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1 Introduction

1.1 Unsupervised learning and generative models

A foundational problem in machine learning is inferring the statistical properties of a
dataset D = {x}Ni=1. This task, known as unsupervised learning, is the precursor to a va-
riety of objectives, including clustering, dimensionality reduction and data generation.
In this thesis, we will focus on the latter. Our aim is to learn a probability distribu-
tion that approximates the true data distribution p(x) so that we generate new samples
x̃ ∼ p̂(x; θ) whose statistics match those of D. We will start with an unlabeled dataset,
which we will assume to be

xi
i.i.d.∼ p(x), i = 1, . . . ,N

Since in modern machine learning, as well as in biological application, the dimension
of the dataset D is large, making nonparametric estimation mathematically and com-
putationally intractable, we have to assume a parametric structure for the probability
distribution, which we will indicate as:

p(x;θ)

With these assumptions learning the distribution amounts to choosing parameters θ that
maximize the data log-likelihood or minimize the Kullback-Leibler divergence from the
true distribution. The problem of choosing a fitting form for the probability distribution
is extremely complicated and far from being solved, leading to the proposal of many
approaches such as variational autoencoders, energy-based models and generative ad-
versarial networks (GANs).

1.2 Biological sequence design

Proteins and RNA play essential roles in all living systems. Proteins are responsi-
ble for most biological functions, including catalyzing chemical reactions, transporting
molecules, and maintaining cellular structure. RNA, beyond serving as a messenger of
genetic information, is also involved in crucial regulatory processes. A central paradigm
in molecular biology is that sequence determines function, this mapping however is
highly complex and context-dependent and very poorly understood.

Designing novel proteins and RNA molecules—i.e., solving the inverse problem of iden-
tifying sequences that perform a given phenotypic task—is an open challenge. Solv-
ing this problem, known as sequence design, has significant applications in medicine,
biotechnology, and fundamental research. The difficulty lies in the intricate and non-
linear relationship between sequence and biological activity. A common source of data
in this field is the multi-sequence alignment (MSA) of protein domains, linear strings
of amino acids that perform similar functions across different species. Evolution pro-
vides a natural source of functional sequence diversity: over time, nature samples a
wide range of sequences that carry out similar tasks, embedding signatures of evolu-
tionary constraints into sequence variability. Modern sequencing technologies allow us
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4 CHAPTER 1. INTRODUCTION

to access large datasets of homologous sequences, from which statistical patterns can
be extracted to infer properties of the sequence-function relationship.

Due to the cost and difficulty of experimentally characterizing individual biological
functions, machine learning, particularly unsupervised methods, are extensively used
to analyze MSAs. These models aim to uncover underlying biological information with-
out relying on labeled data, making them especially valuable for interpreting sequence
variability.

1.3 Inverse Statistical Physics of Biological Sequences

One of the approaches that has led to notable advancements in the understanding and
in the generation of biological sequences is the use of MSAs of protein families as the
basis for the inference of Boltzmann-like distributions. Approximating an unknown
distribution with a Boltzmann distribution is an assumption which strongly simplifies
the biological reality but allows us to work within a well-defined mathematical frame-
work and has shown very good results [1]. This approach, however, while providing
good results, has some shortcomings, in particular a Boltzmann Machine (BM) learns
a distribution on the visible units (the dataset) and thus cannot be used to generate
sequences with a given function.

Restricted Boltzmann Machines (RBMs) are another generative model rooted in statis-
tical physics that learn a Boltzmann-like distribution through representational learning,
introducing a latent layer to capture complex dependencies among visible units. This
approach enables the model to retain higher-order statistics and has been successfully
applied to RNA sequence design [2].

1.4 Disentangled representations

Many generative model architectures use hidden or latent variables to encode the sta-
tistical relationship between data points. These latent variables learn during training a
way to represent data points and their relationships in the latent space. This representa-
tion is a complex, non-linear function which translates the data points used for training
in activation patterns of these latent variables. The representation encoded in the latent
variables is often complex and distributed, meaning that each attribute of the dataset is
represented among many hidden units, making it impossible to manipulate the gener-
ation of new attribute-specific data points. This property of generative models is very
undesirable, as in principle we would like to control the generation of our sample. In
order to have generative models where a latent variable encodes information about a
specific attribute, one has to "force" the model to learn a disentangled representation of
the features. In a disentangled representation, information about a given attribute of
the data is "concentrated" on a few latent variables, while the remaining latent variables
are uncorrelated with the attribute of interest, as can be seen in Figure 1.1. To pursue
this objective, many approaches have been proposed in literature; these algorithms rely
on an adversarial framework, which is very difficult to tune correctly as it involves a
double maximization-minimization constraint and it’s not easily interpretable[3].
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Figure 1.1: Entangled vs disentangled representations. (Bottom right) A set of high-
dimensional data points is mapped through unsupervised learning onto a latent repre-
sentation (left). Data are colored in purple and orange according to a binary-valued
attribute, e.g., being an odd or even number for MNIST images of handwritten digits.
(Top right): When representations are entangled, the separation of data classes is not
aligned with a single latent direction, when representations are disentangled, one or
few directions in latent space (blue) separate the labeled classes, while other directions
are not correlated with the label (red).

