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Abstract

In this thesis, we consider a one-dimensional gas of N independent Brownian particles subject
to stochastic resetting, with inter-reset times drawn from a general waiting-time distribution
ψ(τ). This includes the well-known Poissonian case, where ψ(τ) = re−rτ , and extends to more
general classes of resetting, such as heavy-tailed and bounded distributions. While our study is
focused on the one-dimensional case, the main results are easily generalizable to higher dimen-
sions. Exploiting the renewal structure of the resetting dynamics, we derive explicit analytical
expressions for the non-equilibrium stationary state (NESS) and various observables of interest,
including particle density, extreme value statistics, order statistics, gap statistics, and full count-
ing statistics. We demonstrate that these observables take a scaling form that exhibits some
universal scaling behaviors, characterized by scale factors independent of the specific resetting
protocol. However, their detailed forms depend explicitly on the distribution of inter-reset times.
Remarkably, we identify a novel class of extreme value statistics (EVS) not previously described
in the literature. We classify the resetting protocols into three distinct universality classes based
on the tail behavior of the resetting-time distribution: exponential decay, bounded support, and
power-law tails. Our theoretical predictions are supported by numerical simulations. These
results extend the understanding of resetting dynamics in many-body systems and offer new
insights into non-equilibrium systems with strongly correlated degrees of freedom.
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Introduction

It is quite common in everyday life for certain processes to be interrupted at random times and
then restarted from a fixed initial condition. For example, when looking for misplaced keys at
home, people often return repeatedly to a known starting point (e.g., the entryway or a specific
room) to restart their search if the keys aren’t found within a reasonable timeframe. Similarly,
during a visual search in a crowded place, our gaze tends to return to the center of the visual
field before resuming the search when the target is not immediately found.

A prototypical example of such processes, known as stochastic resetting, was introduced in [1],
where a diffusive particle is reset to its initial position at a constant rate r. Since then, stochastic
resetting has been studied in a wide variety of contexts. In particular, it has found applications
in many search problems [2–15], where it can, under certain conditions, improve search efficiency.
Resetting has also been employed in computer simulations [16] to improve sampling efficiency
in molecular dynamics algorithms, as it helps the system to escape bad local minima. More
generally, incorporating a resetting mechanism into stochastic algorithms may help them avoid
getting stuck before completing their execution [17–21]. In biology, stochastic resetting is used to
model RNA synthesis, where transcription is stochastically interrupted via backtracking [22,23].
Resetting the dynamics of a physical system has profound effects on it: the resetting mecha-
nism breaks detailed balance and typically drives the system into a non-equilibrium stationary
state (NESS). In general, non-equilibrium systems remain poorly understood, and stochastic
resetting offers a valuable framework for constructing broad classes of such systems where the
stationary state can be computed explicitly. This makes it a powerful tool for gaining deeper
insights into the behavior of systems far from equilibrium. The implications of this mechanism
have been extensively explored in single-particle systems, such as Lévy walks, Lévy flights, and
run-and-tumble particles [24–27]. Analytical predictions from resetting systems have also been
verified experimentally using colloidal particles in harmonic traps [28–31]. The same applies to
quantum systems, where resetting is realized as a unitary evolution interrupted by random resets
to the initial state [32–35]. Moreover, the single-particle problem has been generalized to arbi-
trary waiting time distributions ψ(τ) between resets [36], including power-law distributions [37]
and time-dependent resetting rates r(t) [15]. A general master equation for such systems was
formulated in [38].

The influence of stochastic resetting has also been studied in systems with many degrees
of freedom (DOF) [39–43]. Its effects become particularly intriguing when all DOF are reset
simultaneously. For example, in a one-dimensional gas of Brownian searchers [39], although the
particles evolve independently between resets, the act of resetting all particles at once induces
dynamically emergent long-range correlations. Remarkably, despite the presence of strong corre-
lations and the non-equilibrium nature of the steady state, many observables of interest remain
analytically tractable [40].
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These include:

• the average density of particles;

• the extreme value statistics (EVS), which refer to the distribution of the maximum
or minimum value among a set of random variables (which in this case are the particles’
positions on the real line);

• the order statistics, which focus on the relative ordering of all particles;

• the gap statistics, which study the spacing between consecutive particles;

• the full counting statistics (FCS), which count how many particles out of the total N
lie within a symmetric interval [−L,L] centered at the origin.

The possibility to analytically calculate all these quantities is a very rare feature for non-
equilibrium systems.

Among all these observables, the study of EVS is of particular interest. While the classical
theory of EVS classifies the distribution of the maximum of independent and identically dis-
tributed (i.i.d) variables into Gumbel, Fréchet, and Weibull [44, 45] universality classes, much
less is known in the presence of strong correlations. Some generalisations have been obtained
for weakly correlated variables [46,47], or non identically distributed random variables [48], but
for strongly correlated variables we do not have general results and only a few cases have been
solved [46, 49]. Resetting provides a rare example where such statistics can still be computed
exactly, even in the correlated regime.

As discussed above, previous studies have considered many-body systems under constant-
resetting rate r, or more general resetting protocols ψ(τ) in the single-particle case. In contrast,
this thesis extends the study of arbitrary resetting protocols to a many-body setting. We focus
on a one-dimensional gas of N independent Brownian particles, where all particles are reset
simultaneously to their initial positions at random times drawn from a general distribution ψ(τ).
We first recover known results in the Poissonian case, where ψ(τ) = re−rτ , and then investigate
the stationary state for two non-Poissonian examples: a power-law and a bounded distribution.
We then find exact results for general classes of resetting protocols. This analysis allows us to
identify which features of the non-equilibrium stationary state (NESS) are universal and which
depend sensitively on the specific form of ψ(τ).

A natural framework to approach this problem is that of conditionally independent and iden-
tically distributed (c.i.i.d.) variables [40], which we introduce in Section 2.1.1. In this setting,
independent samples drawn from a distribution with a shared random parameter become cor-
related once we average over that parameter. This framework arises naturally in many models
and, in our case, gives rise to non-trivial correlations in the stationary state after the common
parameter is integrated out.



Chapter 1

Poissonian stochastic resetting

In this chapter, we introduce the paradigmatic example of a single diffusing particle that under-
goes Poissonian stochastic resetting. We then generalize the analysis to a system of N indepen-
dent particles, which are all reset simultaneously. Despite the absence of interactions between the
particles during their diffusive motion, the global resetting introduces correlations that persist
in the stationary state. These correlations are of particular interest, as they emerge purely from
the resetting protocol and not from direct interactions.

