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Abstract

This thesis investigates the process of active Rab5 domain formation on the membrane of early
endosomes. From a physical perspective, this process can be described as a phase separation,
typical of self-organizing systems. Our goal is to observe this phenomenon using a reaction-diffusion
computational model that simulates the temporal evolution of a chemical reaction system on
a spherical surface, allowing for exchanges with the cytosol. To do this, we considered a set of
reactions including the main regulators of the process: GEF, GAP, and GDI, and we identified a
realistic set of system parameter values, using the work of Bezeljak et al. (2020) as a reference.
A systematic parametrization of the model was then carried out to adapt it to the requirements
imposed by our algorithm, and simulations were performed to see whether the system evolves
spontaneously producing Rab5 domain formation, starting from a uniform distribution of the
membrane species.

The simulations show that phase separation occurs within a finite range of GDI and GEF con-
centrations. The fact that, at low concentrations of both species, phase separation is not observed,
and that it appears as their amount is gradually increased, is consistent with previous experimental
observations obtained in vitro by Cezanne et al. (2020), and shows how a balance in the concen-
trations and activities of the various elements constituting the system is crucial for the emergence
of this phenomenon.

This work therefore confirms the effectiveness of our model in exploring and reproducing self-
organization phenomena on cellular membranes, and in predicting effects, such as the dependence
on GDI and GEF, that have been observed experimentally. Moreover, it specifically shows that
the parameter set considered, starting from the reference of Bezeljak et al. (2020), indeed leads to
domain formation, in addition to the collective Rab activation, which was the subject of their study.
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Chapter 1

Introduction

The origins of life, and of living matter itself, have always fascinated human beings. Before the rise
of science, the only means of exploring such questions was human experience, expressed through
images and words, not necessarily preceded by logical thoughts. As Karl Kerényi describes in his
book �Dionysos - Archetypal image of indestructible life� [21], the ancient Greeks used two distinct
words for life, preserved in parallel while having completely different forms and meanings: bios and
zoé. The term bios referred to an individual, specific, finite life of a particular being, a characterized
life. In contrast, the word zoé denoted life in a more absolute sense: with no limits or boundaries,
without further characterizations. It's the life that continues no matter what, does not admit
an end in its definition and is perceived as such by humans: as an infinite life. Indeed, in Greek
zoé stands against thanatos, excluding it. For these reasons, the definition that best captures the
meaning of zoé is �non-death�.

Because of these considerations, Kerényi pointed out that the life dealt with by modern biology
is not actually the bios, but rather the zoé. He also reported a minimal definition for life as
�assimilation and inheritance�, two defining features of life, against inert matter. Inheritance, in
particular, implies that life overcomes the singular individual, proving itself to be indestructible
in any specific case and persisting through time. This indestructible, infinite character of life is
embodied in the figure of Dionysos, the Greek God who is not only associated with a temporary
inebriation, but more profoundly with this ever-present drive towards vitality, what some have
called �divine creative madness�, the irrational foundation of the world. This indestructible nature
of Dionysos is also evident from many mythical images and rituals associated with him, as deeply
illustrated by Kerényi in the cited book [21].

From a biological perspective, we might identify this restless force that characterizes life and
that leads matter to organize itself, with the �struggle against disorder� of which E.Schrödinger
talks about in What is Life? [26]. Indeed, living organisms have evolved developing strategies to
counteract the homogenizing effect of thermal disorder. Above all these strategies there are the
�inventions� of macromolecules and the cell itself, basic units of life, characterized by an extra-
ordinary degree of spatial organization. On a smaller scale, inside cells, in order to organize all
the biochemical reactions in space, cells have created compartments, or organelles, which are
distinct chemical environments characterized by two important properties: they have boundaries
that separate them from their surroundings, and their internal components can diffuse freely to
enable chemical reactions. Each organelle is enriched in specific molecules, making it functionally
distinct from others. Such compartments may be separated by membranes (membrane-bound com-
partments, like organelles) or not (non-membrane-bound compartments) [19].

Behind this complex process of compartmentalization of the eukaryotic cell in a multiplicity of
specialized subcellular systems, a process has emerged during the last decades as an overarching
organizing principle: phase separation. Indeed, the formation of these inner structures often follows
sequences of symmetry breaking events. The original spatial symmetry of the cell must be broken
to adapt to a highly structured anisotropic environment, needed for life. Physically, these spatial
organization phenomena resemble self-organized phase transitions, where the cell, either sponta-
neously or because it is driven by an external field, evolves into a state characterized by multiple
coexisting chemical phases. These phases are spatially localized in different regions, establishing
fronts and rears, tops and bottoms, outer and inner parts.
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We can see symmetry breaking at work in several biological processes. For instance, stem cells
divide asymmetrically to generate differentiated daughter cells, endowing them with specific fate
determinants (Figure 1.1, top). Cells migrating in response to a chemical gradient break symmetry
in order to develop a front and a rear, chemically distinct regions which allow directional movement
(Figure 1.1, center). Epithelial cells develop chemically specialized apical, basal, and lateral regions
to fit into the fine organized planar structure of an epithelial tissue (Figure 1.1, bottom). In all these
examples, the plasma membrane is subdivided into specialized, chemically differentiated domains
by a self-organized phase separation process. These polarized states are then maintained across
cell generations by a complex machinery of protein sorting known generally as molecular sorting .

Differently from purely chemical systems, biological systems employ active, energy-consuming,
out-of-equilibrium processes to sustain the compartments' heterogeneity. These active processes
allow the existence of a much wider variety of stationary states than those available in close-to-
equilibrium conditions. In summary, they play a key role in creating and sustaining the compart-
mentalized state necessary for the cell to perform its complex, vital functions [14].

Figure 1.1. Symmetry breaking and generation of cellular functions. The image is taken from [14], Figure 1.

As we said, the spatio-temporal regulation of many intracellular processes depends on the
emergence of patterns of specific proteins. The formation of patterns generated by interactions
of diffusing proteins is a paradigmatic example of self-organization, which, in biological systems,
refers precisely to the emergence of spatial and temporal structures. Therefore, mass-conserving
reaction-diffusion equations provide the most appropriate mathematical framework to study these
phenomena. They allow us to model and understand how spatial structures emerge within cells,
leading to the conclusion that directed transport, such as diffusion along actively maintained
gradients, is essential for pattern formation. In other words, the basic principle behind biological
self-organization is the generation and maintenance of directed transport by intracellular protein
dynamics [17].

These active phase separation processes can occur both in the cytosol and on the membrane,
including the plasma membrane and the membrane of internal organelles. In this thesis, we focus
our attention on membrane compartmentalization, a critical phenomenon for a variety of biological
functions at multiple scales, from sub-cellular structures to multi-cellular organisms. In particular,
we focus on the membrane compartmentalization occurring on cytoplasmic organelles, like early
endosomes (EE), in which a protein named Rab5 exists in domains where it regulates vesicle teth-
ering and fusion [6]. Our final goal is to use a computational model to replicate the experimentally
observed formation of Rab5 patterns on endosomal membranes, shedding light on the mechanisms
underlying this fundamental biological process.
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Chapter 2

Small GTPases as regulators of intracellular
dynamics: the case of Rab5

2.1 The role of small GTPases in intracellular communica-
tion

Intracellular organelles have a distinctive spatial distribution and communicate through a finely
tuned system of vesicular and tubular transport. An interesting and fundamental question concerns
the specificity of this process, i.e. how do these transport carriers, generated in one compartment,
correctly recognize and fuse with their target organelle?

A typical transport reaction is generally divided into four steps: the formation of vesicles or
tubules, their movement towards their target compartment, tethering/docking with the acceptor
membrane, and finally the fusion of the lipid bilayers.

The specificity of membrane tethering and fusion is critical to preserve organelle identity and the
proper flow of cargo within the cell [30]. The first step of tethering is mediated by Rab GTPases,
which recognizes the incoming vesicle and ensures the attachment to the appropriate acceptor
membrane. Then, the combined action of SNARE complexes (soluble NSF attachment protein
receptors), Rab GTPases and their effectors guarantees precision in the fusion process. SNAREs
are present across all organelles and they contribute to the specificity of the fusion process and
to identifying the correct target. An additional layer of fidelity in the process is provided by Rab
GTPases and their effectors, which directly regulate SNARE activity [30].

Moreover, other observations suggest that Rab GTPases are major determinants of organelle
identity in eukaryotic cells. This is supported by the remarkable heterogeneity of Rab effectors (63
family members are estimated to exist in humans) and by their distribution in specific intracellular
compartments. Here, they regulate transport between organelles, playing a fundamental role in
cellular organization and trafficking [30].

Rab5, in particular, is associated with the plasma membrane and early endosomes, acting as a
regulator of the kinetics of transport between the two membranes. It represents a regulatory factor
in the early endocytic pathway [5]. Beyond mediating the transport of cargo from the plasma
membrane to early endosomes, Rab5 also regulates homotypic fusion between early endosomes, a
critical process for preserving the identity of early endosomes and ensuring their proper matura-
tion [5]. This maturation process is then coordinated by other Rab proteins, such as Rab7, which
guide endosomes through their transition towards lysosomal systems [3].
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Figure 2.1. Map of intracellular localization of Rab proteins. The image is taken from the work by Zerial
et al.(2001) [30], Figure 1. It summarizes the intracellular localization of Rab proteins in mammalian cells.
Some proteins are cell-specific, like Rab3a in neurons, or show cell-type-specific localization, like Rab13 in
tight junctions.

2.2 The switching behavior of small GTPases

The regulatory principle of Rab proteins, like other GTPases, is strongly related to their behavior
as molecular switches [30]. They alternate between GTP- and GDP-bound conformations. Specif-
ically, they are inactive when bound to GDP (guanosine diphosphate) and become active upon
binding to GTP (guanosine triphosphate).

Because of their high affinity for GDP, these proteins require the assistance of guanine nucleotide
exchange factors (GEFs) that promote the release of GDP to allow GTP binding and activa-
tion. In contrast, GTP-ase activating proteins (GAPs) stimulate GTP hydrolysis, switching the
protein back to its inactive state. The combined action of GEFs and GAPs constitutes the core
of this molecular switch [8].

Many small GTPases, such as Rab proteins, are post-translationally modified with hydrophobic
prenyl groups (most commonly farnesyl or geranylgeranyl chains) at their C-terminus, ensuring
the attachment of their active form to endomembranes. For this kind of protein, the nucleotide
switching (GDP/GTP) is coupled with membrane association/dissociation; this transition between
membrane-bound and cytosolic states is mediated by guanine dissociation inhibitors (GDIs). These
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proteins bind to the highly hydrophobic prenyl group of Rab proteins, shielding them from the
aqueous cytosol and maintaining them in a soluble, inactive form.

Therefore, GDIs facilitate a controlled extraction of Rab proteins from membranes and their
redistribution in other membrane regions, contributing to both spatial and functional regulation [8].

Figure 2.2. Regulation of the switching between GDP- and GTP-bound forms by GEFs, GAPs, and GDIs.
All small GTPases are activated by GDP/GTP exchange stimulated by GEFs (blue) and inactivated by GTP
hydrolysis stimulated by GAPs (violet). Several GTPase families also combine their GDP/GTP switch with a
cytosol/membrane cycling regulated byGDIs orGDI-like proteins (beige). Each small GTPase subfamily is regulated
by specific GEF and GAP subfamilies.

2.3 Positive feedback in the recruitment of active Rab5 to
membranes

Positive-feedback loops are widely recognized as key mechanisms for amplifying molecular signals
within cells. They occur whenever the product of a reaction promotes its own production; in this
case, the active form of Rab5 promotes further activation by recruiting its GEF, thereby amplifying
an initial burst of activation [8]. Specifically, Rab5, in its GTP-bound form, can bind to its effector
Rabaptin5, which is associated with the GEF Rabex5, thereby localizing the GDP/GTP exchange
in its immediate vicinity. In this way, Rab5 establishes a spatially localized positive feedback loop
for its own activation [6].

This mechanism is particularly important on early endosomes, where Rab5-GTP is inherently
unstable and undergoes continuous cycling between its active and inactive forms by the action
of GAPs, such as RN-Tre for Rab5, and GEFs (see Figure 2.2) [30]. Because of this intrinsic
instability, active Rab5 needs to recruit Rabaptin5 very rapidly in order to maintain sufficient levels
of activation on the membrane. The formation of a ternary complex (Rab5/Rabex5/Rabaptin5)
is essential for the creation of the positive feedback loop [6], which not only amplifies the GTPase
activation but also ensures spatial and temporal precision, crucial for the efficiency and fidelity of
endosomal docking and fusion processes [18].

Recent evidence has further suggested that during nucleotide exchange, Rab5 might be directly
handed over from Rabex5 to Rabaptin5, providing a structural mechanism underlying the positive
feedback loop [6]. Interestingly, the prevalence of GEF/effector coupling in small GTPase systems
suggests that this may be a general mechanism for symmetry breaking and spatial organization
of GTPases in cellular membranes. Indeed, self-organizing systems that are able to form patterns
on their membranes often exhibit such non-linear dynamics of membrane recruitment and activa-
tion [6].

2.3 Positive feedback in the recruitment of active Rab5 to membranes 11



2.4 Membrane lipid composition influences Rab5 domain for-
mation

Recent studies have shed light on the importance of membrane lipid composition for the processes
of Rab5 recruitment and domain formation. Most small GTPases are post-translationally modified
by lipid chains that allow them to associate with membranes. This lipid anchor, typically branched
isoprenyl groups like geranylgeranyl or farnesyl chains, is covalently attached to a C-terminal
hypervariable region (HVR), which has a disordered structure and is thus highly flexible. The HVR
is the linker between the catalytic GTPase domain (G domain) and the membrane anchor. Molec-
ular dynamics (MD) simulations reveal a significant accumulation of cholesterol (CH) and PI(3)P
in close proximity to the peptide [12]. Both lipids appear to increase membrane lipid ordering,
stabilize membrane anchoring, slow down protein diffusion, and probably create docking platforms
for Rab5-induced signaling in early endosomes (EEs). These findings suggest that protein-lipid
interactions are a central factor in the accumulation of Rab5 in PI(3)P microdomains [12].

A deeper insight into the lipid contributions to Rab5 recruitment and domain formation comes
from the work of Cezanne et al.(2020) [6], where they employ in vitro biochemical reconstitution
systems. First of all, they observe that PI(3)P and cholesterol enhance the membrane recruit-
ment of Rab5, further confirming the importance of these two lipids in these phenomena (from
Figure 2.3(A) to Figure 2.3(D)). Moreover, they argue that since PI(3)P is mainly produced by
the activity of the class II PI3K complex, Vps34/Vps15, which is regulated by a direct interaction
between Rab5 and Vps15, it seems reasonable to assert that Rab5 directly modifies the local
lipid environment to stabilize itself on the membrane, thus providing yet another level of positive
feedback in vivo.

They also observe that domain formation is lipid composition dependent. They observe that
simple, highly diffusive, PC/PS membranes do not support domain formation (Figure 2.3A
and 2.3C). This can be achieved only by adding cholesterol, which increases the complexity of
the lipid membrane, but the domains have low GFP signal intensity. The same GFP-Rab5 signal
intensity, as observed with the full EE lipid composition, is reached by adding sphingomyelin (and
not ethanolamine plasmalogen) (Figure 2.3). Both sphingomyelin and ethanolamine plasmalogen
increase the rigidity of the membrane, reducing the diffusivity of the membrane. This leads them
to conclude that it is the presence of saturated acyl chains and the capacity for lateral lipid packing
that enables domain formation rather than a simple reduction in global membrane diffusivity [6].

Sphingomyelins (SM) are important lipids of eukaryotic cellular membranes and neuronal tis-
sues; together with cholesterol, SM molecules have been observed to be enriched in ordered lateral
membrane domains, `rafts', which have been suggested to play an important role in a wide range
of cellular processes such as membrane trafficking, protein sorting, and transcytosis [13][28]. The
association with cholesterol is highly favored by the fact that CH prefers to interact with saturated
phospholipids and, SM is often the only one fully saturated phospholipid in cell membranes [28].

In general, sphingolipids appear to have a rather strong tendency for self-aggregation and show
evidence of domain formation. Moreover, studies and simulations have proven that lateral diffusion
coefficients in SM bilayers are generally lower than those in similar PC bilayers [13].

These membrane microdomains have been studied extensively in many cellular systems, and
have been implicated in GTPase signaling, as we pointed out above. The work of Slaughter et
al.(2013) [27] also favors a model where targeted delivery of Cdc42, another small GTPase, through
vesicle trafficking is accompanied by the deposition of lipid components, such as PS, which help
to provide an initial Cdc42 diffusion trap. Further recruitment of the Cdc42 effectors reinforces
the microdomains that slow Cdc42 diffusion through additional protein and lipid interactions.
These results, in summary, predict a role for membrane microdomains in modulating the diffusion
properties of the membrane [27].

