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Abstract

The epidemic inference allows us to make predictions on the evolution of an epi-
demic to develop containment measures or infer the infection channels and the
origin of the epidemic.
In this thesis work, we discuss a metapopulation structure approach to stochastic
inference, where the total population is partitioned in many subpopulations which
interact with each other.
We assume to receive daily information about the aggregate number of infected
individuals at the single population level. The information from such time-scattered
observations together with some prior information can be used to develop a Bayesian
framework to address different epidemic inference problems such as to predict the
future evolution of the outbreak (epidemic forecast), to infer the current state of
the epidemics in unobserved populations (risk assessment), or to infer the past
state of the epidemics (causal paths, patient zero).
To address these problems, we provide a common Bayesian framework to compute
the joint probability of the overall history H of the metapopulation system given a
set of observations O. We derive the prior distribution P [H] associated with the
stochastic metapopulation system, as well as the likelihood of the data P [O|H],
which is derived from a simple Gaussian sampling process for the observations.
The prior distribution is formulated using a Path Integral approach to the under-
lying stochastic process. By applying a saddle-point method, we derive a set of
deterministic equations for the epidemic state variables and their associated conju-
gate fields. These equations are integrated using a forward-backward algorithm,
which efficiently identifies the most probable epidemic trajectory consistent with
the observed data.
The numerical results demonstrate a strong agreement between the inferred trajec-
tories and ground truth simulations, validating the effectiveness of the proposed
framework. Additionally, due to numerical challenges and the complexity of the
underlying optimization landscape, we implement gradient-based optimization
methods, which enhance convergence and allow for more stable and accurate
inference.
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Chapter 1

Introduction

1.1 State of the art

In recent decades, epidemic modeling has been a widely studied topic in statistical
physics and has played a central role in public healthcare, especially with the
emergence of global epidemics such as SARS, Ebola, and the latest COVID-19.
The ability to perform epidemic inference is crucial: it encompasses a set of method-
ologies aimed at estimating the key parameters that regulate the dynamics of an
epidemic, starting from a partial knowledge of the data.
The starting point for this problem can be recovered in compartmental models
like SIR, SEIR, and their variants, which aim to simplify the overall vision of
the epidemic by compartmentalizing the population (e.g. susceptibles, infected,
removed, and so on), and formalizing the dynamics through differential equations
that depict the several transitions from a group to another.
Many studies, starting from the seminal work of Kermack and McKendrick, [1],
have used compartmental models to understand the main properties of epidemic
dynamics; however, the application to real data remains challenging.
In such context, several approaches have been proposed to make inference, for
example, the Maximum Likelihood Estimate(MLE) [2, 3], but they are of limited
effectiveness when working with systems affected by strong stochasticity or charac-
terized by a small amount of data.
In recent years, approaches based on Bayesian Inference [4][5, section 4] have
become widespread since it allows to quantify the uncertainty of the estimated
parameters working with probability distributions. In particular, the integration of
Monte Carlo Markov Chain(MCMC) techniques [6] within Bayesian approaches
makes it possible to exploit the theory of large numbers to perform accurate esti-
mates of the epidemic dynamics through a sampling process. This approach can
be used for different tasks, such as the estimate of the parameters(β, γ, µ that
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lead the evolution of the epidemic [7], or the estimate of the trajectories for the
compartments of the epidemic model, as one can see in the work of Dureau et
al. [8], where the authors developed a stochastic SEIR model with time-variable
parameters and used an adaptive Particle MCMC to estimate both parameters and
trajectories in time.
Moreover, in several studies it has been shown that a Bayesian approach can be
effective in adapting to the current dynamical trends and produce good real-time
estimates [9, 10].
With the increasing amount of available data, machine learning approaches have
become more and more widespread. Among them, neural networks, in particular
Graph Neural Networks(GNN), have gained prominence. In GNN, each node is
considered as part of a structure of connections with other nodes, enabling this
model to to capture the dependencies between neighboring nodes and to learn
about the graph structure in details. GNN are typically composed of multiple
layers where each layer plays a specific role in the entire learning process. Several
applications of this approach have been proposed, see for instance the work by
Fritz et al. (2022) [11], in which the Authors combine GNNs with spatio-temporal
disease description to make better predictions of the weekly COVID-19 cases in
Germany, or the work of Song et al. [12], in which they combine GNNs with
epidemic data and mobility to improve inference of the dynamics, in particular, the
use of GNN allows to exploit spatio-temporal relations between nodes, improving
the outbreak forecasting and risk assessment process.
Similar applications can be found in the work of Shah, Dehmamy, Yu et al.(2020)[13].
Despite the huge amount of studies and progress made on this topic, criticalities
about the quality of data, modeling of complex dynamics(e.g. heterogeneity of
contacts, mobility) are still present.
In this perspective, the present thesis work aims to apply a metapopulation-based
approach to an epidemic compartmental model for the purpose of epidemic inference
in realistic settings. To this end, real-world colocation data is used to capture the
spatial interaction structure among subpopulations.
The observations used to validate the inference technique are generated through
Monte Carlo simulations, allowing the exploration of plausible epidemic trajectories
under stochastic dynamics and uncertainty.
This framework enables a more accurate representation of the dynamics of conta-
gion by incorporating both the stochastic nature of disease spread and the spatial
heterogeneity of interactions. The results contribute to a better understanding
of inference methods based on stochastic models in metapopulation contexts and
provide a practical tool for analyzing realistic epidemic scenarios.
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1.2 Thesis structure
The thesis is structured as follows:

• Chapter 2: This chapter aims to introduce the reader to fundamental concepts
of graph theory and statistical inference, along with epidemic models and the
approach applied to the problem.
Namely, it provides an overview of graph theory, with a focus on its applications
in modeling interactions in epidemic settings; then we classify different types
of epidemic compartmental models,especially SIR and SEIR, along with the
associated state equations, and exploit the metapopulation approach as a way
to incorporate spatial heterogeneity.
Finally we outline the fundamental of Bayesian Inference, which represents
the statistical framework for the inference methods used in the thesis.

• Chapter 3: It focuses on the path-integral formulation of stochastic epidemic
models. The chapter begins with a review of the formulation and its main
physico-mathematical concepts, laying the groundwork for the derivation of
the system’s partition function Z and the corresponding action S.
Finally, the mean-field approximation is introduced along with its fundamentals
and the application to the present case to obtain tractable estimates of the
system’s behavior, working in the small rates-small fluctuations regime.

• Chapter 4: This chapter is dedicated to the Saddle-Point method, a key
analytical tool used to approximate the behavior of the system and, in the
present work, to obtain a Maximum a Posteriori prediction of the behavior of
the system. The saddle-point method is an elegant and powerful way to pass
from the stochastic description of the epidemic dynamics (random trajectories)
to a deterministic one (mean-field like trajectories).
The chapter begins with a general overview of the method and its relevance in
statistical physics and stochastic processes. It then focuses on its application to
the current study, with the derivation of the saddle-point (or Euler-Lagrange)
equations associated with the most probable epidemic trajectory.
These equations are then used to construct the core of the inference algorithm
that will be presented in the following chapters, as they govern the system’s
deterministic dynamics under the inference framework.

• Chapter 5: here the colocation dataset used in the inference algorithm is
introduced. The data were provided by one of the thesis supervisors affiliated
with INSERM (Institut National de la Santé et de la Recherche Médical) in
Paris, and originate from geolocation information provided by META (Face-
book, Instagram and so on).
This dataset captures spatial proximity patterns between individuals from
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different administrative regions, such as provinces in Italy, enabling the con-
struction of the dynamic interaction networks used in the metapopulation
model.
The chapter clarifies the data structure, preprocessing steps, and its integration
into the model to represent spatial transmission dynamics.

• Chapter 6: In this chapter the implementation of forward-backward algorithm
for the epidemic inference is presented. It outlines the structure of the
algorithm and explains its role within the inference framework.
Particular attention is dedicated to the explanation of the main components
of the code, including the forward propagation of the epidemic states (S,E,I,R
for the SEIR model), the backward update for the adjoint variables (which
are represented as θ variables), and the update rules derived from the S-P
equations from the chapter 4.
This chapter connects the theoretical formulation with its computational
realization, in such a way to retrieve a reproducible and interpretable inference.

• Chapter 7: It discusses the broader range of epidemiological problems that
can be addressed using the inference framework developed in this thesis work.
Building upon the theoretical and computational tools presented in the previ-
ous chapters, this chapter shows how the forward-backward algorithm can be
used to extract meaningful information about the disease dynamics.
In particular, it focuses on the task of assessing the risk of infection across
different regions knowing some other information about other regions, and
exploring retrospective scenario analysis based on observed data.
Through these examples, the flexibility and generality of the developed method
are highlighted, illustrating its potential for aiding public health decision-
making, surveillance efforts, and policy planning.

• Chapter 8: The last chapter provides the concluding remarks of the thesis
and outlines potential directions for future research.
It begins by resuming the key contributions of the work, reflecting on the
methodological developments and their application to real-world epidemiologi-
cal data.
This section continues with the discussion of the limitations associated with the
current approach, including assumptions made in the model, computational
constraints, and data availability. It eventually identifies several promising
avenues for future investigation, such as extending the inference framework to
other disease models, using heterogeneous behavioral data, introducing differ-
ent kind of priors, or integrating real-time data streams for online epidemic
tracking.
In the end, this chapter highlights the role of the developed tools and concepts
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as a ground for more advanced and flexible epidemic modeling frameworks,
filling the gap between theoretical epidemiology and practical public health
applications.
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Chapter 2

Mathematical and Statistical
Foundations of Epidemic
Inference

2.1 Basic concepts of graph theory
A graph is a mathematical structure that describes the relationships between
objects: these are called vertices or nodes, and they constitute the set denoted by
V. Each vertex/node will be indexed by a number such that V = [1,2,3, ..., N ],
where N is the total number of nodes.
The relationships between nodes are described as connections, known as edges,
which in turn form the set E ⊂ V × V. Each edge is represented as a couple of
nodes, such as e = (i, j), where i and j are two different nodes.
A graph can be classified depending on the type of interactions between nodes,
namely we can have:

• Directed or undirected, depending on whether the connections have direc-
tionality or they work both ways.

• Weighted if each edge (i, j) is associated with a real number wij representing
the strength of the contact.

• Time-varying (dynamic graphs), as you can well imagine, the structure
and/or the weights of the network change in time, a common situation in
epidemic spreading scenarios.

An adjacency matrix A ∈ RN×N can be defined to describe a graph, where each
element Aij indicates the presence and/or the weight of an edge between nodes i
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and j. This can be formally represented as:

Aij =
I

1 (i, j) ∈ E
0 else

In this thesis we will work with a colocation matrix W , where each element wij

represents the weight of each connection, in particular it represents the rate at
which an individual from region i and another one from region j are colocated at
a given time in any other place. In fact, wii /= 0, since it will represent the rate
of colocation between individuals from the same region i. These data will be well
described in Chapter 5.
The degree of a node is defined as the number of nodes to which it is connected; in
fact, one can define the neighborhood of a node i as the list of nodes connected
to it. This will be addressed as ∂i with the formal definition:

∂i = {j ∈ V : (i, j) ∈ E} (2.1)

and the degree of node i as ki = |∂i|.
From now on, we will work with a undirected, weighted, time-varying graph
represented by the aforementioned colocation matrix W . Initially, we worked
with fictitious colocation data, randomly generated by using some specific Julia
libraries which generate different types of graphs, such as random regular graphs
or Erdös-Renýi graphs.

2.1.1 Random regular graphs
A random regular graph is a graph in which each node has the same degree d, and
edges are randomly assigned under this constraint. These graphs are useful in
epidemic modeling because they provide a homogeneous interaction structure since
each node is equally connected, allowing for controlled experiments on how the
interaction network affects the spreading of the disease.
Efficient algorithms for generating such graphs have been developed, such as the one
proposed by Steger and Wormald (1999) [14], which ensures a uniform distribution
over all d-regular graphs.
An example of a random regular graph with degree d = 3 and 8 nodes is shown in
Figure 2.1, where the uniform degree distribution is visually apparent.
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Figure 2.1: Random Regular Graph with fixed degree d = 3.

2.1.2 Erdös-Renýi graphs

The Erdös-Renýi model [15] represents one of the earliest and most studied formu-
lations of random graphs. In the G(n, p) variant, a graph is constructed on n nodes
where each possible edge between pairs of nodes is included independently with a
fixed probability p. This ensures that the number of edges is a random variable,
and different realizations of the graph can lead to very different outcomes both in
density and connectivity.
On the other hand, in the G(n, m) variant, a graph is built by selecting uniformly
at random precisely m edges from the

1
n
2

2
possible edges between 2 nodes. In this

way, the graph will always contain the same number of edges, which permits better
control of the sparsity of the graph.
Asymptotically, the properties of G(n, p) with p = 2m

n(n−1) converge to those of
G(n, m). Despite their simplicity and analytical tractability, these models serve as
idealized baselines in many applications, such as epidemic modeling.
An example of both variants of a Erdös-Renýi random graph is shown in Figure 2.2,
demonstrating variability in node degrees and the absence of global regularity.
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Figure 2.2: Comparison of two Erdős–Rényi random graphs with n = 10
nodes. On the left: a G(n, p) graph with p = 0.5, source: GeeksforGeeks (2023)
[16] . On the right: a G(n, m) graph with m = 25 edges.

2.2 Epidemic models and Metapopulation ap-
proach

Understanding the dynamics of infectious diseases is essential for predicting out-
breaks and informing public health interventions. In this sense, mathematical
modeling is crucial since it provides a systematic framework for describing how
diseases spread within and between populations.
Among them, compartmental models play a central role as the foundation of epi-
demic theory, dating back to the ground work by Kermack and McKendrick (1927),
who introduced the classical SIR model [1]. These models divide the population into
compartments, such as susceptible, infected, and recovered, and define transitions
between compartments through differential equations.
In this section the main types of compartmental models will be presented, focus-
ing on SIR and SEIR frameworks, along with their mathematical formulations.
In order to describe properly the structure of such models, we also describe the
metapopulation approach. This modeling strategy integrates network structures
and spatial distribution, as seen in the work of Colizza et al. (2007) [17], allowing
the analysis of disease dynamics between interconnected subpopulations.
These models constitute the ground for many modern epidemiological studies
and are useful when integrated with inference techniques, allowing forecasting,
risk assessment and patient zero analysis, as explored in later chapters of this thesis.

