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Abstract

There are thousands of satellites in orbit around the Earth and in deep space, each
performing different tasks crucial to sectors such as research, communication, Earth
observation, and space science. Since the space environment differs significantly
from Earth’s, the robustness and resilience of these spacecraft must be guaranteed.
One of the main issues they face is radiation, which can compromise their lifespan
or effectiveness. To prevent these problems, space applications use different systems
designed to detect anomalies. Machine learning and artificial intelligence systems
have been adopted to exploit their efficiency and decision-making capabilities.
More specifically, modern anomaly detection techniques leverage neural networks
to capture temporal dependencies and handle high-dimensional data effectively.
However, to ensure that these solutions are robust and resilient in space, numerous
tests must be conducted. This is where fault injection comes into play. In our study,
we are applying a physics-informed (PI) real-valued non-volume preserving (real
NVP) model, a type of normalizing flow model, for fault detection in space systems.
This study begins with an analysis of the different hazards posed by the space
environment, focusing on single-event upsets (SEUs) that cause malfunctions in
systems. It then examines the normalizing flow network and the various proposed
solutions for injection testing, such as PytorchFI and TensorFI, two injection
frameworks. Following this, the study proposes a framework implemented in
TensorFlow to test the network and evaluate the resilience of its components.
Injections can be performed using two main fault functions, each presenting different
network targets. Layer States injection involves introducing faults into the internal
components of the network, such as weights and biases while leaving the input and
output untouched. Layer Outputs Injection is where the injection is applied to
the output of different layers, targeting different layers and activations functions.
All those faults are generated through different operations like zeros, random,
and bitflips modifying the value of a tensor, and they are done at different levels
of ablation by selecting the percentage of values to inject and the depth of the
layer. Results show that the most critical part of the network consists of the layers
preceding the final output. As expected, bit flips in the most significant bits can
lead to significantly worse performance and even system failure.
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Chapter 1
Introduction

Satellites play a vital role in various fields, including communication, navigation,
and Earth observation missions like ERS-1 (European Remote-Sensing Satellite)
[1], designed to monitor environmental factors such as oceans and polar ice caps.
As the use of space devices continues to grow rapidly, protecting them from the
harsh conditions of space, such as radiation, becomes increasingly important.
This underscores the need for developing robust hardware and software models.
Simultaneously, the use of Neural Networks (NN) has expanded significantly due to
their ability to process large amounts of data and extract relevant insights. In the
space sector, neural networks are employed to ensure mission success and safeguard
valuable assets. For example, ESA’s BepiColombo [2] uses neural networks in
its fault detection and control system to monitor the spacecraft’s operational
health as it travels to Mercury. However, evaluating the reliability of NNs is
highly challenging due to their complex structure and software, often consisting of
hundreds of layers.

This study aims to test a Normalizing Flow network using fault injection to
simulate the radiation present in space and evaluate the model’s robustness and
resilience to faults after the injections. Therefore, the primary goal is to create a
framework capable of testing multiple models trained with various hyperparameters
simultaneously, under different injection configurations.

This introduction provides an overview of the thesis. Section 1.1 addresses the
effects and risks of radiation on space devices and Neural Networks. Section 1.2
begins by explaining the fundamental concepts of Neural Networks, the structure
of the Normalizing Flow models, and details regarding the Anomaly Detection task.
Section 1.3 introduces potential solutions to the radiation issue. Finally, Section
1.4 outlines the thesis organization to give a clearer understanding of the research.
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Introduction

1.1 The impact of space radiation on electronic
devices

Primary cosmic rays interact with gaseous and other matter at high altitudes,
producing secondary radiation, both of which contribute to the space radiation
environment. The solar wind provides the transportation of electrons and protons
produced by the Sun’s fusion process, Figure 1.1. In addition to the particles
originating from the sun are particles from other stars and heavy-ion sources such
as novas and supernovas in our galaxy and beyond. These particles are influenced
by planetary or Earth’s magnetic field to form radiation belts, which in Earth’s case
are known as Van Allen Radiation belts, containing trapped electrons in the outer
belt and protons in the inner belt. The composition and intensity of the radiation
vary significantly with the trajectory of a space vehicle and its position on Earth,
for example, the South Atlantic Anomaly (SAA) has relatively high concentrations
of electrons causing problems such as single event upsets (SEU). In addition to
these particles, the spacecraft experience radiation threats from high-energy ions in
space called Galactic Cosmic Rays. Solar flares also contribute varying quantities
of electrons, protons, and lower-energy heavy ions that cause single-event effects
(SEE) [3]. As a result, space vehicles and satellites are constantly exposed to
a radiation environment, which can degrade component performance and cause
various malfunctions in electronic and electrical systems.

In 1998, Deep Space 1 (DS-1) [4] experienced a failure of its Stellar Reference
Unit (SRU) and an upset in a Field-Programmable Gate Array (FPGA) register.
The SRU had previously exhibited intermittent problems starting shortly after
launch. While these issues were thoroughly investigated, no explanation was deemed
satisfactory. The final failure of the SRU may have been due to a latchup, with
earlier transient issues potentially caused by Single Event Upsets (SEUs). Although
SEUs can, and occasionally have, caused failures requiring lengthy system recovery
times, the specific failure observed here is unusual. A recovery time of 28 minutes
lacks a clear explanation unless a thermal event was triggered, which could have
influenced the behavior of the system. This remains speculative because of the
absence of corroborating evidence.

Radiation-induced impacts on electronics can be categorized into two types:
cumulative effects and single-event errors, each based on the way radiation causes
errors.
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Figure 1.1: Components of the space radiation environment

1.1.1 Cumulative Effect

Cumulative Effects Cumulative effects refer to the gradual degradation of electronic
devices due to continuous exposure to ionizing radiation over time. These effects
primarily impact hardware at the physical level. As such, we will not cover them
in detail here.

The Total Ionizing Dose (TID) is the accumulated dose of ionizing radiation
that a device absorbs over time. TID effects are generally caused by prolonged
exposure to radiation, particularly from particles trapped in the Earth’s Van Allen
belts.

Displacement Damage Defects (DDD) arise when high-energy particles
such as protons or heavy ions displace atoms within a device’s semiconductor
material. This displacement creates defects in the crystal lattice, potentially
leading to increased leakage currents and shifts in the device’s threshold voltage.

1.1.2 Single Event Effects

On the other hand, Single Event Effects (SEEs) result from the interaction of a
single high-energy particle with a semiconductor device. These effects are typically

3
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immediate or occur shortly after the particle strike. SEEs can be categorized into
soft and hard errors: Soft errors are temporary and non-destructive, causing data
corruption or transient malfunctions without permanent damage to the component,
meanwhile Hard errors are permanent and can cause physical damage to the
electronic device.

In the category of soft errors belong:

» Single Event Upsets (SEUs) occur when a single ionizing particle hits a
sensitive node in an active microelectronic device, such as a microprocessor,
semiconductor memory, or power transistor. This impact alters the state of
a logic element, such as a memory 'bit’, due to the free charge generated by
ionization.

« Single Event Transients (SETs) are brief pulses of current or voltage
induced by a high-energy particle passing through a circuit, which can lead to
temporary glitches or erroneous outputs.

Hard errors instead can be differentiated as:

» Single Event Latchups (SELs) occur when a high-energy particle triggers a
short circuit within the device, causing excessive current flow that can damage
or destroy the component.

« Single Event Burnout (SEB) happens when a high-energy particle causes
a power semiconductor to conduct excessively, which can result in thermal
runaway and permanent damage.

 Single Event Gate Rupture (SEGR) is an event in which a single energetic-
particle strike results in a breakdown and subsequent conducting path through
the gate oxide of a MOSFET.

1.1.3 Effect of Radiation

As mentioned previously, when a particle hits a transistor, it can cause bit flips
in memory. A radiation-induced transient error in a computing device executing
code may result in one of three outcomes: no effect on the program output, silent
data corruption (SDC) which produces incorrect program output, or a detected
unrecoverable error (DUE) which leads to a program crash or device reboot. When
a particle deposits enough charge to alter the state of a transistor, it generates a
fault. This fault may either be masked or propagated to a visible state, becoming an
error. If this corrupted visible state is used in computation and the error propagates
to the software output, it results in a failure. SDCs or DUESs are considered failures
when they affect the software output.
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In the case of Deep Neural Networks (DNNs), tracking the fault propagation
from a corrupted transistor to the detection or classification output is particularly
challenging. Unlike deterministic computing, DNN outputs are probabilistic. A
fault may alter low-probability outcomes, which might not be selected in the final
detection or classification, or it may entirely change the output vector.

Fortunately, not all SDCs are critical in object detection frameworks. If an
SDC does not affect detection and classification, it can be considered tolerable.
SDCs that alter the object probability without impacting the object’s rank are
generally not critical. However, SDCs that lead to misdetection or misclassification
are deemed critical. We will discuss the SDC metric in Chapter 3.

Although cumulative, permanent, or destructive effects such as Total lonizing
Dose (TID) or Single Event Latch-up (SEL) are crucial for space mission deployment,
this study does not focus on reproducing these effects in detail. This is because
these radiation responses are more related to technology implementation rather
than the specific architecture or Deep Neural Networks (DNNs).

Therefore, our goal is to emulate effects with an immediate impact on software,
such as Single Event Upsets (SEUs). However, it’s important to remember that
hard errors can also affect software through hardware propagation, as explained in
Section 1.3.

1.2 Normalizing Flow Network and Anomaly De-
tection

There has been a fast-forward evolution of Artificial Intelligence in the last years,
especially for deep learning (DL), the most interesting type of Machine learning, in
which several processing layers are used to extract higher-level features from the
input data to find patterns. It is crucial to understand its components to further
access a reliability evaluation and improvement of neural networks.

1.2.1 Basic Concepts of Neural Networks Effect

Artificial Neural Networks (ANN) are capable of approximating a wide range of
functions thanks to backpropagation training, enabling the solutions of a variety of
tasks, ranging from classification, detection, and regression.

Designing deep neural networks (DNNs) involves selecting the number, types,
and structure of layers that, when connected, can be adapted to solve a specific task,
as well as tuning hyperparameters, such as the number of neurons and kernel size.
This adaptation occurs during the training phase, where the model learns from
the data. The data includes input data and corresponding labels if the training
is supervised, lacks labels if the training is unsupervised, or contains a mix of

5
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labeled and unlabeled data in the case of semi-supervised training. Through

this phase, the parameters of the network are modified in such a way that for

each training input-output pair, the network response is as close as possible to the

ground truth. The distance measured between true and predicted values is called

the loss function. Backpropagation of the output error from the last layer back

to the input one helps the parameters in the process of tuning to fit the dataset.
Each network design has a specific set and organization of layers:

o Fully Connected Layer: In this layer, every neuron from the previous layer
is connected to every neuron in the current layer. This dense connectivity
allows the network to integrate features learned by previous layers and make
final predictions.

» Convolutional Layers are used to automatically and adaptively learn spatial
hierarchies of features from input images or other grid-like data.

e Pooling layers reduce the spatial dimensions of the input, filtering and
decreasing the number of parameters and computational load in the network.
They also help make the model invariant to small translations in the input
data.

« Normalization layers stabilize and speed up the training process by nor-
malizing the input to each layer, leading to faster network convergence and
improved generalization. The most widely used normalization technique is
Batch Normalization, which learns an approximation of the first and second
statistical moments of each feature map during training to normalize input
tensors. After normalization, it is common practice to apply an affine trans-
formation using an additive bias g and a scaling factor . The normalization
operation is defined as follows:

x — Elx]

BatchNorm(z) = —————
Var[z] + €

£y + (1.1)

o Dropout Layer: This layer helps prevent overfitting by randomly setting a
fraction of the input units to zero during training, encouraging the network to
learn more robust features.

Activation functions introduce non-linearity into the network, enabling it to learn
complex patterns and represent non-linear decision boundaries. Common activation
functions include:

» Rectified Linear Units (ReLUs): defined as f(x) = max(0,x), ReLUs are
fundamental for avoiding the vanishing gradient problem and are widely used
due to their simplicity and effectiveness. Variants include: Leaky ReLU ELU
(Exponential Linear Unit) SELU (Scaled ELU)

6
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« Sigmoid: defined as f(x) = ﬁ, the sigmoid function maps input values to
the range [0, 1] and is often used in binary classification tasks.

o Softmax: defined as f(z;) = > L = the softmax function converts logits
j=1°¢
(raw model outputs) into a probability distribution over multiple classes,
ensuring that the sum of all probabilities equals 1.

o Tanh (Hyperbolic Tangent): defined as f(x) = tanh(z), this function
maps input values to the range [-1, 1], making it zero-centered, which can lead
to faster convergence and enhanced performance in hidden layers.

« Linear Activation: defined as f(z) = ax + b, where a and b are constants,
this simple function is used in situations where the model is expected to
perform linear regression or when a direct proportional relationship between
input and output is required.

In every layer, we can find weights, which are typically real numbers that
represent the strength or importance of a connection between neurons. These values
are initialized randomly and are adjusted during the training process. Weights
control how much influence a particular input has on the neuron’s output. A higher
weight amplifies the input signal, while a lower weight attenuates it.