12 Small GTPases as regulators of intracellular dynamics: the case of Rab5



Figure 2.3. The figure is taken from the reference [6], Figure 6. Membrane-coated beads (MCBs) with
PC/PS (where PC: phosphatidylcholine and PS: phosphatidylserine, and they represent typical component
of generic cell membranes) and EE lipid composition containing 1 mol% PI(3)P (A) and B) respectively)
and MCBs with PC/PS and EE lipid composition containing 0 mol% PI(3)P (C) and D) respectively) were
incubated with 10 nM GFP-Rab5/GDI, 1 mM GDI, 100 nM Rabex5/Rabaptin5-RFP and 1 mM GTP
for 15 min at 23°C. (E) Mean GFP-Rab5 signal intensity outside of and within segmented domains in B)
and D). (F) Mean GFP-Rab5 signal intensity outside of and within segmented domains on MCBs with
PC/PS/CH/PlasmPE and PC/PS/CH/SM lipid composition containing 1 mol% PI(3)P. In fact, the simple
PC/PS lipid composition is sequentially modified to include the three most abundant lipids in the EE lipid
composition: cholesterol (CH; 32.3 mol%), sphingomyelin (SM; 12.6 mol%) and ethanolamine plasmalogen
(PlasmPE; 12.9 mol%).

2.4 Membrane lipid composition influences Rab5 domain formation 13





Chapter 3

Analytical Model

From the point of view of physicists, this kind of phenomena can be analyzed through the concepts
of phase separation and symmetry breaking, which provide us the appropriate framework to build
a model that describes the underlying physics behind these fascinating cellular processes.

The main ingredients behind the spontaneous formation of localized enriched domains (sym-
metry breaking) are:

¡ reinforcing enzymatic feedback loops

¡ a finite cytosolic pool

The cytosolic pool is assumed to be finite because from experimental observation we see that this
process of domain formation reaches saturation at certain time. Otherwise, the more stable phase
would continue to grow and eventually cover the whole membrane. Indeed, the situation we are
considering is phase separation occurring via nucleation, i.e. when a germ (droplet) of a stable
phase is formed by thermal fluctuations in the �sea� of a metastable phase.

Now we are ready to formalize the (bio)physical picture based on these ideas. Let's consider a
membrane of surface S in contact with a cytosolic pool as in Figure 3.1.

Figure 3.1. Representation of the model describing Rab5 activation on the membrane.

We consider a reaction-diffusion model in which membrane-bound molecules can be in two
conformational states �¡; �+ (A,B in the figure). The membrane is in contact with a cytosolic
reservoir in which enzymes Ecyto

¡ ;Ecyto
+ are free to diffuse and eventually anchor to the membrane-

bound molecules �¡; �+. Here, E¡ catalyzes the conversion of �+ into �¡, vice versa E+ catalyzes
the conversion of �¡ into �+. In summary we consider the following quantities:

�¡ : surface concentration of ¡ molecules (e.g. Rab5:GDP)
�+ : surface concentration of + molecules (e.g. Rab5:GTP)
Ecyto
¡ : volume concentration field of ¡ enzymes

Ecyto
+ : volume concentration field of + enzymes
E¡ : surface concentration of ¡ enzymes
E+ : surface concentration of + enzymes

Now we have to turn this scheme into equations.
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The enzymatic reactions are assumed to follow Michaelis-Menten kinetics, so that we can write
the following equations for the production of �+; �¡ in time:

@�+(r~ ; t)
@t

= kc
+E+ �¡

KM + �¡

@�¡(r~ ; t)
@t

= kc
¡E¡

�+

KM + �+

We recall here that the Michaelis-Menten kinetics is obtained when the number of enzymes limits
the production, in the sense that we have a small number of enzymes with respect to the number of
substrate molecules (�� in this case); and that the Michaelis-Menten constant is the concentration
of the substrate for which we have half of the maximal rate of production, and it represents the
change in behavior of the production @��(r~ ; t)

@t
from linear in the concentration of the substrate ��

to a regime of saturation, in which the rate of production becomes constant because we have too
much substrate with respect to the enzymes.

Actually, we have to consider both processes to describe the full variation of the �� molecules.
Then, using mass-action kinetics we write:

@�+(r~ ; t)
@t

= kc
+E+ �¡

KM + �¡
¡ kc¡E¡

�+

KM + �+
= g(��; E�)

@�¡(r~ ; t)
@t

= kc
¡E¡

�+

KM + �+
¡ kc+E+ �¡

KM + �¡
=¡g(��; E�)

Another fundamental ingredient of our model is diffusion. Since cellular membranes are generally
curved we should include diffusion using a Laplace-Beltrami operator in the following way:

@��(r~ ; t)
@t

= g(��; E�)+Dm���

To complete the scheme, we also have to consider the variation in time of the enzymes, both in
the cytosol and on the membrane. To do this we introduce the following quantity which represents
the flux from cytosol to membrane of +/- enzymes. It is defined according to mass-action kinetics:

F�= ka
�Ecyto

� ��¡ kd�E�

The differential equation for enzymes are then:

@E�

@t
= Dm�E�+F�

@Ecyto
�

@t
= Dcyto�Ecyto

� ¡F�

Observe that we can also add a boundary condition for the flux. In fact, the diffusive flux according
to Fourier's law is:

F�=F~ � � (¡n̂)=Dcytor~ Ecyto
� � n̂

where n̂ is the inner normal to the membrane (directed to the cytosol), so that F� correctly
represents the flux toward the membrane.

In summary, the equations describing the whole system are:

@��(r~ ; t)
@t

= g(��; E�)+Dm���¡F�

@E�

@t
= Dm�E�+F�

F� = ka
�Ecyto

� ��¡ kd�E�

@Ecyto
�

@t
= Dcyto�Ecyto

� ¡F�

F� = Dcytor~ Ecyto
� � n̂

Let us make some assumptions to simplify the mathematical description:

1. Flat membrane (neglecting curvature effects). In this way the Laplace-Beltrami operator
becomes simply a Laplacian (�!r2).
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2. Dcyto�Dm , because the membrane is a more viscous environment. For simplicity we can
take the limit Dcyto!1, so that we can consider Ecyto

� as uniform fields (or simply as
constants).

3. Quasi equilibrium of the cytosol/membrane exchange. This means that association/dissoci-
ation processes are faster than membrane redistribution (via diffusion) of ��;E� molecules,
so that we can consider F�=0 =) ka

�Ecyto
� ��= kd

�E� and so we get:

E�=
ka
�Ecyto

�

kd
� ��=

Ecyto
�

Kd
� ��

where we define Kd
�= kd

�

ka
� which is the dissociation constant . The equation above tells us

that the enzyme concentration fields E� on the membrane are �slaved� to the concentration
field of their binding sites ��.

4. The number of �� is much larger than the number of E� (as required also by Michaelis-
Menten kinetics) so that we can neglect the flux terms F� in the equations for the concen-
tration fields ��.

Taking into account all of these assumptions, our system of equations becomes:

@�+(r~ ; t)
@t

= Dmr2�++ g(��; E�) (3.1)

@�¡(r~ ; t)
@t

= Dmr2�¡¡ g(��; E�) (3.2)

If we sum up them:
@

@t
(�¡+ �+)=Dmr2(�¡+ �+)

which has trivial, uniform steady states:

�¡(r~ ; t)+ �+(r~ ; t)= c

which tells us that in the model we are considering there is no destruction or creation of �
molecules, only mutual conversion of �+ and �¡ molecules. Hence, conservation law is respected.
We can also subtract (3.2) from (3.1):

@

@t
(�+¡ �¡)=Dmr2(�+¡ �¡)+ 2g(��; E�)

and define �(r~ ; t) = �+(r~ ; t)¡ �¡(r~ ; t), which is a natural candidate to be our order parameter
field . We also introduce f(�)=2g(��;E�) and we call it catalytic force. In conclusion, our system,
under these simplifying assumption is described by:

@�
@t

=Dmr2�+ f(�) (3.3)

which is a time-dependent Ginzburg-Landau equation.
This means that the formation of polarity domains on cell membranes can be described using

the Ginzburg-Landau approach.
Note : Exploiting our assumptions we can rewrite the catalytic force

f(�)= 2kc
+ E+�¡

KM + �¡
¡ 2kc¡

E¡�+

KM + �+

Substituting E�=
Ecyto
�

Kd
� �� and ��= 1

2
(c� �) we get:

f(�) = 2kc
+

Ecyto
+

Kd
+ � �

2¡ c2

4

KM + c¡ �

2

¡ 2kc¡
Ecyto
¡

Kd
¡ �

�2¡ c2

4

KM + c+ �

2

= (c2¡ �2) �
�

�+

2KM + c¡ �
¡ �¡

2KM + c+ �

�
(3.4)
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where we have defined �+=
kc
+Ecyto

+

Kd
+ and �¡=

kc
¡Ecyto

¡

Kd
¡ .

Note : it can be seen that the �� coefficients are, themselves, functionals of the field � . Indeed,
if we introduce the following notation for the spatial average over the membrane of a generic
functional h[�] :

hh[�]i= 1
S

Z
S

h(�(r~ ; t)) d�

we can write

hE�(r~ ; t)i=
Ecyto
�

Kd
� h�

�(r~ ; t)i (3.5)

Now, if we impose the conservation of the total number of enzymes:

1
S

Z
S

E�d�+ 1
S

Z
V

Ecyto
� dv = 1

S

Z
V

Etot
� dv= const

hE�i+ V
S
Ecyto
� = V

S
Etot
�

�hE�i+Ecyto
� = Etot

�

where we have defined the geometric factor �= S

V
. Substituting (3.3) we get:

�
Ecyto
�

Kd
� h�

�(r~ ; t)i+Ecyto
� =Etot

�

and then

Ecyto
� = Etot

�

1+ �

Kd
�h��i

(3.6)

Finally, inserting (3.6) into the expressions of �� coefficients and restoring ��= 1

2
(c� �)

��[�] =
kc
�Ecyto

�

Kd
� =

kc
�

Kd
�Etot

�

1+ �

Kd
�
c�h��i

2

(3.7)

In summary, ourmass-conserved reaction-diffusion model is represented by the following equations:

@�
@t

= Dmr2�+ f(�)

f(�) = (c2¡ �2) �
�

�+

2KM + c¡ �
¡ �¡

2KM + c+ �

�
��[�] = kc

�Etot
�

Kd
�+ �

2
(c�h�i)

Our model is characterized by a time-dependent Ginzburg-Landau equation containing a non-linear
term for enzyme-driven conversion f(�) and by an integral constraint which guarantees that the
total number of enzymes shuttling between membrane and cytosol is conserved.

3.1 Uniform solutions

We want to study this model. The first thing we can do is to look for uniform solutions, i.e.
�(r~ ; t)= �(t) with constant ��. In this case the dynamic equation (3.3) becomes simply:

@�(t)
@t

= f(�(t)) (3.8)

The steady-state solutions correspond to the fixed points of f(�) = 0, so the equation I have to
solve is:

(c2¡ �2) �
�

�+

2KM + c¡ �
¡ �¡

2KM + c+ �

�
=0
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We can immediately notice that the equation has two trivial fixed points at �=�c. The third root
comes from: �

�+

2KM + c¡ �
¡ �¡

2KM + c+ �

�
= 0

�+

�¡
(2KM + c+ �) > 2KM + c¡ �

�

�
�+

�¡
+1
�
> (2KM + c)

�
1¡ �+

�¡

�
Then, the third root is

�0=(2KM + c)1¡ �

1+ �

where we have defined the catalytic ratio � as:

�= �+

�¡
=
kc
+Ecyto

+ Kd
¡

kc
¡Ecyto

¡ Kd
+

Hence, the term in square brackets is positive when �> �0 and negative otherwise. At this point,
we are ready to study the sign of f(�) in order to investigate the stability of our solutions. In fact,
looking at equation (3.8), we see that the sign of f(�) is directly related to the sign of @�

@t
.

It is convenient to introduce the potential

V (�)=¡
Z
f(�) d�

and the inverted potential
U(�)=¡V (�)

Recall that �= �+¡ �¡, and that �+> 0, �¡> 0 because they represent physical concentrations.
Finally, they must also satisy the conservation law �++�¡=c. Putting all this together, we obtain
a physical interval for the order parameter, that is:

¡c6 �6 c
This tells us that the third root �0 is a physical solution only when it is inside this interval. In
this case, studying of the sign of f(�) leads to the following results:

[¡1;¡c] [¡c; �0] [�0;+c] [+c;+1]
c¡ �> 0 + + + ¡
c+ �> 0 ¡ + + +
�¡ �0> 0 ¡ ¡ + +
f(�) + ¡ + ¡

Table 3.1. Sign of f(�) in the case ¡c6 �06 c.

Now we can provide a graphical representation of f(�) and V (�) :

Figure 3.2. (left) Plot of f(�) in case ¡c6 �06 c (�0 is the third root of f(�)=0). (right) The corre-
sponding plot of V (�). In this example, we can see that the negative phase (�=¡c) is favored.

As we said previously, the sign of f(�) is related to the stability of the solutions through
equation (3.8). As a consequence, when ¡c6 �06 c, there are two stable fixed points (steady-state
solutions of the dynamical equation in the uniform case), namely �=+c , �=¡c, and one unstable
fixed point at �= �0. With this kind of potential we have, therefore, bistability according to our
model.
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Note : �= �+¡ �¡, and recall that �++ �¡= c. Hence, the solution �=+c means that �+= c
and �¡=0: the entire lipid population is in the �+ conformation (e.g., all Rab5 are in the active
state). Conversely, for �=¡c the lipid population is in the �¡ conformation. Note that both phases
are stable. This means that, depending on the initial conditions, the system will evolve toward one
of the two.

Although �0 is a physical solution only in this case, it can also take non-physical values. In
those cases, the only physical steady-state solutions of the dynamical equation are �=�c, but
only one of them is stable (monostability) In particular, when �0<¡c, only �=+c is a stable
fixed point, while �=¡c is unstable. This means that the �+ phase is the only stable one. When
�0>c, instead, we are instead in the opposite situation. Observe that the value of �0 depends on
the catalytic ratio � and on the values of KM and c. We can therefore construct a phase diagram.
Let's find the values of �0 corresponding to each of these three regimes.

¡c6 �06 c

¡c6 (2KM + c)1¡ �
1+ �

6 c

Let us focus on the first inequation:

¡c(1+ �) 6 (2KM + c)(1¡ �)
¡c 6 2KM ¡ 2�KM + c

� 6 KM + c

KM

Introduce the dimensionless parameter �= KM
c
:

�6 1+�
�

Similarly, for the second inequality we find:

�> �
1+�

This means that the values of the catalytic ratio for which we have bistability are:
�

1+�
6 �6 1+�

�

Outside this interval, the system is in a regime of monostability, as discussed previously. Summa-
rizing, this is the phase diagram for the uniform case:

Figure 3.3. Phase diagram for uniform (steady-state) solutions.

3.2 The study of the non-uniform case
So far, we have looked only at uniform solutions. However, bistability implies the possibility of
observing two different phases coexisting in different membrane regions, since they are both stable
in some parameter region. This is the phenomenon we are interested in: the coexistence of domains
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with different chemical identities. In our case, these two phases are represented by the �+; �¡

phases. For this purpose, it is convenient to adopt a variational approach, that is, by re-expressing
the equation in a variational form:

@�
@t

=Dr2�¡V 0(�)=¡�F [�]
��

(3.9)

where F [�] is the �effective� free energy functional (it can be shown assuming constants ��)

F [�] =
Z �

D
2
(r�)2+V (�)

�
dx1: : :dxD

where, for convenience, we consider a generic spatial dimension D (for a membrane, D=2). It is
important to observe that the system we are considering is out of equilibrium; that is why F is
only an �effective� free energy. We cannot apply thermodynamics in this context.

Equation (3.9) tells us that the dynamics tend to minimize the effective energy functional F .
We are interested in a particular situation, i.e., when one phase is more stable than the other,
although both are stable. In particular, let us consider the case in which the �+ phase is more
stable than the �¡ phase. In this case, the potential takes the following form:

Figure 3.4. Asymmetric potential, the �+-phase is more stable than the �¡-phase.

We can define the metastability degree:

�V =V (¡c)¡V (+c)

With this kind of potential, the system can also remain for a long time in the less stable phase. The
question we want to answer here is: what happens if a �germ� of the more stable phase is created,
through thermal fluctuations, within the �sea� of the metastable state? Theoretically, this process
is known as nucleation. In order to gain some intuition about the process, we start by studying a
very simple one-dimensional (1D) case.

3.3 Phase propagation in 1D
Let us consider a situation in which an infinite system is in the �+ phase on the left and in the
�¡ phase on the right. In one dimension, my dynamical equation is:

@�
@t

=D
@2�
@x2

+ f(�) (3.10)

This equation allows for propagating front solutions:

�(x; t)= '(x¡ vt)

In this case, @�
@t
=¡v'0 and (3.10) becomes:

¡v'0(x¡ vt)=D'00(x¡ vt)+ f('(x¡ vt))
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By calling �=x¡ vt and recalling that f(�)=¡V 0(�)=U 0(�):

D
d2'
d�2

=¡vd'
d�
¡U 0(') (3.11)

At this point, we can observe that this is equivalent to Newton's second law for a fictitious particle
moving in the inverted potential U 0, with a viscous friction coefficient v. Then, by exploiting this
mechanical analogy, we identify:

' : position of the fictitious particle
� : fictitious time
v : coefficient of viscous friction
D : mass

We are looking for solutions where:

'(�=¡1) = +c
'(�=+1) = ¡c

so that I can replicate the pattern I want, that is, an infinite system in the �+=+c phase on the
left and in the �¡ phase on the right. According to our mechanical analogy, we need a particular
value v= v� with which my fictitious particle is able to reach the other stable position (a phase for
us) '=¡c at infinite time �=+1.