9



Mathematical and Statistical Foundations of Epidemic Inference

2.2.1 The homogeneous SIR model
The SIR model, as mentioned above, was introduced for the first time by Kermack
and McKendrick (1927) [1],and represents the cornerstone of mathematical epi-
demiology for describing the spread of infectious diseases in a population or, as in
the present work, in a network of subpopulations.
The homogeneous framework assumes that each individual has the same probability
of contacting any other, so that we can ignore spatial or network structure. Assum-
ing the total population considered is given by N , we will have three compartments:

• S(t): susceptible individuals, namely individuals who can be infected if they
contact with infectious individuals;

• I(t): infectious individuals, who can infect susceptible individuals with which
they contact, or can recover from the disease;

• R(t): recovered (or removed) individuals, which are individuals that recovered
from the disease with immunity, or died.

The dynamics can be described through the following set of ordinary differential
equations [18]:

dS

dt
= −β

SI

N
, (2.2a)

dI

dt
= β

SI

N
− µI, (2.2b)

dR

dt
= µI, (2.2c)

where β is the infection rate and µ the recovery rate.
In Figure 2.3 one can observe the graphical solution for the aforementioned set of
equations.
We can define a central parameter that is used to ensure if the disease will spread
or die out; this is the reproduction number R0 = β

µ
. When R0 > 1 the disease

will spread, otherwise it will die out.
Some assumptions lead this model:

• closed, constant-size population, that ensures that at each time the sum of all
compartments is the same → S(t) + I(t) + R(t) = N ,

• homogeneous mixing,

• constant parameters over time,

• permanent immunity after recovery.
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Despite the simplicity of this mathematical model, it has been widely used since it
is analytically tractable and useful in analyzing threshold phenomena like herd
immunity [19], providing the foundation for more complex approaches, obtained,
for example, by augmenting the number of compartments, introducing stochasticity
and using a metapopulation-based approach in place of the individual-based one.

Figure 2.3: Example of a homogeneous normalized SIR model: solution
of the deterministic system of equations (2.2a)–(2.2c). The parameter used are
β = 0.3, µ = 0.1, with initial conditions S(0) = 0.99, I(0) = 0.01, R(0) = 0.0.
Blue line represents the fraction of susceptible individuals, red line the fraction of
infected individuals, and green line the recovered ones.

2.2.2 Extension to the SEIR model
While the SIR model describes the essential dynamics of many infectious diseases,
it is limited by the fact that susceptible individuals become infected right after
contact with an infectious individual, which is biologically quite unrealistic for
most pathogens that have a latent period.
To overcome this limitation, the SEIR model add a compartment for exposed
but not yet infectious individuals, E(t).
This model assumes relevance especially when treating diseases like measles, Ebola,
and most recent COVID-19, where the incubation time plays a crucial role in
transmission dynamics [20, 21].
The SEIR model is divided in the following compartments:

• S(t): susceptibles,
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• E(t): exposed (infected but not yet infectious),

• I(t): infectious,

• R(t): recovered or removed.

The differential equations governing the model are:

dS

dt
= −β

SI

N
, (2.3a)

dE

dt
= β

SI

N
− ηE, (2.3b)

dI

dt
= ηE − µI, (2.3c)

dR

dt
= µI, (2.3d)

where β is the exposure rate for the transition S → E, η is the infection rate for
the transition E → I ( 1

η
is the average incubation time), and µ is the recovery time

for the transition I → R. The solution of this system of equations is provided in
Figure 2.4.
The homogeneous mixing assumption still holds, along with the definition of
the reproduction number R0 = β

µ
under standard assumptions [18]. The SEIR

framework is more accurate than the SIR model and is widely used both for
deterministic and stochastic modeling studies [22], although it is more complicated
to implement. This will be the central model implemented in this thesis.

2.2.3 The stochastic SEIR metapopulation model
While deterministic compartmental models like SEIR offer a relatively simple
framework to understand average epidemic behavior, they are not able to take
into account the randomness and spatial heterogeneity typical of real-world disease
spread.
In this sense, a better approach would be that of stochastic SEIR models.
A particularly powerful framework is the metapopulation approach, which is
characterized by the division of the global population in several subpopulations
that in the framework of this thesis are provinces or departments. This approach is
quite different from individual-based models, since each subpopulation has its
own disease spread, and in addition we have mobility between different regions,
which contributes to the dynamics of involved subpopulations.
This is especially useful when modeling infectious disease spread across cities,
regions, or countries, as shown, for instance, in the work of Colizza, Pastor-Satorras,
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Figure 2.4: Example of a homogeneous normalized SEIR model: solution
of the deterministic system of equations (2.3a)–(2.3d). The parameter used are
β = 0.3, η = 0.6, µ = 0.1, with initial conditions S(0) = 0.99, E(0) = 0.0, I(0) =
0.01, R(0) = 0.0. Blue line represents the fraction of susceptible individuals, red
line the fraction of exposed individuals, green line the infected individuals, and
pink line the recovered ones.

and Vespignani [17], and that of Belik, Geisel, and Brockmann [23], in which the
reaction-diffusion approach for mobility is used.
In this thesis, the model does not account for actual movements of individuals
between different geographic regions (there are no transport terms), but interregion
contagions can occur because of colocation effects, taken into account by the
colocation matrix W mentioned in Section 2.1 that represents the rate at which
people from the geographic regions i and j are colocated (in any other place over a
given interval of time).
We adopt a time discretization at daily level, i.e. ∆t = 1day. The epidemic
dynamics in region i is described by the number Si of susceptible individuals, Ei

of exposed individuals, Ii of infected individuals and Ri of recovered individuals,
with the constraint Si + Ei + Ii + Ri = Ni where Ni is the total population of
subpopulation i.
The total number of different states in the subpopulations evolves as follows:

Si(t + 1) = Si(t) − ∆Ei, (2.4)
Ei(t + 1) = Ei(t) + ∆Ei − ∆Ii (2.5)
Ii(t + 1) = Ii(t) + ∆Ii − ∆Ri, (2.6)

Ri(t + 1) = Ri(t) + ∆Ri, (2.7)

13



Mathematical and Statistical Foundations of Epidemic Inference

with daily variations between day t and day t + 1 given by

∆Ei ∼ Binomial(Si(t), pβ,i(t)) =
A

Si (t)
∆Ei

B
(pβ,i (t))∆Ei (1 − pβ,i (t))Si(t)−∆Ei ,

(2.8)

∆Ii ∼ Binomial(Ei(t), pη,i(t)) =
A

Ei (t)
∆Ii

B
(pη (t))∆Ii (1 − pη (t))Ei(t)−∆Ii , (2.9)

∆Ri ∼ Binomial(Ii(t), pµ(t)) =
A

Ii (t)
∆Ri

B
(pµ (t))∆Ri (1 − pµ (t))Ii(t)−∆Ri , (2.10)

where

pβ,i(t) = 1 − e−β∆t
q

j
wijIj(t), (2.11)

pη = 1 − e−η∆t (2.12)
pµ = 1 − e−µ∆t, (2.13)

which represent respectively the probability of exposure, infection and recovery at
each time-step, derived as 1− (the probability that no exposure, infection
or recovery event occur in that time-step).
In Figure 2.5 one can see a single Monte Carlo simulation of the model described
above, representing the curves of infected individuals for each subpopulation.

2.3 Bayesian Inference
Bayesian inference is a statistical framework that allows to integrate prior knowl-
edge with observed data in order to learn information about unknown parameters
of a model.
In the context of epidemic modeling, this approach can be used to infer parameters
(e.g., transmission rate, recovery rate) or latent variables (e.g., unobserved states
of populations) from incomplete data.

2.3.1 Bayes’ theorem
Bayesian inference is based on the Bayes’ theorem, which relates the posterior
distribution P (θ|x) of parameters θ (also called stochastic "machine") given
data x to the prior distribution P (θ) and the likelihood (or stochastic rule) P (x|θ).
With these ingredients, we will have a double stochastic process:

• θ is sampled from P (θ)
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• x is sampled from P (x|θ).

This relation states:
P (θ|x) = P (x|θ)P (θ)

P (x) . (2.14)

In this context the data x are the time-scattered observations which we refer
to as O, namely we assume to receive daily information about the aggregate
number of infected individuals at the single population level, while parameters θ
are represented by the overall history of the metapopulation system H:

P (H|O) = P (O|H) P (H)
P (O)

∝ P (O|H) P (H) . (2.15)

2.3.2 Bayesian inference in epidemics
Epidemic systems are intrinsically stochastic and often subject to problems related
to the correct counting of cases, the time of observation, and incomplete information.
In this sense, Bayesian inference plays a central role since it allows one to:

Figure 2.5: Monte Carlo simulation of a normalized stochastic SEIR
metapopulation model: each curve represents the fraction of infected individuals
at each time for each subpopulation. The network graph is obtained using an
Erdös-Renýi random graph G(n, p) with n = 10, p = K

n
, and K = 2 is the average

degree of the graph. The parameters used are β = 0.3, η = 0.1, µ = 0.2, with
epidemic starting in node 1.

15



Mathematical and Statistical Foundations of Epidemic Inference

• Incorporate external information through priors,

• Quantify uncertainty in parameters and predictions,

• Update predictions in real time using newly available data,

• Infer hidden variables, such as unreported cases.

This method has been widely used in history, for example, Bettencourt and
Ribeiro (2008) [9] used this framework to estimate the reproduction number of an
emerging outbreak in real time for containment measures purposes.
Similarly, Flaxman et al. (2020) [10] employed hierarchical Bayesian models to
assess the effect of non-pharmaceuticals interventions across multiple countries
during the COVID-19 pandemic.

2.3.3 The prior distribution and the likelihood of the data

In the following we derive (approximate) expressions for the two ingredients of
the Bayes’ formula: the prior P (H), which is the probabilistic model associated
with the stochastic SEIR metapopulation system, and the likelihood of the data
P (O|H), based on a simple gaussian sampling process for the observations.
From Section 2.2.3 we have seen that the sum of individuals in each subpopulation
is always equal to Ni; this allows to consider only three equations. The overall
probability of a variation (∆Ei, ∆Ii, ∆Ri) in subpopulation i is

P t,t+1
i

1
∆Ei, ∆Ii, ∆Ri| {Si (t) , Ei (t) , Ii (t)}i∈V

2
=

=
A

Si (t)
∆Ei

B
(pβ,i (t))∆Ei (1 − pβ,i (t))Si(t)−∆Ei

×
A

Ei (t)
∆Ii

B
(pη (t))∆Ii (1 − pη (t))Ei(t)−∆Ii

×
A

Ii (t)
∆Ri

B
(pµ (t))∆Ri (1 − pµ (t))Ii(t)−∆Ri (2.16)

The corresponding characteristic function is given by the Fourier transform,
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P̂ t,t+1
i

3
X⃗i |

î
S⃗i (t)

ï
i∈V

4
=

S⃗i(t)Ø
∆⃗Si=0

P t,t+1
i

3
∆⃗Si |

î
S⃗i (t)

ï
i∈V

4
e−iX⃗i·∆⃗Si

=
Si(t)Ø

∆Ei=0

Ei(t)Ø
∆Ii=0

Ii(t)Ø
∆Ri=0

A
Si(t)
∆Ei

B
pβ,i(t)∆Ei(1 − pβ,i(t))Si(t)−∆Ei

×
A

Ei(t)
∆Ii

B
p∆Ii

η (1 − pη)Ei(t)−∆Ii

A
Ii(t)
∆Ri

B
p∆Ri

µ (1 − pµ)Ii(t)−∆Ri

×e−iXi∆Ei−iYi∆Ii−iZi∆Ri

=
1
1 − pβ,i(t)(1 − e−iXi)

2Si(t) 11 − pη(1 − e−iYi)
2Ei(t)

×
1
1 − pµ(1 − e−iZi)

2Ii(t)

= exp
è
Si(t) log

1
1 − pβ,i(t)(1 − e−iXi)

2é
× exp

è
Ei(t) log

1
1 − pη(1 − e−iYi)

2é
× exp

è
Ii(t) log

1
1 − pµ(1 − e−iZi)

2é
(2.17)

where X⃗i = [Xi, Yi, Zi], S⃗i(t) = [Si(t), Ei(t), Ii(t)] and ∆⃗Si = [∆Ei, ∆Ii, ∆Ri].
It is convenient to consider the anti-transform of the same quantity,

P t,t+1
i

3
∆⃗Si|

î
S⃗i (t)

ï
i∈V

4
=

Ú +∞

−∞

dX⃗i

(2π)3 eiX⃗i·∆S⃗iP̂ t,t+1
i

3
X⃗i|

î
S⃗i (t)

ï
i∈V

4

=
Ú +∞

−∞

dXi

2π

Ú +∞

−∞

dYi

2π

Ú +∞

−∞

dZi

2π
eiXi∆Ei+iYi∆Ii+iZi∆Ri

× exp
è
Si (t) log

1
1 − pβ,i (t)

1
1 − e−iXi

22é
× exp

è
Ei (t) log

1
1 − pη

1
1 − e−iYi

22é
× exp

è
Ii (t) log

1
1 − pµ

1
1 − e−iZi

22é
(2.18)

and express the increments in terms of the state variables,

∆Ri = Ri (t + 1) − Ri (t) (2.19)
∆Ii = Ii (t + 1) + Ri (t + 1) − Ii (t) − Ri (t) (2.20)

∆Ei = Ei (t + 1) + Ii (t + 1) + Ri (t + 1) − Ei (t) − Ii (t) − Ri (t) (2.21)

in order to eliminate the increments in favor of the state variables. We obtain the
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transition probability

P t,t+1
i

1
Ei (t + 1) , Ii (t + 1) , Ri (t + 1) | {Ei (t) , Ii (t) , Ri (t)}i∈V

2
=

=
Ú +∞

−∞

dXi

2π

Ú +∞

−∞

dYi

2π

Ú +∞

−∞

dZi

2π
eiXi(Ei(t+1)+Ii(t+1)+Ri(t+1))

×eiXi(−Ei(t)−Ii(t)−Ri(t))+iYi(Ii(t+1)+Ri(t+1)−Ii(t)−Ri(t))

×eiZi(Ri(t+1)−Ri(t))+Si(t) log(1−pβ,i(t)(1−e−iXi))

×eEi(t) log(1−pη(1−e−iYi))+Ii(t) log(1−pµ(1−e−iZi))