Bias is an additional parameter in NN associated with each neuron. It is a
constant added to the weighted sum of inputs before the activation function is
applied. It’s crucial because it helps the network to approximate the output even
when all inputs are zero, allowing the network to model patterns that are not
centered around the origin and enabling a better data fit, adding flexibility in
modeling.

There are different types of NN, each of them with a different architecture formed
by the combination of the proposed components. The most common ones are CNN
(Convolution Neural Network), RNN (Recurrent Neural Network), LSTM (Long
Short Term Memory), GANs (Generative Adversarial Networks), Autoencoders,
GRUs (Gated Recurrent Units) and many more, each of them tailored for specific
kinds of data and tasks, making them suitable for a wide range of applications in
ML and Al

In our study we are going to deal with Normalizing Flow Network and more
specifically with a REAL NVP (Real-valued non-volume preserving) Network.
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1.2.2 Normalizing Flow Models

Real N'VP is a neural network architecture used in the field of normalizing flows,
a class of generative models. These models are especially useful for tasks like
density estimation, where the challenge lies in constructing models that are both
powerful enough to capture complex patterns and scalable enough to be trained on
high-dimensional, highly structured data.

Normalizing flows are a family of models that transform a simple, known
probability distribution like a Gaussian into a more complex distribution that
matches the data distribution. This transformation is done using a sequence of
invertible (bijective) functions. Invertible means that the input can be exactly
recovered from the output and this is crucial in tasks like generative modeling,
where you need to map from latent space back to data space. In traditional
flow-based models, transformations are often designed to preserve volume, which
simplifies the computation of probability density. However, Real NVP introduces
non-volume-preserving transformations, which offer more flexibility in modeling
complex distributions while still allowing efficient computation of the determinant
of the Jacobian, which is necessary for calculating densities.

Coupling Layers are the fundamental component of these networks built as a
flexible and tractable bijective function by stacking a sequence of simple bijections.
In each simple bijection, part of the input vector is updated using a function that
is simple to invert but depends on the remainder of the input vector in a complex
way. These are the formula

Y1:d = T1.d (1.2)

Yd+1:D = Td4+1:.D0 © €IP(S($1;d)) + t(mlzd) (1-3)

where s and ¢ stand for scale and translation

e Scale Layers apply a multiplicative transformation to the modified portion
of the data, allowing the network to learn how to stretch or compress it
across different dimensions. This helps capture the variability in the data
distribution.

o Translation layers add an offset to the transformed data, shifting them and
adjusting the mean of the distribution in the transformed space.

The RealNVP architecture is constructed by stacking multiple coupling layers in
an alternating pattern, ensuring that components left unchanged in one layer are
updated in the next, addressing issues with the forward transformation. [5] utilizes
the network’s capability to model natural images across four datasets - CIFAR-10,
ImageNet, Large-scale Scene Understanding (LSUN), and CelebFaces Attributes
(CelebA) - through techniques such as sampling, log-likelihood evaluation, and
latent variable manipulations. [6] uses a LSTM Encoder-Decoder network with a

8
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RealNVP model for density-based time anomaly diagnostics to locate anomalous
road segments in the anomalous clusters.

1.2.3 Anomaly Detection Task

The study of time series anomaly detection (TSAD) has become increasingly
popular in recent years due to its widespread applications, Figure 1.2. A time
series is a sequence of numbers or vectors indexed by time. In the context of space
devices, the time series at hand has a high number of features representing all
the data collected by instruments. Due to the harsh environment of space and its
conditions, which are very different from those on Earth, this data often contains
many anomalous points caused by space radiation impacting various components
on board. Since space radiation causes a high number of anomalies, it is crucial to
analyze their different types, their sources, and the problems they cause.

The first factor to consider is how balanced the classes are in our dataset
during testing. Metrics like accuracy, precision, and recall must account for class
distribution. Since most data points are normal, predicting only normal points could
result in high accuracy, even though the prediction wouldn’t be useful. Additionally,
precision and recall fail to adequately penalize false negatives and false positives,
respectively.

The Area Under the Curve (AUC-ROC) can also give an overly optimistic view
of classifier performance in highly imbalanced datasets. This is because a high
number of true negatives keeps the false positive rate (FPR) low, even if many
minority class instances (anomalies) are misclassified. For this reason, AUC-PR
(Area Under the Precision-Recall Curve) is a more reliable metric in such cases.

Time Series Detector Anomaly Score Threshold Binary prediction
L 000005000
Prediction
Non-binary Labels Binary
evaluation 2000000 evaluation
metric metric
Evaluation

Figure 1.2: A time series anomaly detection pipeline.

In our scenario, we are working with a slightly imbalanced dataset, as we will
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discuss in Chapter 3, where the number of anomalies is lower than the number
of normal cases, as observed in the ADAPT Dataset. This imbalance must be
addressed to effectively use metrics like precision and recall without encountering
the challenges typically associated with imbalanced data. The characteristics
of the dataset and environmental conditions guide the selection of time series
anomaly detection (TSAD) algorithms and the evaluation metrics used for the
anomaly detection task. Selecting the appropriate metric for anomaly detection
remains a complex and critical challenge. Papers such as [7] and [8] tackle this
issue by analyzing various environments and offering potential solutions. Using
inappropriate metrics can lead to inaccurate conclusions about an algorithm’s
performance, potentially resulting in misguided decisions.

1.3 Potential Solutions to Reliability Issues

When evaluating the reliability of complex computing devices executing DNNs, we
must consider that the radiation-induced fault occurs in the physical transistor and
then propagates through the architectures, Figure 1.3, reaching the software and
eventually modifying the output. Evaluations closer to the physical layer are more
realistic, while assessments close to the software layer are more efficient [9]. Several
methodologies exist for evaluating the reliability of computing devices, covering
various abstraction levels, from the gate level to the architectural and system levels.

o Field Test involves exposing the device to natural particle flux and counting
the number of observed errors [10].

« Beam Experiment induces faults by interacting accelerated particles with
the silicon lattice at the transistor level, providing highly realistic error rates.
[11] presents a neutron beam fault injection for FPGA implementation of
QNN accelerators.

o Microarchitecture-level fault injection offers broader fault coverage com-
pared to software-level injection, as faults can, in principle, be injected across
most system modules [12].

o Software Fault injection, performed at the highest level of abstraction, has
proven effective in identifying code sections, such as NN components in our
case, that are more likely to affect computation when corrupted [13].

o Circuit- or gate-level simulations operate at the lowest level of abstraction,
inducing either analog current spikes or digital faults while still tracking fault
propagation [14].
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o To improve efficiency and maintain accuracy, hybrid approaches combining
different abstraction levels are often employed. This combination of methods
is typically the best approach for a comprehensive reliability assessment of
the system [15].

System failure! rParallelapplication ]
1

Software ([Block J( T'" [:]
e I -

\‘k “A ! Thread(s) error \‘\ ...\

Propagation Radiation-induced fault

Fetch

Hardware [ Decoder |
[ Scheduler |

| accelerator |

Figure 1.3: Potential impact of a single-event effect corrupting essential or shared
resources in a parallel device.

In this study, we focus on the software fault injection that needs to be carefully
engineered so as not to have unrealistic results. It has good pros like lower costs, is
more controllable, and easier for developers to deploy, however, the adopted fault
model (typically bit flip [16], [17], [18], [19], [20], [21]) might be accurate for the
main memory structures but risks being unrealistic when considering faults in the
computing cores or control logic where the programmer has no power.

For this reason, software fault injection is typically used ([22], [23], [24]) to
analyze critical software operations, algorithmic procedures, or components, rather
than to estimate the device’s error rate. Our approach involves emulating the
effects of radiation by modifying memory values and altering key elements of the
network, temporarily disabling them to assess their impact on performance and
the overall network.
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1.4 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 discusses state-of-
the-art and the most common framework used in the field of software fault injection,
focusing on their key differences, and weak and strong points. Chapter 3 starts by
describing the environment we are dealing with, the dataset, the structure of the
framework, the pre-trained model, and the evaluation technique. Chapter 4 shows
the results obtained from the injection of faults comparing the model in their main
type layers state and layer outputs. Chapter 5 discusses the results achieved in
this work and explores potential avenues for future research.
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Chapter 2

Techniques for Fault
Injection

This chapter provides an overview of the currently available tools, frameworks,
and techniques for fault injection. Some methods are applied during the training
phase to enhance model robustness, while others are used post-training during
inference runs. In Section 2.1, we begin by introducing the resilience features of
deep neural networks (DNNs) and various techniques used to perturb them. Section
2.2 explores the fault injection frameworks developed using the TensorFlow library,
with a focus on injectors such as TensorFI, BinFi, and Ares. Finally, Section 2.3
examines the PyTorch counterparts, specifically the PyTorchFI and PyTorchALFI
frameworks.

2.1 Resilience Characteristics of DNN

The resilience and robustness of deep neural networks (DNNs) have been widely
studied by researchers. [19], [25] analyze these aspects specifically in DNN acceler-
ators and applications. Before exploring various fault injection frameworks, it is
crucial to understand the consequences of soft errors and the impact of perturbations
introduced at different components of the network.

In Section 1 we introduced the key components of neural networks. Now, we
focus on four main parameters that influence the impact of soft errors in DNNs, as
indicated in [19]:

o Topology and Data Type: Each DNN has a unique architecture that
affects error propagation. Moreover, different data types are used in the
implementation process, further influencing how errors spread.
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» Bit Position and Value: The sensitivity of each bit position varies, depend-
ing on the data type. The interpretation of a bit depends on its position, as
different data types handle bit values differently.

o Layers: DNNs differ in the number, types, and positions of layers. Errors
propagate in distinct ways across these layers.

o Data Reuse: The study examines how various data reuse strategies in DNN
accelerators’ dataflows impact the Silent Data Corruption (SDC) probability.

The study tested networks such as AlexNet, CaffeNet, NiN, and ConvNet using a
DNN simulator on various datasets to inject faults and evaluate performance by
calculating:

o SDC Probability: The likelihood of silent data corruption when faults affect
an architecturally visible state.

o FIT (Failure-in-Time) Rate: The rate of failure in the hardware structure,
calculated based on SDC probabilities.

FIT = Z Rraw * Scomponent * SD CYcomponemf (21)

component

One of the first results found is that SDC probabilities vary between networks, even
for the same data type. This means certain networks may be more robust with
specific data types. Regarding bit positions, they observed that high-order exponent
bits are more likely to cause SDCs when corrupted, while mantissa and sign bits
are less critical. Bitflips from 0 to 1 in higher-order bits are more likely to cause
errors than those from 1 to 0, as correct values in DNNs tend to cluster around
zero. Thus, small changes in magnitude or sign bits often do not significantly affect
results, as explained in [26].

When considering layer position and type, [19] observed a decreasing probability
of fault propagation across network layers. Faults occurring in earlier layers have a
higher likelihood of propagating through the network, but even though many faults
spread into multiple locations and reach the final layer, only a small percentage of
them impact the final ranking of output candidates. This is because the numerical
value of activation functions affected by faults is a more significant factor influencing
Silent Data Corruption (SDC) probability than the mere number of erroneous
activations. Another key observation is that many faults are masked by layers such
as POOL or ReLLU, which prevent them from propagating to the output layer. This
result will be further demonstrated through fault injection into layer outputs, as
discussed in Chapter 4.2.

After the identification of critical components of DNNs, they suggest strategies
to improve resilience. For data type selection, DNNs should use a type that offers
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sufficient numerical range and precision to operate with success. Managing sensitive
bits is challenging, but restricting data types and suppressing dynamic value ranges
can help mitigate the effects of bitflips. Additionally, normalization layers can
improve accuracy by mitigating SDCs, as faulty values are normalized alongside
fault-free values. Therefore, their use should be considered to enhance network
resilience.

This analysis provides initial insights into DNN resilience. Our study, however,
will focus on time series data with high dimensionality, using 32-bit floating-point
precision as explained in Section 3.3.1.

2.1.1 Mutation

Mutation testing is a well-established technique that introduces slight modifications
to program code to simulate faults. While it is generally more suitable for analyzing
test set coverage than for robustness testing, we will still examine how it works.
The framework proposed in [27] applies mutation testing to deep learning (DL)
systems. A key aspect of mutation testing involves designing and selecting mutation
operators that introduce potential faults into the software under test, creating
modified versions of the program. Mutation operators can be categorized into two
groups: data mutation operators and program mutation operators, both of which
modify the software at the source level to introduce faults.

o Data Mutation Operators: These operators can be applied globally to all
data types or locally to specific data types within the training dataset. They
are summarized in the Table 2.1.

o Program Mutation Operators: Focused on different aspects of DL train-
ing programs, three operators are designed to inject faults: Layer Removal
(randomly deletes a layer from the neural network), Layer Addition (adds
an extra layer to the network structure), and Activation Function Removal
(removes an activation function, which plays a crucial role in the non-linearity
of deep networks).

Once these operators mutate the training data and program, a set of mutant
models is generated, and the test set is evaluated on these mutants. This source-
level mutation process provides insights into potential fault injection techniques.
Another type of mutation testing operates at the model level. Unlike source-level
mutation, which alters the original training data (D) and training program (P),
model-level mutation directly modifies the DL. model. Specific model-level mutation
operators have been created and summarized in the Table 2.2 to efficiently introduce
faults.