1.5 Our goal

In this report, we will utilize a novel approach proposed in [4], which will be discussed
thoroughly in Section 2. This algorithm, which is a semi-unsupervised method, uses
classified data points to compute constraints that are applied to some of the hidden
units of a Restricted Boltzmann Machine (RBM) in order to obtain a disentangled rep-
resentation. These constraints, which can be of first or second order, effectively render
the latent units on which they are applied uninformative about the attribute of interest.
These constraints, during the usual max-likelihood training, also have the indirect effect
of concentrating information about the given attribute on the few hidden units that are
released. This algorithm, after training, allows easily to sample the RBM to obtain data
points that live in a desired sub-region of data space by tuning the values of the released
units.

In particular in this report our goal is to generalize this algorithm to multi-class at-
tributes, as well as studying the effect of applying a low rank approximation of the
quadratic constraint, effectively reducing the number of total constraints to which the
RBM is subject to. We will benchmark this approach with protein data, in particular fo-
cusing on the Lattice protein model-a simple solvable model that models protein folding-
and the WW domain, a real world domain involved in protein protein interactions that
is known to form clusters.



2 Methods and datasets

2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are an energy-based generative model. They
are bipartite undirected graphical models defined over N visible units v = {v1, . . . , vN}
and M hidden units h = {h1, . . . , hM}, each of which may assume values in a finite dis-
crete alphabet or over a continuous interval, with interactions parameterized by weights
wiµ. In the context of our work, we will always assume that each hidden unit takes val-
ues h = {0, 1}, whereas each visible unit can take on one of the L = 20 amino acids plus
the gap symbol, that we represent as a one-hot encoded vector. An RBM defines a joint
Boltzmann-like probability over the visible and hidden units as:

p(v,h) =
1

Z
e−E(v,h)

Where Z is a normalization constant and E(v,h) can be seen as an energy function
defined as:

E(v,h) = −ΣN
i=1gi(vi)− ΣM

µ=1θµhµ − ΣN
i=1Σ

M
µ=1wiµ(vi)hµ

The goal of an RBM is to reproduce the statistical properties of the dataset on which it’s
trained. To do so it must find the set of parameters {gi}Ni=1, {θµ}Mµ=1, {wiµ}N,M

i,µ=1 for which
the Boltzmann measure defined above is the closest to the empirical distribution. This
occurs during training, where one maximizes the likelihood over the dataset. Maximiz-
ing the likelihood involves computing the partition function, which requires summing
over an exponentially large configuration space and is thus computationally hard [5].
To overcome this, approximate methods based on Gibbs sampling are employed.

In this report, the training is performed using Persistent Contrastive Divergence (PCD)
[6], an algorithm that estimates the model distribution by maintaining a set of persis-
tent Markov chains across updates rather than initializing from the data at each step,
thereby improving sampling efficiency and convergence stability.

2.2 Non-adversarial constrained training

The central idea of the algorithm proposed in [4] is to concentrate information about
a specific attribute into a small subset of hidden units of the RBM, by constraining
the remaining units to be uninformative about that attribute. The original procedure
requires the attribute to be binary. In this case, one would ideally impose that the
mutual information (MI) between the attribute and the hidden unit activations is zero.
However, computing MI is difficult in practice, so one instead enforces the vanishing of
correlations up to various orders.
By defining u(v) as the label associated to a visible configuration v, the vanishing of
first-order correlations leads to:

N∑
i=1

q
(1)
i wiµ = 0, µ ∈ constrained units q

(1)
i = ⟨u(v) vi⟩D − ⟨u(v)⟩D⟨vi⟩D (2.1)
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Similarly, the second-order constraint reads:

N∑
i,j=1

q
(2)
ij wiµwjν = 0, µ, ν ∈ constrained units q

(2)
ij = ⟨u(v) vivj⟩D − ⟨u(v)⟩D⟨vivj⟩D

(2.2)
This constraint is computationally heavy, as it introduces N2 × L2 equations for each
weight. To mitigate this, we adopt a low-rank approximation of the second-order ma-
trix q(2), justified by the fact that only a few directions in the covariance space carry
meaningful class-related information. Empirically, most directions are compatible with
noise and have eigenvalues comparable to a null model based on random amino acid
arrangements.
In practice in this report, we will approximate q(2) using its biggest and smallest eigen-
vectors:

q(2) ≈ λ+q+q
⊤
+ − λ−q−q

⊤
−,

with λ± > 0 and q± ∈ RN . The constraint W⊤q(2)W = 0 then implies that the weights
must lie in one of two orthogonal subspaces:

w⊤
µ

(√
λ+q+ ±

√
λ−q−

)
= 0, ∀µ ∈ constrained units

The RBM makes the choice of which subspace to inhabit during training by maximizing
the likelihood.