=
Ú +∞

−∞

dXi

2π

Ú +∞

−∞

dYi

2π

Ú +∞

−∞

dZi

2π
eiXi(Ei(t+1)−Ei(t))

×ei(Xi+Yi)(Ii(t+1)−Ii(t))+i(Xi+Yi+Zi)(Ri(t+1)−Ri(t))

×e(Ni−Ei(t)−Ii(t)−Ri(t)) log(1−pβ,i(t)(1−e−iXi))

×eEi(t) log(1−pη(1−e−iYi))+Ii(t) log(1−pµ(1−e−iZi)). (2.22)

This expression will be further analyzed through Path-Integral formulation in
the next chapter.
For the likelihood of the data we assume that observations are obtained by means
of an independent sampling process based on gaussian sampling with standard
deviation σ,

P
3

O|
î
E⃗i, I⃗i, R⃗i

ï
i∈V

4
=

NobsÙ
o=1

P (Io|Iio (to)) (2.23)

with

P (Io|Iio (to)) = 1
σ

√
2π

e− (Iio (to)−Io)2

2σ2 . (2.24)
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Chapter 3

Path Integral Formulation

3.1 Brief review on path-integral formulation

In this section we introduce the foundation of the path integral formulation for
statistical physics and stochastic processes. Also, we briefly explain how it is used
to represent the probability of a trajectory, reconnecting to previous chapters where
we described the SEIR dynamics.
It is frequently essential to record the entire course of the system’s evolution when
studying stochastic dynamical systems, particularly those that simulate the spread
of infectious diseases. The path integral approach, first developed by Richard Feyn-
man [24] for single-particle quantum mechanics, was then adopted as a central and
powerful formalism in statistical mechanics, field theory, and stochastic processes.
In particular, in the latter case, methods based on functional integration, such as
the Response Functional Formalism introduced by Martin, Siggia and Rose (MSR)
[25], were shown to provide a compact and theoretical insightful description for
stochastic processes involving many degrees of freedom.
This method leads to the construction of a dynamic action starting from a phe-
nomenological Langevin equation for the field. The reason for the denomination as
“response functional” formalism stays in the introduction of a so-called response
field when using the integral representation of the Dirac delta function [26].
By integrating over all potential paths the system could take, each weighted by
an exponential factor involving an action functional, the path integral formulation
essentially represents the probability of a trajectory without the need to specifically
realize the stochastic process. This method is perfect for analyzing epidemic models
in which transmission variability and demographic noise are not negligible because
it naturally accounts for randomness and fluctuations.
In the context of epidemiology, this technique allows us to recover a statistical
field theory of the stochastic SEIR model. Every possible path an epidemic might
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follow, representing the progression over time of susceptible, exposed, infected,
and recovered individuals, affects the system’s behavior according to how likely it
is. This likelihood is quantified using an exponential function involving a math-
ematical construction known as the action, which captures both the underlying
deterministic behavior and the inherent randomness present in the system.
From the mathematical point of view, this formulation leads to express the (dy-
namical) partition function of the system as follows:

Z =
Ú

D [ϕ] e−S[ϕ] (3.1)

where ϕ will represent the dependencies of the action S.
As well as the application of the saddle point to the equilibrium partition function
results in the realization of the ground state of the system, here the saddle-point
condition gives the most probable trajectory, that under natural conditions would
correspond to the deterministic description provided by a mean-field approximation,
neglecting stochasticity and correlations between variables. This formalism provides
a compact but complete representation of the behavior of the system across all
time steps and the whole set of degrees of freedom (e.g. subpopulations), in this
respect offering a good compromise between classical probabilistic models that
work with transition matrices and oversimplified deterministic models described
by ordinary differential equations. For this reason, the path integral approach
seems very suitable for tackling challenging inference problems, where the aim is
to reconstruct the trajectories of variables given some information or observations.
In the following, we derive the partition function of the system starting from
Equation (2.22) and then derive the corresponding action S. We will then show
that the mean-field approximation corresponds to a set of equations that are linear
in the conjugate variables.

3.2 Partition function and Action of the system
We start from the expression for the transition probability in Equation (2.22):

P t,t+1
i

1
Ei (t + 1) , Ii (t + 1) , Ri (t + 1) | {Ei (t) , Ii (t) , Ri (t)}i∈V

2
=

=
Ú +∞

−∞

dXi

2π

Ú +∞

−∞

dYi

2π

Ú +∞

−∞

dZi

2π
eiXi(Ei(t+1)−Ei(t))

×ei(Xi+Yi)(Ii(t+1)−Ii(t))+i(Xi+Yi+Zi)(Ri(t+1)−Ri(t))

×e(Ni−Ei(t)−Ii(t)−Ri(t)) log(1−pβ,i(t)(1−e−iXi))

×eEi(t) log(1−pη(1−e−iYi))+Ii(t) log(1−pµ(1−e−iZi)).

The overall process can be described by a path integral obtained by multiplying all
single-region single-time transition probabilities over the whole set of nodes and
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over all time steps and integrating over all possible realizations of the numbers
of exposed, infected and recovered individuals in the regions. Such dynamical
partition function is given by:

Z =
Ø

{E⃗i,I⃗i,R⃗i}
i∈V

Ù
i∈V

î
P 0

i (Ei (0) , Ii (0) , Ri (0))

×
T −1Ù
t=0

P t,t+1
i

1
Ei (t + 1) , Ii (t + 1) , Ri (t + 1) | {Ei (t) , Ii (t) , Ri (t)}i∈V

2J

=
Ø

{E⃗i,I⃗i,R⃗i}
i∈V

Ú +∞

−∞
DX⃗DY⃗ DZ⃗e−S[X⃗,Y⃗ ,Z⃗,E⃗,I⃗,R⃗], (3.2)

where E⃗i, I⃗i, R⃗i represent the trajectories over all time steps respectively for exposed,
infected, and removed individuals, and P 0

i (Ei (0) , Ii (0) , Ri (0)) is the probability
distribution of the system at time t = 0.
Also, one can see the introduction, in the expression of the partition function Z, of
the action S, which can be expressed as follows:

S
è
X⃗, Y⃗ , Z⃗, E⃗, I⃗, R⃗

é
=

|V |Ø
i=1

T −1Ø
t=0

{−iXi (t + 1) (Ei (t + 1) − Ei (t))

− (iXi (t + 1) + iYi (t + 1)) (Ii (t + 1) − Ii (t))
− (iXi (t + 1) + iYi (t + 1) + iZi (t + 1)) (Ri (t + 1) − Ri (t))
− (Ni − Ei (t) − Ii (t) − Ri (t))

× log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−iXi(t+1)

24
−Ei (t) log

1
1 −

1
1 − e−η̃

2 1
1 − e−iYi(t+1)

22
−Ii (t) log

11
1 − e−µ̃

2 1
1 − e−iZi(t+1)

22ï
−

|V |Ø
i=1

log P 0
i (Ei (0) , Ii (0) , Ri (0)) . (3.3)

The initial conditions are usually assumed to be concentrated in one or few sub-
populations and to consists of a small (but not negligible) number of infected
individuals. A possible parametrization is that of using a common initial number,
say I0 ∼ 10 ÷ 102 with a parameter qi as follows
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P 0
i (Ei (0) , Ii (0) , Ri (0)) = δEi(0),0δIi(0),qiI0δRi(0),0 =

=
Ú +∞

−∞
dXi (0) dYi (0) dZi (0) eiXi(0)Ei(0)+iYi(0)(Ii(0)−qiI0)+iZi(0)Ri(0)

=
Ú +∞

−∞
dXi (0) dYi (0) dZi (0) eiXi(0)(Ei(0))+(iXi(0)+iYi(0))(Ii(0)−qiI0)

×e(iXi(0)+iYi(0)+iZi(0))Ri(0) (3.4)
where in the last expression a change of variable was done to provide a similar form
to what already found in the main part of the action.
The parameter qi represents the probability that node i is the infection seed. Since
it is strictly in the interval [0,1], instead of introducing a prior on {qi}i∈V , we could
introduce a regularization term which takes the form of an neg-entropy function,
i.e.

S
è
{qi}i∈V

é
= ϵ

NØ
i=1

(qi log qi + (1 − qi) log (1 − qi)) . (3.5)

This term favors polarization of the parameters qi. In addition, we can insert a
penalty δ

qN
i=1 qi to favor a small number of non-zero initial conditions.

According to this derivation, we derive the general form of the prior model with
H =

î
E⃗i, I⃗i, R⃗i

ï
i∈V

as:

P
3î

E⃗i, I⃗i, R⃗i

ï
i∈V

4
∝

Ú
DX⃗DY⃗ DZ⃗e−S[X⃗,Y⃗ ,Z⃗,E⃗,I⃗,R⃗], (3.6)

and by consequence we find:

S
è
X⃗, Y⃗ , Z⃗, E⃗, I⃗, R⃗

é
=

|V |Ø
i=1

T −1Ø
t=0

{−iXi (t + 1) (Ei (t + 1) − Ei (t))

− (iXi (t + 1) + iYi (t + 1)) (Ii (t + 1) − Ii (t))
− (iXi (t + 1) + iYi (t + 1) + iZi (t + 1)) (Ri (t + 1) − Ri (t))
− (Ni − Ei (t) − Ii (t) − Ri (t))

× log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−iXi(t+1)

24
−Ei (t) log

1
1 −

1
1 − e−η̃

2 1
1 − e−iYi(t+1)

22
−Ii (t) log

1
1 −

1
1 − e−µ̃

2 1
1 − e−iZi(t+1)

22ï
−

|V |Ø
i=1

{iXi (0) Ei (0) + (iXi (0) + iYi (0)) (Ii (0) − qiI0)

+ (iXi (0) + iYi (0) + iZi (0)) Ri (0)}

−ϵ
|V |Ø
i=1

(qi log qi + (1 − qi) log (1 − qi)) − δ
|V |Ø
i=1

qi. (3.7)
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At this point, we recall the likelihood of the data that we mentioned in Sec-
tion 2.3.3, and refer to Equation (2.24) in such a way to obtain the posterior
probability:

P
3î

E⃗i, I⃗i, R⃗i

ï
i∈V

|O
4

∝
Ú

DX⃗DY⃗ DZ⃗e−S[X⃗,Y⃗ ,Z⃗,E⃗,I⃗,R⃗]+qo∈O log P (Io|Iio (to)) =

=
|V |Ø
i=1

T −1Ø
t=0

{−iXi (t + 1) (Ei (t + 1) − Ei (t))

− (iXi (t + 1) + iYi (t + 1)) (Ii (t + 1) − Ii (t))
− (iXi (t + 1) + iYi (t + 1) + iZi (t + 1)) (Ri (t + 1) − Ri (t))

− (Ni − Ei (t) − Ii (t) − Ri (t)) log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−iXi(t+1)

24
−Ei (t) log

1
1 −

1
1 − e−η̃

2 1
1 − e−iYi(t+1)

22
−Ii (t) log

1
1 −

1
1 − e−µ̃

2 1
1 − e−iZi(t+1)

22ï
−

|V |Ø
i=1

{iXi (0) Ei (0) + (iXi (0) + iYi (0)) (Ii (0) − qiI0)

+ (iXi (0) + iYi (0) + iZi (0)) Ri (0)} − ϵ
|V |Ø
i=1

(qi log qi + (1 − qi) log (1 − qi))

−δ
|V |Ø
i=1

qi −
Ø
o∈O

log
C

1
σ

√
2π

e− (Iio (to)−Io)2

2σ2

D
. (3.8)
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The overall action becomes

Stot =
|V |Ø
i=1

T −1Ø
t=0

{−iXi (t + 1) (Ei (t + 1) − Ei (t))

− (iXi (t + 1) + iYi (t + 1)) (Ii (t + 1) − Ii (t))
− (iXi (t + 1) + iYi (t + 1) + iZi (t + 1)) (Ri (t + 1) − Ri (t))

− (Ni − Ei (t) − Ii (t) − Ri (t)) log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−iXi(t+1)

24
−Ei (t) log

1
1 −

1
1 − e−η̃

2 1
1 − e−iYi(t+1)

22
−Ii (t) log

1
1 −

1
1 − e−µ̃

2 1
1 − e−iZi(t+1)

22ï
−

|V |Ø
i=1

{iXi (0) Ei (0) + (iXi (0) + iYi (0)) (Ii (0) − qiI0)

+ (iXi (0) + iYi (0) + iZi (0)) Ri (0)} − ϵ
|V |Ø
i=1

(qi log qi + (1 − qi) log (1 − qi))

−δ
|V |Ø
i=1

qi −
Ø
o∈O

C
log

A
1

σ
√

2π

B
− (Iio (to) − Io)2

2σ2

D
. (3.9)

It is now convenient to define new variables which will be, along with the state
variables Ei, Ii, Ri, the central point of the inference algorithm; we define θE

i (t) =
iXi (t), θI

i (t) = iXi (t) + iYi (t) and θR
i (t) = iXi (t) + iYi (t) + iZi (t), so that the

action becomes:

Stot =
|V |Ø
i=1

T −1Ø
t=0

î
−θE

i (t + 1) (Ei (t + 1) − Ei (t)) − θI
i (t + 1) (Ii (t + 1) − Ii (t))

−θR
i (t + 1) (Ri (t + 1) − Ri (t))

− (Ni − Ei (t) − Ii (t) − Ri (t)) log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−θE

i (t+1)
24

−Ei (t) log
3

1 −
1
1 − e−η̃

2 3
1 − e−(θI

i (t+1)−θE
i (t+1))

44
−Ii (t) log

3
1 −

1
1 − e−µ̃

23
1 − e−(θR

i (t+1)−θI
i (t+1))

44<

−
|V |Ø
i=1

î
θE

i (0) Ei (0) + θI
i (0) (Ii (0) − qiI0) + θR

i (0) Ri (0)
ï

−ϵ
|V |Ø
i=1

(qi log qi + (1 − qi) log (1 − qi))

−δ
|V |Ø
i=1

qi −
Ø
o∈O

C
log

A
1

σ
√

2π

B
− (Iio (to) − Io)2

2σ2

D
. (3.10)
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3.3 Rescaled model

For the sake of simplicity and numerical stability in the algorithm, we can consider
rescaling the state variables with respect to the total population of each node Ni

so that we will deal with densities. This brings to:

Stot =
|V |Ø
i=1

T −1Ø
t=0

Ni {−iXi (t + 1) (ei (t + 1) − ei (t))