15



Techniques for Fault Injection

Fault Type Level Target Operation Description
o Global Duplicates training data
Data Repetition (DR) Local Data Duplicates specific type of data
Global Falsify results (e.g. labels) of data
Label Error (LE) Local Data Falsify specific results of data
- Global Remove selected data
Data Missing (DM) Local Data Remove specific types of data
Global Add noise to training data
Data Shuffle (DF) Local Data Add noise to specific type of data
Layer Removal (LR) Global  Prog. Remove a layer
Layer Addition (LA;) Global  Prog. Add a layer
Act. Fun. Remov. (AFRs) Global  Prog. Remove activation functions

Table 2.1: Source-level mutation testing operators for DL systems.

Mutation Operator Level Description
Gaussian Fuzzing (GF) Weight  Fuzz weight by Gaussian distribution
Weight shuffling (WS) Neuron Shuffle selected weights

Neuron Effect Block (NEB) Neuron Block a neuron effect on following layers
Neuron Activation Inverse (NAI) Neuron Invert the activation status of a neuron

Neuron Switch (NS) Neuron  Switch two neurons of the same layer
Layer Deactivation (LD) Layer Deactivate the effects of a layer
Layer Addition (LA,,) Layer Add a layer in a neuron network
Act. Fun. Remov. (AFR,,) Layer Remove activation functions

Table 2.2: Model-level mutation testing operators for DL systems.

2.2 Tensor Fault Injection

TensorFlow [28] is an open-source machine learning and deep learning framework
developed by Google Brain and released in 2015. It was designed to simplify the
creation and deployment of machine learning models. Over the years it has received
many updates, improving its usability and performance, with the changes reflected
in two major versions. The differences between these versions, as described below,
have influenced the development of fault injection frameworks.

Originally, TensorFlow used a static computational graph 2.1 where the entire
graph was defined and compiled before running a model. This allowed for certain
optimizations, especially for large models, but at the cost of flexibility, meaning
that the optimization had to be done before running the sessions. However, in
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Figure 2.1: A TensorFlow dataflow graph.
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TensorFlow 2.x, eager execution (dynamic execution) was introduced, similar to
PyTorch. This feature allows users to run code immediately without building a
static graph and when it’s needed it could explicitly convert parts of the code into
graph execution mode for performance improvements.

In TensorFlow 1.x, model building was low-level and session-based, requiring
more manual work. After the update to the second version, the Keras API became
the primary interface, promoting high-level model-building methods that enable
users to create, train, and evaluate models more easily. Keras allows developers to
build and train DL models using an intuitive, user-friendly syntax, removing much
of the complexity involved in lower-level operations such as tensor manipulation,
gradient computation, and device management.

Overall, the introduction of eager execution marked a significant step toward
making TensorFlow more accessible and competitive with PyTorch. TensorFlow
1.x had a steeper learning curve due to its static computational graph, while
TensorFlow 2.x simplified many processes, enabling rapid prototyping, interactive
debugging, and a more Pythonic coding style.

2.2.1 TensorFI Version 1

TensorFI [29] is a high-level fault injection framework for TensorFlow-based ap-
plications, designed to inject both hardware and software faults into a program.
During its development, researchers focused on three key design constraints:

o Ease of Use and Compatibility: The framework was designed to be
compatible with third-party libraries, with fault injection requiring minimal
changes to the application code.
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o Portability: TensorFI was developed to run on any system where TensorFlow
is installed, ensuring wide usability across different platforms.

e Minimal Interference: The injection process should not interfere with the
normal execution of the TensorFlow graph when no faults are being injected.

To meet these requirements, TensorF1 creates a parallel replica of the original
TensorFlow graph, equipped with new operators capable of injecting faults during
execution. This is necessary because TensorFlow does not allow modification of
the dataflow graph after its creation. At runtime, the system decides which graph -
the original or the fault-injected one - should be invoked for each execution of the
machine learning algorithm. The process begins by initializing the original graph
and creating a duplicate of each node for fault injection purposes. In the second
phase, faults are injected at runtime, and the system returns the corresponding
faulty output. TensorFI uses a YAML file to configure the fault injection parameters,
which include:

e Seed: The random seed used for reproducibility.
o TensorFaultType: The type of fault to inject into tensor values.

o InjectMode: The mode of fault injection, such as errorRate (specifying the
error rate for components), dynamiclnstance (randomly injecting faults into
random instances of operators), or oneFaultPerRun (injecting a single fault at
random during execution).

o Ops: A list of TensorFlow operators to target for fault injection, along with
the probability of injecting faults into each.

o SkipCount: An optional parameter for skipping the first 'n’ invocations
before starting fault injections.

For evaluation, the framework uses the Silent Data Corruption (SDC) Rate, which
measures how much an injected incorrect output deviates from the expected output
of the program. TensorFI has also received an update, with further details outlined
in Section 2.2.4.
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2.2.2 BinFlI

BinFi [30] is a popular fault injection framework designed to identify safety-critical
bits in machine learning applications that lead to safety condition violations when
impacted by hardware transient faults (soft errors). Unlike traditional fault injection
methods that rely on random sampling of fault locations to provide a statistically
significant estimate of resilience, BinFi aims to identify all critical bits in the
application, rather than focusing on the behavior of individual neural network
components. BinFI defines Silent Data Corruption (SDC) as a discrepancy between
the outputs of faulty and fault-free program execution, with critical bits being
those where faults would result in SDC. BinFT is based on an extended version
of TensorFI, on which a monotonicity property of neural networks functions and
binary search is added, Figure 2.2.

Recognizing that the time required to run an exhaustive fault injection analysis
is directly proportional to the number of bits in the program, they aim to reduce
this time by leveraging monotonicity properties.

o Non-strictly monotonic function: A non-strictly monotonic function is
one that is either monotonically increasing, where f(z;) > f(z;), Vx; > x;, or
monotonically decreasing, where z; < f(x;),Va; > x;. A function is considered
monotonic if it is non-strictly monotonic.

o Approximately monotonic: A function is approximately monotonic if
it behaves as a non-strictly monotonic over a non-trivial interval (e.g. the
sine function). A function has approximate monotonicity when it meets this
condition. For instance, the function f(z) = 100 * max(x — 1,0) — max(zx,0)
is monotonically increasing when = > 1, but not when x € (0, 1), so it can be
considered as approximately monotonic.

« Error Propagation (EP) function: An EP function is a composite of
functions that propagate a fault from its origin to the model’s output. For
example, if a fault occurs in a system with a MatMul operation followed by a
ReLu function, the function EP would be the composite of both. They are
expressed as EP(z) = ReLu(MatMul(zorg — Tepr, w)), where w is the weight
used in MatMul, and z,,, and x.,, are the values before and after the presence
of a fault.

Since the majority of functions in an ML model are monotonic, the EP function
is likely to be monotonic or approximately monotonic as well. This characteristic
helps reduce the fault injection space. By modeling the EP function as: |EP(z)| >
|EP(y)|,(x >y >>0)U(xr <y <<0)), x and y represent faults in the same data
bit (0 or 1), it can be expected that larger faults (in absolute value) will cause
greater deviations than smaller ones. Furthermore, larger deviations at the output

19



Techniques for Fault Injection

are more likely to trigger an SDC. Based on this, they can first inject x, and if it
doesn’t cause an SDC, it can infer that faults in lower-order bits y are unlikely
to result in SDCs, avoiding the need for additional simulations. However, this
approach may introduce some inaccuracy due to the approximation of monotonicity.

Not resultin SDC,
Results in SDC, move to higher-order
move to lower-order

Fault occurs ata

. tensorflow
* operator (add)

T T
sDC "  Non-SDC

Figure 2.2: Illustration of binary fault injection.

Regarding the binary search approach, they want to find the SDC boundary bit,
where faults in high-order bits lead to SDCs, while faults in lower-order bits are
masked. Identifying this boundary is equivalent to searching for a specific target in
a sorted array of bits, which is why they choose a binary search-like algorithm as
their fault injection strategy. Once this boundary is found, the binary search can
determine the number of critical bits within a range, such as a 32-bit segment.

BinFT can be used to assess the overall behavior of a model and identify its total
critical bits, although its main limitation is the inability to inject dynamically during
inference runs because it is based on the first version of TensorFI. Additionally, some
components may lack the monotonicity property, making one of its key features
less effective.

2.2.3 ARES

ARES [31] is a lightweight DNN-specific fault injection framework designed to
quantify the fault tolerance and accuracy of three DNN models: fully connected,
CNNs, and GRUs, Figure 2.3. It supports two modes of fault injection: static and
dynamic. Static injection introduces faults offline, before inference execution, and
is preferred as it adds no performance overhead. Dynamic injection, on the other
hand, introduces faults during inference, with minimized overhead by leveraging
native tensor operations to emulate fault behavior. This is similar to layers state
and layers output modes in TensorFI2 as explained in Section 2.2.4, although this
was done before the introduction of the eager-execution in TensorFlow 2.x.
ARES defines three fault points during DNN inference time: weights, activation
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functions, and hidden states. It injects into these components based on the DNN’s
topology and the specific experiment setup, requiring only a bit error rate, and
the targeted structure. Faults are modeled in memory structures of DNNs using
bit-level fault injection to alter values. By sweeping fault rates, the user can then
analyze the fault tolerance of the DNN.

Fault injection is performed at two different phases: construction time (static
injection) and evaluation time (dynamic injection). After training, the weights are
known, and ARES performs static fault injection by altering saved weights outside
of Keras. In contrast, activations and hidden states are dynamic, input-dependent,
dynamic values, requiring modifications to the Keras inference computation. Fault
injection for activations and states is implemented using GPU-compatible element-
wise tensor operations.

To further validate their framework, they performed silicon validation to demon-
strate that it accurately captures the bit error behavior exhibited by real hardware.
This was achieved by comparing simulation results with measurements from a
fabricated DNN accelerator designed to induce and measure SRAM faults.

Ares, together with TensorFI, is designed to operate within the Keras and
TensorFlow frameworks, respectively. Both of them allow modifying the state of
the layers in DNNs as they are executing. However, Ares requires modifications
to the Keras inference process to enable dynamic fault injection, as this feature
was not yet available in TensorFlow, which is essential for most reliability research
studies.

Construction Time

Weight Fault Model
L. —— User Defined
Activation FI Activation Fault Model Fault Models
m Activation Fault Model
FC(10) Weight FI w

Activation FI

Activation FI

GRU (200)

Weight Fl

State FI Weight FI W, Wr,w*

Figure 2.3: An illustration of the Ares framework applied to a DNN.
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2.2.4 TensorFI Version 2

TensorFI2 [21] is the updated version of TensorFI based on Tensorflow 2.x. At the
same time, it makes use of Keras Model APIs to inject static faults in the layer
states and dynamic faults in the layer outputs. ML models are made up of input
data, weight matrices that are learned during training, and activation matrices that
are computed from the weights and data. TensorFI targeted only the activation
matrices for fault injection, meanwhile TensorFI2 is capable of injecting faults into
both weight and activation matrices. The two types of injection defined above
support single and multiple faults along with three types of faults - zeros, random
value replacements, and bit-flips.

Layer States: this mode is static, it can be done before inference runs and
it injects into the layer states that hold the learned weights and biases. This is
illustrated in the Figure 2.4. The coupling layers are part of a RealNVP network.
Assume that the first coupling layer is selected for fault injection. TensorFI 2
injects faults into the weights or biases of this layer, and the faulty parameters are
stored back into the model. During inference, as the test input moves through the
various layer computations, the fault is activated when the execution reaches the
output of the final layer. This fault can then propagate through subsequent layers,
potentially leading to a faulty prediction.

Layer Outputs: this other mode is dynamic, it is executed during inference runs
and it injects into the layer outputs that hold the activation functions. Modifying
the layer outputs is a dynamic process that occurs during inference runs. This is
illustrated in the Figure 2.4. The coupling layers are part of a RealNVP network.
Suppose the outputs of the first coupling layer are selected for fault injection.
TensorFI 2 creates two Keras backend functions, Kfyne1 and K gyneo, which operate
on the original model without duplicating it but with specified inputs and outputs.
During inference, TensorFI 2 passes the inputs through K1, which intercepts
the computation at the coupling layer 1. It injects faults into the layer’s outputs
or activation states and then passes the modified outputs to K tyne2. This function
feeds the faulty outputs into the next layer, continuing the execution through the
rest of the original model. Since K,y operates on the faulty computation, the
faults can propagate through the model and result in a faulty prediction.

As in the first version, both modes are done considering SDC Rate as the
standard metric rather than accuracy. This choice was made to focus specifically
on the model’s resilience to faults. Only data points that were correctly predicted
in fault-free runs are considered during fault injection testing. Accuracy alone
does not account for this, as it includes cases where the model makes incorrect
predictions for reasons unrelated to the injected faults.
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Figure 2.4: Representation of Layer States and Outputs injections inside a
ReaNVP Network.

2.3 Pytorch Fault Injection

Pytorch [32] is an open-source machine learning library primarily used for DL
applications developed by Facebook’s Al Research Lab (FAIR) and released in
2016. One of his key characteristics is the dynamic computational graph which,
unlike TensorFlow’s 1.x static graphs, is built on-the-fly during execution. This
makes it easier to debug, modify, and experiment with models.