During training, the first-order constraint is enforced by projecting the weights {wiµ}N,M
i,µ=1

after each step of likelihood maximization, while the second-order constraint is imple-
mented as a strong penalty in the loss function. The first-order constraint implies that
a linear classifier trained on the constrained hidden unit activations cannot recover
the labels; under the second-order constraint, a quadratic classifier fails as well. Only
more complex models, such as deep neural networks (DNNs), can partially recover label
information, confirming that the constrained units carry negligible class-relevant infor-
mation.

This algorithm also enables controlled manipulation of samples. One can sample a
hidden configuration from a visible input, flip the value of the released hidden unit,
and resample to obtain a configuration associated with the opposite class. To ensure
the output reflects the equilibrium distribution, additional equilibration steps can be
performed while keeping the flipped value fixed. Another strength of this method lies
in the analytical tractability of RBMs, which allows the utilization of existing theoreti-
cal tools to study training dynamics and interpret model behavior, allowing for a better
understanding of the theoretical limitations of this approach in the case of multiple and
closely related attributes.

2.3 Generalization to Multi-Class Labels

We are interested in extending the algorithm proposed in Equation 2.1 to a dataset
composed of an arbitrary number of clusters K. To this end, we have developed a new
Julia package that trains a restricted Boltzmann machine (RBM) with M − 1 binary hid-
den units and one Potts unit whose alphabet has K symbols. Our key idea—naturally
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generalizing the two-cluster procedure—is to enforce that the weight vectors of all bi-
nary hidden units remain perpendicular to the hyperplane spanned by the K cluster
centers. In practice, this orthogonality constraint causes the Potts unit to learn the data
distribution projected onto that hyperplane, and, provided the clusters are sufficiently
well separated and represented, each symbol of the Potts unit becomes unambiguously
associated with one of the K classes.
To formalize this disentanglement in a multi-class setting, we introduce for each data
point a one-hot label vector

u ∈ {0, 1}K ,
where ud = 1 if and only if the example belongs to class d. We then impose the first-
order vanishing correlation constraint〈

ud ϕ(I)
〉
D

−
〈
ud

〉
D

〈
ϕ(I)

〉
D

= 0, d = 1, . . . , K, (2.3)

where I = W⊤v denotes the vector of inputs to the hidden layer and ϕ(·) is a (possibly
nonlinear) feature map. Equation 2.3 ensures that, in expectation over the empirical
data distribution D, no component of the hidden representation in the feature space
ϕ(I) linearly correlates with any class label.
In the special case of a linear feature map, ϕ(I) = I, the constraint simplifies to the
orthogonality condition〈

ud I
〉
D

−
〈
ud

〉
D

〈
I
〉
D

= 0, d = 1, . . . , K. (2.4)

Together, these constraints guarantee that no linear classifier—or, more generally, no
classifier acting on the feature space ϕ(I)—can recover the class label from the con-
strained hidden activations, thus achieving the desired disentanglement across K classes.

2.4 Lattice Proteins

In this report to benchmark the performance of the algorithm in Section 2.2 in appli-
cation to protein sequences we will use the Lattice Proteins (LP) model. In this model
L = 27 amino acids are arranged on a 1D backbone structure, occupying the sites of a
3× 3× 3 cubic lattice in 1 out of the N = 103, 406 possible structures, characterized by
a contact map c. These amino acids interact with their nearest neighbors on the struc-
ture (but not on the backbone) through the Miyazawa-Jernigan (MJ) energy matrix.
This model allows us to define the energy of a sequence A of amino acids folded in a
structure S as:

E(A|S) = Σi<jc
(S)
ij E(ai, aj)

From this definition, we can easily define the Boltzmann probability that a sequence A
folds into a given structure S as:

Pnat(S|A) =
e−E(A,S)

Σs∈Se−E(A,s)

This model allows us to test the quality of our generated data points by computing the
Pnat(S|A) of each sequence. These analytical possibilities, together with a non-trivial
data structure, make the LP model a perfect benchmarking dataset [7] [8]. To generate
our dataset we use a Metropolis algorithm, in particular to obtain sequences with an
average Pnat(S|A) = 0.9994 we set the inverse temperature of our Metropolis algorithm
β = 104.
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Figure 2.1: a): Sequence Logo of data of the WW domain used for training the RBM.
We can observe the two highly conserved tryptophans in positions 5 and 28. b) Struc-
ture of the Lattice Protein used in the report. c) Structure of an RBM, highlighted in
red the hidden units that will be subject to the constraint. This structure will learn a
disentangled representation like the one in Figure 1.1.