− (iXi (t + 1) + iYi (t + 1)) (ii (t + 1) − ii (t))
− (iXi (t + 1) + iYi (t + 1) + iZi (t + 1)) (ri (t + 1) − ri (t))

− (1 − ei (t) − ii (t) − ri (t)) log
3

1 −
3

1 − e−β̃
q

j
wijNjij(t)

4 1
1 − e−iXi(t+1)

24
−ei (t) log

1
1 −

1
1 − e−η̃

2 1
1 − e−iYi(t+1)

22
−ii (t) log

1
1 −

1
1 − e−µ̃

2 1
1 − e−iZi(t+1)

22ï
−

|V |Ø
i=1

Ni {iXi (0) ei (0) + (iXi (0) + iYi (0)) (ii (0) − qii0)

+ (iXi (0) + iYi (0) + iZi (0)) ri (0)} − ϵ̃
|V |Ø
i=1

Ni (qi log qi + (1 − qi) log (1 − qi))

−δ̃
|V |Ø
i=1

Niqi −
Ø
o∈O

C
log

A
1

σ
√

2π

B
− N2

i (iio (to) − io)2

2σ2

D
(3.11)

with rescaled variables ei (t) = Ei(t)
Ni

, ii (t) = Ii(t)
Ni

, i0 = I0
Ni

, ri (t) = Ri(t)
Ni

, ϵ̃ = ϵ
Ni

,

δ̃ = δ
Ni

and w̃ij = wijNi.
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Again we introduce θs and the action for the rescaled model becomes:

Stot =
|V |Ø
i=1

T −1Ø
t=0

Ni

î
−θE

i (t + 1) (ei (t + 1) − ei (t)) − θI
i (t + 1) (ii (t + 1) − ii (t))

−θR
i (t + 1) (ri (t + 1) − ri (t))

− (1 − ei (t) − ii (t) − ri (t)) log
3

1 −
3

1 − e−β̃
q

j
w̃ijij(t)

4 1
1 − e−θE

i (t+1)
24

−ei (t) log
3

1 −
1
1 − e−η̃

2 3
1 − e−(θI

i (t+1)−θE
i (t+1))

44
−ii (t) log

3
1 −

1
1 − e−µ̃

2 3
1 − e−(θR

i (t+1)−θI
i (t+1))

44<

−
|V |Ø
i=1

Ni

î
θE

i (0) ei (0) + θI
i (0) (ii (0) − qii0) + θR

i (0) ri (0)
ï

−ϵ̃
|V |Ø
i=1

Ni (qi log qi + (1 − qi) log (1 − qi))

−δ̃
|V |Ø
i=1

Niqi −
Ø
o∈O

C
log

A
1

σ
√

2π

B
− N2

i (iio (to) − io)2

2σ2

D
. (3.12)

3.4 Mean-Field Approximation
Sometimes, it is useful to apply further approximations to obtain a simplified and
more tractable model. The Mean-Field approximation is a classical tool in
statistical physics that simplifies the analysis of complex interacting systems by
replacing the influence of all other components on a given element with an average
or mean effect.
This method was first developed in the context of magnetism and phase transitions,
in particular in analyzing the Ising model (see e.g. [27]), then it has been widely
adopted in many contexts, such as neuroscience, network theory, and epidemiology.
In the context of the Ising model, the mean-field approximation can be derived in
three equivalent ways which highlight different aspects of this method:

• the effective field approach, developed by Pierre Weiss (1907) [28], which
substitutes the effect of all the neighbor spins on a given spin with an effective
constant field,

• the variational free energy approach, which has its conceptual origins in
Gibbs and Jaynes [29], but it was lately formalized in modern contexts. This
method is founded on the introduction of a functional of the entropy and the
internal energy F [q] = ⟨H⟩q − TS [q] in such a way to obtain a variational free
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energy [30, 31] to be minimized with respect to the probability distribution of
the system q,

• the trial Hamiltonian approach, in which one chooses a simplified Hamilto-
nian and computes its free energy, then the Bogoliubov’s inequality is used:
F ≤ F0 + ⟨H − H0⟩0 to obtain an upper limit for the free energy F [32].

In our stochastic model, instead, the mean-field approximation can be obtained
employing two assumptions:

• rates are so small that daily probabilities can be considered small as well,

pβ,i (t) = 1 − e−β̃
q

j
w̃ijij(t),

≈ 1 −
Ù
j

è
1 − β̃w̃ijij (t)

é
= 1 −

Ù
j

è
1 − λ̃ijij (t)

é
(3.13)

pη ≈ η̃ and pµ ≈ µ̃.

• only small fluctuations are considered, then we can approximate

1 − e−iXi(t+1) ≈ iXi (t + 1) , (3.14)
1 − e−iYi(t+1) ≈ iYi (t + 1) , (3.15)
1 − e−iZi(t+1) ≈ iZi (t + 1) . (3.16)
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With the usual introduction of θ-variables, we obtain a mean-field action:

Stot
MF =

|V |Ø
i=1

T −1Ø
t=0

Ni

− θE
i (t + 1)

ei (t + 1) − (1 − η̃) ei (t)

− (1 − ei (t) − ii (t) − ri (t))
1 −

Ù
j

è
1 − λ̃ijij (t)

é
−θI

i (t + 1)
3

ii (t + 1) − (1 − µ̃) ii (t) − η̃ei (t)
4

−θR
i (t + 1)

3
ri (t + 1) − ri (t) − µ̃ii (t)

4
−

|V |Ø
i=1

Ni

3
θE

i (0)ei(0) + θI
i (0) (ii(0) − qii0) + θR

i (0)ri(0)
4

−ϵ̃
|V |Ø
i=1

Ni (qi log qi + (1 − qi) log (1 − qi))

−δ̃
|V |Ø
i=1

Niqi

−
Ø
o∈O

C
log

A
1

σ
√

2π

B
− N2

i (iio(to) − io)2

2σ2

D
. (3.17)

The associated saddle-point equations, which correspond to the solution with θE
i =

0, θI
i = 0, θR

i = 0, give a deterministic mean-field description of the original
stochastic model and represent the usual set of ordinary differential equations for
the different epidemic compartments for the subpopulations.

3.5 Discussion and outlook
In this chapter, we provided the theoretical core of the epidemic inference problem
using the powerful path integral formalism. This framework enables the descrip-
tion of the complete dynamics of our model in terms of a global action functional
which allows to compute the probability of each epidemic trajectory.
We first derived the partition function Z and then the action S associated with
the model. Then we incorporated the prior information on initial conditions by
also introducing the regularization and penalty terms for initial distribution qi, and
the likelihood of the data, obtaining the total action Stot.
To handle the complexity of the full dynamics, we developed a mean-field ap-
proximation. The tools developed in this chapter, along with the saddle-point
equations derived in the next chapter, form the analytical core of the inference
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saddle-point algorithm described later in the thesis. In particular, they provide
the foundation for constructing a forward-backward algorithm that allows efficient
reconstruction of epidemic trajectories and inference of unobserved variables from
scattered observations.
In the next chapter, we will fill the gap between theory and practical inference by
introducing the saddle-point method, an essential tool to convert the stochastic
path integral formulation into a set of coupled equations which enables to define
the most probable epidemic trajectory.
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Chapter 4

The Saddle-Point Method

4.1 Introduction to the Saddle-Point method
In the previous chapter, we introduced the path integral formalism to describe the
overall evolution of a stochastic epidemic system in terms of a global action, Stot,
which includes all the information about the prior, namely the intrinsic dynamics
of the model, and the available observations through the likelihood of the data.
Although this formalism is very precise and allows one to fully describe the dynamics
of the system over all the possible trajectories, it is computationally intractable.
To overcome this problem, we can use a widely adopted technique in statistical
physics and field theory, the saddle-point method, also known as steepest
descent method or Laplace approximation. This method is based on the fact
that when we have a large scale parameter, such as large populations Ni in our
case, the dominant contribution to the path integral stems from the configuration
(or, in this case, trajectory) that minimizes the action.
This trajectory is the most probable of the system, that is the one that maximizes
the posterior probability of the model. From the mathematical point of view,
starting from Equation (3.1), we can approximate the integral by evaluating the
action in its minimum ϕ∗:

Z ≈ e−S[ϕ∗]. (4.1)

This approximation is valid under the assumption that S [ϕ] is convex and the
fluctuations around the minimum are negligible, which is typical when we have
large populations. This method has been widely adopted in the physics of complex
systems, in both statistical classical and quantum mechanics, and in network theory.
In the context of epidemic inference, Altarelli, Braunstein, Dall’Asta and Zecchina
(2014) [33] showed that it is possible to derive an inference algorithm on networks
using belief propagation, derived from a variational action. In this work, the
saddle point of the Bethe free energy represents the analogue of the most probable
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trajectory.
Similarly, Aurell and Sneppen (2002) [34] analyzed the stochastic evolution of
biological systems as escape problems from stable states, by determining the most
likely path of the system under stochastic fluctuations. This is represented by the
solution of a Hamilton-Jacobi equation, which is conceptually equivalent to the
saddle-point method for an action.
In recent years, Gratton (2020) [35] explicitly applied the path integral formalism
to SIR models, showing how the deterministic classical dynamics can be obtained
as a saddle-point of the action.
From the mathematical point of view, the saddle-point method is obtained by
imposing that the functional derivatives of the action with respect to each dynamical
variable and the conjugate fields are zero:

δS
δVi (t) = 0,

δS
δθV

i (t + 1) = 0, where V ∈ {E, I, R} . (4.2)

This provides a system of coupled equations that describes both the forward
evolution of the epidemic variables and the backward propagation of conjugate
fields. In this context, the epidemic inference is performed as research of the
trajectory that satisfies these stationarity conditions, subject to initial constraints
and observations.
In the following sections, the saddle-point equations for our model will be derived,
and we will discuss the dynamical interpretation, along with the boundary conditions
and initial conditions.
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4.2 Saddle-Point conditions

In this section we provide the saddle-point equations for the initial version of
the model, that is the one with the variables Ei, Ii, Ri, then we will recover the
equations for the rescaled model, that is the one with density variables ei, ii, ri

and the one implemented in the forward-backward algorithm, and eventually the
equations for the mean-field model presented in Section 3.4.

4.2.1 Saddle-Point equations for the standard model

We first recall the action of the standard model from Equation (3.10):

Stot =
|V |Ø
i=1

T −1Ø
t=0

î
−θE

i (t + 1) (Ei (t + 1) − Ei (t)) − θI
i (t + 1) (Ii (t + 1) − Ii (t))

−θR
i (t + 1) (Ri (t + 1) − Ri (t))

− (Ni − Ei (t) − Ii (t) − Ri (t)) log
3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−θE

i (t+1)
24

−Ei (t) log
3

1 −
1
1 − e−η̃

2 3
1 − e−(θI

i (t+1)−θE
i (t+1))

44
−Ii (t) log

3
1 −

1
1 − e−µ̃

23
1 − e−(θR

i (t+1)−θI
i (t+1))

44<

−
|V |Ø
i=1

î
θE

i (0) Ei (0) + θI
i (0) (Ii (0) − qiI0) + θR

i (0) Ri (0)
ï

−ϵ
|V |Ø
i=1

(qi log qi + (1 − qi) log (1 − qi))

−δ
|V |Ø
i=1

qi −
Ø
o∈O

C
log

A
1

σ
√

2π

B
− (Iio (to) − Io)2

2σ2

D

At this point we differentiate this action with respect to θ variables in order to
obtain the deterministic equations for the forward dynamics.

δStot

δθE
i (t + 1) = 0,

δStot

δθI
i (t + 1) = 0,

δStot

δθR
i (t + 1) = 0 (4.3)

32



The Saddle-Point Method

Through this procedure, one obtains:

δStot

δθE
i (t + 1) = 0 =⇒ Ei (t + 1) = Ei (t) + (Ni − Ei (t) − Ii (t) − Ri (t))

×

3
1 − e−β̃

q
j

wijIj(t)
4

e−θE
i (t+1)3

1 −
3

1 − e−β̃
q

j
wijIj(t)

4 1
1 − e−θE

i (t+1)
24

−Ei (t) (1 − e−η̃) e−(θI
i (t+1)−θE

i (t+1))3
1 − (1 − e−η̃)

3
1 − e−(θI

i (t+1)−θE
i (t+1))

44 (4.4)

δStot

δθI
i (t + 1) = 0 =⇒ Ii (t + 1) = Ii (t)

+Ei (t) (1 − e−η̃) e−(θI
i (t+1)−θE

i (t+1))3
1 − (1 − e−η̃)

3
1 − e−(θI

i (t+1)−θE
i (t+1))

44

−Ii (t) (1 − e−µ̃) e−(θR
i (t+1)−θI

i (t+1))3
1 − (1 − e−µ̃)

3
1 − e−(θR

i (t+1)−θI
i (t+1))

44 (4.5)

δStot

δθR
i (t + 1) = 0 =⇒ Ri (t + 1) = Ri (t)

+Ii (t) (1 − e−µ̃) e−(θR
i (t+1)−θI

i (t+1))3
1 − (1 − e−µ̃)

3
1 − e−(θR

i (t+1)−θI
i (t+1))

44 (4.6)

As one can see, these are the equations that lead the update of the states E, I, R
forward in time.
Now we derive the equations for the backward propagation by differentiating the
action with respect to the state variables:

δStot

δEi (t) = 0,
δStot

δIi (t) = 0,
δStot

δRi (t) = 0 (4.7)
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This brings to:

δStot

δEi (t) = 0 =⇒ θE
i (t) = θE

i (t + 1)

+ log
3

1 −
3

1 − e−β̃
q

j
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4.2.2 Saddle-Point equations for the rescaled model

Let’s recall the expression for the total action of the rescaled model from Equa-
tion (3.12):
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We first compute the forward evolution for the state variables in the same way of
Equations (4.4)–(4.6) . What one obtains is the following:
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δStot
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We now calculate the backward equations:
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δStot
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4.2.3 Saddle-Point equations for the mean-field model

In the same way of equations above, we derive the saddle-point conditions for the
mean-field approximation of our model, differentiating the action of Equation (3.17)
with respect to θ variables and state variables.
For the forward dynamics one obtaines:
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For the backward propagation we have:
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4.3 Boundary conditions
The initial conditions can be imposed by considering the derivative of the action
with respect to conjugate fields at time t = 0:

δStot

δθE
i (0) = 0 =⇒ Ei (0) = 0 (4.23)

