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Abstract

One of the theoretical challenges in the study of turbulence is to develop an effective, coarse-grained
model of its behaviour on a macroscopic scale. Turbulent flows are out-of-equilibrium systems that
exhibit stochastic behaviour due to small-scale perturbations affecting macroscopic dynamics within a
finite amount of time. This property, known as the spontaneous stochasticity of the incompress-
ible Navier–Stokes equation, challenges traditional coarse-graining approaches because unresolved
scales cannot simply be neglected. In this work, these scales are modelled as vanishing, momentum-
conserving, multiplicative noise. The resulting stochastic Navier–Stokes equation is analysed using
Macroscopic Fluctuation Theory (MFT), a statistical framework for non-equilibrium systems governed
by stochastic hydrodynamics. The results and insights of this theory are discussed in the context of
Langevin equations. Strategies are presented for evaluating the probability distribution of observables
to leading order in the vanishing-noise limit by integrating the instanton equations. The solutions to
these equations represent the most likely paths leading to a given rare event. The main contribution
of this work is the derivation of the MFT action and instanton equations for the adopted stochastic
Navier–Stokes equation. Some insights are presented for the case of isotropic, locally correlated noise,
with a particular focus on evaluating the stationary measure and the emergence of Lagrangian phase
transitions. These results demonstrate the potential of MFT to provide a parameter-free statistical
description of turbulence; however, further work is required to extract practical predictions from the
derived model, both analytically and numerically.
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Context:
Turbulent flows are ubiquitous in our everyday life but still remain difficult to predict. The reason
is the lack of a deterministic or statistical theory of turbulence and the very high computational
cost of direct numerical simulations, which even the best super-computers struggle to deal with due
to the number of scales involved. Therefore, physicists are trying to build effective models of the
macroscopic behaviour of turbulent flows by coarse-graining the small scales details. The aim is to
reduce the number of degrees of freedom to simulate. Any coarse-graining introduces a vanishing noise
in the coarse-grained hydrodynamics, which is usually disregarded to have a deterministic description
of turbulence, following the common belief that determinism rules over classical physics.

However, the phenomenon of spontaneous stochasticity appearing in Navier-Stokes equation at
high Reynolds numbers [1, 6, 18, 34, 35, 38] recently questioned the possibility of explaining the
macroscopic behaviour of turbulence with a deterministic theory. Phenomenologically, perturbations
at small length-scale (even thermal molecular noise) are able to affect the macroscopic scale in finite
time, making the effect of the coarse-grained small details non-negligible. From a theoretical perspec-
tive, spontaneous stochasticity consists in the existence of a universal finite time predictability barrier
beyond which the separation between the two Lagrangian particles approaches a universal power-law
growth, where “universal” means independent of their initial distance. This remains valid even if the
initial distance is sent to zero: two particles starting with exactly the same initial condition will sepa-
rate in finite time, making the behaviour of Navier-Stokes equation spontaneously non-deterministic.
The mathematical reason of this phenomenon cannot be found in deterministic chaos, not only because
it predicts that two particles separates exponentially fast in time, but also because the separation is
directly proportional to the initial one; this is in contrast with the observed universality of the time
predictability barrier. In fact, the conjectured explanation of spontaneous stochasticity is the loss of
uniqueness of solutions of Navier-Stokes equation and the emergence of singular velocity fields in finite
time at high Reynolds numbers. In this perspective, the flow becomes stochastic as a Lagrangian par-
ticle have to choose randomly which of the various possible solutions to follow. The social relevance of
this phenomenon is in meteorology, where spontaneous stochasticity is referred as “the real butterfly
effect” and is reported to spoil weather forecasts, which actually need to be more and more accurate
in order for us to adapt to our warming world. The detailed discussion of spontaneous stochasticity
can be found in section 1.1.

Looking for a statistical model of the macroscopic behaviour of turbulence, this work considers a
stochastic version of Navier-Stokes equation for the velocity profile u(x, t), which originates from a
coarse-graining of small scales. In adimensional units this reads:

∂tu(x, t) + (u(x, t) · ∇)u(x, t) = −∇P (x, t) + Re−1∆u(x, t) +∇ ·
√
ϵσ(u(x, t))η(x, t)

∇ · u(x, t) = 0

u(x, 0) = u0(x)

η Gaussian noise of correlation ⟨ηai(x, t)ηbj(y, s)⟩ = Cijab(x− y, t− s)

where∇·
√
ϵσ(u)η is a momentum-conserving multiplicative noise representing the coarse-grained small

scales in an effective way. This is a vanishing noise (ϵ → 0) stochastic hydrodynamics. Therefore it
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can be studied by the tools of Macroscopic Fluctuation Theory (MFT, [5, 12, 24, 27]), a theory for out
of equilibrium systems that has its roots in Large Deviation theory and path integral formulation of
stochastic processes. MFT provides with a recipe to compute the stationary probability distribution
and the large deviation function of any observable A to the leading order in the vanishing noise limit
in systems described by stochastic hydrodynamics. The key ingredient is the existence of a least
action principle whose stationary equations give the most likely path leading to a fixed rare state.
This optimal path is called the instanton. Due to the fact that the typical path leading a system to
an atypical state coincides with the most likely path leading there, the instanton is actually the large
deviation path that is observed experimentally and in numerical simulations, up to small fluctuations
around it. Therefore, the instanton equations furnish a model to predict how rare events emerge in
stochastic hydrodynamics. An introduction to hydrodynamical descriptions, which are the subject of
Macroscopic Fluctuation Theory, is given in section 1.2. The key concepts of MFT are discussed in 2
through its application to Langevin equations, which represent a perfect playground to test MFT as
everything can be computed in alternative ways.

Original contributions: Besides re-deriving known results of MFT applied to Langevin equations
from a Hamiltonian perspective in section 2.2.2, the original part of this work is contained in section 3.
It was shown that Macroscopic Fluctuation Theory can formally be applied to the stochastic version
of Navier-Stokes equation mentioned above and, for the first time, the following instanton equations
were derived:

∂tu
i(x, t) + P i[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) =

−
∑
l

P il
{∑

a,b

∂

∂xa

[√
σ(u(x, t))

∫
j,y,s

C ljab(x− y, t− s)
√
σ(u(y, s))

∂πj(y, s)

∂yb

]}
∂tπ

i(x, t) + P i
[
u(x, t) · ∇π⃗(x, t) +

∑
j

uj(x, t)∇⃗πj(x, t)
]
+Re−1∆πi(x, t) = −λP i

[ δA[u]

δu(x, t)

]
+

− P i
[
(∇⃗uσ(u(x, t)))
2
√
σ(u(x, t))

∑
j,k,a,b

∫
s,y

∂πj(x, t)

∂xa
Cjkab (x− y, t− s)

√
σ(u(y, s))

∂πk(y, s)

∂yb

]

t = 0 : πi(x, 0) = −λP i
[ δA[u]

δu(x, 0)

]
+ P i

[
ϵ
δF [u(0)]

δu(x, 0)

]
t = tf : πi(x, tf ) = λP i

[ δA[u]

δu(x, tf )

]
where P = 1−∇∆−1∇⊤ is the Leray projector. π is the Hamiltonian conjugated momentum to the
velocity field and can be interpreted as the “stochastic force” that the noise has to give to the system
to reach the atypical state following the instanton path. These equation furnish an effective model
for turbulence, but in this very general formulation it is hard to understand. Therefore, they were
specialized to the simpler physical case of a delta correlated isotropic noise:

⟨ηaj(x, t)ηbk(y, s)⟩ = δ(x− y)δ(t− s)
[
δabδjk + δakδbj − 2

3
δajδbk

]
The instanton equations result more interpretable and read:

∂tu
i(x, t) + Pi[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) = −Pi

{
∇ ·

[
σ(u(x, t))Sπ(x, t)

]}
∂tπ

i(x, t) + Pi
[
Sπ(x, t)u(x, t)

]
+

∆πi(x, t)

Re
= −λPi

( δA[u]

δu(x, t)

)
− Pi

{1

4

(
∇⃗uσ(u(x, t))

)
tr
(
Sπ(x, t)

2
)}

t = 0: πi(x, 0) = −λPi
[ δA[u]

δu(x, 0)

]
+ Pi

[
ϵ
δF [u(0)]

δu(x, 0)

]
t = tf : πi(x, tf ) = λPi

[ δA[u]

δu(x, tf )

]
where Sπ(x, t) = ∇⊗ π(x, t) + (∇⊗ π(x, t))⊤ is the strain tensor for the momentum π. Notice that
the first equation is Navier-Stokes equation perturbed with an effective contribution of the noise being
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−P i
{
∇·

[
σ(u(x, t))Sπ(x, t)

]
: this is the shape the noisy term should take in order to make the system

follow the instanton path.
These equations are very difficult to study both analytically and numerically because they are

as non linear as the Navier-Stokes equation and it is a shooting problem. In principle, integrating
them allows to access the large deviation function ϕA of any observable A such that Pr(A = a) ∝
exp[−ϵ−1ϕA(a)], to leading order in the vanishing noise. Theoretically, it suffices to apply a Legendre
transform to the following cumulant generating function:

wA(λ) := ϵ ln ⟨e
λ
ϵ
A⟩ = −ϵF [uI(0)] + λA[uI ]−

1

2

∑
a,b

⟨∂aπI |
√
σ(uI)Cab

√
σ(uI)|∂bπI⟩

Numerically, the Legendre transform can be skipped invoking ensemble equivalence as explained in
section 2.2.3. With the choice A = u(tf ), the same procedure gives the pseudo-potential ϕ, namely
the exponent of the stationary distribution of the process Pss(u) ∝ exp[−ϵ−1ϕ(u)].

There was no time to approach the complicated task of integrating these equations seriously in
this work, but the groundwork was laid by integrating the instanton equations for a one dimensional
Langevin equation in section 2.3, which already shows some nice features. Therefore, this work is
far from answering the question whether Macroscopic Fluctuation Theory can produce an effective
statistical model of turbulence and, indeed, many paths remain to be explored.

Once predictions of this theory will be available, they can be checked by experiments where rare
events are observed [17] in turbulent flows. Would this furnish an approximated but effective model of
turbulence, it could be used for weather and climate forecast in place of the empirical and parametric
model used nowadays, which could have a positive impact in building resilience against climate change.
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1 Introduction

1.1 Stochasticity in turbulence

The lack of a deterministic or statistical theory of turbulence makes turbulent flows difficult to pre-
dict. This section will explain why turbulence cannot be modelled deterministically and why statis-
tical physics approaches are applicable. The justifications will come from a mathematical conjecture
(section 1.1.1) and some numerical evidences (section 1.1.2) of a spontaneous stochasticity affecting
Navier-Stokes equation (NSE). The social relevance of studying this mathematical property will be
discussed in section 1.1.3. Finally, a stochastic version of the NSE that is compatible with these
observation is introduced in section 1.1.4.

1.1.1 A mathematical conjecture on the stochasticity of turbulence

Physicists in fluid mechanics are generally assume the existence or uniqueness of solutions to the NSE
at all times. However, this has not been proven yet and actually the following scaling argument raises
suspicions that this mathematical technicality may have a physical effect. Define the local variation
of the velocity field u as δu(x; ℓ) := u(x+ ℓ)−u(x) where ℓ is a vector of small norm. [38] finds that in
turbulent flows simulations δu ∼ t1/2 for small length-scales |ℓ|. Considering a particle x(t) advected
by this velocity field (ẋ(t) = u(x(t), t)), the relation δu ∼ t1/2 can be integrated and gives δx ∼ t3/2

for the variation of the position1. As a consequence, δu = d
dtδx ∼ δx1/3. This ordinary differential

equation (ODE) does not satisfy the Cauchy-Lipschitz theorem of local existence and uniqueness of
solutions and, indeed, ∀tJ ≥ 0 the function δx(t) = [23(t−tJ)]

3/21{t > tJ} is a solution2 for the Cauchy
problem of NSE with initial condition δx(0) = 0. This means that the fluid particle will randomly
select the particular trajectory, making its position a stochastic process amenable for statistical physics
approaches [16].

Of course, this very simple ODE cannot represent the full complexity of turbulence, but the small
calculation above suggests that it is not so unreasonable to assume that the Navier-Stokes equation
in the turbulent regime has multiple solution for some initial condition, thus behaving effectively as a
stochastic equation. Just like δx(0) = 0 for the ODE above, the initial velocity profile entailing this
loss of determinism in NSE should be sufficiently singular (or non-smooth, meaning that some spatial
derivatives should diverge [34]). Mathematically, a velocity profile u(x) is singular if ∃xs such that
the local Hölder exponent3 h is less than 1 as it implies local divergences of the spatial derivatives
of u. Hölder exponents in fully developed turbulence can even be lower than 1/3, as observed
in experiments [17], and such irregular profiles might entail multiple solutions for the initial value
problem of Navier-Stokes equation.

Proving that the NSE admits non-differentiable or non-unique solutions is one of the unresolved
millennial problems. Instead, the 3-dimensional Euler equation, NSE’s infinite Reynolds number limit,
has been proven numerically to have finite “blow-up time”, namely solutions starting from a smooth
initial fields develop a singularity (infinite vorticity) in a finite time [9]. As a fully developed turbulent
flow has Re > 5000 and even reaches Re ∼ 108 in the atmosphere, singularities might play a role in
turbulence. Indeed, their influence in Navier-Stokes equation is also conjectured to explain dissipation
anomaly at low viscosities [19].

The presence of singularities and non-uniqueness of solutions in Navier-Stokes equation is a con-
jecture that won’t be needed in the rest of the report; nevertheless, this is the picture to keep in mind
to understand the mathematical reason of the stochasticity emerging in turbulent flows. In the next
section stronger evidences of the presence of stochasticity in Navier-Stokes equation at high Reynolds
number will be presented.

1This law is known in turbulence as the Richardson law.
2The indicator function of a clause 1(clause) = 1 if the clause is satisfied and zero otherwise.
3The Hölder exponent is a measure of the irregularity of a field and it is defined as the maximum real number h ≤ 1

such that for l of sufficiently small norm ∃C ∈ R : ||u(x+ l)− u(x)|| < C||l||h. If h ∈ (0, 1] the function is called Hölder
continuos in x.
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1.1.2 Spontaneous stochasticity in Navier-Stokes equation

From a Lagrangian perspective, consider two particles of positions ẋi(t) = u(xi(t), t), define their
distance vector ∆x(t) = x1(t) − x2(t), assume small initial separation ∆x(0) and evolve the velocity
field integrating the incompressible Navier–Stokes at high Reynolds numbers. It turns out [6] that
there exists a finite time predictability barrier tPB beyond which |∆x(t)|2 ∼ 0.52 · EDt3, where ED
is the turbulence kinetic energy dissipation rate. Both this power law and tPB are independent of
the initial distance ∆x(0). As a consequence, even in the vanishing initial distance limit (so starting
with exactly the same initial condition), the particles follow different trajectories after tPB, as if the
evolution was stochastic. This is the Lagrangian definition of “spontaneous stochasticity”.

From an Eulerian perspective, consider the solutions u(x, t) and ũ(x, t) of the Cauchy problem
for the incompressible Navier-Stokes equation corresponding to two slightly different initial conditions
u(x, 0) = u0(x) and ũ(x, 0) = ũ0(x). By employing numerical simulations of Navier-Stokes equation
in the shear layer geometry, it was shown [38] that it exists a time tPB, independent of the initial
distance, such that ∀t > tPB ||u(t)− ũ(t)||2L2

∼ t universally in the initial difference4. Again, one could
send the initial error to zero and still get different profiles in finite time as Navier-Stokes equation was
stochastic.

It is important to underline that this spontaneous stochasticity cannot originate from deterministic
chaos. The distance between two chaotic particles at time t follows |∆x(t)| = |∆x(0)| exp[λt], so
the separation time can be lengthened by decreasing the initial distance and two chaotic particles
starting at the same initial condition will follow exactly the same path. The mathematical explanation
of spontaneous stochasticity in turbulent flows may be the emergence of locally irregular velocity
fields and the consequent loss of uniqueness of solutions, as explained in section 1.1.1. Within this
interpretation, the time predictability barrier tPB coincides with the blow-up time of the 3D Euler
equation. Notice also that spontaneous stochasticity is a phenomenon appearing in other systems
than the Navier-Stokes equation, where it is usually due to the loss of uniqueness of solutions to the
Cauchy problem of the differential equation considered [16].

From a physical point of view, spontaneous stochasticity amplifies the small scale perturbations5

in turbulent flows up to the macro-scale in finite time. It was shown experimentally [17] that this
amplification happens in very irregular regions of the turbulent flow, where the local Hölder expo-
nent is less than 1/3. This gives further credit to the connection between spontaneous stochasticity
and singularities. It was even proven that thermal noise could propagate to the macro-scale for suf-
ficiently high Reynolds numbers in the SABRA model for turbulence [1], rendering the probability
distributions of macroscopic observables very far from delta functions even in the vanishing noise limit.
Notice that obtaining experimental or numerical evidence of spontaneous stochasticity in turbulence
is very challenging as it requires respectively high resolutions on particle tracking and high Reynolds
numbers6.

1.1.3 The real butterfly effect in weather

This section will discuss the concrete relevance of the study of spontaneous stochasticity in turbulence.
It turns out that it is one of the reasons why predicting the weather is difficult.

The concept of the “butterfly effect” is commonly associated with sensitive dependence on initial
conditions in chaotic systems. However, [34] argues that Lorenz originally intended the existence of a
fundamental finite-time predictability limit that arises in multi-scale turbulent systems, beyond which
reducing initial uncertainty does not improve forecasts. This concept is termed the “real butterfly ef-
fect”. Phenomenologically, this effect is due to the fact that for high Reynolds numbers a perturbation
at a small scale l is able to propagate in finite time up to the observation scale7 x0 ≫ l, thus influenc-

4The Lp norm of a function f(x) with x ∈ D ⊂ Rn is defined as ∥f∥Lp =
(∫

D
dnx |f(x)|p

)1/p
for p ≥ 1.

5The origin of the small-scale perturbations can be the roughness of surfaces, the boundary layer separation, but even
the thermal noise [1] or, in weather and climate perspective, a small storm.

6The current maximum Reynolds number achieved in DNS of Navier-Stokes equation is between 5000 and 105 de-
pending on the particular geometry considered, while often spontaneous stochasticity needs higher Re to be observed
numerically.

7The scale l is typically greater than the Kolmogorov length ηK , below which the viscous dissipation is the dominant
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ing the macroscopic behaviour and making it effectively unpredictable [34]. In weather forecast, for
instance, this amplification of small scale perturbations is believed [34] to be the main reason of many
poor quality 6-days forecasts made by the European Centre for Medium-Range Weather Forecasts
(ECMWF).

Considering what was discussed in 1.1.2, the real butterfly effect in weather seems the analogue
of spontaneous stochasticity in turbulent flows. This makes sense not only because the atmosphere is
turbulent, but also as the primitive equations8 governing the weather are believed [18] to be influenced
by singularities present in the inviscid limit, similarly to what was conjectured for NSE in section 1.1.1.
If spontaneous stochasticity was the explanation of weather unpredictability, the time predictability
barrier would be around 5-10 days, namely the time after which weather forecasts are notoriously
unreliable (as also evidenced by the poor-quality 6-days forecasts by ECMWF). This connection to
weather makes the study of spontaneous stochasticity not only scientifically interesting but also socially
relevant.

1.1.4 A coarse-grained version of the Navier-Stokes equation

Since turbulent flows are multi-scale and deterministically unpredictable, the aim is to coarse-grain
the small chaotic scales to get a statistical effective model. Coarse-graining is also a way to treat the
presence of singularities in a differential equation.

Suppose that the “resolution” at which the system is observed is x0 (for weather is x0 ∼ 10 Km
and for classical turbulence experiments x0 ∼ 1 cm) and smaller scales ℓ < x0 have to be coarse-
grained. The length scales below the Kolmogorov length ℓ < ηK can be safely coarse-grained9, as
the dissipation prevents fluctuations to affect the macro-scale. The intermediate scales ηK < ℓ < x0,
instead, are sufficiently large to admit irregular fields and cause spontaneous stochasticity, so they
cannot be simply disregarded. This section will define and justify a stochastic model for their effect,
leading to a stochastic coarse-grained Navier-Stokes equation.