Another interesting feature is an Autograd module that automatically computes
gradients for backpropagation by tracking operations on tensors. This enables easier
implementation of custom backpropagation logic without manually calculating
derivatives. DNN implemented with pytorch requires their injection framework.

2.3.1 PyTorchFI

PytorchFI [33] is a runtime perturbation tool for DNNs, designed for the widely
used PyTorch DL platform. The tool demonstrates several applications, including
reliability analysis of CNNs, reliability analysis on object detection networks,
resilience analysis of models built to withstand adversarial attacks, and training
models that are resilient to errors. The primary way for dynamic neuron injection
is achieved through Pytorch’s hook functionality to perturb neuron values during
the forward pass of a computational model. By leveraging the hook API for error
injection, PytorchFI avoids modifying Pytorch source code, allowing perturbations
to run at native Pytorch speed with minimal overhead.
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For weight perturbations, PytorchFI introduces wrapper functions that modify
the weight tensors before inference, effectively perturbing weights offline and away
from the critical path. PytorchFTI is user-friendly, requiring only three steps for
injection. After installing the framework, the user provides the model to be
perturbed and runs a dummy inference to profile the model and collect network
hyperparameters. The final step involves selecting a model and specifying a
perturbation location. Similar to TensorFI, PytorchFI offers default injection types,
such as random value injection, single bit-flip, or zero-value injection.

Users can specify a single neuron or weight location for fault injection (by layer,
feature map, or neuro coordinates), or multiple locations for repeated injections
throughout the network. After defining these parameters, the actual injection is
performed at runtime by appending the targeted locations to a list, and during each
forward pass, the relevant layers iterate through the list to corrupt the specified
values according to the chosen perturbation model.

While PyTorchFT is effective for injecting faults at the application level of DNNs
and analyzing their impact on the system level, a limitation is that it cannot inject
faults at lower levels, such as register-level faults.

2.3.2 PyTorchALFI

PyTorchALFT [18] introduces a novel fault injection framework called PyTorchALFI
(Application Level Fault Injection for PyTorch) based on PytorchFI. On top of
that it offers an efficient method for defining randomly generated, reusable fault
sets for injection into Pytorch Models, and at the same time, it allows the creation
of complex test scenarios, dataset augmentation, and the generation of test KPIs
while integrating fault free, faulty, and modified NNs.

From Figure 2.5 we can see the software architecture of the framework with every
component. The principal unit is the alficore, which provides a test class that
integrates all essential functionalities. The scenario is responsible for initializing
the fault injection run, containing information like the fault model and the number
of injected faults. With the enhanced PyTorchFI component, it can take care of
the fault injection execution, modifying the neuron values in place with the help of
PyTorch hooks.

In addition to its core functionalities, alficore introduces several user-friendly
features such as data loader wrappers, monitoring tools to detect NaN or Inf values,
and evaluation functions for assessing Silent Data Errors (SDE) or Detectable
Uncorrected Errors (DUE) rates. It also includes visualization tools that enable
users to plot key results.

Weights, neurons, or numerical values can be modified and at the same time
is possible to define which layer the fault injection occurs in. All faults are pre-
generated as matrices before the inference run to improve the explainability of
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Figure 2.5: Software architecture of PyTorchALFI

faults. Table 2.3 presents the matrix rows for neuron fault injection, each targeting
different components. Weight fault injection follows similar parameters as those
in the table but in the first row it denotes the layer index, and in the second and
third rows it specifies the weight’s output and input channel, respectively. Once
the faults are generated, they are stored in a binary file, along with another binary
file containing details about fault locations and the original and altered neuron or
weight values before and after the injection.

Overall, PyTorchALFT is a notable fault injection framework developed in
PyTorch and widely used in research environments. It supports various tasks,
such as identifying the most vulnerable components in neural networks, comparing
model robustness, and evaluating vulnerability.

line number ID Description
1 Batch number of images within a batch
2 Layer n layer out of all available layers
3 Channel n channel out of all available channels
4 Depth additional index for conv3d layers
) Height y position in input
6 Width X position in input
7 Value  either a number or the index of bit position

Table 2.3: Fault definition parameters for neuron fault injection.
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Chapter 3

Injection Framework
Implementation

This chapter offers a comprehensive overview of the design of the Injection Frame-
work, detailing all preprocessing steps applied to the dataset and models. Section
3.1 introduces the RealNVP model being utilized, providing a detailed description
of each hyperparameter. Section 3.2 outlines the dataset used in this study. Finally,
Section 3.3 discusses the differences between the two implementations, with a focus
on layer states and layer outputs.

3.1 Neural Network Structure

In Chapter 1, we explained the structure of RealNVP, Figure 3.1, along with its
most relevant components, such as Coupling Layers. The Real-NVP network, as
described in [34], incorporates physical information into its loss function, thereby
enforcing the physical consistency and plausibility of the generated samples. The
training of this model follows a semi-supervised approach: initially, it adheres
to the unsupervised paradigm of RealNVP to learn the nominal data distribution,
while faulty data is filtered out with human supervision to identify the training set
of nominal data. Faulty data is then used to evaluate the models during testing
and validation. The score samples process is illustrated in the algorithm 2. Given
an input sample x, it undergoes a transformation using a flow model, resulting
in y and the log determinant of the Jacobian of the transformation. This log
determinant is essential for adjusting the probability density due to changes in
volume caused by the transformation. After obtaining the transformed y, the
probability of y is computed under a predefined probability distribution. The final
score is determined by combining the log probability of y (from the distribution)
and the log determinant from the transformation.
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Figure 3.1: Training step for the proposed fault detection pipeline with Real
NVP.

The transformation of input samples is executed through the call method of the
network. This process begins by iterating through each network coupling layer in a
specified direction: -1 for training and 1 for inference, as shown in Figure 3.2. A
masking operation is applied to the input, where half of the input is transformed
while the other half remains unchanged. The masked input is passed through two
parallel layers: scale and translation.

The scale layer modifies the magnitude of the input data during the transfor-
mation. This serves multiple purposes:

o By scaling the input, it controls the spread of the output.

o It alters the volume of the transformed space, which must be considered when
calculating probabilities.

e Scaling helps stretch or compress the input space according to the learned
distribution.

Meanwhile, the translation layer adds a constant shift to the input data during
the transformation.

e This allows the model to center the data around a new mean, which is essential
for learning complex distributions where different regions of the space may
require different adjustments.
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Algorithm 2 Algorithmic steps for score computation within the network.

Require: Input x, Training flag training
Ensure: Returns log probabilities
function SCORESAMPLES(x)
y,log det <— CALL(z, True)
y < distribution.log  prob(y)
log probs < y + log det
return log probs
end function
function CALL(z, training)
log deti,, «— 0
direction <+ 1
if training = True then
direction < —1
end if
for i € {0,...,num_ coupling — 1} in step direction do
Tmasked <— T X masks][i]
reversed__mask <— 1 — masks][i]
(s,t) < layers_list[i](Zmasked)
s <+ s X reversed mask
t < t x reversed mask
gate ¢ direction—1
7 + reversed_mask x (z x edirectionxs 4 direction X t x €82%%) + o cked
log det;,, < log det;,, +gate x > s
end for
return (z,log dety,,)
end function

o It acts as a bias that helps the model adjust outputs based on learned features,
enabling the learning of more complex relationships.

After applying the transformations s (scale) and t (translation), the reverse mask
is applied to both s and t, ensuring that these transformations only affect the
unmasked portion of the input. Then a new value for the input is computed and
passed to the next layer.

We will generate and test 18 models, each with different hyperparameters. These
models are created by combining three dynamic parameters: the number of coupling
layers, the number of units per coupling layer, and the depth of each coupling layer.

e Number of Coupling Layers: Defines the number of coupling layers within
the RealNVP flow network. Increasing the number of layers enhances the
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Figure 3.2: Coupling Layer architecture.
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Figure 3.3: RealNVP DNN Architecture varying the number of Coupling Layers.

model’s expressiveness and flexibility but also makes it more complex and
computationally expensive, Figure 3.3.

e Units per Coupling Layer: Refers to the number of neurons in each
coupling layer. Adding more neurons allows the model to capture more
complex patterns, but at the cost of increased computational load.

o Depth of Coupling Layers: Refers to the number of hidden layers within
each coupling layer. Deeper coupling layers enable the model to capture more
intricate transformations.

In addition to these variable parameters, there are several fixed hyperparameters
that remain constant across all models. These will not be analyzed during fault
injection and are as follows:
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Model Dimension (KB) Parameters Weights

c4-u32-d3 9794 480472 64
c4-u32-d4 9925 488920 80
c4-u32-db 6058 497368 96
c4-u48-d3 8711 729432 64
c4-u48-d4 8964 748248 80
c4-u48-db 9218 767064 96
c4-u64-d3 11725 986584 64
c4-u64-d4 12147 1019865 30
c4-u64-db 12571 1053144 96
c6-u32-d3 8865 720708 64
c6-u32-d4 8880 733380 80
c6-u32-dd 9076 746052 96
c6-u48-d3 13061 1094148 64
c6-u48-d4 13439 1122372 80
c6-u48-db 13817 1150596 96
c6-u64-d3 17581 1479876 64
c6-u64-d4 18213 1529796 30
c6-u64-db 18846 1579716 96

Table 3.1: Dimension of each models analyzed.

Epochs: Specifies the number of complete passes through the entire training
dataset. Increasing the number of epochs allows the model to train longer,
potentially improving performance.

Batch Size: Determines the number of training examples processed before
updating the model’s weights. A larger batch size can stabilize training by
averaging over more samples but may slow down convergence.

Input Window Length: Defines the length of the time windows used in
the model to make predictions, related to the temporal dimension of our time
series data.

Beta: Controls the balance between different loss components. In this case,
since we are not using log loss, this value is set to 0.

Reg Coupling: A regularization term applied to the coupling layers to
prevent overfitting by penalizing large weights.

Physics Samples: Specifies the number of physics-related samples used in the
loss function, ensuring that the model adheres to known physical constraints
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or laws.

For training, we have selected the following values: epochs = 100, batch_ size = 32,
input_ window_ length = 10, beta = 0.0, reg_ coupling = 0.001, physics_ samples =
16. Number, depth and units of coupling layers are the three main parameters that
influence our network size. One key consideration in selecting these parameters is
that the networks need to be small and compact due to the limited space available
in our application. The dimensions of each model, including the number of weights
and layers, are shown in Table 3.1, which details the number of parameters in
each model. Our injection process is applied to these networks, with the first step
focusing on generating reliable results and reproducibility experiments. Since the
training is done on one subset, we generate three different subsets for training and
testing by using different split seeds. The ADAPT dataset, explained in Section
3.2, is divided into an 80% split for training and 20% for testing.

The results for a single model are obtained by averaging the outcomes from
all three subsets. The Table 3.2 presents the evaluation metrics for each model,
including F1 score, accuracy, AUC-ROC, AUC-PR, precision, recall, false positive
rate (FPR), and true positive rate (TPR) at 95%. The results are similar across
models, although models with more coupling layers tend to perform slightly better
compared to those with fewer layers.

Model  Flgeore Accuracy AUC,,. AUC,. fpr95 tpr95 precision recall

c4-u32-d3  0.743 0.682 0.926 0.945 0.569  0.951 0.610 0.951
c4-u32-d4  0.750 0.692 0.931 0.948  0.552  0.954 0.618 0.954
c4-u32-d5  0.742 0.679 0.927 0.946  0.577 0.953 0.607 0.953
c4-u48-d3  0.757 0.703 0.936 0.953  0.533  0.955 0.626 0.955
c4-ud8-d4  0.746 0.690 0.942 0.958  0.546  0.943 0.618 0.944
c4-ud8-d5  0.746 0.688 0.936 0.953  0.555  0.949 0.615 0.949
c4-u64-d3  0.755 0.699 0.936 0.954  0.543  0.959 0.623 0.959
c4-ub4-d4  0.754 0.702 0.938 0.955 0.525  0.944 0.627 0.944
c4-u64-d5  0.774 0.730 0.950 0.963 0.579 0.954 0.653 0.944
c6-u32-d3  0.795 0.762 0.956 0.966  0.418 0.954 0.682 0.954
c6-u32-d4  0.790 0.755 0.958 0.968 0.427  0.951 0.675 0.951
c6-u32-d5  0.794 0.760 0.957 0.967  0.421  0.955 0.680 0.955
c6-u48-d3  0.800 0.768 0.956 0.966  0.409 0.958 0.688 0.958
c6-u48-d4  0.773 0.730 0.952 0.964  0.478  0.953 0.651 0.953
c6-u48-d5  0.780 0.740 0.953 0.965 0.456  0.950 0.661 0.950
c6-u64-d3  0.781 0.741 0.956 0.968 0.459  0.955 0.660 0.955
c6-u64-d4  0.785 0.746 0.953 0.965 0.448  0.955 0.666 0.955
c6-u64-d5  0.795 0.763 0.957 0.967  0.408  0.946 0.687 0.946

Table 3.2: Results for the main metrics utilized.
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3.2 Dataset

The training and testing of models are applied to the ADAPT [35] (Advanced
Diagnostic and Prognostic Testbed) dataset, an Electrical Power System (EPS)
dataset created by NASA in a laboratory setting to simulate various types of faults.
EPS loads in an aerospace vehicle may include crucial subsystems such as avionics,
propulsion, life support, and thermal management systems.

