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Introduction

The interaction between cell membranes and proteins plays a central role
in many biological processes, from signaling to morphogenesis. A widely
used modeling approach treats membrane-associated proteins as point-like
entities that exert localized forces and torques on the membrane. This
simplification enables analytical calculations but neglects structural details
that may become important at small, but finite, length scales.

The aim of this thesis is to study how the finite size and anchoring
geometry of transmembrane proteins affect membrane deformation and force
transmission, beyond what is captured by point-force models.

The thesis is structured in two main parts. In the first part, we investigate
the static deformation of the membrane due to a single protein that imposes
a prescribed anchoring angle and a certain displacement of the membrane’s
boundary. After deriving the membrane shape numerically and comparing it
with analytical solutions, we analyze the force exerted by the membrane on
the protein in different conditions.
While similar problems have been studied in the literature (notably in [1]),
our analysis extends the classical framework by considering proteins with
finite size and anchoring angles, as well as different types of external boundary
conditions. At the end of the first part, we quantify the interaction between
two membrane inclusions as a function of their distance.
In the second part of the thesis, we study the dynamical coupling between
membrane deformation and lipid flow in the presence of a finite-size protein.
In this context, the governing equations simplify under certain assumptions,
allowing us to identify an instability mechanism that emerges from the
interplay between curvature and flow. Finally, we compute the viscous forces
exerted on the protein by the flowing membrane and compare our numerical
results with existing theoretical predictions.
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Introduction

Through this study, we aim to provide a more complete picture of pro-
tein–membrane interaction by incorporating finite-size effects and dynamical
couplings that are often overlooked in the literature.
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Capitolo 1

Physical model

1.1 General Comments on the Model
This work focuses on describing the interaction between the cellular membrane
and a transmembrane protein from a coarse-grained perspective, disregarding
the microscopic and discrete nature of the membrane.
The membrane is modeled as a two-dimensional smooth manifold embedded
in the three-dimensional space, represented by the mapping:

σ : R2 → R3 (1.1)

The presence of the protein is modeled through well-defined boundary
conditions imposed at the interface between the protein and the membrane.
The flow of phospholipids is incorporated by introducing a velocity field
defined at each point on the membrane. This velocity vector is decomposed
into tangential and normal components, namely:

v⃗ = vie⃗i + wn̂ (1.2)

where e⃗i are the local tangent basis vectors and n⃗ is the normal vector
(appendix 4.3.1).

The dynamics of the system is governed by three fundamental equations:

• Conservation of mass;

• Conservation of momentum;

• Evolution equation for the membrane’s shape.
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Physical model

The full equations (derivation based on [2][3]) are presented in the next
section, even if just a simplified version of them is going to be used.

1.2 Validity of the model
The model considered in this work is based on a continuum, coarse-grained
description of the lipid membrane and protein interactions. While this fra-
mework captures the large-scale mechanical and geometric features of the
membrane, it involves several approximations that limit its range of validity:

• The model assumes that the membrane behaves as a smooth two-
dimensional surface embedded in a three-dimensional space. This descrip-
tion breaks down when deformations occur at length scales comparable
to the thickness of the lipid bilayer (typically a few nanometers). At
such small scales, the discrete molecular structure of the membrane
and the individual behavior of lipid molecules cannot be neglected, and
atomistic or molecular dynamics models become necessary.

• Thermal fluctuations are neglected, just the minimum of the energy
is considered. In regimes where fluctuation-induced effects (such as
entropic forces or fluctuation-stabilized structures) are significant, the
deterministic treatment of the membrane shape and protein fields beco-
mes insufficient. A fully stochastic or statistical mechanical treatment
may be required to accurately capture the behavior in those cases.

Therefore, the model remains valid primarily in the regime of large-scale,
smooth deformations (typically above tens of nanometers), where the mem-
brane behaves as a viscoelastic medium and thermal fluctuations do not
dominate the physics. Outside this regime, more detailed models (molecular
or stochastic) are necessary to obtain reliable predictions.

1.3 Governing Equations
The equation for the conservation of mass can be obtained from the conser-
vation law for a scalar quantity defined on a 2D deformable surface (see the
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Physical model

appendix ??):
∂ρ

∂t
+ ∇i(ρvi) − 2ρwH = 0 (1.3)

where H is the mean curvature.
This equation states that changes in the surface density ρ arise both from the
in-surface flow (encoded in ∇i(ρvi)) and from changes in the local surface
area due to the membrane’s normal velocity, captured by the term wH.

Since we assume that the phospholipid fluid is incompressible, the surface
density ρ is constant. Therefore, the equation simplifies to:

∇iv
i − 2wH = 0 (1.4)

This implies that a converging tangential flow (i.e., ∇iv
i < 0) is associated

with a local outward deformation (positive w), and vice versa.

1.3.1 Conservation of momentum
The equation for momentum conservation can be derived from the general
conservation law applied to a vector field. Since momentum is a three-
dimensional vector, each component must be conserved independently1.

The general form of the momentum conservation equation is:

∂vγ

∂t
+ ∇i(vγvi) − vγwH = bγ + div b⃗γ (1.5)

This equation states that the variation of the γ-th component of momentum
is due to body forces bγ (e.g., due to interactions with the environment) and
to momentum exchange across the surface, described by the divergence of
the stress vector field b⃗γ.

The decomposition of Eq. (1.5) into tangential and normal components
can be performed by expressing the momentum vector as:

ρv⃗ = ρvie⃗i + ρwn̂ (1.6)

where e⃗i denotes the local tangent basis vectors of the surface (defined in
Appendix 4.3.1).

1The conservation of momentum cannot be derived directly for the tangential compo-
nents alone, as momentum at different points can only be compared in the embedding
space R3.
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The full momentum conservation equation (1.5) is then projected along the
tangential and normal directions using the dual basis vectors. The projection
yields three equations governing the in-surface (tangential) and out-of-plane
(normal) dynamics of the membrane.

In this work, bulk forces due to the surrounding fluid are neglected.
For tangential components, this is justified by the fact that the viscosity of
the surrounding fluid is much smaller than that of the membrane.
For normal components, the assumption works because we consider statio-
nary configurations and the external fluid inertia is negligible when w = 0
(stationary conditions).