Figure 3.5. Inverted potential U('). When v= v� we are able to reach '=¡c at infinite time �=+1 .

Observe that in my analogy v is the velocity of the propagation front. Then, for v= v� we get
the unique solution � :

Figure 3.6. Graphical representation of � with propagation front velocity v= v� .

Now we can compute the propagation velocity from (3.11), imposing v= v�:

D
d2'
d�2

= ¡v�
d'
d�
¡U 0(')

D
d2'
d�2

d'
d�

= ¡v�
�
d'
d�

�
2

¡U 0(')d'
d�
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Integrating � in [¡1;+1]:Z
¡1

+1�
D
d2'
d�2

d'
d�

+U 0(')d'
d�

�
d� = ¡

Z
¡1

+1
v�

�
d'
d�

�
2

d�Z
¡1

+1 d
d�

�
D
2

�
d'
d�

�
2

+U(')
�
d� = ¡

Z
¡1

+1
v�

�
d'
d�

�
2

d�

where, continuing the mechanical analogy, we can identify the first two terms as the �kinetic energy�
and the �potential energy�, while the term on the r.h.s. represents the energy dissipation. We can
go further in the equations above,

v�

Z
¡1

+1� d'
d�

�
2

d� = ¡
�
D

2

�
d'

d�

�
2

+U(')
�
¡1

+1

At this point, imposing the initial conditions (at �=�1)

d'
d�
(¡1)= 0 d'

d�
(¡1)= 0 '(¡1)=+c '(+1)=¡c

we get:

v�

Z
¡1

+1� d'
d�

�
2

d� = ¡U('(+1))+U('(¡1))

= ¡U(¡c)+U(+c)
= V (¡c)¡V (+c)
= �V

Then, the velocity of the propagating front is proportional to the metastability degree, and, in this
mechanical analogy in 1D, they are related by the following formula:

v�=
�VR

¡1
+1
�
d'

d�

�
2
d�
= �V



(3.12)

where we call 
 the integral representing the energy dissipation.

3.4 Phase coexistence in 1D
We want to study in detail the case of a stationary front/interface. This means that v�=0 and, as
a consequence, �V =0. Then, both phases are equally favored by the dynamics. In this case, we
also have that �=x¡ v�t=x and equation (3.10) becomes, at stationarity:

@�
@t

=D
@2�
@x2

¡V 0(�)= 0

D
d2�
dx2

¡V 0(�)= 0

Now we integrate over � (in this case equivalent to integrating over x) and we get:

D
2

�
d�
dx

�
2

¡V (�)= const=0

where we impose const=0 because we have integrated over the whole space � = x and we know
that at the two extremes of integration, our argument is zero. Indeed, both d�

dx
and V (�) are zero

at �=�1. Then,

D

2

�
d�

dx

�
2

= V (�)

d�

dx
= � 2

D
V (�)

r
Z

d�

V (�)
p = � 2

D

r Z
dx (3.13)
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where in the last step we have separated variables and integrated both members. The 1D case for
a stationary front is then solved by equation (3.13).

Solving the equation with the potential of my polarization model (3.4) is rather complex. Then,
we adopt a simplified potential, the so-called �4-potential , i.e.

V (�)= (1¡ �2) 2 (3.14)

In this case, equation (3.13) becomes:Z
d�

(1¡ �2)2
p = � 2

D

r
x+ constZ

d�
1¡ �2

= � 2
D

r
x+ const

arctanh(�) = � 2
D

r
x+ const

�(x) = �tanh

"
2
D

r
(x¡x0)

#
Since �(¡1)= c=1 we choose the ¡ sign, then:

�(x) = ¡tanh

"
2
D

r
(x¡x0)

#
(3.15)

From this solution we see that the thickness of the interface is proportional to the square root of
the diffusivity:

w= D

2

r
This is valid at steady state, but likely also for fronts propagating with small enough velocity.

Figure 3.7. �(x) in case of phase coexistence and with a �4-potential.

Note : [D] = L2

T
. This means that (3.15) does not have the correct physical dimension, the

argument of an hyperbolic tangent has to be non-dimensional. To take into account the correct
physical dimension it is convenient to rewrite our catalytic force as:

f(�)= kc f~
�
�
c

�
(3.16)

where [k] =T¡1 and f~
�
�

c

�
is the dimensionless catalytic force. Substituting (3.16) into (3.10), we

get:

@�
@t

= D
@2�
@x2

+ kc f~
�
�
c

�
@

@(kt)
�

c
= D

k

@2

@x2
�

c
+ f~
�
�

c

�
Using the �4-potential we get that:

f(�)=¡V 0(�)= 4(1¡ �2)�
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and by restoring the correct physical dimensions:

f

�
�~= �

c

�
=4kc2(1¡ �~2)�~ (3.17)

Finally, the solutions become:

�(x)=¡c tanh
0@ x¡x0

D

2k

q 1A (3.18)

where we can see that now my interface width has the correct physical dimension of a length:h
D

2k

q i
=L.

Of course, our goal is to find the solutions of the equation with the much more complex potential
of the polarization model, i.e.

f(�)= (c2¡ �2) �
�

�+

2KM + c+ �
¡ �¡

2KM + c¡ �

�
We cannot solve the equation analytically, even in one dimension, but we can use some strategies
to generalize the simple case of a �4-potential to the more complex case of my catalytic force. One
way is to Taylor-expand f(�) for large �= KM

c
, considering �+=�¡=��:

f(�) ' (c2¡ �2)
�

��
2KM + c

�
1+ �

2KM + c

�
¡ ��
2KM + c

�
1¡ �

2KM + c

��
= (c2¡ �2) 2���

(2KM + c)2

= 2c2��
(2�+1)2

(1¡ �2~ )�~

where �~= �

c
. If we compare the expression above with (3.17) we see that they are equal if

k= 1
2

��
(2�+1)2

(3.19)

This means that in this limit of large � (and with �+=�¡=��), the force (and thus the potential)
for membrane polarity reduces to a �4-potential with this value of k. Now we can substitute (3.19)
in (3.18) and obtain:

�(x)=¡c tanh

24 1
D

�
��

(2�+1)2

�s
(x¡x0)

35=¡c tanh� x¡x0
w

�
(3.20)

This is the solution of my full polarization model in 1D and in the limit of a large � and equal ��

coefficients. We can also consider that they are not exactly equal and write:

w=(2�+1) 2D
�++�¡

r
(3.21)

According to (3.21), the interface width depends not only on diffusivity, but also on the catalytic
activity. In fact, we recall here the expressions for our �� coefficients:

��=
kc
�Ecyto

�

Kd
� (3.22)
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Chapter 4
Computational model
As discussed in the previous chapter, the main paradigm for the study of phase separation phe-
nomena in biology is a mass-conserved reaction-diffusion model. To this purpose, we adopt a
Gillespie algorithm, a common choice to simulate stochastic processes in continuous time. Our
goal is to show that, starting from a reaction scheme based on our biological knowledge about
Rab5 proteins and an initially uniform distribution of the reactants, the system will exhibit phase
separation (i.e., domain formation) within specific regions of the parameter space.

The algorithm reads a file containing all the necessary inputs: reactants (local or global),
reactions, rate values, populations of reactants, diffusion coefficients, the change in populations
determined by each reaction, and the radii of the cell and of the endosome (Figure 4.1). Then, it
classifies the reactions in input. They can be:
¡ dissociation reactions
¡ association reactions
¡ catalytic reactions
¡ diffusion reactions

In principle, the algorithm can handle also other reactions, like creation/destruction and mutations.
However, in our case, we assume mass conservation as discussed in Chapter 3, and we also assume
that mutations occur only via activation/deactivation reactions, i.e., via catalytic reactions.

Figure 4.1. Example of the table read by the algorithm. In this example, we consider [Rab5:GDP]= [Rab5:
GTP]=16.96nM, [b:s:]=8.48nM, [GEF]=100nM, [GAP] =50nM, [GDI]=300nM (the GDI concentration
is contained in the parametrization of the first rate, as explained in Section 5.1). The other parameters are
easily obtained by consulting Table 4.1.

The first row of the table is filled with 0/1 values, which indicate whether a reactant is global (0)
or local (1). Global reactants are dispersed in the cytosol, while local ones are confined to the
membrane. According to this, the populations of reactants are (light blue at the bottom of the
table) are to be intended as populations per site in the local case, and as global populations in the
global case. Observe that they are expressed as the number of proteins (per site, in the local case),
so one needs to multiply them by the volume and by Avogadro's number to obtain their equivalent
expression as concentrations.

On the right-hand side of the table we have the reaction rates and the Michaelis-Menten
constants (for the catalytic reactions). Indeed, all catalytic reactions in our model are assumed to
follow Michaelis-Menten kinetics. The gold row between the �change� matrix and the reactants'
populations contains the diffusion coefficients of each reactant. Note that we define the diffusion
coefficient only for the local reactants, since we assume infinite diffusivity in the cytosol, as we did
in the analytical model. In this way the enzymes dispersed in the cytosol are available everywhere
at any time for the recruitment to the membrane. This assumption is reasonable because we know
that the membrane environment is more viscous than the cytosol, allowing the attachment of the
reactants and their subsequent diffusion over it.
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The �change� matrix contains all the changes in populations that occur when a reaction is
performed. The number '111' is associated to the enzyme in the catalytic reactions and represents
a sort of flag for the algorithm, in order to identify the enzyme which mediates that catalysis.

Finally, two yellow cells at the bottom right, represent the radii of the cell and of the endosome,
which are used to compute respectively the system's volume and the membrane surface area,
respectively. In fact, we want to replicate a realistic situation of an endosome (in particular, an early
endosome in the case of Rab5) surrounded by the cellular environment (cytosol). The endosome
membrane is modeled as a honeycomb lattice of 10,242 sites (hexagonal, apart from 12 pentagonal
defects), and, as mentioned, the number of molecules of any given type in each site is represented
as an integer variable.

4.1 Dimensional analysis and rate rescaling in discrete space
We report here all implicit units of measurement associated with the input parameters:

Parameter Unit of measure
rcell �m

rendo �m

kdiss s¡1

kass s¡1nM¡1

kcat s¡1

KM nM

D 10¡6 �m
2

s

Table 4.1. Units of measure of the parameters used by our algorithm.

Note that diffusion coefficients must be provided with an implicit 10⁻⁶ scaling factor due to
internal computational requirements.

As we anticipated earlier, the algorithm uses the radius to compute the cytosolic volume and the
membrane surface area of the endosome. In both cases, we assume a spherical shape, which leads to:

V = 4
3
�(rcell3 ¡ rendo3 ) [�m3]

S=4�rendo2 [�m2]

where the volume represents the region occupied by the cytosol. Hence, we have to subtract the
endosome volume from the total cell volume and consider the volume of a spherical shell. Notice
that typically Vendo�Vcell, so that one could also consider just the cell volume. We use the following
notation to represent the nondimensional quantities handled by the algorithm: V = v ��m3 ; S =
a��m2.

Since we have to deal with a lattice, we must adapt the rates to the discrete case because they
are defined for continuous space. The following rescalings are adopted in the algorithm:

for( i=1 ; i <= nR ; i++ )
{
switch( r[i][0] ) {

case DESORPTION: //Kdiss=[1/s]
break;

case ADSORPTION: //Kass=[1/(s*nM)]
kappa[i]/=(.1*volume*na);
break;

case CATALYSIS: //Kcat=[1/s]
Km[i]*=(.1*na*volume/(double)N_SITES); //Km=[nM]
break;

case DIFFUSION: //D=[um^2/s]
kappa[i]/=(sqrt(3)*surface/nx);
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break;
case MUTATION:

break;
default:

printf("Error %d %d\n",r[i][0],i);
break;

}
}

where i runs over all reactions in our model. As we can see, some rates do not need to be rescaled,
such as the dissociation and catalytic rates. In fact, they do not depend directly on the concentra-
tions of the reactants. This means that the probability of reaction is independent from the fact that
we are in a discrete or continuous case, because we don't have to consider an interaction probability.

Instead, every rate that depends on reactant concentration needs to be rescaled in order to
adapt to the discrete case, in which we want to deal with concentrations expressed as molecules
per site. Let us consider the kinetics of a generic association reaction in which a cytosolic molecule
B associates with a membrane-bound molecule A, i.e. A(m)+B(c)!AB(m) :

d
dt
[AB] = kass[A][B]

d
dt
[AB] �S = kass[A][B] �S

d
dt
nAB = kassnA[B] �

V
V

d
dt
nAB = kass

V
nAnB

cyto

where [AB] = nAB
S

; [A] = nA
S

since they are surface concentrations, [B] = nB
cyto

V
since it is a volume

concentration. We see that, to handle concentrations expressed as number of molecules, we must
divide the rate by the volume. Furthermore, we still have to rescale kass because it is expressed in
s¡1nM¡1 but we require a rate in s¡1molecules¡1. Let us call the (non-dimensional) input rate
as kass

phys and introduce the (non-dimensional) rate that will be used by our algorithm, kassmodel. We
introduce these nondimensional rates in order to explicit the physical dimensions, we have the
following relation:�

kass
model

V
1

s �molecules

�
=

 
kass
phys

v � �m3

1
s �nM

!
�
kass
model

V

1
s �molecules

�
=

0@ kass
phys

v � 10¡15L
1

s � 10¡9mol
L
�na � 1023 molecules

mol

1A
�
kass
model

V
1

s �molecules

�
=

 
kass
phys

v �na � 10¡1
1

s �molecules

!
where Na= 6; 022 � 1023 molecules

mol = na � 1023 molecules
mol . We used the notation introduced before for

the volume and considered the equivalence 1�m3=10¡15L. This explains the rescaling adopted in
the algorithm.

The other parameter that needs a rescaling since it is explicitly a concentration is the Michaelis-
Menten constant. As shown in Table 4.1, it is expressed in nM; we have to convert it to molecules
per site:

1nM= 10¡9
mol
L

= 10¡9
mol

1015�m3
= 10¡9

na � 1023molecules
1015�m3

= 10¡1 �na � molecules
�m3

where na=6.022, as we said before. Now we have to multiply by the volume V =v � �m3 and divide
by the number of sites nx= 10.242 to obtain the equivalent concentration in molecules per site:

1nM= 10¡1 �na � molecules
�m3

= 10¡1 �na � v
nx
� molecules

site
(4.1)
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Looking at Table 4.1 we see that this is precisely the factor multiplying the input M.M. constant.
Finally, the last parameter that requires rescaling is the diffusion coefficient, since it originates

from a continuous-space formulation. Indeed, in the discrete case membrane-bound molecules are
not allowed to go in any direction with any spatial step, they are instead forced to move to an
adjacent hexagonal site (we have also 12 pentagonal sites, which can be neglected for the rescaling).
Hence, we have to consider an appropriate geometric factor to reflect the continuous diffusion
coefficient in my discrete space. As shown in the algorithm above, the rescaling is:

Dmodel= Dphys

3
p
� a
nx

(4.2)

where a= S

�m2 is the nondimensional surface and nx is the number of sites. In the algorithm the
diffusion coefficients (one for every local reactant) are stored in the array kappa after the list of
reaction rates; here, instead, we denote the coefficient with the usual D. The geometric factor is
obtained by multiplying the distance between two neighbouring hexagonal sites ( 3

p
) by the surface

area of a single membrane site, a

nx
.

These rescaled rates and units form the basis upon which our algorithm operates, ensuring
consistency between physical parameters and the discrete computational model.

4.2 Evolution of the system
In this section, we describe how the algorithm handles the temporal evolution of the system. The
probability for each reaction to occur in a site x is decomposed in the product of a global part
(site independent) and a local part (site dependent). Global rates depend on the total number of
available reactants, whereas local rates are functions of their concentrations at each specific site [15].
The global component is used to select, at each step, which reaction will be performed, while the
local component is used to select the site x on which it will take place.

The global reaction rates are computed as follows:

f[0]=0; // contains the total frequency of all reactions
for( i=1 ; i <= nR ; i++ ) {

f[i] = kappa[i]*w[i]*weight(i,0,r,n,Km,global);
f[0] += f[i];

}

where kappa[i] is the rate constant associated with reaction i (or the diffusion coefficient, if the
reaction is diffusive) and w[i] is the sum over all local weights for reaction i. These local weights
are computed using the function weight(i,x,r,n,Km,global), which takes into account both
local populations and reaction parameters. In this context, the function is evaluated at x=0 to
represent the global contribution of the reaction, by convention (see Figure 4.2, which shows the
implementation of the weight function). Then, we define f[0] as the sum of the global reaction
weights f[i].

These instructions are executed at the beginning of each iteration of the main loop that governs
the system's time evolution. This ensures that reaction frequencies are continuously updated to
reflect changes in the system state.

The next step is to select which reaction will occur. This is done in the following way:

xtmp=f[0]*Xrandom();
i=1;
while( (xtmp -= f[i]) > 0 ) i++;

where Xrandom() generates a random number between 0 and 1. By multiplying it by the total
reaction frequency, we obtain a value xtmp between 0 and f[0]. The subsequent while loop searches
the interval in which xtmp �falls�. This process effectively selects a reaction i with probability
proportional to its global frequency.