Given a dataset D, we aim to create N splits as shown in Figure 3.4; in this
case, N = 3. This results in three different sets for training and testing, allowing
us to train three models with the same hyperparameters on three distinct training
sets, which are then evaluated on their corresponding test sets. The final score
for a specific metric is calculated as the average of the scores obtained from each
model. Therefore, when we refer to the results from a model, we mean the average
across these different splits. This approach can be defined as Ensemble Training,
specifically using Bagging (Bootstrap Aggregating), where multiple instances of
the same model type are trained on different random subsets of the data. Their
predictions are then averaged or combined through majority voting.

ADAPT Dataset

Create splits with
different seeds

Train each model Training 1 Training 2 Training 3

Computing
every metric

Final Score

Figure 3.4: Process of splitting, training and testing to obtain the final score.

All of these operations are conducted for various reasons:

o Improved Generalization: Splitting the dataset into multiple training and
validation sets helps the model generalize better to unseen data.

o Model Performance Estimation: A single train-test split may provide a
misleading estimate of the model’s performance on unseen data, increasing
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the risk of overfitting. Using multiple splits and averaging results allows for a
more accurate estimate of the model’s real-world performance, as it has been
validated across multiple data subsets.

o Bias-Variance Trade-off: Utilizing multiple dataset splits balances the
trade-off between bias and variance. Training on various splits and averaging
the results helps reduce both high bias (underfitting) and high variance
(overfitting), as it minimizes dependence on any single data subset.

o Improved Accuracy: Ensemble learning can significantly enhance predictive
performance by combining multiple models. Individual models may have
weaknesses, but when aggregated, they often complement each other, resulting
in more accurate predictions.

As explained in the previous Section 3.1, we will test 18 models using the SDC
metric, where only correctly predicted samples undergo the injection process. All
these models use different subsets for this specific task, since they have very different
prediction power and so different accuracy value and so a different correct sample
to start from. To facilitate the comparison and to have more reliable evaluation
results we compute from the different splits, the absolute test subset in which all
the elements inside them are correctly predicted by all the models. This is done for
several reasons. We don’t want to have variations in the dataset that could unfairly
favor one model over another and that the differences in performance are due to
the models themselves and not due to differences in the data they were tested on.
The dimesion of each subsets split are reported in this Table 3.3.

Split Type Split Elements Features Classes % class 0 % class 1 (anomalies)

0 2179 894 2 51.629 48.370

Training 1 2179 894 2 51.858 48.141
2 2179 894 2 51.629 48.370

Average 2179 894 2 51.710 48.290

0 2179 894 2 51.629 48.370

Test 1 2179 894 2 51.858 48.141
2 2179 894 2 51.629 48.370

Average 2179 894 2 51.710 48.290

0 167 894 2 13.365 82.634

Subsets 1 360 894 2 31.666 68.333
2 93 894 2 7.526 92.473

Average / 894 2 51.620 81.150

Table 3.3: Dimension of train, test and subsets dataset for each split and average.
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3.3 Framework

In this Section, we will explore the implementation and operation of the frame-
work, with a focus on the two enhanced injection methods introduced in Section
2.2.4: Layer States and Layer Outputs. Section 3.3.1 provides background on
single-precision floating-point format, while Section 3.3.2 covers the metric used
in our experiments. The parameters for Layer States and Layer Outputs are
detailed in Sections 3.3.3 and 3.3.4, respectively. This introduction explains the
common processes shared between both injection modes. First, given a pre-trained
model M, we aim to run multiple fault injection experiments, determined by the
number_of__faults parameter (which will be analyzed in chapter 4), and then
average the scores for each metric across all experiments. This approach helps
mitigate random variations in the model, as the manifestation and impact of faults
can vary. By running several experiments and averaging the results, we minimize
the influence of any single outlier or extreme case, allowing us to assess the model’s
robustness across a range of fault scenarios.

In each experiment, we reset the network state to its original form after every
fault injection iteration. The Target parameter allows us to specify whether we
are injecting faults into the layer states or layer outputs. Once the model has been
injected, we compute the score and check for any NalN (Not a Number) or Inf
(Infinite) values. This helps us detect any system failures. For simplicity, we assign
an SDC (Silent Data Corruption) rate of 1, meaning the system is considered to
have completely failed if NaN or Inf values are found.

Layer states and layer outputs parameters are discussed in their relative Section.
Here we show the common procedure for both targets for modifying the values
of the tensor after deciding the parameters of each configuration. For a fault
experiment the algorithm follow these steps:

1. For each weight layer or output to be modified, we select the "Type" of fault
to inject-either zeros, random, or bitflips.

2. After selecting the percentage of values to inject using the "Amount" param-
eter, the algorithm checks the injection type.

3. For zeros and random, the process is the same. It selects random indices from
the tensor and applies a tensor__scatter nd_update operation, Figure 3.5,
which creates a new tensor by applying sparse updates to the input tensor,
similar to assigning values at specific indices.

4. For bitflips, the procedure is similar. After selecting the indices, the function
converts 32-bit floats into their binary integer representation, flips the specified
bits at the provided positions, and returns both the updated values and the
original bit values before the flip.
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5. The original values are used to calculate the percentage of negative-to-positive
flips, positive-to-negative flips, as well as flips from 0 to 1 and 1 to 0.

B ([T NN

updates shape output

Figure 3.5: Graphic representation of tensor scatter nd update operation.

3.3.1 The Bitflip Operation in Single-Precision Floating
Point Format

The Bitflip operation applies to values in single-precision floating-point format [36],
a computer number format that typically occupies 32 bits in memory. This format,
part of the IEEE 754 standard and officially called binary32, represents a wide
dynamic range of numeric values by using a floating radix point. The binary32
format specifies:

« Sign bit: 1 bit (S)
« Exponent width: 8 bits (E)
« Significand precision: 24 bits (with 23 explicitly stored) (F)

e The Value of a floating-point number is generally defined by the formula:
Value = (—1)% * 2(E — 127) * (1.F)

This formula allows for a precision of approximately 6 to 9 significant decimal
digits. For instance, a decimal value with up to 6 significant digits, when converted
to IEEE 754 single-precision format as a normal number, will match the original
value if converted back to a decimal with the same precision.

In this format:

 The sign bit (S) indicates the sign of the number.

o The exponent (E) is an 8-bit unsigned integer ranging from 0 to 255, stored in
a "biased" form. This approach simplifies comparisons by storing the exponent
as an unsigned value, making it straightforward to represent both very large
and very small numbers. When interpreted, the exponent is adjusted by
subtracting the bias (127) to yield a signed range.

o The true significand (or mantissa) of normal numbers comprises 23 fractional
bits to the right of the binary point, with an implicit leading bit set to 1.
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An accompanying figure 3.6 illustrates the bit representation of a floating-point
number in binary32 format.

sign exponent (8 bits) fraction (23 bits)

[ ] [ 1
oJoTiTa 4T 1o ol o+ To[oTo oo ooTo wTo[o oo 0 [o[ololalo o o]
31 30 23 22 (bit index) 0

Figure 3.6: Bit representation of a floating-point number in binary32 format.

The behavior of floating-point numbers changes when specific bit patterns are
applied to the exponent, Figure 3.7:

1. Exponent is all zeros (E = 00000000): This pattern represents a denormalized
number or zero.

2. Exponent is all ones (E = 11111111): When this pattern is used if the fraction
(F) is zero, the value represents infinity (positive or negative, depending on the
sign bit) or if the fraction (F) is non-zero, the value is NaN (Not a Number),
indicating an undefined or unrepresentable result.

Understanding these special cases is critical for our study, as bit flips in a
network may cause values to switch to these states. Identifying and addressing
such transitions is essential for maintaining numerical accuracy and preventing
errors in computation.

The Figure 3.8 illustrates the percentage of bits set to 1 across all network
weights. We observe a steady distribution in the mantissa bits. However, the
exponent bits, particularly from bits 24 to 30, display different behaviors. Bits 29,
28, and 27 are consistently set to 1, while bit 30 is always set to 0. Flipping bit 30
from 0 to 1 can lead to severe consequences, as it can result in the value becoming
either infinity or NaN (Not a Number). As we will demonstrate in the experiment
Section 4, most fatal faults arise from setting this particular bit to 1.

Exponent Fraction=0 Fraction #0
005 = 00000000, tzero subnormal number
01y, .., FEF = 00000001,,...,11111110, normal value
FFy = 11111111, tinfinity NaN (quiet, signalling)

Figure 3.7: The behavior of floating-point numbers.
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Figure 3.8: Distribution of bits equal to 1 for each bit position in Physics-Informed
Real NVP Model variables.

3.3.2 Metric

As outlined in Section 1.2.3, various metrics are used for evaluating anomaly
detection tasks. In our evaluation process (detailed in Section 3.1), we rely on the
following metrics:

e Precision: The ratio of correctly identified positive instances to the total
. . o o TP .
instances predicted as positive. Defined as P = 7pirp- Where TP is True
Positives and F'P is False Positives.

« Recall (also known as Sensitivity or True Positive Rate): The ratio of correctly
identified positive instances to the actual positive instances. Calculated as
R = %, where F'N are False Negatives.

« AUC-ROC (Area Under the Receiver Operating Characteristic
Curve): Measures the area under the ROC curve, which plots the True
Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
levels.

« AUC-PR (Area Under the Precision-Recall Curve): Measures the area
under the Precision-Recall curve, which is particularly useful for evaluating
performance on imbalanced datasets.
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e F1 Score: The harmonic mean of precision and recall, calculated as F'l,... =
2LLR
PR

o Accuracy: The overall ratio of correctly classified instances to total instances.

« Additionally, FPR and TPR at 95% are used as threshold-specific metrics to
assess model behavior.

To assess resilience and robustness of machine learning models under fault
conditions, various papers adopt specific metrics: SDC Rate (Silent Data
Corruption): used in [29] and [19], the SDC rate evaluates resilience by measuring
the fraction of injected faults that lead to incorrect outputs (i.e., silent data
corruptions). In classification tasks, an SDC is any misclassification. This metric re-
evaluates accuracy after fault injection, focusing on cases where previously correct
predictions become incorrect.

SDE Rate (Silent Data Error): [18] uses the SDE rate to measure the
proportion of faults that cause errors in the Deep Neural Network (DNN). While
related to SDC rate, the precise calculation method for SDE rate may differ.

PVF (Parameter Vulnerability Factor): Introduced in [37], PVF quantifies
parameter-level vulnerability by calculating the probability that corruption in a
specific model parameter will lead to an incorrect model output, Figure3.9, in
contrast to SDC Rate that works at model-1 evel. This metric answers the question,
“How likely is parameter corruption to result in an incorrect model output?” For
instance, PVF might measure the probability of errors in specific tasks such us
click prediction or image classification. We believe that standardizing these diverse
metrics would facilitate comparisons the reliability of Al systems.

In our study, we primarily use the SDC rate [19] to evaluate overall model
performance following fault injection. However, our framework allows for selective
fault injection at specific network layers or on individual activation functions. By
isolating these components, we can conduct a parameter-level evaluation of our
network elements, providing a more granular understanding of model robustness
similar to PVF.

Test Data

000 Identify Run . Count
[m{ml’ml—v target Inject Fault corrupted — incorrect
parameter model x outputs (#D)

Repeat # N times

Figure 3.9: Fault injection experiments flow.
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3.3.3 Layer States

The layer states injection process is controlled by several parameters:

Mode: This parameter determines the number of weight layers used based on
the depth of the coupling layers in each network, as seen in the Table 3.4. The
percentage of layers to be injected can be adjusted using the Mode parameter.
We selected five different percentage ranges: 20%, 40%, 60%, 80%, and 100%
(where all layers are selected)

Variable: This defines the type of injection based on the network layers. It
can target bias layers, which help the activation function fit the data more
effectively, or weight layers, which influence neuron connections between layers.
Alternatively, both can be selected by choosing all.

Type: The type of injection can be selected from three options: zeros (sets
the weights to zero), random (applies Gaussian noise to the weights), or
bit flips (flips the bits of the weight values).

Amount: Similar to the Mode parameter, this allows you to specify the
injection rate for each layer with an input percentage.

Bit: This parameter specifies which bit position will be flipped. If set to N, a
random bit position will be selected.

Direction: Available only when bit flips is selected as the injection type. If
set to 0, the flip changes bits from 0 to 1; if set to 1, it flips from 1 to 0.
Selecting all will apply flips in both directions.

Sign: Also only applicable to bit flips. If set to 0, only positive values are
flipped; if set to 1, only negative values are flipped. Choosing all allows for
both positive and negative flips.

All these parameters can be combined to create different injection configurations.
Some configurations can be more generalized to evaluate the overall behavior of
the model, while others can be more specific to target a particular component.
As mentioned, we aim to modify the network’s state values before inference to
effectively assess the network’s ability to generate representative weights and
connections between layers.
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Parameter Value Description
Mode percentage Number of layers to inject
Variable bias weight all Type of layers to target
Type zeros random bit flips Type of injection
Amount percentage Injection rate
Bit bit__position N Bit position from 0 to 31
Direction 01 all Direction of flips
Sign 01all Sign of bitflips

Table 3.4: Parameters for layer states configurations.

