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Abstract

Active systems are inherently out-of-equilibrium, and examples range both syn-
thetic and natural systems, especially encountered in biological contexts. Due to
these energy fluxes, active systems often display phenomenologies that are im-
possible at equilibrium as for example phase separation in the presence of mass
currents in the steady state. In this work, we study phase separating active sys-
tems taking into account that particles move in a low-Reynolds number fluid. We
aim at addressing an aspect often overlooked in standard theoretical formulations:
momentum dissipation due to interactions with the substrate; in fact most exper-
imental setups operate in quasi-two-dimensional geometries where the substrate
or confining walls act as a momentum sink, effectively introducing friction into
the system’s hydrodynamics. Yet the theoretical studies so far concentrated in de-
scribing either the fully wet (momentum exactly conserved) or fully dry (fluid ve-
locity not being present) limits. We study the intermediate case where the fluid is
present but momentum is not conserved within a field-theoretical appraoch. Start-
ing from Active Model H[1], a model where the order parameter ϕ is coupled to
a momentum-conserving fluid, we incorporate the friction through a term in the
Navier-Stokes equation that breaks momentum conservation, similarly to [2]. Our
central findings reveals that interfaces can be unstable even with the addition of
friction. We establish that this instability is governed by a critical threshold on
activity strength, below this threshold, interfaces become unstable to linear pertur-
bations (capillary waves), this instability leads fundamentally to microphase sepa-
ration. Through linear stability analysis, we derived an expression for the growth
rate of interface perturbations. In the high friction limit, our model effectively re-
duces to the dynamics characteristic of Model B (a model without hydrodynamic
couplings). Conversely, in the low friction regime, it recovers the dynamics ob-
served in the Active Model H without friction. Finally, to validate our theoretical
predictions, we conducted extensive numerical simulations using pseudo-spectral
methods, these simulations consistently confirmed the existence of the predicted
critical activity threshold across a wide range of parameter sets.
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1. Introduction

Phase separation is a fundamental phenomenon in nature, presenting itself in very
different systems from synthetic materials to cell biology. This phenomenon de-
scribes the spontaneous demixing of a homogeneous mixture into distinct, coexist-
ing phases with different compositions or densities. While equilibrium phase sep-
aration is understood through standard thermodynamics, where systems evolve
to minimize their free energy, an increasing attention was recently devoted to de-
scribe many phase-separating systems operating far from equilibrium, particularly
in biological contexts [3].
This report addresses phase separation out of equilibrium, where a free energy
cannot be defined, with a specific focus on how the presence of the fluid in which
particles move modifies its phenomenology; this is a key question for experiments,
because most active particles self-propel in a fluid but also close to a substrate or
in geometries that imply momentum exchange between the (active) fluid and the
outer environment.

Classical phase separation, studied in passive systems, is driven by the free energy
minimization, leading to well-understood phenomena such as spinodal decompo-
sition, where a homogeneous mixture becomes unstable to small fluctuations, cre-
ating interconnected domains; and Ostwald ripening, where larger domains grow
at the expense of smaller ones [4], [5]. Moreover, the field-theoretical framework
was successful in describing universal features of phase separation dynamics. In
particular continuum models with a conserved order parameter, such as Model
B (without hydrodynamics) and Model H (with hydrodynamics) [5], are excellent
tools for predicting coarsening laws, interfacial dynamics and pattern formation.
On the other hand, active systems introduce a variety of new phenomena. Ac-
tive particles continuously consume energy to generate motion and forces [6], the
input of energy at the microscopic scale breaks time-reversal symmetry and pre-
cludes the existence of equilibrium states. For example, activity can induce phase
separation even in the absence of attractive interaction, a phenomenon known as
motility-induced phase separation.
The influence of activity extends beyond this basic mechanism, driving a rich phe-
nomenology at the macroscopic level. Activity can lead to phase separation in dif-
ferent forms, for example microphase separation, bubbly phase separation and ac-
tive foams, as observed in Active odel B+ [3], [7], [8]. These tree states differ by
the shape of the domains, going from numerous bubbles of one phase immersed in
the other one, to interconnected domains forming network like structure in active
foams.
Activity also facilitates the formation of biomolecular condensates through liquid-
liquid phase separation [9], and provides insights into chromosome positioning
through activity-based segregation [10]. Interestingly, active systems also apply to
larger scales, influencing pattern formation in nutrient-poor ecologies [11] and of-
fering insights into human demographics, such as segregation patterns [12].

In this work we take a field-theoretical approach to the study of phase separation in
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Introduction

active systems. This framework builds on passive models, incorporating terms that
break detailed balance such as active forces on the fluid. However a critical gap ex-
ists between theoretical models and experiments, as most theoretical studies focus
on fully dry (no hydrodinamics) or fully wet systems, where the fluid is idealized
and interactions with the substrate are ignored. Whereas usual active matter re-
alizations occur in quasi-two-dimensional geometries where interactions between
boundaries and particles, or between boundaries and the fluid in which particles
are immersed, become relevant. Examples include bacterial colonies on surfaces
[13], microtubule bundles confined in narrow geometries [14] and cell monolayers
on substrates [15].
This report addresses this gap by studying an extension Active Model H that in-
cludes friction, proposed in [2]. This in particular happens either when there is
a direct momentum exchange with the substrate or in quasi-two-dimensional sys-
tems with no-slip walls, when the vertical direction is averaged out. Our primary
goal is to understand how friction modifies its phase separation kinematics, partic-
ularly focusing on interfacial stability. We begin by reviewing passive phase sep-
aration, describing the relevant field models (Model B and Model H [5]) and the
key mechanisms (chapter 2); then we introduce activity through Active Model H
[1], explaining how active stress modify the phase separation dynamics (chapter 3).
Finally we present our result on Active Model H with friction, including linear sta-
bility analysis of capillary waves and numerical simulations (chapter 4). We found
that binodals and Ostwald ripening reduce to Model B dynamics, but interface sta-
bility is affected by friction. Unlike frictionless Active Model H, where contractile
activity is enough to destabilize interfaces, friction introduces a threshold on the ac-
tivity that determines the stability. Moreover this shows that the instability shape
is fundamentally driven by capillary waves.
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2. Passive Phase Separation

This chapter reviews key concepts of phase separation in passive systems, which
provide the theoretical foundation for understanding active phase separation. We
begin with the thermodynamic framework based on free energy minimization. We
focus on systems with a conserved order parameter ϕ, whose total amount doesn’t
change with the evolution of the system. This leads to dynamics governed by dif-
fusive transport where local changes in concentration must be balanced by mate-
rial flux. We then discuss the implementation of these dynamics in Model B and
Model H, which capture the essential physics of conserved phase separation with
and without hydrodynamic effects. Finally, we turn to key mechanisms of phase
separation such as spinodal decomposition, nucleation, and Ostwald ripening.
Most of the content presented in this chapter follows [4], [16].

2.1 Equilibrium phase separation: Free energy

We describe phase separation using a field-theoretical approach based on contin-
uum models in terms of a scalar field ϕ(r, t). This field can represent various phys-
ical quantities, such as a magnetization density or the concentration of two species
in a binary fluid.
The first step is to define a free energy functional, a simple choice is to set

F [ϕ] =
∫

dr
[

f (ϕ) +
k
2
|∇ϕ|2

]
, (2.1.1)

where the function f (ϕ) is the bulk free energy density:

f (ϕ) =
a
2

ϕ2 +
b
4

ϕ4.

