Although the PoC proved blockchain can support
everyday operations, larger networks will need more robust infrastructure, poten-
tially including advanced consensus algorithms and distributed ordering services.
The core concepts—distributed trust, verifiable transactions, and flexible gover-
nance—can be adapted to many operational scenarios.

94

6.3 – Limitations of the Study

6.3 Limitations of the Study
There are some limitations to note, despite the encouraging results:

• Limited Scale and Complexity of the Pilot: The PoC was designed to be small,
using a single ordering node and a small set of participants. As a result, it did not
fully test fault tolerance, scalability, or the wider operational challenges likely to
appear in a real production setup.

• Cost Estimations and Cloud Service Variability: The cost analysis depended
on the current prices of BaaS offerings, which may change over time. Costs could
increase if the consortium grows or transaction volume rises, and changes in the
market or regulations could also affect the financial viability of blockchain adoption.

• Simplified Business Logic: The PoC’s chaincode was kept simple on purpose.
Actual supply chains typically involve more complex rules, multiple routes, differ-
ing liability and insurance needs, and strict compliance rules, all requiring more
advanced chaincode and endorsement policies.

• Organisational and Socio-Technical Challenges: Adopting this technology
across organisations is still a big hurdle. Moving from a PoC to a real deploy-
ment demands agreement among many stakeholders who have varying interests and
views on risk. Data sharing, competitive factors, and legal liability issues can deter
adoption, even if the technology works.

• Regulatory Uncertainty: Freight transport often crosses borders, so participants
encounter different regulatory environments. While blockchain’s transparency can
help with audits, its immutability may cause conflicts with data privacy or erasure
laws. Solutions must be flexible and able to meet changing compliance requirements.

• Limited Diversity in Use Cases: The pilots mainly involved a small group of
stakeholders and certain operational scenarios. Larger consortiums or more compli-
cated cost-sharing setups might reveal scalability, governance, or integration chal-
lenges not observed in this study.

6.4 Recommendations and Future Research Direc-
tions

To address the limitations mentioned and continue developing the field, several recom-
mendations and future research paths are suggested:

• Technical Enhancements and Privacy: Future efforts should consider advanced
consensus approaches, such as Byzantine fault tolerance, to improve resilience across
geographically distributed networks. Techniques for preserving privacy—like multi-
channel setups, private data collections, and cryptographic tools (e.g., zero-knowledge
proofs)—should be explored to protect business-sensitive details within consortia.

95

6 – Conclusions and Future Work

• AI and Data-Driven Optimisation: Combining artificial intelligence or machine
learning with blockchain can provide new efficiencies. Forecasting algorithms could
help improve scheduling, route choices, and cost allocation, while real-time analytics
could support quick decisions and fast reactions to disruptions.

• Domain-Specific and Interoperable Solutions: Developing specialised chain-
code for different cargo types (e.g., hazardous materials, temperature-controlled
products) could automate legal and treatment requirements. In addition, making
systems interoperable—using sidechains or agreed-upon protocols—will be crucial
for seamless multimodal logistics and full supply chain visibility.

• Scaling Pilots and Regulatory Compliance: Broader pilots with more partic-
ipants, various routes, and real-time analytics should be conducted to verify scala-
bility and measure actual impact. Incorporating regulatory checks into chaincode
can automate confirmations for origin certificates, customs documents, and other
mandatory requirements, lowering compliance risks and speeding up cross-border
processes.

• Socio-Technical Incentives and Governance: Designing token-based or credit
systems can reward efficient collaboration, timely deliveries, and rapid dispute reso-
lutions. Future research should also develop governance approaches that offer flexi-
bility, ensure fairness, and maintain accountability, so that blockchain networks stay
reliable and trusted as they grow.