Once the reaction is selected, the site x where it will occur is chosen. This is done immediately
after the while loop above, through the instruction:
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x=wpop(i);

The function wpop(i) uses a similar method based on cumulative weights to randomly select a site
according to the local frequencies of reaction i (see Figure 4.3).

Finally, the reaction or diffusion step is performed by modifying the reactants' populations
according to the selected reaction and by updating the weights associated with the reactions to
reflect the changes in population (see Appendix A for details).

Time advances as a Poisson process with mean f [0]¡1, which correponds to the average waiting
time between two events.

double weight(int i,int x,int **r,int **n, double *Km,int *global) {
double tmp;
int itmp;
switch( r[i][0] ) {

case DESORPTION: // (1) ! (2) + (3)(cyto)
if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

case ADSORPTION: // (1)(cyto) + (2) ! (3)
if( x == 0 ) return (double)n[0][ r[i][1] ];
else return (double)n[x][ r[i][2] ];
break;

case CATALYSIS: // (1) + (3) ! (2) + (3)
if(global[ itmp=r[i][1] ]==1)

{
if( x == 0 ) return 1.;
else

{
tmp=n[x][itmp];
return n[x][ r[i][3] ]*tmp / (Km[i]+tmp); //M.M

}
}

if(global[ itmp=r[i][1] ]==0)
//else

{
tmp = n[0][ itmp ]/(double)N_SITES;
if( x == 0 ) return tmp;
else return n[x][ r[i][3] ] / (Km[i]+tmp);
}

break;
case DIFFUSION: // (1)(x) ! (1)(y)

if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

case MUTATION: // (1) ! (2)
if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

default:
printf("Error %d %d\n",r[i][0],i);
break;

}
return 0.;

}

Figure 4.2. The weight function computes the reaction weights according to the mass-action kinetics.

4.2 Evolution of the system 31



int wpop(int i)
{
int x,m;
double r;
r=B[i][0]*Xrandom();
for (x=0,m=1;m<K;m<<=1) if (r<B[i][x+m]) x+=m; else r-=B[i][x+m];
if (r<W[i][x+K]) x+=K;
return x;
}

Figure 4.3. The wpop function selects the site where the selected reaction will occur.

4.3 Visualization

At the end of the main computational cycle, the algorithm calls the function printeps, which
saves the state of the system in a text file (see Appendix A). It generates, at regular intervals of
DELTAT seconds, a file named Detailed_State_time.txt, which contains the number of reactants
for each site arranged in a matrix of 10,242 rows and a number of columns equal to the number
of reactants; and a file named Global_State_time.txt, which contains the global population of
each reactant at that time (see Figure 4.4).

Once the simulation is over, the text files are processed by a Python script within a Jupyter
Notebook, which populates a sphere with the information contained in Detailed_State_time.txt
files. To do this, it needs additional text files that specify: the three coordinates (with the origin
at the center of the sphere) of each site center; the coordinates of the vertices (two per site); the
indices of the neighbors' faces (one per edge, so six per site). After that, the algorithm converts the
hexagonal mesh into triangles and maps the local concentrations of a particular reactant onto these
triangles, using the function plot from the meshplot library. This process produces interactive 3D
images, allowing the user to rotate the sphere and explore regions that would otherwise be hidden
in a static representation (more details about this code are in the Appendix A). These images
display the spatial distribution of the chosen parameter on the spherical surface, representing, in
this case, the early endosome, over time.

We will use two types of variables to visualize the simulation results. The most natural one is
the difference between Rab5:GTP and Rab5:GDP at each site, consistent with the definition of the
order parameter introduced in the theoretical framework. This quantity captures local asymmetries
and, it is, therefore, a common choice to investigate phase separation phenomena. It provides an
effective tool for detecting domains enriched in either the active or the inactive form of Rab5.

The second option for visualization is to populate the sphere with the total concentration
of membrane-bound Rab5, i.e., the sum of Rab5:GTP and Rab5:GDP at each site. This repre-
sentation provides complementary information because it shows the overall Rab5 recruitment
to the membrane, regardless of its activation state. It is particularly relevant for comparing our
simulations to experimental observations, such as those reported by Cezanne et al.(2020) [6], where
they mark with GFP all the Rab5 proteins, both in GTP- or GDP-bound states.

In both cases, the computed concentrations are normalized within each time frame, and a
colormap is generated to reflect the distribution at that specific time. In this way, we are sure
that the color scale adapts to the range of values in each snapshot, enabling an immediate visual
interpretation of local enrichments. The colormap is chosen so that it undergoes a transition from
dark blue (low values) to yellow (high values); the intermediate values are green or light blue. Since
we independently generate a colorbar for each frame, the interpretation of the spatial patterns
must be done in reference to the corresponding colorbar, which encodes the actual concentration
visualized at that time point.

These two visualization methods provide complementary information: the first one highlights
compositional asymmetries, while the second one shows the global redistribution of Rab5 over the
membrane.
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Since the simulation outputs consist of text files, we also extract a quantitative indicator to
infer whether phase separation has occurred while the simulation is running. This value represents
the fraction of the total weight associated with the first twenty spherical harmonics of the spatial
distribution of the order parameter. This value reflects well the large-scale spatial organization on
the membrane and provides a clear signature of phase-separated domains.

A high value of this percentage signals a stronger spatial organization, consistent with the
emergence of patterns, whereas a low value indicates a uniform distribution. Moreover, we use this
value to assess whether the system has reached a steady state; indeed, when it oscillates within a
narrow range for a sufficiently long period, we can assume that the dynamics have stabilized.

(A)

(B)

Figure 4.4. (A) Example of a Detailed_state file. We report only the first 20 lines, i.e. 20 lattice cells.
The example is taken from the simulation described in Section 6.1, at the final time considered, when
equilibrium, characterized by phase separation, is reached. (B) Example of Global_state from the same
simulation and instant time.

For both files each column identifies a specific reactant, in order, from left to right they are: Rab5:GTP,
Rab5:GDP, Rab5:GDP(cyto), binding sites, RR(cyto), Rab5:GTP:RR, GAP(cyto), GAP(m), where RR is,
as we already know, the complex GEF/effector of Rab5 protein, i.e., Rabex5:Rabaptin5.
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Chapter 5

Parameter estimation

In the previous chapter, we discuss the generic workflow and features of our algorithm. In the
following, we become more specific and analyze what the reactions, the reactants and the parame-
ters constituting our system might be. Of course, there is not a unique way to do it. We combine
references from the literature, especially the works by Cezanne et al.(2020) [6] and Bezeljak et
al.(2020) [3], with theoretical considerations in order to design a workflow as realistic as possible.

In particular, we rely on the paper by Cezanne et al. because of the importance of its studies
on how the lipid composition of the EE membrane affects the formation of Rab5 domains (see
Sections 2.4 and 5.4) and also because from it we can extract some images of their results using in
vitro reconstitution systems. From these, we are able to estimate the interface width of an active
Rab5 domain and put some analytical constraints on the value of the diffusion coefficients for
membrane-bound species (see Section 5.3).

The other main reference is the work by Bezeljak et al., as mentioned. From it, we take
the reactions and the corresponding reaction rates constituting our model, with some additional
considerations and assumptions (see Section 5.1).

5.1 Reaction scheme

We have to choose the reactions constituting our Rab5 activation model. A reasonable reaction
scheme is the one proposed by Bezeljak et al. in [3]: (we add the superscript B to the rate constants
for clarity)

Rab5:GDP:GDI 

k2
B

k1
B

Rab5:GDP+GDI

Rab5:GDP+RR !k4
B

Rab5:GTP+RR

Rab5:GTP+RR 

k6
B

k5
B

Rab5:GTP:RR

Rab5:GDP+Rab5:GTP:RR !k7
B

2Rab5:GTP+RR

Rab5:GTP !k3
B

Rab5:GDP

Figure 5.1. Schematic representation of the Rab5 activation model used by Bezeljak et al. ([3], Figure
1(G)).
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The first step is to adapt this model to our algorithm. Notably, the authors of this work do
not consider the spatial component, because their aim is to shed light onto the role of stochasticity
in the collective activation of a Rab5 regulatory network. In contrast, our goal is to observe that,
beyond their activation on membranes, Rab5 proteins can also self-organize in spatial domains.
This means that we need to take into account also the diffusion of the reactants over the membrane.

Another important observation is that some reactions cannot be directly implemented in our
algorithm. In fact some of them are actually combinations of more than one elementary reaction.
In particular, let us consider the 4th reaction, the one whose aim is to model the positive-feedback
loop. We observe that it is the sum of two reactions:

Rab5:GDP+Rab5:GTP:RR !k7 Rab5:GTP+Rab5:GTP:RR (5.1)

!k6
B

Rab5:GTP+Rab5:GTP+RR

The first is a catalytic reaction in which the complex Rab5:GTP:RR promotes the nucleotide
exchange that activates a molecule of Rab5, and the second reaction is a dissociation of the complex
into an active molecule of Rab5 and RR (Rabex5:Rabaptin5, the Rab5 GEF/effector complex).
The dissociation corresponds to another reaction in our scheme, so we assign it the same rate k6B.
Instead, the first one is an extra reaction whose rate k7 is to be determined. Obviously it will
be related to k7B, but we have to pay attention to the fact that k7B is expressed in s¡1nM¡1 (see
Figure 5.2). In fact, our algorithm assumes that the catalytic reactions follow Michaelis-Menten
kinetics, with rates expressed in s¡1. Therefore, to adapt k7B to our algorithm, we need to multiply
it by a concentration. Assuming Michaelis-Menten kinetics for (5.1):

d

dt
[Rab5:GTP] = k7 � [Rab5:GTP:RR] [Rab5:GDP]

KM + [Rab5:GDP]

From the physical dimension of k7B, we argue that the authors may have included the denominator
in the rate, so that we can identify:

k7= k7
B � (KM + [Rab5:GDP])

Furthermore, since this rate remains constant during the simulation according to our algorithm,
it is better to consider only constant values in its parametrization. For this reason we identify:

k7� k7B �KM

Note that, the occurrence probability for this reaction still depends on [Rab5: GDP] through
Michaelis-Menten kinetics. Similarly, since also k4

B is expressed in s¡1nM¡1, one can apply the
same reasoning to the other catalytic reaction defining a new parameter k4, suitable with our
algorithm, and obtain k4� k4

B �KM. However, we will not consider this contribution since from
Figure 5.2 we see that k7B�k4

B and they are essentially parametrizing the same event, the activation
of a Rab5 protein. The only difference is that in one case it is a transitory GEF molecule that
mediates the activation, while in the other case it is the membrane-bound complex Rab5:GTP:RR
that mediates it (positive-feedback loop). Hence, we expect that the activation contribution comes
mainly from the positive-feedback loop.

Figure 5.2. Table of the rates used for the simulations in the reference article [3]. The table has been taken
from the supplementary material of the paper (Table S1).
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The next reactions we have to adapt are the first ones, characterized by rates k1B and k2
B,

which describe the dissociation and association of the inactive Rab5 (Rab5:GDP) from and to
the membrane. By looking at Figure 5.1 we understand that the authors assume that whenever a
Rab5 protein dissociates from GDI, it is immediately recruited to the membrane. However, this
assumption oversimplifies the process. In reality, after dissociation from GDI, the Rab5 protein
remains in the inactive state in the cytosol and eventually associates with the membrane through
its lipid anchor. Moreover, in our algorithm, membrane recruitment is explicitly modeled as the
association of some protein (Rab5 in our case) dispersed in the cytosol with specific binding sites.
Instead, in the reference article, since the spatial component is not taken into account, there is
no distinction between cytosolic reactants and membrane-bound reactants. In our case, however,
the spatial component is crucial to observe domain formation, hence we have to adapt these two
reactions to our model.

Let us rewrite both equations (direct, inverse) as a sum of two equations in the following way:

Rab5:GDP:GDI 

ka

kd
Rab5:GDP

cf
+GDI (5.2)

Rab5:GDP
cf
+bind site 


k¡

k+
Rab5:GDP

m
(5.3)

where we separate Rab5:GDP molecules in membrane-bound (m) and cytosolic-free (cf). Our
final goal is to write a double reaction (�) that suits our computational model and that reflects
correctly the full process, i.e.:

Rab5:GDP
c
+bind site 


k2

k1
Rab5:GDP

m
(5.4)

where we define Rab5:GDP
c
=Rab5:GDP

cf
+Rab5:GDP:GDI, that is the full concentration of

inactive Rab5 dispersed in the cytosol, composed of free Rab5 molecules and Rab5 molecules that
form a complex with GDI. In this way we can model the first two equations in a suitable way for
our algorithm and we can also take into account the role of GDI in the process. In fact, we still
have to determine the new rates k1 and k2, but it is quite evident that they will be related to the
original rates in a GDI dependent way.

From (5.2) and (5.3) we can derive the following kinetics:

d
dt

h
Rab5:GDP

cf
i
= kd[Rab5:GDP:GDI]¡ ka

h
Rab5:GDP

cf
i
¡ k+

h
Rab5:GDP

cf
i
[b:s:] (5.5)

d
dt

�
Rab5:GDP

m�
= k+[b:s:]

h
Rab5:GDP

cf
i
¡ k¡

�
Rab5:GDP

m�
(5.6)

Since from the reference article we understood that they consider an approximately istantaneous
recruitment of the cytosolic-free Rab5:GDP to the membrane, we can assume that our second
reaction is in equilibrium, so that:

k+[b:s:]
h
Rab5:GDP

cf
i
= k¡

�
Rab5:GDP

m�
h
Rab5:GDP

cf
i
= K¡

�
Rab5:GDP

m�
[b:s:]

(5.7)

where we define K¡=
k¡
k+

, the dissociation constant of the second equation. Now we write also

the kinetics of the reference reaction:

d
dt

�
Rab5:GDP

m�
= k1

B[Rab5:GDP:GDI]¡ k2B[GDI]
�
Rab5:GDP

m�
= k1

B
��

Rab5:GDP
c�
¡
h
Rab5:GDP

cf
i�
¡ k2B[GDI]

�
Rab5:GDP

m�
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where we expressed the concentration of the complex as the difference between the full concentra-
tion of the cytosolic Rab5:GDP and the concentration of the free Rab5:GDP molecules. In this
way we can substitute (5.7) and get:

d
dt

�
Rab5:GDP

m�
= k1

B

��
Rab5:GDP

c�
¡ K¡
[b:s:]

�
Rab5:GDP

m��
¡ k2B[GDI]

�
Rab5:GDP

m�
= k1

B
�
Rab5:GDP

c�
¡
�
k2
B[GDI] + k1

BK¡
[b:s:]

��
Rab5:GDP

m�
(5.8)

If we now consider also the kinetics of our �goal� equation (5.4):

d
dt

�
Rab5:GDP

m�
= k1[b:s:]

�
Rab5:GDP

c�
¡ k2

�
Rab5:GDP

m�
(5.9)

By comparing (5.8) and (5.9) we find a relation between our rates k1; k2 with the reference rates,
that are known from Figure 5.2. We have:

k1 = k1
B

[b:s:]

k2 = k2
B[GDI] + k1

BK¡
[b:s:]

Observe that we want a large concentration of binding sites w.r.t. the concentration of cytosolic
Rab5:GDP, in order not to limit the recruitment of inactive Rab5 to the membrane. Furthermore,
since we aim for immediate association with the membrane, we assume k+� k¡ so that we can
take the limit K¡! 0. As a result,

k1 = k1
B

[b:s:]

k2 = k2
B[GDI]

This means that although we don't consider GDI as an explicit reactant, its effect is taken into
account through our effective rate k2. In fact, k2 is proportional to [GDI] and the fact that it models
membrane dissociation further supports our approach.

Finally, the last reaction that we have to discuss is the last one of our scheme, the one with
rate k3B which inactivates a Rab5 molecule on the membrane. This is a catalytic reaction; the
authors of the article do not specify which enzyme mediates it, but we know that it is a GAP
protein from our biology knowledge. Observe that we could also treat this equation as a mutation
in our algorithm but we prefer to explicitly include the enzyme and treat the reaction as catalytic
because we know that cytosolic enzyme diffusion is crucial for the redistribution of Rab proteins
on the membrane. In fact it is known that the combination of a local positive-feedback loop with
global inhibition supports the formation of spatiotemporal patterns [3].

Hence, we have to add two reactions to our scheme, i.e. association/dissociation of the GAP to
and from the membrane, and we have to rewrite the inactivation reaction as a catalytic reaction,
expliciting the enzyme involved:

GAP
m



kass

kdiss
GAP

c
+ b:s: (5.10)

Rab5:GTP+GAP
m

!kcat Rab5:GDP
m
+GAP

m
(5.11)

where we have introduced new reaction rates that we have to relate to the rates coming from the
reference article. Let us start by writing the kinetics of the reference's reaction:

d
dt

�
Rab5:GDP

m�
= k3

B[Rab5:GTP] (5.12)
In our model, however,

d
dt

�
Rab5:GDP

m�
= kcat

�
GAP

m� [Rab5:GTP]
KM + [Rab5:GTP]

It is straightforward to identify:

k3
B= kcat

�
GAP

m�
KM + [Rab5:GTP]
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Moreover, since they write the equation as linear in the substrate concentration and since we model
the catalytic reactions through Michaelis-Menten, we assume that we are in the linear regime, i.e.
we assume that [Rab5:GTP]�KM. Then,

k3
B� kcat

�
GAP

m�
KM

(5.13)

If we now impose the equilibrium of (5.10):

kdiss
�
GAP

m�
= kass

�
GAP

c�
[b:s:]

from which �
GAP

m�
=
�
GAP

c�
[b:s:]

Kd
GAP (5.14)

where we define the dissociation constant Kd
GAP= kdiss

kass
.