3.3.4 Layer Outputs

The layer outputs injection shares several common parameters with layer states,
such as Type, Amount, Bit, Direction, and Sign. The differences are explained
below:

Mode: In this case, the mode allows specifying the exact position of the
coupling layer using a real number (e.g., 1, 2, 3...). This number must be
equal to or less than the total number of coupling layers. You can also select
a random layer using N or apply the injection to all layers by choosing all.

Variable: This parameter allows you to choose between two types of nodes
within the coupling layer. Selecting scale targets the scale layers, translation
targets the translation layers, and choosing all applies the injection to both.

Activation: Both the scale and translation layers use different activation
functions. The hidden layers of both have ReLU activation. The scale layer
uses tanh activation in its final layer, while the translation layer uses a linear
activation. You can choose to inject into all of these by selecting all.

Method: This parameter specifies where the injection occurs. You can inject
at the final output of the coupling layer with the partial option, or you can
inject into all the sublayers of the coupling layer with the complete option. A
graphical representation showing these differences is provided in Figure 3.10.

Once again, all these parameters can be combined to create different levels of
ablation, either by focusing on specific activation functions or network depth, or
by applying a more general injection. The Table 3.5 below lists the major injection
configurations for layer outputs, highlighting changes in the Variable, Activation,
Method, and Type of injection.

This choice of picking between partial or complete method of injection was made
to analyze the behavior of scale and translation layer propagation. As we will see in
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Figure 3.10: Difference between partial and complete method parameters.

Parameter Value Description
Mode layer__position random all Position of the coupling layer
Variable scale translation all Type of nodes within coupling layer
Type zeros random bit flips Type of injection
Amount percentage Injection rate
Bit position N Bit position
Direction 01 all Direction of flips
Sign 01all Sign of bitflips
Activation ReLU tanh linear all Target a different activation function
Method partial complete Inject at the output of the layer or inside

Table 3.5: Parameters for layer states configurations.

the experimental Section, scale operations are more resistant to complete injection
but more vulnerable to intermediate injections, while translation layers show the
opposite behavior, being more robust to partial injections.

Since computing the output from an input involves multiple steps, we focus only
on the outputs of the scale and translation layers, ignoring the masked operations
and the computation of the next layer’s input.

Considering that layer outputs injection is highly dynamic, we have utilized
Keras version 3 [38] to create a custom model from our networks. The Model class
allows us to group layers into an object with both training and inference features,
inheriting all the characteristics of the original models while enabling us to add
new functionalities. This is essential for modifying the call method, which handles
all the operations and steps an input goes through. The process of modifying
the values specified by the T'ype parameter - whether zeros, random, or bitflips -
remains the same as explained earlier in Section 3.2.
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Chapter 4
Experimental Studies

In this chapter, we present the experimental results from different fault injection
configurations applied to our models. For layer states injections, we performed
approximately 2,000 experiments per model, totaling 38,000 experiments across all
models. In Section 4.1, we begin by analyzing the behavior of layer states within a
single model, followed by a cross-model analysis. For layer outputs injections, we ran
around 7,000 experiments per model, resulting in a total of 126,000 configurations.
In Section 4.2, we apply the same methodology to examine the behavior of layer
outputs targets. Finally, in Section 5.1, we summarize the findings of this study.

4.1 Layer States

4.1.1 Single Model

Our initial experiment aimed to determine the number of faults needed per injection
run to obtain a reliable SDC Rate. We started by testing with 10 and 20 faults per
injection. The final metric was calculated by averaging results across all injections.
In particular, we observed a minimal difference in performance reduction between
10 and 20 faults, Figure 4.1. Based on this finding, we proceeded with 10 faults
per injection to optimize for time efficiency.

As explained in Section 3.2, we will calculate our SDC metric in two ways: an
absolute SDC metric, which uses the same set of correctly classified test samples
across all models, and a relative SDC rate, calculated individually for each model.
Since each model has a unique accuracy and thus a distinct set of correctly classified
samples, the relative SDC rate will vary by model. The resulting SDC rate will
be determined as the average of the relative SDC rates across each model’s test
subset.

The Figure 4.2 illustrates the differences between using two types of SDC rates for
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Figure 4.1: Difference between 10 and 20 faults on zeros and random Injection.
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Figure 4.2: Difference between relative and absolute SDC Rate.

both random and zero injections. The results for each are quite distinct. Models that
use their respective subsets for evaluation tend to produce different results compared
to models evaluated using the same subset. However, using the same subset often
yields similar results, which can help highlight any differences. After deciding to use
a number of faults equal to 10 and SDC relative (SDC'rel) for single models, and
SDC absolute (SDCabs) for comparing multiple models, we will now focus on the
performance of a single network with the smallest parameters: num_ coupling = 4,
depth__coupling = 3, and units_coupling = 32. After analyzing the performance
of a single model, we will then compare multiple models.

The first key observation is when the model begins to show signs of performance
degradation. The Figure 4.3 demonstrates that the SDC rate starts to change at
approximately a 0.8% injection rate, with varying target layer percentages (20%,
40%, 60%, 80%, and 100%). It displays both random and zero injections, with the
random injections showing higher values for the SDC rate.

After identifying when the model begins to experience performance degradation,
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Figure 4.3: Start of performance degradation at States Injections.

we continue increasing the injection rate up to 100%. We observe that zero injections
show a saturation in performance scores around a 30% injection rate, whereas
random injections reach saturation even earlier, around 10%, as shown in Figure 4.4.
It is crucial to monitor these behaviors to ensure reliable results. To understand
why this behavior occurs, we must investigate what happens within the network
after the model’s input passes through the injected weights.

—— random
---- Zeros

LR

SDC Rate

o
-
o

0.05

0.00

0 20 40 60 80 100
Injection rate (%)

Figure 4.4: Random and Zeros States Injection from 0 to 100.

Some things to consider are that even if all the network’s weights are set to zero
or assigned random values, the network will still produce an output able to compute
scores due to its internal architecture, as described in Section 3.1. In the provided
plots, the input passes through each layer, from coupling layer 3 to coupling layer 0
and it is important to note that the final scale layer uses a tanh activation function,
which maps values to the range [-1, 1], while the final translation layer employs a
linear activation function. When discussing zeros injection and random injection,
we refer specifically to the injection in the layer states configurations - impacting
the weights and biases of the network - rather than directly altering the network’s
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Figure 4.5: Distribution of scale and translation layers in normal condition on

(b) Normal Model Masked

masked and unmasked outputs.

output.

To analyze this behavior, we first evaluated the network output without injection.
We then selected configurations where both zero and random injections caused the

network to saturate, for example, around 50%.

Without injection, Figure 4.5, the input propagates through the scale and trans-
lation layers, followed by a masked operation that modifies half of the input while
leaving the rest unchanged. Section 4.2 presents experimental results demonstrating
that the scale and translation layers exhibit different behaviors under zero and

45



Experimental Studies

Layer0 - Scale Layer0- Layer 1- Scale Layer1 - Tran:
100000 25000
140000 30000
120000 80000 20000 25000
100000
g T o000 15000 g 20000
§ sono0 § &
é E é-lsmm
L 60000 £ 0000 10000 £
10000
40000
20000
20000
! o
~1.00-075-050-025 0.00 025 050 075 100 10 65 00 05 1o 00075 -050 ns uco 025 050 075 100 N ) o1 0z 03
value value
Layer2-Scale Layer2- LayErB Scale Layer 3 - Translation
50000
a
12000 14000 80000
40000 12000 70000
10000
0000
10000
> = > >
2z &' 30000 3 3
o' e000 &' 5000: ) £ 50000
g El g s 3
g 6000 g k-4 & 40000
g 20000 2 6000 e
& £
= = 30000
4000 000
10000 20000
2000 2000 L0000
o o 0
-1.00 -0.75 —0.50 -0.25 0,00 025 050 075 -01 00 01 02 03 -100-0.75 -0.50 -0.25 0.00 025 0.50 0.75 100 -03 -02 -01 00 01 02 03 04
Value Value Value Value
Layer0 - Scale Layer0 - Translation Layer1- Scale Layer 1 - Translation
175000
160000 175000 160000
140000 150000 120000 150000
120000 120000
. 125000 125000
Z 10000 z Z 100000 9
S § 100000 S § 100000
3 #0000 3 2 80000 z
2 L 75000 g & 73000
= s0000 = = so000 =
50000
40000 0000 40000
20000 25000 20000 000
! o
Z1.00-075-050-0.25 000 035 050 0.75 100 66 -04 02 00 02 04 06 08 e ars e Gz 000 ez 0 o7 62 -01 90 01 o2 03
Value Value ue Value
Layer?2 - Scale Layer2 - Translation Layer3 - Scale Layer 3 - Translation
160000 175000 160000 175000
120000 150000 140000 150000
120000 120000
125000
> > 2 10
100000 100000
H H 4
§ & 100000 m 5 100000
2 50000 & 3 80000 S
g g 75000 g £ 75000
= 50000 = = 50000 =
50000
30000 50000 50000
20000 23000 20000 25000
1o -08 -06 —04 -02 00 02 04 010 -0.05 0.00 005 010 015 020 025 C10 -08 -06 -04 -02 00 02 04 03 02

Value

Value

(b) Zeros Masked

Value

-01 00 01 02 03 04 05
Value

Figure 4.6: Distribution of scale and translation layers with 50% Zeros Injections
on masked and unmasked outputs.

random injections.

When zeros are injected into the layer states:

o The scale layer produces mixed values, primarily oscillating between zero and
one.

o As shown in Figure 4.6, the tanh activation saturates the scale values near -1.

o After the masking operation, these values are predominantly distributed
between -1 and 0. Ideally, the scale operation should leave part of the input
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Figure 4.7: Distribution of scale and translation layers with 50% Random Injec-
tions on masked and unmasked outputs.

unchanged. Additionally, due to the saturation effect, the translation layer
shifts the output to higher values, as ReLLU only modifies negative inputs.

When random values are injected into the layer states:

o The final masked scale output is confined to values near 0 or 1. As observed
in Figure 4.7b, the translation layer outputs higher parameters, deviating
significantly from the peak around zero.

The observed behavior could explain the saturation issue associated with the
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Figure 4.8: Normal vs Anomalous Data in different datasets.

use of the tanh activation function, which saturates values near -1 and 1. Another
potential explanation for these behaviors is the type of seed used during dataset
splitting. In the Figure 4.8, U represents the latent space output, which corresponds
to the transformed input data. The mean of U provides an aggregated measure of
the latent representation for each sample and can be utilized for anomaly detection.
The Log Jacobian Determinant quantifies the volume change induced by the
transformation of data from the input space to the latent space. It plays a critical
role in evaluating the probability density of the input data. The determinant
provides insight into how the transformation affects the density of points in the
latent space, offering a measure of the anomalousness of the transformation for
a given input. While the mean of U may not always be a reliable predictor, it
can still aid in distinguishing between normal and anomalous classes under certain
conditions. This challenge is illustrated again in 4.8, where overlapping classes
impede clear separability.

Distributions of Output, Scores, and LogDet Across Injection Types
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Figure 4.9: Distributions of scores, outputs, and log-determinants for three
models: a baseline model, one with 50% random value injection, and one with 50%
zero-value injection.

In Figure 4.9, we compare the distributions of the network’s output, scores,
and log-determinant values for the following configurations: No injection, zeros
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injection at 50% and random state injection at 50%. This shows the ability of
input alone to capture the relevant information about anomalies and perform in
the way presented.
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Figure 4.10: Layer States Injection with mode = 100%.

Variables (Bias, Weight, All): Let’s begin by analyzing the results of our
injections. Our goal is to examine how different variables - Bias and Weight -
affect the outcome. Both variables are collectively referred to as all.

The Figure 4.10 illustrates the SDC rate (Silent Data Corruption) in various
injection rates (expressed as a percentage). In this scenario, the injection set
targets 100% of the layers (mode = 100%). We observe that injecting zero values
into the bias causes a minor performance drop compared to weights. In contrast,
introducing random noise into the bias results in significantly greater degradation.
These behaviors act in an opposite way. This phenomenon can be explained by
the role bias plays in neural networks. Bias is typically added after the weighted
sum of inputs. Changing bias to random values disrupts the controlled shift in the
activation function, introducing global perturbations to the output and leading to
errors. However, injecting zeros into the bias removes the offset but does not affect
the relative contributions of the inputs from the weights. Many activation functions,
such as ReLLU (used in this case), can still function effectively under these conditions.
This makes zeroing the bias less harmful, especially when input alone can determine
the output. In contrast, weights exist in larger quantities and are distributed across
numerous connections. Random injections into weights typically affect only a
subset of the overall weight matrix, which may not drastically disrupt the model’s
output due to redundancy and averaging effects. However, injecting zeros into
weights is equivalent to separate specific connections entirely. This can significantly
degrade the model’s ability to learn or infer patterns, effectively pruning parts of
the network and potentially collapsing complex learned representations.
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Fixed Amount: We will continue analyzing the bias and weight variables, but
from a different perspective. In this analysis, the x-axis represents the percentage
of layers selected for the injection ranging from [20%, 40%, 60%, 80%, 100%], while
the injection rate is fixed.