• Emerging Directions: Digital Identity, DeFi, and Policy Coordination:
Blockchain is increasingly connected with digital identity (e.g., self-sovereign iden-
tity, European digital wallets), decentralised finance (DeFi), and non-fungible tokens
(NFTs). New regulations like the EU Markets in Crypto-Assets Regulation (MiCA)
are influencing how these systems evolve, highlighting the need for coordinated gov-
ernance, clear legal guidelines, and ethical standards. Upcoming research should
look at how decentralised governance, interoperability, risk management, and in-
clusive digital infrastructures intersect, ensuring that blockchain’s potential is used
securely and fairly.

96

Bibliography

[1] AboutSSL. Hashing vs encryption - what’s the difference? https://aboutssl.
org/hashing-vs-encryption/, 2025. Accessed 4 Jun 2025.

[2] Amazon Web Services. Introducing hyperledger fabric 2.2 lts support on
amazon managed blockchain. https://aws.amazon.com/it/blogs/database/
introducing-hyperledger-fabric-2-2-lts-support-on-amazon-managed-blockchain/,
2020. Accessed 5 Jun 2025.

[3] Eleni Androulaki, Artem Barger, Vita Bortnikov, and et al. Hyperledger fabric:
A distributed operating system for permissioned blockchains. In Proceedings of the
13th European Conference on Computer Systems (EuroSys 2018), pages 1–15, 2018.

[4] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Alex Lippman. Medrec: Using
blockchain for medical data access and permission management. Technical report,
MIT Media Lab, 2016. Available at: https://www.healthit.gov/sites/default/
files/blockchainchallenge_mitwhitepaper.pdf.

[5] Guillaume Bonnot. [blockchain] introduction to the hyper-
ledger ecosystem. https://medium.com/@bonnotguillaume/
blockchain-introduction-to-the-hyperledger-ecosystem-23279a090c4f,
2021. Accessed 4 Jun 2025.

[6] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the
3rd Symposium on Operating Systems Design and Implementation (OSDI ’99), pages
173–186, feb 1999.

[7] Princeton University Center for Information Technology Policy. Blockchain
policy: Building a secure and inclusive future. Technical report, Princeton
University, 2024. Available at: https://citp.princeton.edu/publication/
blockchain-policy-2024/.

[8] IBM Corporation. Ibm, walmart and others launch food trust blockchain. https://
newsroom.ibm.com/2018-10-08-IBM-Walmart-and-others-launch-Food-Trust,
2018. Available at: https://newsroom.ibm.com/
2018-10-08-IBM-Walmart-and-others-launch-Food-Trust.

[9] IBM Corporation. Ibm and maersk: Tradelens blockchain shipping platform. https:
//www.ibm.com/case-studies/tradelens, 2023. Available at: https://www.ibm.
com/case-studies/tradelens.

[10] IBM Corporation. Ibm blockchain platform: Enterprise adoption and perfor-
mance. https://www.ibm.com/products/blockchain-platform, 2024. Available
at: https://www.ibm.com/products/blockchain-platform.

[11] IBM Corporation. Ibm food trust: Blockchain for food supply chain. https://www.
ibm.com/blockchain/solutions/food-trust, 2024. Available at: https://www.
ibm.com/blockchain/solutions/food-trust.

[12] Flow Developers. Cadence: Resource-oriented programming language. https://
developers.flow.com/cadence, 2024. Available at: https://developers.flow.