Define the coarse-grained velocity at scale l as ul(x, t) := (Gl ∗ u)(x, t) :=
∫
Rd u(x

′, t)Gl(x− x′) dx′
where ηK < l ≪ x0 and Gl(x) = l−dg(x/l) is a low-pass filter that suppresses variations on scales
smaller than l (e.g. any filter that is decaying sufficiently fast in the Fourier space as the wave-vector
becomes large). The filter cuts the small scales and smoothens singularities, if present. So use that
u · ∇u = ∇ · (u⊗ u) by incompressibility10, apply the filter, add and subtract ul · ∇ul, then the coarse
grained NSE reads:

∂tu
l + ul · ∇ul = −∇pl + ν∇2ul +∇ · τl (1)

where pl = Gl ∗ p is the filtered pressure and τl = ul ⊗ ul − u⊗ ul is the sub-grid stress tensor (or
turbulent stress tensor) that encapsulates the effects of unresolved small-scales on the resolved scales.
This is not negligible because of spontaneous stochasticity and many models of turbulence are built by
postulating a physically reasonable dependence of this tensor only on ul, so that equation 1 is closed
(e.g. in [3] a closure with the turbulent kinetic energy is used). The main assumption in this report
is that this sub-grid stress tensor can be interpreted as an effective noise. Referring to [20] for a more
rigorous discussion, the reasons are the following ones. First, spontaneous stochasticity and chaos are
acting at the coarse-grained scales. A more mathematical justification is that spontaneous stochasticity
can be probed by adding a noise to the deterministic equation and checking if in the vanishing noise
limit (and Re → ∞) the system shows non-delta correlated distributions [1, 35, 38]. This is called
“stochastic regularization” in the literature [16]. Finally, from a statistical physics perspective, any
finite coarse-graining implies a vanishing noise, coherently with the central limit theorem, as it will be
discussed in section 1.2.2.

term in the Navier-Stokes equation and turbulence cannot develop; the macro-scale x0 ∼10 Km in weather models,
x0 ∼ 1m in turbulence experiments.

8Primitive equations are the differential equations that model the weather. They are essentially derived from the
Navier-Stokes equation using that the atmosphere has a vertical thickness very smaller than the horizontal extension.

9Or, more precisely, the scales below the regularization length ηh ∼ ν
1

1+h where h is the maximum local Hölder
exponent (see section 3.1.2).

10Define the outer product (u⊗ ψ)ij = uiψj = ∂aψ
i.
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This assumption leads to a stochastic coarse-grained Navier-Stokes equation that reads:
∂tu

l(x, t) + ul(x, t) · ∇ul(x, t) = −∇pl(x, t) + ν∆ul(x, t) +∇ · ξl(x, t, ul)
∇ · ul(x, t) = 0 Incompressibility

ul(x, 0) = uin(x) Initial condition

(2)

The hypothesis on the noise are pretty general: the amplitude of the noise should vanish in l→ 0, the
noise is multiplicative as the sub-grid tensor depends on the velocity field and it is assumed Gaussian
(this is a consequence of assuming a generalization of the central limit theorem to hold and it will be
clearer in section 1.2.2). The full list of assumptions is discussed in section 3.1.1.

Notice that the noise enters in a momentum-conserving way in the coarse-grained equations 2 (see
the divergence which is applied to it). This is physical as the noise is an effective representation of
the coarse grained scales that conserve the momentum as they are governed Navier-Stokes equation.
However, this is not widely spread in the literature where often the aim is just to probe spontaneous
stochasticity and so a vanishing additive noise is sufficient [35]. Thanks to this momentum-conserving
noise, equation 2 can be rewritten as a continuity equation, which suggests to address it by the means
of Macroscopic Fluctuation Theory. This is a theory for out of equilibrium systems that will be
introduced in the next section.

Equation 2 is also known as the Landau-Lifshitz Navier-Stokes equation, derived for the first time
in [30]. In that case, the noise is of thermal origin and its statistics are recovered by imposing the
Einstein relation between the amplitude of the noise and the temperature in order to ensure that
the noise is randomly giving back the energy dissipated by the viscosity. One might also consider
the Landau-Lifshitz Navier-Stokes equation to investigate the effect of thermal noise in Navier-Stokes
equation. This is done in [1] and the authors conclude that even this tiny noise is sufficient to trigger
spontaneous stochasticity11 as long as the amplitude of the noise is sent to zero not faster than Re−15/4.
If even thermal noise is able to make a turbulent flow stochastic at the macroscale, it is clear that the
coarse-graining noise, which includes also the thermal scales, cannot be disregarded in the equations.

For completeness, notice that some renormalization group techniques can be also applied to perform
this coarse-graining and to furnish a statistical model of turbulence, where the filtering is made at
the level of the statistical action that one obtains by path integral formulation [20]. However, the
next section 1.2 will discuss why Macroscopic Fluctuation Theory appears as promising as these more
sophisticated techniques for turbulence.

1.2 Turbulence is a promising application of Macroscopic Fluctuation Theory

Turbulent flows are inherently out of equilibrium because energy is continuously injected at large
spatial scales in order to sustain turbulence which otherwise would fade out due to viscosity. Moreover,
models for turbulence need to be stochastic because of spontaneous stochasticity, as discussed in
section 1.1. This calls for an out-of-equilibrium statistical mechanics approach to turbulence. A fully
established theory of out of equilibrium systems is not available yet, but a widely used idea is to
generalize the concept of free energy density f with the one of large deviation function.

Large deviation theory [39] was developed to estimate the probability of a rare event (i.e. a large
deviation) in a thermodynamically large system, whose typical behaviour is explained by the central
limit theorem (or one of its generalizations). As a simple example, consider a sample {Xi}i=1,...,N→∞
of independent random variables Xi identically drawn from q and suppose the aim is to compute the
probability of observing A[X⃗] := 1

N

∑N
i=1 a(Xi) = A0 very larger than the average value of a(X). It is

quite easy to prove that for sufficiently thin tailed distributions q it exists a large deviation function

ϕ such that Pr(A = A0)
N→∞
≈ exp[−Nϕ(A0)] and it turns out that ϕ is the Legendre transform of

the cumulant generating function of a(X) (consult [33, 39] for an introduction). As you can see, the
shape of the probability of a large deviation is really similar to the Gibbs-Boltzmann distribution,
where N corresponds to the inverse temperature and ϕ to the free energy. This result paved the way

11In the sense that in the vanishing noise limit some observables such as the largest mode of the velocity has a non-delta
distribution.
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to the large deviation interpretation of equilibrium statistical mechanics. Large deviation theory can
be generalized to Markov processes (including Langevin equation) [13] and fluctuating hydrodynamics
[14]. It was also proven [25] that a large deviation function exists for the Landau-Lifshitz Navier-Stokes
equation, which is the additive noise version of equation 2. Thus, it is one of the most promising theory
to provide a comprehensive description of out of equilibrium systems, such as turbulent flows.

Among the large deviation approaches to out of equilibrium systems, one of the most established
is Macroscopic Fluctuation Theory (MFT)[5, 12, 24, 27]. This approach has been successfully applied
to some prototypical out-of-equilibrium systems, such as the simple exclusion process and the Kipnis-
Marchioro-Presutti model. MFT is a theoretical framework originally used to describe at a macroscopic
scale the fluctuations of the density and the current in diffusive transport processes (where the density
is conserved), but it is believed to be extensible to a much wider range of systems governed by any
stochastic hydrodynamics with vanishing amplitude noise, such as equation 2. The next section will
briefly discuss the core ideas of Macroscopic Fluctuation Theory, referring to turbulence as a practical
example.

1.2.1 Building a hydrodynamical description from a microscopic model

The first step to introduce Macroscopic Fluctuation Theory is to understand how an hydrodynamics
can be derived for a large system like turbulent flows. Suppose that, at the microscopic scale, the
system is made of Np particles with microscopic degrees of freedom {xa, pa}a=1...Np . Let lmicro and
tmicro the typical length scales (e.g. the mean free path and the molecular collision time, for air
lmicro ∼ 70 nm and tmicro ∼ 10−10 s). Assume that there is one or more conserved quantities in the
system whose density will be indicated with ρ (e.g. density of particles, velocity, energy density).
When the observation resolutions in time tmacro and space lmacro are very larger than the microscopic
ones, the aim is to get an effective macroscopic description of the system through a coarse-graining.
The procedure is described below and schematically represented in figure 1.

The first step is to introduce a lattice: divide the system into Ncells →∞ mesoscopic cells of size
lmeso such that lmacro ≫ lmeso ≫ lmicro; in turbulence, lmeso can be the minimal length scale at which
the continuum limit holds, which is of order 1µm for air. Index each cell with i ∈ Zd, where d is the
number of space dimensions. Starting from the microstate, define the mesoscopic state of the system
at (mesoscopic) time s as the collection of the configurations Ci

s of each cell i. The configuration of
a cell is the “law of large numbers” of some interesting microscopic observables inside the cell: for
example, the velocity associated to a cell is the mean velocity of the particles inside it. As the number
of particles is limited, the mesoscopic state of each cell is a stochastic process, according to the central
limit theorem (in the best case scenario).

Each cell Ci
s is assumed to admit an equilibrium state if isolated, with relaxation time tmeso. Under

a separation of timescales approximation tmacro ≫ tmeso ≫ tmicro, a “local equilibrium assumption”12

is made: each cell relaxes at equilibrium instantaneously compared to the macroscopic time. Notice
that the macro-state is kept far from macroscopic equilibrium thanks to external fields or boundary
conditions.

The second step is to obtain the hydrodynamics is to perform a continuum limit. Assume that
the mesoscopic dynamics {Ci

s}i∈Z
d
:= C⃗s is Markovian (this can be relaxed, see [5]) and admits a

stationary probability measure Pss(C⃗s) (which is not the product of the equilibrium distribution that
each Ci

s would have if isolated because the cells exchange particles between each other). Define the
mesoscopic version of the conserved quantity density as ρi,s = ρ(Ci

s): this is the observable that will
completely define the system at the macro-scale, neglecting the other details. Let us proceed with the
continuum limit by the rescaling x := i/Ncells , t = s/N2

cells , ρ(x, t) = ρi=Ncellsx,s=N
2
cellst

and assume
that the system is diffusive. This means that the equation ruling the evolution of the density under

12It is important to mention that the local equilibrium assumption has two consequences. First, the generalized

Einstein relation ∂2

∂ρ2
f(ρ(x, t)) = 2D(ρ(x, t))/σ(ρ(x, t)) can be established for the free energy density inside each cell

f(ρ) [28]. Secondly, if the space domain is finite x ∈ Λ and the system is in contact with a bath of chemical potential
µ(x, t), due to local equilibrium the cells near the boundaries will be constantly at equilibrium with the bath and so
∂
∂ρ
f(ρ(x, t)) = µ(x, t) ∀x ∈ ∂Λ. This second consequence does not allow any large deviation at the boundaries.
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Figure 1: The image displays a schematic representation of the coarse-graining procedure that leads from the
microscopic model to its hydrodynamics. The scheme is specialized to the example of a fluid. From left to right:
a mesoscopic cell at the microscopic (particle) scale, a macroscopic small volume (ddx) at the mesoscopic scale,
and the same at the macroscopic scale.

an external field E(x, t) in the hydrodynamic limit (Ncells →∞) is the following continuity equation:

∂tρ(x, t) = ∇ · J(ρ(x, t), x, t) = ∇ · [−D(ρ(x, t))∇ρ(x, t) + σ(ρ(x, t))E(x, t)] (3)

which is fully described by the diffusivity D(ρ(x, t)) and the mobility σ(ρ(x, t)). In words, the fluc-
tuations of the configuration of the mesoscopic cells self-average at the macro-scale, leading to a

deterministic hydrodynamic in the limit Ncells →∞ or, more precisely, ϵ :=
(
lmeso
lmacro

)d → 0. This small
parameter represents the “quality” of the coarse-graining as it is proportional to the number of cells
in a macroscopic small volume ddx of size ldmacro.

1.2.2 Any finite coarse-graining comes with a noise

For any finite ϵ the coarse-graining is not perfect and fluctuations around the deterministic hydro-
dynamics 3 are possible. Assuming that a generalization of the central limit theorem holds ∀x, t,
these fluctuations are supposed to add a Gaussian noise ξ(x, t) of small amplitude ϵ to the current
J(x, t, ρ(x, t)). The noise is assumed to be acting on the current and not on the density as the stochas-
tic hydrodynamical description has to respect the conservation laws. In the case of finite ϵ it is possible
to introduce the finite coarse-graining density:

ρϵ(x, t) := ϵ−1
∑

i∈Vol(xNcells , lmacro)

ρi,s=N2
cellst

where Vol(i , l) := Volume around site i of size l

and analogously define the ith component of the finite coarse-graining current as the amount of density
flowing in the direction of the canonical vector ei per unit of time and surface. For the central limit
theorem assumed above ρϵ will follow a stochastic version of equation 3:{

∂tρϵ(x, t) = ∇ · [J(x, t, ρϵ(x, t)) + ξ(ρϵ(x, t), x, t)]

⟨ξi(ρϵ(x, t), x, t)ξj(ρϵ(x′, t′), x′, t′)⟩ = ϵσ(ρϵ(x, t))C
ijδ(x− x′)δ(t− t′) := χij(x− x′, t− t′, ρϵ)

(4)

Notice that the coarse-graining described throughout this section corresponds to the convolution
with the filter Gl that was considered in section 1.1.4, which further supports the application of
Macroscopic Fluctuation Theory to equation 2. In general, given the hypothesis introduced above,
MFT allows to compute the probability distribution (or the cumulants) of any observable A[ρ] (that
a priori could depend on the full time evolution of the density) to leading order in ϵ. This corre-
sponds to compute the large deviation function ϕ[ρ] of ρϵ at (macroscopic) stationarity, assuming
Pss[ρϵ = ρ] ≈ e−ϵ−1ϕ[ρ]. The procedure is presented for Langevin equation in the section 2 and for the
stochastic Navier-Stokes equation 2 in section 3. It can be generalized to any stochastic process with
a vanishing noise, which are very common: ϵ is the temperature of the heat bath for Langevin equa-
tion [8], in hydrodynamical description it is correspond to the coarse-graining parameter [5], and it is
the amplitude of the auxiliary noise introduced in the stochastic regularization approach to systems
showing spontaneous stochasticity (section 1.1.4).
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2 Methods: discussing Macroscopic Fluctuation Theory by its ap-
plication to Langevin equations

The aim of this section is to discuss the application of Macroscopic Fluctuation Theory to the more
intuitive case of Langevin equations. It will explore the main results of MFT obtained for hydrody-
namics [5], some technicalities and give its physical interpretation. Inevitably the results have already
been obtained in the literature [5, 8, 24].

Consider the following Langevin equation with delta correlated Gaussian white noise:{
ṙ(t)

α
= f(r(t)) +

√
2ϵg(r(t))η(t) r(0) = r0 t ∈ [0, tf ]

⟨ηi(t)ηj(s)⟩ = δijδ(t− s)
(5)

where r,f(r),η ∈ Rd and g(r(t)) ∈ Rd×d such that C(r) := g(r)g(r)⊤ is a symmetric positive-defined
matrix. The

α
= indicates the choice of the discretization scheme α ∈ [0, 1]: α = 0 corresponds to Itô’s

discretization, α = 1/2 to Stratonovich’s one. The functions f , g have to be at least once differentiable
and g(r) > 0 ∀r. Let A[r] a generic observable that may depend on the full history of the process
and suppose that it admits a large deviation function ϕA(a) := − limϵ→0 ϵ ln Pr(A = a).

Here and in the rest of the report, the following notation is used: given a stochastic process r(t),
Pss(E) is the probability of an event E when the process r is stationary, P(r̃) is the (path) probability
that r(t) = r̃(t) ∀t ∈ [0, tf ], and Pr(E) will indicate the generic probability of an event E.

2.1 Some technical aspects treated in one dimension

Consider the easier d = 1 case. This section will motivate why it is reasonable to disregard the
effect of the choice of the discretization (section 2.1.1), as well as discuss the equivalence between the
Lagrangian and Hamiltonian approaches to get to the MFT action (section 2.1.2).

2.1.1 The effect of discretization is sub-leading

This section will show that the discretization effect on the path integral formulation that lies at the
basis of Macroscopic Fluctuation Theory is negligible to first order.

As meticulously discussed in [11], the measure of the process defined in equation 5 for d = 1 is:

P
[
r(t), t ∈ [0, tf ]

∣∣∣r(0) = r0

]
α
= J [r] e−FW [r] (6a)

FW [r]
α
:=

∫ tf

0
dt

1

2

[
ṙ(t)− f(r(t)) + 2αϵ g(r(t))g′(r(t))√

2ϵ g(r(t))

]2
+ αf ′(r(t)) (6b)

J [r]
α
:=

tf/∆t∏
t=0

√
1

4πϵ∆t

1

|g(r̄t)|
, r̄t = rt + α(rt+1 − rt) (6c)

where in the definition of FW [r] the discretization is implicit while the Jacobian J [r] is represented in
a discretized time-grid with spacing ∆t. For the sake of brevity the specification of the discretization
α will be omitted in the following.

In this report, the aim of using Macroscopic Fluctuation Theory will always be to evaluate the
large deviation function of the observable A. It would therefore be natural to start by evaluating
Pss(A = a) and try to use the ϵ → 0 limit to get −ϕA(a) := ϵ ln Pss(A = a) = ϵ ln ⟨δ(A− a)⟩ in a
saddle point approximation. In order to perform it in presence of the constraint δ(A− a), its Fourier
representation δ(A(x)− a) =

∫
R dke

ik(A(x)−a)/2π with k = −iλ/ϵ is used, so that:

−ϕA(a) := ϵ ln ⟨δ(A− a)⟩ = ϵ ln

∫
iR

ϵdλ

2πi
⟨e

λ
ϵ
(A−a)⟩ = ϵ ln

∫
iR

ϵdλ

2πi
e−ϵ

−1[λa−wA(λ)]

where wA(λ) := ϵ ln ⟨eϵ−1λA⟩ is the cumulant generating function of the observable A. A saddle
point approximation for ϵ → 0 directly proves that the large deviation function is the Legendre
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transform of the cumulant generating function13 : ϕA(a) = supλ[λa−wA(λ)]+O(ϵ ln ϵ). This Legendre
transform has an interpretation in the statistical mechanics perspective, which is the passage from a
microcanonical ensemble to a canonical one (or “tilted” in the language of out of equilibrium systems,
[13]). The probability measures are:

Pmicro
a [r] =

P[r]δ(A[r]− a)∫
Dr′P[r′]δ(A[r′]− a)

, Pcan
λ [r] =

P[r]eϵ−1λA[r]∫
Dr′P[r′]eϵ−1λA[r′]

= P[r]eϵ
−1
(
λA[r]−wA(λ)

)
Like in equilibrium statistical physics, the hard constraint on A in the microcanonical ensemble makes
the computation of the (microcanonical) partition function too complicated. Therefore, calculations
are performed in the canonical one, hoping that the ensemble equivalence is valid at least far from
phase transitions. The observable A and the “Lagrange multiplier” −λ/ϵ play the role of the energy
and the inverse temperature. In order to compute the large deviation function, it is necessary to find
λ∗(a) := arg supλ[λa−wA(λ)], which gives the condition a = d

dλwA(λ)|λ∗(a) = Eλ∗(a)[A] where Eλ is the
expectation value with respect to the canonical probability measure Pcan

λ . The ensemble equivalence
is satisfied for the optimal Lagrange multiplier λ∗(a) if the fluctuations of A around its average in
the canonical ensemble are negligible, namely if

√
Varλ∗ [A] ≪ Eλ∗ [A] = a. By definition of wA(λ),

this corresponds to ϵ d2

d2λ2
wA(λ)|λ∗ ≪ a2, which is true in ϵ→ 0 and far from phase transitions (where

the derivatives of the cumulant generating function may diverge). The out of equilibrium ensemble
equivalence is discussed in [13] for Markov processes (included Langevin equations) and in [14] for
stochastic hydrodynamics, and it will be assumed to hold in the following. Thus, from now on, the
large deviation function of an observable will be obtained as the Legendre transform of its cumulant
generating function.

Another problem that arises due to this change of ensemble is that this procedure will only return
the convex hull of the large deviation function. This is essentially due to the property of the Legendre
transform and is coherent with the Gartner–Ellis theorem [39]. It is, though, a minor issue whose
solution will be discussed in section 2.2.1 and implemented in section 2.3.