In the Figure 4.11, we present both zero-value and random-value injections
simultaneously, highlighting which type of injection is most critical. It is also
important to note the model’s saturation at higher injection rates, which can
further impact performance shown in the previous experiment.

With a small injection rate during random-value injections, the performance of
both variables remains nearly identical. However, as the injection rate increases,
bias begins to outperform weights, as previously demonstrated.

In contrast, with zeros-value injections, with an injection rate of 10% the
performance of weights remains the same for all the layers target, meanwhile after
20% injection rate and around 60% and 80% the weights variable presents a steep
jump in decreasing performance, while the performance of bias remains steady
across all percentages of selected layers.
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Figure 4.11: SDC Rate at different layers percentage for zeros and random
injections.
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Figure 4.12: Bitflips State Injections for ’all’ direction on different variables.

Bitflips: Let’s now explore a different type of injection: bit flips. In Section
3.3.1, we previously demonstrated the bit-flip operation in single-precision floating-
point format. Here, we will first analyze the Silent Data Corruption (SDC) rate,
as done earlier, followed by examining the rate of negative and positive flips, as
well as flips from 0 to 1 and 1 to 0. All bitflip injections were performed with a
fixed injection rate of 10%, targeting all layers (mode = 100%). In this scenario,
the steady saturation state is not observed. The direction of the flips is defined as
follows:

e 0: The bit transitions from 1 to 0
e 1: The bit transitions from 0 to 1
o All: Both directions are randomly chosen
Similarly, the sign configuration is specified as:
e 0: Only positive values can be flipped
e 1: Only negative values can be flipped
o All: Both positive and negative values can be flipped

The previously presented weights distribution highlighted the number of 1s
and Os across all weights and biases. We expect a system value of SDC Rate =
1 at the 30th bit flip since the value of this bit is 0 in all scenarios. The results
indicate no performance degradation for flips affecting the mantissa bits. However,
performance degradation begins at the 20th bit and follows a Gaussian distribution
from bit 20 to 31, peaking at the 25th bit in the exponents as seen in Figure 4.12.

From a variable perspective, bias has a minimal impact on performance, sug-
gesting that the network behavior is more influenced by the weights. Fixing the
direction to 1, flips from 0 to 1 Figure 4.13, shows no significant difference compared
to allowing both directions. In contrast, flips with direction set to 0, flips from 1 to
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Figure 4.13: Bitflips State Injections for ’0 to 1’ direction on different variables.
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Figure 4.14: Bitflips State Injections for ’1 to 0’ direction on different variables.

0 Figure 4.14, result in no system failures and exhibit less performance degradation
than flips in the opposite direction.

The rate of flips from 0 to 1 and 1 to 0, Figure 4.15, follows the distribution
pattern of weights and biases discussed in Section 3.2. Additionally, the analysis of
negative and positive flips in Figure 4.16 reveals that the weights have a slightly
higher proportion of negative values compared to positive ones.

52



Experimental Studies

1.0 1.01 seee- 1.0{ soee S e
e e e }
© © ©
o 0.8 0.8 0.8 |
— — — | |
2 2 2 |
Sos Sos Sos \ i
£ £ £ ‘
Loa4 Loa4 Loa4 \ ’
0 —— bias 0 0 —— bias |
< - a =3 )
T o2 weight To2 T 0.2 weight !
—— all —— all “
0.0 0.0 0.0 .
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Bit position Bit position Bit position
(a) Sign all (all flips). (b) Sign 0 (positive flips). (c) Sign 1 (negative flips).
Figure 4.15: Flips from 0 to 1 Rate on different variables.
1.0 —— bias 1.0 1.0{ —— bias
) weight ) ) weight
Sos —— all Sos Zo8| —— all
w w w |
=3 =3 =3 I
0.6 0.6 0.6 |
OJ 4 4
> > >
s 0.4 s 0.4 = o 0.4
2 2 —— bias 2
Z 02 Z0.2 weight 205
—— all
!
0073 5 10 15 20 25 30 0073 5 10 15 20 25 30 0073 5 10 15 20 25 30
Bit position Bit position Bit position

(a) Direction all (all flips).  (b) Direction 0 (0 to 1 flips). (c) Direction 1 (1 to 0 flips).

Figure 4.16: Negative Flips Rate on different variables.

4.1.2 Multiple Models

In the previous Section, we analyzed the behavior of injections on a single model,
providing insights into the network’s response to various variables and types of
injections. We will now examine the effects of injections on the 18 models mentioned
in Section 3.1. Due to the extensive number of experiments, we will separate the
models with four and six coupling layers and first analyze the combination of units
and coupling layer depths. We used radial charts to simultaneously plot nine models
for each coupling layer configuration. If the plot resembles a circle, it indicates that
the models exhibit similar performance. We aim to identify significant deviations
where the shape of the plot differs drastically between models.

Zero Injections: By varying the layer injection rate, we observe that models
with a greater depth of hidden layers exhibit poorer performance. This degradation
can be mitigated by increasing the number of coupling units in these layers. Models
with deep layers and a small number of units tend to perform worse as the layer
injection percentage increases. When we fix the layer injection percentage at 100%
and vary only the injection rate, we notice that at high injection rates, models tend
to saturate, averaging similar results. As shown in Figure 4.17, when the injection
rate is high, the radial plot forms an almost perfect circle.
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Figure 4.17: Zeros injections on multiple models on different variables.
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Variable-Specific Observations

o Bias: there is no significant change in performance, except for models with
greater depth and fewer units, which perform worse. It is important to note
that bias is more susceptible to random errors.

o Weights: models with a larger number of parameters tend to perform worse
under injection.

Combined (Bias and Weights): for configurations where both bias and
weights are targeted (e.g., coupling layers = 6, units = 64, depth = 3, and
units = 32, depth = 3), a 10% injection rate causes small performance changes
in models with higher depth and significant parameter mismatches.

Our findings indicate that not only is the total number of parameters important,
but the combination of depth and the number of units must be appropriately bal-
anced to allow the network to effectively capture complex patterns and information.

Random Injections: the observations from zero injections largely apply to
random injections as well. Starting with a fixed injection rate, models with four
coupling layers show chaotic results, especially at a 40% injection rate, where
performance declines unexpectedly. This suggests that even small perturbations
can cause performance degradation. Models with six coupling layers demonstrate
consistent performance across various injection rates, except at 20%, where mod-
els with greater depth perform the worst. All models behave similarly for bias
injection, except for those with a larger number of units, where injections have a
more pronounced effect. Overall, as seen in Figure 4.18, there are no significant
perturbations worth noting.
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Figure 4.18: Random injections on multiple models on different variables.
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BitFlips Injections: we plotted the results for bit positions 21 through 29,
excluding the 30th bit due to system faults. These bits were identified as the most
critical in the single-model study. For bits 24, 25, and 26 - representing the peak
of our Gaussian distribution - the results were consistent across all models. For the
remaining bits, as shown in Figure 4.19, models with a high number of units in
configurations with six coupling layers experienced more pronounced performance
degradation.

64U-3D — sl 64U-3D — B2t
— Bit22 — Bit22
— Bit23 — Bit23
— Bit24 — Bit24
28U-3D — it 25 28U-3D — sit2s
— Bit26 — Bit26

Bit 27
—— Bit 28
Bit 29

Bit 27
—— Bit 28
Bit 29

48U-5D 48U-5D

(a) Four Coupling Layers. (b) Six Coupling Layers.

Figure 4.19: Bitflips injection on multiple models with injection rate = 10% and
mode = 100% from 21th to 29th bit position.
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4.2 Layer Outputs

After analyzing the results of the layer states, we now examine the layer outputs
in greater depth. This time, the model’s weights remain unchanged as we explore
the internal network behavior by directly modifying the outputs. We use the same
configuration as before: the number of faults is set to 10, with the SDC Rate
relative for single-model evaluation and the SDC Rate absolute for multi-model
evaluation. In the single-model section, we will compare how the smallest model -
configured with four coupling layers, a hidden layer depth of three, and 32 units -
behaves relative to the largest model, which is configured with six coupling layers,
a hidden layer depth of five, and 64 units.

4.2.1 Single Model

We begin by analyzing a model initialized with zeros and subjected to random
injection, using a configuration of four coupling layers. The first observation pertains
to how the translation and scale layers respond to these injection strategies. As
outlined in Section 3.1, scale layers control the spread of the output by stretching or
compressing the input space according to the learned distribution, while translation
layers apply a constant shift during the transformation, adjusting the output based
on the learned features.
Configuration settings are divided into two main injection strategies:

o Partial Injection: Injecting only the final output of a coupling layer.

o Complete Injection: Injecting outputs directly from within the hidden
layers inside a coupling layer.

Having a look at Figure 4.20 we can see that for:

o Partial Injection: For both random and zero-based injections, partial injec-
tion exhibits a linear progression in performance. Translation layers demon-
strate greater resilience, effectively maintaining their shifts when injection
occurs only at the final layer. Figures 4.20a, 4.20c, 4.20e, 4.20g.

o Complete Injection: In this configuration, scale layers are more robust
against random noise. However, they are more sensitive to high injection
rates of zeros. Increasing the number of coupling layers beyond four does not
produce significant differences. Figures 4.20b, 4.20d, 4.20f, 4.20h.
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(g) Random Partial Six Coupling Layers.  (h) Random Complete Six Coupling Layers.

Figure 4.20: Layer Outputs injections for different models on different variables.
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A summary of the combined effect of zeros and random errors, illustrated in the
Figure 4.21, highlights the following: random injections strongly affect scale layers in
partial configurations and translation layers in complete configurations. Meanwhile,
zeros injection shows distinct behaviors, particularly in complete configurations,
where scale layers encounter performance issues at higher injection rates.
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Figure 4.21: Layer Outputs Zeros and Random Injection on different variables in
Partial and Complete configurations.

In Figure 4.22, the performance of both configurations is compared. Key findings
include:

» For random injections, scale layers in complete configurations and translation
layers in partial configurations exhibit robustness.

o Other injection types show weaker performance, particularly under random
injection.
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o Zeros injection reveals that scale layers in complete configurations struggle at
higher injection rates.
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Figure 4.22: Layer Outputs Zeros and Random Injection on different variables
by number of Coupling Layers.

In the Figure 4.23 we can examine how activation functions in hidden layers influ-
ence performance, focusing on the complete configuration to evaluate components
deep within the coupling layers.

« Random Injection: Translation layers are the most susceptible, with the
worst performance observed in the final linear output layer and scale layers
are less affected, as depicted in the analysis.

o Zeros Injection: The ReLU activation function in scale layers performs
poorly under zero injection, with exponential degradation as the injection rate
increases. Activation functions in translation layers remain steady across all
injection rates. Finally, results remain consistent even with six coupling layers,
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indicating that zeros injection minimally impacts deeper networks compared
to random noise.

This preliminary analysis highlights the fundamental differences between scale
and translation layers under various injection strategies. Furthermore, the perfor-
mance implications of partial versus complete injection, particularly in translation
and scale layers and the influence of activation functions on layer outputs, with
specific vulnerabilities identified for certain configurations and injection types.
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Figure 4.23: Layer Outputs Zeros and Random Injection on different activation
functions.
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Single Layers: To gain additional insight, we analyze the impact of errors when
injections are applied to individual layers. This approach allows us to examine
how the model behaves at varying depths. The experiments were conducted on
models with coupling layers set to four and six. In this configuration, the layers are
numbered from 0 to 3 (or 5 for the six-coupling model), where the layer 0 represents
the input layer and higher numbers correspond to layers deeper in the network.

The analysis begins by examining the general behavior of scale and translation
layers. Subsequently, we evaluate the configuration where both components are
targeted simultaneously (all) to determine which is most significantly affected.

The Figures 4.24, 4.25 illustrate the effects of zeros injection on scale and
translation layers: Scale Layers:

o Partial Injection: With four coupling layers at Layer 0, the injection has
minimal impact, as the network effectively recovers in subsequent layers.
Furthermore, in the model with six coupling layers, there is less separation
between each layer, but it follows the same behavior as the model with four
coupling layers.

o Complete Injection: For the model with four coupling layers the performance
degradation increases linearly with depth and injection rate. Meanwhile for
models with six coupling layers, layer 0, 1, 2 does not increase with the
injection rate, as the layers 3, 4 and 5 does slightly.

Translation Layers:

o Partial Injection: It has a different trend from the one observed in scale
layers. Lower layers are more resilient, while only the last layer exhibits
significant issues. This pattern holds true for models with both four and six
coupling layers.

o Complete Injection: Performance steadily worsens with depth, reflected in
an increasing SDC rate after each layer.

In Figures 4.24, 4.25 the partial configuration the graph resembles the behavior
of scale layers, highlighting their vulnerability to zeros injection. Meanwhile in
the complete configuration, the adverse impact on scale layers is slightly mitigated
by the translation layers, particularly at Layer 0, which behaves similarly to the
previously observed complete-scale injection trend.
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Figures 4.26, 4.27 reveal the impact of random injections, showcasing more
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pronounced peculiarity between scale and translation behaviors:

e Scale Layers in Complete Injection: The performance decreases linearly
with depth for both four and six coupling layers. Lower layers experience
only minor degradation, while deeper layers exhibit significant declines in

performance.
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» Translation Layers in Partial Injection: The graph for translation layers
in a partial configuration closely mirrors that of scale layers in complete
configurations, with lower layers maintaining resilience and deeper layers

showing sharp declines.