1.3.2 Full equations
The final equations are [4]:



∇iv
i − 2Hw = 0,

ρ
1
∂tv

i + vj∇jv
i − 2vjwbij − w∇iw

2
=

∇iσ + η
è
−(∆LBv)i − 2(bij − 2Hgij)∇jw + 2Kvi

é
,

ρ
è
∂tw + vi

1
vjbij + ∇iw

2é
=

2κ
è
∇i∇iH − 2H(H2 −K)

é
+ 2Hσ+

+2η
è
bij∇ivj − 2w(2H2 −K)

é
,

∂tz = w
è
(n̂)3 − (n̂)i∂iz

é
Where the values of the physical quantities appearing in the equations are in
table 1.1, (values taken from [4, 5, 6]).
It is convenient to non-dimensionalize the equations. This approach is useful
to identify the relevant dimensionless parameters and to work with quantities
whose order of magnitude is near unity.
The chosen characteristic scales are:

• Characteristic length scale: the size of the protein, denoted by r0;

• Characteristic velocity: the velocity of the protein vth, or equivalently,
the velocity of the flow far from the protein in the reference frame where
the protein is at rest.
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Physical parameter SI Optimal units
l (dimension of the protein) 10−8 m 1 r0
η3D (3D viscosity) 1 N m−2s –
η2D (2D viscosity) – 0.1 pN r−1

0 ms
σ (line tension) 10−6 − 10−8 N m−1 10−2 − 10−4 pN r−1

0
κ (bending rigidity) 3 × 10−20 N m 3 pN r0
vth (typ. thermal velocity) 10−5 m s−1 1 r0 ms−1

ρ2D (2D membrane density) – 5 × 10−12 pN r−3
0 ms2

Tabella 1.1: Values of the parameters for cellular membranes. The values
are expressed in the SI and in a system of unit choosen to have numbers of
the of unity.

After non-dimensionalization, the equations take the form:

∇iv
i − 2Hw = 0,

Re
1
∂tv

i + vj∇jv
i − 2vjwbij − w∇iw

2
=

Re∇iσ +
è
−(∆LBv)i − 2(bij − 2Hgij)∇jw + 2Kvi

é
,

Re
è
∂tw + vi

1
vjbij + ∇iw

2é
=

2A
è
∇i∇iH + 2H(H2 −K)

é
+ 2σReH+

+2
è
bij∇ivj − 2w(2H2 −K)

é
,

∂tz = w
1
n̂ẑ − (n̂)i∂iz

2
As can be seen, two non-dimensional parameters determine different regimes
of the system, these are:

• Re = ρvthr0
η , that is the Reynold’s number that in the case under study

is really small Re ≃ 5 × 10−11. This dimensionless number describes
the ratio between variation in momentum density due to transport of
momentum and shear stresses.

• A = κ
vthηr0

, that is, a dimensionless parameter that describes the ratio
between the variation in momentum density due to elastic stresses and
shear stresses. The value of this parameter is A ≃ 10.
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The fact that Re ≪ 1 will be used in the following to simplify the equations.
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Capitolo 2

Finite element method

Given the high nonlinearity of the governing equations, numerical methods
have been implemented to gain insight into the system and to provide support
for analytical estimates. In particular, the finite element method (FEM)
has been employed, that is, a powerful numerical technique that allows to
handle complex systems of coupled partial differential equations (PDEs).
This approach enables the evaluation of the membrane shape (see figure ??)
as well as physical quantities such as the total energy, stress distributions,
boundary forces, and other relevant observables.
The core idea behind FEM is to approximate the solution of a partial
differential equation by projecting it onto a finite-dimensional function space,
thereby transforming the continuous problem into a system of discrete
algebraic equations for the linear coefficient of the Fourier decomposition
of the solution. The accuracy of the numerical solution depends on how
well the chosen function space can represent the true solution. The richer
the approximation space, the smaller the error with respect to the exact
solution. Once a suitable set of basis functions for the finite-dimensional
space is selected, denoted {ψn(r⃗)}n, the approximate solution is written as:

ψ∗(r⃗) =
Ø
n
anψn(r⃗),

where the coefficients an are unknowns to be determined.
In the following, we provide a high-level overview of the computational
framework and the numerical implementation, focusing on the practical
aspects relevant to our simulations. We deliberately omit technical details
such as convergence proofs and error analysis. This choice is motivated both
by the fact that such topics lie beyond the scope of this thesis, and by the
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Finite element method

intrinsic difficulty of analyzing convergence in highly nonlinear systems, as
those considered here.
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Figura 2.1: Example of membrane deformation induced by protein displa-
cements. Case (A) corresponds to a displacement aligned with the imposed
angle, enhancing membrane bending. Case (B) corresponds to a displacement
opposite to the imposed angle.

2.1 General consideration about how it’s im-
plemented

2.1.1 Lagrange elements
The general procedure to derive the discrete equations from a system of PDEs
follows the variational (or weak) formulation. The PDE is first multiplied by
a test function (belonging to the same or a related function space as the trial
function), and the resulting expression is integrated over the domain. Setting
this integral to zero enforces the residual of the equation to be orthogonal to
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Finite element method

the chosen function space.

Let Fi(ψ) = 0 the PDEs under study, the corresponding algebraic
equations to be solved are:Ú

ω
Fi(

Ø
n
anψn(r⃗))ϕm(r⃗)dS (2.1)

And the unknown are the coefficients an. The finite-dimensional function
space used for the discretization is the standard Galerkin space, which consists
of continuous piecewise-polynomial functions defined on each element of the
mesh. Specifically, we use Lagrange elements of order one. The choice of such
elements allows to dealing easily with the resulting equations, indeed this
element are piecewise polynomial of degree one and each of this is non-null
just in a small number of mesh triangles.
As regard the mesh used, whenever the physical problem exhibits inherent
geometric or physical symmetries (e.g., radial or reflection symmetries), the
computational mesh is constructed to respect those symmetries.
This is essential to prevent the introduction of spurious asymmetries in
the numerical solution that can arise purely from discretization artifacts.
Moreover, it should be noted that unexpected asymmetries due to mesh
anisotropy does not necessarily vanish with mesh refinement, expecially
given the nonlinearity of the equations, which may amplify even minimal
perturbations, causing instabilities in the convergence of the algorithm.

2.1.2 Well posedness of the variational problem and
boundary conditions

Since there is no established theory for the well-posedness of the nonlinear
problem under study, the number of boundary condition is going to be
chosen considering an heuristic criterium, that is, starting from the linearized
problem and assuming that the number of necessary boundary conditions
does not change in the nonlinear case.
In our simulations, we impose two types of boundary conditions: Dirichlet
and Neumann.
Dirichlet boundary conditions, which prescribe the value of the solution on
the boundary, are typically enforced by restricting the function space to those
functions that satisfy the conditions exactly. On the other hand, Neumann
boundary conditions, which prescribe the value of normal derivatives or
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Finite element method

fluxes, often emerge naturally as boundary terms when integration by parts
is applied during the derivation of the weak form.
All the boundary conditions that did not arise naturally have been imposed
using the Nitsche’s method. This method adds a penalty term to the
functional to enforce those conditions.