With this in mind, compute the cumulant generating function by path integral formulation:

wA(λ) = ϵ ln
[ ∫
Dr P[r|r0]e

λ
ϵ
A[r]

]
(6)
= ϵ ln

[ ∫
Dr J [r]e

λ
ϵ
A[r]−FW [r]

]
:= ϵ ln

[ ∫
Dr e−

1
ϵ
Lλ[r]

]
(7)

with the “Lagrangian” action Lλ[r] defined as:

Lλ[r]
α
= −λA[r] + 1

4

∫ tf

0
dt
[ ṙ − f + 2αϵgg′

g

]2
+ ϵ

∫ tf

0
dt
[
αf ′ +

1

2
ln(4πϵdt|g|2)

]
(8)

where a short-hand notation was used inside the integrals: r is always to be intended as evaluated at
t and f, g, f ′, g′ are always intended to be evaluated at r(t). Equation 8 clarify immediately that the
discretization α plays a subleading role of O(ϵ ln ϵ). From now on the effect of discretization will be
neglected and Itô discretization will be chosen (α = 0).

2.1.2 The Hamiltonian approach is equivalent to the Lagrangian one

The approach used above to derive the MFT action is called “Lagrangian approach” because the
action 8 shows a Lagrangian structure. Recalling that ϵ→ 0, define the Lagrangian:

L(r(t), ṙ(t)) := 1

4

[ ṙ(t)− f(r(t)) + 2ϵαg(r(t))g′(r(t))

g(r(t))

]2
13Recall that the saddle point can be used also for function of complex variables like λ ∈ iR. The idea is to find the

saddle point λ0 ∈ C of the function at the exponent of the integrand and use Cauchy theorem for analytical functions in
order to deform the path iR into λ0 + iR, assuming that no singularities are encountered in this deformation.
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which is such that L0[r] =
∫ tf
0 dtL(r(t), ṙ(t)) + O(ϵ ln ϵ). Using the Legendre transform14 on the

velocity ṙ of this Lagrangian, it is straightforward to obtain the following Hamiltonian structure:

Action: Sλ[r, π]
α
= −λA[r] +

∫ tf

0
dt [π · ṙ −H(r, π)] + ϵ

∫ tf

0
dt
[
αf ′ +

1

2
ln(4πϵdt|g|2)

]
(9)

Conjugated momentum: π(t) =
∂L(r(t), ṙ(t))

∂ṙ(t)
=
ṙ(t)− f(r(t)) + 2ϵαg(r(t))g′(r(t))

2[g(r(t))]2
(10)

Hamiltonian: H
(
r(t), π(t)

)
= π(t)

[
f(r(t))− 2αϵg(r(t))g′(r(t)) + g2(r(t))π(t)

]
(11)

Notice that the deterministic part of the Langevin equation (ṙ − f(r)) is clearly appearing inside the
dominant part of the Hamiltonian action multiplied by π. For the physical meaning of the Lagrangian
and the Hamiltonian formalisms see section 2.2.1.

A more straightforward way to get directly to the Hamiltonian formulation is the “Hamiltonian”
approach. It will be discussed briefly here and thoroughly in section 3.2, where this method will save
many computations with respect to the Lagrangian approach. The aim here is to prove that these
two approaches are equivalent.

Define Eη[ψ] :=
∫
Dη P[η]ψ[η] the expectation value over the noise, let u[η] the path for a given

realization of the noise according to equation 5 and consider again the cumulant generating function:

wA(λ) := ϵ lnEη
[
e

λ
ϵ
A[r[η]]

]
= ϵ ln

∫
Dr e

λ
ϵ
A[r]Eη

[
δ(r[η]− r)

]
=

= ϵ ln

∫
Dr e

λ
ϵ
A[r]Eη

[
δ
( ṙ − f(r)√

2ϵg(r)
− η

)
·
∣∣∣ det{J [η0 = (ṙ − f(r))/(

√
2ϵg(r))

]}∣∣∣−1]
(12)

where a generalization of the change of variables for the Dirac delta function δ(F (x)) = δ(x −
x0)/|F ′(x0)| (valid if x0 is the unique simple zero of the function F in the integration domain) was

used. More precisely, as δ(r[η] − r) =
∏
t∈[0,tf ] δ(r[η](t) − r(t)) with r[η](t) = r0 +

∫ t
0 ds

[
f(r(s)) +

√
2ϵg(r(s))η(s)

]
, take x = η and F [η] = r[η] − r; finding η0 such that F [η0] = 0 means to solve

∀t r[η0](t) = r(t), which implies ṙ(t) = d
dtr[η0](t) = f(r(t)) +

√
2ϵg(r(t))η0(t). So η0(t) = [ṙ(t) −

f(r(t))]/(
√
2ϵg(r(t)). Then the Jacobian reads J [η] = δF [η]

δη |η=η0 = δr[η]
δη |η=η0 . A rigorous way to eval-

uate this Jacobian taking into account the discretization is by introducing a time-grid n = 1, ..., T/∆t,
so that the Langevin equation reads rn+1− rn := ∆rn = ∆tf(rn+α∆rn) +

√
2ϵ∆tg(rn+α∆rn)ηn+1.

It is easy to see that causality implies that the Jacobian is a triangular matrix and so:

det
[
J [η]n,m

]
:= det

[∂rm
∂ηn

]
=

∏
n

[∂rn
∂ηn

]
The determinant of this Jacobian has already been obtained in [11] and it was exactly such that (using
that the noise is Gaussian and white):

Eη
[
δ
( ṙ − f(r)√

2ϵg(r)
− η

)
|det[J [η]]|−1

]
:=

∫
Dη e−

1
2

(ṙ−f)2

2ϵg2

[
δ
( ṙ − f(r)√

2ϵg(r)
− η

)
·
∣∣ det[J [η]]∣∣−1

]
= J [r]e−FW [r]

as defined in equation 6. This makes clear the equivalence with the Lagrangian and the Hamiltonian
approaches introduced here. Any order O(ϵ ln ϵ) will be neglected from now on, including the Jacobian
that has just been computed.

Going on with the Hamiltonian approach, δ
(
ṙ−f(r)√
2ϵg(r)

−η
)
≈ δ

(
ṙ−f(r)−

√
2ϵg(r)η

)
(up to another

negligible Jacobian) and using the Fourier representation δ(x− y) =
∫
R
dk
2π exp [ik(x− y)] for each t:

e
wA(λ)

ϵ ≈
∫
Dr e

λ
ϵ
A[r]Eη

[
δ
(
ṙ − f(r)−

√
2ϵg(r)η

)]
=

∫
Dr

∫
Dk e

λ
ϵ
A[r]+i⟨k|ṙ−f(r)⟩ · Eη[e−i⟨

√
2ϵgk|η⟩]

π=iϵk
=

=

∫
Dr

∫
Dπ e

λ
ϵ
A[r]+ϵ−1⟨π|ṙ−f(r)⟩ · Eη[e−⟨

√
2ϵ−1gπ|η⟩]

Gauss
=

∫
Dr

∫
Dπ e−ϵ−1Sλ[r,π] (13)

where Sλ is the Hamiltonian action introduced in equation 9 and ⟨ψ|ϕ⟩ :=
∫ tf
0 dt ψ(t)ϕ(t).

14Or the Hubbard-Stratonovich transform.
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2.2 Studying a d-dimensional Langevin equation to get the physical meaning

2.2.1 The actions and instanton equations

This section will discuss the application of Macroscopic Fluctuation Theory to the general setting of
a d -dimensional Langevin equation in order to give the physical interpretation of its results. With
a straightforward generalization of the two approaches described before and neglecting the orders
O(ϵ ln ϵ), the following Lagrangian and Hamiltonian structures are:

Lagrangian action: Lλ[r]=− λA[r] +
1

4
⟨ṙ − f(r)|C(r)−1|ṙ − f(r)⟩ (14a)

Lagrangian: L(r(t), ṙ(t)) = 1

4
[ṙ(t)− f(r(t))] · C(r(t))−1[ṙ(t)− f(r(t))] (14b)

Hamiltonian action: Sλ[r,π] = −λA[r] + ⟨π|
(
ṙ − f(r)− C(r)π

)
⟩ (14c)

Conjugated momentum: π(t) =
∂L(r(t), ṙ(t))

∂ṙ(t)
=

1

2
C(r(t))−1

(
ṙ(t)− f(r(t))

)
(14d)

Hamiltonian: H(r(t),π(t)) = π(t) · [f(r(t)) + C(r(t))π(t)] (14e)

where the scalar product now is generalized to ⟨ψ|ϕ⟩ =
∑d

i=1

∫ tf
0 dt ψi(t)ϕi(t).

The physical meaning of the Lagrangian action is to define a probability measure in the space
of trajectories {r(t)}t∈[0,tf ] which reads PL

λ [r] = exp[−ϵ−1Lλ[r]]/
∫
Dr′ exp[−ϵ−1Lλ[r

′]]. As already
noticed in section 2.1.1, this is the measure of the canonical ensemble, in which the “inverse tempera-
ture” −ϵ−1λ is conjugated to the observable A (analogous to the energy); differently from the equal a
priori postulate in thermodynamics, the prior (unconstrained) measure here is P[r] ∝ exp[−ϵ−1L0[r]]
and it is not uniform on the admissible states.
These interpretations are valid also for the Hamiltonian action, except that it defines a probability
measure in the phase space of paths {r(t),π(t)}t∈[0,tf ]. The connection between the two formalism is
again a Legendre transform where π is the conjugated field to the velocity ṙ, but it has not an inter-
esting statistical mechanics interpretation as the Hamiltonian and the Lagrangian probability measure

have the same partition function which is Eη{e
λ
ϵ
A}. The Hamiltonian formalism is more advantageous

because the Hamiltonian is a constant of motion of the stationary equations for the action that will
be derived soon (the conservation is true in the case A = A(r(tf )) but it could be generalized, see
section 2.2.1).

wA(λ) can be obtained by saddle point approximation (see equation 13). The saddle point equa-
tions are the stationary equations for the Hamiltonian action and the detailed computation is shown
in section 3.2.2 for the much more complicated case of the Navier-Stokes equation. The result is:

d

dt
rI(t) = f(rI(t)) + 2C(rI(t))πI(t) (15a)

d

dt
πI(t) = −λ

δA[rI ]

δrI(t)
−
[
∇r ⊗ f(rI(t))

]
πI(t)−∇r

[
πI(t) · C(rI(t))πI(t)

]
(15b)

rI(0) = r0 πI(tf ) = λ
δA[rI ]

δrI(tf )
(15c)

where the outer product u⊗v := uv⊤ and (∇r

[
πI(t)·C(rI(t))πI(t)

]
)i =

∑
kj π

k
I (t)

∂
∂ri
Cjk(rI(t))π

j
I(t).

Recalling the ensemble equivalence, these equations 15 predict the most likely path leading from
r0 to the large deviation A = a (enforced via the Lagrange multiplier λ) in the time interval [0, tf ].
Taking the name from a pseudo-particle introduced in quantum field theory [2], this path is called
the “instanton”. The name underlines that this pseudo-particle is very localized in time, which is a
characteristic feature of large deviation paths; for instance, the transition between two stable states in
small-noisy systems is very fast compared to the residence time in these states (consult section 2.3.2
and in particular figure 2b).

Notice that equation 15a is the Langevin equation where the noise is replaced by an effective term
that is linear in πI . Let rD(t) the trajectory in the zero noise case starting from r0 and assume it
is unique. If the final state is chosen to be an atypical value (any different from rD(tf )), the typical
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path leading to the atypical state is the instanton as it is overwhelmingly more probable than any
other path. Moreover, the noise makes the particle deviate from the deterministic trajectory and
follow the instanton: the term 2C(rI(t))πI(t) in the instanton equation 15a represents the most likely
realization of the noise that brings the system to the large deviation. In this perspective, πI is the
“stochastic force” that the noise has to give to the system to reach the atypical state following the
instanton path. Notice that if the final state chosen is exactly the one reached by the deterministic
dynamics, the solution of equations 15 has πI(t) = 0 ∀t and indeed, intuitively, no stochastic forcing
is required.

The minimum action can be rewritten by plugging equation 15a into the equation 14c:

Sλ[rI ,πI ] = −λA[rI ] + ⟨πI |C(rI)πI⟩ (16)

In the case A = A(r(tf )) the Hamiltonian is a constant of motion of the instanton equations 15
because they coincide with the Hamilton equations and the Hamiltonian does not explicitly depend
on time (equation 14e)15. Therefore the action of equation 14c can also be written as:

Sλ[rI ,πI ] = −λA(rI(tf )) + ⟨πI |ṙI⟩ − H(rI(0),πI(0)) (17)

Once the action is evaluated, the cumulant generating function can be obtained to the leading order
in ϵ by saddle point approximation on equation 13: wA(λ) ≈ −Sλ[rI ,πI ].

Now it is possible to understand why the effect of a vanishing noise is non negligible, which is
one of the main motivations for the use of Macroscopic Fluctuation Theory. Thanks to the small
noise, the system can have large deviations from the deterministic dynamics that can be particularly
relevant. For instance, if there are many stable fixed points, according to the deterministic dynamics
the final state will be exponentially near to the one whose basin of attraction contains initial condition,
while the small noise allows for rare jumps between the fixed points leading to completely different
behaviour. The effect of a small noise is very important in turbulence where it induces transitions
between stable configurations [17], it might induce a smooth solution of the Navier-Stokes equation
to develop local singularities, paving the way for spontaneous stochasticity to come to play, or it can
allow the transition between non-unique solutions to the deterministic dynamics, if present. In all
cases, the vanishing noise has definitely not a negligible effect.

2.2.2 The quasi-potential and the adjoint dynamics

The generalization to a vectorial observable is straightforward: λ will be a vector and all the previous
results generalize by λA[r] 7→ λ ·A[r]. This allows to discuss the case of A[r] = r(tf ), thanks to which
MFT will furnish the stationary probability distribution16 of the process Pss(r) ≈ exp{−ϵ−1ϕ(r)} by
Legendre transform of the cumulant generating function w(λ) ≈ −Sλ[rI ,πI ]. Due to the similarity
of Pss with the Gibbs-Boltzmann distribution, the large deviation function ϕ(r) is also called the
“quasi-potential”.

A first property of the quasi-potential is that, if the deterministic dynamics admits a stable fixed
point r̄, then it is a minimum of the quasi-potential, because in the limit ϵ → 0 the probability
distribution of the position should converge to a delta over the deterministic solution17.
Moreover, the quasi-potential is connected to the momentum πI . On the one hand, as ϕ = Leg[w],
by Legendre duality arg supλ[λ · rf − w(λ)] := λ∗(rf ) = ∇rfϕ(rf ). On the other hand, the final
condition of equation 15c specialized to this observable implies πI(tf ) = λ. Thus:

λ∗(rf ) = ∇rfϕ(rf ) = πI(tf ) with πI solution of 15 with λ = λ∗(rf ) and A = r(tf ) (18)

15In case of an observable depending on the full realization the Hamiltonian H of equation 14e is not conserved by the
instanton equations 15 due to the term −λ δA[rI ]

δrI (t)
in equation 15b. However, if A[r] =

∫ tf
0
dt a(r(t)) there is a conserved

Hamiltonian which is Hλ(r,π) = λa(r) + H(r,π). In the most general case, one should redefine also π and alter the
structure defined in equation 14. This would be a generalization that is not necessary in the following.

16The existence of a stationary probability is an assumption [5], it is also the stationary solution of the Fokker-Planck
equation and it is not necessary an equilibrium state.

17In the case of multiple solutions as conjectured in section 1.1.1, exp[−ϵ−1ϕ(r)] converges a non-trivial probability
distribution over them. This is how to probe spontaneous stochasticity through stochastic regularization.
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This relationship is useful to introduce the concept of “adjoint dynamics” from a Hamiltonian perspec-
tive (in the literature this is derived by time-reversibility arguments, [5]). This is defined such that the
most likely path leading the original system from a stationary state to a rare one is the time reversed
relaxation path leading the adjoint dynamics from the rare state to the stationary one. It is assumed
that the adjoint system is still described by a Langevin equation. Only its deterministic part is needed
to find any relaxation path as, by definition, it does not need to be activated by the noise. In order
to find the adjoint dynamics, suppose that the system is at stationarity at the beginning, so r0 ∼ Pss.
As detailed in section 3.2.2 for the case of Navier-Stokes equation, drawing the initial condition from a
distribution will only change the initial condition of equation 15c to πI(0) = ∇rϕ(rI(0)), where initial
position rI(0) is determined by the instanton equations. By definition of stationary measure, the pro-
cess will remain stationary in t ∈ [0, tf ] ∀tf and so, by the property 18, πI(tf ) = ∇rϕ(rI(tf )) ∀tf ,
which means πI(t) = ∇rϕ(rI(t)) ∀t. This can be substituted in equation 15a resulting in:

d

dt
rI(t) = f(rI(t)) + 2C(rI(t))∇rϕ(rI(t))

Besides allowing to find the instanton path if ϕ was known, this equation furnishes the deterministic
part of the adjoint dynamics as, by its definition, it is described by the adjoint position R(t) :=
rI(tf − t), which gives:

d

dt
R(t) = −f(R(t))− 2C(R(t))∇rϕ(R(t)) (19)

In practice, the adjoint dynamics is useless because ϕ is unknown, but it gives another definition of an
equilibrium process as the one such that the adjoint dynamics coincides with the original one [5]. As
an example, the potential Langevin equation with f(r) = −∇U(r) and C = 1 respects this definition.
Indeed, Pss(r) ∝ exp[−ϵ−1U(r)] is an equilibrium state, it is immediate to see that U = ϕ and then
the adjoint Langevin equation matches with the original one.

Another classical result of Macroscopic Fluctuation Theory is the Hamilton-Jacobi equation for
the quasi-potential. This can be derived in many ways, such as by time reversibility arguments [5]
or by substituting the large deviation ansatz Pss(r) ∝ exp(−ϵ−1ϕ(r)) in the Fokker-Planck equation
and keeping the leading order [8]. From the Hamiltonian perspective, its derivation requires just to
substitute the property πI(t) = ∇rϕ(rI(t)) (equation 18, valid for for stationary initial condition), to
send tf →∞ and use the conservation of the Hamiltonian (valid because the observable only depends
on the final position, see section 2.2.1):

∇ϕ(rI(t)) · [f(rI(t))+C(rI(t))∇ϕ(rI(t))] := H
(
rI(t),∇ϕ(rI(t))

)
= H

(
rI(0),∇ϕ(rI(0))

)
= 0 ∀t > 0

where H
(
rI(0),∇ϕ(rI(0))

)
= 0 because πI(0) → 0 as tf → ∞. The intuitive reason why the initial

momentum vanishes is that the initial state is drawn from the stationary distribution (so it is typical)
and the rare event r(tf ) = rf ∈ Rd has to be reached in infinite time18.

2.2.3 The MFT numerical procedure to estimate the large deviation function

Being able to solve the instanton equations analytically is rare as the instanton equations are pretty
complicated and non linear, even if in some non-trivial cases such as the simple exclusion process this
was done [32]. Therefore it is very important to open a comment on the numerical strategies and the
algorithms to integrate them, depending on the quantity of interest.
Case 1. If the aim is to evaluate the cumulant generating function wA(λ) of the observable A[r] and

the initial state r0 is known, it suffices to impose rI(0) = r0, πI(tf ) = λ δA[rI ]
δrI(tf )

as it was done in

equation 15.
Case 2: If the aim is to evaluate large deviation function of the observable, the calculations above
suggest to compute the Legendre transform of wA(λ) numerically. However, this can be quite expensive

18To be more precise: from equation 15b for any finite tf πI(0) = 0 is not a good initial momentum for the shooting
problem if the final state is atypical because with this initial condition the deterministic dynamics is followed. However,
as tf → ∞ at fixed rf , the process has more and more time to reach the final target state and so the initial perturbation
to the deterministic dynamics can become less and less strong, approaching 0 in the infinite time limit.
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due to the maximization involved, and a short-cut is possible. Intuitively, S0[r,π] defines a probability
measure for the paths without any constraint, so

ϕA(a) = −ϵ ln Pss{A[r] = a|r(0) = r0} = −ϵ ln
∫
A[r]=a

Dπ
∫
r(0)=r0

Dr e−ϵ−1S0[r,π]

saddle
≈ sup

[
S0[r,π]

∣∣∣{r(t),π(t)}t∈[0,tf ] : r(0) = r0, A[r] = a
]

Therefore, the numerical computation of the Legendre transform can be avoided and the large deviation
function of any observable is obtained (up to an additive constant19) by solving the instanton equations
with final condition A[r] = a and initial one r(0) = r0 (fixed as a reference while varying a).

From a mathematical perspective, this short-cut is a direct consequence of the ensemble equivalence
hypothesis. Intuitively, λ is a Lagrange multiplier enforcing A[r] = a (more precisely on average as
discussed in section 2.1.1), so it is possible20 to avoid the maximization over λ by selecting only the
instanton paths such that A[r] = a. However, this procedure will still return the convex hull of
the large deviation function as if the Legendre transform was performed, because it is hidden in the
ensemble equivalence assumption21.