97

https://aboutssl.org/hashing-vs-encryption/
https://aboutssl.org/hashing-vs-encryption/
https://aws.amazon.com/it/blogs/database/introducing-hyperledger-fabric-2-2-lts-support-on-amazon-managed-blockchain/
https://aws.amazon.com/it/blogs/database/introducing-hyperledger-fabric-2-2-lts-support-on-amazon-managed-blockchain/
https://www.healthit.gov/sites/default/files/blockchainchallenge_mitwhitepaper.pdf
https://www.healthit.gov/sites/default/files/blockchainchallenge_mitwhitepaper.pdf
https://medium.com/@bonnotguillaume/blockchain-introduction-to-the-hyperledger-ecosystem-23279a090c4f
https://medium.com/@bonnotguillaume/blockchain-introduction-to-the-hyperledger-ecosystem-23279a090c4f
https://citp.princeton.edu/publication/blockchain-policy-2024/
https://citp.princeton.edu/publication/blockchain-policy-2024/
https://newsroom.ibm.com/2018-10-08-IBM-Walmart-and-others-launch-Food-Trust
https://newsroom.ibm.com/2018-10-08-IBM-Walmart-and-others-launch-Food-Trust
https://newsroom.ibm.com/2018-10-08-IBM-Walmart-and-others-launch-Food-Trust
https://newsroom.ibm.com/2018-10-08-IBM-Walmart-and-others-launch-Food-Trust
https://www.ibm.com/case-studies/tradelens
https://www.ibm.com/case-studies/tradelens
https://www.ibm.com/case-studies/tradelens
https://www.ibm.com/case-studies/tradelens
https://www.ibm.com/products/blockchain-platform
https://www.ibm.com/products/blockchain-platform
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust
https://developers.flow.com/cadence
https://developers.flow.com/cadence
https://developers.flow.com/cadence
https://developers.flow.com/cadence

Bibliography

com/cadence.
[13] European Commission. Markets in crypto-assets (mica) regulation.

https://ec.europa.eu/info/business-economy-euro/banking-and-finance/
financial-markets/crypto-assets_en, 2024. Available at: https:
//ec.europa.eu/info/business-economy-euro/banking-and-finance/
financial-markets/crypto-assets_en.

[14] Ethereum Foundation. Proof-of-stake consensus mechanism. https://ethereum.
org/en/developers/docs/consensus-mechanisms/pos/, 2023. Available at:
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/.

[15] Ethereum Foundation. Shapella upgrade. https://ethereum.org/en/upgrades/
shapella/, 2023. Available at: https://ethereum.org/en/upgrades/shapella/.

[16] Ethereum Foundation. Eip-4844: Proto-danksharding. https://eips.ethereum.
org/EIPS/eip-4844, 2024. Available at: https://eips.ethereum.org/EIPS/
eip-4844.

[17] Hyperledger Foundation. Hyperledger fabric 3.0 release notes. https://github.
com/hyperledger/fabric/releases, 2024. Available at: https://github.com/
hyperledger/fabric/releases.

[18] Hyperledger Foundation. Hyperledger fabric documentation (v3.x). https:
//hyperledger-fabric.readthedocs.io/en/release-3.0/, 2024. Available at:
https://hyperledger-fabric.readthedocs.io/en/release-3.0/.

[19] Hyperledger Foundation. Hyperledger fabric samples (v3.x). https://github.
com/hyperledger/fabric-samples, 2024. Available at: https://github.com/
hyperledger/fabric-samples.

[20] Hyperledger Foundation. Smartbft: Byzantine fault tolerant ordering
service. https://github.com/hyperledger/fabric/blob/main/docs/source/
smartbft.rst, 2024. Available at: https://github.com/hyperledger/fabric/
blob/main/docs/source/smartbft.rst.

[21] IBM. Prometheus metrics reference — hyperledger fabric. https:
//hyperledger-fabric.readthedocs.io/en/release-2.2/metrics_reference.
html, 2024. Accessed 9 June 2025.

[22] Chainlink Labs. Chainlink: Decentralized oracle networks. https://chain.link,
2024. Available at: https://chain.link.

[23] Ledgerdata Refiner. A powerful ledger data query platform for hyperledger fabric
- scientific figure on researchgate. https://www.researchgate.net/figure/
The-structure-of-blocks-take-Hyperledger-Fabric-as-an-example_fig1_
337885270, 2025. Accessed 4 Jun 2025.

[24] John D. C. Little. A proof for the queuing formula: L = λW . Operations Research,
9(3):383–387, 1961.

[25] Q. Liu. Blockchain for governmental services: A systematic literature review. Gov-
ernment Information Quarterly, 38(4):391–405, 2021.

[26] Ruben Mayer. Transaction flow in hyperledger fabric - scientific figure
on researchgate. https://www.researchgate.net/profile/Ruben-Mayer/
publication/349913785/figure/fig1/AS:999287425089536@1615260096743/
Transaction-Flow-in-Hyperledger-Fabric.png, 2021. Accessed 5 Jun 2025.