2.1.3 Dealing with higher-order equations

One common issue in finite element approximations is the limited regularity
of the basis functions. For instance, standard elements (like Lagrange ele-
ments) are continuous in the function value but not in the first derivatives
across element boundaries. This creates difficulties when the PDEs involves
second or higher-order derivatives, and this is the case with the equation
under study, since the equation for the curvature is fourth-order.

To address this, when possible, integration by parts is applied to reduce
the order of derivatives required on the trial, shifting derivatives onto test
functions and introducing boundary or interface terms.
However, in the case under study, integration by parts is not enough, for this
reason, auxiliary fields have been introduced.
These fields are coupled to the primary solution through additional equations
or constraints that ensure that they approximate the desired derivatives in a
weak sense.

2.2 Implementation in FEniCS

The tool used to implement the finite element method is FEniCS, an open-
source Python’s library that allows for high level definition of the variational
problem and automatic solution of the resulting system of equations.
The fully nonlinear equation presented in the previous section have been
implemented.
The library [4] used to solve the equations had already been developed and
validated by the internship supervisor, the contribution of the student has
been to extend parts of the code and adjust some existing ones.
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Finite element method

2.2.1 Limitations of the numerical scheme used
Two main limitations have been encountered due to the chosen scheme:
Due to the high non-linearity of the equations the algorithm did not converge
for certain boundary conditions and for mesh dimensions relatively thin. For
this reason, an increasing number of evaluations have been performed to
reach a sufficiently small error and convergence.
The use of the Monge parametrization for the description of the membrane
caused issues with overhangs (points where ∂rz assumes high values). This
is reflected in some limitations in the boundary conditions imposed (for
example, the displacement of the protein could not be much larger than the
dimension of the external boundaries).
This problem could have been solved using a general parametrization of the
form:

σ = (x(u, v), y(u, v), z(u, v)) (2.2)

However, this would have required a radical change of the code.

13



Capitolo 3

Steady state solution no
flow

In static condition, that is, where no flow of phospholipids is present, the
equation reduces to the balance of surface stresses and bulk forces, that is:

∇i∇iH + 2H(H2 −K) −H
σ

κ
= 0 (3.1)

It is well known that one can distinguish between regimes where the bending
energy totally dominates and regimes where the elastic tension play a role
too. The threshold is setted by the length ℓ =

ñ
κ
σ .

Give the values of κ and σ from table 1.1, this length is of the order of 10r0
1.

3.1 Radial symmetry
One can study equation 3.1 in the case where the membrane inclusion
has a circular cross section. In this situation, the system is expected to
exhibit radial symmetry, for this reason, it is convenient to use the Monge
parametrization in polar coordinates, namely:

x⃗(r, θ) = (r cos(θ), r sin(θ), z(r, θ)) (3.2)

1r0 is the typical radius of a trans-membrane protein

14



Steady state solution no flow

In particular, we expect z(r, θ) = z(r). Under this assumption, the equation
assumes the following form:

1ñ
|g|
∂r(

ñ
|g|grr∂rH) − 2H(H2 −K) +H

1
ℓ2 = 0 (3.3)

Where the geometrical quantities are:

ω = ∂rz√
g = r

√
ω2 + 1

grr = 1
1+ω2

H = 1
2

5
∂rω

(1+ω2)3/2 + ω/r
(1+ω2)1/2

6
K = ω∂rω

r(1+ω2)2

Equation 3.3 cannot be easily solved, however, it can be simplified by
considering small values of ω. This assumption is valid both when the
displacement of the protein relative to the reference plane and the imposed
angle are small, and when one aims to study the behavior of the membrane
far from the protein, where the membrane is expected to be nearly flat. If
the slope is small the geometrical quantities become:

ω = ∂rz√
g ∼ r + o(ω)

H = 1
2

è
∂rω + ω

r + o(ω)
é

K = o(ω)

Substituting into the equation 3.3, one obtains the following third-order
linear differential equation:A

1 − r2

ℓ2

B
ω − r

A
1 + r2

ℓ2

B
ω′ + 2r2ω′′ + r3ω′′′ = 0 (3.4)

The equation for z(r) is a fourth-order equation, that is, four boundary
conditions should be imposed to have a unique solution. Physically relevant
BCs are the following: 

z(r0) = h0

z(R) = 0
ω(r0) = tanα
ω(R) = 0

15



Steady state solution no flow

• z(r0) = h0, this condition is physically relevant because one could be
interested in situation when the protein is constrained at a certain
position due to the presence of an external force 2;

• z(R) = 0, solutions of the equation (3.4) are invariant under translation
along the z axis, this BC simply fix the reference z plane.

• ω(r0) = tan(α), some transmembrane proteins that are much more rigid
than the membrane have shapes that force certain angles when bounded
to the membrane [7].

• ω(R) = 0, this condition intrinsically fixes the length scale of the external
environment, indeed, the presence of a distance at which the slope of
the membrane is zero implies that there are external torques applied to
the membrane3.

The equation admits three linear independent solutions, one of which is
ω = 1

r .
The remaining two independent solutions can be found reducing the order of
the equation through the substitution ω = ω∗(r)

r .
The resulting equation is:

1
1 − r2

ℓ2

2
S(r) + r (−S′(r) + r S′′(r))

r3 = 0 (3.5)

Where S(r) = dω∗

dr .
Solutions to this equation can be found in Taylor series form, calculations
lead to the following expressions[8]:

S1(r) =
+∞Ø
k=0

ℓ−2k

(2k!!)2r
2k+1 (3.6)

S2(r) = S1(r)
Ú x

S1(x)2dx (3.7)

2One could also consider fixed forces, that is almost the same intuitively but
mathematically less trivial to impose

3External torque can be due to the presence of other proteins or the actin cortex that
increases the rigidity of the membrane.
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Steady state solution no flow

Written in this form they are not particular informative, however, analysis
of the asymptotic behavior4.3.1 gives the following results:

S1(r) ∼ e
r
ℓ
√
r for r → +∞ (3.8)

S1(r) ∼ r for r → +∞ (3.9)
S2(r) ∼ e− r

ℓ
√
r for r → 0 (ℓ → +∞) (3.10)

S2(r) ∼ r ln(r) for r → 0 (ℓ → +∞) (3.11)

It is interesting to note that only the membrane shape corresponding to the
solution S2(r) tends to zero at +∞. Hence, one can expect the membrane
to decay exponentially far from the protein (r ≫ ℓ).
Given the linearity of the equation, the solution satisfying conditions 3.1
can be written as a linear combination of the linear independent functions,
weighted by the coefficients:

ci = Bi(R, r0)h0 + Ci(R, r0) tanα (3.12)

One can note that final solution will be linear in h0, tanα, while it will have
some nonlinear dependence on R and r0.