[8] suggests a way to circumvent this problem for the quasi-potential (so A = r(tf )). Suppose
that the deterministic dynamics has n stable fixed points {r̄α}α=1...n with basin of attraction Λα.
As mentioned before (section 2.2.1), each stable fixed point will be a local minimum of the pseudo-
potential. By the property of the Legendre transform, if the initial condition r0 is in the basin Λα,
the ϕ(r) obtained with the instanton procedure will coincide with the quasi-potential only inside Λα
(up to a constant). The strategy is then to apply this procedure in each basin independently and then
match the constants by continuity of the quasi-potential at the borders. In the following, this strategy
and the short-cut presented above constitutes the way to compute the pseudo-potential ϕ(r) and will
be called “MFT procedure” from now on.

In any case, a numerical difficulty of integrating the instanton equations 15 is the fact that the
initial momentum (or position) is unknown and should be fixed such that the final condition is satisfied.
This is usually called a “shooting problem” and the initial momentum (or position) is found as the
optimal one such that the final condition is met, which numerically requires many integrations of the
instanton equations for each optimization. Not only does this increase the computational cost, but it
also has convergence problems. The solutions to this numerical problem will not be discussed here. A
summary of the best techniques can be found in [37].

2.3 A 1-dimensional system to test the MFT procedure in estimating the pseudo-
potential

The aim of this section in to show with a practical non-trivial example the effectiveness of the “MFT
procedure” described in section 2.2.3 to estimate the leading order of the large deviation function.

2.3.1 Computing the pseudo-potential with a change of variable

Consider again equation 5 with Itô discretization. This paragraph will prove that, in dimension
d = 1, if g(r) ̸= 0 ∀r and never changes sign (without loss of generality g(r) > 0 ∀r), then a candidate

19Theoretically the additive constant is S0[rD, 0] with rD(t) solution of the deterministic dynamics with initial condi-
tion r0, but it can be fixed by normalization.

20Up to corrections of order O(ϵ) and far from phase transitions.
21A case in which it is evident that this MFT procedure returns the convex hull of the quasi-potential is a Langevin

equation with d = 1, C = 1 and potential U being a double well with minima in A < B and maximum in M . This
process has an equilibrium probability distribution peq(r) ∝ exp[−ϵ−1U(r)] and so ϕ = U . Following the MFT procedure
to evaluate the large deviation function, fix the initial reference r0 = A and suppose to apply the instanton procedure
to get the quasi-potential in a point M < rf < B belonging to the other well’s basin of attraction. Recall that going
“downhill” (with respect to the potential) does not need noise activation if it is done in the amount of time predicted
deterministically tD. Then if the final time is fixed to tf > tD, the instanton rI will reach the maximum M in tf − tD
(waiting near r0 if required) and then relax with no activation needed to rf . As a result, πI(t) = 0 ∀t > tf − tD and
the pseudo-potential predicted with the MFT procedure will be ϕMFT(rf ) = ϕMFT(M) ∀rf ∈ [M,B]. As a consequence,
ϕMFT will be the convex hull of U with global minimum in the initial reference r0. This is further explained in section
2.3.2.



Master thesis – Pietro Dragoni p. 14/41

equilibrium state can be found by mapping the multiplicative noise Langevin equation into an additive
noise one. Indeed, apply Itô’s lemma [23] for change of variables y = ψ(r) in Langevin equation 5
with Itô discretization:

ẏ(t)
0
=

{
ψ′(r(t))f(r(t)) + ϵg2(r(t))ψ′′(r(t)) +

√
2ϵg(r(t))ψ′(r(t))ξ(t)

}∣∣∣
r(t)=ψ−1(y(t))

Thanks to the assumption g(r) > 0, it is possible to define an invertible change of variable ψ such that
ψ′(r)g(r) = 1∀r, namely ψ(r) =

∫ r
rref

dx(g(x))−1 with rref arbitrary reference point. As a consequence,

the stochastic process y follows an additive noise Langevin equation ẏ(t) = f̃(y(t)) +
√
2ϵξ(t) with a

modified force field:

f̃(y) =
{
ψ′(r)f(r) + ϵg2(r)ψ′′(r)

}∣∣
r=ψ−1(y)

=
f(r(y))

g(r(y))
− ϵg′(r(y)) (20)

where r(y) := ψ−1(y). As d = 1 it is always possible to define the potentials corresponding to f, f̃ as
f(r) = −V ′(r) and f̃(y) = −Ṽ ′(y) and by equation 20:

Ṽ (y)− Ṽ (y0) =

∫ y

y0

dY
V ′(ψ−1(Y ))

g(ψ−1(Y ))
+ ϵg′(ψ−1(Y ))

Y=ψ(x)
=

∫ ψ−1(y)

ψ−1(y0)

V ′(x)

g2(x)
dx+ ϵ ln

[∣∣∣∣ g(ψ−1(y))

g(ψ−1(y0))

∣∣∣∣]
where y0 is the arbitrary zero of the potential. If Ṽ is such that qeq(y) ∝ exp[−ϵ−1Ṽ (y)] is nor-
malizable, then it is an equilibrium state for the stochastic process y. By change of variable, if
peq(r) ∝ |ψ′(r)| exp[−ϵ−1Ṽ (ψ(r))] is normalizable then it is an equilibrium22 state for r(t). Thus the
large deviation function of r(t) results:

ϕ(r) = Ṽ (ψ(r))− ϵ ln |ψ′(r)| =
∫ r

rref

V ′(x)

g2(x)
dx+ 2ϵ ln |g(r)| (21)

where rref = ψ−1(y0) is just a reference point for the pseudo-potential and it contributes as a constant
that can be reabsorbed in the normalization. Observe that, in the additive noise case23 g = 1, the
result ϕ(r) = V (r) is correctly recovered. Concerning this large deviation function, notice that the
term of order O(ϵ) is due to the choice of Itô discretization (it would be zero in Stratonovich’s one).
This O(ϵ) correction is neglected in the MFT procedure to obtain the pseudo-potential, as it will be
clear in section 2.3.2. Notice also that the Hamilton-Jacobi equation 2.2.2 in d = 1 has a non trivial
solution only for ϕ′(r) = V ′(r)/g2(r), which gives the leading order of equation 21.

2.3.2 Example: a 1-dimensional double well with multiplicative noise

The aim of this section is to compare the prediction of equation 21 with the one evaluated using
the “MFT procedure” described in section 2.2.3 in an example. Consider the asymmetric double-
well potential V (r) = 1

4(r
2 − a2)2 + br3 with maximum in M = 0 and minima in A = −3b −√

9b2 + 4a2 < 0 and B = −3b +
√
9b2 + 4a2 > 0. The noise is multiplicative with g(r) = (1 + g0 +

tanh(αr))/(1 + g0) and α, g0 > 0 and its effect is to change smoothly the noise amplitude across the
two minima24. A plot of V and g and a realization of the process is shown in figure 2. The MFT
procedure to obtain the pseudo-potential (section 2.2.3) requires the computation of many instanton

23Any constant g ̸= 0 can be reabsorbed in ϵ
23As the change of variable is invertible, there is no loss of information in the change of variable so, provided qeq and peq

are normalizable, qeq is equilibrium if and only if peq is equilibrium. This intuitive claim is proven by using the Fokker-
Planck equation (FPE): suppose p(x) equilibrium state of the process x, y = φ(x) invertible change of variable (without
loss of generality, φ′(x) > 0) with x = ψ(y) := φ−1(y) and let q(y) = p(ψ(y))/φ′(ψ(y)) the induced distribution of y
(suppose normalizable). By assumption, the probability current of the Fokker-Planck equation for p vanishes: (−f(x) +
ϵ∂x)p(x) = 0∀x. By Itô’s lemma the current for q(y) reads: [−f(ψ(y))φ′(ψ(y))− ϵφ′′(ψ(y))]q(y) + ϵ∂y[(φ

′(ψ(y)))2q(y)]
which is easy to prove to be vanish. Thus q(y) is an equilibrium state for y.

24The normalization 1/(1 + g0) is introduced to enforce that the amplitude of the noise is
√
2ϵ on average over any

interval [−x, x]. This choice is to better visualize the effect of the multiplicative noise as compared to the additive noise
case g = 1.
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Figure 2: (a) The plot of the potential V (r) and the multiplicative noise function g(r) considered in this particular
example. (b) A corresponding realization of the Langevin equation 5 obtained using Itô discretization scheme.
Notice that the process jumps many times in A and resides there for long although V (M)−V (A) < V (M)−V (B)
because the noise in B is stronger than in A. The parameters are set to a = 2, b = −0.25, ϵ = 1, g0 = 1,
α = 0.3. Notice that the noise amplitude ϵ is chosen not so small, as evidenced by the frequent transitions, in
order to underline the effect of O(ϵ) of equation 21 on the large deviation function.

paths. An example of these is shown in figure 3, with starting point in the minimum A and target
in B. The integrations of the instanton equations needed for the shooting method are performed
using the standard integrator Explicit Runge-Kutta method of order 5(4) [15], even if it is not a
Hamiltonian-conserving (symplectic25) integrator, as it is clear from figure 3c.

Notice that the momentum vanishes as soon as the process starts going downhill (from M to B,
figure 3b). As a consequence, this portion has null contribution to the Hamiltonian action (recall its
expression from equation 16) and ϕ(M) = ϕ(B) which is false. The inconsistency arises from the
Legendre transform involved in the MFT procedure and its explanation is discussed in section 2.2.3.
As discussed in that section, for the MFT procedure the initial position is always one of the stable
fixed points and the target position is in its basin of attraction. As a consequence, the instantons
computed for the pseudo-potential are never going downhill and the instanton of figure 3 is never used.

Figure 4 shows a satisfactory comparison between the pseudo-potential built with the MFT pro-
cedure and the one obtained above by the change of variable (equation 21). All the comments are
included in the caption. It is remarkable that the effect of the multiplicative noise is able to lower
significantly the asymmetry of the potential V . This explains why the realization shown in figure 3b
spends approximately the same amount of time in both stable fixed points. The Arrhenius law should
be used with the pseudo-potential instead of the potential in out of equilibrium systems [8].

As a concluding remark, in dimension d > 1 the change-of-variable procedure described in section
2.3.1 is not applicable because g is a matrix and the deterministic force f(r) might not be potential.
Instead, the MFT procedure can be used even when d > 1 or for hydrodynamics, and has proven to
be successful [8, 32]. The take-home message of this section is that the MFT procedure described
in section 2.2.3 is properly working in an example where it was possible to check the result and can
promisingly be applied in new cases such as in turbulence.

2.3.3 Choosing the final time tf

The final time tf when the instanton is constrained to reach the target rf is an arbitrary parameter.
From a theoretical point of view [5], it should be set to ∞ for the instanton to be as close as possible
to the physical path, because the Langevin equation 5 is free to get to the rare position at any time.
Indeed, the most likely way for the process to have a large deviation is to remain near the steady state
for long, doing typical fluctuations, and then reach rf very rapidly.

From a numerical perspective, however, not only is tf = ∞ unfeasible, but also instances of

25The implementation of symplectic integrators such as Stormer-Verlet or Ruth integrators [21] is not possible because
they both need a separable Hamiltonian. This property is not frequent in the Hamiltonian structure of MFT formalism.
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Figure 3: The images show the most likely path leading from the stable fixed point A to the other B (i.e. the
instanton from A to B) for the double-well potential V (r) = 1

4 (r
2 − a2)2 + br3. The computation involved

solving the shooting problem defined by the instanton equations 15 with rI(0) = A, rI(tf ) = B, as explained in
section 2.2.3. The images (a), (b), (c) respectively shows the evolution of the position of the instanton rI(t),
the momentum πI(t) and the Hamiltonian H(rI(t), πI(t)) (equation 14e for λ = 0). The parameters are set to
a = 2, b = −0.25, ϵ = 1, g0 = 1, α = 0.3 and the final time tf is optimized via the bisection method explained
in section 2.3.3.
From figure (c) notice that the Hamiltonian is not conserved due to the use of the non-symplectic integrator
Runge-Kutta 4(5) [15], but the maximum deviation with respect to the initial value ∼ 10−5 is negligible. Notice
that rI(t) tends to “wait” near the point A and also “rest” near the maximumM . For any larger tf , the instanton
simply spends more time near A and M , while the portions of the trajectory where it climbs or descends the
potential remain unchanged. This suggests that the typical large deviation path does not last for all the available
time tf and has a typical duration that will be estimated in section 2.3.3. Observe also that the momentum
vanishes as soon as the process starts going downhill: from M to B the instanton follows the relaxation path
with no activation needed.

numerical artefacts were observed when tf was too large. The first artefact is that the optimal πI(0)
that solves the shooting problem can result smaller than the numerical precision. In these cases,
the shooting optimization does not converge properly and the predicted instanton does not reach the
target.
In other instances, in presence of 2 or more stable fixed points, the instanton jumps many times between
them before reaching the target, even if the jump was “not needed” to reach it. This phenomenon
can be attributed to the fact that if the final time is significantly larger than the average residence
times in the fixed points, it is improbable that the process will wait until the final time in the basin
of attraction of the fixed point, where it was at the beginning. Both artefacts are deleterious for the
evaluation of the pseudo-potential: the former makes the estimate inaccurate because the target is not
reached, the latter leads to an overestimation of ϕ(rf ) because each jump increases the total action
as it requires going up-hill.
A further issue, which though does not affect the pseudo-potential, is that for too large tf the instanton
rests in the a fixed point for long before reaching rf . This only increases the computational cost.
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Figure 4: The image reports the asymmetric double-well potential V (r) (green) and three estimates of the large
deviation function ϕ(r): in blue the result of the MFT procedure (see section 2.2.3), in red the prediction of
the change of variable procedure (equation 21) considering the correction of order O(ϵ) and in orange the same
neglecting this correction. Notice the satisfactory agreement between the MFT procedure and equation 21 up
to the small discrepancy due to the fact that the MFT procedure neglects O(ϵ). Observe that ϕ(r) → ∞ as
|r| → ∞, so the distribution exp[−ϵ−1ϕ(r)] is normalizable. Observe also that the effect of g(r) is to reduce
the asymmetry between the two stable fixed points A,B: intuitively the stronger noise in B competes with the
potential bias V (B) − V (A). The parameters were set to: a = 2, b = −0.25, ϵ = 1, g0 = 1, α = 0.3. Notice
again that the noise amplitude was chosen sufficiently large to evidence the effect of O(ϵ) of equation 21 on the
pseudo-potential.

A practical solution is to optimize tf using the “bisection method”, an empirical method based
on the following observations. It is better to avoid values that are too small so that the initially the
instanton is approximately not activated; this is easily spotted as the corresponding πI(0) is “too
large”. It is also necessary to avoid values of tf that are too large, which may introduce the artefacts
explained above; this is the case when πI(0) is near to the double-precision, or the final condition is
not reached, or the rf is crossed before tf . Taking into account these considerations, the “bisection
method” is the following algorithm 1:

This practical solution is working properly but is computationally expensive and not satisfactory
from a theoretical perspective. The following paragraphs will try to find a theoretical estimate for
tf via an “equilibrium assumption”. The main idea is that large deviations happen spontaneously
during the evolution of a stochastic process: usually the process is performing typical fluctuations
around a steady state of the deterministic dynamics when it starts following a large deviation path
and very rapidly reaches the rare event (see for instance the transitions between the two stable fixed
points in figure 2b). Imagine to integrate the Langevin equation 5 many times and collect a sample of
paths going from a steady point r0 to an atypical position rf without re-crossing any of them. Define
the duration of such a path tI(r0 → rf ). Atypical positions are typically reached following the most
likely path leading to them [5, 8], so the distribution of tI(r0 → rf ) would be quite peaked around its
average value. Define τI(r0 → rf ) := ⟨tI(r0 → rf )⟩ and notice that it is a characteristic time-scales of
the process, in the sense that it emerged without constraining on the large deviation to be realised.
On the other hand, the instanton predicted by equations 15 represents the most likely path leading
from rI(0) = r0 to rI(tf ) = rf in the fixed time interval [0, tf ]. As already discussed in section 2.2.1,
the instanton is an allowed path, so its probability is P[rI(t) : t ∈ [0, tf ]] ∝ exp[−ϵ−1S0[rI , πI ]] where
S0[r, π] is the Hamiltonian action26 introduced in equation 14e (notice that πI can be obtained from
the knowledge of the full path rI by equation 14d). It is evident that S0[rI , πI ] depends on tf both
explicitly (tf is the right extremum of integration over time) and implicitly (as the instanton depends
on tf ). However, as the interest is on the properties of the unconstrained Langevin equation 5, the

26It was set λ = 0 because the procedure aims at the pseudo-potential, as explained in section 2.2.3.



Master thesis – Pietro Dragoni p. 18/41

Algorithm 1 Bisection method to find the optimal tf

1: Initialize t0f (e.g. with the relaxation estimate given in equation 23)

2: if t0f is too small then

3: Set t0f ← 2 · t0f and try again

4: else if t0f is too large then

5: Set tmin
f ← 0, tmax

f ← t0f
6: repeat
7: tcandf ← 1

2(t
min
f + tmax

f )

8: if tcandf is too small then

9: tmin
f ← tcandf

10: else if tcandf is too large then

11: tmax
f ← tcandf

12: else
13: Accept tcandf

14: end if
15: until tcandf is suitable
16: else
17: Accept t0f
18: end if

aim is to compute the probability of observing the process going from r0 to rf without constraints on
the time when rf is reached. In maths, this probability is:

Pr{∃tf : r(tf ) = rf |r(0) = r0} =
∫ ∞

0
dtf

∫ r(tf )=rf

r(0)=r0

Dr
∫
Dπ e−ϵ−1S0[r,π]

which, in saddle point perspective, is dominated by the “most likely instanton” defined by equations 15
with final time t∗f ∈ argmintf S0[rI , πI ]. Since an atypical state is typically reached by the most likely
path leading there, this most likely instanton will correspond to the large deviation path observed
experimentally. As a consequence, a good estimate for t∗f is τI(r0 → rf ).

Wrapping up, tf is an arbitrary parameter of the MFT formalism, there exists an optimal tf and
it coincides with τI(r0 → rf ). Once the latter is known, the final time tf of the instanton equations
15 is set according to the final aim. If the purpose is to estimate the pseudo-potential ϕ (the MFT
procedure described in section 2.2.3), it is sufficient to choose tf ≥ τI(r0 → rf ) (and not too large
to avoid the numerical artefacts discussed above); the reason is that the r0 considered in the MFT
procedure are the stable steady states for the deterministic dynamics and so the instanton computed
for tf will “wait” in r0 for the time in excess tf − τI(r0 → rf ). If instead the aim is to estimate the
most likely path leading from r0 to rf , then it is important to choose tf = τI(r0 → rf ).

Now the aim is to estimate the average duration of the large deviation path leading from r0 to rf
without recrossing. The focus will be on the rare transition between the two stable fixed points of the
double-well potential τI(A→ B) because it represents the richest case, but the approximation is valid
for generic initial and final positions.

As seen in section 2.3.1, if the pseudo-potential of equation 21 is normalizable then peq(r) ∝
exp[−ϵ−1ϕ(r)] is an equilibrium state for the process r(t). If equilibrium holds, time reversibility
ensures that the instanton path A → M is the time reversed of the relaxation path M → A [5, 27].
Notice that this statement is non-trivial for multiplicative noise because ϕ ̸= V , but the following
direct calculation proves that it still holds. In general, the instanton path from A to M is the time
reversed relaxation path from M to A in the adjoint dynamics (equation 19), so it suffices to prove
that the latter has the same deterministic part as the Langevin equation 5. Plugging equation 21 into
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equation 19 (with g(r) > 0 without loss of generality):

Ṙ(t) = −f(R(t))− 2C(R(t))ϕ′(R(t)) = −f(R(t))− 2g2(R(t))
∂

∂R(t)

[
2ϵ ln(g(R(t)))−

∫ R(t)

−∞
dx

f(x)

g2(x)

]
=

= f(R(t))− 4ϵg(R(t))g′(R(t)) = f(R(t)) +O(ϵ)

Therefore, up to the negligible order O(ϵ), the adjoint dynamics coincides with the original determin-
istic dynamics. This is a direct consequence of the fact that peq is an equilibrium measure. As a result,
the time taken by the instanton to climb from A to M is equal to the time taken by the deterministic
dynamics to relax from M to A (up to order O(ϵ)): τI(A → M) = τRelax(M → A). Therefore, it is
possible to assume a priori equilibrium and estimate the duration of the instanton from A to B as:

τI(A→ B) = τI(A→M) + τRelax(M → B)
Equilibrium

= τRelax(M → A) + τRelax(M → B)

As the pseudo-potential is unknown, the estimate will be exact up to order O(ϵ) if a posteriori
equilibrium holds, otherwise it will be a good initial guess for the bisection method 1 described above.