2.5 WW domain

The WW domain is a small protein module of 30–40 amino acids, named for its two
conserved tryptophan (W) residues. It functions as a versatile interaction platform by
recognizing short proline-rich peptide motifs [9]. The WW domain interacts with a vast
array of peptides, but the binding affinity with these partners is highly variable inside
the domain. To account for this diversity, the WW domain has been classified into
four groups to account for the different binding preferences of each protein [9] to the
various classes of peptides. This cluster structure is the perfect testing ground for our
extension in Equation 2.4. In this report in particular, we will consider a three-cluster
adaptation, uniting classes II and III as presented in [10]. This choice, which is often
done in literature [11], is due to the many similarities between classes II and III, which
have always been known [10], as many sequences in literature are classified as class
II/III. To avoid confusion in this report, we will use Roman numbers to describe the 4
clusters classification as used in literature and Arab numbers to talk about our 3 clusters
division.



3 Results

3.1 Electrostatic modes in Lattice Proteins

It has been reported in literature [8] that a specific structure in the LP model can corre-
spond to two markedly different amino acid configurations. These configurations form
two distinct clusters, which we will refer to as electrostatic modes, as their main differ-
ence lies in the distribution of charged residues: one mode is characterized by positively
charged amino acids (H, K, R) at positions [1, 25] and negatively charged amino acids
(E, D) at positions [2, 16, 18, 20], whereas the other mode exhibits the opposite charge
distribution. This physical situation is particularly suited to benchmark our algorithm
as it allows to create a dataset with a clear cluster structure, as reported in Figure 3.1,
and the distinctive characteristics of the classes are concentrated on a few amino acids.

Figure 3.1: a) b): Lattice protein structure highlighting the two electrostatic modes
of structure A (red: negatively charged amino acids; blue: positively charged). c):
PCA projection of training data with overlaid density histograms along PC1 and PC2,
revealing cluster structure, in red the projection of the vector used in training reported
in d). d): Sequence logo of the first order constraint used in the training of the RBMs.
The size of the letters is proportional to the times that a given amino acid appears in
that position in the vector/sequence.

10
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3.1.1 Dataset

To train our RBM, we generate a dataset of sequences characterized by an average
Pnat(S|A) = 0.994 as explained in Section 2.4, In this dataset the clusterization is evi-
dent Figure 3.1. To obtain the labels needed to compute the first-order constraint for
the training of the RBMs we select out the sequences that belong to one of the two
electrostatic modes and compute the firs- order constraint, which in this case amounts
to the difference of the centroid of the two clusters, as detailed in Equation 2.1. For
a complete explanation, see Appendix 4.2. The first order constraint, as defined in
Section 2.2, is reported in Figure 3.1, showing clearly how the main difference in the
clusters is concentrated in the electrostatic position. For the training, we use the entirety
of the generated dataset.

3.1.2 RBM setup

To benchmark the performance of the algorithm proposed in Section 2.2 we train three
RBMs using the same dataset and architecture, composed of M = 150 binary hidden
units. One RBM was trained with the classic PCD algorithm, another one was trained
with the PCD algorithm and the first-order constraint applied to all but one hidden
unit and the last one was trained with the same algorithm but a first and second order
constraint to all but one released unit, in particular as reported in Chapter 2 we choose
a rank 2 approximation for q(2).

Figure 3.2: We report the Sequence Logo of the weights of the RBM constrained at the
first order after completing training. Left: sequence logo of the released unit. Right: se-
quence logo of a random constrained unit. We can clearly see the resemblance between
the released weight learned by the RBM and Figure 3.1. The constrained weight, on the
other hand, carries no information about the separation between the two clusters and
little information about the variability of each cluster (Note position [1,25] where pos-
itive and negative amino acids vary in the opposite way with respect to the constraint).

3.1.3 Results

After an RBM has converged one can look at the weights wµ, to understand their role in
generating new sequences. In particular we can look at the sequence logo of the weights
of the unconstrained unit to verify if its activation can discriminate the two clusters. We
can see how Figure 3.2 clearly resembles Figure 3.1, this is a first indication that our
model has indeed achieved label concentration, as switching this unit changes the gen-
erated sequence along the electrostatic amino acids. One can also observe how the
other weights-here we report only one on the right of Figure 3.2-is completely uninfor-
mative about the two structures that characterize the dataset. After having observed
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Figure 3.3: Average sequence-space transition after released hidden unit flip: a): Mean
transition after forceful flip of released unit in RBM constrained only at the first order
b): Mean transition after forceful flip of released unit in RBM constrained at first and
second-order. We can observe how the transition on the Left includes almost only tran-
sitions in the electrostatic amino acids. The right image appears to be more "noisy".

the sequence logo of the unconstrained weight as a check, we want now to understand
how the released hidden unit influences the regions sampled by the model and whether,
as it seems from the sequence logo of the weight, the released unit encodes the elec-
trostatic structure’s position, indicating information concentration. To do so we study
the average behavior of the transition induced by flipping the released hidden unit. In
Figure 3.3, we report for each constrained RBM the sequence logo of the vector:

< v⃗ >=
1

|D|
Σi∈D|v⃗bt − v⃗at| (3.1)

where v⃗bt, v⃗at are the one-hot encoded vectors describing the sequence before and after
the forced transition. The choice of the absolute value in this average vector is to avoid
that "opposite" transitions cancels out. By observing Figure 3.3 we can conclude that
the transition of the first order constrained model is cleaner, as the electrostatic amino
acids are almost always changed, while the remaining positions remain unchanged.
The RBM constrained at both orders instead shows a more "noisy" transition. This
is due to the many constraints imposed on the model that impede learning, the only
released unit is not able to fully encode all the information of the dataset. This reduced
expressivity of the model can also be observed by looking at the average Pnat(S|A) of
the generated sequences, which drops from 0.995 of the first order constraint RBM to
0.91. In Appendix 4.2 we report the equivalent transition obtained by flipping a random
weight of the unconstrained RBM as a comparison. The question of how to constrain
the RBM to obtain an expressive yet controllable generative model is a completely open
and non-trivial problem, as it is very dataset and architecture-dependent. We will try to
address the question on this particular example in the following subsections.

3.1.4 Characterizing the transition

An important question is whether changing the released unit leads to completely dif-
ferent sequences or causes only minimal modifications necessary to switch between
clusters, while keeping other features of the sequence unchanged. Having a model that
is able to perform a parsimonious transition would allow us to manipulate single se-
quences and modify one of their function without impeding the other ones. Looking
at the left plot in Figure 3.4, we see that the conserved structure pattern reveals how
the transition mainly affects the electrostatic positions, leaving the rest of the sequence
mostly unchanged.
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The right plot in Figure 3.4 provides further insight into the physical behavior of the
model. It shows that the conditional frequency of change (used as a proxy for con-
ditional probability) reflects information about the contact map: amino acids that are
in physical contact tend to show higher frequency of co-variation. For example, there
is a notable co-variation between positions 3 and 26. The constant yellow columns in
correspondence with the six electrostatic positions indicate that these amino acids tend
to change with high probability, regardless of changes in the other amino acids. This
is another proof of how the released unit’s flip acts mainly on the electrostatic amino
acids, keeping the others relatively unchanged.

To further characterize the transition, we also analyze the Hamming distance, which
counts how many positions differ between two sequences. Specifically, we calculate the
Hamming distance between each sequence and its corresponding version after the tran-
sition. The average distance between sequences from different clusters in the training
dataset is 24.6, while the average distance between a sequence and its post-transition
version is 12.8, in Appendix 4.2 the complete histogram. These results confirm that
the constrained RBM behaves as expected, producing minimal and localized changes
during the transition (while maintaining information about the physical model be-
hind, as shown by the information about the contact map present in the pattern of
co-conservation).

Figure 3.4: Left: We take a large sample of sequences with an average Pnat(S|A) of
0.996 as initial condition and we forcefully flip the released unit. Above the matrix
showing the percentage of transitions in which a couple of positions was not modified
by this transition. In red, we see the pairs corresponding to electrostatic amino acids.
Right: Matrix that shows the probability that a position underwent a change given that
the position on the row has undergone a transition. In red, we highlight the contact
between positions.
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3.1.5 Second order RBM

We have discussed above the difficulty of balancing constraints to train a model which is
controllable yet is able to reproduce the complexity of the dataset. To partially answer
this question, we train a series of RBMs, with the constraint at the first order applied
to all but one hidden unit and the low-rank approximation applied to different sets of
hidden units, starting from all but one released unit. Assessing if a given generative
model is expressive enough is a hard problem, in particular for RBM. On e could com-
pute exactly the likelihood, but this is complex, as it involves computing the partition
function. With Lattice Proteins, we can use the average Pnat(S|A) to assess the quality
of our RBM. To do so, we generate 5000 sequences for each of these RBMs and compare
their statistics:

Figure 3.5: Value of the median Pnat(S|A) of various RBM trained with different num-
bers of released units.The architecture of the RBM is the same, with M = 150 hidden
binary units.

We can see how releasing more hidden units causes an increase in the median Pnat(S|A).