3.2 Non-linear behavior

3.2.1 Approximate solution for large gradients

Further insight about the non-linear behavior of the membrane can be
obtained through the substitution ω = ψ√

1−ψ2
. Under this substitution the

various geometrical quantities assume the form:


ω = ∂rz√
g = r√

ψ2+1

grr = 1 + ψ2

H = 1
2

è
∂rψ + ψ

r

é
K = ∂rψ

2

2r

17



Steady state solution no flow

Substituting into the equation one finds:

(1 − ψ2)∂2
rH +

A1 − ψ2

r
− ψ∂rψ

B
∂rH+

+
A2ψ∂rψ

r
+ 1
ℓ

− 2H2
B
H = 0 (3.13)

H = ∂rψ + ψ

r
(3.14)

The latter equation admits a zero curvature solution of the form ψ = c1
r .

This solution can be used to gain insight into the exact non-linear solution.
The profile of the membrane is given by:

z(r) = −c1 ln
r −

ñ
r2 − c2

1
c2

 (3.15)

The two coefficients c1 and c2 can be determined by imposing the boundary
conditions: z(R) = 0

ω(r0) = tanα
(3.16)

It turns out to be advantageous to linearize this new equation. In the previous
case, the linearization was justified for small values of ω ≪ 1, where nonlinear
terms were negligible. However, in the present case, the transformation maps
the unbounded interval (−∞,+∞) to the finite interval (−1, 1), effectively
compressing the domain. As a result, the omitted nonlinear terms (of order
O(ψ3)) remain relatively small even for higher values of ω. Therefore, we
may expect the linearized solution to remain valid over a broader range of ω.
The linearized equation is the same as that obtained in the previous section.
The final solution will be of the form:

ω = c1f1(r) + c2f2(r) + c3f3(r)ñ
1 − (c1f1(r) + c2f2(r) + c3f3(r))2

(3.17)

Where fi(r) are the solution already described in section 3.1.
One can note that this solution develops singularities wherever ψ(r) = 1. In
the next section, this solution is compared with the numerical one.
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Steady state solution no flow

3.3 Numerical results

To assess the regime of validity of the theoretical results, several numerical
simulations were performed and the resulting membrane profiles were com-
pared with the analytical predictions (figure 3.1).
In figure 3.1, it can be seen that the linear solution remains accurate for
imposed inclination angles of up to approximately tanα ≃ 0.4.
Beyond this threshold, the linear approximation fails to capture the actual
shape of the membrane, as non-linear effects become significant. In contrast,
the non-linear solution given in equation 3.17 closely reproduces the mem-
brane profile even for larger imposed angles. This form could be particularly
relevant for describing a regime where large deformation are present.
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Figura 3.1: Comparison between analytical and numerical membrane shapes
for different values of the imposed inclination angle (C, D) and imposed
displacement (A, B). In (A, C) the numerical result is compared with the
solutions to the linearized equation, while in cases (B, D) they are compared
with the nonlinear approximate solutions.
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3.4 Expansion near a vertical flex
It is interesting to study the solution near a point where ∂z

∂r → ∞ since, as
will also be noted in the next section, the membrane tends to form tubules
for a large enough displacement of the protein.
In order to do this, it is convenient to perform a change of variable, conside-
ring z the independent variable and r = r(z). After this substitution and
linearization (r(z) = r∗ + u(z), where u << R) the equation becomes:

2 − r2
∗
ℓ2

r3
∗

−
6 − r2

∗
ℓ2

r4
∗

u−
5 − r2

∗
ℓ2

r2
∗

 u′′(z) − u′′′′(z) = 0 (3.18)

Since u << R, in order for the equation to be satisfied, the term of order
O(1) must vanish, that is r0 =

√
2ℓ. This result fixes the dimension of an

energetically stable tubule, indeed, if r0 /=
√

2ℓ, necessarily at least one term
between u′′ and u′′′′ should be of order O(1) to balance the constant term.
This would not be consistent with the fact the terms proportional of order
O(u′′2) has been neglected.
Solutions of the equation are discussed in more detail in the appendix 4.3.1.

3.5 Forces
One of the physical quantities that describes the interaction between the
protein and the membrane is the force at the boundary. The latter have been
derived in the appendix 4.3.1 using a variational approach. The tangential
and normal components of the force per unit length are:f⃗⊥ = 2κni∇iHn̂ = −2κ∂rHn̂

f⃗∥ = −ni(2κH2 + σ)e⃗i
Using dimensional analysis one finds that the dependence of the force density
on the height should have the form:

f(h0, σ, κ,R, r, tanα) = κ

R2ϕ

A
σ

κ
R2,

h0

R
,
r

R
, tanα

B
(3.19)

Integration over the circular boundary leads to:
F z

⊥ = 2πκ r0
R2ϕ⊥

31
R
ℓ

22
, h0
R , tanα

4
cosα

F z
∥ = 2πκ r0

R2ϕ∥

31
R
ℓ

22
, h0
R , tanα

4
sinα

(3.20)
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From this form of the force one can note that, given the independent variables,
different regimes have to be expected:

• R ≲ ℓ : this regime could describe situations where proteins are packed
or σ is very small.

• R ≫ ℓ : this regime corresponds to situations where the membrane
inclusion is almost isolated.

At the same time, for a given value of the ratio R
ℓ one can have different

force regimes depending on the ratio h0
R .

In the next section the precise behavior of the force is evaluated numerically
and this different regimes are found.

3.5.1 Numerical results
In the non-linear regime, the force exerted by the membrane has been
evaluated numerically. The results are shown in Figure 3.2.
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Figura 3.2: Numerical evaluation of the total force along the z-axis for
different values of ω, h and R.

The total force along the z-axis (the only nonzero component due to rota-
tional symmetry) exhibits a non-monotonic dependence on the displacement
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h of the protein. As expected, the force is asymmetric under the inversion
h → −h when the angle α is nonzero.

For small displacements, the force scales linearly with h, and the slope
decreases with increasing R. In contrast, for large displacements, the force
develops oscillations whose amplitude decreases with R. This oscillatory
behavior at large h is consistent with previously reported results in the
literature. For instance, in [1], where a point-like force is applied to a
membrane, similar oscillations and a relaxation to a constant force for
h → +∞ are observed.

Due to limitations in the current version of the library, as discussed in
section 2.2.1, it was not possible to explore the asymptotic regime for very
large values of h.

3.6 Tubule formation
From the numerical analysis of the pulling force, one can observe the exi-
stence of a threshold height hthr above which the force ceases to increase and
instead starts to decrease.
This transition is accompanied by a qualitative change in the shape of the
membrane. In particular, the system shifts from a regime characterized
by distributed curvature gradients to one dominated by localized, sharp
curvature variations, as shown in figure 3.3. This regime marks the onset of
tubule formation, a well-known phenomenon in membrane mechanics.