Let us introduce
h
GAP

tot
i
=
�
GAP

m�
+
�
GAP

c�
and substitute it in (5.14):

�
GAP

m�
=

�h
GAP

tot
i
¡
�
GAP

m��
[b:s:]

Kd
GAP

�
GAP

m��
1+ [b:s:]

Kd
GAP

�
=

h
GAP

tot
i
[b:s:]

Kd
GAP

�
GAP

m�
=

h
GAP

tot
i
[b:s:]

Kd
GAP+ [b:s:]

(5.15)

If we now substitute (5.15) into (5.13):

k3
B= kcat

KM

h
GAP

tot
i
[b:s:]

Kd
GAP+ [b:s:]

or, by isolating kcat :

kcat= k3
B (Kd

GAP+ [b:s:])KMh
GAP

tot
i
[b:s:]

(5.16)

In this way we have transformed the reaction in order to be suitable for our algorithm without
losing the link with Bezeljak 's reaction rates. Observe that we have introduced two rates kdiss;
kass that are completely arbitrary. Since we have no particular reason to assign specific values to
them, we decide to stay close to their counterparts, i.e. the association/dissociation rates of the
GEF/effector complex of Rab5 (Rabex5:Rabaptin5, RR in our notation). Therefore, we identify:

kdiss = k6
B

kass = k5
B

In conclusion, the reaction scheme that we will consider in our computational model is: (note that
we have changed some numbers identifying the rates w.r.t. discussion above, from now on we will
consider the following ones)

Rab5:GDP
m


k4

k1
Rab5:GDP

c
+bind site

Rab5:GTP:RR 

k5

k2
Rab5:GTP+RR

GAP
m


k6

k3
GAP

c
+ bind site (5.17)

Rab5:GDP+Rab5:GTP:RR !k7 Rab5:GTP+Rab5:GTP:RR

Rab5:GTP+GAP
m
!k8 Rab5:GDP+GAP

m
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with rates

k1 = k2
B[GDI]

k4 = k1
B

[b:s:]

k2 = k6
B

k5 = k5
B (5.18)

k3 = k6
B

k6 = k5
B

k7 = k7
B �KM

k8 = k3
B (Kd

GAP+ [b:s:])KMh
GAP

tot
i
[b:s:]

where Kd
GAP= k3

k6
.

5.2 Estimation of the effective cytosolic volume

For our simulations, we use rendo=5�m, since we want to replicate the set-up used by Cezanne
et al., in which they employ silica beads of 10�m in diameter (see [6], �Results� section). To
determine the value of rcell we have to estimate the effective distance at which soluble species in
the cytosol contribute to the membrane-bound process. Beyond this distance molecules are unlikely
to participate because of diffusion limitations. In our model, we assume infinite diffusivity for
cytosolic molecules, in the sense that it is much larger compared to diffusivity on the membrane.
However, this assumption makes sense as long as we consider a relatively small cytosolic volume.
Therefore, we introduce an effective distance l, which reflects how far a molecule can diffuse before
being recruited by the membrane. To estimate l, we use the standard random walk relation for the
characteristic displacement of a diffusing particle over a time � :

l� D � �
p

(5.19)

where D is the diffusion coefficient of the species in the cytosol and � is the characteristic time for
the adsorption process at the membrane. The diffusion coefficient for various species can be inferred
from the literature. We use the results obtained by Arrio-Dupont et al. in their work [2], where they
detected a strong size dependence of the diffusion coefficients of globular proteins in the cytoplasm
of cultured muscle cells. We report here (Table 5.2, below) a sketch of their results. Since we know,
by looking at Table 5.1, that the molecular weights of our cytosolic species (Rab:GDP/GDI, GEF,
GAP) vary from 75kDa to 165kDa, we argue that a reasonable cytosolic diffusion coefficient would
be approximately D= 10�m2/s.

Moreover, in the final Discussion, they also pointed out that the diffusivity of proteins in native
muscle fibers could be reasonably smaller than in cultured muscle cells. Of course, the exact value
of D can vary depending on the molecular size, morphology and local environment. For example,
Jimenez et al. found that the diffusion coefficient of proteins in human fibroblasts exhibits almost
no dependence on the molecular weight and they made an estimation of D'1-2�m2/s [20]. Since
it is hard to find an exact value we prefer to overestimate a bit the effective region that contributes
to our system and adopt D= 10�m2/s.

The characteristic time � is obtained by exploiting the fact that at equilibrium we expect
that the rates of association and dissociation are approximately equal. Thus, the corresponding
timescales can also be assumed to be comparable:

� s 1
kass[Xcyto]

= 1
kdiss

(5.20)
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This provides a direct way to estimate the time scale for interactions, avoiding the need to estimate
the concentration of molecules in the cytosol, which could introduce additional uncertainties. To
ensure that we capture all relevant interactions, we select the smallest dissociation rate kdiss, which
results in the largest � , and therefore the largest effective distance. Using equations 5.19 and 5.20,
we compute the effective distance l. Hence, the radius of the cell is:

rcell= rendo+ l (5.21)

Finally, the volume that we want our algorithm to use is the volume of the spherical shell. This
means that it will be computed following:

V = 4
3
�(rcell3 ¡ rendo3 ) (5.22)

This construction is consistent with the assumptions of fast cytosolic diffusion and allows us to
define a finite, physically motivated effective volume.

Protein Id Lenght (AA) Mass (kDa)
Rab5 RAB5A_HUMAN 215 23,7
GDI GDIA_HUMAN 447 50,6

Rabex5 RABX5_HUMAN 491 56,9
Rabaptin5 RABE1_HUMAN 862 99,3

GAP GAPD1_HUMAN 1478 165

Table 5.1. Molecular weights of the proteins of the system. The data are taken from the online databaseUniProt [29].
The 'Id' column contains the entry identifiers of the corresponding proteins. The length of each protein (in number
of amino acids (AA)) and the relative molecular weights (in kDa) are provided in the last two columns

Protein Mr(kDa) Dcyto(�m2/s)
Myokinase 21 46<Dcyto< 93

Phosphoglucomutase 60 16.5� 3
�-Enolase 90 10.8� 2

IgG 160 5.5� 1
b-Galactosidase 540 0.004� 0.0007

EGFP 27 15.8� 3

Table 5.2. Sketch of �Table 1: Mobility of proteins in the cytoplasm of cultured muscle cells, Results
section� from the paper by Arrio-Dupont et al. [2]. The measurement details are described in the �Materials
and methods� section, �Diffusion measurements�; the values of the diffusion coefficients are determined by
the Padé-Laplace formalism.

5.3 Measurements of interface width set constraints on the
diffusion coefficient

According to the model of cell polarity, the interface width is related to diffusivity through the
equation (3.21). We use this fact to set some constraints on the values of the diffusion coefficient.
We estimate the interface width of a Rab5 domain based on the experimental results reported by
Cezanne et al. (2020) [6] and take this as a reference (Figure 5.3).
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Figure 5.3. Figure 6(B) of the reference article [6], Rab5 domain formation in vitro. In this case, MCBs
(membrane-coated beams) have EE lipid composition containing 1 mol% PI(3)P. Beads are presented as
equatorial slices in GFP channel. The scale bar (white, bottom right) is 10�m.

Using ImageJ, an application for the analysis of scientific images, we measure that the scale bar
is � 115 pixels. We know from the article that the scale bar length is 10�m, then 1pixel�10�m

115 �
0.0877�m. The next step is to estimate the interface width in pixels and then convert the value in
�m. We draw a line along the Rab5 domain and extract the corresponding intensity values through
a tool of ImageJ (�Plot Profile�) which generates an intensity profile with the spatial component in
pixels as horizontal axis. We repeat the process 19 times in order to obtain an average estimation
and minimizing the error introduced by our measurement. We also generate a mean profile of our
measurements with the relative error (Figure 5.4).

Figure 5.4. Mean profile generated in Python. The profiles have been aligned w.r.t. their maximum.

For the estimation of the interface width we proceed in the following way: since we have two
interfaces per profile we separate the values of the left interface from the ones of the right interface;
then, for each profile we estimate the left and the right interface by a fitting procedure with a
hyperbolic tangent and, finally, we compute the average and the standard deviation of the 19
estimations for both the interfaces.

42 Parameter estimation



It is reasonable to adopt an hyperbolic tangent as function for the fitting process as we discussed
in Section 3.4. We fit the profile through the function curve_fit of the library scipy.optimize
in Python. The results of our estimations are the following:

wleft' (3.46� 0.69)pixels

wright' (3.83�0.53)pixels

From these results, we derive a range of reasonable values for the interface width of a Rab5 domain
by considering the smaller and the higher values corresponding to our estimations, that is:

wmin'(3.46¡ 0.69) pixels

wmax'(3.83 + 0.53)pixels

which corresponds to the following range of values for w:

w 2 (2.77; 4.36)pixels

Finally, given our estimation of a pixel in �m:

w 2 (0.24; 0.38)�m (5.23)

Now, we have to compute �� coefficients. As we know, they depend on several quantities (see
eq. (3.22)). We take as reference the work from Bezeljak et al. [3]. The authors of this article
combine experiments with computational modeling to shed light on the stochastic nature of the
collective activation of Rab5 on membranes of early endosomes (EEs). In particular, as physicists,
we will focus on the computational aspects of this paper. They consider a model of Rab5 activation
(Figure 5.1) and solve it using the Gillespie algorithm to account for biochemical noise (stochas-
ticity) in the reactions. Notice that they consider a reinforcing feedback loop only for the E+

enzyme; they also take into account the inactivation of Rab5 molecules but without specifying the
enzyme which mediates this conversion and, most importantly, without considering a reinforcing
feedback loop.

However, as we argue in Section 5.1 we also introduce the negative feedback loop in our model
because it is necessary for domain formation. Hence, in order to estimate the �� coefficients, we
use the rate values of our reference paper (see Figure 5.2) through the parametrization discussed
in Section 5.1. We do the following identifications:

� kc
+= k7� k7B �KM ! rate of the catalytic activity of E+ on membrane

� kc
¡= k3

B (Kd
GAP+ [b:s:])KMh
GAP

tot
i
[b:s:]

! rate of the catalytic activity of E¡ on membrane

� Ecyto
+ = [GEF] ! volume concentration of enzyme Ecyto

+ in cytosol

� Ecyto
¡ = [GAP] ! volume concentration of enzyme Ecyto

¡ in cytosol

� Kd
+= kd

+/ka
+= k2/k5 ! dissociation constant of enzyme E+

� Kd
¡= kd

¡/ka
¡= k3/k6 ! dissociation constant of enzyme E¡

Keeping in mind these identifications, the �� coefficients are easily obtained. Of course, they will
depend on the particular parameter set employed for the simulation. Since we perform several
simulations for different parameter sets, we report a plot of the diffusion coefficient as a function
of the factor �++�¡

2
, i.e. the sum of the catalytic ratios (see Figure 5.5). In fact, if we invert the

relation (3.21), we obtain:

D= w2

(2�+1)2
� �

++�¡

2
(5.24)
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where w is fixed to a value within the range (5.23). In particular, we consider the central value
w=0.31�m and the two extrema of the range (represented by the three straight lines of Figure 5.5).
The uncertainty related to the estimation of w results in the uncertainty of the diffusion coefficient
of the membrane-bound species. Hence, for each parameter set considered in our simulations we
set a value for the diffusivity D according to this relation in order to be as close as possible to the
experimental set-up of Cezanne et al. .

Finally, it is important to note that this discussion and its implications rely heavily on our
theoretical understanding of the phenomenon and on the assumptions leading to our reference
equation (3.21) (see Section 3.4).

Figure 5.5. Plot of the Diffusion coefficient D as a function of the sum of the catalytic ratios �� for
the estimated range of values of the interface width w (with KM = 200nM and c= [Rab5:GDP] + [Rab5:
GTP] = 33.92nM for �= KM

c
). We draw a line for the central value w= 0.31�m (in black) and two lines

for the extreme values of the range, i.e. for w=wmin= 0.24�m (in blue) and for w=wmax= 0.38�m (in
red). We consider a logarithmic scale for both axis since we consider a range of 3 orders of magnitude for
the values assumed by the catalytic ratios (as we do in the Results' Chapter 6). The dotted lines in green
represent some of the experimental measurements depicted in Table 5.3.

5.4 Estimation of the lateral diffusion coefficient for mem-
brane-bound proteins

In Figure 5.5 we pointed out several experimental measurements of the diffusion coefficient for a
wide range of proteins and membrane environments. The aim of this section is to assign biologically
meaningful values to the diffusion coefficient D for the membrane-bound proteins involved in our
model: Rab5 (both active and inactive states), the Rab5:RR complex and the GAP. However, direct
measurements of D for these specific proteins in early endosomal (EE) membranes are currently
unavailable. To address this, we have to use results from the literature for comparable proteins
and membrane environments, combined with our biological and physical knowledge.

The selected experimental measurements are also reported in Table 5.3. These include small
GTPases (Rab5, Ras, Cdc42), transmembrane receptors, and lectin- or antigen-binding proteins,
measured through the widely used technique called FRAP (Fluorescence Recovery After Photo-
bleaching).
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The values span a broad range from approximately 0.003�m2/s to over 9�m2/s, reflecting the
combined influence of:

¡ membrane viscosity;

¡ protein crowding;

¡ interactions with the membrane;

¡ local lipid environment (e.g., presence of sphingomyelin and cholesterol).

The only measurements regarding directly Rab5 comes from the paper of Münzberg et al.
(2019) ([24], Table 2) and they varies from 4.3 to 9.3 �m2/s, which are significantly higher com-
pared to our expectations in such a viscous environment like the EE's membrane. This is likely
due to the extremely fluid composition of the artifical lipid bilayer (POPC membrane), which
lacks lipid rafts (microdomains) and membrane-associated proteins.

An important reference in this context is provided by the Ras family of small GTPases (HRas,
NRas, KRas), which are localized predominantly to the cytosolic face of the plasma membrane,
to which they are anchored via lipid modifications. Ras proteins are known to diffuse extremely
rapidly compared to other cell surface proteins; their lateral diffusion coefficients range from 0.65 to
1.25 �m2/s under control conditions in COS-7 cells, and from 0.35 to 1 �m2/s when the plasma
membrane is enriched with cholesterol ([16], estimated from Figure 4(A)). These values exhibit a
reduction of �30� 50% in D upon cholesterol loading, which is particularly relevant for us since
the EE membrane is also rich in cholesterol. Moreover, they are considerably lower than those
measured for Rab5 in artificial POPC bilayers, even though we expect the Ras proteins to have
a larger mobility. This suggests us that measurement of Rab5 in more physiological membranes
would likely yield significantly slower values.

Another relevant comparison is Cdc42, a small GTPase that shares structural and membrane-
anchoring features with Rab5. Measurements in Saccharomyces cerevisiae plasma membranes show
a slow diffusion, particularly in regions enriched of PS (phospholipid phosphatidylserin) where
D drops to 0.0061 �m2/s. By contrast, the decay profile outside the puncta (the name assigned
to the PS-enriched membrane domain) is consistent with a diffusion coefficient of 0.053 �m2/s.
The reduction of D is attributed to local lipid order (PS microdomains) and protein clustering;
conditions that may be partially replicated in early endosomes. To further investigate the role
of PS they repeat the experiment with the Cdc42S185D mutation, which exhibits a minor affinity
for PS, and they measure a D at the puncta of 0.022 �m2/s, more than three times faster than
for wild-type Cdc42 ([27], Results - Non-uniform membrane diffusion of Cdc42 ) . These results
support the idea that lipid specificity and microdomain formation can strongly regulate diffusion.

Further insight comes from the classic review by Richard J., Cherry(1979), which reports and
collects several FRAP measurements of the lateral diffusion coefficient for membrane proteins,
in both cellular and artificial systems ([9], Table 1 , section IVB(3)). Here, we report some of his
considerations. The diffusion of concanavalin A receptors in different cells is in the range of 10¡2�
10¡3 �m2/s, with evidences of a decreasing value with increasing Concanavalin A doses, probably
due, partially, to aggregation phenomena. Measurements of the diffusion of surface antigens for
mast cells and fibroblasts are of the order of 10¡2 �m2/s; higher, compared to lectin receptors,
supporting the idea that mobility is slowed down by aggregation.

There is also a measurement of D for Band 3 in erythrocyte ghosts of 0.004 �m2/s (section
IID(3), [9]). Band 3 is an integral protein with molecular weight of about 90 kDa, responsible
for anion transport; such a low value is attributed to anchoring to the spectrin cytoskeleton.
Furthermore, a value of 0.005 �m2/s is reported for acetylcholine receptors (s50� 60 kDa [29])
in myotubes; and a value of 0.2�0.6 �m2/s for Rhodopsin (s40 kDa [29]) in photoreceptor mem-
branes of rod outer segments, which is relatively high, but still slower than lipid-anchored proteins
in artificial bilayers.