These definitions already contains some relevant physics. First the bulk free energy
captures the preferred local composition of the system, the quartic function can in-
deed have one minima in ϕ = 0 or, for another choice of parameters, two distinct
minima, which determines the phase in the bulk of the system. Then the second
term associates an energetic cost to spatial inhomogeneities.

The first step is to find the density that minimizes the bulk free energy. Consider
a uniform state ϕ(r) = ϕ∗, for a > 0 the minimum is obtained for ϕ∗ = 0, which
means that the system doesn’t phase separate, as it would not decrease the free en-
ergy. On the other hand a < 0 gives other two minima ϕ∗ = ±ϕb = ±

√
− a

b ; in this
case the free energy is minimized demixing the two states. The densities ±ϕb are
called binodals.
Furthermore, on the phase diagram (fig. 2.1(b)) it is interesting to distinguish also
the spinodal curve defined with the spinodal densities ϕs, which determines the
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Passive Phase Separation

stability type in the phase separated regime. Between the spinodal and binodal
curves, the system is metastable (small perturbations decay but large enough fluc-
tuations can trigger phase separation), while inside the spinodal region, the system
is absolutely unstable to any perturbation, no matter how small.
The spinodals are found by setting the second derivative of the bulk free energy
to zero: f ′′(ϕ) = a + 3bϕ2 = 0. For a < 0, this gives the spinodal points ϕs =

±
√
−a/3b.

Figure 2.1: (a) Free energy density f (ϕ). (b) Phase diagram with spinodal and bin-
odal curve. Under the dashed curve the system is unstable to every perturbation; be-
tween binodal and spinodal curve the system is linearly stable, but can phase-separate
through other mechanisms. Figure adapted from [16].

2.2 Conserved Field

As we are interested in conserved field models, in this section we are going to
describe specifically some results valid in such cases. Examples of conserved fields
can be the volume fractions of different species in liquid mixtures, the composition
in binary metallic alloys, or the particle concentration in colloid suspensions. The
key difference from a generic field model is that the integral over all the volume of
the field is constant.
Consider parameters for which the system separates in two phases, then we can
use the minimization of the free energy to determine the shape of the interface at
equilibrium. Since the presence of an interface is associated to an energetic cost, it
will tend to minimize its area by flattening the surface.
Using the Lagrange multiplier λ to keep the total density constant we get:

δ

δϕ

[
F − λ

∫
dr ϕ

]
= 0.

But δ
δϕF = µ(y) is the chemical potential, and subsequently µ = λ. Call y the

direction orthogonal to the interface, then ϕ(r) = ϕ(y) with boundary conditions
ϕ(y) = ±ϕb for y → ±∞.
Finally, in the bulk we find µ = d f

dϕ = 0 since ϕ = ±ϕb and it follows that λ = 0.
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2.3 Model B and Model H

The differential equation we need to solve is µ(y) = 0:

aϕ2 + bϕ3 − k∇2ϕ = 0, (2.2.1)

which leads to

ϕeq(y) = ±ϕb tanh
(

y − y0

ξ0

)
(2.2.2)

with y0 the position of the interface and ξ0 =
√
−k/2a is the interface width pa-

rameter.
Looking back at eq. (2.2.1), we notice that the interface shape comes from the trade-
off between the minimization of the bulk free energy, obtained with a step function
on the binodals, versus a term penalizing steep gradients, with strength determined
by the parameter k.
Furthermore, we define the interfacial tension at equilibrium:

σeq =
∫

k(∂yϕeq(x))2 =

(
−8ka3

9b2

)1/2

. (2.2.3)

The surface tension represents the excess free energy per unit area due to the pres-
ence of an interface. Particles at the interface have fewer favorable interactions
compared to those in the bulk phases, which implies an energetic cost.
Surface tension is responsible for several phase separation phenomena: it deter-
mines the equilibrium shape of droplets (spherical to minimize surface area), sets
the energy barrier for nucleation of new phases (section 2.4.2), and provides the
driving force for Ostwald ripening (section 2.4.3).

2.3 Model B and Model H

Having derived some base equilibrium properties of phase separating systems, we
now turn to their dynamics, starting with the simplest case of dry systems where
hydrodynamic effects are negligible. In this case, the dynamics of the conserved
field ϕ is governed by the compositional current J = −M∇µ where M is the mo-
bility, a quantity that describes how fast the species can move through chemical
potential gradients. The simplest model is:

ϕ̇ = −∇ · J = ∇ · (M∇µ)

µ = δF
δϕ

. (2.3.1)
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Passive Phase Separation

This set of equations is known as Model B [5] and describes phase separation dy-
namics in systems where particles diffuse due to chemical potential gradients, bal-
ancing the local composition with diffusive transport. The divergence of the cur-
rent on the right hand side ensures the conservation of the field.
On the other hand, if particles are in a suspension, we need to take into account the
effects of the fluid motion. In this case, the general equation for the dynamics of ϕ

takes the form

ϕ̇ + v · ∇ϕ = −∇ · J

where the new left-hand side term is the advection contribution that couples the
field to the fluid.
The fluid dynamics are governed by the incompressible Navier-Stokes equations:

ρ
(

∂v
∂t + v · ∇v

)
= η∇2v −∇P + F

∇ · v = 0
(2.3.2)

where ρ is the fluid density, η is the viscosity, P is the pressure and F represents
body forces acting on the fluid. In the low Reynolds number regime, typical of
many phase separation processes, the inertial terms can be neglected, leading to
the Stokes equations.
Finally, combining the conserved field evolution with the incompressible Navier-
Stokes equations, we obtain:


ϕ̇ + v · ∇ϕ = ∇ · (M∇µ)

0 = η∇2v −∇P + F, ∇ · v = 0

µ = δF
δϕ

. (2.3.3)

This system is known as Model H [5].
In general terms the force F needs to be traceless, as this contribution can be ab-
sorbed in the pressure, then a general gradient form is

Fi = −∇jσij = −k∇j

[
(∇iϕ)(∇jϕ)−

δij

d
|∇ϕ|2

]
(2.3.4)

where d is the system dimension.
The system up to this point is deterministic as it has no stochastic part, but in gen-
eral it’s interesting to include noise terms in the fluid stress σn and in the current Jn.
For example, droplets suspended in a fluid won’t come into contact and coalesce
unless we consider their diffusion due to noise.
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2.4 Key mechanisms of phase separation

Additionally, a system initialized at a density ϕ̄, between the spinodal and the bin-
odal values, would remain uniform unless we include noise that would drive the
system over the nucleation barrier.

2.4 Key mechanisms of phase separation

Phase separation dynamics are governed by distinct mechanisms that operate un-
der different conditions and length scales. Initial state of the system relative to the
spinodal and binodal curves, the presence of thermal fluctuations and hydrody-
namic effects all affect differently phase separation. In this section, we examine
three fundamental mechanisms: spinodal decomposition, nucleation and Ostwald
ripening.