To gain insight into this transition, we consider a simplified model that
captures the competition between distributed and localized gradients. Inspi-
red by the numerical profiles, we divide the radial interval [r0, R] into three
distinct regions:

• [r0, l − h
|x| ]: although the curvature here is not exactly zero, due to the

energetic cost of satisfying the boundary conditions, this region remains
relatively short and nearly flat. For simplicity, we approximate it as flat.

• [l − h
|x| , l]: this is the transition region, where the membrane exhibits

curvature. We assume the membrane has a constant slope x in this
region.

• [l, R]: here, the curvature is again negligible, and the membrane is nearly
flat.
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Figura 3.3: Membrane shape and normal stresses evaluated for different
values of the protein displacement and mesh dimension. Figures (A) and (B)
correspond to R = 30r0, figures (C) and (D) to R = 100r0.

In this model, x denotes the average slope in the transition region, and l
its extent. The total energy of the system includes two contributions:

EH = 2πk2

Ú R

1

√
g H2 dr (bending energy) (3.21)

Eσ = 2πσ
Ú R

1

√
g dr (tension energy) (3.22)

where H is the mean curvature and √
g the metric factor.

Using the above approximations, the energy can be reduced to a closed
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expression:

E(x, l, h) = ℓ−2
A
h2

x2 − 2hl
x

B
(1 −

√
1 + x2) −

x2 ln
1
1 − h

lx

2
√

1 + x2 (3.23)

The equilibrium configuration corresponds to the values (x∗, l∗) that
minimize this energy. By solving this minimization problem numerically
for various values of h and ℓ, one finds that for large ℓ (i.e., large domain),
there exists a threshold height hthr above which localized gradients (tubule)
become energetically favorable.

However, as ℓ increases, the energetic cost associated with the increased
surface area due to these sharp gradients becomes comparable to that of
distributed curvature, penalizing the formation of very steep localized regions.
As a consequence, the threshold height hthr increases with ℓ.

In addition to predicting the onset of tether formation, this simplified
model also captures the qualitative behavior of the force-height relationship
observed numerically. In particular, consider the two limiting cases:

• For h < hthr, with h ≪ ℓ, we expect a small slope x ∼ h
R . Expanding

the curvature, we find:

H ≃ H0 + A(ℓ) h
2

R2 + O
A
h4

R4

B

leading to a linear force–height relation.

• For h > hthr, the system minimizes its energy by forming a narrow neck,
and we expect x → ∞. In this limit:

H ≃ B(c2, ℓ) · h+ O(1/x)

and the force becomes approximately constant with height.

This matches well with the numerical force curves (figure 3.2), especially
for large values of R.

3.7 Membrane-mediated interaction between
two proteins

When two proteins are present, the assumption of rotational symmetry no
longer holds. As a result, the partial differential equation cannot be reduced
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to an ordinary differential equation, and the analytical treatment of the
problem becomes considerably more complex. Therefore, this case will be
investigated numerically in the following.
The presence of two proteins is expected to give rise to a membrane-mediated
interaction between them. For R ≪ ℓ, the deformation induced by a single
protein decays exponentially, and so does the interaction [9].
However, since situation where the distance between the two proteins is
of the order or smaller then ℓ could occur (regimes where the density of
membrane inclusion is high), it is of interest to study how the potential
energy depends on their separation.
To this end, we numerically compute the energy of the system, by evaluating
the integral:

U(d) =
Ú

Ω

3κ
2H

2
2 + σ

4√
gdS − 2

Ú
Ω

3κ
2H

2
1 + σ

4√
gdS (3.24)

Where H2 is the curvature distribution in the presence of two proteins
separated by a distance equal to d, while H1 is the curvature in the case of a
single protein, It has been subtracted in such a way to have potential that is
null at infinity.
Two situations were analyzed, when the proteins impose angles with same or
different orientations (figure 3.4).

The numerical evaluation gives the potential shown in figure 3.5. One can
note that there seems to be a divergence for. As can be noted, the angle
imposed by each of the protein seems to be equivalent to a sort of "charge"
possessed by the protein, in the sense that proteins that impose angles with
the same orientation tend to repel while proteins that impose opposite angles
tend to attract.
The dependence of the interaction strength on the tangent of the angle can
be seen in figure 3.5).
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Figura 3.4: Membrane profile for different proteins orientations. In (A)
the proteins impose angles with different orientations, while in (B) the same
orientation.
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Capitolo 4

Steady state solution with
flow

4.1 Equation and boundary conditions
In the case of a stationary tangential flow the equations become:

∇iv
i = 0

Revj∇jv
i = ∇iReσ +

1
∇j∇jv

i + 2Kvi
2

w = 0

Revibikvk = −A
1
2∇i∇iH + 4H(H2 −K)

2
+ 2HReσ + 2 bij∇ivj

A system with a square internal boundary will be considered in the following
analysis (figure 4.1). The reference frame is taken to be that of the protein,
meaning that the flow around the protein is studied as if the protein were
stationary and the surrounding fluid is moving. The following boundary
conditions will be imposed:

• v⃗ = 0 at the boundary of the protein. This no-slip condition reflects the
assumption that phospholipids in direct contact with the protein are
immobilized due to binding interactions.

• v⃗ = v0x̂ at x = −L/2. Far upstream from the protein, the velocity field
is assumed to be uniform and unperturbed, modeling the background
flow of the membrane in the absence of the obstacle.
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• σ = σ0 at x = R/2. Far downstream, the stress is prescribed to match
the unperturbed flow conditions, under the assumption that the influence
of the obstacle vanishes sufficiently far away.

• v⃗ · ŷ = 0 at y = ±R/2. This condition enforces confinement in
the transverse (y) direction, modeling either the finite extent of the
membrane patch or the presence of physical barriers. It introduces a
geometric/environmental length scale, R.

• Fixed contact angle at both the protein boundary and the external
boundary. This boundary condition reflects mechanical equilibrium of
the interface with the protein and the environment, and it controls the
slope of the membrane surface at the contact line.

• Fixed height at the external boundary. This boundary condition sets
the reference level for the membrane profile.