1.1 One diffusing particle

We consider a single particle in one dimension, whose position is indicated by x(t), which diffuses
with diffusion constant D. We indicate with p(x, t|x0) the probability density function (PDF)
that the particle is at position x at time t, having started at x0 at time t = 0. This PDF evolves
in time with the Fokker-Planck equation given by:

∂p(x, t | x0)
∂t

= D
∂2p(x, t | x0)

∂x2
(1.1)

with initial condition p(x, t = 0|x0) = δ(x − x0). The solution of this equation on the full real
line is given by

p(x, t | x0) =
1√
4πDt

exp

(
−(x− x0)

2

4Dt

)
(1.2)

We now consider the case in which the same diffusing particle is stochastically reset to the initial
condition with a constant resetting rate r. If we discretise time into small intervals of size dt,
the position of the particle evolves according to the following stochastic rule:

x(t+ dt) =

{
0 with probability rdt,

x(t) +
√
2Ddt η(t) with probability 1− rdt,

(1.3)

where η(t) is a Gaussian random variables with zero mean and unit variance.
Although one could solve this problem by generalizing Eq. (1.1), it is more insightful for

our purpose to exploit the underlying renewal structure of the dynamics. Indeed, each time a
reset occurs, the process restarts from the initial condition, rendering the prior history irrelevant.
Consequently, the state of the system at any given time t depends solely on the time elapsed
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since the last reset (see Figure 2.1). This framework is particularly effective for determining
the stationary state and for generalizing to systems with many particles and non-exponential
resetting protocols.

Under this approach, the probability density function pr(x, t | x0) in the presence of resetting
at rate r can be expressed as the sum of two contributions given by:

pr(x, t | x0) = e−rt p(x, t | x0) + r

∫ t

0
dτ e−rτ p(x, τ | x0). (1.4)

The first term corresponds to the trajectories for which no resetting has occurred up to time t,
which happens with probability e−rt; in this case, the PDF is simply that of the process without
resetting p(x, t|x0). The second term accounts for trajectories where at least one resetting as
occurred. In this case, we consider that the last reset occurred at time t − τ , after which the
particle evolved freely for a time τ (see Figure 2.1).

The stationary state is then attained in the limit t → ∞, where the first term in eq. (1.4)
vanishes, leading to

p∗r(x|x0) = pr(x, t→ ∞|x0) = r

∫ ∞

0
dτ e−rτ p(x, τ |x0) (1.5)

The above integral can be explicitly solved giving:

p∗r(x|x0) =
1

2

√
r

D
exp

(
−
√
r

D
|x− x0|

)
(1.6)

This PDF has a cusp at the resetting position and decays exponentially on both sides. Since
the resetting move breaks detailed balance, eq. (1.6) corresponds to a NESS.

1.2 Many diffusing particles

We now extend the single-particle model to a system with many degrees of freedom. Specifically,
we consider a one-dimensional gas of N non-interacting Brownian particles, each diffusing inde-
pendently along the real line with diffusion constant D. At random times, with constant rate r,
all particles are simultaneously reset to a fixed position, which we take to be the origin without
loss of generality. This model, first introduced in [39], provides a minimal yet rich framework to
study non-equilibrium behavior in many-body systems subject to resetting.

Between two consecutive resets, the positions of the particles evolve independently according
to free diffusion. If we denote by x⃗ = {x1, . . . , xN} the positions of the particles , the joint prob-
ability density function (JPDF) in the absence of resetting is given by the product of Gaussian
propagators:

G0(x⃗, t) =
N∏
i=1

1√
4πDt

exp

(
− x2i
4Dt

)
. (1.7)

As in the one-particle example, we consider that a resetting event happens with a constant
rate r. This means that we think of discretising time into small intervals of duration dt; at each
time step, either a reset occurs with probability r dt, bringing all particles back to the origin,
or the particles continue their Brownian motion with probability 1 − r dt. This construction
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implies that the waiting times τ between resets are independent and exponentially distributed
with PDF:

ψ(τ) = re−rτ .

In Chapter 2, we generalize ψ(τ) to arbitrary waiting time distributions. This generalization
constitutes the main result of this work. Although the particles evolve independently between
resets, the fact that they are all reset simultaneously introduces strong correlations in the system,
as it can be seen in (1.9) and in (2.22).
The JPDF Pr(x⃗, t), representing the probability density of finding particles at positions x⃗ at time
t under a constant resetting rate r, can be derived explicitly by exploiting the renewal structure
of the process, as we have already done for the single particle case. We avoid indicating that
all particles start from the origin, which is also the resetting position. As in the single-particle
case, we make use of the renewal property of the dynamics, since each reset brings the system
back to its initial condition, making its previous trajectory irrelevant. As a result, we can divide
all trajectories into two groups: those in which no resetting occurs up to time t, and those in
which at least one reset takes place before t. The JPDF can thus be expressed as the sum of two
distinct contributions:

Pr(x⃗, t) = e−rtG0(x⃗, t) + r

∫ t

0
dτ e−rτ G0(x⃗, τ) . (1.8)

The first term corresponds to the trajectories where no resetting has occurred up to time
t, which happens with probability Ψ(t) =

∫∞
t ψ(τ ′) dτ ′ = 1 −

∫ t
0 ψ(τ

′) dτ ′ = e−rt; in this case,
the JPDF is simply that of the process without resetting G0(x⃗, t). The second term considers
instead the trajectories where the last resetting has occurred at time t−τ , and then the particles
propagate freely in the subsequent interval [t− τ, t]. In the above case, the probability of a reset
at time t − τ and then no reset up to t is simply r dτ e−rτ . The stationary state is obtained in
the limit t→ ∞ and is given by

P∗
r (x⃗) = r

∫ ∞

0
dτ e−rτ

N∏
i=1

1√
4πDτ

exp

(
− x2i
4Dτ

)
. (1.9)

This expression can be interpreted as follows: the JPDF is constructed by evaluating the N -
particles diffusive propagator at a time τ , and then averaging over the distribution re−rτ , which
represents the probability that the last reset occurred at time t − τ , with no further resets
thereafter.

An important observation is that, after integrating over τ , Eq. (1.9) no longer factorizes into
a product of single-particle distributions. This implies that the particles become correlated in
the stationary state, despite being dynamically independent between resets.

This structure is a particular instance of a more general class introduced in [40], in which the
variables are said to be conditionally independent and identically distributed (c.i.i.d.) variables.
We illustrate this concept in Section 2.1.1.