2.4.1 Spinodal decomposition

When the initial mixture state lies within the spinodal region, the system becomes
linearly unstable to infinitesimal perturbations, which are amplified exponentially
driving the spinodal decomposition.
The separation in domains of the two binodals is initially due to the amplification
of all unstable wavelengths, the fluctuations then grow until they reach binodal
values ±ϕb and afterwards the dynamics is determined by the topology of the gen-
erated domains.

We can characterize the instability through linear analysis.
The free energy is F =

∫
dr[aϕ2/2+ bϕ4/4+ k/2|∇ϕ|2], and substituting in eq. (2.3.1),

we find, assuming a constant mobility

ϕ̇ = M∇2µ = M∇2( f ′(ϕ)− k∇2ϕ).

Now we linearize around a uniform density ϕ̄, this means that higher order in the
gradients are neglected, and taking the Fourier transform with wavevector q, we
obtain

ϕ̇q = −Mq2[ f ′′(ϕ̄) + kq2]ϕq = σ(q)ϕq

with σ(q) the growth rate.
It’s clear that for f ′′(ϕ̄) > 0 all the modes are stable and for f ′′(ϕ̄) < 0 the system is
unstable with the most unstable mode q∗ = − f ′′(ϕ̄)/2k.
Finally we observe that this result is valid for Model B (eq. (2.3.1)) and also for
Model H (eq. (2.3.3)), because in the latter the fluid is coupled to the density through
the advection term, which does not contribute in the linear analysis.
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Passive Phase Separation

2.4.2 Nucleation

In the metastable region (between spinodal and binodal), the system is linearly sta-
ble to small perturbations, but phase separation can still occur through nucleation
of critical droplets. This process requires thermal noise to drive the system over the
free energy barrier associated with creating new interfaces.
The competition between surface energy, proportional to R2, and bulk energy gain,
proportional to R3, determines the critical radius Rc = 2σeq/( f ′(ϕε)∆ϕ − ∆ f ) [17],
where ∆ϕ and ∆ f are the differences between the two binodals value ±ϕb and
ϕε = ϕb + ε is the density of the bulk with a small supersaturatioin ε.
Droplets with radius smaller than Rc will shrink and disappear, while those larger
will grow spontaneously. This mechanism is driven by thermal fluctuations and
requires large deviations to nucleate a droplet.

2.4.3 Ostwald Ripening

Without noise, domain coarsening is mediated by a diffusion mechanism due to
M∇2µ which depends on the interface curvature, this process is called Ostwald
ripening.
Consider a spherical droplet of radius R with interfacial tension σeq. At equilibrium,
the surface tension is balanced by a pressure difference called Laplace pressure. By
considering force balance on a hemispherical droplet, where the surface tension
force 2πRσeq acting on the perimeter balances the pressure net force πR2∆P on the
interface, we find the Laplace pressure:

2πRσeq = πR2∆P ⇒ ∆P =
2σeq

R
.

The Laplace pressure is given by the osmotic pressure ∆P = ∆[ϕµ(ϕ)− f (ϕ)], then
the bulk densities are ϕA,B = ±ϕb + δ, with the binodals shifted by δ =

σeq
−2aϕbR .

Since δ is inversely proportional to R, smaller droplets have higher chemical poten-
tial, while larger droplets have lower one. This creates a chemical potential gradient
from small to large droplets.

Consider a small ambient supersaturation ε < δ, such that far from the droplet
ϕ(r → ∞) = −ϕb + ε. Under quasi-static conditions (ϕ̇ = −∇ · J = 0), we solve
for the spherically symmetric concentration profile ϕ(r) = −ϕb + ϕ̃(r) with bound-
ary conditions ϕ̃(∞) = ε and ϕ̃(R) = δ. For small supersaturation, the chemical
potential is µ = −2aϕ̃ and the diffusion equation becomes ∇2ϕ̃ = 0, with solution
ϕ̃(r) = ε + (δ − ε)R/r.
The radial flux just outside the droplet then becomes

J = −2aM∂rϕ̃|r=R = 2aM(δ − ε)
1
R

,
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2.4 Key mechanisms of phase separation

conservation of mass at the interface requires that the flux through the surface
equals the rate of volume change times the concentration jump:

J4πR2 = 2ϕb
d
dt

(
4πR3

3

)
,

from which we get

Ṙ = − aM
ϕbR

(
ε +

σeq

2aϕbR

)
=

σeq M
2ϕ2

b

1
R

(
1

R∗ − 1
R

)
.

The critical radius that gives Ṙ = 0 is R∗ =
σeq

−2aεϕb
. Droplets with R < R∗ shrink

and eventually disappear, while those with R > R∗ grow at the expense of smaller
ones.
Finally one finds the time scaling of typical radius R(t) ∼ t1/3.

2.4.4 Coarsening in the Hydrodynamic Scaling Regime

When fluid flow is included, as in Model H, coarsening pathways mediated by the
flow emerge, which determine a richer phenomenology than the one captured by
the dry case (Model B). It is important to note that the modification of coarsening in
Model H due to hydrodynamics takes place only when the system is bicontinuous,
which means that both phases form interconnected domains and typically occurs
when the volume fractions of the two phases are comparable.
To characterize the different regimes and their scaling laws, we define the char-
acteristic domain size L(t) and study which terms dominate in the Navier-Stokes
equation eq. (2.3.2). Using dimensional arguments, we can estimate the scaling of
each term by recognizing that velocities scale as v ∼ L̇ and spatial derivatives as
∇ ∼ L−1.
This gives us the following scalings: the thermodynamic stress F ∼ σeqL−2, the
inertial terms ρ∂tv ∼ ρL̈ and ρ(v · ∇)v ∼ ρ(L̇)2L−1, and the viscous contribution
η∇2v ∼ η L̇L−2. Moreover, dry diffusion scales as M∇2µ ∼ MσeqL−3 and the ad-
vection term as (v · ∇)ϕ ∼ σeqL−1η−1.
The regime transitions occur when different terms in the equations become com-
parable. By comparing the magnitudes of these terms, we get the crossover length
scales and the power-law behaviors.
First we note that advective transport, that is the fluid contribution, dominates over
the diffusion at L ≫ (Mη)1/2. In this hydrodynamic regime, we can distinguish
two sub-regimes based on the Reynolds number. At low Reynolds number, we ob-
tain the Viscous Hydrodynamic regime by neglecting inertial terms and balancing
the thermodynamic stress with the viscous contribution: η∇2v ∼ F. This gives
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Passive Phase Separation

η L̇L−2 ∼ σeqL−2, yielding

L̇ ∼
σeq

η
⇒ L(t) ∼

σeq

η
t,

which is valid for L ≪ η2/(σeqρ).
At later times, when inertial terms become dominant over viscous ones, we enter
the Inertial Hydrodynamic regime. Here we balance inertia with the thermody-
namic stress: ρ(∂tv + (v · ∇)v) ∼ F, which gives ρ(L̇L−1 + L̇2L−1) ∼ σeqL−2 and

L(t) ∼
(

σeq
ρ

)1/3
t2/3.

In summary, there are three principal growth regimes for phase separation, whose
scalings are reported in the following table.