4.2 Linearized equation
Like in the case of two proteins, also if a flow along the x direction is present,
the hypothesis of radial symmetry is not valid anymore. In this case, the
velocity field and the various geometrical quantities will depend both on the
angle and the distance from the center of the protein.
To gain insight, it is convenient to consider small deviations from the plain
configuration, that is, to linearize the various quantities around ω = 0 in the
Monge representation.
To first order in the Monge representation, the equations reduce to:

∂iv
i = 0

Re vj∂jvi = ∂iσRe + ∇2vi

Re vibikvk = −2A∇2H+

+ 2H(σRe) + 2 bij∂ivj

(4.1)

From the second equation, one can see that the velocity field does not
feel the curvature of the membrane to first order. The two equation will be
really coupled only when K ∗ vi is comparable to unity.
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Figura 4.1: Figure (A) represents the membrane shape in the presence
of the flux. Figure (B) shows the value of the membrane tension, in the
presence of the flux is not constant anymore. Figure (C) shows the three
dimensional flow distribution. All the figures correspond to flux velocity
equal to vth

Given the fact that Re ≪ 1 one can neglect the term on the left side of the
second equation and reduce the number of equations using a well known
mathematical trick [10].
First of all, it is convenient to introduce the current function:

vx = ∂yψ (4.2)
vy = −∂xψ (4.3)

By introducing this function, the continuity equation is trivially satisfied.
Moreover, taking the curl of the second equation gives the final equation:

∇2∇2ψ = 0 (4.4)

The equation for σ can be obtained by taking the divergence of the second
equation of 4.1.
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The final form of the equations is:
∇2∇2ψ = 0

∇2σ′ = 0
A∇2H = Hσ′ + 2ϵkj(∂i∂jz)(∂i∂kψ)

where we neglected Re vibikvk given the value of Re. Even though the
equations have been significantly simplified, an analytical study will not be
pursued. Instead, a numerical analysis will be carried out.

4.3 Numerical results
Numerical simulations were made for different values of v and R (figure 4.1),
showing that three different regime are present for the membrane shape
(figure 4.2):

• v ≪ vth: The flow has no visible effect on the membrane shape.

• v ≃ vth: The membrane shape begins to show asymmetry due to the
presence of the flow.

• v > vth: The membrane is strongly affected by the flow, leading to the
formation of a bump.

Figure 4.2 shows the membrane shape for different values of v. The flow field
has also been evaluated and compared for different velocities (Figure 4.3).
As expected from equations 4.1, even after the formation of the bump, the
flow field is qualitative the same.
The previous result can be explained considering the energetic competition
between tension and bending energies. Indeed, due to the presence of the
flow, a region of negative tension appears where the flow encounters the
protein (figure 4.1).
Negative tension implies that the membrane tends to invaginate, leading
to an increase in local density and thus a local bending of the membrane.
Comparing the orders of magnitude of the surface tension σ and the bending
rigidity suggests that this deformation is energetically favorable under certain
conditions. This reasoning allows one to define a characteristic length scale
from the physical parameters:

l = k

ηv
(4.5)
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Figura 4.2: Membrane shape for different values of the flux velocity. Figure
(A) is for velocity equal to 0.1vth, (B) for vth and (C) for 5vth

By comparing this length scale l with the other relevant length scale R,
one can determine the velocity regimes in which membrane deformation is
expected to occur, that is, when l < R.

4.3.1 Forces

The total viscous force applied to the protein has been numerically evaluated
and is shown in figure 4.4.
One can note that the force increases linearly with the velocity up to values
of 10vth and changes in the angle imposed by the membrane inclusion does
not significantly affect the total force. This is again in accordance with the
fact that this is a regime in which the equations can be linearized and the
flow is not dependent on the membrane shape. The slope of the force as a
function of the velocity is also shown in Figure 4.4, and is in agreement with
the result reported in [11].
They analytically studied a system with a similar setting: the flow of a
cylinder of radius r0 in a channel of width R with smooth walls, finding that
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Figura 4.3: Flow field projected into the xy plane.
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Figura 4.4: Figure (A) shows the dependence of the viscous forces on the
flux velocity for different values of the angle imposed by the protein. Figure
(B) shows how the slope of the force varies with the dimension of the external
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the viscous force on the cylinder scales as 1
log R

r0
.
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Conclusion

This thesis has addressed two key aspects of protein-membrane mechanics:
static deformation induced by protein inclusions and the effect of membrane
flow on protein mobility.

In the static regime, we confirmed that the inclusion of finite size and
anchoring angles significantly alters the resulting membrane profile and forces
in cases when deformations are of the order of magnitude of the inclusion
or the membrane is constrained at distances smaller than ℓ. Analytical
approximations proved effective for small deformations, while numerical
simulations were essential for exploring the nonlinear regime.
The results show that the forces experienced by proteins are sensitive not only
to the membrane geometry but also to the boundary conditions imposed at
its edge. This indicates that protein concentration and spacing may regulate
not only inter-protein interactions but also how the cell mechanically engages
with its environment. For instance, a decrease in the spacing between proteins
leads to an increase in the slope of the force-displacement curve in the linear
regime, corresponding to a stiffer attachment to the membrane. Such a
mechanism could enable cells in tissues to dynamically regulate tissue-level
elasticity.

We also observed the well known transition to tubule formation beyond a
critical displacement, characterized by a sharp change in curvature and stress
distribution. This behavior was captured both numerically and through a
minimal model.

Finally, we quantified the interaction between membrane inclusions in a
regime where analytical treatment is challenging. We confirmed the expected
exponential screening for distances d > ℓ and studied the curvature-mediated
interaction at small separations between the inclusions. Unfortunately, it was
not possible to verify the fluctuation induced interaction scaling as U(r) ∼ 1

r4

found in [9], since our approach does not account for fluctuations.
In the dynamic regime, we found that membrane flow induces additional
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shape deformations when the velocity exceeds a threshold. Importantly, the
viscous force exerted on the protein follows a linear trend with respect to the
flow speed, and its scaling with system size matches analytical predictions
for confined geometries.

Even though extreme regimes (h ≫ R, v ≫ vth) could not be explored
due to limitations of the approach used, modifications to the library could
enable the study of these regimes. Moreover, the library supports the
analysis of situations involving more than two proteins. Indeed, it allows
easy generalization to complex domains containing large numbers of proteins.
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Appendix

Summary of useful differential geometry facts
This section summarizes key results from differential geometry that are
employed throughout this work. We consider a general two-dimensional
manifold embedded in three-dimensional Euclidean space, R3, which can
be parametrized by a smooth map Σ : R2 → R3. A point on the surface is
described by a position vector r⃗(x1, x2), and a natural basis for the tangent
space at each point is provided by the partial derivatives with respect to the
coordinates:

e⃗i = ∂r⃗(x1, x2)
∂xi

, (6)

n̂ = e⃗1 × e⃗2

|e⃗1 × e⃗2|
, (7)

where n̂ denotes the unit normal vector to the surface. It is important to note
that these basis vectors carry physical dimensions. Any three-dimensional
vector field V⃗ defined on the surface can be decomposed into components
parallel and perpendicular to the surface:

V i
∥ = V⃗ · e⃗i = V αeiα, (8)

V⊥ = V⃗ · n̂ = V αnα. (9)

To avoid confusion between components in three-dimensional space and those
in the tangent space, latin indices will be used for the latter, while Greek
indices will denote components in R3.