Chapter 2

Non-Poissonian simultaneous stochastic
resetting of N diffusing particles

2.1 Stationary state

We aim to generalize the system introduced above to the case where ψ(τ) is a general waiting
time distribution, not necessarily exponential. In this scenario, we can no longer treat each
infinitesimal time interval dt as independent, as in the Poissonian case. Nevertheless, it is still
possible to derive an expression for the NESS.

To clarify the process, let us describe how it is simulated: after each reset, we sample a time
τ∗ from the distribution ψ(τ) and simulate N independent diffusive particles for a duration τ∗.
The position of each particle evolves according to the update rule:

xi(t+∆t) = xi(t) +
√
2D∆t ηi(t).

The subscript i, with i = 1, ..., N , labels the particles and {ηi(t)}i=1...,N are independent
Gaussian white noises satisfying ⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′). Once the time τ∗ has elapsed, all
particles are simultaneously reset to the origin, a new value of τ∗ is sampled from ψ(τ), and the
process repeats.

The steady-state behavior of a single particle subject to non-Poissonian resetting has been
investigated using several different approaches, as summarized in [36]. In particular, the case
of power-law resetting times is studied in [37], while the effect of a time-dependent resetting
rate r(t) is discussed in [15]. More generally, [38] introduces a generalized master equation that
captures arbitrary waiting time distributions between resets.

In this work, we provide a derivation that is particularly suited to our scenario, based on the
last renewal approach introduced earlier. This method classifies all trajectories contributing to
the JPDF P(x⃗, t) into two categories:

1. Trajectories that have not experienced any reset up to time t;

2. Trajectories that have experienced at least one reset before time t.

These two types of trajectories are illustrated in Figure 2.1. To compute their contribution
to the total JPDF, we introduce the function Ψ(t) =

∫∞
t ψ(τ ′) dτ ′, which gives the probability

that no reset has occurred up to time t. For trajectories of the first type, the system evolves via

8
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Figure 2.1: Schematic illustration of the process. The left panel shows the sketch of a
trajectory where no reset occurs up to time t: the particles evolve purely by free diffusion.
The right panel shows the sketch of a trajectory that undergoes at least one reset before time t.
The last reset occurs at time tℓ, and there are n − 1 resets before it, with n ≥ 1. We explicitly
show the first, the second, and the last (nth) reset.
Since each reset completely deletes the system’s past, the state of the system at time t depends
only on the time interval τ = t − tℓ since the last reset. The statistical properties of this time
interval τ are effectively described, in the stationary state, by the function h(τ) defined in 2.7.

free diffusion over the interval [0, t], contributing with Ψ(t)G0(x⃗, t) to the JPDF, where G0 is the
free propagator defined in Eq. (1.7).

We now consider trajectories that have experienced at least one reset before time t. Due to
the renewal nature of the process, the system’s statistical properties at time t depend only on
the time since the last reset, not on the entire history. Let tℓ ∈ [0, t] denote the time of the last
reset. The key object is Υ(tℓ), the total probability density that the last reset occurred exactly
at time tℓ, regardless of how many previous resets happened before.

This function can be written as:

Υ(tℓ) =

∞∑
n=1

υn(tℓ), (2.1)

where υn(tℓ) is the probability density that exactly the nth reset occurs at time tℓ. Since any
number of resets can happen before the last one, we sum over all n ≥ 1.

The contribution to the JPDF from such trajectories is:∫ t

0
dtℓΥ(tℓ)Ψ(t− tℓ)G0(x⃗, t− tℓ). (2.2)

In other words, the last reset occurs at time tℓ with probability Υ(tℓ) dtℓ. From that point until
time t, no further reset occurs, which happens with probability Ψ(t − tℓ). During this interval,
the particles evolve freely according to the propagator G0(x⃗, t− tℓ). Since tℓ can take any value
in (0, t), we integrate over it.

We thus obtain the last renewal equation for a general resetting protocol ψ(τ):

P(x⃗, t) = Ψ(t)G0(x⃗, t) +

∫ t

0
dtℓΥ(tℓ)Ψ(t− tℓ)G0(x⃗, t− tℓ). (2.3)
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To evaluate Υ(t), we notice that the functions υn(t) satisfy the recursion:

υn(t) =

∫ t

0
dτ ψ(t− τ) υn−1(τ), with υ1(t) = ψ(t).

Taking the Laplace transform (denoted by a tilde), we find υ̃n(s) = [ψ̃(s)]n. Summing over all
n ≥ 1, we obtain:

Υ̃(s) =

∞∑
n=1

[ψ̃(s)]n =
ψ̃(s)

1− ψ̃(s)
.

We now take the Laplace transform of equation (2.3). Substituting the expression for Υ̃(s),
we get:

P̃(x⃗, s) =
1

1− ψ̃(s)

∫ ∞

0
dt e−stΨ(t)G0(x⃗, t). (2.4)

Recalling that ψ(t) = −dΨ(t)
dt , the Laplace transform of Ψ(t) is given by:

Ψ̃(s) =
1− ψ̃(s)

s
.

Inserting this into equation (2.4) leads to the final expression:

P̃(x⃗, s) =
1

s Ψ̃(s)

∫ ∞

0
dt e−stΨ(t)G0(x⃗, t). (2.5)

A stationary state exists in the limit t → ∞ provided that ψ(t) decays sufficiently fast. In
this limit, the stationary state is obtained from the coefficient of 1/s in the Laplace domain (as
s→ 0), leading to

P∗(x⃗) = P∗(x⃗, t→ ∞) =

∫∞
0 dtΨ(t)G0(x⃗, t)∫∞

0 dtΨ(t)
. (2.6)

provided that this limit exists. A sufficient condition is that
∫∞
0 dtΨ(t) < ∞, which implies

that ψ(t) should decay to zero faster than 1/t2. If it is not the case, the system does not reach
any stationary state. Since the resetting move breaks detailed balance, when a stationary state
exists, it is as a non-equilibrium one.
It is now convenient to define a normalized weight function

h(τ) =
Ψ(τ)∫∞

0 dtΨ(t)
, (2.7)

so that the stationary state can be written as

P∗(x⃗) =

∫ ∞

0
dτ h(τ)G0(x⃗, τ) =

∫ ∞

0
dτ h(τ)

N∏
i=1

1√
4πDτ

exp

(
− x2i
4Dτ

)
. (2.8)

This expression makes the c.i.i.d. nature [40] of the problem explicit.
To understand the meaning of the distribution h(τ) we notice that, integrating by parts, we can
write

∫∞
0 dτ Ψ(τ) = ⟨τ⟩ . Thus, the normalization constant is ⟨τ⟩, i.e. the average waiting time

between resets. In the stationary state, time-translation invariance implies that the probability
of a reset occurring at any time is constant and equal to 1

⟨τ⟩ .