δStot

δθI
i (0) = 0 =⇒ ii (0) = qii0 (4.24)

δStot

δθR
i (0) = 0 =⇒ Ri (0) = 0 (4.25)

These are the same for all versions of our model. Similarly, one can derive the final
conditions; in particular, we set the conjugate fields to 0 except for θI

i (T ), which
will be given by the likelihood of the observations. We have:
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The parameters qi indicate the probability that node i is an initial infection seed;
we can infer this parameter by deriving an update function to insert into the
forward-backward algorithm. This is done by differentiating the action with respect
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to qi:

δStot

δqi

= 0 =⇒ θI
i (0) i0 − ϵ̃ (log qi − log (1 − qi)) − δ̃ = 0 (4.27)

and one obtains the update function

qi = 1
1 + e−ϵ̃−1(θI

i (0)i0−δ̃) . (4.28)
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4.4 Physical and Mathematical Interpretation of
the Saddle-Point Equations

The equations derived in the previous section represent the stationary conditions
of the total action Stot. From a mathematical and physical point of view, these
equations describe the most probable dynamical trajectory of the epidemic process.
We have seen in Chapter 3 that in the path integral formalism, the probability of a
full trajectory is expressed as a functional integral over all possible realizations of the
variables of the system, weighted by an exponential of the negative action. When
we consider the limit of large populations (i.e.,Ni ≫ 1) and small fluctuations, the
integral is dominated by the path that minimizes the action. This is equivalent to
the classical limit in quantum mechanics, where the path of least action corresponds
to the classical equations of motion.
So the saddle-point equations can be seen as the Euler-Lagrange equations for a
stochastic field theory discrete in time, and describe the typical evolution of the
system.
As we have seen in previous section, we can distinguish two coupled components:
the forward dynamics for the state variables Ei(t + 1), Ii(t + 1), Ri(t + 1), and
the backward propagation for the conjugate fields θE

i (t), θI
i (t), θR

i (t). This dual
structure is typical of Bayesian inference in dynamic systems, and is very similar
to the Hamiltonian formalism in mechanics, where we have position q and the
conjugate momentum p, which evolve in complementary directions.
The fields θ(t) can be seen as the response fields of the Martin-Siggia-Rose (MSR)
formalism [25]. In the saddle-point approximation, they acquire a physical meaning:
they act like adjoint variables that optimize the fit between the model trajectory
and the observed data.
The saddle-point equations emerge from a global optimization principle, since the
action integrates dynamics, prior information, and observations into a single cost
functional. So, solving these equations allows to find the epidemic evolution most
consistent with both the model and the data.
In the next chapter, we will present the colocation data, which describe the contact
process in the network. Specifically, we will describe how colocation data provided
by Meta and made available through collaboration with INSERM can be integrated
into the model to reflect realistic spatial connectivity between regions. These data
serve as the foundation for constructing the dynamic contact network, which plays
a central role in shaping epidemic spread and enables data-driven inference within
our metapopulation framework.
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Chapter 5

Colocation Data and
Mobility-driven Interaction
Networks

5.1 Data Provenance and Coverage

In this thesis work, we utilize anonymized human mobility data derived from colo-
cation information made available by Meta’s Data for Good initiative [36], in
partnership with public health institutions such as INSERM (Institut National de
la Santé et de la Recherche Médicale) in France. This dataset contains information
on physical proximity events between users of Meta platforms, like Facebook or
Instagram, who have location services enabled on their devices.
Through these data, one is able to estimate interaction potentials across different
geographical regions and, moreover, to construct a dynamical interaction network
for epidemic modeling. The dataset is structured at the level of administrative
regions, such as departments in France and provinces in Italy.

The data are collected weekly and represent the probability that an individual
from region i has been colocated in the same area of ∼ (0.6km)2 for a certain
amount of time (of order O(1min)) with another individual from region j. The
time window for the collection of data can cause some issues when simulating
epidemics at daily level, since we would have the same colocation rates for 7 days,
causing the epidemics to assume very mean-field like behavior.
The time span we considered in this work ranges from April to June 2023. Another
important clarification about these data is that face-to-face contacts are not
considered, since they are particularly difficult and invasive to obtain, so we work
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on a larger spatial scale. Access to the data is granted via partnership with Meta,
typically in collaboration with academic or public health institutions. The data
are not publicly downloadable, but can be shared under controlled conditions for
public health research.

5.1.1 Administrative regions
As already mentioned, epidemiological models can incorporate different levels of
interaction between individuals, ranging from a whole-population model (where
every individual is supposed to interact with others at the same rate [37]) to
agent-based models [38, 39]. In this sense, colocation data are meant to be applied
to metapopulation models. The subpopulations are usually geographical regions,
which in turn are conveniently identified in political administrative units, since
public health decisions are usually taken within countries. We can provide, with
Figure 5.1, an example of a colocation map constructed using the colocation data
for Italy, with weighted links.

Figure 5.1: Colocation map for Italy for the week of 2020-02-26 to
2020-03-03. Red links represent strong colocation rate, blue links intermediate
rate, and black are the weakest. Source: Iyer et al. (2023) [40]
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5.2 Applications of Colocation Data

Colocation data have been widely used in epidemiological and human-mobility
research, especially during the COVID-19 pandemic. Thanks to their spatial and
time resolution, these data have enabled the modeling of interregional interactions,
the assessment of containment measures, and the forecasting of epidemic dynamics.
They have been employed to build contact networks between geographical units
(as in this thesis) and to simulate the spread of infectious diseases. For example, in
France, researchers used colocation probabilities to construct a time-varying contact
matrix between departments to be implemented into ARIMA (AutoRegressive
Integrated Moving Average, a technique for the analysis of time series and foresight
of future values of the series) models for forecasting local hospital admissions due
to COVID-19 [41].
Multiple studies adopted colocation data to evaluate the effectiveness of mobility
restrictions and social distancing policies, for example, in the work of Chang et al.
(2021) [42], where they examined changes in colocation probabilities between US
counties before and after the order of "staying at home". A significant reduction of
inter-county colocation suggested a decrease of the transmission risk, validating
the impact of such policies.
Another notable application extends to digital contact tracing. For example, in a
university setting, researchers used Wi-Fi access point logs to reconstruct a physical
proximity network and demonstrated that these data could predict COVID-19
cases and help in early outbreak detection [43].
These applications demonstrate the flexibility and relevance of colocation data in
epidemiological frameworks. In the next section, we will show the structure of this
dataset and the construction of the colocation matrix W .

5.3 Dataset Structure and Colocation Matrix

5.3.1 Dataset Structure

The data provided by Meta through INSERM are compressed in CSV partitions.
Each file contains all the colocation feeds for the whole world in a given day (repre-
sentative of an entire week). The files are structured as represented in Table 5.1.
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Column name Type Meaning
Row Int Row index of the file

polygon1_id String15 Alpha-numeric code of the
first region

polygon1_name String31 Name of the first region
polygon2_id String15 Alpha-numeric code of the

second region
polygon2_name String31 Name of the second region

country String3 3-letter abbreviation of the
country of the 2 regions

polygon_level Int64 Meta’s internal region par-
tition (roughly corresponds
to NUTS-3 protocol)

is_home_tile_colocation Bool True if the 2 regions in the
table are the same,
False otherwise; indicator of
colocation
of individuals of the same
region

weekly_measured_coobservation_rate Float64 Probability that an indi-
vidual from region 1 and
another one from region 2
are observed in the same 5-
minute bin, regardlessly of
their location

weekly_measured_colocation_rate Float64 Probability that an indi-
vidual from region 1 and
another one from region 2
are observed in the same
5-minute bin, in the same
(0.6km)2 area

weekly_colocation_rate Float64 Probability that any indi-
vidual from first region was
in the same (0.6km)2 area
as an individual from sec-
ond region during the day

ds Date UTC date (YYYY-MM-
DD) representing a 24-h ag-
gregation window (represen-
tative of a week)

Table 5.1: Structure of the raw colocation dataset (Meta Data for Good)
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The values in column weekly_colocation_rate are obtained as the ratio
between the values in column weekly_measured_colocation_rate and the ones
in column weekly_measured_coobservation_rate, as result of a conditional
probability estimate:

P (coloc|coobs) = P (coloc ∩ coobs)
P (coobs) (5.1)

where the l.h.s. represents the value in column weekly_colocation_rate,
then, going to the r.h.s., we have at the numerator the value we find in col-
umn weekly_measured_colocation_rate, and the denominator is the value in
column weekly_measured_coobservation_rate.
Each CSV-file contains about 18 million rows.

5.3.2 Derivation of the Colocation Matrix
Once we explain the structure of the colocation dataset, we are able to derive the
colocation matrix W mentioned in Section 2. We take a certain number (depending
on the dimension of the network we want to describe) of provinces in Italy, filtering
the CSV file multiple times in order to obtain a table containing the desired informa-
tion only. Each province will represent a node of the network, so that in the matrix
W the element wij will be the value of the column weekly_colocation_rate
corresponding to the row in which we have both i and j in the two corresponding
columns, polygon1_name and polygon2_name.
Once we extract these values, we can construct the matrix for a given time window,
since we recall that each of these data are representative of an entire week, so we
would have:

W (t) =


w11(t) w12(t) · · · w1N(t)
w21(t) w22(t) · · · w2N(t)

... ... . . . ...
wN1(t) · · · · · · wNN(t)

 (5.2)

where all W (t) for 1 ≤ t ≤ 7 would be the same, and so on for subsequent times.
In this way, we construct a vector in time of colocation matrices ready to use in our
algorithm. Figure 5.2 shows the weighted graph for a 10-provinces network, obtained
through a Python script in which the adopted colocation matrix is recovered from
the CSV file of date 2023-05-01. We also provide a heatmap for the same colocation
matrix W , visible in Figure 5.3.

5.4 Assumptions of Colocation
Despite the utility of colocation data in many applications such as the present
context of epidemiological modeling, it is crucial to understand the assumptions
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Figure 5.2: Weighted graph for a 10-nodes network. On the right the color
map. Edges also have different thickness, directly proportional to their weight.

behind their construction. In this section, we will elucidate four key aspects:
representativeness, within- vs. between-region colocation, contact heterogeneity,
and temporal aggregation, as already done by Iyer et al. [40].

5.4.1 Representativeness
Like many datasets derived from online platforms, Colocation Maps rely on data
from a specific user base, here, individuals who consented to location tracking
through Meta’s mobile apps. This raises concerns about demographic biases. For
example, users enabling Location History (LH) and Background Collection (BC)
may probably belong to a younger or more technological slice of the population.
To mitigate this, Meta employs a two-stage demographic reweighting procedure:

• First, Facebook users are weighted to reflect the demographics of the on-ground
population (e.g., by age, gender, wealth, and infrastructure);

• Second, the subset of users included in the colocation calculation is reweighted
to resemble the overall Facebook population, incorporating additional at-
tributes such as device type and Facebook activity level.
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Despite this reweighting, differences may persist, so both raw and weighted ver-
sions of the data are shared with researchers. These allow robustness checks and
adjustments in modeling.

Figure 5.3: Logarithmic heatmap of the colocation matrix W between
the 10 cities considered (Bologna, Fermo, Perugia, Viterbo, Catanzaro,
Napoli, Ragusa, Latina, Firenze, Salerno). The chromatic scale represents
the connection intensity: brighter colors indicate greater weights between nodes.

5.4.2 Within- vs. Between-Region Colocation

Colocation Maps distinguish between within-region and between-region colocation.
The rates of colocation among individuals from the same region are generally orders
of magnitude higher than those across regions. This difference likely reflects varying
patterns of human activity, for instance, people living in the same household or
neighborhood are naturally more likely to share space frequently.
However, high within-region colocation rates do not always correspond to elevated
disease transmission risk. For example, individuals sleeping in the same building
but in separate apartments may not interact closely. This suggests that some
within-region colocation events may overstate the potential for direct contact
transmission.
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5.4.3 Contact Heterogeneity
Another critical consideration is the variability in colocation across different pairs
of individuals. While most people are colocated for short durations with many
others, a small fraction of pairs spend extensive time colocated, sometimes spanning
multiple days. These few pairs contribute disproportionately to total colocation
time.
This heterogeneity implies that average colocation rates may obscure important
dynamics. In finer-grained models, such as agent-based or network-based simula-
tions, it would be important to account for this variability explicitly. For instance,
repeated contact between the same individuals may increase the likelihood of trans-
mission, but such effects are typically not modeled in mean-field or metapopulation
frameworks.

5.4.4 Temporal Aggregation and Homogeneity
Colocation rates in these maps are computed at weekly resolution, averaging over
thousands of five-minute bins. While this temporal smoothing is computationally
efficient and preserves privacy, it introduces assumptions of temporal homogeneity.
That is, it treats all minutes within a week as statistically equivalent.
This may mask daily rhythms or time-specific behavior patterns (e.g., differences
between work hours and nighttime). Although such smoothing is standard in
mobility datasets, users should be cautious when applying weekly-aggregated rates
to dynamic models that might be sensitive to diurnal patterns.
However, temporal smoothing improves privacy by blurring precise individual
behaviors, one of the key motivations for Meta’s approach.

5.5 Summary and Transition to Inference Imple-
mentation

The colocation data provided by Meta, through the collaboration with INSERM,
offer a unique opportunity to build dynamic interaction networks at high spatio-
temporal resolution. By estimating the probability that individuals from different
regions are colocated in the same small area, these data provide the basis for
constructing time-varying adjacency matrices that capture real-world mobility and
contact patterns. Their use within metapopulation models, as shown throughout
this chapter, allows a realistic parameterization of the infection kernel wij(t),
enabling us to move beyond homogeneous mixing assumptions.
We have illustrated the provenance, structure, and assumptions of the dataset,
along with a detailed explanation of how the colocation matrix W (t) is derived and
interpreted. Despite inherent limitations, such as demographic biases and temporal
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aggregation, the dataset remains a powerful tool when appropriately understood
and used with care.
Having established the structure and interpretation of the interaction network, we
are now ready to move toward the core of the inference algorithm. In the next
chapter, we present the implementation of the algorithm based on the path-integral
formalism, the mean-field approximation, and the saddle-point equations introduced
earlier. We describe in detail how the algorithm has been coded in Julia, focusing
on its structure, numerical challenges, and integration with real-world data.
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Chapter 6

From Theory to Practice:
Implementation of the
Forward-Backward
Algorithm

6.1 Overview of the Algorithmic Framework
In this chapter, we present the implementation details of the epidemic inference
algorithm developed throughout the thesis. The entire computational workflow
has been implemented in the Julia programming language and organized into a
custom package called MetaPopEpi, which has been uploaded on GitHub as
private for now.
The purpose of the algorithm is to reconstruct the most probable epidemic trajecto-
ries of epidemic variables (such as the number of exposed, infected, and recovered
individuals in each region over time), based on a combination of:

• a stochastic SEIR Metapopulation model;

• first, fictitious data for the colocation matrix, and eventually real-world
colocation data to model inter and intra-regional contacts;

• Bayesian Inference using a path integral formulation;

• saddle-point approximation to obtain deterministic-like equations.