We now consider the behavior of geometric quantities under an infinitesimal
deformation of the surface, expressed as

δr⃗ = ϕie⃗i + ψn̂,
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where ϕi and ψ are small perturbation fields defined on the surface.
From the surface parametrization, two fundamental second-order tensor

fields can be introduced:

• The first fundamental form, which defines the surface metric:

gij = e⃗i · e⃗j,

• The second fundamental form, which encodes the curvature:

bij = ∂in̂ · e⃗j.

Special care must be taken when computing derivatives of vector or tensor
fields. Since the basis {e⃗i} changes from point to point, partial derivatives
of the vector components alone do not capture the total variation of a field.
To address this, one introduces the Christoffel symbols, defined by

Γkij = e⃗k · ∂ie⃗j,

which account for the spatial variation of the basis vectors themselves. Using
the Christoffel symbols, the covariant derivative of a vector field vj on the
surface is given by

∇iv
j = e⃗j · ∂i(vke⃗k),

which properly describes how the vector field changes when both the field
and the basis vary across the surface. Starting from the second fundamental
form, one can define two geometrical quantities that are used to characterize
the extrinsic geometry of the surface, these are:

• The mean curvature H, defined as the trace of the second fundamental
form:

H = 1
2g

ijbij,

where gij is the inverse of the first fundamental form.

• The Gaussian curvature K, defined as the determinant of the second
fundamental form:

K = det(bikgkj).
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Finally, we consider the first-order variations of key geometric quantities
under the perturbation δr⃗ = ϕie⃗i + ψn̂ which are used to evaluate the
variation of the Helfrich-Canham energy functional.
These include:

δe⃗i = (∇iϕ
k − ψbki )e⃗k + (ϕkbki + ∇iψ)n̂ (10)
δn̂ = ϕkbik + ∇iψ (11)

δgij = ∇iϕj + ∇jϕi − 2ψbij (12)
δ
√
g = √

g
1
∇iϕ

i − 2Hψ
2

(13)

δH = ψ(2H2 −K) + 1
2∇i∇iψ + ϕk∇kH (14)
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Different parametrization used
Cylindrical parametrization with r as independent va-
riable
Parametrization:

x⃗(r, θ) = (r cos θ, r sin θ, z(r, θ))

Partial derivatives:

∂rx⃗ = (cos θ, sin θ, ∂rz)
∂θx⃗ = (−r sin θ, r cos θ, ∂θz)

Metric tensor:

g =
C
1 + (∂rz)2 ∂rz ∂θz
∂rz ∂θz r2 + (∂θz)2

D

Unit normal vector:

n̂ =
 sin θ ∂θz − r cos θ ∂rzñ

(∂θz)2 + r2(1 + (∂rz)2)
,

− cos θ ∂θz − r sin θ ∂rzñ
(∂θz)2 + r2(1 + (∂rz)2)

,
rñ

(∂θz)2 + r2(1 + (∂rz)2)


Inverse metric:

g−1 = 1
(∂θz)2 + r2(1 + (∂rz)2)

C
r2 + (∂θz)2 −∂rz ∂θz
−∂rz ∂θz 1 + (∂rz)2

D

Second fundamental form:

II =


r ∂r∂rzñ

(∂θz)2 + r2(1 + (∂rz)2)
−∂θz + r ∂r∂θzñ

(∂θz)2 + r2(1 + (∂rz)2)
−∂θz + r ∂r∂θzñ

(∂θz)2 + r2(1 + (∂rz)2)
r(r ∂rz + ∂2

θz)ñ
(∂θz)2 + r2(1 + (∂rz)2)


Mean curvature :

H =
r zθθ(1 + z2

r ) + zr
1
r2(1 + z2

r ) + 2zθ(zθ − rzrθ)
2

+ r(r2 + z2
θ)zrr1

z2
θ + r2(1 + z2

r )
23/2

Gaussian curvature:

K = −(zθ − rzrθ)2 + r2(zθθ + rzr)zrr
(z2
θ + r2(1 + z2

r ))
2
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Cylindrical parametrization with z as independent va-
riable

Parametrization:

x⃗(t, z) = (cos θ · r(z), cos θ · r(z), z)
Partial derivatives:

∂zx⃗ = (cos θ · r′(z), sin θ · r′(z), 1)
∂θx⃗ = (−r(z) sin θ, r(z) cos t, 0)

Metric tensor:

g =
C
1 + r′(z)2 0

0 r(z)2

D
Unit normal vector:

n̂ =
− cos θ · r(z)ñ

r(z)2(1 + r′(z)2)
, − r(z) sin θñ

r(z)2(1 + r′(z)2)
,

r(z)r′(z)ñ
r(z)2(1 + r′(z)2)


Inverse metric:

g−1 =
 1

1+r′(z)2 0
0 1

r(z)2


Second fundamental form:

II =

− r(z)r′′(z)√
r(z)2(1+r′(z)2)

0

0 r(z)2√
r(z)2(1+r′(z)2)


Mean curvature:

H = (1 + r′(z)2 − r(z)r′′(z))
r(z) ((1 + r′(z)2))3/2

Gaussian curvature:

K = − r′′(z)
r(z)(1 + r′(z)2)2
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Derivation of the conservation equation
Let Σ : Ω ⊂ R2 → R3 be the reference configuration and Σ′

t : Ω′ ⊂ R2 → R3

the time dependent configuration.
Define ϕt : S → S′, that is, the map that describes the motion of each point
on the time dependent manifold.
The integral form of the conservation of a generic quantity A : S′ × R → R
reads:

d

dt

Ú
ϕt(U)

A(X, t)dσ = 0, ∀U ⊂ S (15)

Which can be written as:Ú
S

d

dt
(A(ϕt(x), t)J(x, t)) dxdy = 0, ∀S ⊂ Ω ⇒ d

dt
(A(ϕt(x), t)J(x, t)) (16)

Where J(x, t) is the Jacobian of the transformation and it’s equal to:

J(x, t) =
-----d(Σ

′
t)i

dΣj

----- =
ñ

|g′(ϕt(x), t)|
-----dϕ

k
t (x)
dxl

-----
ñ

|g(x)|−1 (17)

Where chain rule has been used. The equation can be thus expanded:

d

dt
(A(ϕt(x), t)J(x, t)) = (18)

J(x, t)(∂tA(ϕt(x), t) + ∂XiA|X=ϕt(x)∂tϕt(x))+ (19)

+A(ϕt(x), t)( d
dt
J(x, t)) (20)

d

dt
J(x, t) == d

dt

ñ
g′(ϕt(x), t)

A-----dϕ
k
t (x)
dxl

-----
ñ
g(x)

B
+ (21)