3.1.6 Classifiers on hidden units activations

To conclude our analysis of the RBMs trained on the electrostatic modes dataset, we
assess whether information about the class can be extracted from the hidden unit acti-
vations of the RBM. The activation of a hidden unit is defined as Iµ(v) =

∑N
i=1wiµvi. The

choice to use activations Iµ instead of the values of the latent variables hµ is motivated
by the fact that given a visible configuration v, the hidden variables hµ are stochastic
and conditioned on Iµ. This implied that by the data processing inequality, the mutual
information between the class and Iµ provides an upper bound to that with hµ, justify-
ing the use of activations for analysis. Specifically, we train both a linear classifier and a
neural network on the activations of the constrained hidden units of the RBM subject to
the first-order constraint. Given the nature of the constraint, we expect the linear clas-
sifier to perform poorly, as it cannot capture higher-order statistical dependencies. In
contrast, the neural network is expected to succeed, as it can recover information associ-
ated with higher-order correlations that go beyond first-order statistics. This behavior is
consistent with our observations from dimensionality reduction techniques: while prin-
cipal component analysis (PCA) shows that the two classes have nearly identical mean
positions and similar variances, suggesting no separability at the linear level, a t-SNE
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embedding reveals the emergence of class-specific structure, indicating the presence of
non-linear features in the data, as we can observe in Figure 3.6. As expected, the linear
classifier is completely unable to distinguish class information, performing with a preci-
sion of 55%, comparable with the relative abundance of one class. On the other hand,
as expected, a relatively shallow neural network composed of just one hidden layer of
16 ReLU units performs perfectly on the dataset.

Figure 3.6: Comparison of dimensionality reduction techniques applied to the activa-
tions of the constrained hidden units (first-order constraint). PCA Left: shows signifi-
cant overlap between classes, with similar means and variances, indicating the absence
of linear separability. In contrast, t-SNE Right: reveals emergent structure and class-
specific clustering, suggesting the presence of non-linear features not captured by first-
order statistics.

3.2 WW domain

3.2.1 The dataset

The dataset used to train the RBM is a MSA of WW domains obtained from the PFAM
database (PFAM ID PF00397). The data can be found in [11] and is composed of more
than 60k sequences coming from 3700 different species. In [11], one can find a proce-
dure to train an unconstrained RBM with a dual rectified linear unit (dRELu) potential,
which allows to train an RBM which is able to predict the class (with a linear decision
boundary) of the experimentally validated sequences by looking at the activation of
two hidden units. In the following report, we will use the classification of such RBM as
an additional and independent proof of the quality of the sequences generated by the
constrained RBM trained by us. The constraints have been computed using sequences
that were characterized by experiments [10]. In particular, class 1 is characterized by a
highly conserved Histidine (H) in position 21, together with a Threonine (T) in position
26. Class 2 is characterized by aromatic amino acids (W, Y, F) in position 19 and basic
amino acids (K, R) in site 21. To conclude class 3 is characterized by the absence of the
gap in position 13 and the presence of Arginine (R) in positions 11 and 13 [9], [11].
These characteristics can be observed in the two sequence logos reported in Figure 3.7.
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Figure 3.7: Left:Confusion matrix of the classified sequences in the first RBM trained.
Predicted label is the non-zero element inside the Potts unit configuration. 1 (1,0,0); 2
(0,1,0); 3 (0,0,1). Right: We report the two sequence logo of the vectors q(1)

a , q(1)
b used

as constraints. Constraint one is the vector connecting the center of class 1 and class 2,
Constraint two is the vector connecting the centers of class 2 and 3.

3.2.2 RBM setup

We train an RBM constrained at the first order with 150 constrained hidden units and
1 released Potts unit with M = 3. To compute the two constraints q(1)

a , q(1)
b we use

sequences that are already classified from experiments [10]. As reported in Section 2.5,
we consider a 3-cluster adaptation, meaning that the constraints create a plane in
weight space to which the binary unit weights have to be perpendicular.

3.2.3 WW domain partial results

It is known from literature that class 3 [10] is significantly underrepresented in natural
sequences. Therefore, our first objective is to verify whether the model correctly assigns
a distinct Potts unit symbol to each class in the dataset. This step is important because
our algorithm does not explicitly enforce a one-to-one correspondence between classes
and symbols—i.e., it does not impose information concentration. Instead, the model
learns this mapping through likelihood maximization, which requires that each class has
sufficient representation in the dataset. We can observe in Figure 3.7 that the class with
the fewest elements (class 3) is completely not represented. This is, as mentioned above,
due to the class imbalance of our dataset. To fix this problem, the natural solution is to
develop an augmented dataset, where the data points classified by the classifier RBM
get repeated 5 times to obtain balanced classes. In this way, the augmented data is
composed of roughly 75k sequences, 50% classified as class 1, 33% classified as class 2,
and the remaining belonging to class 3. Another possible option could have been to use
sequences generated by the classifier RBM, filtering them to retain only those belonging
to class 3.
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Figure 3.8: Sequence logo of the unconstrained Potts unit. We can recognize how
the model has learned some important distinctions between classes described in Sec-
tion 3.2.1. In particular we can observe the prominent H in position 21 accompanied
by the T in position 26, as well as the aromatic amino acid in position 19. Other crucial
distinction however were not captured by the model in particular the gap in position
13.