Mechanism Scaling Length-scale
Diffusive Coarsening L ∼ t1/3 L ≪ (Mη)1/2

Viscous Hydrodynamic L ∼ t (Mη)1/2 ≪ L ≪ η2/σeqρ

Inertial Hydrodynamic L ∼ t2/3 η2/σeqρ ≪ L

Table 2.1: Summary of coarsening regimes in passive phase separation.
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3. Active Phase Separation

The paradigm shift introduced by activity is fundamental. In passive systems, the
system attains the minimum of the free energy in the statistically steady state. Ac-
tive systems by contrast lack an equilibrium state. Detailed balance is violated
through constant injection of energy at the particle level, where individual com-
ponents use this surplus to produce work. This can cause the emergence of phase
separation even in contexts where it is impossible at equilibrium, as if particles
purely repel each other.
The field-theoretical approach captures universal features across diverse systems.
Extending the framework developed for equilibrium phase separation, continuum
models that incorporate activity through additional terms that break detailed bal-
ance have been constructed in the literature [3]. This approach is quite general: by
identifying the relevant symmetries and conservation laws, we can write down ef-
fective equations that capture the essential physics without the need for a detailed
knowledge of microscopic interactions.
We employ such continuum framework to describe active systems, considering
a single conserved order parameter ϕ(r, t) that can be interpreted as the coarse-
grained particle density. The continuum description emerges through the coarse-
graining of microscopic systems. If ϕ is the only slow variable at large scales, this
approach can give a generic description of phase separation, independent of the
microscopic details of the system. This separation of scales is what makes the field-
theoretical approach so powerful: it allows us to make quantitative predictions
about macroscopic behavior without solving the full many-body problem at the
microscopic level.
The active counterparts of the models discussed before are Active Model B+ [7]
and Active Model H [1]. The first corresponds to the dry limit and the activity is
introduced in the compositional current J as there is no fluid coupling. In Active
Model B+ the binodal values are modified and the Ostwald process can be reversed.
Active Model H on the other hand corresponds to the fully wet case, in this case
activity modifies the coarsening dynamics, leading to an arrest of domain growth
in contractile systems.

3.1 Active Model H

In this section we extend Model H (section 2.3) to an active model by introducing
an active term in the stress tensor. The governing equations read


ϕ̇ + v · ∇ϕ = ∇(M∇µ)

0 = η∇2v −∇P + Fp + Fa, ∇ · v = 0

µ = δF
δϕ

, (3.1.1)

where we distinguish the active stress Fa from the passive stress Fp which coin-
cides with the one from eq. (2.3.3). For the specific form of the active stress, we
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Active Phase Separation

Figure 3.1: Schematic view of extensile and contractile fluid flow around active swim-
mers aligned with the normal of the interface (∇ϕ), between a dense and a dilute do-
mains. Figure adapted from [1].

take the lowest order second rank deviatoric tensor constructable from ϕ and its
gradients, which has the same functional form as the passive stress eq. (2.3.4) but
with a different prefactor:

Fa
i = −(k̃ − k)∇jσij = −(k̃ − k)∇j

[
(∇iϕ)(∇jϕ)−

δij

d
|∇ϕ|2

]
,

where k is the same parameter appearing in the free energy eq. (2.1.1), k̃ is an in-
dependent active parameter and d is the dimension of the system. The total stress
becomes

F = Fp + Fa = −k̃∇ · σ.

Although the functional form is identical to the equilibrium case, the mismatch
between k and k̃ breaks detailed balance, making a free energy description impos-
sible.

The sign of the active prefactor (k̃ − k) classifies the system: positive values corre-
spond to extensile systems, while negative values correspond to contractile ones.
This classification originates from how self-propelled swimmers drive fluid flow
primarily through a force dipole along their axis. Contractile particles (e.g. al-
gae) generate outward forces that draw fluid from the poles and expel it radially,
while extensile particles (e.g. swimming bacteria) do the opposite [6]. The micro-
scopic view of swimmer forces can be linked to the continuum description of Active
Model H, giving (k̃ − k) > 0 extensile swimmers and (k̃ − k) < 0 contractile ones
[1].

3.1.1 Surface Tensions and Ostwald Ripening

Activity modifies the interfacial physics by generating a second surface tension,
which doesn’t affect Ostwald ripening, but induces a new type of instability. Its
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3.1 Active Model H

value is σM = σeq k̃/k at the interfaces where swimmers point along the surface nor-
mal, that is along the order parameter gradient [18].
Contractile swimmers expel fluid in the interfacial plane, causing stretching, whereas
extensile swimmers do the opposite. This creates the resulting tension σM, which
is negative for contractile swimmers and positive for extensile ones.
In the extensile case with positive tension σM > 0, the dynamics follow conven-
tional Ostwald ripening as described in section 2.4. On the other hand, contractile
systems (σM < 0) causes large droplets to split (self-shearing) due to the negative
surface tension. In the latter case, the phenomenon is balanced by the Ostwald
ripening: small droplets evaporate, while large ones grow until they in turn be-
come unstable. This creates a dynamical steady-state where droplets splitting is
followed by the diffusive growth or disappearance of the offspring.
This behavior has been observed in Active Model H, leading to microphase sepa-
ration; later in section 4.4 it will be interpreted as an instability of capillary waves.

Figure 3.2: Visualization of a droplet self-shearing instability for a contractile system.

Next we describe how activity affects the coarsening dynamics, including hydro-
dynamical effects. We analyze the evolution of the characteristic domain size L(t)
following [1].
In the viscous regime, ignoring inertia terms, by a power counting argument we
find

L̇ ≈ α
σeq

L2 + β
σM

η

with α and β dimensionless constants.
The first term represent the standard diffusive contribution, where the chemical po-
tential gradient scales as ∇µ ∼ σeq/L2, leading to the passive growth L ∼ t1/3. The
second contains the active contribution, it originates balancing the viscous terms
η∇2v ∼ η L̇L−2 with the active stress F ∼ σML−2. This term is independent of L
and contributes with a constant driving force to the coarsening of system domains.
For extensive systems σM > 0, we obtain the diffusive (L ∼ t1/3) and viscous hy-
drodynamic (L ∼ t) regimes as in the passive case section 2.4.
But for contractile swimmers, when the activity is strong enough we can have a
dynamical arrest L̇ = 0 at the scale L∗ ∼ (ησeq/|σM|)1/2, where the diffusive coars-
ening is opposed by activity.
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4. Active Model H with Friction

4.1 Motivation

Active Model H offers key insights into active phase separation, predicting a rich
range of phenomena that significantly affect coarsening dynamics compared to pas-
sive systems. However, in its standard formulation, it assumes purely wet dynam-
ics where momentum is exactly conserved throughout the system. This assumption
is not realistic for most experimental realizations of active systems.
Active particles often move in fluid environments but do so in close proximity to
boundaries or substrates with which they exchange momentum. Most experimen-
tally studied active systems operate in quasi-two-dimensional geometries under
screened fluid flow conditions. For example cell colonies growing on surfaces [13],
swimming bacteria interacting with microstructures [19] and confined microtubule
bundles [14]. In these systems, the substrate or confining walls provide a momen-
tum sink, effectively introducing friction in the dynamics.
The introduction of friction modifies the nature of hydrodynamic interactions in
non-trivial ways. One might initially expect that increasing friction would sim-
ply reduce the system to the dry case, analogous to active variations of Model B
[7], where hydrodynamic effects are entirely absent. However, it remains unclear
whether this dry limit is actually recovered at large scales, as fluid-mediated inter-
actions can still generate long-range forces even under screening [2], [20].
The study of friction is then interesting both from an experimental perspective,
giving a theoretical background on the phenomenology of many real systems; and
from a theoretical point of view as the friction parameter connects between two
fundamentally different regimes of active matter dynamics.