+
ñ
g′(ϕt(x), t) d

dt

-----dϕ
k
t (x)
dxl

-----
ñ
g(x) (22)

(23)

where:
d

dt

ñ
g′(ϕt(x), t) = (24)

= ∂α
ñ
g′(ϕt(x), t) vα + ∂t

ñ
g′(ϕt(x), t) (25)
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∂t
ñ
g′(ϕt(x), t) = 1

2
ñ
g′(ϕt(x), t)

(cof(g))αβ∂tgαβ = (26)

=
ñ
g′(ϕt(x), t)

2 gαβ∂t(eiαeiβ) =
ñ
g′(ϕt(x), t)

2 2 ∗ gαβeiα∂t(eiβ) = (27)

=
ñ
g′(ϕt(x), t) ∗ gαβeiα∂β(v⊥n

i) = −
ñ
g′(ϕt(x), t) ∗ gαβ∂β(eiα)v⊥n

i = (28)
−
ñ
g′(ϕt(x), t) ∗ bααv⊥ (29)

d

dt

-----∂ϕ
α
t (x)
∂xβ

----- = (cof)αβ d
dt

∂ϕαt (x)
∂xβ

= (30)

=
-----∂ϕ

α
t (x)
∂xβ

----- ( ∂xβ

∂ϕαt (x))∂v
α(ϕt(x))
∂Xγ

ϕγt (x)
∂xβ

=
-----∂ϕ

α
t (x)
∂xβ

----- ∂v
γ(ϕt(x))
∂Xγ

(31)

Where we have used the formula d det(Aij) = cofijdAij.
The final result is:

d

dt
J(x, t) = J(x, t)( 1ñ

g′(ϕt(x), t)
vα∂α

ñ
g′(ϕt(x), t) − 2Hv⊥ + ∂αv

α) (32)

Substitution into the initial equation leads to:

d

dt
(A(ϕt(x), t)J(x, t)) = ∂tA+ ∇α(Ava) − 2Hv⊥ = 0 (33)

Variation of the Helfrich-Canhan’s energy func-
tional
In order to find the surface and line forces acting on the membrane, one has
to evaluate to linear order the variation of the HC energy functional under
small perturbations. Substitution of the variation of the quantities presented
in appendix 4.3.1 gives:

δH[z] = δ
Ú

Ω
dS

î
2κH2 + κ′K + σ

ï
=
(34)

=
Ú

Ω
dS

î
ψ
è
4kH3 − 2Hσ − 4kHK

é
+ ∇iϕ

i
è
2kH2 + σ

é
+ 2kH∇i∇iψ

ï
(35)
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Integrating by parts two times the last term, one obtains:

2k
Ú
dS(H∇i∇iψ) = 2k

Ú
dS(ψ∇i∇iH) + 2k

Ú
dl(Hni∇iψ − ψni∇iH)

(36)

The term Hni∇iψ corresponds to a torque per unit length.
The final expression has the form:

δH[z] =
Ú

Ω
dS

è
(4kH3 − 2Hσ − 4kHK + 2kψ∇i∇iH)ψ

é
+ (37)

+
Ú
dl
è
2k(Hni∇iψ − ψni∇iH + niϕ

i(2kH2 + σ))
é

(38)

The total force acting on a line contour written in the real space will be:

F⃗ = −
Ú
dl
è
−2κn̂(ni∇iH) + nie⃗

i(2κH2 + σ)
é

(39)

Analysis of solutions to the linear equation
In chapter 2 the solutions to the linear ODE have been presented. In this
section we intend to derive those solutions.

(1 − r2

ℓ2 )S(r) − rS′(r) + r2 S′′(r) = 0 where S = w(r)
r

(40)

A first solution can be found in Taylor series form by substituting Sℓ(r) =q+∞
i=0 air

i and finding a relation between the coefficients ai. By doing so one
obtains

ai = ℓ−2i

(2i!!)2 if i is odd (41)

ai = 0 otherwise (42)

The second solution does not admit a Taylor series around r = 0, however,
substituting S2(r) = S1(r)S∗(r) one can reduce the degree of the equation
and solve it directly. The final equation has the form:

S′′
∗ − S′

∗

A1
r

− 2S′
1

S1

B
(43)

Whose solution is:
S2(r) = S1(r)

Ú t

S1(t)2dt (44)
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Large r behavior
The large r behavior can be obtained through the change of variable x = 1/r
and considering the limit x → 0.
After the substitution one obtains:

x2S′′ + 3xS′ +
A

1 + 1
ℓ2x2

B
S = 0 (45)

The point x = 0 is an irregular singular point, that is, the solution cannot
be found in the form of a Taylor series (Frobenius method). However,
asymptotic analysis can be applied to obtain the asymptotic behavior near
x = 0. Assuming an asymptotic behavior of the form S(x) = eK(x) one finds
the following differential equation for K(x):

− 1
ℓ2x2 + 3xK ′ + x2(K ′)2 + x2K ′′ = 0 (46)

From the fact that one expect K ∼ x−α, the equation can be transformed
into an asymptotic relation valid for x → 0, that is:

(K ′)2 ∼ 1
ℓ2x2 ⇒ K ∼ ± 1

ℓx
(47)

The second order term can be obtained in the same way and it is equal to:

K2(x) = −1
2 ln(x) (48)

The final large r behavior can be obtained by substituting back x = 1
r . The

result is:
S±(r) ∼ e± r

ℓ
√
r
3
c0 + c1

r
+ ..

4
(49)

To leading order:
S±(r) ∼ e± r

ℓ
√
r (50)

Large gradient expansion
In the second chapter we performed a large gradient expansion, by considering
r = r(z). If one consider r(z) = r0 +u(z), with u(z) << r0, then the previous
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quantities become to linear order:ñ
|g| = r0 + u+ o(u) (51)

H ∼ 1
r0

− u′′ − u

r2
0

+ o(u) (52)

K ∼ −u′′

r0
(53)

gzz ∼ 1 (54)
bzz ∼ bzz ∼ −u′′ (55)

(56)

The equation will be:

2 − ar2
0

r3
0

−
A6 − ar2

0
r4

0

B
u−

A5 − ar2
0

r2
0

B
u′′(z) − u′′′′(z) = 0 (57)

Given that u << r0, necessarily r0 =
ñ

2
a , from which one finds:

a2u+ 3a
2 u

′′ + u′′′′ = 0 (58)

The characteristic polynomial has 4 complex roots that are:

λ = ±
√
aeiθ,±

√
ae−iθ (59)

The general solution will have the form:

u = c1e
−ℜ{λ}t cos(ℑ{λ}t+ ϕ1) + c2e

ℜ{λ}t cos(ℑ{λ}t+ ϕ2) (60)

That is, any deviation from r0 will exponentially decay in an oscillatory way.
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