The Julia package integrates all components needed for the inference:

• model parameterization and initialization;

50



From Theory to Practice: Implementation of the Forward-Backward Algorithm

• forward-backward inference routine to compute trajectories;

• other tools for several purposes (such as a neighboring function or a Monte
Carlo simulation function).

The Julia package is built to maintain a balance between mathematical transparency
and computational efficiency. The code is built on:

• typed structures to define models cleanly;

• array construction and vectorization for high-performance computation;

• external libraries for linear algebra, numerical optimization and plotting.

In the following sections, we describe in detail each component of the implementa-
tion, starting from the definition of core data structures and progressing through
the numerical solution of the inference problem.

6.2 Package Tree Unpacking
In this section, we will unpack the custom Julia package in its main components and
properly describe them. The package composition follows a precise tree structure
for readability,ease of access and writing, and versioning.
Here we mention the main parts:

• A source directory (/src), which is the core part, containing all the .jl files,
which in turn comprehend all the functions utilized in the simulations,

• a Project.toml file, which is a core component of the package, since it contains
all the dependencies of the package itself (libraries like LinearAlgebra and so
on),

• documentation files, useful for understanding the meaning and utility of the
functions.

We now focus on the /src directory and describe each file it contains:

• types.jl, inside which we find the two main struct of the code and a new
Type, the mutable structure EpidemicModel, the structure Node and the
AbstractType InfectionModel respectively;

• utils.jl, which contains some of the main functions for general usage, and these
are used for example for nodes formatting (creation of a complete initialized
Vector of nodes where each node is a struct Node type), or for the patient
zero detection and so on,
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• sample.jl, this file contains the functions for the Monte Carlo simulations of
the epidemic spread;

• a directory /models, which in turns contains the file SEIR.jl, that represents
the core file with all the functions that simulate the dynamics of the epidemic
system through the deterministic saddle-point equations;

• optimize.jl, which contains all the optimization algorithm developed and used
for the main purpose of infer the most probable trajectories;

• MetaPopEpi.jl, in which we define the module of the entire package with
the same name, we import all the main libraries involved in the simulations,
export all the functions called in the worksheet, and eventually we include all
the aforementioned files.

6.2.1 Types.jl File
This file defines the core data structures used to represent the epidemic model and
its components. It begins with the definition of an ’AbstractType’ for the infection
model—currently instantiated as the SEIR model, but easily extendable to others.

The main structure, ’EpidemicModel’, encapsulates the following elements:

• The infection model being used (e.g., SEIR);

• Spatial and temporal dimensions of the simulation: number of nodes and
number of time steps;

• A vector specifying the population size at each node;

• A time-varying contact matrix, generated either synthetically via an Erdös–Renýi
random graph or from real-world colocation data;

• A matrix of observations, where missing values are denoted with −1.0;

• Three parameters governing the initial conditions:

– ’prior’: initial number of infected individuals;
– ϵ: regularization hyperparameter encouraging values of qi close to 0 or 1;
– δ: penalization hyperparameter encouraging sparsity in the set of initially

infected nodes;

• A boolean flag ‘converged‘ used to indicate whether the inference algorithm
has converged.
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A second structure, ’Node’, is used to represent each node in the simulation graph.
It includes:

• The node index i;

• A time-dependent vector of neighboring nodes, ∂(t);

• Two matrices, ‘margfwd‘ and ‘margbwd‘, holding parameters for forward
and backward inference respectively (e.g., Ei(t), Ii(t), Ri(t) and θE

i (t), θI
i (t),

θR
i (t));

• A node-specific standard deviation σi, representing uncertainty in observations,
modeled via a Gaussian distribution centered on observed infection counts.

Tables 6.1 and 6.2 summarize the fields of the two structures.

Field Type Description
Disease InfectionModel The infection model

used
M Int Number of nodes in

the contact graph
T Int Number of time steps
Ns Vector{Float64} Number of individuals

in each node
ws Vector{SparseMatrixCSC{Float64,Int64}} colocation matrices at

each time step
prior Float64 Initial number of in-

fected individuals
ϵ Float64 Hyperparameter for

the regularization of
the prior

δ Float64 Hyperparameter for
the penalization of the
number of infected
nodes

obs Matrix{Float64} Observation matrix
converged Bool Flag for convergence

check

Table 6.1: EpidemicModel structure, each field is present according to the
discussion made above
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Field Type Description
i Int Index of the node
∂ Vector{Vector{Int}} List of neighbors

margfwd Matrix{Float64} Matrix containing parameters for the forward
algorithm

margbwd Matrix{Float64} Matrix containing parameters for the back-
ward algorithm

σ Float64 Observation weight for the state of the nodes

Table 6.2: Node structure fully explained

This design offers several key advantages:

• Julia’s ‘struct‘ system enables strongly typed, memory-efficient data containers,
supporting high-performance execution through the JIT compiler;

• The use of an abstract infection model type allows easy extension to alternative
compartmental models (e.g., SIR, SIS, SEIRS) with minimal changes to the
codebase;

• Time-varying neighbor vectors ∂(t) reflect the dynamic nature of the underlying
contact network, allowing more realistic modeling of temporal interactions;

• Assigning a variable observation variance σi to each node provides flexibil-
ity and robustness in matching simulations with observed data, improving
convergence.

The ‘Types.jl‘ file thus defines the foundational data layer on which the entire
inference framework is built. In the next sections, we will explore how these
structures are leveraged in implementing the epidemic inference and simulation
pipeline.

6.2.2 Utils.jl File
This file contains general-purpose utility functions that support various stages of the
inference pipeline, including preprocessing, model initialization, and post-inference
diagnostics. While these functions are not directly involved in the inference
algorithm, they play a crucial role in organizing data, assigning weights, and
extracting meaningful statistics from simulated or inferred epidemic trajectories.
The main functionalities provided are:

• Node Formatting and Network Initialization: One of the initial tasks
in the simulation pipeline is to extract the neighborhood structure from the
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colocation matrix and format the nodes accordingly.
- The function get_neighbors derives the list of neighbors for each node by
identifying non-zero entries in the colocation matrix.
- The function nodes_formatting initializes a Vector of Node structures,
assigning a unique index to each and preallocating memory for time-dependent
variables.

• Observation Weighting: The function obs_weight computes the likelihood
of observing a given number of infected individuals under a Gaussian obser-
vation model, given the current simulation state. This allows probabilistic
integration of noisy data into the inference.
- An additional function dynamically updates σi for each node based on the
empirical error between observed and inferred data.

• Marginals Collection: Several get_marginals functions are defined to
extract marginal distributions from the nodes vector. These marginals can be
used for both inference and Monte Carlo simulations.

• Risk Assessment: The module includes a function to assess infection risk in
a selected region (node), using partial observations from other nodes.
- This function performs multiple optimization runs under varying conditions
(e.g., observation percentages, reference trajectories, and inference seeds).
- Parallel computation via Threads accelerates this process, and results are
aggregated to compute average normalized L2 distances from ground-truth
trajectories.
- These diagnostics are later used to generate graphical representations of risk
and model performance.

All functions in this module are intentionally decoupled from the core inference
logic, following modular design principles. This separation enhances maintain-
ability, facilitates testing and debugging, and allows for easy integration of new
functionalities.

6.2.3 Sample.jl File
This file contains the functions for stochastic sampling of epidemic trajectories,
which are fundamental for both simulating synthetic data and evaluating inference
strategies in controlled environments. Its main purpose is to generate Monte Carlo
simulations of the epidemic process with fixed known parameters, which are used
as target trajectories (ground state) from which we take observations, and to test
algorithmic performance.

55



From Theory to Practice: Implementation of the Forward-Backward Algorithm

• Monte Carlo Sampling of Epidemic Trajectories: The core function,
sample_metapop, performs a forward stochastic simulation of the SEIR model.
- Transitions between compartments (e.g., susceptible → exposed, exposed →
infected) are modeled using Binomial sampling, conditioned on the current
system state and the infection pressure derived from the contact network
W (t).
- The function internally calls sample_single_node!, which performs the
compartmental update for a single node.
- The complete result is stored in a 3D trajectory tensor traj[i, t, k],
where i is the node index, t the time step, and k the compartment (E, I, or
R).
These trajectories are used for two main purposes:

– To generate synthetic observations that will be fed into the inference
algorithm.

– To serve as ground-truth references for comparing inferred trajectories
and evaluating the accuracy of source localization.

• Score Function for Approximate Bayesian Computation (ABC): A
second important component in this file is the implementation of a score
function used in ABC-based inference.
- This score measures the discrepancy between a simulated trajectory and a
reference trajectory (or observation data).
- In the context of zero-patient inference, it quantifies how closely a trajectory
generated with a candidate qi (initial infection vector) matches the observed
data.
- The score is computed as the L2 norm between the simulated and observed
trajectories at observation points.
- This raw distance is then weighted using a Gaussian distribution to assign
likelihood scores, enabling a probabilistic ranking of nodes by their likelihood
of being the origin of the epidemic.

This module is essential for the inference framework: it defines the ground-truth
dynamics that the saddle-point forward-backward algorithm seeks to recover, given
partial and noisy observations of the epidemic spread.

6.2.4 SEIR.jl File
Together with optimize.jl, this file represents the computational core of the
package. It encodes the SEIR compartmental model dynamics and provides the
mathematical machinery required for both simulation and inference. It builds on
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the types defined in Section 6.2.1 and contains model-specific logic for forward and
backward propagation, likelihood evaluation, and optimization interfacing.

• SEIR Disease Struct: The file begins with the definition of a struct that
stores the key epidemiological parameters: infection rate β, transmission
rate η, and recovery rate µ. This struct is a subtype of the abstract type
InfectionDisease, defined in types.jl, enabling easy generalization and
substitution of models (e.g., switching from SEIR to SIR).

• Forward and Backward Propagation Functions: These functions are
central to the saddle-point inference algorithm:

– The forward function, update_forward!, implements Equations (4.11)–
(4.13), computing the forward marginals for E, I, and R. It uses current
state variables at time t and conjugate fields at t+1 to evaluate transition
probabilities, then updates the marginals at t + 1 in-place. A convergence
measure is computed via compute_convergence, and damping is applied
for numerical stability.

– The backward function, update_backward!, performs the reverse-time
update of conjugate fields θ based on Equations (4.14)–(4.16). It clamps
θ values to a numerical cutoff for stability, since unlike state variables
(bounded in [0,1]), conjugate fields are unbounded.

– A simplified forward function, only_forward!, is also provided, which
omits θ and implements a mean-field approximation.

• Stochastic Simulation: The file also defines sample_single_node!, the
core routine for single-node updates in the Monte Carlo simulations discussed
in Section 6.2.3. This function precomputes transition probabilities, performs
stochastic binomial sampling of daily increments ∆E, ∆I, ∆R, and updates
state variables in-place for each time step.

• Action Functional Computation: The action function calculates the total
action Stot across multiple candidate seeds. For each initial seed, the inference
algorithm is run and the resulting action value is stored in a dictionary indexed
by seed. The output is then sorted to identify the most probable infection
origin based on the minimum action value.

• Optimization utilities: The file includes several utility functions to enable
gradient-based optimization via packages such as NLopt.jl or Optim.jl.
Parameters are flattened into a single vector of the form:

[A [i, t] , A [i, t + 1] , . . . , A [i + 1, t] , A [i + 1, t + 1] , . . . , B [i, t] , . . . ]
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where A and B refer to model-specific variables (e.g., θE, θI). Core utilities
include:

– unpack_theta: converts the flat parameter vector into structured matrices
θE

i (t), θI
i (t), and θR

i (t) for use in the saddle-point update; this allows for
a better manageability during the update step for single variables,

– initial_guess: constructs an initial point for the optimizer, either from
mean-field solutions (if we want to optimize both state variables and θs)
or via random perturbations (for θs only),

– compute_loss_theta: evaluates the loss function, i.e., the squared devia-
tion from the saddle-point conditions over time and space. This function
calls simulate_forward! to compute epidemic trajectories (without op-
timizing forward marginals), then computes the updated conjugate fields
via backward propagation and accumulates the loss:

L =
TØ

t=1

MØ
i=1

51
θE [i, t] − θupdate

E

22
+
1
θI [i, t] − θupdate

I

22
+
1
θR [i, t] − θupdate

R

22
6

+
MØ

i=1

è
(θE [i, T + 1])2 + (θR [i, T + 1])2

+
A

θI [i, T + 1] − δi,ioδT +1,to

A
Ni

(I [i, T + 1] − Iobs [i, T + 1])
σ2

BB2
 .(6.1)

• Automatic Differentiation (AD): The function loss_with_grad_theta
wraps the loss function and computes its gradient using AD. Two approaches
are implemented for comparison:

– ForwardDiff.jl (forward-mode): efficient for low-dimensional problems;
derivatives are propagated alongside function evaluations using dual num-
bers.

– ReverseDiff.jl (reverse-mode): suitable for high-dimensional parameter
spaces with scalar loss output; gradients are accumulated during a reverse
traversal of the computation graph.

ForwardDiff functions operate on vectors of type AbstractVector{Real},
while ReverseDiff functions require standard Vector{Float64} inputs. A
comparative performance analysis is presented in Figure 6.1 and Table 6.3.
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This file forms the computational backbone of the package, enabling saddle-point
inference, trajectory simulation, and parameter optimization for SEIR epidemic
modeling. The next section introduces optimize.jl, which completes the core al-
gorithmic framework, followed by MetaPopEpi.jl, which integrates all components
into a working pipeline.