These examples illustrate a clear dependence of the protein lateral mobility on the membrane
structure, lipid composition and anchoring mechanism; and they offer experimentally validated
lower and upper bounds for the diffusion coefficient of the membrane-bound proteins. For example,
the measurements for Rab5 obtained in artificial membranes represent an upper limit of mobility,
achievable only in highly fluid, homogeneous bilayers.
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As discussed in Section 2.4, the early endosomal membrane is enriched in sphingomyelin and
cholesterol, both known to increase membrane order and reduce protein lateral mobility [6],[12],[13].
Moreover, the Rab5 domain formation induced by positive-feedback probably contributes to slow
down the protein mobility on the membrane, as also suggested by Cherry in his review.

In conclusion, taking into account all the experimental evidence discussed here and the lipid
contributions to the membrane's mobility outlined in Section 2.4 strongly support the use of low
diffusion coefficients D (10¡2�10¡4 �m2/s) for membrane-bound proteins on the early endosomal
surface. These values reflect the expected reduction in lateral mobility in particularly viscous
environments such as EE membranes, enriched in sphingomyelin and cholesterol. Furthermore, the
two enzymes involved in the activation/inactivation processes are significantly heavier than the
proteins depicted in Table 5.3 (see Table 5.1, Section 5.2). This is another reason that leads us to
consider an even smaller lower limit for D w.r.t. the reported measurements.

Beyond biological accuracy, however, the values of D used in our simulations must also be con-
sistent, at least approximately, with our theoretical predictions. In particular, they have to respect
the expected relation between the interface width w and the catalytic ratios �� (see Figure 5.5).
Our choice of D therefore balances both empirical plausibility and analytical constraints discussed
in Section 3.4.

Protein Environment/Membrane type D (�m2/s) Reference
Rab5 (di-GG) POPC membrane (model lipid bilayer) 4.3� 9.3 [24]
Ras (HRas, Nras, KRas) COS-7 plasma membrane, CH-loaded 0.35�1.00 [16]
Ras (HRas, Nras, KRas) COS-7 plasma membrane, control 0.65�1.25 [16]
Cdc42 Yeast plasma membrane, PS-enriched puncta 0.0061 [27]
Cdc42 Yeast plasma membrane, surrounding region 0.053 [27]
Cdc42 S185D Mutant in yeast membrane 0.022 [27]
Rhodopsin Disc membrane of rod outer segments 0.2�0.6 [9]
Band 3 (integral protein) Erythrocyte ghosts (red blood cell membranes) 0.004 [9]
Acetylcholine receptors Myotubes 0.005 [9]
Concanavalin A receptors Fibroblasts (3T3) 0.0039 [9]

Table 5.3. Diffusion coefficient measurements of various different proteins in different membrane systems.

5.5 Reference values for the Michaelis-Menten constant

In this section, we report several experimental measurements of the Michaelis-Menten constant.
These are often performed for the ratio kcat/KM, which represents the catalytic efficiency. This
is done especially with low substrate concentrations, when it is the most appropriate and direct
parameter to describe the global efficiency of the enzyme. From Table 5.4 we can see that the
activity of the Rab5 GEF, Rabex5, in its wild-type form is approximately 104�105M¡1s¡1 when
the substrate is Rab5, or Rab5A [4],[22]. In the same Table there are also some separate measure-
ments of kcat and KM for the full-length Rabex and for the HB-Vps9 tandem with Rab5(wt) as
substrate [11]. By taking the ratio between the two parameters to compare with the other reference
values, we see that the catalytic efficiency is still approximately 104M¡1s¡1.

In contrast, our reference rate value k7
B (k7 in Table 5.2) is 108M¡1s¡1. As described in

Section 5.1, we consider k7= k7
B �KM as catalytic rate for the GEF activity, hence for us the

catalytic efficiency kcat/KM is constant and equal to k7B. This is much larger than the reported
values. We know that the GEF is three times more active when coupled with its effector, Rabaptin5,
but this is not enough to justify such a discrepancy [23]. Of course, the positive-feedback will
further increase the GEF activity, but we didn't find reference for the catalytic activity of the
whole complex Rab5:Rabex5:Rabaptin5 in the literature. Finally, we note that the value employed
by Bezeljak et al. is chosen starting from a reference value that is similar to the those reported in
Table 5.4.
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In Table 5.5, instead, we collect various measurements of the activity of different GAP proteins.
Some of them are expressed as kcat/KM and others are performed for the two parameters alone, i.e.
kcat and KM. Since there are no direct measurements for Rab GAPs, we report some measurements
for the GAPs of Ypt7p and Ypt51p, the corresponding proteins of Rab7 and Rab5, respectively,
in Saccharomyces cerevisiae [1]. They also belong to the family of Rab GTPases, so they are good
candidates for an estimation of the Rab5 GAP. From the measured values of kcat, KM we get a
catalytic efficiency of the order of 104M¡1s¡1, further confirmed by another reference value [25].
The measurements of kcat and KM for the Rab3 GAP lead to a bit smaller catalytic efficiency
but still of the same order of magnitude [10]. Finally, higher GAP activities are measured for the
Shark GAP and the Sus GAP with active Rab11 as substrate, reaching a catalytic efficiency of
105M¡1s¡1.

Similarly to the GEF case, we can't modify the catalytic efficiency kcat/KM because of our
parametrization of the inactivation catalytic rate (5.16) described in Section 5.1. It's a more
complex expression compared to the GEF catalytic rate, but we still have a direct proportionality
between kcat and KM, even if in this case it is not constant. Indeed, by modifying the GAP
concentration we can tune this ratio, although not changing the catalytic ratio �¡, as described
in the introduction of Chapter 6.

Enzyme Substrate Measured Parameter Value Reference
Rabex5(wt) Rab5A(wt) kcat/KM 9 � 105M¡1s¡1 [4]
Rabex-5(D313A/Y345A) Rab5A(wt) kcat/KM 7.7 � 103M¡1s¡1 [4]
Rabex-5(wt) Rab5(wt) kcat/KM 2.5 � 104M¡1s¡1 [22]
Rabex-5(full length) Rab5(wt) kcat 0.007s¡1 [11]
Rabex-5(full length) Rab5(wt) KM 270 nM [11]
Rabex5(HB-Vps9 tandem) Rab5(wt) kcat >0.1s¡1 [11]
Rabex5(HB-Vps9 tandem) Rab5(wt) KM >2�M [11]

Table 5.4. GEF catalytic activity measurements. The values are taken from the references on the right,
the exact location within the article is specified here: [4], paragraph �Impaired Rabex-5 GEF activity affects
targeting of Rab5A�, Results Section; [22], paragraph �Distinct roles for switch II residues in Rab activation�,
Results Section; [11], Discussion Section.

Enzyme Substrate Measured Parameter Value Reference
Gyp7-His6 Ypt7p KM 400�M [1]
Gyp7-His6 Ypt7p kcat 7.5s¡1 [1]
Gyp1-46p Ypt51p KM 143�M [1]
Gyp1-46p Ypt51p kcat 3.9s¡1 [1]
Rab3-GAP Rab3 KM 75�M [10]
Rab3-GAP Rab3 kcat 1s¡1 [10]
Gyp7 Ypt7 kcat/KM 1.0� 1.5 � 104M¡1s¡1 [25]
Shark GAP Rab11a�GTP kcat/KM 1.19 � 105M¡1s¡1 [7]
Sus GAP Rab11a�GTP kcat/KM 1.86 � 105M¡1s¡1 [7]

Table 5.5. GAP catalytic activity measurements. The values are taken from the references on the right,
the exact location within the article is specified here: [1], Table III: �Comparison of the catalytic properties
of several GTPase activating proteins�; [10], paragraph �Catalytic Properties of Rab3-GAP�, Results Section;
[25], estimated from Figure 7(C) in the list of figures after the References Section; [7], paragraph �GAP
assay of shark GAP and Sus GAP�, Results Section.
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Chapter 6

Parameter dependence

In the previous chapters, we illustrated the theoretical framework, assumptions, and goals of our
study. In this chapter, we present the results of several simulations, performed with different initial
conditions and parameter values, to analyze the contribution of the various reactants to domain
formation and to discuss the possible biological and physical implications of these findings.

In particular, we focus on how variations in the concentration of key components affect Rab5
activation and the emergence of phase-separated domains.

One important observation concerns the catalytic activity of the inactivation process. Our
parametrization of the reaction rates (5.18) relates the catalytic rate kc

¡= k8 to the Michaelis-
Menten constant KM and to the total concentration of the GAP through equation (5.16), namely:

k8= k3
B (Kd

GAP+ [b:s:])KMh
GAP

tot
i
[b:s:]

If we substitute this into the expression of �¡:

�¡= k8 � [GAPcyto]
Kd

GAP w k3
BKM

[b:s:]
(6.1)

where we approximate [GAPcyto]� [GAPtot] because we assume that most GAP enzymes are in
the cytosol, which is confirmed by our simulations (see Figure 4.4(B)). Moreover, we observe that
Kd

GAP� [b:s:], indeed Kd
GAP= k3

k6
= 2782.6nM and [b:s:]=8.48nM in all the simulations performed

here.

Hence, the catalytic ratio of the GAP is determined by the reference rate k3B. The fact that
increasing the GAP concentration does not increase the catalytic activity confirms that our param-
etrization succesfully reproduces the dynamics described by Bezeljak et al. [3]. From equation (6.1),
we see that �¡ can be tuned by varying our free parameter KM, but it is important to note that
this does not result in a different catalytic efficiency. In fact, the catalytic efficiency is generally
measured through the parameter kcat/KM, but in our case kcat/KM, meaning that the ratio
remains constant.

In conclusion, we can modify the balance between the two catalytic processes only by acting
on the GEF activity, which is not constrained by these limitations. This is due to the fact that we
want to respect the reference's experimental set-up, but since they did not explicitly consider the
GAP, we have to introduce it and meanwhile respect the catalytic power imposed by k3B.

The discussion above is important because the �� coefficients determine the value of the
diffusion coefficient D through the relation (5.24) and the fact that we can't vary significantly �¡

(as modifying KM does not affect the catalytic efficiency) results in a limitation of the accessible
values that D can assume.
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Figure 5.5 shows a plot of this relation for w= 0.31�m;KM = 200nM and c= 33.92nM, corre-
sponding to the concentrations considered in Table 6.1. From this plot one can immediately notice
that to get larger orders of magnitudes in the diffusion coefficient D one has to increase the value of
the �� coefficients, but we know that we can only act on the value of �+ coefficient. In conclusion,
we can only increase the GEF concentration to obtain higher values of D. In the situation described
in Table 6.1 we see that Ds10¡4 �m2/s and, although higher GEF concentrations would allow for
slightly larger diffusivities, this is not enough to reach values on the order of 10¡3� 10¡2 �m2/s
without compromising phase separation.

In fact, if we only increase the catalytic activity of the activation process, at some point there
will be an excessive unbalance between the two catalytic processes, leading the system out of the
bistability region. This means that we cannot explore the full estimated range of the diffusion
coefficients (see Section 5.4) without losing the theoretical consistency provided by equation (5.24).
For these reasons, in all simulations described in this chapter, we will consider Ds 10¡4 �m2/s.
This is not a problem, as we expect D to be very small on early endosomal membranes (see the
discussion of Section 5.4).

6.1 Phase separation

The main objective of this thesis is to show that our computational model can exhibit phase
separation between the two conformational states of Rab5, i.e., the domain formation of one species
in a �sea� of the other. In particular, as described at the beginning of Chapter 5, we want to show
that, by considering the reaction scheme proposed by Bezeljak et al.(2020) [3] and the reaction
rates that they employed, we are able to obtain domain formation through our computational
framework. This would represent an extension of their work, since they only investigated the
collective activation of Rab5 on membranes and the associated stochasticity.

Furthermore, since they did not take into account the spatial component in their study, we also
refer to the work of Cezanne et al.(2020) [6] to estimate the interface width w of a Rab5 domain
formed in a reconstituted system. In this way, we can impose some constraints on the diffusion
coefficient D, based on our theoretical relationship between D and w (see Section 5.3).

Here, we propose a set of parameters that leads to phase separation:

Parameter Value
[Rab5:GDP] 16.96nM
[Rab5:GTP] 16.96nM

[b:s:] 8.48nM
[GEF(c)] 100nM
[GAP(c)] 50nM

D 2.15 � 10¡4 �m2/s
[GDI] 300nM
rendo 5�m
rcell 17�m

Parameter Value
k1 0.0675s¡1

k2 0.08s¡1

k3 0.08s¡1

k4 0.0029s¡1nM¡1

k5 0.00002875 s¡1nM¡1

k6 0.00002875 s¡1nM¡1

k7 20s¡1

k8 0.69s¡1

KM 200nM

Table 6.1. (left) Reactant concentrations, diffusion coefficients and radius employed in this simulation.
(right) Reaction rates and Michaelis-Menten constants (equal for both catalytic reactions) used for this
simulation. The GEF(c) was called RR in Section 5.1, but we use it to indicate the full complex as well.

Each site of the membrane lattice is populated with 20 Rab5:GDP molecules, 20 Rab5:GTP
molecules, and 10 (free) binding sites. One could argue that this represents a low number of binding
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sites with respect to the other species concentrations, but the simulation results indicate that the
number of binding sites is not a limiting factor. The reason is that Rab5 can dissociate from the
membrane, thus creating new binding sites.

The reaction rates are obtained according to the parametrization (5.18) discussed in Section 5.1.
For example, the value of k1 is determined by the GDI concentration, which is not an explicit
reactant in our scheme. The Michaelis-Menten constantKM sets the value of the two catalytic rates
(k7;k8). Since it is not considered in either of our reference papers, it's a free parameter for us. Given
the fact that we cannot reproduce a catalytic efficiency comparable to those found in the literature
for the reasons described in Section 5.5, we set it to the value KM= 200nM. This value represents
a compromise between the fact that we assume KM� c, where c=[Rab5:GDP]+ [Rab5:GTP], in
both our parametrization and to obtain the relation (3.21) that we used to constrain the values
of the diffusivity, and the fact that we don't want to take a too much high �=KM /c because it
would result in even smaller values of D.

Moreover, by computing the �� coefficients we determine the value of the diffusion coefficient
D through the relation (5.24) for the membrane-bound species. We chose the central value of the
estimated interface width w= 0.31�m to compute D (see Section 5.3). In order to be consistent
with this procedure, we have to set rendo=5�m, corresponding to the radius of the MCBs used
by Cezanne et al. in their experiments. Finally, the cell radius is obtained through the procedure
described in Section 5.2, i.e., rcell= rendo+ D � �

p
where D=10�m2/s and � =k1

¡1, since k1 is the
smallest dissociation rate.

The parameter values reported in Table 6.1 lead to the following temporal evolution:

(A) 5 min. (B) 15 min. (C) 30 min.

(D) 45 min. (E) 60 min.

Figure 6.1. Pictures of the system at different times of its evolution. The order parameter visualized here
is the difference between active and inactive populations, i.e., Rab5:GTP¡Rab5:GDP. The color scale
should be interpreted according to the individual colorbar shown for each frame (see Section 4.3 for further
details on the output visualization, and also Appendix A for an insight of the algorithm).
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In Figure 6.1(E) we can easily identify a domain enriched in Rab5:GDP (in dark blue), sur-
rounded by Rab5:GTP proteins, corresponding to the steady state reached after approximately
1 hour of simulation. The dynamics leading to the formation of this single domain are widely
described in the literature: the beginning of the process is characterized by the nucleation of a
germ of the more stable phase (according to the reaction kinetics used); then, this germ can grow,
competing with other growing germs (coarsening), and eventually fuses with other domains into a
larger and more stable domain (coalescence) [14].

The fact that the majority of Rab5 proteins on the membrane are active (see Figure 4.4(B))
is probably due to the fact that the reaction rates employed by Bezeljak et al. were specifically
designed to favor the activation process, since their aim was to observe the collective activation of
Rab5 on membranes. However, we show that the chosen parameter set corresponds to a region of
bistability in the phase diagram, according to our model.

6.2 The role of GDI in domain formation

Taking the parameter set presented in Table 6.1 as a reference, we want to investigate the effect
of GDI on the process of domain formation. To do this, we vary its concentration over a range of
values and analyze the simulation results.

It is important to recall that GDI concentration modulates the parametrization of the dissoci-
ation rate of Rab5:GDP from the membrane, since it is not treated as an explicit reactant in our
model (see Section 5.1). Hence, we must update the rate constant accordingly in each simulation.
Moreover, we also estimate the effective cytosolic volume by means of the expected timescale for
the dissociation process to take place, following the approach described in detail in Section 5.2.
This leads to the expression:

rcell= rendo+ D � �
p

where � = kdiss
¡1 and kdiss is the slowest dissociation rate in our system.

In the reference parameter set, the smallest rate is k1, i.e. the dissociation rate parametrized
by GDI, while the other two are both set to 0.08s¡1. This means that when we consider GDI
concentrations such that k1 becomes larger than the other two, we have to use those rates to
set rcell and, as a consequence, the effective volume. However, since the radius obtained from
kdiss=0.08s¡1 is rcell=16�m, very similar to the one set by k1 in the reference case, we can ignore
this modification, especially because we prefer to overestimate the effective volume, as explained
in Section 5.2.