In the generic case of τI(r0 → rf ) with no fixed points in [r0, rf ], the time taken by the relaxation
path is easy to estimate because the deterministic dynamics arrives in rf in finite time:

τI(r0 → rf ) = τRelax(r0 → rf ) = {T : r(T ) = rf where r(t) solving ṙ(t) = f(r(t)), r(0) = r0} (22)

If otherwise a fixed point is in [r0, rf ], some tolerances should be used because the time taken by
the relaxation path to reach (or deviate from) a fixed point in the deterministic dynamics is infinity.
Consider the worst case scenario27 r0 = M and rf = A. In practice, one evaluates the time taken by
the relaxation path starting in M − σM to reach A + σA, with 0 < σM , σA ≪ 1 tolerances that can
be estimated as follows28. For σA, the idea is that there are numerous typical paths going to A from
a point sufficiently close-by, driven by typical fluctuations. The instanton is reliable only in atypical
regions and there it is not a good prediction of the trajectory. It is then reasonable to set the tolerance
of the order29 of the typical fluctuations around the minimum of the potential: σA =

√
ϵ/V ′′(A).

For the unstable fixed point M the same reasoning is not applicable because it is an atypical position.
The idea is that the deterministic force driving the position towards the minima dominates over the
noise as soon as the position r(t) slightly deviates from the maximum M, so let [M −σM ,M +σM ] the
interval where the noise is dominating the dynamics. σM > 0 because the noise dominates the Langevin
equation 5 at least in r =M because f(M) = 0. In the vicinity ofM , V (r) ≈ V (M)+ 1

2V
′′(M)(r−M)2

so the deterministic typical escaping time fromM is τM = |1/V ′′(M)|. Then define σM as the deviation
from M reached in τM thanks to the noise. As near M the deterministic forcing is very weak, the
motion is Brownian around the maximum and the typical deviation from the starting pointM in time
τM will be σM =

√
2ϵτM by diffusion.

Wrapping up for the case A→ B, the “equilibrium assumption” assumes equilibrium and estimates
the duration of the instanton as:

τI(A→ B) ≳ τI(A+σA → B−σB)≈τRelax(M−σM → A+σA)+
2

|V ′′(M)|
+τRelax(M+σM → B−σB)

(23)
with σA =

√
ϵ/V ′′(A), σB =

√
ϵ/V ′′(B) and σM =

√
2ϵ/|V ′′(M)|. Notice that the time spent

spontaneously by an atypical path near the maximum (so in [M − σM ,M + σM ]) is estimated as
2 · τM = 2

|V ′′(M)| (recall the definition of τM as the time to deviate of σM from M).

3 Results: Macroscopic Fluctuation Theory for turbulence

After having seen the simple but insightful application of MFT to the Langevin equation case (section
2), this chapter will treat the case of a stochastic Navier-Stokes equation, which represents a quite
general model of turbulence as motivated in section 1.1.

27If the interval (r0, rf ) contains a fixed point, split it on its left and right.
28For the path from M to B signs are inverted.
29The order of the typical fluctuations around a minimum in a system described by the Langevin equation 5 can be

found by a parabolic approximation of the potential near the minimum A. Using the results for the Ornstein–Uhlenbeck
process [23], the standard deviation from the minimum is

√
ϵ/V ′′(A).
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3.1 From the hypothesis to a final hydrodynamics amenable for MFT

3.1.1 Hypothesis

Referring to section 1.1.4 for the details, the stochastic hydrodynamics to be considered is:∂tu
l(x, t) + ul(x, t) · ∇ul(x, t) = −∇pl(x, t) + ν∆ul(x, t) +∇ · ξ(ul, x, t)

∇ · ul(x, t) = 0, ul(x, 0) = uin(x), t ∈ [0, tf ].
(24)

where the vectorial notation was and will be omitted except when necessary.
The distribution of the noise tensor ξ is hard to give a priori, so the following 4 assumptions are

made.
Approximation 1: zero average noise. Following [20], define the coarse grained scales u−ul :=

ũl and rewrite the sub-grid tensor (section 1.1.4) using ul
l
= ul and ũl

l
= 0 as:

τl := u⊗ u− u⊗ u = (u+ ũ)⊗ (u+ ũ)− (u+ ũ)⊗ (u+ ũ) = −(u⊗ u− u⊗ u)− (u⊗ ũ+ ũ⊗ u+ ũ⊗ ũ) (25)

where the superscript l was dropped for readability. The first parenthesis (u⊗ u − u ⊗ u) is a
systematic contribution, whereas the second is assumed to be the stochastic one. In this report, since
l is considered to be small, the systematic contribution is a sub-leading deterministic term in equation
24 and it will be disregarded in the following. This means that the sub-grid tensor is approximated
to be a zero-mean noise: τl = ξl. In [20] this average term is not neglected as it is useful for the
application of techniques from statistical field theory.

Assumption 2: vanishing amplitude noise. As already mentioned, τl → 0 if l → 0 and
this means that the noise should be assumed to have a vanishing amplitude n0(l): ξl =

√
n0(l)ξ̂.

It is possible to define n0 such that ξ̂ adimensional (so30 [n0] = (m/s)4). The definition of the sub
grid tensor does not give any information about the scaling of n0 with l, so it is assumed to be
competing with the non-linear convective term of Navier-Stokes equation for small scales. Imposing
O[ul · ∇ul] = O[∇ ·

√
n0(l)ξ̂] entails n0(l) ∼ l4h as l→ 0 (see section 3.1.2 for more details).

Assumption 3: multiplicative Gaussian noise. As the stochastic contribution of τl depends
explicitly on ul (see equation 25), a priori ⟨ξ̂ia(ul, x, t)ξ̂

j
b(u

l, y, s)⟩ = χijab(u
l, x− y, t− s) depends on the

full velocity field realization. For simplicity, a local dependence of the correlation on the field will be
assumed: χ([ul], x− y, t− s) = χ(ul(x, t), ul(y, s), x− y, t− s). Furthermore, it will be supposed that
the multiplicative part of the correlation matrix is fully specified by a positive scalar function σ such
that χ(ul(x, t), ul(y, s), x−y, t−s) =

√
σ(ul(x, t)/u0)C(x−y, t−s)

√
σ(ul(y, s)/u0). The macroscopic

velocity scale u0 (see section 3.1.2) is included so that σ is correctly adimensional.
Wrapping up, the only really unmotivated assumptions up to now are the Gaussian distribution for

the noise and the fact that σ is scalar. A future perspective will be to use direct numerical simulations
of Navier-Stokes equation (DNS) to infer the shape of the distribution and the correlations of the
sub-grid tensor. For the latter, a theoretical alternative is to impose a self-consistency loop such that

the correlations of observable A = τ l(x, tf )
l→0
≈ (u⊗ u − u ⊗ u)|(x,tf ) match with the assumed noise

correlation. The use of a Gaussian noise can be justified by the hydrodynamical construction that
underlies this coarse grained Navier-Stokes equation 24, as discussed in section 1.2.

So far the model for the sub-grid tensor reads:

τl(x, t) =
√
n0(l)σ(u(x, t)/u0)η(x, t) with ⟨ηai(x, t)ηbj(y, s)⟩ = Cijab(x− y, t− s) (26)

and with η(x, t) Gaussian zero-mean noise. As all correlation operators, Cijab(x− y, t− s) is symmetric
under the transformation (i, a, x, t)↔ (j, b, y, s) and is positive defined.

Assumption 4: a solenoidal noise. A further assumption is that the noisy term ∇ · √n0ση is

solenoidal (it respects∇·u = 0), which mathematically means
∑

ij ∂i∂j
√
n0ση

ij := tr[∇⊗∇
√
σ(v)η] =

0. This is never evidently used in the following discussion up to section 3.3, but it is reasonable because
any non solenoidal component of this term would be compensated by the pressure field.

30The physical dimensions of a quantity Q is labelled as [Q] and given in the SI units of measure.
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Approximation on the discretization effect. The choice of the discretization for the stochastic
PDE 24 will be considered irrelevant in the vanishing noise limit coherently with what discussed in
section 2.1.1. The literature [7, 20] mentions further reasons that are specific to the NSE and will
be briefly discussed in section 3.2.1. Within this approximation, the Itô discretization is chosen for
simplicity.

The spatial boundary conditions. They would be very system dependent and here the dis-
cussion is kept general to see how Macroscopic Fluctuation Theory can be applied to the stochastic
Navier-Stokes equation. For simplicity, they are chosen to have vanishing boundary terms arising
from the spatial integrations by parts that will be performed in section 3.2.2. A possibility is to use
PBCs on an hyper-cubic box [0, L]d, which is useful for numerical simulations [35], or take x ∈ Rd
with u(x, t) → 0 as |x| → ∞. Otherwise, if the system is confined in a domain of boundary ∂Λ,
the boundary terms of the spatial integration by parts are still set to zero by the local equilibrium
assumption that underlies any hydrodynamical description (see section 1.2.1). The reason is that this
hypothesis forces the system to be constantly in local equilibrium with the boundaries, so atypical
deviations are not allowed [5], meaning π(x, t) = 0 ∀x ∈ ∂Λ ∀t (which makes the boundary terms
vanish).

Assumption: the limit Re → ∞ faster than l → 0. The interesting limit of equation 24 is
the one such that spontaneous stochasticity is relevant: the noise should vanish sufficiently slowly in
the perfect coarse-graining limit (l ≪ size of the system) with respect to the inverse of the Reynolds
number31 Re−1 → 0. From a mathematical perspective, this limit is necessary to see the effect on
NSE of the singularities that are present in the 3d Euler equations. The reasons why this double limit
should be taken carefully are mainly two.
From a coarse-graining perspective, the effect of the noise on the macro-scale is relevant only if the
disregarded scales can foster the real butterfly effect (section 1.1.3): a sufficient condition is l > ηK
with ηK ∼ (ν3/ED)

1/4 being the Kolmogorov scale32. If the l→ 0 is taken too fast, the coarse-grained
scales are highly dissipative and the singularities amplifying the noise cannot develop, resulting in a
completely negligible effect of the noise.
From a stochastic regularization perspective, the vanishing noise is a way to probe spontaneous stochas-
ticity in the Re → ∞ limit when Navier-Stokes equation approaches the Euler equation which has
been proven to have singular and non unique solutions [9]. If the noise is sent to zero before the sin-
gularities start playing a role, the solutions of the Navier-Stokes equation will be unique and regular,
and spontaneous stochasticity will not be observed.
One may object that this is a rather narrow limit and, consequently, spontaneous stochasticity is not
physically relevant, but this is not the case. As an example, in [1] the Landau-Lifshitz Navier-Stokes
equation is considered, namely equation 24 with only thermal noise (σ = 1), which is the weakest form
of noise one could consider in the system. The authors find that an amplitude of the noise vanishing as
Re−15/4 is a sufficient condition for the thermal noise to trigger spontaneous stochasticity. This scaling
with the Reynolds number is not unphysical because it originates from imposing a generalization of
the Einstein fluctuation-dissipation relation.
For the purposes of this report, it suffices that the vanishing noise limit l → 0 is taken after (or
sufficiently slower than) the high Reynolds number limit in order to have a non-vanishing effect of the
noise. A more precise condition will be stated in section 3.1.2.

The aim of applying Macroscopic Fluctuation Theory to the stochastic Navier-Stokes equation
24 is to recover the large deviations function of any observable A[u] in the small noise limit that is
implied by n0 → 0 as l → 0. The observable A[u] can generally depend on the full trajectory over
time, but the applications will be to observables depending only on the final time, e.g. a component
of the vorticity or the dissipation 1

2 ||u(x, t)||
2. In the next section 3.2 the application of Macroscopic

Fluctuation Theory to this setting will be discussed with all the mathematical technicalities. Before
(sections 3.1.2 and 3.1.3), the aim will be to rewrite equation 24 in a more amenable way for the

31Re → ∞ is physically relevant because a fully developed turbulent flow has Re > 5000 and in the atmospheric
boundary layer Re ∼ 108.

32This is a classical result of Kolmogorov theory of turbulence and is based essentially on applying dimensional analysis
under the assumption that at small scales in turbulent flows only the viscosity and the rate of energy dissipation per
unit mass ED are relevant.
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application of MFT. Finally, in section 3.3 the correlation matrix will be specialized to a simpler case
in order to get some more intuition. From now on, for brevity let u := ul, but the fact that the
coarse-graining has been done should never be forgotten.

3.1.2 Making the stochastic Navier-Stokes equation adimensional

Plugging equation 26 into equation 24 the stochastic Navier-Stokes equation reads:

∂tu+ u · ∇u = −∇P + ν∆u+∇ ·
√
n0(l)σ(u/u0)η

Dimensions are: [η] = [σ] = 1, [P ] = m2/s2, [n0] = m4/s4, [ν] = m2/s. The following rescaling is
introduced: x′ = x/x0 , t

′ = t/t0 , u
′ = u/u0 , P

′ = P/u20, Re = x0u0/ν with x0, t0, u0 := x0/t0 being
respectively the macroscopic characteristic length, time and velocity scales. The rescaled equation is:

∂t′u
′ + (u′ · ∇x′)u′ = −∇x′P ′ + (Re)−1∆x′u

′ +

√
n0
u40
∇x′ ·

√
σ(u′)η

The idea is to choose x0, u0 (and so t0) such that the amplitude of the rescaled noisy term ϵ := n0(l)/u
4
0

vanishes as l → 0. In this way, the saddle point approximation that underlies MFT (discussed for
Langevin equations in section 2 and used again for NSE in section 3.2.2) is sensible. As equation 24
results from a coarse-graining where fluctuations are considered important, both the macroscopic and
the microscopic scales play a role. At the macro-scale, the system has a characteristic length-scale x0
that can be fixed to the integral length, which is the one the external forcing sustaining turbulence is
applied to. The macroscopic velocity field u0 can be chosen as the characteristic value of the mean
velocity field, obtained by averaging out the noise. At the micro-scale, the length-scale is the coarse-
graining cut-off l. For the microscopic velocity, the small scale fluctuations δu(x; ℓ) := u(x+ ℓ)−u(x)
have a characteristic value δu which is known from multi-fractal theory of turbulence [22] to scale as:

δu(x; ℓ) := u(x+ ℓ)− u(x) ∼

{
U · (|ℓ|/x0)h if |ℓ| > ηh

U ′ · (|ℓ|/x0) if |ℓ| ≤ ηh

where h ∈ (0, 1] is the Hölder exponent, ηh ∼ ν
1

1+h is the Hölder regularization length33, U and U ′ are
further typical velocities that do not scale with ℓ and are introduced only for dimensional reasons. A
natural choice is |ℓ| = l and, generalizing what discussed in section 3.1.1, the limits l,Re−1 → 0 are
assumed34 to be taken such that at least l > ηhmin

where hmin ≤ 1/3 is the minimal Hölder exponent
the system shows. In this way, the effect of singularities will emerge and spontaneous stochasticity
will be triggered.
Wrapping up, δu ∼ U · (l/x0)h with h ≤ 1/3.

Aiming to show that ϵ→ 0 in l→ 0, the scaling of the amplitude of the noise n0(l) is needed. The
noisy term must be competing with the non linear convective one in order to produce a non negligible
effect, so they must be of the same order at the small scale l: O[u · ∇u] = O[∇ ·

√
n0(l)σ(u/u0)η].

Reasoning in orders of magnitude, since O[∇] = l−1 (the gradient-scale is the inverse of the smallest
length-scale in the system because ∇ is large for large variations at small scales) and at small scales
O[u] = δu, the balance is obtained if n0 is such that δu2l−1 ∼ l−1√n0 so n0 ∼ δu4 ∼ U4 · (l/x0)4h.
Putting all together, as the macroscopic values u0 and x0 are not vanishing, ϵ = n0/u

4
0 ∼ ( Uu0 )

4( l
x0
)4h

correctly vanishes in the coarse-graining limit l→ 0.
Notice that during this scaling analysis the parameter l/x0 emerged. It essentially corresponds

to “quality” of coarse-graining as it is the analogous of lmeso/lmacro that was defined in section 1.2.1,
coherently with the MFT literature [5].

In conclusion, it was shown that it is always possible to find a rescaling such that ϵ→ 0 in l → 0
and the equation for the rescaled coarse-grained velocity u := ul is (omitting the ′ notation):

∂tu+ (u · ∇)u = −∇P +Re−1∆u+∇ ·
√
ϵσ(u)η, ∇ · u = 0, u(·, 0) = u0 (27)

33By definition, ηh is the largest length-scale below which the velocity field is once-differentiable and the scaling can
be found by imposing O(u · ∇u) = O[ν∆u] with O(u) = δu ∼ ℓh; the Kolmogorov length ηK corresponds to the case
h = 1/3.

34In this scaling argument there is no distinction between Re−1 → 0 and ν → 0 as Re = u0x0/ν with x0, u0 finite.
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3.1.3 The Leray projector in place of the pressure

The aim from now on will be to build the large deviation function of any observable up to leading
order in ϵ → 0 and the strategy will be analogous to what discussed in section 2. As it will be
necessary to take functional derivatives δ

δu(x,t) of the terms appearing in equation 27 and it would be

inconvenient to evaluate the functional derivative of the pressure term. It is instead smarter [35] to
impose the pressure such that the incompressibility equation ∇·u is satisfied, thus formally removing
the pressure from the stochastic Navier-Stokes equation. This is possible through the Leray projector,
which projects onto the space of divergence-free vector fields and reads:

P = 1−∇∆−1∇ · or, in components: P ij = δij − ∂i∆−1∂j

where ∆−1 inverse Laplacian operator is defined as φ := ∆−1ψ if ψ = ∆φ.
Applying P to both sides of equation 27 eliminates the pressure term (P∇p = ∇p−∇∆−1∇⊤∇p =

∇p−∇∆−1∆p = 0), yielding:

∂tu+ P(u · ∇u) = Re−1∆u+ P[∇ ·
√
ϵση] with ∇ · u = 0 (28)

where it was used that Pu = u because of incompressibility. Now the equation is closed for the
velocity.

In order to deal with the presence of the projector, following [35], the calculations are performed
on an unconstrained velocity v such that u = Pv. Commuting P with all the differential operators,
equation 28 maps to P[∂tv+(P(v) ·∇P(v))−Re−1∆v−∇·

√
ϵση] = 0 and so the unrestricted velocity

field v follows:
∂tv + P(v) · ∇P(v)− Re−1∆v −∇ ·

√
ϵση = 0 (29)

Why is it necessary to introduce v? An alternative might be to apply Macroscopic Fluctuation
Theory to equation 28 directly. However, this would lead to inconsistent instanton equations where the
divergence-less condition is not satisfied, making the instanton an unphysical path that lives outside
of the Hilber space of the incompressible velocity fields HI := {ψ : ∀x ∈ Rd,∀t ∈ [0, tf ]ψ(x, t) ∈
Rd, ∇ · ψ(x, t) = 0}. On the other hand, the change of variable u = P(v) makes equation 29 defined
on the unconstrained velocity field space HU := {ψ : ∀x ∈ Rd,∀t ∈ [0, tf ]ψ(x, t) ∈ Rd}, which is closed
to the operations that will be performed in section 3.2. The physical result for u will be obtained
through the projection thus avoiding all incoherences.