[27] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Self-published,
2008.

[28] ResearchGate. Hyperledger fabric model (c) ibm. Figure from “Using Blockchain to
Manage Production and Distribution” on ResearchGate, June 5 2025. Available at:

98

https://developers.flow.com/cadence
https://developers.flow.com/cadence
https://developers.flow.com/cadence
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/crypto-assets_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/crypto-assets_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/crypto-assets_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/crypto-assets_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/crypto-assets_en
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/upgrades/shapella/
https://ethereum.org/en/upgrades/shapella/
https://ethereum.org/en/upgrades/shapella/
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://github.com/hyperledger/fabric/releases
https://github.com/hyperledger/fabric/releases
https://github.com/hyperledger/fabric/releases
https://github.com/hyperledger/fabric/releases
https://hyperledger-fabric.readthedocs.io/en/release-3.0/
https://hyperledger-fabric.readthedocs.io/en/release-3.0/
https://hyperledger-fabric.readthedocs.io/en/release-3.0/
https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric/blob/main/docs/source/smartbft.rst
https://github.com/hyperledger/fabric/blob/main/docs/source/smartbft.rst
https://github.com/hyperledger/fabric/blob/main/docs/source/smartbft.rst
https://github.com/hyperledger/fabric/blob/main/docs/source/smartbft.rst
https://hyperledger-fabric.readthedocs.io/en/release-2.2/metrics_reference.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/metrics_reference.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/metrics_reference.html
https://chain.link
https://chain.link
https://www.researchgate.net/figure/The-structure-of-blocks-take-Hyperledger-Fabric-as-an-example_fig1_337885270
https://www.researchgate.net/figure/The-structure-of-blocks-take-Hyperledger-Fabric-as-an-example_fig1_337885270
https://www.researchgate.net/figure/The-structure-of-blocks-take-Hyperledger-Fabric-as-an-example_fig1_337885270
https://www.researchgate.net/profile/Ruben-Mayer/publication/349913785/figure/fig1/AS:999287425089536@1615260096743/Transaction-Flow-in-Hyperledger-Fabric.png
https://www.researchgate.net/profile/Ruben-Mayer/publication/349913785/figure/fig1/AS:999287425089536@1615260096743/Transaction-Flow-in-Hyperledger-Fabric.png
https://www.researchgate.net/profile/Ruben-Mayer/publication/349913785/figure/fig1/AS:999287425089536@1615260096743/Transaction-Flow-in-Hyperledger-Fabric.png

Bibliography

https://www.researchgate.net/figure/HYPERLEDGER-FABRIC-MODEL-C-IBM_
fig3_346686466 (accessed 9 June 2025).

[29] Solidity Team. Solidity blog and security guidelines. https://blog.soliditylang.
org, 2024. Available at: https://blog.soliditylang.org.

[30] Canhui Wang and Xiaowen Chu. Performance characterization and bottleneck anal-
ysis of hyperledger fabric. arXiv preprint arXiv:2008.05946, 2020.

99

https://www.researchgate.net/figure/HYPERLEDGER-FABRIC-MODEL-C-IBM_fig3_346686466
https://www.researchgate.net/figure/HYPERLEDGER-FABRIC-MODEL-C-IBM_fig3_346686466
https://blog.soliditylang.org
https://blog.soliditylang.org
https://blog.soliditylang.org

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Context of Blockchain Technologies
	Motivation for Exploring Hyperledger Fabric in Industrial Applications
	Regulatory Evolution and Global Policy Trends

	Problem Statement
	Research Objectives and Contributions
	Research Design and Approach
	Data Collection and Tools
	Evaluation Metrics and Experimental Setup
	Risk Management

	Scope and Limitations
	Thesis Organisation (Outline)

	Extended Literature Review
	Introduction
	Overview of Blockchain Technology
	Blockchain Fundamentals and Cryptography
	Structural Components of a Blockchain
	Consensus Mechanisms and Core Characteristics