2.1. Stationary state 11

We can then interpret the quantity

h(τ) dτ =
1

⟨τ⟩
Ψ(τ) dτ

as the joint probability of two independent events: first, that the last reset happened in the
time interval [t− τ, t− τ + dτ ], which occurs with probability 1

⟨τ⟩ dτ ; and second, that no further
resets occurred in the interval [t−τ, t], which happens with probability Ψ(τ). This interpretation
reflects the fact that the state of the system depends only on the time elapsed since the last reset,
and not on the full history before it (see Figure 2.1).

The quantity 1
⟨τ⟩ is an effective rate of resetting in the stationary state, which is proportional

to the rate r, but they are equal only for an exponential time distribution. In fact, when
ψ(τ) = re−rτ , the probability Ψ(τ) = e−rτ and we get ψ(τ) = h(τ). This implies that the
stationary state will be given by (1.9). To compare different distributions, we introduce a rate r,
whose inverse defines the resetting time scale and we define the dimensionless function h̃(z) as:

h(τ) = rh̃(rτ) (2.9)

2.1.1 Observables and c.i.i.d. structure

As anticipated in the introduction, the system we are studying has a particular structure for
which the variables are said to be c.i.i.d. This particular structure is what allows us to calculate
many observables of interest, even in the presence of strong correlations. In general, if we take
N random variables (RV) x1, ..., xN , they are said to be conditionally independet and identically
distributed (c.i.i.d.) if their JPDF can be written in the form

Prob{x1, . . . , xN} =

∫ ( N∏
i=1

Prob{xi | Y⃗ }

)
Prob{Y⃗ } dY⃗ . (2.10)

meaning that the variables xi are i.i.d. variables sampled from a probability distribution
Prob{xi | Y⃗ }, where Y⃗ = {y1, ..., yM} is a set of random parameters with JPDF Prob{Y⃗ }. If we
fix the value of the parameters Y⃗ , the variables xi are independently drawn, but once we average
on Prob{Y⃗ } they get correlated. In our specific case, the only random parameter is the time τ
passed after the last reset.

Regardless of the form of the distribution ψ(τ) and hence of h(τ), the stationary state distri-
bution in Eq. (2.8) exhibits an explicit c.i.i.d. structure. Thanks to this structure, a wide variety
of observables O of the system can be computed as:

O =

∫ ∞

0
dτ h(τ)O(τ) (2.11)

where O(τ) is the observable O calculated for a fixed value of the parameter τ .
We begin by considering the average particle density in the stationary state, which is defined

as:

ρN (x) =
1

N

〈
N∑
i=1

δ(x− xi)

〉
.

where ⟨...⟩ indicates the average over P∗(x⃗). Due to the symmetry between particles, ρN (x)



2.1. Stationary state 12

coincides with the one-point marginal of the stationary distribution:

ρN (x) = Pstat(x) =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN−1 P∗(x⃗) =

∫ ∞

0
dτ h(τ) p0(x | τ) . (2.12)

where p0(x | τ) = 1√
4πDτ

exp
(
− x2

4Dτ

)
is the free propagator for a single particle. It is important

to emphasize that this does not imply the particles are uncorrelated, as Eq. (2.6) does not
factorise.

Although the particles are correlated, the symmetry of the system ensures that the first-
order connected correlator ⟨xixj⟩c = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ vanishes. Instead, one can study the
second-order connected correlations such as ⟨x2ix2j ⟩c = ⟨x2ix2j ⟩ − ⟨x2i ⟩⟨x2j ⟩. It is easy to show that

⟨x2ix2j ⟩c =
∫ ∞

0
dτ h(τ)

(
σ2(τ)

)2 − (∫ ∞

0
dτ h(τ)σ2(τ)

)2

(2.13)

where σ2(τ) = 2Dτ is the variance of the gaussian propagator. Eq. (2.13) can be seen as the
variance of the quantity σ2(τ) with respect to the distribution h(τ).
To explore local observables, it is convenient to order particle positions in decreasing order
and relabel them as {M1 = maxi=1,...,N xi > M2 > · · · > MN = mini=1,...,N xi}. This allows
us to study quantities such as the probability Prob{Mk = ω} that the kth largest particle is
at position ω, or the probability Prob{dk = g} that the distance dk = Mk − Mk+1 between
consecutive particles is equal to g in the stationary state. Thanks to the c.i.i.d. structure, as
noted above, we can write:

Prob{Mk = ω} =

∫ ∞

0
dτ h(τ)Prob{Mk(τ) = ω} (2.14)

where Mk(τ) is the maximum of N independent variables sampled from a Gaussian with zero
mean and variance 2Dτ . This is equivalent to saying that Mk(τ) is the kth maximum between
the particles’ positions given that a time τ has elapsed since the last reset. In the large N limit,
as shown in [40], this distribution converges to

Prob{Mk = w} N→∞−−−−→
∫

dτ h(τ) δ (w − q(α, τ)) (2.15)

having defined k = αN with 0 < α < 1. By setting α = O(1), we access the regime of the
order statistics, whereas choosing α = O

(
1
N

)
leads to the study of the EVS. The value q(α, τ)

corresponds to the α-quantile of the conditional distribution p0(x | τ):∫ +∞

q(α,τ)
p0(x | τ) dx = α. (2.16)

It is the value of x such that there are, on average, αN variables above q(α, τ). In our specific case
p0(x | τ) = 1√

4πDτ
exp
(
− x2

i
4Dτ

)
and q(α, τ) takes the explicit form q(α, τ) =

√
4Dτ erfc−1(2α).

Also for the spacing between particles, we can write

Prob{dk = g} =

∫ ∞

0
dτ h(τ)Prob{dk(τ) = g}. (2.17)
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where dk(τ) = Mk(τ)−Mk+1(τ) is the distance between two consecutive particles given that a
time τ is passed since the last reset. In the limit N → ∞ eq. (2.17) becomes

Prob{dk = g} =

∫ ∞

0
dτ h(τ)Np(q, τ)e−Np(q,τ)g (2.18)

where q = q(α, τ) =
√
4Dτerfc−1(2α), k = αN , and p(q, τ) = 1√

4πDτ
exp

(
[−erfc−1(2α)]2

)
.