3.2 The MFT action and the instanton equations

In this section the MFT action and the instanton equations will be derived for the unrestricted field
v governed by equation 29 and then they will be projected back into the divergence-less velocity field
space so to recover the results for u. The calculations are performed in the general case of the initial
condition drawn from a distribution v0 ∼ exp[−F ] (take exp[−F ] to be a delta function if the initial
condition is fixed). Let A[u] the observable of interest, that might depend on the full realization of
the velocity. The notation f [v] := f [u = P(v)] will be used for brevity for any f [u] functional of the
divergence-less u. Finally, recall that v ∈ HU := {ψ : ∀x ∈ Rd,∀t ∈ [0, tf ]ψ(x, t) ∈ Rd} where scalar
product is defined as:

⟨ψ|ϕ⟩ :=
d∑
i=1

∫ tf

0
dt

∫
Rd

ddx ⟨ψ|x, t, i⟩ ⟨x, t, i|ϕ⟩ =
d∑
i=1

∫ tf

0
dt

∫
Rd

ddxψi(x, t)ϕi(x, t)

Furthermore, if an operator Oij(x, x′, t, t′) is applied:

⟨ψ|O|ϕ⟩ :=
d∑

i,j=1

∫ tf

0
dt

∫ tf

0
dt′

∫
Rd

ddx

∫
Rd

ddx′ ψi(x, t)Oij(x, x′, t, t′)ϕj(x′, t′)

For brevity, the following compact notation for the sums and integrals is adopted:∑d
i=1

∫ tf
0 dt

∫
Rd d

dx :=
∫
i,t,x.
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3.2.1 MFT action for the unrestricted velocity field v

Let v[v(0), η] the solution of equation 29 given the initial condition and the realization of the noise. Un-
der ensemble equivalence explained in section 2.1.1, consider the following canonical partition function
and use the “Hamiltonian” approach introduced in section 2.1.2:

Z(λ) = Eη,v(0)[eϵ
−1λA[v[v(0),η]]] =

∫
Dv(0)e−F [v(0)]

∫
DηP[η]eϵ−1λA[v[v(0),η]] =

=

∫
Dv(0)e−F [v(0)]

∫
DηP[η]eϵ−1λA[v[v(0),η]]

∫
Dvδ(v − v[v(0), η]]) =

=

∫
Dv(0)

∫
Dv e−F [v(0)]eϵ

−1λA[v]Eη
[
δ
(
∂tv + P(v) · ∇P(v)− Re−1∆v −∇ ·

√
ϵσ(v)η

)
|detJ [η]|

]
where the Jacobian J [η] is arising from the change of variable inside the delta and is analogous to the
one of equation 12. There are many reasons for neglecting this Jacobian. First, its effect in the MFT
action is subleading in ϵ → 0, as shown for the Langevin equation case in section 2.1.1; moreover,
for situations where the nonlinear part of the dynamics satisfies a Liouville theorem, the Jacobian is
in fact only a field-independent factor [20] and it was proven in [31] that the equation obtained from
Navier-Stokes equation by discretizing and cutting-off the small length-scales35 falls in this category.
This further motivates the irrelevance of the discretization scheme, which for simplicity was chosen to
be Itô.

The Hamiltonian momentum π is introduced by the Fourier representation of Dirac’s delta: δ(ψ) =∫
DK exp{i ⟨K|ψ⟩} π=−iϵK

=
∫
Dπ exp{−ϵ−1 ⟨π|ψ⟩}. Incorporating Dv(0) in Dv:

Z(λ) =

∫
D[v, π] exp

[
−F [v(0)] + 1

ϵ

{
λA[v]− ⟨π|∂tv + P(v) · ∇P(v)− Re−1∆v⟩

}]
Eη

[
e
∑

a⟨π|∂a

√
1
ϵσ(v)η

a⟩
]
=

By parts on ∂a and then using Gaussian integrals on the last term

=

∫
D[v, π] exp

[
−F [v(0)] +

1

ϵ

(
λA[v]− ⟨π|∂tv + P(v) · ∇P(v)− Re−1∆v⟩

)
+

1

2ϵ

∑
a,b

⟨∂aπ|
√
σ(v)Cab

√
σ(v)|∂bπ⟩

]

=

∫
D[v, π] e−ϵ−1Sλ[v,π]

where Sλ is the MFT Hamiltonian action and reads:

Sλ[v, π] = ϵF [v(0)]︸ ︷︷ ︸
I.C.

−λA[v]︸ ︷︷ ︸
Constraint

+ ⟨π| ∂tv + P(v) · ∇P(v)− Re−1∆v︸ ︷︷ ︸
Deterministic part of 29 (NSE)

⟩−
d∑

a,b=1

1

2
⟨∂aπ|

√
σ(v)Cab

√
σ(v)|∂bπ⟩︸ ︷︷ ︸

Effective contribution of the noise

(30)

or, in explicit notation:

Sλ[v, π] = −λA[v] + ϵF [v(0)]+

+

∫
j,y,s

[
πj(y, s)

∂

∂s
vj(y, s) +

∑
k

πj(y, s)Pk(v(y, s)) ∂

∂yk
Pj(v(y, s))− Re−1πj(y, s)∆vj(y, s)

]
+

− 1

2

∫
a,b,j,y,s,k,z,s′

(∂πj(y, s)
∂ya

)√
σ(v(y, s))Cjkab (y − z, s− s

′)
√
σ(v(z, s′))

(∂πk(z, s′)
∂zb

)
The physical interpretation is the same as in the Langevin equation case (section 2.2.1). Notice that in
the small ϵ limit the initial condition is subleading, provided it is non singular (e.g. a delta function).

3.2.2 Instanton equations of the stochastic Navier-Stokes equation

As it was argued in section 2.2.1, the action introduces a probability measure over the space of paths.
As ϵ→ 0, the measure is dominated by the instanton, namely the path minimizing the action, which
is interpreted as the most likely path (v, π) to realize in time tf the rare event A = a starting from a

35Also called Fourier-Galerkin truncation of the Navier- Stokes dynamics.
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state drawn randomly form exp[−F ]. The cumulant generating function follows from a saddle point
approximation on the MFT action (consider the analogue of equation 13). Therefore, the aim of this
section is to find the stationary equations of this action. The calculation of the functional derivatives
is particularly technical and mechanical, so it will be omitted here and reported in the appendix
5.1 (see the final equations 43, 44, 47, 48, 49). The instanton equations are written below with the
contribution of the deterministic part of equation 29 on the left hand side and the effect of the noise
and the constraint on the observable on the right hand side:

∂tv
i(x, t) + P(v(x, t)) · ∇P i(v(x, t))− Re−1∆vi(x, t) =

−
∑
a,b

∂

∂xa

[√
σ(v(x, t))

∫
j,y,s

Cijab(x− y, t− s)
√
σ(v(y, s))

∂πj(y, s)

∂yb

]
(31a)

∂tπ
i(x, t) + P i

[∑
j

Pj(v(x, t))∇⃗πj(x, t) + Pj(v(x, t))∂j π⃗(x, t)
]
+Re−1∆πi(x, t) = −λ δA[v]

δvi(x, t)
+

−P i
[(∇⃗uσ(u(x, t)))
2
√
σ(u(x, t))

∑
j,k,a,b

∫
s,y

∂πj(x, t)

∂xa
Cjkab (x− y, t− s)

√
σ(u(y, s))

∂πk(y, s)

∂yb

]∣∣∣
u=P(v)

(31b)

t = 0: π(x, 0) = −λ δA[v]

δv(x, 0)
+ ϵ

δF [v]

δv(x, 0)
t = tf : π(x, tf ) = λ

δA[v]

δv(x, tf )
(31c)

where the notation⃗ is only to indicate which is the vector the projector is applying to when it is not
obvious. Projecting the equation for ∂tv, using equation 49, the substitution u = P(v), recalling the
short-hand notation σ(v) = σ(P(v)), the instanton equations for u, π read:

∂tu
i(x, t) + P i[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) =

−
∑
l

P il
{∑

a,b

∂

∂xa

[√
σ(u(x, t))

∫
j,y,s

C ljab(x− y, t− s)
√
σ(u(y, s))

∂πj(y, s)

∂yb

]}
(32a)

∂tπ
i(x, t) + P i

[
u(x, t) · ∇π⃗(x, t) +

∑
j

uj(x, t)∇⃗πj(x, t)
]
+Re−1∆πi(x, t) = −λP i

[ δA[u]

δu(x, t)

]
+

− P i
[
(∇⃗uσ(u(x, t)))
2
√
σ(u(x, t))

∑
j,k,a,b

∫
s,y

∂πj(x, t)

∂xa
Cjkab (x− y, t− s)

√
σ(u(y, s))

∂πk(y, s)

∂yb

]
(32b)

t = 0 : πi(x, 0) = −λP i
[ δA[u]

δu(x, 0)

]
+ P i

[
ϵ
δF [u(0)]

δu(x, 0)

]
t = tf : πi(x, tf ) = λP i

[ δA[u]

δu(x, tf )

]
(32c)

This is the main original result of this report. Notice that:

• As a coherence check, in the zero noise case (σ = 0) the incompressible Navier-Stokes equation
is recovered. Notice also that applying the divergence to equation 32a gives 0, so the instanton
velocity is divergence-less and defines a physically admissible path;

• As it will be even more evident in section 3.3, equation 32a is in a momentum conserving form
(notice the divergence

∑
a

∂
∂xa appearing in the noise contribution). This is coherent with the

physical interpretation that π is an effective stochastic force exerted by the noise to reach the
large deviation A = a (section 2.2.1), so it is expected to maintain the properties of the noise;

• The instanton momentum π was already invariant under P in equation 31b. This invariance
holds also for the initial and final conditions (equation 31c) by the use of equation 49;

• The term linked to the initial condition F is subdominant if non singular (if v(0) is fixed, the
initial constraint on π(0) would be replaced by v(0) = vin, as in [29]);

• Comparing equation 32 with the instanton equations for Langevin equation (equation 15), notice
that here the momentum acts on ∂tu only via the derivative of π (∂bπ, see equation 32a). This
is another effect of assuming the conservative form of the noise term (∇ · ξ);
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• Notice that the the deterministic contribution (left hand side) in equation 32b resembles the
Navier Stokes operator (∂t + P[u · ∇] − Re−1∆) applied to π with inverse time arrow (see
section 3.3.2) and with different convective term being36 P

{
u · [(∇ ⊗ π) + (∇ ⊗ π)⊤]

}
instead

of P
{
u · (∇ ⊗ π)

}
. This means that both equations 32a and 32b are as “non-linear” and

difficult to deal with as Navier-Stokes equation. As a side comment, notice that the resemblance
between the deterministic contributions of equations 32a and 32b is non trivial. For the generic
hydrodynamics ∂tu(x, t)+∇·J(u(x, t)) = ∇· [

√
ϵσ(u(x, t))η(x, t)] a similar calculation gives the

following instanton equation for π:

∂tπ(x, t)− [∇u ⊗ (∇ · J(u(x, t))]π(x, t) = −λ δA[u]

δu(x, t)
+

− ∇uσ(u(x, t))
2
√
σ(u(x, t))

∫
y,s

tr
[
(∇⊗ π(x, t))C(x− y, t− s)(∇⊗ π(y, s))

]
so it is not guaranteed that [∇u ⊗ (∇ · J(u(x, t))]π(x, t) has a similar shape to J(u(x, t)) (which
is the deterministic contribution to the instanton equation of u);

3.2.3 Quasi-potential and Lagrangian phase transitions

The instanton equations 31 can plugged back into the action Sλ (equation 30) to get the cumulant
generating function of the observable A:

wA(λ) := ϵ ln
[
⟨e

λ
ϵ
A⟩

]
≈ ϵ ln

∫
D[v, π]e−

1
ϵ
Sλ[v,π]

saddle
≈ −Sλ[vI , πI ]

where vI , πI solutions of the instanton equations 31. By plugging equation 32a into the definition of
the action37, the cumulant generating function reads:

wA(λ) = −ϵF [uI(0)] + λA[uI ] +
∑
a,b

⟨πI |∂a
√
σ(uI)Cab

√
σ(uI)|∂bπI⟩+

1

2

∑
a,b

⟨∂aπI |
√
σ(uI)Cab

√
σ(uI)|∂bπI⟩

Parts
=

= −ϵF [uI(0)] + λA[uI ]−
1

2

∑
a,b

⟨∂aπI |
√
σ(uI)Cab

√
σ(uI)|∂bπI⟩ (33)

with uI , πI solutions of the instanton equations 32. Formally the large deviation function of the

observable ϕA(a) is ϕA(a) = supλ

[
λa − wA(λ)

]
where notice that the dependence of wA(λ) on λ is

also hidden in uI , πI (see equations 32).
All the observations made in section 2.2.3 about the choice of the initial and final conditions in the

instanton equations straightforwardly generalize here. Moreover, the results of the previous sections
generalize to an observable A[u](x) that is a vectorial field by considering a vectorial conjugated
field and sending λA 7→

∫
dxλ(x) · A[u](x). For instance, in order to build the quasi-potential for

the velocity field ϕ[u] := −ϵ ln Pss

[
{u(x)}x∈Rd

]
, one can fix the initial velocity profile to usteady(x),

which is a steady state of the deterministic dynamics (so that (usteady(t), π(t) = 0) is a solution of the
instanton equations), choose the observable A = u(tf ) and vary its final profile uf(x).

No theorem ensures the uniqueness of solutions of the shooting problem for the instanton equations
32; in fact, in general this is not the case because these equations are as non linear as the Navier-
Stokes equation and the shooting problem typically has many solutions. This might have far-reaching
consequences. Assume for simplicity that the initial value problem of equation 32 admits unique
solutions, so that for each (u0, π0) initial condition only one instanton path is defined by the instanton
dynamics. Nothing prevents that for some uf there exists a set of different paths α = 1, ..., n (i.e.

different π
(α)
I (0) initial momenta) solving the instanton equations with initial velocity usteady and final

velocity uf. Usually only one of this path will correspond to the global optimum of the action 30, but

36The transpose ⊤ is to be interpreted in the matrix sense, i.e. [(∇⊗ π(x, t))⊤]ij := ∂jπ
i(x, t)

37More precisely, use πI = P(πI) (see the comments below equation 32) in equation 30, use ⟨P(πI)|ψ⟩ = ⟨πI |P(ψ)⟩
and then substitute uI = P(vI).
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it might happen the global optimum jumps from one path to another when crossing a critical manifold
of uf where both these paths are global minimizers manifold. This would result in a discontinuity of
the first derivative of the action S0[uI , πI ] with respect to uf final condition, which will translate in
a discontinuity in the quasi-potential and correspond to a first order phase transition. This naive
picture built in the Hamiltonian perspective is formalized in [5], where these transitions are called
“Lagrangian phase transitions” and can only happen in out of equilibrium systems.
This might have a relevance in real systems because, changing the point of view, the same final
condition uf might be reached following macroscopically different instantons if the initial condition is
changed of a tiny amount around a critical initial condition (the one such that two globally optimal
paths exist). This might be seen as another explanation of the spontaneous stochasticity discussed in
section 1.1.2 as a microscopic perturbation changes the macroscopic behaviour (in finite time) and,
if the system is started at the critical initial condition, it has to choose randomly which of the two
globally optimal paths to follow. A future aim would be to check if spontaneous stochasticity can be
explained by this instead of the loss of uniqueness of solutions discussed in section 1.1.1.

3.3 The case of an isotropic local correlation matrix

3.3.1 Instanton equations for an isotropic local correlation matrix

The general case treated in section 3.2 is too abstract to be intuitively understandable. In the following
sections the noise will be assumed to be delta correlated and isotropic, resulting in the following
correlation matrix [1]:

⟨ηaj(x, t)ηbk(y, s)⟩ = δ(x− y)δ(t− s)
[
δabδjk + δakδbj − 2

3
δajδbk

]
(34)

This corresponds to make the easiest choice for the spatial and time dependence and assume that the
noise tensor is isotropic, symmetric and traceless for the vectorial part. First, isotropicity is a physical
assumption if there are no preferred directions in the system; the most general space-dependent 4-
indexes isotropic tensor is [36]:

Cijab(x, y) = C1(|x− y|)δijδab + C2(|x− y|)δjaδib + C3(|x− y|)δiaδjb

so under the assumption of delta correlation in time the correlation matrix will be assumed to have
this shape. The assumption of symmetry ηai = ηia is naturally descending from the definition of
the sub-grid tensor represented by the noise (τ ijl = ui uj − uiuj , sections 1.1.4 and 3.1.1) and implies

Cijab = Cibaj = Cajib =⇒ C1 = C2. Finally, the traceless noise tensor (
∑

i η
ii = 0) comes from the fact

that any trace can be included in the pressure field by redefining p̃(x, t) = p(x, t) −
∑

a η
aa(x, t) and

η̃bi = ηbi − 1
d

∑
a η

aa, resulting in
∑

ij C
ij
ij = 0 =⇒ C3 = −2C1

d .

For what concerns the spatial dependence, the hypothesis of solenoidality38 can be proven to entail
C ′′
1 (r := |x− y|) = 0 for r > 0, which, for instance, is satisfied by a delta function.
With this choice for the correlation tensor, equation 27 is a delta correlated stochastic PDE, which

is ill-defined from a mathematical point of view. The idea is to always consider a discretization in
space and time which regularizes the unphysical delta correlations appearing above, for instance by
introducing a wave number cut-off Λ and defining δΛ(x− y) =

∑
k:|k|<Λ(2π)

−d exp[ik · (x− y)] with

Λ−1 that should be chosen smaller than the mean free path and the average intermolecular distance.
Referring to [1] (supplementary materials section 1) for the technical details, any stochastic PDEs
contained in this report should be interpreted in a discretized way. Recall that effect of discretization

38A solenoidal noise is defined such that the noisy term is divergence-less:∑
ai ∂a∂i

√
σ(u(x, t))ηai(x, t) := tr[∇ ⊗ ∇

√
σ(u(x, t))η(x, t)] = 0 ∀x, t. This straightforwardly implies

⟨tr[∇⊗∇
√
σ(v(x, t))η(x, t)] tr[∇⊗∇

√
σ(v(y, s))η(y, s)]⟩ = 0, which gives:∑

abhk P
ih
x Pjk

y
∂

∂xa
∂

∂yb

√
σ(u(x, t))Chk

ab (x − y, t − s)
√
σ(u(y, s)) =

∑
ab

∂
∂xa

∂
∂yb

√
σ(u(x, t))Cij

ab(x − y, t − s)
√
σ(u(y, s)),

where P is the Leray projector that was introduced in section 3.1.3. In the case of the correlation matrix of equation
34, this specialize to

∑
ai ∂a∂iη

ai(x, t) = 0 ∀x, t =⇒
∑

ij
∂

∂xi

∂
∂xj

⟨ηij(x, t)ηkl(y, s)⟩ = 0 ∀t, s, k, l, x ̸= y, from which a

tedious calculation shows C′′
1 (r := |x− y|) = 0.
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can be neglected in Macroscopic Fluctuation Theory at first approximation and for simplicity the Itô
discretization was chosen (see section 3.1.1).

The calculation to obtain the instanton equations in this case are reported in appendix 5.2. Using
equations 51, 53 and 54, the instanton equations 32 rewrite as:

∂tu
i(x, t) + P i[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) =

− P i
{
∇ ·

[
σ(u(x, t))

[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]]}
(35a)

∂tπ
i(x, t) + Re−1∆πi(x, t) + P i

[
u(x, t)⊤

[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]]
= −λP i

( δA[u]

δu(x, t)

)
+

− P i
{
1

2
(∇⃗uσ(u(x, t)))

[
tr
{(
∇⊗ π(x, t)

)[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]}]}
(35b)

t = 0: πi(x, 0) = −λP i
[ δA[u]

δu(x, 0)

]
+ P i

[
ϵ
δF [u(0)]

δu(x, 0)

]
t = tf : π

i(x, tf ) = λP i
[ δA[u]

δu(x, tf )

]
(35c)

where the matrix (∇⊗π(x, t))ij := ∂iπ
j(x, t) naturally emerged and the transpose⊤ is to be interpreted

in the matrix sense39, i.e. [(∇⊗ π(x, t))⊤]ij := ∂jπ
i(x, t). Furthermore, observe the emergence of its

symmetric counterpart
[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]
appearing in both equations, so introduce:

Sπ(x, t) := (∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤, Sijπ = ∂iπ
j + ∂jπ

i, S⊤
π = Sπ (36)

Ωπ(x, t) := (∇⊗ π(x, t))− (∇⊗ π(x, t))⊤, Ωijπ = ∂iπ
j − ∂jπi, Ω⊤

π = −Ωπ (37)

Bπ(x, t) := (∇⊗ π(x, t)) = 1

2
(Sπ +Ωπ), Bij

π = ∂iπ
j (38)

Notice that the last term of equation 35b can be rewritten using:

tr
{(
∇⊗ π(x, t)

)[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]}
=

1

2
tr
[
(Sπ +Ωπ)Sπ

]
=

1

2
tr(S2

π) +
1

2
tr(SπΩπ) =

1

2
tr(S2

π)

where it was used that tr(SπΩπ) = tr[(SπΩπ)
⊤] = −tr[ΩπSπ] = −tr[SπΩπ] =⇒ tr[SπΩπ] = 0. Then

it is easy to see that the instanton equations 35 rewrite as:

∂tu
i(x, t) + Pi[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) = −Pi

{
∇ ·

[
σ(u(x, t))Sπ(x, t)

]}
(39a)

∂tπ
i(x, t) + Pi

[
Sπ(x, t)u(x, t)

]
+

∆πi(x, t)

Re
= −λPi

( δA[u]

δu(x, t)

)
− Pi

{1

4

(
∇⃗uσ(u(x, t))

)
tr
(
Sπ(x, t)

2
)}

(39b)

t = 0: πi(x, 0) = −λPi
[ δA[u]

δu(x, 0)

]
+ Pi

[
ϵ
δF [u(0)]

δu(x, 0)

]
t = tf : πi(x, tf ) = λPi

[ δA[u]

δu(x, tf )

]
(39c)

First, notice that equation 39a is still momentum conserving and it can be recast in a continuity
equation, while equation 39b has not this property. This asymmetry between u and π is coherent with
the fact that π is interpretable as stochastic force driving the system to the large deviation and there
is no physical reason why its integral over space should be constant over time.
Moreover, the physical meaning of the symmetric tensor Sπ is of a strain-rate tensor of the momentum
π: it represents the local rate of deformation of fluid elements due to the stochastic force π. The fact
that only the symmetric part of the gradient of π appears is linked to isotropicity.