When instead we consider smaller GDI concentrations, which result in an even smaller k1, we
should update the effective volume through the described procedure. However, we decide to keep
rcell= 17�m for all the simulations for two reasons: because our algorithm runs very slowly with
large volumes and because considering such a large volume when the GDI concentration is small
appears to be an artifact of our parametrization, rather than a biologically realistic effect. In fact,
we do not expect that a small concentration of GDI would result in such a large expected time for
the association/dissociation process to and from the membrane. Furthermore, it's reasonable to
work with a volume set by dissociation rates that are comparable to each other.

In summary, all simulations share the same parameter set presented in Table 6.1, except for
k1, which varies as a function of GDI concentration according to our parametrization:

k1= k2
B � [GDI]
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The concentrations considered for GDI range from 10nM to 500 mM and the simulation results,
at steady state, are shown in Figure 6.2. We observe that when GDI concentration is not enough,
the system remains homogeneous and fails to break symmetry (Figure 6.2(A)). Above a certain
threshold, phase separation is observed, further confirming the results from Cezanne et al. [6], who
demonstrated that GDI is necessary for domain formation (Figure 6.4).

Its main role is to guarantee an efficient flux between cytosolic and membrane-bound Rab5,
allowing for continuous delivery and extraction of inactive Rab5 to and from the membrane. This
dynamic exchange is essential for domain formation, as it supports the spatial redistribution of
Rab5 on membrane.

Similarly, the system does not exhibit phase separation even for large concentrations, thus
providing evidence for a non-monotonic dependence on GDI concentration: not only the system
does not exhibit phase separation if there is not enough GDI, the symmetry breaking is also
suppressed by an excess of GDI (Figure 6.2(I-L)). This behavior further supports the importance
of a proper balance between the constitutent elements of the system for the emergence of this kind
of phenomena.

A) [GDI] = 10nM B) [GDI] = 25nM C) [GDI] = 50nM D) [GDI] = 100nM

E) [GDI] = 300nM F) [GDI] = 500nM G) [GDI] = 1�M H) [GDI] = 10�M

I) [GDI] = 25�M J) [GDI] = 50�M K) [GDI] = 250�M L) [GDI] = 500�M

Figure 6.2. The images shown in this figure represent the system at steady state, for different GDI
concentrations. The intensity of the order parameter ([Rab5:GTP]¡ [Rab5:GDP]) is shown, representing
one of our two options for visualization, as described in Section 4.3. The time needed to reach steady state is
not always the same; we waited until it was reached and then took a snapshot of the system. Here we report
the times corresponding to the depicted states of the system, for each simulation: A) 20 min; B) 130 min;
C) 135min; D) 60min; E) 60min; F) 75min; G) 45min; H) 30min; I) 40min; J) 15min; K) 5min; L) 5min.
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We also report the simulation results by showing the total amount of Rab5 on the membrane
at steady state, instead of the order parameter. These are shown in Figure 6.3 and are very similar
to those depicted in Figure 6.2. The differences in colour in the images are due to the choice of the
visualized parameter, but as we can see, the Rab5 distribution on the membrane is qualitatively
the same. We use these images to compare with the experimental observations by Cezanne et al.,
reported in Figure 6.4, since they label all Rab5 molecules, both active and inactive, with GFP.

In summary, despite the underlying simplifications of our model, in which GDI is an implicit
reactant, our simulations succeed in reproducing the essential features experimentally observed. We
confirm not only that GDI is necessary for domain formation, but also that there exists an optimal
range of its concentration in which the system is able to exhibit these patterns. The emergence of
domains requires a balance between membrane recruitment and extraction.

A) [GDI] = 10nM B) [GDI] = 25nM C) [GDI] = 50nM D) [GDI] = 100nM

E) [GDI] = 300nM F) [GDI] = 500nM G) [GDI] = 1�M H) [GDI] = 10�M

I) [GDI] = 25�M J) [GDI] = 50�M K) [GDI] = 250�M L) [GDI] = 500�M

Figure 6.3. Steady-states of the system for different GDI concentrations. The total amount of Rab5 for
each site is displayed here. The timescales needed to reach steady-states are reported in Figure 6.2.
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Figure 6.4. The images are taken from the paper of Cezanne et al. [6], Figure 2 C),D),E),F). They
reconstituted Rab5 domain formation in vitro by incubating EE MCBs for 15 min at 23�C with 10 nM
GFP-Rab5/GDI, 100 nM Rabex5/Rabaptin5, 1 mM GTP and D) 0 nM GDI; E) 100 nM GDI; F) 500 nM
GDI; C) 1 mM GDI. The experiments showed that GDI is necessary for domain formation.

6.3 The dependence on GEF concentration

Cezanne et al. also demonstrated that the Rabex5/Rabaptin5 complex is essential for Rab5 domain
formation in vitro [6]. Figure 6.7 shows their experimental results: they observed that the emer-
gence of Rab5 patterns requires the GEF/effector complex in a concentration-dependent manner.
Furthermore, as already mentioned in Section 2.3, they also proved that the full complex, and not
one of its components, is necessary for domain formation.

In this section we show the results of simulations performed with varying GEF concentrations
and compare them with the experimental results discussed above. As with the analysis of the role
of GDI, the reference will be the parameter set in Table 6.1. For clarity, recall that the term 'GEF'
refers to the full GEF/effector complex Rabex5/Rabaptin5, as illustrated in Section 5.1.

To do this, we recall that the GEF concentration is involved in the definition of the catalytic
ratio �+, which sets the value of the membrane diffusivity D through equation (5.24), as described
in detail in Section 5.3. This means that we have to update the value of D in each simulation. As
already fully explained at the beginning of Section 6, we cannot work with orders of magnitude
higher than 10¡4 �m2/s for D, because of limitations in the tunability of the catalytic ratio
associated with the inactivating process, i.e., �¡.

The simulation results are presented in Figure 6.5. The GEF concentrations employed for
the simulations range from 1 to 350 nM. Similarly to GDI, a non-monotonic dependence on
GEF concentration is observed, as the system breaks the symmetry with a sufficient, but not
excessively high, amount of GEF. Indeed, with 1 nM GEF, the inactivating power is completely
dominant and we have zero Rab5:GTP at steady state (Figure 6.5(A)); by slightly increasing the
GEF concentration we observe a finite population of active Rab5 at equilibrium, but the system
cannot fully develop patterns. At steady state, the percentage associated with the first twenty
spherical harmonics remains around 48% without increasing further, indicating that some spatial
organization has been reached (Figure 6.5(B)). With 10 nM, however, we observe phase separation,
and 80% of the total weight is associated with the first twenty spherical harmonics of the spatial
organization (Figure 6.5(C)). Symmetry breaking occurs at GEF concentrations between 10 nM
and 300 nM (Figure 6.5(C-G)) but is no longer observed with 350 nM (Figure 6.5(H)).
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A) [GEF] = 1nM B) [GEF] = 4nM C) [GEF] = 10nM D) [GEF] = 50nM

E) [GEF] = 100nM F) [GEF] = 200nM G) [GEF] = 300nM H) [GEF] = 350nM

Figure 6.5. The simulation results are visualized on a sphere, as described in Section 4.3. Here, we report
the steady states of the simulations run at several different GEF concentrations. In these simulations, we
visualize the order parameter [Rab5:GTP]¡ [Rab5:GDP]. The snapshots of the system were taken at the
following times: A) 10 min; B) 100 min; C) 80 min; D) 60 min; E) 60 min; F) 60 min; G) 130 min; H) 15
min. We waited until the system reached the steady state; therefore, these times are good indicators of the
timescale required for the system to reach equilibrium.

We also report the values of the diffusion coefficients used in the simulations, which are determined
by the �+ coefficients, according to equation (5.24): A) D=6 � 10¡6 �m2/s; B) D= 1.2 � 10¡5 �m2/s; C)
D= 2.5 � 10¡5 �m2/s; D) D= 1.09 � 10¡4 �m2/s; E) D= 2.15 � 10¡4 �m2/s; F) D= 4.26 � 10¡4 �m2/s; G)
D= 6.37 � 10¡4 �m2/s; H) D= 7.43 � 10¡4 �m2/s.

The same simulation results are visualized using the total amount of Rab5 at each site (see
Figure 6.6). As in the GDI case, the images are very similar to those generated by visualizing the
order parameter at each site. However, they are important because we still use the work by Cezanne
et al. as a reference and, as already said in the previous section, they track the fluorescence intensity
of the total Rab5 density, since all Rab5 molecules are GFP-labeled. By looking at Figure 6.7,
we see that our results confirm the experimental results, i.e. the complex Rabex5/Rabaptin5 is
essential for domain formation and the phenomenon depends on GEF concentration.

Furthermore, as outlined above, we also observe that the system does not exhibit phase sepa-
ration when the GEF concentration is too large. This further confirms the importance of a proper
balance between the system components for the emergence of such phenomena. In particular, in
this case, it is a finely tuned interplay between activation and inactivation rates that is crucial for
domain formation.
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A) [GEF] = 1nM B) [GEF] = 4nM C) [GEF] = 10nM D) [GEF] = 50nM

E) [GEF] = 100nM F) [GEF] = 200nM G) [GEF] = 300nM H) [GEF] = 350nM

Figure 6.6. Steady-state solutions for different GEF concentrations. In this Figure we visualize the total
amount of Rab5 for each site, regardless of its activation state. The considered times and diffusion coefficients
for each simulation correspond to those in Figure 6.5.

Figure 6.7. The images are taken from the paper of Cezanne et al. [6], Figure 3 A),B),C),D). They show
that domain formation depends on concentration of Rabex5/Rabaptin5 and that the complex is essential for
the process. As for GDI results, they incubated EEMCBs for 15 min at 23�C with 10 nMGFP-Rab5/GDI,
100 nM Rabex5/Rabaptin5 (RR), 1 mMGTP and A) 0 nM RR; B) 50 nM RR; C) 100 nM RR; D) 500 nM
RR.
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Chapter 7

Conclusions

In this thesis, we investigated the mechanisms underlying domain formation on cell membranes, a
complex process relevant to self-organization and intracellular signaling, having several analogies
with phase separation. To this aim, we adopted a lattice-gas model to simulate reaction-diffusion
dynamics on a spherical membrane in contact with a cytosolic protein reservoir. This approach
allowed us to study the conditions under which spatiotemporal patterns of Rab5 emerge and are
sustained.

Our simulations revealed that within a specific range of parameters, the system spontaneously
breaks symmetry and exhibits stable domains, in which one conformational state of Rab5 (either
active or inactive) accumulates in a background dominated by the opposite state. These domains
arise through a combination of positive feedback loops, diffusion on the membrane and continous
exchange with the cytosol. Importantly, we also observed that the phenomenon occurs over a broad
range of GEF and GDI concentrations, thus showing that it is robust to fluctuations.

An important aspect of this work is that both the reaction scheme and the associated rates
were derived from Bezeljak et al. [3] through a systematic parametrization. This approach ensures
that our simulation results reflect biologically plausible regimes, thereby giving credibility to the
observed results. Furthermore, we provide a potential extension of their findings by obtaining
domain formation starting from their reaction rates. While their study focused on the collective
activation of Rab5 on the membrane without considering spatial distribution, we show that domain
formation can be obtained by including the contribution of diffusivity in their biochemical network.

To incorporate diffusion in a biologically meaningful way, we used the experimental observations
from Cezanne et al. [6] as a reference to estimate the typical interface width of a Rab5 domain. From
this, we derived a range of values for the diffusion coefficient through a relation obtained within
our analytical model. Beyond parameter estimation, we used the same reference to qualitatively
compare our simulation results with their fluorescence microscopy images, focusing in particular
on the dependence of the phenomenon on the concentration of some of its components, such as
GDI and GEF. Consistently with their observations, our model shows that the formation of Rab5
domains emerge beyond a certain threshold concentration of these regulators. Furthermore, it
also predicts that domain formation is suppressed at very high concentrations, revealing a non-
monotonic behavior.

One limitation of our work is that, due to constraints imposed by our parametrization, some
parameters such as the catalytic ratio �¡ of the inactivation process, are not freely tunable, as their
defining rates are interdependent. As a result, we cannot explore the behavior of the system for
high diffusivity without losing theoretical consistency. Moreover, largeD values lead to significantly
slower simulations, so that we could not investigate the system in the regime of high diffusivity
even if we relax our theoretical constraints.

The minimal nature of our model reveals that complex spatial organization can arise from fun-
damental reaction-diffusion principles. Importantly, this approach can be extended to study other
self-organizing systems beyond Rab5, highlighting the universality of the underlying mechanism.
The simulation algorithm is also easily generalizable, making it suitable for studying other systems
exhibiting similar biochemical dynamics.
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Appendix A

Here, we report the details of the algorithm used for the simulations. The following is the main
code, it is written in c and it calls several functions that are defined in other files contained in the
same folder. We report only one of them, the one that saves the state of the system in textual
files, in order not to have such a large Appendix. Moreover, the missing ones are not so essential
to understand what the algorithm does. The most important functions called by the code are
�readreactions� and �printreactions�; their aim is to read an external file containing all the necessary
information of our system and print them on screen.

After the evolution code and the function saving the simulation results, we also show the Jupyter
Notebook code, written using Python language, whose aim is to reproduce the textual informations,
generated by the simulation's algorithm, into 3D images (see Section 4.3).

- Algorithm that performs simulations:

#define END -1000000
#define DELTAT 800
#define TMAX 100000
#define TSTART 0
#define PRINTHIST 1000
#define LMAX 20
#define N_SITES 10242
#define MAX_REACTIONS 35
#define MAX_REACTANTS 20
#define MAX_CHEMICALS 4
#define H 6
#define CREATION 1
#define DESTRUCTION 2
#define ADSORPTION 3
#define DESORPTION 4
#define CATALYSIS 5
#define DIFFUSION 6
#define MUTATION 7
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

extern int *ivector (int imin,int imax);
extern double *dvector (int imin,int imax);
extern int **imatrix (int imin,int imax,int jmin,int jmax);
extern double **dmatrix (int imin,int imax,int jmin,int jmax);
extern FILE *fopenf (char *format,char *mode,...);
extern void error (char *format,...);
extern double Xrandom (void);
extern void winit (int n,int max);
extern void wzero (int i);
extern void wpush (int i,int x,double wnew);
extern void wdelta (int i,int x,double del);
extern int wpop (int i);
extern double wread (int i,int x);
extern int cpuint (void);
extern int cputerm (void);
extern void harmonics (int nx,double **X,int **N,int *S,int lmax,double **alm);
extern void printeps(int **n,int *dim,double count,double t,int nfil);
void readreactions (int *dim, int **dimrR, int *global, int *catalytic, double *kappa,double *Km, int **Kd,
int *incond, int **change, int **fz0, int **z0, int **r,int **R,int **n, double **X, double *r_cell, double
*r_endo);
void printreactions (int *dim, int **dimrR, int *global, int *catalytic, double *kappa,double *Km, int **Kd,
int *incond, int **change, int **fz0, int **z0, int **r,int **R, int **n, double **X, double r_cell, double
r_endo);

int readhex(int **a){
FILE *stream;
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int i,j,b;
if ((stream=fopen("hex.nn.10242","r"))==NULL) {

printf("Can't load file "); printf("hex.nn.10242"); printf("\n"); exit(1);
}
for(j=1;j<N_SITES+1;j++){
for(i=0;i<H;i++){
fscanf(stream,"%d",&b);
a[j][i]=b;
}
}
fclose(stream);
return 0;

}

double weight(int i,int x,int **r,int **n, double *Km,int *global) {
double tmp;
int itmp;
switch( r[i][0] ) {

case DESORPTION: // (1) ! (2) + (3)(cyto)
if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

case ADSORPTION: // (1)(cyto) + (2) ! (3)
if( x == 0 ) return (double)n[0][ r[i][1] ];
else return (double)n[x][ r[i][2] ];
break;

case CATALYSIS: // (1) + (3) ! (2) + (3)
if(global[ itmp=r[i][1] ]==1)

{
if( x == 0 ) return 1.;
else

{
tmp=n[x][itmp];
return n[x][ r[i][3] ]*tmp / (Km[i]+tmp); //M.M

}
}

if(global[ itmp=r[i][1] ]==0)
{

tmp = n[0][ itmp ]/(double)N_SITES;
if( x == 0 ) return tmp;
else return n[x][ r[i][3] ] / (Km[i]+tmp);

}
break;

case DIFFUSION: // (1)(x) ! (1)(y)
if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

case MUTATION: // (1) ! (2)
if( x == 0 ) return 1.;
else return (double)n[x][ r[i][1] ];
break;

default:
printf("Error %d %d\n",r[i][0],i);
break;

}
return 0.;

}

void wsav(int x, int j, double *tmp, int **r, int **n,int **R,double *Km,int *global) {
int l;
for( l=1 ; l <= R[0][j] ; l++ ) tmp[l] = -weight(R[l][j],x,r,n,Km,global);

}

void wmod(int x, int j, double *tmp,int **r,int **n,double *w,int **R,double *Km,int *global) {
int l,m;
for( l=1 ; l <= R[0][j] ; l++ ) {

tmp[l] += weight(m=R[l][j],x,r,n,Km,global);//era tmp[l], uccidere wsav
w[m] += tmp[l];
wdelta(m,x,tmp[l]);
}

}

int main(int argc,char **argv) {

int i,j,l,x,y,m,nx, nr, nR,count,nfil,flag,z,lmax;
int *global, *dim, *ds, *catalytic, **Kd,**dimrR, *incond, **change,**n,**r,**R,**a,**N, **z0, **fz0,**nE,