Another observable of interest is the full counting statistics (FCS), i.e., the probability
P (NL, N) of finding NL particles out of N within a symmetric interval [−L,L] centered around
the resetting point x = 0. To compute it for our gas we can use the c.i.i.d. structure of our
system and write:

P (NL, N) =

∫ ∞

0
dτ h(τ)

(
N

NL

)
[q̃(τ)]NL [1− q̃(τ)]N−NL . (2.19)

where q̃(τ) =
∫ L
−L p(y, τ) dy = erf

(
L√
4Dτ

)
is the probability of a brownian particle diffusing

for a time τ to be inside the interval [−L,L]. The function inside the integral (2.19) that
multiplies h(τ) is just a binomial distribution that accounts for having NL out of the total N
particles inside the box. As N increases, the binomial distribution inside the integral (2.19)
becomes sharply peaked around q̃(τ) and the equation simplifies to:

P (NL, N) ≈
∫ ∞

0
dτ h(τ)δ(κ− q̃(τ)). (2.20)

where k = NL
N .

In the following sections, we study these observables in detail and we find that all of them
admit a scaling form with a scaling function explicitly governed by the function h(τ). More-
over, certain universal features emerge: for example, all observables have their own scale factor,
meaning a characteristic scale that sets their overall magnitude, which is universal, i.e. it is
independent of the specific resetting protocol. Notably, the behaviors for small values of the
arguments of ρN (x), Prob{Mk = ω}, and Prob{dk = g} are independent of the form of h(τ). A
similar universal behavior appears in the FCS when taking the limit NL → N . Conversely, in
the large-x, large-ω, large-g or small-NL regime, the observables depend only on the large-τ tail
of h(τ), and we have derived explicit results for three general classes of tail behaviors. Since the
observables Mk and dk have been widely studied in the literature for i.i.d. variables [44–47], we
compare some of these classical results to our case in order to see how correlations change these
observables in this case. We illustrate three concrete cases for ψ(τ) in section 2.2 before giving
the general results in section 2.3.

2.2 Analytical results for three particular resetting protocols

We now study the behaviour of the system for three specific examples of the resetting time dis-
tribution ψ(τ). This will provide concrete insight before generalizing the results to an arbitrary
h(τ) in Section 2.3. We begin with the well-studied Poissonian case, for which ψ(τ) = re−rτ ,
and then examine two qualitatively different situations: a distribution with a power-law tail and
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one with a bounded support. These two cases were chosen because they exhibit significantly
different behaviors at large τ , leading to distinct outcomes for all the observables of interest.

Poissonian resetting protocol

We begin with the Poissonian resetting case introduced in Sec. 1.2, corresponding to the inter-
reset time distribution ψ(τ) = re−rτ . Physically, this distribution arises because, in each small
interval dt, the particles reset with probability r dt and they diffuse otherwise.

In this context, h(τ) coincides with the inter-reset distribution ψ(τ). This equivalence can
be shown by noting that:

h(τ)dτ =
Ψ(τ)

⟨τ⟩
dτ = ⟨r⟩Ψ(τ)dτ,

where ⟨r⟩ = 1/⟨τ⟩ is the average resetting rate, and Ψ(τ) is the probability of no resets
occurring within the interval [t− τ, t]. For the exponential distribution specifically, we have:

⟨r⟩ = r and Ψ(τ) = e−rτ ,

implying directly h(τ) = ψ(τ) = re−rτ . Knowing h(τ), one can employ Eq. (2.12) to obtain
the steady-state density:

ρN (x) =
1

2

√
r

D
exp

(
−
√
r

D
|x|
)
. (2.21)

Thus, the density decays exponentially with the characteristic length scale l =
√

D
r . This

prediction has been experimentally verified using colloidal particles as the diffusing agents and
optical tweezers to implement the resetting mechanism [30].

Although the particles diffuse independently between resets, the resetting mechanism intro-
duces strong correlations. This is evident from the fact that the JPDF (2.8) does not factorise.
By symmetry, the first non-zero correlator is given by

⟨x2ix2j ⟩c =
4D2

r2
∀ i, j . (2.22)

which indicates strong correlations at all distances. It is important to note that these correlations
arise purely from the dynamics of the system, as the particles do not interact directly. The order
and extreme value statistics are addressed next by studying the k-th maximum, Mk, among the
particle positions. Substituting h(τ) = r e−rτ into Eq. (2.15) and evaluating the integral yields

Prob{Mk = ω} =
1

Λ(α)
S

(
ω

Λ(α)

)
, (2.23)

with the scaling function
S(z) = 2ze−z2 , (2.24)

and the scaling factor

Λ(α) =

√
4D

r
erfc−1(2α) with α =

k

N
. (2.25)

The parameter Λ(α) sets the typical scale of values taken by Mk. By varying α, we can
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probe either the bulk or edge behavior of the gas: for α = O(1), we sample the bulk, where

Λ(α) ∼ O(1); for α = O(1/N), we probe the edges, where Λ(α) converges to LN =
√

4D lnN
r .

Despite this change in scale, the scaling function S(z) remains unchanged, and it remains valid
both for the order and the extreme value statistics. As a result, while the density ρN (x) spans
the full line, the rightmost particle is typically located at a distance O(

√
lnN) from the origin.

Furthermore, the distance dk between consecutive particles is given by

Prob{dk = g} =
1

λN (α)
D

(
g

λN (α)

)
, (2.26)

where
D(z) = 2

∫ ∞

0
du exp

(
−u2 − z

u

)
, (2.27)

and the scaling factor is

λN (α) =
1

Nb
√
r

with b =
exp

(
−
[
erfc−1(2α)

]2)
√
4πD

. (2.28)

This result holds both in the bulk and near the edges. It is worth noting that λN (α) is

O(1/N) in the bulk, while at the edges it behaves as λN (α) → lN =
√

D
rk2 lnN

, indicating
an inhomogeneous gas: particles are very closely packed in the bulk and much sparser at the
boundaries. The scaling function D(z) behaves as

D(z) ≈


√
π + 2z ln z z → 0

2

√
π

3
exp

(
−3
(z
2

)2/3)
z → ∞

(2.29)

Finally, the full counting statistics (FCS) are derived from Eq. (2.20):

H(κ) = γ
√
π [u(κ)]−3 exp

(
− γ

[u(κ)]2
+ [u(κ)]2

)
, (2.30)

where k = NL
N represents the fraction of particles inside the box [−L,L]. The asymptotics

are

H(κ) ∼


8γ

πκ3
exp

(
− 4γ

πκ2

)
, κ→ 0

γ
√
π

(1− κ)3/2 [ln(1− κ)]3/2
, κ→ 1 ,

(2.31)

implying that H(κ) vanishes rapidly as κ→ 0 and diverges in an integrable way as κ→ 1−.
All these theoretical predictions have been confirmed numerically in [39].