3.2.4 Energy landscape

The confusion matrix illustrating the bijective mapping established by the RBM between
Potts unit symbols and sequence classes is reported in Appendix 4.3. We also report the
weights of the trained RBM, which reflect how the Potts unit learned the distribution in
the plane connecting the centroids Figure 3.8. Having confirmed that the RBM trained
on the augmented dataset successfully learns a bijective mapping, we now turn our at-
tention to analyzing the path followed by sampled sequences after a forced transition.
Specifically, we aim to characterize the trajectories in the input space of the classified
RBM and examine the energetic properties of these sequences.

As an initial step, we investigate the energy landscape associated with the classified
sequences. As shown in Figure 3.9, different clusters are characterized by different typ-
ical energies. This observation provides an additional tool for assessing the quality of
the transitions induced by the model.

3.2.5 Trajectories in classifier RBM

To assess the ability of our model to transition between classes we will now look at
the trajectories of our generated sequences in the space of the two hidden unit used
to classify sequences in the classifier RBM. In Figure 3.10 we can see two trajectory of
different labeled sequences of class 1 being forcefully transformed into a sequence of
class 3 (above) and class 2 (below) by modifying the value of the released unit. We
can observe in the first transition (above) how while the Potts variable of the sequence
correspond to class 3 the RBM [11] classifies it as belonging to class 2 most of the
time. On the right we can see the free energies of the sequences sampled during the
trajectories, by comparing with Figure 3.9 we can see how the transition was able to
shift the energy from the typical energies of class 1 to energies that are well represented
in class 3. Observing the second plot (below) we can see how the transitions from class
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Figure 3.9: Histogram of the energies of the classified sequences. We can observe the
three different classes with their relative typical energies.

1 to class 2 is very well reproduced by our model, in fact the free energy plot suggest
that the sequences have energy typical of class 2 and the RBM classifier agrees with the
value of the Potts unit.

3.2.6 Final results

As in Section 3.1.3, we study transitions induced by forcefully flipping the released unit.
Specifically, we take each classified sequence and change its Potts unit value to enforce a
class switch. To avoid sampling unlikely configurations, we run 5 Gibbs sampling steps
before saving the resulting sequence, for a detailed plot see Appendix 4.3. While this
number is somewhat arbitrary and dataset-dependent, especially since the LP model re-
quired no such “conversion” step, it was chosen based on the typical energy trajectories
observed after transition.

In Figure 3.11, we show the sequence logos of transitions from labeled sequences. Panel
(a) highlights transitions between Classes 1 and 2, with changes at positions 25–27
(Threonine) and position 21 (Histidine), in agreement with the characteristics of Class
1. These transitions closely follow the applied constraint and appear well captured by
the model. In contrast, transitions in panels (b) and (c) show weaker agreement, likely
due to class imbalance in the dataset, which may cause the constraint to represent a
biased center, rather than the true centroid of the natural cluster. Nonetheless, key fea-
tures such as the Class 3-specific gap at position 13, as well as Arginine (R) in position
11 and 13 are preserved [9, 10].

Overall, the results are encouraging given the data limitations. Future improvements
could involve computing constraints utilizing the classifier RBM or incorporating bio-
logical information that is not represented in the dataset.



3.2. WW DOMAIN 19

Figure 3.10: Top: Left: Trajectory of a natural sequence forcefully transitioned from
class 1 to class 3, shown in the space of the two hidden-unit inputs of the classifier
RBM. A discrepancy emerges between the Potts unit value (assigned to class 3, see
Appendix 4.3) and the RBM classification in [11]. Right: The free energies along the
trajectory show values typical of class 3, consistent with Figure 3.9. Bottom: Left:
Trajectory of a class 1 sequence transformed into class 2. Here, the RBM classification
agrees with the released unit. Right: Sequence energies are again characteristic of class
2.
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Figure 3.11: Sequence logo of the average transitions of the labeled sequences. In
panel a) we see that the two transitions closely resembles the vector uniting the center
of the clusters Figure 3.7 (constraint 1). In particular we can see very well the transition
of the three Threonine (T) in positions 25-26-27 as well as the Histidine (H) in position
21. In panel b) we observe the transitions involving class 1 and 3, this transitions are a
bit more noisy, in particular the transition from class 1 to class 3 [Figure 3.7 (constraint
2)]. In panel c) we see transitions of class 2 into class 3 and viceversa, we can observe
the prominent gap in position 13, which is characteristic of class 1 and 2, as well as an
R appearing in position 11 and 13. Note that the the transition in this panel are less
precise due to the under representation of class 3 in both the total dataset (according
to the RBM classifier) and in the labeled dataset.



4 Conclusions

4.1 Results

In this report, we have benchmarked the algorithm presented in [4] on an exactly solv-
able model describing proteins, obtaining non-trivial results which confirm the theoret-
ically expected predictions. We showed how this algorithm allows to train RBM which
concentrates the information about the attribute of interest on one hidden unit, allowing
to easily modify one sequence to be part of one or the other cluster. We characterized
how these transitions are parsimonious, in the sense that during the transition, only
the class-relevant positions vary in the sequence. We explored analytically and com-
putationally the effect of implementing a low-rank approximation of the second-order
constraint, discussing how the number of constraints must be commensurate with the
number of released units.