6.2.5 Optimize.jl and MetaPopEpi.jl Files

The optimize.jl file contains the core routines for trajectory reconstruction through
a forward-backward inference scheme. The file is structured to include both
utility functions for intermediate updates and full procedures for inference and
optimization.
We begin describing the essential functions that define the boundary behavior of
the system:

• Initial condition update (update_priors!): updates the vector of initial
infection probabilities qi, according to Equation (4.28), using the results of
the backward pass;

• Final condition update (update_endpoint!): sets the terminal values of
the conjugate fields θE, θI , θR based on the last forward simulation. If an
observation at final time is present, θI is assigned accordingly; otherwise, all θ
fields are initialized to zero.

59



From Theory to Practice: Implementation of the Forward-Backward Algorithm

Figure 6.1: Comparison between gradients performed through Forward-
Diff.jl (orange line) and ReverseDiff.jl (blue line). It is easy to notice that
proceeding to augment the number of variables the forward differentiation starts
to widely increase its computational time, instead of reverse differentiation, which
works very well.
This graph has been obtained by evaluating the two gradients in the same con-
ditions for the system through different combinations of nodes and time steps;
the vector for the number of nodes is M = [2,5,10,20], while for times we used
T = [10,20,50,80,100]; infection parameters are β = 0.36, η = 0.1, µ = 0.2. Compu-
tational times have been obtained through BenchmarkTools.jl.

The core of this file is the optimization algorithm, accompanied by other opti-
mization functions which have been implemented for testing other approaches to the
same problem, which are the aforementioned NLopt.jl and Optim.jl optimization
tools:

• Forward-Backward Saddle-Point Algorithm: the function which per-
forms the algorithm is optimize_dynamics, which combines both propagation
directions to implement a full iteration of the inference algorithm, then it
iterates this procedure many times until convergence:

– Initialization of the vector nodes via nodes_formatting;
– Update of the initial condition (qi) via update_priors!;
– Forward pass using update_forward!, which computes the trajectory of

the epidemic states Ei(t), Ii(t), and Ri(t);
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– Final condition update via update_endpoint!, providing a starting point
for the backward computation;

– Backward pass using update_backward!, which computes the conjugate
fields θE

i (t), θI
i (t), and θR

i (t);
– Convergence check: if convergence is not reached, the loop is repeated

with updated qi values derived from θI
i (t = 1).

This iterative loop refines epidemic state estimations by alternating forward
and backward updates, and solves the saddle-point equations introduced in
Chapter 4. A schematic representation is shown in Figure 6.2.

• Mean-Field Simulation: a simplified approximation is provided by the
only_forward! function, which applies forward propagation alone, omitting
the backward pass. This yields a mean-field approximation of the system’s
dynamics and ignores fluctuations.

• NLopt optimization algorithm: in addition to the saddle-point iteration,
the file provides two gradient-based optimization routines using the NLopt.jl
library:

– nlopt_optimizer_θ_forward: uses ForwardDiff.jl for forward-mode
differentiation. Suitable for small to moderately sized problems;

– nlopt_optimizer_θ_reverse: uses ReverseDiff.jl for reverse-mode
differentiation. This implementation scales better with system size and is
recommended for large-scale inference tasks.

Both functions have a similar setup and rely on the LD_LBFGS method
from the NLopt.jl library, which is a quasi-Newton method particularly useful
for large-scale optimization problems with smooth gradients. The objective
function minimized in both cases is the loss function. They proceed in the
following way: Both functions rely on the LD_LBFGS algorithm, a quasi-Newton
method effective for high-dimensional problems with smooth loss functions.
The optimization process follows these steps:

– Initialization of the vector of conjugate variables θ;
– Definition of a wrapper function for logging, which encapsulates the loss

and gradient computation;
– Setup of the optimization problem: selection of algorithm, definition of

parameter bounds, convergence criteria, and maximum iteration count;
– Construction of the final θ matrices from the optimized result, which are

used to reconstruct the epidemic trajectories.
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M T forward (ms) reverse (ms)
2 10 0.19 0.14
2 20 0.65 0.27
5 10 1.86 0.77
2 50 3,78 0.73
5 20 7.44 1.64
10 10 17.2 6.67
2 80 10.0 1.23
2 100 15.2 2.0
10 20 69.8 12.8
20 10 188.28 43.68
5 50 47.58 5.68
5 80 137.15 10.35
20 20 824.87 72.0
5 100 226.39 13.81
10 50 443.92 31.03
10 80 1192.04 56.88
10 100 1809.29 68.21
20 50 6372.61 207.73
20 80 13452.89 378.08
20 100 20844.94 421.84

Table 6.3: Computational time comparison between forward and reverse
differentiation already shown in Figure 6.1; here the time values for the two
method are compared (columns forward and reverse), along with the dimensions
of the system (columns M and T). Rows are ordered according to increasing system
dimensionality (total number of variables given by 3 ∗ M ∗ (T + 1)).

Finally, the file MetaPopEpi.jl encapsulates all files mentioned above and all
the functions and libraries that are utilized inside the python-notebook to perform
all types of simulations and trials, representing the global module of the entire
custom Julia package.
In the next section, we spend few lines for elucidating some technical concepts
about some tools and packages utilized in the code.
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Nodes formatting

Initial guess on qi

Forward pass: up-
date Ei(t), Ii(t), Ri(t)

Update final condi-
tions: θs at time T+1

Backward pass: up-
date θE

i (t), θI
i (t), θR

i (t)

Check convergence

Converged: output final stateNot converged

Update qi accord-
ing to θI

i (t = 1)

YesNo

Figure 6.2: Schematic diagram of the forward-backward inference loop.

6.3 Technical Remarks and Implementation Tools
In this final section of the chapter, we provide further insight into technical
components and packages employed throughout the implementation of the inference
algorithm.

• Automatic Diferrentiation (AD) in Julia: as seen in previous sections, the
minimization of the loss function requires to compute gradients with respect
to a high-dimensional vector of parameters to optimize. For this purpose,
it is highly recommended the use of automatic differentiation tools, and
two major Julia packages are utilized in this context: the already mentioned
ForwardDiff.jl and ReverseDiff.jl.
The first one is based on dual number arithmetic and is accurately described
in the work of Revels et al. (2016) [44], the second one on computational
graph tracing, whose baselines can be understood from the work of Innes
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(2018) [45], in which another useful package is described (Zygote.jl) but they
share a similar functioning.

• Optimization Libraries: To find the optimal trajectories through the
minimization of the loss function for θs, we rely on gradient-based optimization
using NLopt.jl, a Julia wrapper for the NLopt library, which provides various
and global optimization algorithms, such as the one we used, LD_LBFGS,
a limited memory BFGS quasi-Newton method [46]. It is particularly suited
for large-scale problems. It iteratively updates the parameter vector by
approximating the inverse Hessian (second derivative matrix), using only
gradient information.

• Wrapper Usage in Optimization: in order to monitor convergence and
log loss values at each iteration, we defined a custom wrapper around the loss
function. This procedure is quite common in iterative solvers where intermedi-
ate diagnostics are not present by default. The use of Ref() objects, dynamic
arrays for loss history, and the separation of the gradient computation inside
a wrapper are consistent with the usual setting in optimization workflows.

Finally, it is worth clarifying the nature of the optimization methods used in
this work. The algorithms employed through the NLopt.jl library, with the
LD_LBFGS method, belong to the family of gradient-based optimization
algorithms. These methods are based on the fundamental principle of gradient
descent, in which a function is minimized by iteratively moving in the opposite
direction of its gradient:

xt+1 = xt − η∇L(xt),
where η is the learning rate and L(x) is the loss function.
However, unlike simple gradient descent, quasi-Newton methods like the one we
used works with approximations to the Hessian matrix to improve convergence rate
and robustness. This methods are more suitable for high-dimensional spaces, which
is our case, where reverse or forward differentiation allows for the implementation
of gradient-based inference even in complex models with many parameters.
As one can read in the review by Ruder (2016) on optimization in deep learning,
"gradient descent and its variants lie at the heart of optimization for machine
learning models", and their extensions, including quasi-Newton methods, have been
crucial for practical performance in several working fields, from deep learning to
biology and statistical inference [47].

6.4 Towards Inference Results
Throughout this chapter, we have presented the implementation details of the
inference algorithm developed for this thesis work. We have organized the Julia
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code into modular files, each one with a specific role as model definition, simulation,
optimization and so on, in such a way to build a robust and flexible framework for
epidemic inference over mobility-driven networks.
We also introduced techniques like automatic differentiation, MonteCarlo
sampling, gradient-based optimization, as well as the use of some essential
libraries like ForwardDiff.jl and ReverseDiff.jl to implement efficient and scalable
computations.
Having established the algorithmic and technical framework, we are now ready
to evaluate the performance of the proposed method, showing some results. In
the next chapter, we will present a series of experiments and numerical results
that highlight the capabilities of our inference procedure. These include first of all
reconstruction of trajectories according to some observation information.
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Chapter 7

Results and Performance
Evaluation

Despite the theoretical robustness of the proposed framework and the complete-
ness of the algorithmic pipeline described in the previous chapters, the numerical
experiments conducted as part of this thesis have yielded only partially satisfactory
results.
Even though the implementation successfully reconstructs plausible epidemic tra-
jectories under controlled conditions, in particular using the NLopt optimization
library, some challenges persist. In particular, a strong dependence on the choice
of initial conditions is evident, especially the initialization of qis.
So, inference seems to be effective under favorable prior assumptions. In some
cases, especially when analyzing atypical trajectories (trajectories that mean-field
approximation fails or struggles to approximate), one or more nodes fall into what
appears to be a local minimum during optimization, failing to correctly adapt
their state variables to the correct trajectories, even though in the observation
points there is good agreement.
This behavior highlights a limitation of the current method in escaping suboptimal
configurations, despite the use of gradient-based methods and the introduction of
a Gaussian noise on the problematic nodes to escape the local minimum. Never-
theless, these results are worthy, since they show that the developed framework is
capable of producing meaningful results, but they also underline the importance of
initialization and the risk of local minima.
We will now describe:

• the experimental setup,

• the results obtained with different optimization strategies,

• a final reflection on the limitations observed (which will be deeply explored in
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the final chapter, along with the future directions on this topic).

7.1 Experimental Setup
To evaluate the performance of the inference algorithm, we construct a reference
scenario, where the true epidemic trajectories are known by construction. These
reference trajectories are obtained through Monte Carlo simulations of the stochastic
SEIR metapopulation model introduced in Chapter 2.
The dynamics evolves over a finite time horizon starting from an initial condition
in which a single node is infected, while all the others are fully susceptible. The
interaction network is constructed through an Erdös-Rénýi random graph, as
introduced in Section 2.1.
The colocation matrix is then directly constructed from the adjacency matrix of
the chosen graph, assigning weights to the edges to reflect contact intensity.
From each simulation, we extract observations by simply updating the observation
matrix with the values of the infected trajectory at certain time points for some
(or all) nodes. These values are then utilized to compute the θs using a Gaussian
weight. This observation model matches the likelihood structure described in
Section 2.3.3 and is integrated into the inference framework through the forward-
backward algorithm (Chapter 6).
Before running the inference algorithm, the colocation matrix is rescaled in order
to match the setup of the epidemic model used (which is the rescaled SEIR of
Section 4.2.2). Finally, the inference algorithm starts.

7.2 Results from NLopt Optimization
To solve the inference problem depicted in the previous chapters, we implemented
a numerical minimization of the total loss function using the NLopt library. This
allows to identify the most probable epidemic trajectory consistent with the given
observations, using gradient-based methods to efficiently explore the the high-
dimension configuration space.
The results shown in this section correspond to the best-performing runs in terms
of convergence, accuracy, and stability.

7.2.1 Optimization Setup
The chosen algorithm in the NLopt optimizer is LBFGS, selected for its performance
in large-scale smooth optimization problems. The gradients of the loss function
with respect to the variables to optimize are computed automatically through the
library ReverseDiff.jl, which was already mentioned and described in the previous
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chapter.
The optimization ends either when a maximum number of iterations is reached or
when the relative variation in the loss function or in the optimization variables
drops below a predefined threshold (which we set to 10−5 ÷ 10−6).

7.2.2 Reconstruction of Epidemic Trajectories

In Figures 7.1–7.4 we show the comparison between the ground-truth trajectories
generated by the MonteCarlo simulation and the inferred ones obtained through
optimization. In particular, we show only few nodes to give an idea of the algorithm
performance. Trajectories represent the evolution in time of the number of infected
individuals.

Figure 7.1: Evolution of the infected individuals in time (top graph): red
curve represents the MonteCarlo trajectory, green curve represents the mean-field
approximation, blue curve is the inferred trajectory. Backward evolution of θI and
θR in time (bottom graph): red curve is θI , blue curve is θR. The curves are obtained
for a 10-nodes network with epidemic parameters β = 0.36, η = 0.1, µ = 0.2, the
prior is set into node 1, the observations are taken for all nodes at time steps
t = 7,25,40,70 and are represented by vertical dashed lines in the figure. The same
setup is extended to the following figures, which represent curves for other nodes.
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Figure 7.2: Evolution of node 2.

Figure 7.3: Evolution of node 5.
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Figure 7.4: Evolution of node 10.

In these figures, one can see that, despite the atypicality of MonteCarlo trajec-
tories, the inference algorithm is able to produce curves which greatly approximate
the reference ones, instead of the mean-field approximation, which hardly recognize
the right pattern of the time evolution.
Despite the good agreement of these curves for the nodes in the figures above, some
challenges are still present, as already mentioned in the sections above, for example
for node 6, which is depicted in Figure 7.5.
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Figure 7.5: Evolution of node 6 (bad node): it is evident that in the
observation points (indicated by grey vertical dashed lines) the inferred curves are
forced to converge on the correct value of infected individuals, but it can’t correctly
reproduce the epidemic evolution.

This behavior is related to the atypicality of the reference trajectories, since it is
not always present. For example, generating another MonteCarlo trajectory with
a different RNG seed (Random Number Generator), we noticed that each node
trajectory is correctly inferred, as one can see in Figures 7.6–7.8, where we show
only few nodes.
An interesting point of view can be related to risk assessment, which is the possi-
bility to infer crucial information about certain unobserved nodes, based on known
information about other observed nodes. In fact, back to the MonteCarlo trajecto-
ries of Figures 7.1–7.5 (where node 6 (Fig. 7.5) is badly inferred), we changed the
observation setup by reducing the number of observed nodes, and increasing the
time steps of observation; in this way, it is possible to understand some interesting
information about the inner functioning of the algorithm.
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Figure 7.6: Evolution of node 1 for a typical MonteCarlo trajectory: also
mean-field approximation is in good agreement.