Below, we investigate how friction modifies active phase separation by extending
the Active Model H as in [2].
Through linear stability analysis, we examine how friction affects the stability of
interfaces and the emergence of capillary wave instabilities that can lead to mi-
crophase separation. Even including friction, interfaces can become unstable, when
the activity surpass a certain threshold; as a byproduct, we further shows that the
shape instability governing Active Model H is induced by capillary wave insta-
bility. Finally, we present numerical simulations that map out the phase diagram,
revealing how friction alters the phase separation behavior and that support the
analytical results.

4.2 Model and interface description

The equations of the model are identical to the ones of Active Model H eq. (3.1.1)
with the addition of a friction term in the Navier-Stokes equation:
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4.3 Binodals and Ostwald ripening


∂tϕ + v · ∇ϕ = M∇2µ,

0 = −Γv + η∇2v +∇P + F, ∇ · v

µ = δF
δϕ

, (4.2.1)

with a constant mobility M and the usual ϕ4 free energy F =
∫

dr[ f (ϕ)+ k/2|∇ϕ|2]
with bulk free energy density f (ϕ) = a/2 ϕ2 + b/4 ϕ4.
In the flow equation Γ is frictional dampening of the flow and, since the momentum
is not conserved due to friction, the active stress cannot be written as the divergence
of a local stress tensor, then including higher orders up to O(∇3ϕ3) we have

Fi = −∇jσij + K1ϕ∇iϕ(∇2ϕ) + K2|∇ϕ|2∇iϕ

with the usual σij = k̃
[
(∇iϕ)(∇jϕ)− δij/d|∇ϕ|2

]
.

4.3 Binodals and Ostwald ripening

In this section, we address two important aspects of phase separation dynamics in
Active Model H with friction: the determination of binodal curves and the coars-
ening process through Ostwald ripening.
Both phenomena reduce to their passive Model B (section 2.3) due to the suppres-
sion of fluid motion, ignoring effects given by the interface curvature.

4.3.1 Binodal Analysis

To determine the binodal curves, we consider a flat interface between two coexist-
ing phases with normal along y and x the directions parallel to it, then the interface
profile is defined with h(x, t).
By symmetry the field ϕ(r, t) should depend only on the direction normal to the
interface, then we have the ansatz on the density profile:

ϕ(y, x, t) = φ(y − h(x, t)), (4.3.1)

where φ(y − h(x, t)) = ϕeq(y) is the equilibrium interface profile eq. (2.2.2).
The boundary conditions for ϕ(r) = φ(y) are φ → φ± as y → ±∞ and for the
velocity field, v = 0 at infinity.
Given the translational invariance parallel to the interface, the velocity field can
only depend on the normal direction, v(r) = v(y) and parallel components are
null by symmetry. Then the incompressibility equation ∇ · v = ∂yvy = 0 with the
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Active Model H with Friction

boundary conditions lead to vy = 0 and

v = 0.

Active Model H equations reduce to the passive Model B dynamics: ϕ̇ = M∇2µ

for which the binodals are φ± = ±ϕb = ±
√
−a/b.

4.3.2 Ostwald Ripening Analysis

For Ostwald ripening, we consider the evolution of a spherical droplet of radius
R(t) in a supersaturated medium. The relevant direction is the radial one and the
interface profile is R(t), then ignoring correction due to the curvature we have

ϕ(r, t) = φ(r − R(t)). (4.3.2)

We focus now on the Navier-Stokes equation with friction and rewrite the fluid
stress in this simplified setting:

Fr = −k̃
1
r2 ∂r

(
r2 d − 1

d
(∂r φ)2

)
+ K1φ(∂r φ)(∂2

r φ) + K2(∂r φ)3 =

= −k̃
d − 1

d
∂r

(
(∂r φ)2 −

∫ r
dr′(−2)

1
r′3

r′2(∂r′ φ)
2
)
+

+ K1∂r

[
1
2

φ(∂r φ)2 − 1
2

∫ r
dr′(∂r′ φ)

3
]
+ K2∂r

[∫ r
dr′(∂r′ φ)

3
]
=

= ∂r

{
k̃

d − 1
d

[
−(∂r φ)2 + 2

∫ r
dr′

(∂r′ φ)
2

r′

]
+

K1

2
φ(∂r φ)2 +

(
K2 −

K1

2

) ∫ r
dr′(∂r′ φ)

3
}

.

The stress can be written as a full derivative, but this means that it can be absorbed
in the pressure contribution F − ∇P = −∇P̃. The Navier-Stokes equation then
becomes

Γv = η∇2v −∇P̃. (4.3.3)

On the other hands v satisfies the incompressibility condition in spherical coordi-
nates:

∇ · v =
1
r2

∂

∂r
(r2vr) = 0. (4.3.4)

This implies r2vr = [const.] and v = 0.
Moreover, this implies that also the pressure gradient vanish and Active Model H

18



4.4 Capillary Waves

with friction again reduces to passive Model B dynamics.
Droplet dynamics then follows the classical Ostwald ripening, where droplets un-
der a critical radius vanish and above grows indefinitely.

4.4 Capillary Waves

We now examine the linear stability of interfaces by analyzing the dynamics of
capillary waves, small perturbations that propagate along the interface between
coexisting phases.
First we observe that the NSE with friction can be solved (appendix A) and, using
an implicit sum notation, the velocity field takes the form

vi(r) =
∫

dr′ Gij(r − r′)Fj(r′) (4.4.1)

where Gij is the modified Oseen tensor whose Fourier transform is

Ĝij

8πη
=

δij

ηq2 + Γ
−

qiqj

q2(ηq2 + Γ)
.

Then the model equations becomes

∂tϕ +∇iϕ
∫

dr′Gij(r − r′)Fj(r′) = M∇2µ

µ = δ
δϕ

∫
dr
[

f (ϕ) + k
2 |∇ϕ|2

]
= f ′(ϕ)− k∇2ϕ

. (4.4.2)

First we substitute the ansatz for a flat interface eq. (4.3.1) and setting u = y− h(x, t)
we get

φ′(u)∂th +∇i φ(u)
∫

dr′Gij(r − r′)Fj(r′) = M∇2µ. (4.4.3)

The next step is to approximate to the linear order the equation, the only term that
leads to non-linearities is the advection term. In appendix B we carried on this
calculation, obtaining

∂thq = −σeqq2
[

k̃
k
Tyy(q, 0) +

2Mq
Aeq(q)

]
hq, (4.4.4)
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Active Model H with Friction

where we defined Aeq(q) =
∫

dy1 dy2 e−q|y1−y2|φ′(u1)φ′(u2) and the function Tyy(q, 0)
is the transformed Oseen tensor obtained in appendix A:

Tyy(q, 0) =
1

2Γ

(
q − q2√

λ2 + q2

)
.

with λ2 = Γ/η.
And in the limit of small q we get

∂thq = −
σeqM

2

[
k̃

kΓM

(
1 − q√

λ2 + q2

)
+

1
(ϕb)2

]
q3hq, (4.4.5)