In the second part of the report, we extended the algorithm in [4] to multiclass at-
tributes. To this end, we developed a publicly available Julia package that implements
the training and sampling procedures of an RBM composed of 1 released Potts unit with
K classes and M hidden binary unit. We investigated the model’s performance on a real-
world protein domain, characterizing the transitions between classes and highlighting
the RBM’s capability to learn the bijective mapping between class and label. We showed
the ability of the constrained RBM to transition from one class to the other by flipping
the released unit. We showed the difficulties of transitioning to classes that are less
represented in the dataset, highlighting the role of dataset structure and labeled data to
compute constraints that are representative of the entire dataset.

4.2 Future Perspectives

In this work, we have benchmarked and generalized to multiclass attributes the algo-
rithm presented in [4]. The results obtained in this report show promising results, and
the natural continuation of this work is the collaboration with an experimental team to
verify the prediction and the sequences generated by the RBM.

The generalization presented in this report is, however only the beginning, as this algo-
rithm applied to RBM can be further extended to broader and more biologically relevant
contexts. A particularly promising direction concerns the ligand-receptor binding prob-
lem, which is a fundamental question in biology. This scenario is characterized by a
family of receptors and a set of ligands that may or may not bind to each receptor. One
is interested in disentangling the attribute associated with the ability or not of a given
sequence to bind to a given receptor. The hope is that, as we saw in Chapter 3, disentan-
gling this attribute could allow us to create new sequences that are specifically designed
to bind to a given ligand while maintaining similarities to the starting sequence. This
problem could be tackled by imposing a second-order soft constraint on the RBM that
is being trained on the family of receptors. The idea is to penalize covariance between
elements of the receptor and of the ligand. Once training has converged, one could com-

21
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bine the hidden units representation of the released units of a given sequence A with
the hidden units representation of the constrained one coming from another sequence B
to obtain a new sequence with the binding partner of A and the biological functions of B.

During this internship, we laid the groundwork for this extension by curating a dataset
composed of proteins belonging to the PDZ domain family. This dataset, which was
developed starting from data gathered by [12], can serve as a basis for future devel-
opments aimed at applying a variation of this disentangling algorithm to the receptor-
ligand problem.

Another interesting direction to build on this project is to explore similar algorithms
that can be applied to other types of generative model architectures. This is an active
area of research, and new algorithms have been proposed in the literature. For example,
disentangled representations have been obtained using encoder-decoder architectures
[13]. A final promising direction is the use of advanced techniques from statistical
mechanics to analytically study the problem of disentangling representations in RBMs.
This raises important questions, such as the "cost" of achieving disentanglement and the
theoretical limits of this approach when applying it to scenarios like multiple attributes
at the same time or correlated attributes.
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Appendix

In this section, we will present some graphs that allow one to better understand the
discussion presented in Section 3.2 and Section 3.1.

Results on Electrostatic modes

Computing the first-order constraint

To compute the first order constraint we filter out from the dataset only the sequences
that belong perfectly in one of the two structures. To do so we compute a scores, which
assigns a value +1 for a positive amino acids and -1 for a negative in position [1,25]
and the opposite for positions [2,16,18,20]. We can observe the histogram of the scores
reported in red on the left in Figure 4.1. On the right we plot the two clusters obtained
with this procedure on the first to PCs.

Figure 4.1: Left: histogram of the scores of the dataset, in red highlighted the sequences
belonging to one of the two structures. Right: plot of the two clusters used to compute
the constraints. In red the two centroids c⃗1, c⃗0. The vector q(1) is computed as q(1) =
c⃗1 − c⃗0
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Figure 4.2: Top: Average transition, as defined in Section 3.1 of a random unit in the
unconstrained RBM. One can us this transition as a baseline to judge the "quality" of
transition in Figure 3.3. We can see how the changes in the electrostatic modes are lost
inside the other changes. Bottom Left: Histogram of hamming distance of the sequence
before and after transition. Right: Histogram of hamming distance of the sequences
that compose the dataset, taking only into account distances of elements in opposite
clusters. We can see how the sequences after the transition closely resemble the one
at the beginning when we compare their hamming distance with the average hamming
distance between classes.

Results WW domain
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Figure 4.3: a): Conservation matrix of the transition forced transition from class 1 to
class 2. b): Conservation matrix of the forced transition from class 1 to class 3. Circled
in red we report the contact of the WW structure. c) Average energy of sequences of
class 1 after a forceful transition to class 2, in particular we are interested in the time
needed to reach equilibration in the sampling of class 2. d) Confusion matrix of the
constrained RBM trained on the augmented dataset. We can see how the model was
able to learn the one-to-one mapping between class and Potts symbols
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