3.3.2 An equilibrium solution to the instanton equations in the case of additive noise

One of the main results of Macroscopic Fluctuation Theory is that, in a stationary state, the spon-
taneous emergence of a macroscopic fluctuation (large deviation) takes place most likely following a

39For instance, in component notation this term reads:(
∇ ·
[
σ(u(x, t))

[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]])j

:=
∑

a ∂a
[
σ(u(x, t))

[
(∂aπ

j(x, t) + ∂jπ
a(x, t))⊤

]]
.
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trajectory (the instanton) which is the time reversal of the relaxation path according to the adjoint
hydrodynamics [5, 27]. This was briefly discussed in sections 2.2.2 and 2.3.3. Now if the stationary
state is also an equilibrium state, the adjoint hydrodynamics coincides with the hydrodynamics, so at
equilibrium the instanton path leading to the rare state will be time reversal of the relaxation path
from the rare state to equilibrium following the same hydrodynamical equations.

It is completely non-trivial to know under which condition equation 27 admits an equilibrium state.
Therefore, in this section it will be shown that a solution of the instanton equations 39 with constant
σ ≥ 0 and A = u(tf ) can be found by assuming that the system admits an equilibrium state. The
inspiration comes from [8], where the calculation that it will be performed below is done for the case
of a Langevin equation, which admits an equilibrium state when the force is potential and the noise
is Gaussian, white and additive.

Assume σ constant, A = u(tf ), fix the initial condition u(0) = u0 and choose the final state
u(tf ) = uf . Then the instanton equations 39 rewrite as:

∂tu
i(x, t) + P i[u(x, t) · ∇u⃗(x, t)]− Re−1∆ui(x, t) = −σ∆πi(x, t) (40a)

∂tπ
i(x, t) + Re−1∆πi(x, t) + P i

[
Sπ(x, t)u(x, t)

]
= 0 (40b)

t = 0 : ui(x, 0) = ui0(x) t = tf : ui(x, tf ) = uif (x) (40c)

where for equation 40a it was used that σP i
{
∇ ·

[
Sπ(x, t)

]}
= σP i

{
∆π(x, t)

}
= σ∆π(x, t) as the

instanton momentum π is naturally such that Pπ = π (see the comments under the instanton equations
32). The x dependence will be omitted and the vectorial notation will be used from now on.

Since the relaxation path uR, πR does not need to be activated by the noise (as it is a typical path,
[8]), πR(t) = 0 ∀t and uR is the solution of the noiseless hydrodynamics (NSE):

∂tuR(t) + P[uR(t) · ∇u⃗R(t)]− Re−1∆uR(t) = 0, (41a)

uR(0) = −uf , uR(tf ) = −u0 (41b)

where the initial and final conditions get a further minus as the velocity is odd under time reversal.
Considering the result from Macroscopic Fluctuation Theory mentioned above, if the system is at
equilibrium the instanton velocity is u(t) = Θ[uR(t)] = −uR(tf − t), where uR follows equation 41 and
Θ is the time reversal operator. The instanton momentum π(t) must be chosen such that the instanton
equations 40 are satisfied with the ansatz introduced40. By substituting the ansatz in equation 40a
and using equation 41a, it is easy to find that π should satisfy:

σ∆π(t) = − 2

Re
∆uR(tf − t) =

2

Re
∆u(t) (42)

Case σ > 0: a simple solution to equation 42 is π(t) = − 2
σReuR(tf − t) = 2

σReu(t) and actually
(u(t), π(t)) = (−uR(tf − t),− 2

σReuR(tf − t)) turns out to be a solution of the instanton equations 40.
Indeed, the initial and final conditions 40c are matched by equation 41b and equation 40a is trivially
satisfied by the choice of π. It remains to check the validity of equation 40b:

∂tπ(t) + P[
∑
j

uj(t)∇πj(t) + u(t) · ∇π(t)] + Re−1∆π(t)
?
= 0

⇐⇒ − 2

σRe
∂tuR(tf − t) +

2

σRe
P[

∑
j

ujR(tf − t)∇u
j
R(tf − t) + uR(tf − t) · ∇uR(tf − t)]−

2

σRe2
∆uR(tf − t)

?
= 0

s=tf−t⇐⇒ ∂suR(s) + P[uR(s) · ∇uR(s)]− Re−1∆uR(s) + P[
∑
j

ujR(s)∇u
j
R(s)]

?
= 0

eq.41a⇐⇒ P[
∑
j

ujR(s)∇u
j
R(s)]

?
= 0

40π cannot be obtained by the time reversal of the momentum of the relaxation path (π = Θ[πR]) because it is not
known how the time reversal operator is acting on π; instead, in a Lagrangian perspective π(t) can be obtained once
u(t) ∀t is known by Legendre duality.
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which is true in distributional sense: equation 46 with π = u implies that P[
∑

j u
j
R(s)∇u

j
R(s)] =

−P[
∑

j u
j
R(s)∇u

j
R(s)] and so it is 0.

Case 2 σ = 0: The case σ = 0 is the deterministic limit and has not a physical meaning, but it is
still interesting from a mathematical point of view. The only way to satisfy equation 42 is Re−1 = 0.
This is reasonable because, if there is viscosity but there is not a noise giving back the dissipated
energy, an arrow of time can clearly be identified (e.g. looking at the derivative of energy in time),
so the equilibrium assumption cannot hold. Notice that taking σ,Re−1 = 0 in the original model
(equation 27) leads to inviscid Euler equation, which is clearly time reversible. As a consequence, the
ansatz u(t) = −uR(tf − t) satisfies equation 40a for all π. So π should be just chosen such that the
instanton equation 40b is satisfied. A simple solution is π(t) = αu(t) = −αuR(tf − t) with α ∈ R
(again because of the equivalence of 46). Notice that this solution can be recovered from the solution
π(t) = 2

σReu(t) found in case σ > 0 by performing the double limit σ → 0 and Re→∞ with α = 2
σRe

constant.
In conclusion, it was proven that a solution of the instanton equations 40 is this “equilibrium

instanton” (u(t), π(t)) = (−uR(tf − t),− 2
σReuR(tf − t)) without any restriction of σ,Re. This means

that this path is stationary for the MFT action Sλ[u, π] and it is then a candidate41 for being the
global optimal path. It would be unexpected that the existence of an equilibrium state holds for
any choice of the parameters σ,Re. Moreover, a Lagrangian phase transition might be present (this
concept was defined in section 3.2.3): there might be a region in σ,Re space in which equilibrium
holds and the “equilibrium instanton” is the global optimum of the action, and a region in which a
NESS outperforms the “equilibrium instanton” leading to a regime of out of equilibrium turbulence.
Analogous considerations on the Lagrangian phase transitions discussed in section 3.2.3 apply here
too.

41Uniqueness of the solution to the instanton equations is not guaranteed.
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4 Conclusions

To summarize the content of this report, section 1.1 proved that turbulent flows do not behave de-
terministically due to spontaneous stochasticity arising in Navier-Stokes equation at high Reynolds
numbers. Phenomenologically, the reason is an amplification of perturbation at small scales. This
suggested to keep a vanishing noise affecting Navier-Stokes equation after a coarse-graining that is
performed in order to get an effective macroscopic description of the flow in the turbulent regime. The
details of the adopted model were discussed in section 3.1.1.
Section 1.2 motivated that turbulence, being out of equilibrium and described by a stochastic hydro-
dynamics, can be studied by Macroscopic Fluctuation Theory (MFT). This theory, its results and its
interpretations were discussed in section 2 by applying it to a Langevin equation. MFT was shown
to provide a way to approximate the large deviation function of any observable to leading order in
the vanishing noise. It required the integration of the instanton equations, namely the ones for the
most likely path leading to the large deviation. The practical example of a multiplicative Langevin
equation with an asymmetric double-well potential was discussed in section 2.3.
The application of MFT to the coarse-grained Navier-Stokes equation defined in section 3.1.1 was
detailed in a very general case in section 3.2 and in a simpler but still physical case in section 3.3.
The possibility of an out of equilibrium phase transition between an equilibrium regime and a non-
equilibrium one was discussed in sections 2.2.2 and 3.3.2.

Besides re-deriving known results of MFT applied to Langevin equations from a Hamiltonian
perspective in section 2.2.2, the original part of this work is contained in section 3. It was shown
explicitly that Macroscopic Fluctuation Theory can formally be applied to a stochastic version of
Navier-Stokes equation with momentum-conserving multiplicative noise and, for the first time, the
instanton equations 32 were derived. This work is far from answering the question whether Macroscopic
Fluctuation Theory can produce an effective statistical model of turbulence and, indeed, many paths
remain to be explored.

First of all, a way to get predictions on the statistics of some observables by the use of the instanton
equations 32 is needed. There is probably not much to be done analytically on these equations as
they are. Some analytical results might be obtained by perturbation theory in λ→ 0 of the instanton
equations or from the study of the Restricted Euler equations that are discussed in appendix 5.3.
From a numerical point of view, the challenge is also quite ambitious as the instanton equations have
the same computational difficulty of Navier-Stokes equation, plus it is a shooting problem. Just as the
Navier-Stokes equation at high Reynolds numbers, it is currently unfeasible to integrate them directly
[17]. A possible numerical alternative is to project them onto logarithmic lattices [10], which makes
the integration exponentially less expensive.

A further step would be to infer the shape of the correlation function of the noise considered
in section 3.1.1 from experiments and direct numerical simulations of the Navier-Stokes equation.
Theoretically, it could be possible to obtain this self-consistently by imposing that the correlations
of the sub-grid tensor τl evaluated with MFT match with the assumed noise ones (this was briefly
discussed in section 3.1.1).

Once predictions of this theory will be available, they can be checked by experiments where rare
events are observed [17] in turbulent flows. Would this furnish an approximated but effective model of
turbulence, it could be used for weather and climate forecast in place of the empirical and parametric
model used nowadays, which could have a positive impact in building resilience against climate change.

A possible field of application of MFT beyond turbulence is climate, as Langevin equations with
small noise are not new among conceptual models for this system [4]. Another possibility is to apply
this theory to weather, where having early warnings of extreme events would be extremely useful and
they can in principle be inferred by the instanton equations; the idea is that, experimentally, the only
way a rare atypical event can arise is following the instanton path (up to small fluctuations around
it), as it is overwhelmingly more probable than any other.
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5 Appendix

5.1 Appendix A: functional derivatives for the instanton equations

In this appendix the functional derivatives of the trickiest terms in the MFT action (equation 30)
are evaluated. These are used in section 3.2.2 to get the instanton equations 31. Notice that in all
space integrations by parts the boundary terms is zero because of what was discussed in section 3.1.1.
Essentially, if the system is confined in a domain of boundary ∂Λ, the local equilibrium assumption
that underlies any hydrodynamical description (see section 1.2.1) implies π(x, t) = 0 ∀x ∈ ∂Λ ∀t (the
system at the boundaries is constantly in local equilibrium with them and atypical deviations are not
allowed [5]).

1. The Legendre term:
This term is the origin of the initial and final condition on π.

δ ⟨π|∂tv⟩
δvi(x, t)

=
δ

δvi(x, t)

[(∑
j

∫
ddy πj(y, s)vj(y, s)

)∣∣∣s=tf
s=0
− ⟨∂tπ|v⟩

]
=

= πi(x, tf )1(t = tf )− πi(x, 0)1(t = 0)− ∂tπi(x, t)1(t ∈ (0, tf )) (43)

where the indicator function of a clause 1(clause) = 1 if the clause is satisfied and zero otherwise.
2. Projector term:

Here it will be proven that:

δ

δvi(x, t)
⟨π|P(v) · ∇P(v)⟩ = −P i

[
(P(v(x, t)) · ∇)π⃗(x, t) +

∑
j

Pj(v(x, t))∇⃗πj(x, t)
]

(44)

where the notation⃗ is introduced to underline the vector which the projector is applied to.
Recall that the Leray projector (P ij = δij−∂i∆−1∂j and (P ij)† = Pji) is such that ∇·P(v) = 0 ∀v:

δ

δvi(x, t)
⟨π|P(v) · ∇P(v)⟩ = δ

δvi(x, t)
⟨π|∇ ·

(
P(v)⊗ P(v)

)
⟩ =

=
δ

δvi(x, t)

∫
y,s

∑
j,k,h,l

πj(y, s)∂k

[(
Pkhvh(y, s)

)(
Pjlvl(y, s)

)]
Parts
=

= − δ

δvi(x, t)

∫
y,s

∑
j,k,h,l

[(
Pkhvh(y, s)

)(
Pjlvl(y, s)

)]
∂kπ

j(y, s) =

= −
∫
y,s

∑
j,k,h,l

(
Pkh δv

h(y, s)

δvi(x, t)

)(
Pjlvl(y, s)

)
∂kπ

j(y, s)−
∫
y,s

∑
j,k,h,l

(
Pkhvh(y, s)

)(
Pjl δv

l(y, s)

δvi(x, t)

)
∂kπ

j(y, s)
Adjoint
=

= −
∫
y,s

∑
j,k,h,l

(δvh(y, s)
δvi(x, t)

)
Phk

[(
Pjlvl(y, s)

)
∂kπ

j(y, s)
]
−
∫
y,s

∑
j,k,h,l

(δvl(y, s)
δvi(x, t)

)
P lj

[(
Pkhvh(y, s)

)
∂kπ

j(y, s)
]

and now use
δvh(y, s)

δvi(x, t)
= δihδ(x− y)δ(t− s):

= −
∑
k

[
P ik

(∑
jl

Pjl(vl(x, t))∂kπj(x, t)
)]
−
∑
j

[
P ij

(∑
kh

Pkh(vh(x, t))∂kπj(x, t)
)]

=

passing back to vectorial notation
∑
b

Pab(vb) = Pa(v⃗)

= −P i
[∑

j

Pj(v(x, t))∇⃗πj(x, t) +
∑
j

Pj(v(x, t))∂j π⃗(x, t)
]

which proves equation 44.
The same term can also be written as:

δ

δvi(x, t)
⟨π|P(v) · ∇P(v)⟩ = P i

[
− (P(v(x, t)) · ∇)π⃗(x, t) +

∑
j

πj(x, t)∇⃗Pj(v(x, t))
]

(45)
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This can be proven either by repeating the calculation above but skipping the first passage, or as a
consequence of the following equivalence in distributional sense:

⟨ψ|P
[∑

j

uj∇πj
]
⟩ = −⟨ψ|P

[∑
j

πj∇uj
]
⟩ (46)

where u = P(v) ∈ HI := {ψ : ψ(x, t) ∈ Rd,∇ · ψ = 0} and all functions are evaluated at (x, t). The
proof of the equivalence is:〈

φ
∣∣∣P[−∑

j

uj∇⃗πj
]〉

= −
∑
j

〈
P(φ)

∣∣∣uj∇⃗πj〉 = −
∑
i,j

∫
x,t
P i(φ)uj∂iπj

Parts
=

=
∑
i,j

∫
x,t
πj∂i

[
P i(φ)uj

]
=

∑
i,j

∫
x,t
P i(φ)πj∂iuj =

〈
φ
∣∣∣P[∑

j

πj∇⃗uj
]〉

where it was used that the projector is hermitian and that P(φ) is divergence-less by definition of the
Leray operator.
In this report the first formulation (equation 44) was always chosen, coherently with [35].

3. π term:
Using the symmetry of the correlation tensor under the transformation (k, a, y, s) ↔ (j, b, z, s′), it is
easy to see that:

δ

δπi(x, t)

1

2

∑
a,b

⟨∂aπ|
√
σ(v)Cab

√
σ(v)|∂bπ⟩ = Use symmetry (k, a, y, s)↔ (j, b, z, s′)

=
∑
a,b,k,j

∫
z,s′,y,s

[ δ

δπi(x, t)

∂πk(z, s′)

∂za

]√
σ(v(z, s′))Ckjab (z − y, s

′ − s)
√
σ(v(y, s))

∂πj(y, s)

∂yb

= −
∑
a,b

∂

∂xa

√
σ(v(x, t))

∫
j,y,s

Cijab(x− y, t− s)
√
σ(v(y, s))

∂

∂yb
πj(y, s) (47)

4. σ term:

δ

δvi(x, t)

1

2

∑
a,b

⟨∂aπ|
√
σ(v)Cab

√
σ(v)|∂bπ⟩ = ⟨∂aπ|

δ
√
σ(v)

δvi(x, t)
Cab

√
σ(v)|∂bπ⟩

where Leibniz rule and the symmetry of the expression42 were used, in particular Cjkab (x− y, t− s) =
Ckjba (y − x, s− t) (symmetry of a well defined correlation matrix, see section 3.1.1).

Let’s discuss from a distributional point of view the functional derivative; recall that σ(v) :=
σ(u = P(v)), use the matrix representation of the Leray projector Pj [v(y, s)] =

∑
l Pjlvl(y, s) with

Pjl = δjl − ∂j∆−1∂l, and take a test function f(y, s) belonging to the Hilbert space {ψ : ψ(x, t) ∈ R}
42Essentially it is a symmetry due to the hermitian correlation operator and the fact that on both sides of the scalar

product there is ∇⊗ π. Explicitly:

δ
δvi(x,t)

∑
a,b ⟨∂aπ|

√
σ(v)Cab

√
σ(v)|∂bπ⟩ =

∑
ab ⟨∂aπ|

δ
√

σ(v)

δvi(x,t)
Cab

√
σ(v)|∂bπ⟩+ ⟨∂aπ|

√
σ(v)Cab

δ
√

σ(v)

δvi(x,t)
|∂bπ⟩

Then use ⟨ψ|A|ϕ⟩ = ⟨ϕ|A†|ψ⟩ and (Cjk
ab (y− z, s− s

′))† = Ckj
ba (z− y, s

′− s). Finally, write explicitly the integrals, rename

(j, a, y, s) ↔ (k, b, z, s′) in the second bra-ket and use the symmetry Ckj
ba (z − y, s′ − s) = Cjk

ab (y − z, s − s′) to prove
that the second bra-ket is the same as the first. A faster way to see this would be to define the scalar product between
matrices ⟨∇ ⊗ π|O|∇ ⊗ π⟩ :=

∑
a,b ⟨∂aπ|Oab|∂bπ⟩ and use O = O† with O =

√
σC

√
σ.