Power-law resetting protocol

Next, we examine a power-law distribution for the resetting times:

ψ(τ) =
rβ

(rτ)1+β
, (2.32)
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defined for τ ∈ [1/r,∞) and for β > 0. To ensure a stationary state (i.e. finite ⟨τ⟩), we restrict
the discussion to β > 1.

Using the definition (2.7) we first compute the normalization:∫ ∞

0
dtΨ(t) =

β

β − 1

1

r
,

which leads to

h(τ) =


β − 1

β
r, τ < 1/r ,

β − 1

β
r (rτ)−β, τ > 1/r .

(2.33)

Inserting eq. (2.33) in eq. (2.12) we can write the density ρN (x) in the scaling form

ρN (x) =
1

l
R
(x
l

)
, (2.34)

where the scaling parameter l =
√

D
r is the same as in the Poissonian case and where the scaling

function R(z) is given by

R(z) =
z

4
√
π

β − 1

β

{
Γ

(
−1

2
,
z2

4

)
+

(
2

z

)2β

γ

(
β − 1

2
,
z2

4

)}
. (2.35)

The functions Γ(s, z) and γ(s, z) are respectively the upper and lower incomplete gamma func-
tions, defined as Γ(s, z) =

∫ z
0 dy y

s−1 e−y and γ(s, z) =
∫∞
z dy ys−1 e−y. The resulting density

profile, shown in Figure 2.2, exhibits the following asymptotic behaviors:

R(z) ≈

A1 −A2 |z|, z → 0 ,

A3

z2β−1
, z → ∞ .

(2.36)

where A1, A2 and A3 are positive constants. This result is particularly interesting because it tells
us that the power-law resetting distribution leads to a power-law tail in the particle density, in
contrast with the exponential decay found in the Poissonian case. Although the scale factor l
remains unchanged, longer diffusion intervals occur with a higher probability, allowing particles
to move further from the origin. This results in a fat-tail density.
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Figure 2.2: Plot of the density profile ρN (x) = 1
l R
(
x
l

)
. The scaling function R(z) is given

in (2.35), and l =
√

D
r . The solid black curve shows the theoretical prediction for the resetting

protocol ψ(t) = rβ
(rt)1+β with t ∈ [1/r,∞) and β = 4. The symbols indicate simulation results for

different values of N . Simulations were performed with r = 1 and D = 1
2 .

In the NESS, correlations are again strong. The first non-zero correlator is

⟨x2ix2j ⟩c = ⟨x2ix2j ⟩ − ⟨x2i ⟩⟨x2j ⟩ =
4D2

r2
(β − 1)(β2 − 4β + 7)

12(β − 3)(β − 2)2
∀ i, j , (2.37)

which is defined for β > 3 ,i.e. when the resetting time variance is finite.
The order and extreme value statistics are modified as well. One finds

Prob{Mk = ω} =
1

Λ(α)
S

(
ω

Λ(α)

)
, (2.38)

with the scaling function S(z), whose shape is shown in Figure 2.3, given by

S(z) =


2β−1

β z, z < 1 ,

2β−1
β

1
z2β−1 , z > 1 .

(2.39)

The scaling factor Λ(α) remains the same as in the Poissonian case.
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Figure 2.3: Plot of the distribution of the kth rightmost particle Mk. The distribution follows
the scaling form Prob{Mk = ω} = 1

Λ(α) S
(

ω
Λ(α)

)
, where the scaling function S(z) is given

in (2.39), and the scaling parameter Λ(α) is defined in (2.25). The solid black curve represents
the theoretical prediction for the resetting protocol ψ(t) = rβ

(rt)1+β with t ∈ [1/r,∞) and β = 4.
Different symbols correspond to different values of α = k

N . Simulations were performed with
N = 106 particles, using r = 1 and D = 1

2 .

The density ρN (x) is also the one-point marginal of the particles’ positions, and one may
compare the above EVS, given by (2.38) for k = O(1), with that obtained by sampling N i.i.d.
random variables from ρN (x). In this latter case, the limit N → ∞ gives a Fréchet distribution
S̃(z) = α

zα+1 e
−z−α with parameter α = 2β − 2 (see appendix A.1). It behaves as

S̃(z) ≈

exp
[
− z−(2β−2)

]
, z → 0 ,

1

z2β−1
, z → ∞ .

(2.40)

Thus, the resetting protocol increases the probability mass near the origin while preserving the
power-law tail for large z.

The scaling function for the spacing distribution is obtained from Eq. (2.18):

D(z) = 2
β − 1

β

[
e−z − z Γ(0, z) + z2β−1 {Γ(2β − 1)− γ (2β − 1, z)}

]
, (2.41)

and its shape is shown in Figure 2.4. The function Γ(z) =
∫∞
0 dy yz−1 e−y is the gamma

function, while Γ(s, z) and γ(s, z) are the upper and lower incomplete gamma functions defined
above.

It follows that the probability for the k-th spacing is

Prob{dk = g} =
1

λN (α)
D

(
g

λN (α)

)
. (2.42)
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The asymptotic behaviors of D(z) are

D(z) ≈

A4 +A5z ln z, z → 0 ,

A6

z2β−1
, z → ∞ .

(2.43)

where A4, A5 and A6 are positive constants. As for the distribution of the maximum, we find that
the scale λN (α) is unchanged, and the z → 0 behavior remains the same as in the Poissonian case.
However, for large z, the distribution exhibits a power-law tail instead of a stretched exponential.
This means that a power-law resetting protocol, by allowing longer diffusing intervals, also leads
to a sparser particle gas.

Figure 2.4: Plot of the distribution of the spacing dk =Mk−Mk−1 between the kth and (k−1)th

rightmost particles. The distribution follows the scaling form Prob{dk = g} = 1
λN (α)D

(
g

λN (α)

)
,

where the scaling function D(z) is given by (2.41), and the scaling parameter λN (α) is defined
in (2.28). The solid black curve represents the theoretical prediction for the resetting protocol
ψ(t) = rβ

(rt)1+β with t ∈ [1/r,∞) and β = 4. Different symbols correspond to different values of
α = k

N . The simulations were performed with N = 106 particles, using r = 1 and D = 1
2 .

It can also be interesting to compare this distribution with what we would have obtained
sampling N i.i.d. random variables from the average density ρN (x). For the Fréchet class, as
in this case, the asymptotic scaling function D̃(z) for the distribution of d1 is such that (cf.
Appendix A.1):

D̃(z) ≈

{
A7 −A8z z → 0

α
(k−1)!