*count_reactions;
double xtmp,ytmp,ztmp,*tmp,delta,deltat,t,tmax,volume,surface,na,r_cell,r_endo;
double *kappa, *Km, *w,*f,**X,**alm,**xE,**yE,**zE;

64



char filname[40];
FILE *stream,*stream1;

r_cell=0.0;
r_endo=0.0;
count_reactions=ivector(0,MAX_REACTIONS+1);
dim=ivector(0,4);
dimrR=imatrix(0,MAX_REACTIONS+MAX_REACTANTS,0,MAX_CHEMICALS+1);
global=ivector(0,MAX_REACTANTS+1);
catalytic=ivector(0,MAX_REACTIONS+1);
kappa=dvector(0,MAX_REACTIONS+MAX_REACTANTS+1);
Km=dvector(0,MAX_REACTIONS+1);
Kd=imatrix(0,1,0,MAX_REACTANTS+1);
w=dvector(0,MAX_REACTIONS+1);
f=dvector(0,MAX_REACTIONS+1);
incond=ivector(0,MAX_REACTANTS+1);
change=imatrix(0,MAX_REACTIONS,0,MAX_REACTANTS+1);
r=imatrix(0,MAX_REACTIONS+MAX_REACTANTS,0,MAX_CHEMICALS+1);
R=imatrix(0,MAX_REACTIONS+MAX_REACTANTS,0,MAX_REACTANTS+1);
n=imatrix(0,N_SITES+1,0,MAX_REACTANTS+1);
fz0=imatrix(0,MAX_REACTIONS,0,MAX_REACTANTS+1);
z0=imatrix(0,MAX_REACTIONS,0,MAX_REACTANTS+1);
ds=ivector(0,N_SITES+1);
X=dmatrix(0,2,0,N_SITES-1);
N=imatrix(0,5,0,N_SITES-1);
a=imatrix(0,N_SITES+1,0,H);
xE=dmatrix(0,MAX_REACTANTS,0,3*N_SITES);
yE=dmatrix(0,MAX_REACTANTS,0,3*N_SITES);
zE=dmatrix(0,MAX_REACTANTS,0,3*N_SITES);
nE=imatrix(0,MAX_REACTANTS,0,3*N_SITES);
tmp=dvector(0,MAX_REACTIONS+1);
alm=malloc((LMAX+1)*sizeof(double*));
init_random(150000,5);
for (l=0;l<=LMAX;l++) alm[l]=(double*)malloc((2*l+1)*sizeof(double))+l;

nx=N_SITES;

if ((stream=fopenf("hex.centers.%i","r",nx))==NULL) error("Need file 'hex.centers.%i'",nx);
for (x=0;x<nx;x++)
{
for (i=0;i<3;i++) fscanf(stream,"%le",&X[i][x]);

}
fclose(stream);

if ((stream1=fopenf("hex.nn.%i","r",nx))==NULL) error("Need file 'hex.faces.%i'",nx);
for (x=0;x<nx;x++)
{
for (i=0;i<6;i++) fscanf(stream1,"%i",&N[i][x]);

}
fclose(stream1);

readhex(a);

for(i=1;i<19;i++){
for(j=0;j<H;j++){
printf("%6d",a[i][j]);
}
printf("\n");
}

readreactions(dim,dimrR,global,catalytic,kappa,Km,Kd,incond,change,fz0,z0,r,R,n,X,&r_cell,&r_endo);
printreactions(dim,dimrR,global,catalytic,kappa,Km,Kd,incond,change,fz0,z0,r,R,n,X,r_cell,r_endo);

nR=dim[0]+dim[3]-1;
nr=dim[1];
volume=(4.0/3.0)*M_PI*(pow(r_cell,3)-pow(r_endo,3));
surface=4*M_PI*pow(r_endo,2);
na=6.0221;
printf("\nvolume della cellula = %f mm\u00B3\n",volume);
printf("superficie dell'endosoma = %f mm\u00B2\n\n",surface);
printf("\n # of reactions + diffusions nR = %d\n # of reactants nr = %d\n # of sites nx = %d\n\n",nR,nr,nx);
deltat=DELTAT;
tmax=TMAX;
lmax=LMAX;
count=nfil=flag=0;
t=0.;

for( i=1 ; i <= nR ; i++ )
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{
switch( r[i][0] ) {

case DESORPTION: // (1) ! (2) + (3)(cyto)
break;

case ADSORPTION: // (1)(cyto) + (2) ! (3)
kappa[i]/=(.1*volume*na);
break;

case CATALYSIS: // (1) + (3) ! (2) + (3)
Km[i]*=(.1*na*volume/(double)N_SITES);
break;

case DIFFUSION: // (1)(x) ! (1)(y)
kappa[i]/=(sqrt(3)*surface/nx);
break;

case MUTATION: // (1) ! (2)
break;

default:
printf("Error %d %d\n",r[i][0],i);
break;

}
}

winit(nR,nx);

for( i=1 ; i <= nR ; i++) {
wzero(i);
w[i] = 0;
count_reactions[i] = 0;

}

for( i=1 ; i <= nR ; i++ ) {
w[i] = 0;
for( z=1 ; z <= nx ; z++ ) {

xtmp = weight(i,z,r,n,Km,global);
wpush(i,z,xtmp);
w[i] += xtmp;

}
}

while(1) {
f[0]=0;
for( i=1 ; i <= nR ; i++ ) {

f[i] = kappa[i]*w[i]*weight(i,0,r,n,Km,global);
f[0] += f[i];

}
xtmp=f[0]*Xrandom();
i=1;
while( (xtmp -= f[i]) > 0 ) i++;
count_reactions[i] += 1;
x=wpop(i);
switch( r[i][0] ) {

case DESORPTION: // (1) ! (2) + (3)(cyto)
j=r[i][1];

wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]--; n[x][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);

j=r[i][2];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]++; n[x][j]++;
wmod(x,j,tmp,r,n,w,R,Km,global);

j=r[i][3];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]++;
wmod(x,j,tmp,r,n,w,R,Km,global);

break;
case ADSORPTION: // (1)(cyto) + (2) ! (3)
j=r[i][1];

wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);

j=r[i][2];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]--; n[x][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);

j=r[i][3];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]++; n[x][j]++;
wmod(x,j,tmp,r,n,w,R,Km,global);

break;
case CATALYSIS: // (1) + (3) ! (2) + (3)
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j=r[i][1];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]--; n[x][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);
if(n[0][j]<0)
printf("**********************%d %d %f %f\n",j,n[0][j],w[i],weight(i,0,r,n,Km,global));

j=r[i][2];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]++; n[x][j]++;
wmod(x,j,tmp,r,n,w,R,Km,global);

break;
case DIFFUSION: // (1)(x) ! (1)(y)

l=H*Xrandom();
y=a[x][l];
while ( a[x][l] == 0 ){

l=H*Xrandom();
y=a[x][l];

}
j=r[i][1];

wsav(x, j,tmp, r, n,R,Km,global);
n[x][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);
wsav(y, j,tmp, r, n,R,Km,global);
n[y][j]++;
wmod(y,j,tmp,r,n,w,R,Km,global);

break;
case MUTATION: // (1) ! (2)

j=r[i][1];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]--; n[x][j]--;
wmod(x,j,tmp,r,n,w,R,Km,global);

j=r[i][2];
wsav(x, j,tmp, r, n,R,Km,global);
n[0][j]++; n[x][j]++;
wmod(x,j,tmp,r,n,w,R,Km,global);

break;
}
delta=-log(Xrandom())/f[0];
t+=delta;
count++;
if (cputerm()) break;
if (cpuint()) flag=1;
if (flag || t>TSTART+deltat) {

deltat+=DELTAT;
printeps(n,dim,count,t,nfil);
for(x=0;x<nx;x++) ds[x]=n[x+1][2]-n[x+1][1];
harmonics(nx,X,N,ds,lmax,alm);
sprintf(filname,"%05d_harm",nfil); stream=fopen(filname,"a");
fprintf(stream,"%10f ",t);
ztmp=0;
for (l=0;l<=lmax;l++)

{
ytmp=0;
for (m=-l;m<=l;m++)

{
xtmp=(m==0?1:2)*alm[l][m]*alm[l][m]/(4*M_PI);
ytmp+=xtmp;
}
fprintf(stream,"%10f ",ytmp);
ztmp+=ytmp; // sum of the all C_l

}
fprintf(stream,"%10f\n",100*ztmp);
printf("--- %.2f%% weight on first %d harmonic components --- \n",100*ztmp,lmax);
fclose(stream);

flag = 0;
}

}
printf("\nNumero di esecuzioni per ogni reazione:\n");
for (i=1; i <= MAX_REACTIONS; i++) {

printf("Reazione %d: %d volte\n", i, count_reactions[i]);
}
return 0:

}

- Algorithm containing the function printeps called by the above algorithm:
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#define MAXN 10242
#define MAXM 81920

#include <stdio.h>
#include <stdlib.h>
#include "writeeps.h"

void printeps(int **n,int *dim, double count,double t,int nfil)
{
int i,j,ntriangles,m,nr;
int max=MAXN;
int **N;
FILE *strim, *strim1 ;
char name[100], nami[100];

nr=dim[1];

if(count==0) {
sprintf(name,"./State/%05d_Global_State.txt",nfil);
sprintf(nami,"./State/%05d_Detailed_State.txt",nfil);

}
else {

sprintf(name,"./State/%05d_Global_State_%02d:%02d:%02d.txt",
nfil,(int)(t/3600),((int)(t/60.)%60),((int)t)%60);

sprintf(nami,"./State/%05d_Detailed_State_%02d:%02d:%02d.txt",
nfil,(int)(t/3600),((int)(t/60.)%60),((int)t)%60);

}
printf("Writing the state of the system on %s and %s\n",name, nami);

// Check opening file of detailed_state
if ((strim=fopen(nami,"w"))==NULL) {

printf("error opening %s\n",nami);
exit(1);

}
// writing the detailed state
fprintf(strim,"%02d:%02d:%02d\t\n",(int)(t/3600),((int)(t/60.)%60),((int)t)%60);
for(i=1;i<MAXN+1;i++) {

for(j=1;j<nr+1;j++) {
fprintf(strim,"%d\t",n[i][j]);

}
fprintf(strim,"\n");

}
fclose(strim);

// Check opening file of global_state
if ((strim1=fopen(name,"w"))==NULL) {

printf("error opening %s\n",name);
exit(1);

}
// writing the global state
fprintf(strim1,"%02d:%02d:%02d\t\n",(int)(t/3600),((int)(t/60.)%60),((int)t)%60);
for(m=1;m<nr+1;m++) fprintf(strim1,"%d\t",n[0][m]);
fclose(strim1);

}

- Algorithm that produces images from the outputs of the simulation:

import igl
import numpy as np
import matplotlib.pyplot as plt
import pylab as pl
from meshplot import plot, subplot, interact
from mpl_toolkits import mplot3d
import pythreejs
from pythreejs import *
import ipywidgets
from IPython.display import display

path='/home/matteo/Documents/Materiale_Tesi/simula_bindsites/simula_bindsites_MATTE/State/'

from glob import glob
Glob_state_list=glob(path+'*00000_G*.txt*')
Glob_state_list.sort()
Glob_state=np.array(pl.loadtxt(Glob_state_list[0],skiprows=1)) # contains the global initial conditions
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import re

def estrai_tempo(filename):
match = re.search(r'(\d+):(\d+):(\d+)', filename)
if match:

return tuple(map(int, match.groups()))
else:

return (0, 0, 0)

Glob_state_list.sort(key=estrai_tempo)

# Visualization of the global state for many times
# initialize the matrix of reactants R[i,j]=value of the reactant j at time i
R=np.zeros((len(Glob_state_list),len(Glob_state)))
time=np.linspace(1,len(Glob_state_list),num=len(Glob_state_list))
for i in range(len(Glob_state_list)):

Glob_state=np.array(pl.loadtxt(Glob_state_list[i],skiprows=1)) # import the file at time i
for j in range(len(Glob_state)):

R[i,:]= Glob_state # storing the reactants

# List of vertices
V = np.array(pl.loadtxt('hex.vertices.10242'))
# List of faces: face 0 (first row) has the elements in that row as vertices
F = np.array(pl.loadtxt('hex.faces.10242'))
# List of centers
C=np.array(pl.loadtxt('hex.centers.10242'))

F1=np.copy(F.astype('int32')-1)
# Adjust the pentagons
F1[:12,5]=F1[:12,4]

# Function to convert hexagons in triangles
def hexagons_to_triangles(vertices, faces):

triangles = []
for face in faces:

for i in range(1, len(face) - 1):
triangles.append([face[0], face[i], face[i + 1]])

return np.array(triangles)

# Convert the mesh composed by hexagons in a triangular mesh
triangles = hexagons_to_triangles(V, F1)

from glob import glob
Det_state_list=glob(path+'*00000_D*.txt')
Det_state_list.sort()
Det_state_list=Det_state_list[::10] # slicing, I keep an element every 10 of the list
# Order the list based on the extracted time
Det_state_list.sort(key=estrai_tempo)

# VISUALIZATION METHOD n.1

# Order parameter: Rab5:GTP - Rab5:GDP

# Colours composing the colorbar: dark blue ! green/light blue ! yellow
colors = [(0, 0, 0.4), # dark blue

(0.4, 1.0, 0.4), # green/light blue
(1, 1, 0)] # yellow

custom_cmap = LinearSegmentedColormap.from_list("my_cmap", colors)

last_mes = len(Det_state_list)
reactant1 = 1
reactant2 = 2

for i in range(last_mes):
All = np.array(np.loadtxt(Det_state_list[i],skiprows=1)) # import the file at time i
diff = All[:,reactant1-1] - All[:,reactant2-1] # storing the reactant at time i
max_diff = np.max(np.abs(diff))
if max_diff == 0:

normalized_diff = diff
else:

normalized_diff = diff / max_diff

# setting colors for Conf at time i
color = np.zeros(4*diff.shape[0])
color[::4] = normalized_diff
color[1::4] = normalized_diff
color[2::4] = normalized_diff
color[3::4] = normalized_diff
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print("%s" % Det_state_list[i])
canvas = plot(V,triangles,color)

# Creating customized colorbar for each frame
fig, ax = plt.subplots(figsize=(3, 1))
vmin = normalized_diff.min()
vmax = normalized_diff.max()
norm = plt.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(cmap=custom_cmap, norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, cax=ax, orientation='horizontal')
cbar.set_label('Rab5:GTP - Rab5:GDP', fontsize=10)
plt.tight_layout()
plt.show()

# VISUALIZATION METHOD n.2

# Total Rab: Rab5:GTP + Rab5:GDP

# Colours composing the colorbar: dark blue ! green/light blue ! yellow
colors = [(0, 0, 0.4), # dark blue

(0.4, 1.0, 0.4), # green/light blue
(1, 1, 0)] # yellow

custom_cmap = LinearSegmentedColormap.from_list("my_cmap", colors)

last_mes = len(Det_state_list)
reactant1 = 1
reactant2 = 2

for i in range(last_mes):
All = np.array(np.loadtxt(Det_state_list[i],skiprows=1)) # import the file at time i
Rab = All[:,reactant1-1] + All[:,reactant2-1] # storing the reactant at time i
max_Rab = np.max(np.abs(Rab))
if max_Rab == 0:

normalized_Rab = Rab
else:

normalized_Rab = Rab / max_Rab

# setting colors for Conf at time i
color = np.zeros(4*Rab.shape[0])
color[::4] = normalized_Rab
color[1::4] = normalized_Rab
color[2::4] = normalized_Rab
color[3::4] = normalized_Rab

print("%s" % Det_state_list[i])
canvas = plot(V,triangles,color)

# Creating customized colorbar for each frame
fig, ax = plt.subplots(figsize=(3, 1))
vmin = normalized_Rab.min()
vmax = normalized_Rab.max()
norm = plt.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(cmap=custom_cmap, norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, cax=ax, orientation='horizontal')
cbar.set_label('Rab5:GTP + Rab5:GDP', fontsize=10)
plt.tight_layout()
plt.show()

70


	Abstract
	1 Introduction
	2 Small GTPases as regulators of intracellular dynamics: the case of Rab5
	2.1 The role of small GTPases in intracellular communication
	2.2 The switching behavior of small GTPases
	2.3 Positive feedback in the recruitment of active Rab5 to membranes
	2.4 Membrane lipid composition influences Rab5 domain formation

	3 Analytical Model
	3.1 Uniform solutions
	3.2 The study of the non-uniform case
	3.3 Phase propagation in 1D
	3.4 Phase coexistence in 1D

	4 Computational model
	4.1 Dimensional analysis and rate rescaling in discrete space
	4.2 Evolution of the system
	4.3 Visualization

	5 Parameter estimation
	5.1 Reaction scheme
	5.2 Estimation of the effective cytosolic volume
	5.3 Measurements of interface width set constraints on the diffusion coefficient
	5.4 Estimation of the lateral diffusion coefficient for membrane-bound proteins
	5.5 Reference values for the Michaelis-Menten constant

	6 Parameter dependence
	6.1 Phase separation
	6.2 The role of GDI in domain formation
	6.3 The dependence on GEF concentration

	7 Conclusions
	Bibliography
	Appendix A 