If Γ ≫ q, the system exhibits a cubic dispersion relation:

∂thq = −
σeqM

2

(
1

ΓM
k̃
k
+

1
(ϕb)2

)
q3hq. (4.4.6)

The q3 scaling corresponds to the one found in Active Model B [8], but lacks a linear
term in q found in Active Model H [21]. Interestingly, an instability emerges by the
interplay of the activity strength with the friction. The system needs to show a
strong contractile behavior, below a certain threshold set by the friction in order to
observe an instability of arbitrarily small modes, which is

k̃∗ = − ΓMk
(ϕb)2 . (4.4.7)

On the other hand, in the limit of vanishing friction with Γ ≪ q, the Oseen tensor
becomes

Tyy(q) =
1

2Γ

(
q − q√

1 + (λ/q)2

)
=

1
2Γ

(
q − q +

1
2

λ2

q

)
=

1
4η

1
q

,

which leads to

∂thq = −σeqM
(

1
4ηMq

k̃
k
+

2Mq
(2ϕb)2

)
q2hq ∼ −

σeqk̃
4ηk

qhq. (4.4.8)
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4.5 Numerical Methods

In this regime, the dynamics is dominated by the q term which corresponds to the
ordinary Active Model H [21] and this demonstrates that the interfacial instabilities
in Active Model H are fundamentally driven by capillary wave dynamics.

Finally, we can analyze the growth rate g(q), defined with

g(q) = −
σeqM

2

[
k̃

kΓM

(
1 − q√

λ2 + q2

)
+

1
(ϕb)2

]
q3. (4.4.9)

In particular, the dimensionless factor in the brackets

G(ΓM, q) =
k̃

kΓM

(
1 − q√

λ2 + q2

)
+

1
(ϕb)2 (4.4.10)

determines the universal shape of the growth rate curve as a function of the param-
eters.
For k̃ < k̃∗, the system exhibits a band of unstable modes with a maximum growth
rate associated to the most unstable mode qmax, which determines the characteristic
wavelength of the instability.
Finally, the dependence of both the most unstable mode and its associated growth
rate on the friction parameter is shown in fig. 4.2. As Γ increases qmax decreases,
until it reaches zero when k̃ = k̃∗ and the growth rate tends to zero.
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Figure 4.1: Growth rate defined with eq. (4.4.9), with Γ = 3.5 (left plot) and Γ = 4.5
(right plot). For both we set k̃ = −4, k = 1, M = 1, η = 1 and ϕb = 1.

4.5 Numerical Methods

The numerical solution of Active Model H equations presents significant computa-
tional challenges due to their nonlinear and multi-scale nature. The system couples
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Figure 4.2: The left image is the wavevector that maximizes the growth rate eq. (4.4.9)
at each value of Γ and the right image is the corresponding maximum growth rate. We
set k̃ = −4, k = 1, M = 1, η = 1 and ϕb = 1.

the order parameter ϕ with the Navier-Stokes equation for the velocity field v, both
containing nonlinear terms. To solve numerically the system, we have adapted and
extended the cuPSS library developed in [22], which provides a robust framework
for pseudo-spectral integration of stochastic partial differential equations on GPUs.

Traditional spectral methods offers the advantage of high numerical stability with
respect to space discretization, especially when the equations include many gradi-
ent terms. But they become insufficient when dealing with nonlinear terms, sinces
in Fourier space they are represented by convolutions.
Pseudo-spectral methods overcome this limitation by treating differently non-linear
or mixed terms, derivatives are computed in Fourier space where they reduce to
simple multiplications, while nonlinear terms are evaluated in real space where
the computation is easier. This offers a speedup since transforming to and from
Fourier space has a cost O(N log N) while the convolution of real field polynomial
of order n takes O(N2), where N is the real space discretization.
When dealing with discrete spectral methods, a critical issue is aliasing. To un-
derstand this problem, consider the field ϕ(x) and the discretization of a one-
dimensional space of size N, in points distant ∆x. Then in Fourier space the fre-
quencies have separation ∆q = 2π/(N∆x) and we can take qi ∈ (−π/∆x, π/∆x).
The fourier tranform of the field is ϕ(x) = ∑qj

ϕ̂(qj) exp(iqjx) and a quadratic non-
linearity becomes

ϕ(x)2 = ∑
qj,ql

ϕ̂(qj)ϕ̂(ql) exp(i(qj + ql)x).

Clearly some frequencies leads to qj + ql > π/∆x, which gives a contribution to a
lower mode qj + ql − 2π, because of the periodic nature of Fourier frequencies.
The solution adopted in this library is to set to zero the amplitudes that create alias-
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4.6 Numerical Results

ing artifacts and use them to compute non-linearities. Specifically if a field has a
non-linearity of order n then the wavevenumbers q such that nq > 2π/∆x − q or
nq < −2π/∆x + q are set to zero, combining the two we have |q| > 2π/[(n +

1)∆x], which gives the de-aliasing rule for a generic polynomial non-linearity.
Finally, as we split linear from non-linear terms, we employ respectively differ-
ent integration schemes. First we note that the library includes the possibility of
applying some noise to the system and to integrate it we need to choose a time
discretization. What the code does is to implement a fully implicit method, the
Milstein scheme, for the linear terms, which gives significant numerical stability;
and the Euler-Maruyama step for the mixed or non-linear terms, which sacrifies
some numerical stability in favor of higher speed.
Moreover it is worth to mention that this code can run on GPU, achieving better
performances than CPU-based libraries, and enabling exploration of larger systems
and more parameter regimes.

4.6 Numerical Results

Figure 4.3: Interface stability simulations. Snapshots are taken at t = 0, t = 2.5 · 105

and t = 5 · 104. Simulation above has Γ = 1, k = 1, M = 1, ϕb = 1 and k̃ = −4.
Simulation below has the same parameters but k̃ = −0.4.

In this section we report our numerical results to provide some validation of the
theoretical predictions of section 4.4. In particular we will address two key aspects
of capillary waves: verification of the critical activity threshold and study the be-
havior at constant ΓM.

In order to observe the capillary wave instability, the system was initialized as a
flat band of the density at the binodal ϕb, in a domain of the other binodal −ϕb (left
frames of fig. 4.3). To perturb the interface, the field is evolved with zero-average
and unit variance gaussian noise ηt that in the model would take the form of a small
stochastic current Jn = 2Dηt, and the fluid with a zero-average stochastic force Fn

which we assume that satisfies the fluctuation-dissipation theorem:

⟨F̂n
i (p, ω)F̂n

j (p
′, ω′)⟩ = (2πd+2)2D(Γ + η|p|2)δijδ(p + p′)δ(ω + ω′)
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Active Model H with Friction

written in fourier space with wavevector p = (q, qy).
Then the model reads

{
∂tϕ + v · ∇ϕ = −∇ · (J + Jn)

0 = −Γv + η∇2v −∇P − F + Fn
. (4.6.1)

It is interesting to note that considering only a stochastic current in the field equa-
tion, that is evolving the system with effectively two temperature: positive temper-
ature and non-zero noise for the field, zero temperature and no noise for the fluid,
introduced some artifacts in the system. Although the results were qualitatively
similar, we found that the binodals were modified at low mobility M ≈ 0.1. This
is an important observation as current studies of Active Model H introduce noise
exclusively on the field, possibly probing a different phenomenology from the one
temperature model.