1
z1+α z → ∞

(2.44)

where A7 and A8 are positive constants and α = 2β − 2. Thus, we have a slightly different
behavior for small z, but the tails at z → ∞ of (2.43) and eq. (2.44) are the same.
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The full counting statistics (FCS) are given by P (NL, N) = 1
NH

(
NL
N

)
, where

H(k) =

σ
√
π
(
β−1
β

)
u(k)−3eu(k)

2
, k > erf(

√
σ) ,

√
π σ1−β

(
β−1
β

)
u(k)2β−3eu(k)

2
, k < erf(

√
σ) ,

(2.45)

with k = NL
N , u(k) = erf−1(k) and σ = rL2

4D . As k → 1−, one finds

H(k) ≈ σ
√
π

(
β − 1

β

)
1

(1− k) |ln(1− k)|3/2
,

which diverges in an integrable manner (see Figure 2.5), exactly as in the Poissonian case. In
contrast, as k → 0, H(k) behaves as

H(k) ≈
√
π σ1−β

(
β − 1

β

)(√
π

2
k

)2β−3

.

Thus, for β > 3
2 , the function decays to zero as a power law; it diverges in an integrable manner

for 1 < β < 3
2 , while for β = 3

2 , it remains constant. This behavior reflects the fact that a power-
law tail resetting protocol, which allows for long intervals between resets, enables particles to
travel far from the origin. As a result, small values of the particle fraction k become more likely
compared to the Poissonian case in which H(k) decays very fast as k → 0 (2.31).

Figure 2.5: Plot of the full counting statistics given by the distribution P (NL, N) = 1
NH

(
NL
N

)
.

The scaling function H(k) is given by (2.45). The solid black curve shows the theoretical predic-
tion for the resetting protocol ψ(t) = rβ

(rt)1+β with t ∈ [1/r,∞) and β = 4. The symbols indicate
simulation results for different values of N . The simulations were done with r = 1 and D = 1

2 .

Bounded resetting protocol

Finally, we consider a resetting distribution with a finite support, defined as

ψ(τ) =
γr

T γ
(T − rτ)γ−1 , (2.46)
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for τ ∈ [0, T/r] and for any γ > 0. Since the distribution is bounded by τ = T/r, the maximum
time between resets is T/r. Using the definition

h(τ) =
Ψ(τ)∫∞

0 dtΨ(t)
,

one finds

h(τ) =


γ + 1

T γ+1
r (T − rτ)γ , τ ∈ [0, T/r) ,

0, τ ≥ T/r .
(2.47)

The average density of particles assumes again the scaling form

ρN (x) =
1

l
R
(x
l

)
, (2.48)

with

R(z) =
γ + 1

T γ+1
√
π

∫ √
T

0
du
(
T − u2

)γ
exp

[
−
(z
2

)2 1

u2

]
, (2.49)

and with the same scaling parameter l =
√

D
r of the previous cases. The scaling function R(z)

behaves as

R (z) ≈

B1 −B2 |z|, z → 0 ,

B3 exp
(
− z2

T

)
, z → ∞ .

(2.50)

and its shape, compared with simulation results, is shown in Fig. 2.6. The symbols B1, B2 and
B3 denote positive constants. The faster decay at large distances, compared to the Poissonian
case, is a direct consequence of the finite cut-off in the resetting time distribution.

Figure 2.6: Plot of the density profile ρN (x) = 1
l R
(
x
l

)
. The scaling function R(z) is given

in (2.49), and l =
√

D
r . The solid black curve shows the theoretical prediction for the resetting

protocol ψ(τ) = γr
T γ (T − rτ)γ−1 with τ ∈ [0, T/r], γ = 3, and T = 1. The symbols indicate

simulation results for different values of N . Simulations were performed with r = 1 and D = 1
2 .

As in previous cases, the resetting mechanism generates strong correlations between particles.
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Specifically, the second-order connected two-point correlator is given by

⟨x2ix2j ⟩c = ⟨x2ix2j ⟩ − ⟨x2i ⟩⟨x2j ⟩ =
4D2

r2
γ + 1

(γ + 2)2(γ + 3)
∀, i, j, , (2.51)

which is smaller than that in Eq. (2.22) for any γ, but still indicates strong correlations.
Having characterized the correlations, we now turn to the order statistics of the system by

studying the kth maximum Mk among the particles’ positions. Similarly to the Poissonian and
power-law cases we can write

Prob{Mk = ω} =
1

Λ(α)
S

(
ω

Λ(α)

)
, (2.52)

where, this time, the scaling function S(z) is given by

S(z) =


2(γ + 1)

T γ+1
z (T − z2)γ , z <

√
T ,

0, z ≥
√
T .

(2.53)

Here the typical distance scale Λ(α) is the same as in the earlier examples, both in the bulk and
at the edges. This function, along with numerical data for various values of α = k

N , is shown in
Fig. 2.7.

Figure 2.7: Plot of the distribution of the kth rightmost particle Mk. The distribution follows
the scaling form Prob{Mk = ω} = 1

Λ(α) S
(

ω
Λ(α)

)
, where the scaling function S(z) is given

in (2.53), and the scaling parameter Λ(α) is defined in (2.25). The solid black curve represents
the theoretical prediction for the resetting protocol ψ(τ) = γr

T γ (T − rτ)γ−1 for τ ∈ [0, T/r],
γ = 3 and T = 1. Different symbols correspond to different values of α = k

N . Simulations were
performed with N = 106 particles, using r = 1 and D = 1

2 .

Importantly, the function S(z) differs from the Gumbel distribution, obtained by sampling
N i.i.d. variables from the steady state density (cf. Appendix A.1). It is non-zero over the entire
real line and asymptotically behaves as

S̃(z) ≈

exp[−e−z] , z → −∞ ,

exp(−z), z → ∞ .
(2.54)
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In contrast, the resetting-induced distribution is confined to a positive bounded domain. This
means that, in the limit N → ∞, the probability that the rightmost particle is at a distance x
from the origin is exactly 0 for x > L

√
T or for x < 0. By symmetry, the same distribution also

applies to the minimum MN , up to a change of sign. As a result, the gas is confined within a
symmetric region of size 2L

√
T around the origin.