	Types of Blockchains
	Private, Consortium, and Public Blockchains
	Permissioned vs. Permissionless

	Regulatory, Ethical, and Legal Considerations
	Related Work and Existing Solutions
	Comparison of Blockchain Platforms
	Industry Adoption and Case Studies

	Conclusion

	Smart Contracts
	Introduction to Smart Contracts
	How Smart Contracts Work
	Mechanisms and Design Principles
	Recent Developments in Smart Contract Technologies

	Traditional Contracts vs. Smart Contracts
	Use Cases and Applications
	Focus on Asset Management
	Business Process Automation

	Benefits and Potential of Smart Contracts
	Trust Minimisation and Operational Streamlining
	Transparency and Dynamic Value Exchange
	Efficiency Gains and Scalable Automation
	Governance Innovation and Emerging Applications

	Challenges and Limitations
	Technical Challenges
	Legal and Regulatory Uncertainty
	Operational Challenges

	Related Work and Existing Solutions
	Blockchain-enabled Smart Contract Applications
	Public Sector and Industry Pilots
	Enterprise Adoption and Private Blockchain Frameworks
	Further Reading and Open Frameworks

	Conclusion
	Summary of Findings and Present Implications
	Future Directions and Strategic Considerations

	Hyperledger Fabric
	Introduction to Hyperledger Fabric
	Fabric Architecture Overview
	Modular Design and Configurable Components
	Recent Innovations in Hyperledger Fabric Architecture
	Gossip Data Dissemination

	Identity and Membership Management
	Membership Service Provider (MSP)
	On-channel vs. Off-channel Governance
	Revocation and Certificate Rotation

	Policies and Governance Model
	Policy Updates

	Network Components
	Peers, Orderers, and Channels

	Ledger and Data Model
	Blockchain Storage
	World State with CouchDB
	Channels as Parallel Ledgers

	Chaincode (Smart Contract) Lifecycle
	Development, Deployment, and Upgrade Processes
	Containerised Execution Environment
	Endorsement Policies

	Transaction Flow in Hyperledger Fabric
	Security Considerations and Potential Risks
	Non-deterministic Risks
	Privacy and Data Security Risks
	Industry Adoption and Real-World Deployments

	Case Study
	Railcar Sharing
	Current State ('as-is' Process) and Business Case
	Stakeholders and Participants
	Asset and Transaction Analysis
	Business Impact

	Proposed Blockchain-Based Solution ('to-be' Process)
	Solution Canvas
	Network Conceptual Design
	Integration with Legacy Systems

	System Design and Implementation
	Overall System Architecture
	IBM Blockchain Platform for PoC
	Implementation of the Smart Contract
	Supporting Infrastructure: Java Server and Angular Client

	Evaluation and Analysis
	Deployment and Maintenance Costs
	Scalability and Performance Testing
	Performance Results on IBM Blockchain Platform

	Security and Privacy Assessment
	Regulatory and Ethical Considerations

	Shared Procurement
	Current State ('as-is' Process) and Business Case
	Stakeholders and Participants
	Asset and Transaction Analysis
	Business Impact

	Proposed Blockchain-Based Solution ('to-be' Process)
	Solution Canvas
	Network Conceptual Design
	Integration with Legacy Systems

	System Design and Implementation
	Overall System Architecture
	IBM Blockchain Platform for PoC
	Implementation of the Smart Contract
	Supporting Infrastructure: Java Server and Angular Client

	Evaluation and Analysis
	Deployment and Maintenance Costs
	Scalability and Performance Testing
	Performance Results on IBM Blockchain Platform

	Security and Privacy Assessment

	Comparative Analysis: Railcar Sharing vs Shared Procurement
	Overview
	Workload Differences
	Performance Comparison
	Latency and Throughput Analysis
	Visual Comparison
	Interpretation

	Conclusions and Future Work
	Summary of Findings and Contributions
	Conclusions Drawn from the Research
	Limitations of the Study
	Recommendations and Future Research Directions

	Bibliography