Figure 7.7: Evolution of node 2 for a typical MonteCarlo trajectory.
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Figure 7.8: Evolution of node 6 for a typical MonteCarlo trajectory.

The results for the risk assessment are shown in Figures 7.9–7.12, where it is
evident that the inferred trajectory of node 6 (Fig. 7.11) is very consistent with
the MonteCarlo simulation, since it is one of the observed nodes. Observing the
inferred trajectories of unobserved nodes (figs. 7.10 and 7.12), we can deduce that
the algorithm works quite well, also for atypical trajectories, and the quality of
curves is related to the connectivity between observed and unobserved nodes.
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Figure 7.9: Evolution of node 1 (observed): observation points are indicated
by grey vertical dashed lines

Figure 7.10: Evolution of node 3 (unobserved): despite the fact that we
don’t take information from the reference trajectory, the inference is well done.
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Figure 7.11: Evolution of node 6 (observed): we can see that the inference
works well, as opposed to Figure 7.5.

Figure 7.12: Evolution of node 9 (unobserved): in this case the inference
places in the half between the mean-field trajectory and the MonteCarlo trajectory.

A more detailed analysis about risk assessment is addressed in the following
section.
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7.3 Risk-Assessment
In this section, we will focus on describing the capability of the inference algorithm
in evaluating the epidemic risk in certain provinces. As already mentioned above,
risk assessment consists in inferring the most probable epidemic outcome in some
unobserved regions (to be precise, regions we are unable to obtain information
about), knowing how the epidemic has evolved until that moment in other regions,
especially if there is a good degree of correlation between unobserved and observed
regions.
The risk assessment procedure follows these steps:

• Sampling of the reference trajectories through MonteCarlo simulation,

• Capturing observations for few nodes only,

• Running the optimization algorithm and observing the inferred trajecto-
ries, especially on unobserved nodes.

One of the results of this procedure is shown in Figures 7.9–7.12. As an additional
experiment, we investigated how the correlation structure between nodes, encoded
through the contact strength in the colocation matrix, affects the reliability of the
risk assessment.
In particular, we observed that when the initial inference of a specific node was
poor, increasing its contact strength with one of the observed nodes systematically
improved the quality of the inference for that node. To test this effect, we performed
a controlled study in which we increased the weight of the contact between the
poorly observed node (node 7) (Fig. 7.13) and one of the observed nodes (node 8)
(Fig. 7.14) by one order of magnitude.
We then evaluated the resulting changes in the inferred trajectories. The results
showed a clear improvement in the stability and accuracy of the risk assessment in
the unobserved node (Fig. 7.15) as its connectivity to observed nodes (Fig. 7.16) in-
creased. This finding highlights the crucial role of network structure in propagating
information during inference, and suggests that regions with weak observational
data can still benefit from indirect observations if they are sufficiently connected
to monitored areas.
These findings are well represented in Figures 7.13–7.16, where we compare the
two aforementioned nodes before and after the weight increase. In addition, we
show the associated colocation matrices for the two setups in Figures 7.17–7.18,
focusing on one time step only. For readability purposes, we set the diagonal of
the matrix (corresponding to self-colocation rates) to 0, since the diagonal is way
larger than the other entries and it would be dominant in the heatmap, making
hard to recognize changes in the magnitude of the modified entries.
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Figure 7.13: Evolution of node 7 before the increase of the connectivness
between nodes 7 and 8: the inferred trajectory is quite distant from the reference
MonteCarlo trajectory.

Figure 7.14: Evolution of node 8 before the increase of the connectivness
between nodes 7 and 8: the inferred trajectory is consistent with the reference
trajectory, since it is an observed node.
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Figure 7.15: Evolution of node 7 after the increase of the connectivness
between nodes 7 and 8: the inferred trajectory has systematically improved,
significantly reducing the distance from the reference MonteCarlo trajectory.

Figure 7.16: Evolution of node 8 after the increase of the connectivness
between nodes 7 and 8: no significant changes are present.
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Figure 7.17: Heatmap for the colocation matrix at time t = 1 before
the weight increase: marked cells (red contour) represent the matrix entries for
connectivness between node 7 and 8.

Figure 7.18: Heatmap for the colocation matrix at time t = 1 after the weight
increase: the increase in contact strength is evident, highlighted by the change in
color of the two involved cells.
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7.3.1 Forward-Backward Optimization Algorithm vs.
Monte Carlo Inference

To further quantify the accuracy of the inference algorithm, we computed the
average L2 Norm (Fig. 7.19) between the inferred trajectories and the ground-truth
Monte Carlo trajectories, across all time points and nodes. As a term of comparison,
we also performed a naive Monte Carlo inference (Fig. 7.20) by simply simulating
an ensemble of forward Monte Carlo trajectories, and computing again an average
L2 Norm with respect to the ground-truth trajectories, measuring the distance
of each of the sampled trajectories from the reference ones. In this way we are
able to retrieve a distribution of the average distances. The setup is described in
Section 6.2.2 and the results are shown in Figures 7.19–7.20, where we compare
the average Norm for the inferred trajectories as a function of the percentage of
observed nodes with the distribution of the Monte Carlo inference distances.

Figure 7.19: Average L2 Norm of the inferred trajectories w.r.t. the
ground-truth trajectories: blue line with green squares represents the average
norm values for each observation percentage, along with vertical green line around
the mean values representing the standard deviation, gray dashed vertical lines
indicate the considered observation percentages, red dashed horizontal line indi-
cates the average L2 Norm between mean-field trajectory and the ground-truth
trajectories.
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Figure 7.20: Histogram of the average L2 Norm of the Monte Carlo
Inference trajectories w.r.t. the ground-truth trajectories: we have a
distribution of the distances with most probable value ≈ 0.0465

One can see that with the 30% of observed nodes only, the average distance of
the forward-backward optimization is considerably smaller than the most probable
distance of the MC Inference. Indeed, we can say that the optimization algorithm
places in the left tail of the MC distances distribution.

7.4 Real Colocation Data
In this section, we present the introduction in the model of real-world colocation
data, which will affect the structure of the network. First, we will work with larger
metapopulations, passing from N ∼ 103 to N ∼ 106.
Since in the limit of large populations the mean-field approximation holds, it is
evident that the MonteCarlo trajectories are highly mean-field-like, and inference
follows this trend too. Figures 7.21–7.23 show this concept, highlighting the
fact that, since real-world colocation data present a huge difference in magnitude
between intra-region colocation rates and inter-region colocation rates, trajectories
tend to be quietly isolated, as if each metapopulation has a separate epidemic
evolution.
This is also demonstrated by the fact that, if we do not have observations for a certain
node, that node will mostly evolve according to the mean-field approximation, since
information from other nodes will poorly affect the value of θs, due to the presence
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of the corresponding colocation matrix entry in front of the term that accounts for
the contribution of all neighboring nodes, as one can see in Equation (4.15).

Figure 7.21: Evolution of node 2 (observed node): it is evident the superpo-
sition of the inferred and the ground-truth trajectories, due to a discrete number
of observations;despite the slight advance of the mean-field approximation w.r.t.
the ground-truth(red curve), the shape is the same, evidencing the typicality of
the curves.

Figure 7.22: Evolution of node 3 (unobserved node): the three curves are
almost overlapping.

82



Results and Performance Evaluation

Figure 7.23: Evolution of node 7 (unobserved node): the inferred curve
is almost overlapping with the mean-field approximation; the reason for this
behavior is to be found again in the colocation matrix. Indeed, node 7 is the most
self-connected node, producing a dynamic almost separate from the others. See
Map 7.24

Figure 7.24: Heatmap of the colocation matrix at time step t = 1 in
log-scale: node 7 is the most self-connected node and also poorly connected with
other nodes.
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7.5 Larger Number of Metapopulations

7.5.1 Network with 20 Nodes

We go back to the analysis through the fictitious colocation matrix. We tried to
increase the number of metapopulations involved in the study, raising M from
10 to 20. The dynamics mostly follows the trend of the smaller case, including
atypical behavior of some nodes, which will now be more than one. However, the
overall inference is quite good and useful to understand valuable insights into the
spread of the network epidemic, as one can see in Figures 7.25–7.27, where it is
evident that there are again some criticalities in the behavior of certain nodes, that
can be linked to some local minimum.

Figure 7.25: Evolution of node 4: the inferred trajectory is consistent with
the ground-truth, despite the advance of the mean-field approximation.
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Figure 7.26: Evolution of node 7: again, the inference is consistent.

Figure 7.27: Evolution of node 10: it is evident the discrepancy, along with
the inconsistency of the curve; the reason is to be found in bad conditioning (poorly
informative observations), in the atypicality of the ground-truth, and in some local
minimum.

7.5.2 Network with 30 Nodes
We further increased M to 30 nodes, and the trend is reproduced, as one can see
in Figures 7.28–7.29. Even in this case, few nodes show strange behavior, which
can be managed by increasing the number of observations.
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Figure 7.28: Evolution of node 6 in a Network with M = 30 nodes.

Figure 7.29: Evolution of node 19 in a Network with M = 30 nodes.
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7.6 Scalability of The Algorithm
One crucial aspect of the proposed inference algorithm is its scalability with the
number of nodes that constitute the network under consideration. In fact, while
the present study considered only networks with a discrete number of nodes (up
to 30 but concentrating on 10 nodes networks), more realistic applications involve
hundreds or thousands of subpopulations, based on geographical resolution.
Analyzing the time profile of computations, we noticed that the bottleneck is
located in the ReverseDiff gradient function, which in turn depends on the
scaling of the loss function. A statistical analysis on the scalability of the model has
been performed, highlighting the fact that the algorithm can be further improved
(see Figures 7.30–7.31).

Figure 7.30: Quadratic fit of the scalability curve: blue line represents the
curve obtained by considering the mean over 5 simulations of the computational
time per iteration, red curve represents the quadratic polynomial which better
reproduce the blue line.

The two polynomials seem to equally reproduce the real curve, but from the
analysis of RSS (Residual Sum of Squares it emerges that the cubic fit is more
precise, showing that the algorithm has computational complexity O(M3).
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Figure 7.31: Cubic fit of the scalability curve: same setup as above; green
line is the cubic polynomial which better approximate the blue line.

88



Chapter 8

Conclusions and Future
Perspectives

8.1 Conclusions
This thesis has developed a novel inference framework for spatially structured
epidemic models, combining a stochastic SEIR metapopulation description with a
path-integral formulation inspired by statistical physics. Through a saddle-point
approximation, we derived forward-backward equations that allow the reconstruc-
tion of the most probable epidemic trajectories consistent with sparse and noisy
observations.
The implementation has been performed first via a forward-backward algorithm,
then, due to numerical instability, via a gradient-based optimization through the
Julia library NLopt.jl. The choice to rely on optimization has reduced the nu-
merical instability of the first method, but has paid the price of increasing the
computational time.
The implementation demonstrated the ability to reconstruct epidemic trajectories
with good accuracy on synthetic data, provided that a reasonable prior and appro-
priate initial conditions were chosen. The experiments showed that the method
can recover key epidemic indicators such as infection curves, the epidemic peak,
and the possibility to evaluate risk on unobserved nodes in most scenarios.
Moreover, we extended the experiments to real colocation data provided by Meta
(Data for Good), applying the framework to mobility patterns derived from actual
user movements. These tests confirmed the framework’s feasibility, but also revealed
that the epidemic dynamics on the real-world colocation network turns out to be
rather well described by deterministic single-population mean-field-like trajectories,
due to the high level of mixing and the relative homogeneity of contacts encoded
in the empirical colocation matrix. As a consequence, the gain from a spatially
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resolved inference was moderate, suggesting that in highly connected mobility net-
works, mean-field-like approximations may still be a reasonable first-order model.
The study also revealed several limitations and criticalities:

• a strong sensitivity to the choice of initialization, especially for the seed
probabilities qi;

• the risk of local minima in the optimization landscape, particularly in more
complex or atypical epidemic trajectories;

• scalability challenges when the network size grows, due to the increased number
of variables and the difficulty of maintaining stable convergence.

Nevertheless, the proposed methodology provides a promising direction for epi-
demic inference, as it brings together rigorous stochastic modeling and a principled
Bayesian framework.

8.2 Future Perspectives
Several directions for further research emerge from this work, laying the foundation
for important improvements:

• Refined integration of real data: explore ways to preprocess and cluster the
colocation data to enhance spatial heterogeneity, for example grouping together
nodes (metapopulations) with similar behavior and colocation patterns in
such a way to have a reduced graph composed by “supernodes”, making the
inference more informative than a simple mean-field approximation;

• Advanced optimization strategies: adopt global optimization to reduce
local minima issues;

• Regularization of conjugate fields: try to reduce the noise around the
θ-variables for a better estimate of the correct behavior if the system, including
patient zero inference;

• Increase robustness of the forward-backward algorithm: design im-
proved numerical schemes to make the forward–backward propagation more
stable, allowing it to be reused effectively in future implementations;

• Joint parameter inference: extend the framework to estimate epidemiolog-
ical parameters (β, η, µ) together with state trajectories, since in the actual
framework they are fixed. In particular, one can implement a Markov Chain
inference based on the action functional S as a function of the parameters: a
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set of parameters is chosen, the action is evaluated, and eventually the param-
eters are accepted or rejected. The procedure is the same as MCMC (Monte
Carlo Markov Chain), except that we don’t have to sample thousands of
trajectories, but we evaluate the action of the system;

• Patient zero identification: further develop techniques to infer the epidemic
seed location (patient zero) in a robust way, since initial experiments showed
this task to be more challenging than expected, due to the fact that θ-variables
are very noisy and the seed probability qi is strongly dependent on the value
of θI at time t = 1, leading us to provide the seed as an input for now;

• Real epidemic applications: apply the method, once it is further improved,
to validated epidemiological datasets with confirmed case counts, to support
public health decision-making;

• Computational scalability: investigate approximate representations or
relax some constraints to speed up computations and optimization and, by
consequence, handle networks with a larger number of nodes efficiently; explore
an efficient way to compute a manual gradient to replace the automatic differen-
tiator ReverseDiff.jl, which is the one responsible for the high computational
cost.

In conclusion, while several challenges remain in terms of robustness, scalability,
and the integration of real-world data, this thesis demonstrates the feasibility of
a principled, well-posed, and physics-inspired framework for epidemic inference.
Its further improvement may contribute to more effective monitoring and control
of future infectious disease outbreaks, opening the way for data-driven, adaptive
public health strategies.
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