Figure 4.4: Active Model H with friction phase diagram. The dashed line represent the
critical curve that separates the unstable region (below) from the stable one (above).

The predicted critical activity is k̃∗ = −ΓMk/(ϕb)
2, we verified it varying both

Γ and k̃, spanning the two regions in fig. 4.4. The simulations are in very good
agreement with the result for a wide range of parameters (fig. 4.4,fig. C.1), although
we noted that the binodals were modified at low mobility M ∼ 0.1; a phenomenon
we are still investigating.
Next we observe that substituting q = y

√
Γ/η in eq. (4.4.9), we find

g(y) = −
σeq M

2

(
Γ
η

)3/2
[

k̃
kΓM

(
1 − y√

1 + y2

)
+

1
(ϕb)2

]
y3. (4.6.2)

This means that the maximum at ymax does not change if we keep the quantity
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4.6 Numerical Results

k̃ϕ2
b/kΓM constant. We can check this prediction by varying the friction and the

mobility such that ΓM = [const.] and computing qmax/
√

Γ. To find the most un-
stable frequency qmax, predicted in eq. (4.6.2), we tracked the interface and, after
transforming to the Fourier space, we computed the dominant wavevector q at
early times, when curvature effects are negligible. The values of qmax/

√
Γ (shown

in fig. 4.5) differ slightly; however, this deviation is not surprising given the sev-
eral orders of magnitude spanned by Γ. Similarly, our attempts to retrieve the most
unstable mode from fig. 4.2 were unsuccessful despite the agreement found for the
phase diagram. We hypothesize then that the linear analysis correctly capture the
onset of instabilities, but perturbations are significativly affected by other mecha-
nisms perhaps described at a non-linear level.

Figure 4.5: Detail of capillary instability simulations keeping ΓM = [const.]. For all
the simulations we set k̃ = −4, k = 1, ϕb = 1, D = 0.05 and system size Lx = 256,
Ly = 128.
(a): Γ = 10−2, M = 102, qmax ≈ 0.07 and qmax/

√
Γ ≈ 0.7.

(b): Γ = 10−1, M = 10, qmax ≈ 0.2 and qmax/
√

Γ ≈ 0.6.
(c): Γ = 1, M = 1, qmax ≈ 0.3 and qmax/

√
Γ ≈ 0.3.
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5. Conclusions

This thesis investigates the role of friction in active phase separation by extending
Active Model H to include momentum dissipation through substrate interactions,
studying fluid flows in a more realistic setup. This extension addresses a critical
gap between theoretical models and experimental realizations. The former are ide-
alized models where, either the fluid is not considered at all (Model B) or they
assume exact conservation of fluid momentum (Model H); however real systems
operate in quasi-two-dimensional geometries where the fluid exchanges momen-
tum with boundaries.
First we found that in the extension of Active Model H, binodals and the Ostwald
process are reduced to the ones of Model B, because the incompressibility constraint
effectively removes the fluid contribution.
Moreover, our findings establish that interface stability in contractile active systems
is governed by a critical activity threshold given by eq. (4.4.7). For contractile activi-
ties below this threshold, interfaces become unstable to capillary wave fluctuations,
leading to microphase separation. This demonstrates that the shape instability in
Active Model H is fundamentally driven by capillary waves. This instability man-
ifests through the growth of interface perturbations determined by the interplay
between activity, friction and surface tension.
Through linear stability analysis, we derived the growth rate for interface perturba-
tions eq. (4.4.9). Here we see how friction modifies the dispersion relation, bridging
between the q3 scaling characteristic of Active Model B in the high friction limit and
the q scaling of standard Active Model H in the low friction regime. In the first case,
capillary waves grow diffusively as in a dry system, while at low friction, hydro-
dynamic effects change the instability.
Furthermore, the most unstable mode scales as qmax ∝

√
Γ when the product ΓM

is constant, which is a scaling behavior that persists across different parameter
regimes.
Numerical simulations using pseudo-spectral methods validate our theoretical pre-
dictions. We verified the existence of the critical activity threshold across mul-
tiple parameter sets, confirmed the predicted scaling of the most unstable mode
qmax ∝

√
Γ when maintaining constant ΓM, and observed the capillary wave-

driven instability in interface evolution. Interestingly, linear analysis captures cor-
rectly the instability threshold but did not predict the behavior of the most unstable
mode quantitatively; this is not surprising as our analysis is valid in the limit of
small q and other mechanisms could contribute to the growth of capillary waves.
To extend our studies, one could further analyze what happens when forces that
do not derive from a stress term are included in the dynamics. We expect that such
non-stress forces, by breaking the ϕ → −ϕ symmetry, may drive the system into an
active foam state, similar to [8], [23], where symmetry breaking leads to persistent
network-like structures rather than droplet-like domains. Additionally, analyzing
correlation functions and fluctuations in the presence of friction is central for un-
derstanding hydrodynamic effects, as it is still unclear whether in active systems,
differently from passive ones, the large scale decay of correlations is impacted by
the presence of fluid flows.
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A. Solution of Stokes equation with friction

We solve the Stokes equation with a friction term and a delta-like force:

0 = η∇2v − Γv +∇P + Fδ(r), ∇v = 0. (A.0.1)

We start by defining

P =
F · Π
8πη

, v =
G · F
8πη

and using Einstein notation:

P =
FiΠi

8πη
, vi =

GijFj

8πη
,

where Π is a vector field and G is a tensor.
Next we Fourier transform eq. (A.0.1) and substituting the equations above

−ηk2v̂ + Γv̂ − ikP = −F, (A.0.2)

−iki
Π̂jFj

8πη
− k2 Ĝij

8πη
ηFj − Γ

Ĝij

8πη
Fj = −Fjδij, (A.0.3)

−iki
Π̂j

8πη
− k2 Ĝij

8πη
η − Γ

Ĝij

8πη
= −δij. (A.0.4)

The incompressibility equation in (A.0.1) reduces to kiĜij = 0, so multiplying
eq. (A.0.4) by ki we get:

Π̂j

8πη
= −i

k j

k2 ,

and substituting back in eq. (A.0.4), we find:

Ĝij

8πη
=

δij

ηk2 + Γ
−

kik j

k2(ηk2 + Γ)
. (A.0.5)

At this point it’s a matter of finding the inverse Fourier transform.

In the main text, we need the Fourier transform only in x leaving the y component
real, call this quantity Tyj(q, y).
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Solution of Stokes equation with friction

First we look at j = y in eq. (A.0.5) and setting λ2 = Γ/η, q2 = k2
x + k2

z:

Tyy(q, y) =
1

2πη

∫ ∞

−∞
dky

1
λ2 + q2 + k2

y

(
1 −

k2
y

k2
y + q2

)
eikyy =

=
1

2πη

∫ ∞

∞
dky

q2eikyy

(λ2 + q2 + k2
y)(q2 + k2

y)
=

=
q2

2πη

∫ ∞

−∞
dky

1
λ2

(
1

k2
y + q2 − 1

k2
y + λ2 + q2

)
eikyy =

=
q2

2Γ

(
e−|y|q

q
− e−|y|

√
λ2+q2√

λ2 + q2

)
.