Master thesis – Pietro Dragoni p. 37/41

(not Rd):∫
y,s
f(y, s)

δ
√
σ(P(v(y, s)))
δvi(x, t)

=

∫
y,s

f(y, s)

2
√
σ(P(v(y, s)))

δσ(P(v(y, s)))
δvi(x, t)

Chain
=

=

∫
y,s

f(y, s)

2
√
σ(P(v(y, s)))

∑
h

∂σ(u)

∂uh

∣∣∣
u=P(v(y,s))

δPh(v(y, s))
δvi(x, t)

=

Introduce the matrix representation of P

=

∫
y,s,h,l

f(y, s)

2
√
σ(P(v(y, s)))

∂σ(u)

∂uh

∣∣∣
u=P(v(y,s))

Phl δv
l(y, s)

δvi(x, t)
= [use (Phl)† = P lh]

=

∫
y,s,h,l

P lh
[ f(y, s)

2
√
σ(P(v(y, s)))

∂σ(u)

∂uh

∣∣∣
u=P(v(y,s))

]
δliδ(x− y)δ(t− s) =

=
∑
h

P ih
[ f(x, t)

2
√
σ(P(v(x, t)))

∂σ(u)

∂uh

∣∣∣
u=P(v(x,t))

]
= P i

[ f(x, t)

2
√
σ(P(v(x, t)))

∇⃗uσ(u)
∣∣∣
u=P(v(x,t)))

]
This result applies straightforwardly with f(y, s) =

∫
a,b,j,k,s′,z(∂aπ

j(y, s))Cjkab (y−z, s−s
′)
√
σ(v(z, s′))(∂bπ

k(z, s′))
and so:

δ

δvi(x, t)

1

2

∑
a,b

⟨∂aπ|
√
σ(v)Cab

√
σ(v)|∂bπ⟩ =

∑
a,b

⟨∂aπ|
δ
√
σ(v)

δvi(x, t)
Cab

√
σ(v)|∂bπ⟩ =

= P i
[(∇⃗uσ(u(x, t))
2
√
σ(u(x, t))

∑
j,k,a,b

∫
s,y

∂πj(x, t)

∂xa
Cjkab (x− y, t− s)

√
σ(u(y, s))

∂πk(y, s)

∂yb

]∣∣∣
u=P(v)

(48)

5. Observable term:
Recalling that A[v] := A[u = P(v)]:

δA[P(v)]
δvi(x, t)

=

∫
j,y,s

δA[u]

δuj(y, s)

δuj(y, s)

δvi(x, t)

∣∣∣
u=P(v)

=

∫
j,y,s

δA[u]

δuj(y, s)

∣∣∣
u=P(v)

∑
h

δPjhvh(y, s)
δvi(x, t)

=

=

∫
j,y,s,h

δA[u]

δuj(y, s)

∣∣∣
u=P(v)

Pjh
[δvh(y, s)
δvi(x, t)

]
(Pjh)†=Phj

=

∫
j,y,s,h

Phj
[ δA[u]

δuj(y, s)

∣∣∣
u=P(v)

]
δ(x− y)δ(t− s)δhi =

=
∑
j

P ij
[ δA[u]

δuj(x, t)

]∣∣∣
u=P(v)

= P i
[ δA[u]

δu⃗(x, t)

]∣∣∣
u=P(v)

which in summary means:
δA[P(v)]
δv(x, t)

= P
[ δA[u]

δu⃗(x, t)

]∣∣∣
u=P(v)

(49)

The same applies for δF
δv⃗(x,0) .

5.2 Appendix B: specializing to the local isotropic correlation matrix

The calculations reported here are the ones performed to obtain equation 35 from equation 32 by
specializing to the correlation matrix of equation 34.
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Aiming at the instanton equation for π, let’s evaluate:∑
j,k,a,b

∫
s,y

∂πj(x, t)

∂xa
Cjkab (x− y, t− s)

√
σ(u(y, s))

∂πk(y, s)

∂yb
(34)
=

=
∑
j,k,a,b

[
δabδjk + δakδbj − 2

3
δajδbk

]∂πj(x, t)
∂xa

√
σ(u(x, t))

∂πk(x, t)

∂xb

=
√
σ(u(x, t))

[∑
a,j

[∂πj(x, t)
∂xa

∂πj(x, t)

∂xa

]
+

∑
a,j

[∂πj(x, t)
∂xa

∂πa(x, t)

∂xj

]
− 2

3

∑
k,j

[∂πj(x, t)
∂xj

∂πk(x, t)

∂xk

]]
=

rename k=a in the last term

=
√
σ(u(x, t))

∑
a,j

[
∂πj(x, t)

∂xa
∂πj(x, t)

∂xa
+
∂πj(x, t)

∂xa
∂πa(x, t)

∂xj
− 2

3

∂πj(x, t)

∂xj

∂πa(x, t)

∂xa

]
(50)

or, in matrix notation

=
√
σ(u(x, t))

[
tr
[
(∇⊗ π(x, t))(∇⊗ π(x, t))⊤

]
+ tr

[
(∇⊗ π(x, t))(∇⊗ π(x, t))

]
− 2

3
(∇ · π(x, t))2

]

=
√
σ(u(x, t))

[
tr
{(
∇⊗ π(x, t)

)[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]}
− 2

3
(∇ · π(x, t)︸ ︷︷ ︸

=0

)2

]
(51)

where (∇ ⊗ π(x, t))ij := ∂iπ
j(x, t) and the transpose ⊤ is to be interpreted in the matrix sense, i.e.

[(∇⊗π(x, t))⊤]ij := ∂jπ
i(x, t). Notice that π is divergence-less so the last term vanishes (see comments

below equation 32).
Aiming at the instanton equation for u, let’s evaluate:∑
l

P il
{∑

a,b

∂

∂xa

[√
σ(u(x, t))

∫
j,y,s

C ljab(x− y, t− s)
√
σ(u(y, s))

∂πj(y, s)

∂yb

]}
=

rename indexes:j 7→ k , l 7→ j

=
∑
j

P ij
{∑

a,b

∂

∂xa

[√
σ(u(x, t))

∫
k,y,s

Cjkab (x− y, t− s)
√
σ(u(y, s))

∂πk(y, s)

∂yb

]}
=

=
∑
j,k,a,b

[δabδjk + δakδbj − 2

3
δajδbk]P ij

{ ∂

∂xa

[
σ(u(x, t))

∂πk(x, t)

∂xb

]}
=

∑
a,j

P ij∂a[σ(u(x, t))∂aπj(x, t)] +
∑
a,j

P ij∂a[σ(u(x, t))∂jπa(x, t)]−
2

3

∑
b,j

P ij∂j [σ(u(x, t))∂bπb(x, t)]

=
∑
a,j

P ij
{
∂a
[
σ(u(x, t))

(
∂aπ

j(x, t) + ∂jπ
a(x, t)

)]
− 2

3
∂j [σ(u(x, t))∂aπ

a(x, t)]
}

(52)

or, in matrix form:

= P i
{
∇ ·

[
σ(u(x, t))

[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]]
− 2

3

[
∇[σ(u(x, t))∇ · π(x, t)︸ ︷︷ ︸

=0

]
]}

(53)

Again π is divergence-less so the last term vanishes (or also because P[∇⃗f(x)] = 0 for all f scalar).
Notice finally that the following term appearing in the instanton equation for π can also be written

with respect to the emerging matrix ∇⊗ π:

(
∑
j

uj(x, t)∇⃗πj(x, t) + uj(x, t)∂j π⃗(x, t))
k =

∑
j

uj(x, t)∂kπ
j(x, t) + uj(x, t)∂jπ

k(x, t) =

=
{
u⊤(x, t)

[
(∇⊗ π(x, t)) + (∇⊗ π(x, t))⊤

]}k
(54)
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5.3 Appendix C: the restricted Euler equations in the case of the local isotropic
correlation matrix

5.3.1 Reintroducing the pressures in place of the Leray projector

Notice that the Leray projector is present to enforce the incompressibility constraint and it was very
useful to avoid taking care of the pressure; however, aiming to get some physics out of these equations,
the pressure fields P,Q respectively for u, π can introduce back such that, by definition, they enforce
the incompressibility constraint. From equation 39:

∂tu(x, t) + (u(x, t) · ∇)u(x, t)− Re−1∆u(x, t) = −∇P (x, t)−∇ ·
[
σ(u(x, t))Sπ(x, t)

]
∂tπ(x, t) + Re−1∆π(x, t) = −∇Q(x, t)− λ δA[u]

δu(x, t)
− Sπ(x, t)u(x, t)−

1

4
tr
(
Sπ(x, t)

2
)(
∇uσ(u(x, t))

)
with the pressures defined such as the divergences of the two equations vanish (provided that π, u
divergence-less), which means (in Einstein notation for indexes):

∂i[u
j∂ju

i] = −∂i∂iP − ∂i∂j [σSijπ ] ⇐⇒ ∆P = −∂i[uj∂jui]− ∂i∂j [σSijπ ]

0 = −∂i∂iQ− λ∂i
δA

δui
− ∂i[Sijπ uj ]−

1

4
∂i[tr(S

2
π)
∂σ

∂ui
] ⇐⇒ ∆Q = −λ∂i

δA

δui
− ∂i[Sijπ uj ]−

1

4
∂i[tr(S

2
π)
∂σ

∂ui
]

But now let’s notice some properties of the tensor Sπ due to the incompressibility condition (∇·π = 0):∑
i

∂iS
ij
π =

∑
i

∂i(∂jπ
i + ∂iπ

j) =
∑
i

∂i∂iπ
j = ∆πj (55)

which also implies
∑

ij ∂i∂jS
ij
π = 0. Then, starting from the equation for P :

∆P = −∂i[uj∂jui]− ∂i∂j [σSijπ ]
Leib.
=

= −(∂iuj)(∂jui)− uj∂j∂iui −
[
Sijπ ∂i∂jσ + (∂iS

ij
π )(∂jσ) + (∂jS

ij
π )(∂iσ) + σ∂i∂jS

ij
π

]
=

use equation 55 and incompressibility, rename indexes when needed

= −(∂iuj)(∂jui)− Sijπ ∂i∂jσ − 2(∆πj)(∂jσ) = −tr[(∇⊗ u)2]− Sijπ ∂i∂jσ − 2(∆πj)(∂jσ)

Whereas for Q, noticing that ∂i[S
ij
π uj ] = Sijπ (∂iu

j) + uj∂iS
ij
π = tr[Sπ(∇⊗ u)] + uj∆πj :

∆Q = −λ∂i
δA

δui
− ∂i[Sijπ uj ]−

1

4
∂i[tr(S

2
π)
∂σ

∂ui
] = −λ∂i

δA

δui
− tr[Sπ(∇⊗ u)]− uj∆πj −

1

4
∂i

[
tr(S2

π)
∂σ

∂ui

]
The strain tensor for u emerges, as in equation 35 for π, which suggests to define:

Su(x, t) := (∇⊗ u(x, t)) + (∇⊗ u(x, t))⊤, Siju = ∂iu
j + ∂ju

i = Sjiu , (56)

Ωu(x, t) := (∇⊗ u(x, t))− (∇⊗ u(x, t))⊤, Ωiju = ∂iu
j − ∂jui = −Ωjiu . (57)

Bu(x, t) := (∇⊗ u(x, t)) = 1

2
(Su +Ωu), Bij

u = ∂iu
j (58)

and notice that ∂iσ := ∂σ(u(x,t))
∂xi

=
∑

k B
ik
u (x, t)∂σ(u)

∂uk
|(x,t) i.e. ∇σ = Bu∇uσ. Use these definitions to

rewrite:

∆P = −tr[(∇⊗ u)2]− Sijπ ∂i∂jσ − 2(∆πj)(∂jσ) = −tr[B2
u]− Sijπ Bik

u B
jh
u

∂2σ(u)

∂uk∂uh

= −1

4
tr[S2

u +Ω2
u]− tr[SπBuHessu(σ)B

⊤
u ]− 2∆π ·Bu∇uσ =

Use that tr(SA)=0 for all matrices S,A symmetric and antisymmetric

= −1

4
tr
[
S2
u +Ω2

u + Sπ(SuHessu(σ)Su − ΩuHessu(σ)Ωu)
]
− 2∆π ·Bu∇uσ
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By plugging Bu definition into the equation for ∆Q above, on gets:

∆Q = −λ∂i
δA

δui
− tr[Sπ(∇⊗ u)]− uj∆πj −

1

4
∂i

[
tr(S2

π)
∂σ

∂ui

]
=

= −λ∇ · δA[u]
δu(x, t)

− 1

2
tr[Sπ(x, t)Su(x, t)]− u(x, t) ·∆π(x, t)−

1

4
∇ ·

[
tr(S2

π)∇uσ(u(x, t))
]

As a side note, observe that the properties ∇ · Sπ = ∆π and Sπ = S⊤
π imply that:

∇ ·
[
σ(u(x, t))Sπ(x, t)

]
= Sπ∇σ + σ∆π

This property was never used because it is more meaningful to keep evident that the effect of the noise
on u is momentum-conservative.

The conclusion is that the instanton equations rewrite as:

∂tu(x, t) + (u(x, t) · ∇)u(x, t)− Re−1∆u(x, t) +∇P (x, t) = −∇ ·
[
σ(u(x, t))Sπ(x, t)

]
(59a)

∂tπ(x, t)+Re−1∆π(x, t) + Sπ(x, t)u(x, t) +∇Q(x, t) = −λ δA[u]

δu(x, t)
− 1

4
tr
(
Sπ(x, t)

2
)(
∇uσ(u(x, t))

)
(59b)

∆P (x, t) =
{
− 1

4
tr
[
S2
u +Ω2

u + Sπ

[
SuHessu(σ(u))Su − ΩuHessu(σ(u))Ωu

]]
− 2∆π ·Bu∇uσ(u)

}∣∣∣
(x,t)

(59c)

∆Q(x, t)= −λ∇ · δA[u]
δu(x, t)

− 1

2
tr[Sπ(x, t)Su(x, t)]− u(x, t) ·∆π(x, t)−

1

4
∇ ·

[
tr(S2

π)∇uσ(u(x, t))
]

(59d)

t=0: πi(x, 0) = −λP i
[ δA[u]

δu(x, 0)

]
+ P i

[
ϵ
δF [u(0)]

δu(x, 0)

]
(59e)

t=T: πi(x, T ) = λP i
[ δA[u]

δu(x, T )

]
(59f)

The initial and final conditions are exactly the same as before and, in order to remove the Leray
projector, just consider a divergence-less initial condition.

5.3.2 Restricted Euler equation for the stress tensors ∂iu
j and ∂iπ

j

In fluid dynamics, the restricted Euler equation is an approximated equation for the velocity gradient
Bu = ∇ ⊗ u. It is obtained from Navier-Stokes equation assuming the inviscid limit and that the
pressure Hessian (the second derivative of the pressure) is isotropic and proportional to the trace of
the velocity gradient (∇⊗ u) squared. This is a strong simplification that connects the pressure field
to the strain (via the velocity gradient tensor) [26]. The resulting equation is:

dBij
u

dt
+
∑
k

Bik
u B

kj
u =

1

3
tr(B2

u) δ
ij

which is very simple and prone to analytical approaches, but still preserves key features of the inviscid
3d Euler equation like finite time blows up [26]. The aim of this section is to apply this simplification
to equation 59 to see if it provides with analytical results, but it will be clear soon that this is not the
case.

Let Bu = ∇⊗ u and Bπ = ∇⊗ π, let’s try to obtain the analogous of restricted Euler equation for
the instanton equations 59. Take the ∂i of the j-component of the equations 59a and 59b:

∂tB
ij
u +

∑
k

∂i(u
k∂ku

j)− Re−1∆Bij
u + ∂i∂jP = −

∑
k

∂i∂k(σ(u)S
jk
π )

∂tB
ij
π +Re−1∆Bij

π +
∑
k

∂i
[
Sjkπ u

k
]
+ ∂i∂jQ = −λ∂i

δA

δuj
− 1

4
∂i

[
tr(S2

π)
∂σ(u)

∂uj

]
Use Leibniz rule on the terms:

∑
k ∂i(u

k∂ku
j) = (B2

u)
ij + u · ∇Bij

u and
∑

k ∂i
[
Sjkπ uk

]
= (BuSπ)

ij +∑
k uk∂i(B

jk
π + Bkj

π ). The latter can be rewritten using ∂iB
kj
π = ∂i∂kπ

j = ∂kB
ij
π . Eventually the
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equations for Bu and Bπ can be written as:

∂tB
ij
u + u · ∇Bij

u + ((Bu)
2)ij − Re−1∆Bij

u + ∂i∂jP = −
∑
k

∂i∂k(σ(u)S
jk
π )

∂tB
ij
π +u · ∇Bij

π +Re−1∆Bij
π + ∂i∂jQ+ (BuSπ)

ij +
∑
k

uk∂iB
jk
π =

− λ∂i
δA

δuj
− 1

4
∂i

[
tr(S2

π)
∂σ(u)

∂uj

] (60)

or equivalently, acting on the coloured terms:

∂tB
ij
u + u · ∇Bij

u + ((Bu)
2)ij − Re−1∆Bij

u + ∂i∂jP =

−
∑
k,h

∂i

[
Sjkπ B

kh
u

∂σ(u)

∂uh

]
− σ∆Bij

π − (
∑
k

Bik
u

∂σ(u)

∂uk
)(∆πj)

∂tB
ij
π +Re−1∆Bij

π + ∂i∂jQ+ (BuSπ)
ij +

∑
k

uk∂iS
jk
π = −λ∂i

δA

δuj
− 1

4
∂i

[
tr(S2

π)
∂σ(u)

∂uj

] (61)

In order to get equations that can provide analytical results, it useful to take the trace of equation
60 because tr[Bu] = tr[Bπ] = 0 by incompressibility (∇ · u = ∇ · π = 0). Notice that by Leibniz rule∑

ik ∂i∂k(σS
ik
π ) = ∇ · (Sπ∇σ) + (∇ · Sπ) · (∇σ) and the chain rule ∇σ = Bu∇uσ. Observe also that:∑

i,k

uk∂iB
ik
π

∇·π=0
=

∑
i,k

uk∂iS
ik
π

55
= u ·∆π

Eventually, the equations for the traces read:
tr[B2

u] + tr[Hess(P )] = −∇ ·
[
SπBu∇uσ(u)

]
− (Bu∇uσ(u)) · (∇ · Sπ)

1

2
tr[SuSπ] + tr[Hess(Q)] +

∑
i,k

uk∂iS
ik
π = −λ∇ · δA[u]

δu
− 1

4
∇ · [tr(S2

π)∇uσ]
(62)

These equations show the following features:

• equation 62 only depend on Sπ i.e. the symmetric part of Bπ, whereas the dependence on Ωu
(the antisymmetric part of Bu) is unavoidable (tr[B2

u] =
1
4tr[S

2
u +Ω2

u])

• The

• Only derivatives of the noise come into place; thus, if σ ∈ R constant, ∀σ the equations are the
same (this is to be expected because a constant σ can be reabsorbed in ϵ).

• If σ ∈ R constant, the first equation is the same that is obtained in the standard NSE

Now the idea is to apply the Restricted Euler ansatz and hope to be able to achieve analytical
results, at least in the simple case of σ constant and A = A[u(tf )]. One would send Re→ 0 in equation
60 and, inspired by equation 62 would impose the ansatz:

Hess(P ) = −1

d
tr(B2

u)1d Hess(Q) = −1

d

[1
2
tr[SuSπ] +

∑
ik

uk∂iS
ik
π

]
1d

inside equation 60 and obtain:
∂tB

ij
u + u · ∇Bij

u − Re−1∆Bij
u +

[
(B2

u)
ij − 1

d
tr(B2

u)δ
ij
]
= −σ∆Bij

π

∂tB
ij
π + u · ∇Bij

π +Re−1∆Bij
π +

[
(BuSπ)

ij − 1

d
tr(BuSπ)δ

ij
]
+
[∑

k

uk∂iB
jk
π −

1

d

∑
k,l

uk∂lB
lk
π

]
= 0

(63)
However, even in the Re−1 → 0 limit, the term

∑
ik u

k∂iS
ik
π makes difficult to go on with analytical

derivation for the moment. Nevertheless, equations 63 are simpler than the instanton equations 39
and it remains a promising way to achieve some analytical results.


	Introduction
	Stochasticity in turbulence
	A mathematical conjecture on the stochasticity of turbulence
	Spontaneous stochasticity in Navier-Stokes equation
	The real butterfly effect in weather
	A coarse-grained version of the Navier-Stokes equation

	Turbulence is a promising application of Macroscopic Fluctuation Theory
	Building a hydrodynamical description from a microscopic model
	Any finite coarse-graining comes with a noise


	Methods: discussing Macroscopic Fluctuation Theory by its application to Langevin equations
	Some technical aspects treated in one dimension
	The effect of discretization is sub-leading
	The Hamiltonian approach is equivalent to the Lagrangian one

	Studying a d-dimensional Langevin equation to get the physical meaning
	The actions and instanton equations
	The quasi-potential and the adjoint dynamics
	The MFT numerical procedure to estimate the large deviation function

	A 1-dimensional system to test the MFT procedure in estimating the pseudo-potential
	Computing the pseudo-potential with a change of variable
	Example: a 1-dimensional double well with multiplicative noise
	Choosing the final time tf


	Results: Macroscopic Fluctuation Theory for turbulence
	From the hypothesis to a final hydrodynamics amenable for MFT
	Hypothesis
	Making the stochastic Navier-Stokes equation adimensional
	The Leray projector in place of the pressure

	The MFT action and the instanton equations
	MFT action for the unrestricted velocity field v
	Instanton equations of the stochastic Navier-Stokes equation
	Quasi-potential and Lagrangian phase transitions

	The case of an isotropic local correlation matrix
	Instanton equations for an isotropic local correlation matrix 
	An equilibrium solution to the instanton equations in the case of additive noise


	Conclusions
	Bibliography

	Appendix
	Appendix A: functional derivatives for the instanton equations
	Appendix B: specializing to the local isotropic correlation matrix
	Appendix C: the restricted Euler equations in the case of the local isotropic correlation matrix 
	Reintroducing the pressures in place of the Leray projector
	Restricted Euler equation for the stress tensors ∂iuj and ∂iπj