Other configurations maintain a steady increase in SDC rate as depth increases.
Analyzing the all configuration in Figures 4.26, 4.27 the performance consistently
worsens as injections target deeper layers. The graph closely aligns with the scale-
layer behavior, demonstrating that scale layers predominantly influence network
performance. Translation layers fail to counteract this impact effectively when

subjected to injection.
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Figure 4.27: Layer Outputs Random Injection with six Coupling Layer on different
variables presented by layer depth.

Bitflips: This study continues the study of bitflip injections, focusing on their
impact on layer outputs. Similar to the analysis of layer states in Section 4.1.1,
bitflip injections were performed with a fixed injection rate of 10% under standard
configurations. These configurations included both positive and negative signs,
as well as flips in all directions. The analysis was conducted on two models with
coupling values of 4 and 6. If the system experienced failure due to bitflips, we
assigned a SDC rate of 1.

For our figures, we primarily concentrated on the exponent bits (23rd to 30th
bits) and the sign bit (31st). Lower-order mantissa bits were largely overlooked, as
their results were near zero and negligible. Our analysis examined the impact on
both scale and translation, as well as their combined effect.

As shown in the corresponding Figure 4.28, we examined scale and translation
effects individually and in combination (all). For partial injections, the model’s
performance aligned with scale-related behavior. For complete injections, it followed
translation-related behavior. Consistent with prior studies on zero and random
injections, translation showed resilience when injected in the final layer post-linear
activation. Contrarily, scale was more robust against complete injections within
hidden layers. The larger model (coupling = 6) exhibited higher failure rates in
bits 27, 28, 29, and 30. It also demonstrated increased SDC rates compared to the
smaller model (coupling = 4). The propagation of bitflips was more pronounced in
the larger model, leading to additional failures in these critical bits.

In Figures 4.29, 4.30, we studied the resilience of individual layers to injections.
All layers exhibited similar failure points. As observed earlier, the model followed
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Figure 4.28: Bitflips Layer Outputs injection on different variables from 0 to 31th
bit position.

scale behavior for partial injections and translation behavior for complete injections.
The increased size and depth of the larger model intensified bitflip propagation,
resulting in an additional number of failures in different bits.

In Figure 4.31, we analyzed the failure rates for different activation functions.
The most robust activation function was scale tanh, which constrained values
within the range of -1 to 1. Performance ranking from the worst to the best was as
follows: translation ReLLU, Translation Linear, Scale ReLLU, Scale Tanh. This study
was conducted exclusively for complete injections, as it would not be meaningful
to inject different activations in a partial target.

The Table 4.1 shows a summary of each bitflip configuration applied, enabling us
to gain an overview of where the detection power fails and which bits are affected.
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4.2.2 Multiple Models

After completing the analysis of the single model in Section 4.1.1, we now shift our
focus to the behavior of the 18 models described in Section 3.1. Using the same
guidelines outlined in Section 4.1.2, we examine the graphs of models with four
and six coupling layers to identify significant differences in the areas defined by the
intersection of the models’ performance.

Zeros Injection: at first glance, we observe that models with a smaller number
of units perform worse on both sides of the Figures 4.38a, 4.38b. This suggests that
smaller hidden layers lead to information loss, making the models unable to capture
relevant characteristics. Adding greater depth to the coupling layers intensifies this
issue, as errors propagate more extensively. Models with a larger number of units,
however, can mitigate this problem by retaining more information and reducing
the impact of propagated errors.

Examining the Figures 4.35, 4.36, 4.37, from a layer perspective and considering
the scale, translation, and all configurations, we notice that models with six coupling
layers tend to exhibit more chaotic behavior. These models alternate their worst
performance across varying layer depths. In particular, models with few units and
a significant propagation distance (e.g., units = 32 and depth = 5) struggle with
zeros propagation through layers, leading to output degradation.

The activation Figures 4.39a, 4.39b highlight certain models that perform the
worst. These underperforming models are characterized by having few units in
their hidden layers (e.g., units = 32). This reinforces the importance of having
sufficient units to process and retain feature information, as previously discussed in
the single-layer analysis. In contrast, models with substantially more units perform
well, demonstrating a stronger capacity to inhibit the negative effects of zeros
injection.

Random Injection: let’s now examine the findings related to the injection
of random values and compare them to the previously observed effects of zero-
value injections. From the Figures 4.38¢c, 4.38d, we can immediately observe that,
compared to zero-value injections, the scale-partial and all-partial configurations
lie on the same plane as the all-complete and translation-complete configurations.
However, the scale-complete and translation-partial configurations stand apart,
residing inside this plane. Overall, the shapes in this case appear more rounded,
suggesting that noise indeed causes a reduction in performance. However, the
degree of separation between models remains limited. A notable exception is
observed in the model with 32 units and a depth of 5, which performs distinctively
for both coupling types-four and six.

In the single-layer analysis, Figures 4.35, 4.36, 4.37, the chaotic behavior seen
with zero-value injections decreases slightly. The shapes are now more rounded
across the scale, translation, and all configurations. Notable anomalies appear in
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the translation layers, particularly in models with smaller numbers of units and
greater depths. These anomalies tend to result in suboptimal combinations of
units and depth. Interestingly, this effect does not occur in models with larger
numbers of units and smaller depths, as previously noted for the scale layers. This
underscores the importance of incorporating a substantial number of units within
each layer. Moreover, the disruptive behavior associated with translation layers
appears to be mitigated by scale layers when we examine the all configuration,
where the dominance of scale layers becomes evident.

This Figures 4.39¢, 4.39d, introduces a shift in behavior. Linear activation
functions emerge as the weakest against noise, demonstrating the worst performance.
Their behavior is reminiscent of ReLU activations under zero-value injections.
However, there is a reduction in erratic behavior among models, which now exhibit
greater robustness to random noise. Only extreme combinations of depth and units,
such as 32 units and a depth of 5, show significant impacts from the noise.

Bitflips injections: in this simplified bitflips analysis, we have removed the
bits who have generated a failure, Figure 4.40, as was done in the layer states
configuration. We focus on plotting the bits from 20 to 27, highlighting the following
key findings:

o Impact of Coupling Layers: The number of coupling layers negatively
affects performance. Models with more coupling layers exhibit a higher SDC
rate. This is because bitflips are more likely to propagate through additional
layers, compounding errors.

« Hidden Layer Units and Coupling Depth: A mismatch between the
number of units in the hidden layers and the depth of coupling continues to
result in information loss. This highlights the importance of aligning these
parameters to maintain model performance.
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Figure 4.32: Layer Outputs Zeros Injections on Scale Variable.
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Figure 4.33: Layer Outputs Zeros Injections on Translation Variable.
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Figure 4.34: Layer Outputs Zeros Injections on All Variable.
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Figure 4.35: Layer Outputs Random Injections on Scale Variable.

73



Experimental Studies

— Layer0
— Layer1
— Layer2
— Layer3
— alllayers

64U-3D

(a) Four Coupling Layers - Partial.

64U-3D — Layero

— Llayer1
— layer2
— Layer3
— alllayers

(¢) Four Coupling Layers - Complete.
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Figure 4.37: Layer Outputs Random Injections on All Variable.

74



Experimental Studies

64U-3D — scale-partial

—— scale-complete

64U-3D — scale-partial

—— scale-complete
— all-partial —— all-partial
— allcomplete — all-complete
48U-3D — translation-partial 48U-3D — translation-partial

— translation-complete

48U-5D

(a) Four Coupling Layers - Zeros.

—— translation-complete

64U-4

48U-5D

(b) Six Coupling Layers - Zeros.

64U-3D — scale-partial 64U-3D — scale-partial
—— scale-complete ~— scale-complete
— alkpartial — allpartial
— all-complete — all-complete
48U-3D — wransiation-partial 28U-3D — transiation-partial

— translation-complete

48U-5D

(¢) Four Coupling Layers - Random.

—— translation-complete

64U-4

(d) Six Coupling Layers - Random.

Figure 4.38: Layer Outputs Injections at different Variables.
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Figure 4.39: Layer Outputs Injections at different Activation functions.
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Figure 4.40: Layer Outputs Bitflips Injections from 20th to 27th bits.
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4.3 Summary of Results

Here are summarized the results presented in this Chapter, we conducted several
experiments, as shown in Figures 4.41a, 4.41b, 4.41c. Each type of injection affected
the network differently. Fault injections revealed the degradation threshold where
the model begins to fail. At this critical point, often associated with task saturation,
the outputs become dependent solely on the inputs.

The effects of injections on layer states showed distinct patterns. Random noise
primarily affected the bias of network states, but due to redundancy, these changes
did not significantly disrupt the model’s output. Zeros had a stronger impact on
weights, breaking connections between neurons and degrading the model’s ability to
detect anomalies. Bitflips exhibited unique behavior influenced by bit distribution.
Flips in the exponent bits were particularly sensitive, creating Gaussian degradation
patterns in performance plots. For example, a specific flip in the 30th bit caused
NaN or infinite values, leading to network failure.

In terms of layer outputs, injections were applied either partially or completely,
depending on whether a broad or focused fault injection was desired. The scale
and translation layers reacted differently to these injections. For partial injections,
translation layers demonstrated greater robustness against random noise, while scale
layers were more resilient under complete injections. Zeros showed a similar trend,
with translation layers performing better under partial injection and scale layers
excelling under complete injection, illustrating their impact across the network.
Bitflips revealed critical points in the exponents, where increasing the range of bits
exposed vulnerabilities in the outputs.

Activation functions also influenced the network’s resilience to fault injections.
Linear and ReLLU activation functions in the translation layer showed strong
performance in limiting degradation, although their Silent Data Corruption (SDC)
rates increased slightly with higher injection rates.

When comparing models trained with different parameters, achieving a balance
between key architectural factors proved crucial. These factors include the length
and depth of coupling layers and the number of units in the hidden layers of the
coupling. Together, these parameters determine the total number of connections
within the network. A sufficient number of units is essential to retain information,
while minimizing propagation distance between outputs is critical to reduce the
impact of fault injections.
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(b) Random (up) and Zeros (down) layer outputs experiments.
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(c) Bit-flips experiments for layer states (up) and outputs (down).

Figure 4.41: Overview of experiments on layer states, outputs, and bit-flips across
all configurations.
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Chapter 5

Conclusion

This chapter concludes our study by presenting a summary of the contributions
made in this thesis in Section 4.3 and outlining potential future work in this field
of study in Section 5.2.

5.1 Summary of Contribution

The goal of this thesis was to develop a framework for fault injection in a Normalizing
Flow Real NVP network used in space applications. These networks require
compactness, robustness, and resilience, which are essential for safety-critical
environments like those encountered in space. To emulate these harsh conditions
and thoroughly test networks, fault injection frameworks are developed at both
hardware and software levels. Our primary contribution lies in studying the
available technology in the software domain and creating a customized framework
capable of analyzing the network in all its aspects.

Building upon existing frameworks, such as TensorFI [21], we designed a tailored
fault injection framework specifically for Normalizing Flow networks. This frame-
work supports two main injection targets: layer states injection, which injects faults
into the weights before the inference phase, and layer outputs injection, which
allows faults to be directly injected into the network’s outputs during inference
runs. These configurations enable both general fault injection and more granular
approaches, such as disabling specific components to perform ablation studies. By
doing so, we identified the network’s more robust components and its weaker points.

The results of our experiments focused on two key aspects of the network. The
first was the weights of the network, which include its total parameters determined
during training. These parameters guide the model in extracting essential features
from the input. The second aspect was the outputs of the network and its layers,
which generate scores used to classify points as anomalous or not.
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Conclusion

Three types of fault injections were analyzed: zeros, simulating values being set
to zero and effectively removing information; random noise, introducing fluctuations
in the network’s parameters or outputs; and bitflips, emulating changes in individual
bits, such as those caused by space radiation.

Through this framework, we were able to test the network’s resilience under
various fault scenarios and contribute to understanding its behavior under conditions
akin to space environments. This comprehensive approach provides insights into
improving the robustness of Normalizing Flow Real NVP networks for safety critical
applications.

5.2 Future Work

Fault injection frameworks are powerful tools that help developers test the ro-
bustness of their networks, providing valuable insights into the optimal network
dimensions, identifying the most resilient components, and determining the most
suitable activation functions. To remain effective, these frameworks must be con-
tinuously updated and researched to facilitate efficient testing. They should be
designed to perform experiments quickly, enabling developers to complete extensive
testing within a short timeframe, while avoiding unnecessary complexity.

However, software-level fault injection alone is insufficient to provide a compre-
hensive understanding of how neural networks perform in real-world applications.
It does not fully account for the behavior of these networks when deployed on
hardware devices. For this reason, fault injection frameworks should adopt a hybrid
approach, combining software-level injection with hardware-level fault injection.
This hybrid method yields more reliable results and provides a clearer understanding
of improvements needed at both the software and hardware levels.
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