Evaluating in y = 0

Tyy(q, 0) =
1

2Γ

(
q − q2√

λ2 + q2

)
. (A.0.6)

Then keeping j ̸= y:

Tyj(q, y) = − 1
2πη

∫ ∞

−∞
dky

k jkyeikyy

(λ2 + q2 + k2
y)(k2

y + q2)
=

= − 1
2πη

∫ ∞

−∞
dky

1
λ2

(
1

k2
y + q2 − 1

k2
y + λ2 + q2

)
k jkyeikyy =

= −
k ji sgn(y)

2Γ

(
e−|y|q − e−|y|

√
λ2+q2

)
.

And evaluating in y = 0

Tyj(q, 0) = 0. (A.0.7)
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B. Linear Order approximation

The model is

{
∂tϕ = −∇iϕ

∫
dr̄′Gij(r̄ − r̄′) f j(r̄′) + M∇2µ

µ = δ
δϕ

∫
dr̄
[

f (ϕ) + k
2 |∇ϕ|2

]
= f ′(ϕ)− k∇2ϕ

. (B.0.1)

We substitute the ansatz for a flat interface eq. (4.3.1) and setting u = y − h(x, t) we
get

φ′(u)∂th +∇i φ(u)
∫

dr′Gij(r − r′)Fj(r′) = M∇2µ. (B.0.2)

Now we want to obtain an approximation at the linear order.
Consider the density gradient term:

∇y φ(u) = φ′(u), ∇xφ(u) = −φ′(u)∇xh(x, t), (B.0.3)

where φ′(u) denotes the derivative with respect to u.
If the integral factor at the lowest order contains gradients of h(x, t), then terms
coming from i = x are non-linear and they will be discarded. We will see that this
is indeed the case and only the contribution i = y has linear terms.
Write the stress F = Fgrad +F∗, where Fgrad = −∇iσij with σij = k̃

[
(∇jϕ)(∇iϕ)− 1

d |∇ϕ|2
]

is the contribution coming from a gradient and F∗
i = K1ϕ(∇iϕ)(∇2ϕ)+K2|∇ϕ|2∇iϕ

includes the higher order therms.
Along the y direction we have

−
Fgrad

y

k̃
= ∇iσyj = ∇i

[
(∇y φ(u))(∇i φ(u))−

δyi

d
|∇φ(u)|2

]
=

= ∇yσyy +∇x[∇y φ(u)∇xφ(u)] =

= ∇y(φ′(u))2 − 1
d
∇y[(φ′(u))2(1 + |∇xh(x, t)|2)+

−∇x[φ
′(u)× φ′(u)∇xh(x, t)] =

= 2φ′(u)φ′′(u)− 2
d

φ′(u)φ′′(u)(1 + |∇xh(x, t)|2)+

+ 2φ′(u)φ′′(u)|∇xh(x, t)|2 − (φ′(u))2∇2
xh(x, t).

Then keeping only the linear terms we get

Fgrad
y = −k̃

[
2
(d − 1)

d
φ′(u)φ′′(u)− (φ′(u))2∇2

xh(x, t)
]

.
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Linear Order approximation

Similarly keeping the linear terms in the higher order part we find

F∗
y = K1φφ′φ′′ + K1φ(φ′)2∇2

xh(x, t) + K2∂u(φ′)3 (B.0.4)

where we can ignore the term without h as they account for pressure jumps across
the interface.
The stress along x gives:

−Fgrad
x

k̃
= ∇yσxy +∇xσxx,

the first term is computed above and the second leads only to non-linear terms,
then linearizing

Fgrad
x = k̃(φ′(u))2∇2

xh(x, t). (B.0.5)

For the other term at the linear order

F∗
x = −K1φφ′φ′′∇xh(x, t)− K2(φ′)3∇xh(x, t). (B.0.6)

Fx contains all terms with some function of the gradient ∇xh(x, t) and, when mul-
tiplied with the φ expansion in eq. (B.0.3), only i = y in eq. (B.0.1) leads to linear
terms.

Finally we turn to the modified Oseen tensor and note that in the sharp interface
limit, the stress is located at the interface and Gij(r − r′) ≈ Gij(x − x′, y − h(x, t)).
Expanding this quantity in the second argument, the only term without gradients
in h(x, t) is Gij(x − x′, 0). The contribution from Gxy(x − x′, 0) turns out to be zero
(cfr. eq. (A.0.7)).
Combining everything, eq. (B.0.1) at linear order is

φ′(u)∂th − φ′(u)
∫

dx′dy′ Gyy(x − x′, 0)[k̃∇y′σyy − k̃(φ′)2∇2
x′h(x

′, t)− K1φ(φ′)2∇x′h(x′, t)] =

= M∇2µ, (B.0.7)

The integral in y containing ∇yσyy and φ(φ′)2 evaluate to zero, then

φ′(u)∂th + k̃φ′(u)
∫

dx′dy′ Gyy(x − x′, 0)(φ′(u′))2∇2
x′h(x

′, t) = M∇2µ, (B.0.8)

To properly account for the right hand side contribution, we need to invert the
Laplacian in the chemical potential µ.
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For a function s(r̄) = ∇2g(r̄), the Fourier transform in the directions x, orthogonal
to y, gives:

ŝ(q, y) = (∂2
y − |q|2)ĝ(q, y),

with the associated Green’s function Lq(y − y1) =
1
2q e−q|y−y1|, yielding:

ĝ(q, y) =
∫

dy1 Lq(y − y1)ŝ(q, y1) =
∫

dy1
1
2q

e−q|y−y1| ŝ(q, y1). (B.0.9)

Applying this method, we are able to invert the laplacian in eq. (B.0.8):

∇−2
[

φ′(u)∂th +
k̃
k

σeq φ′(u)
∫

dr̄′Gyy(x̄ − x̄′, 0)∇2
xh(x̄′, t)

]
=

= M∆ f + Mk(φ′′(u) + φ′(u)∇2
xh(x, t)),

where we expanded ∇2φ(u) using eq. (4.3.1) and σeq = k
∫
(φ′)2dy is the equilib-

rium surface tension eq. (2.2.3).
After taking the Fourier transform in x using equation (B.0.9), multiplying by φ′(u)
and integrating over y, we arrive at

∫
dy
∫

dy1
1
2q

e−q|y−y1|φ′(u)φ′(u1)

[
∂thq −

k̃
k

σeqq2Tyy(q, 0)hq

]
= M∆ f δ(q)− Mσeqq2hq,

and finally, isolating ∂thq:

∂thq = −σeqq2
[

k̃
k
Tyy(q, 0) +

2Mq
Aeq(q)

]
hq. (B.0.10)

Where we defined Aeq(q) =
∫

dy dy1 e−q|y−y1|φ′(u)φ′(u1) and the function Tyy(q, 0)
is the transformed Oseen tensor eq. (A.0.6):

Tyy(q, 0) =
1

2Γ

(
q − q2√

λ2 + q2

)
, with λ2 = Γ/η.
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C. Summary of instability simulations

Below a comprehensive figure showing simulations at different friction Γ and mobility M, compared
with the predicted instability criteria.
Highlighted in green is the stability treshold found by ,inear analysis in chapter 4.

Figure C.1: Parameters values are: a = 0 − .25, b = 0.25, k = 1, k̃ = −4, M = 1, η = 1 and D = 0.005.
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