The spacing distribution can be written as

Prob{dk = g} =
1

λN (α)
D

(
g

λN (α)

)
, (2.55)

with

D(z) = 2
γ + 1

T γ+1

∫ √
T

0
du
(
T − u2

)γ
exp
(
− z
u

)
. (2.56)

Its asymptotic behaviors are

D(z) ≈

B4 +B5z ln z, z → 0 ,

B6 exp
(
− z√

T

)
, z → ∞ .

(2.57)

where B4, B5 and B6 are positive constants. Once again, the characteristic length scale is the
same as in the Poissonian and power-law cases, reflecting the inherent inhomogeneity of the
gas. In the bulk, the typical spacing is O(1/N), while in the tails it is much larger, scaling
as O(1/

√
lnN). A comparison between the theoretical prediction and simulations is shown in

Fig. 2.8.
We can now compare our results with those obtained by sampling N i.i.d. variables from

the steady-state density, which in this case belongs to the Gumbel class (cf. Appendix A.1). It
means that the scaling function D̃(z) of the distribution of d1 in the i.i.d. case is given by

D̃(z) = e−z for z ≥ 0 (2.58)
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Figure 2.8: Plot of the distribution of the spacing dk =Mk−Mk−1 between the kth and (k−1)th

rightmost particles. The distribution follows the scaling form Prob{dk = g} = 1
λN (α)D

(
g

λN (α)

)
,

where the scaling function D(z) is given by (2.56), and the scaling parameter λN (α) is defined
in (2.28). The solid black curve represents the theoretical prediction for the resetting protocol
ψ(τ) = γr

T γ (T − rτ)γ−1 for τ ∈ [0, T/r], γ = 3 and T = 1. Different symbols correspond to
different values of α = k

N . The simulations were performed with N = 106 particles, using r = 1
and D = 1

2 .

We see that the function (2.58) has the same tail of (2.57) at large z. The small z behavior
of (2.57) instead differs from that of (2.58), but it coincides with that found in the two previous
cases with ψ(τ) an exponential or a power-law distribution.
The full counting statistics are obtained via Eq. (2.20), leading to

H(k) =

σ
√
π
γ + 1

T γ+1

(
T − σ

u(k)2

)γ

u(k)−3 exp
(
u(k)2

)
, k > erf

(√
σ
T

)
,

0, k < erf
(√

σ
T

)
,

(2.59)

where u(k) = erf−1(k) and σ = rL2

4D . As k → 1−, the behavior is

H(k) ≈ σ
√
π

(
γ + 1

T

)
1

(1− k) |ln(1− k)|3/2
,

which diverges in an integrable manner, exactly as in the Poissonian and power-law cases. In
contrast, as u(k) →

√
σ
T (or equivalently k → erf

(√
σ
T

)
), one finds

H(k) ≈
√
π

σ
e

σ
T

(
γ + 1

T γ− 1
2

)(
T − σ

u(k)2

)γ

,

which means that, for a fixed box size L, at least a fraction k = NL
N = erf

(√
rL2

4DT

)
of the

particles is contained within the box.
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Figure 2.9: Plot of the full counting statistics given by the distribution P (NL, N) = 1
NH

(
NL
N

)
.

The scaling function H(k) is given by (2.59). The solid black curve shows the theoretical pre-
diction for the resetting protocol ψ(τ) = γr

T γ (T − rτ)γ−1 for τ ∈ [0, T/r], γ = 3 and T = 1. The
symbols indicate simulation results for different values of N . The simulations were done with
r = 1 and D = 1

2 .

Fig. 2.9 shows a comparison between the theoretical prediction and simulation data for dif-
ferent values of N , confirming the expected behavior of H(k).

2.3 Analytical results for general resetting protocols

Thanks to the examples illustrated in Section 2.2, we can now present the general results for
the observables in terms of the effective distribution h(τ). Our main finding is that the scaling
function of each observable we have considered is entirely determined by the resetting protocol,
which is encoded in the function h(τ). We identify certain universal features, properties that
are independent of the specific form of h(τ), as well as distinct behaviors arising from different
classes of resetting protocols, depending on the asymptotic behavior of h(τ) at large τ .

First, a characteristic time scale 1
r can always be extracted from the resetting distribution

h(τ). Recall that in (2.9) we defined h(τ) = rh̃(rτ), so that h̃(z) is dimensionless.
Moreover, the observables can be expressed in a specific form due to the c.i.i.d. structure,

as shown in (2.12), (2.15), (2.18), and (2.20). This structure allows us to define, for each
observable, a corresponding scaling parameter that depends only on the resetting rate r and on
the parameters of the propagator, namely, the diffusion constant D and the number of particles
N . While the specific scaling parameter varies from one observable to another, it remains the
same across different resetting protocols. In this sense, the scaling parameters are universal:
they do not depend on the particular form of the resetting distribution.

More concretely:

• The density profile always decays over the length scale

l =

√
D

r
,
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regardless of the detailed form of h(τ).

• The typical distance from the origin of the particle ranked k from the right (i.e., the kth

rightmost particle) is

Λ(α) =

√
4D

r
erfc−1(2α) ,

where α = k
N .

• The mean spacing between successive particles at a certain value α is

λN (α) =
1

N b
√
r

with b =
exp
(
−[erfc−1(2α)]2

)
√
4πD

.

This means that some features of the NESS are completely independent of the resetting
protocol. First of all, most particles are confined within a region of size 2l about the origin,
over which the density decays. In the bulk the particles are very dense, with a typical spacing
λN (α) ∼ O(1/N), whereas at the edges the spacing becomes much larger λN (α) ∼ O(1/

√
lnN).

Typically, the particles in the bulk are located at distances Λ(α) ∼ O(1) from the origin, while the
rightmost particle is at a distance of order

√
lnN . The dependence on the resetting protocol is

instead entirely encoded in the scaling functions through the distribution h̃(z). In fact, the scaling
functions for the density ρN (x), for the order and extreme value statistics Prob{Mk = ω}, for the
gap statistics Prob{dk = g}, and for the full counting statistics P (NL, N) are given respectively
by:

R(z) =
1√
π

∫ ∞

0
du h̃

(
u2
)
exp

(
− z2

4u2

)
, (2.60)

S(z) = 2z h̃
(
z2
)
, (2.61)

D(z) = 2

∫ ∞

0
du h̃

(
u2
)
exp
(
− z
u

)
, (2.62)

H(k) = σ
√
π u(k)−3 exp

[
u(k)2

]
h̃
( σ

u(k)2

)
, with σ =

rL2

4D
. (2.63)

The first three of these scaling functions exhibit universal behavior at small values of their
arguments, while H(k) shows universal behavior as k → 1−. In fact, from the definition

h(τ = 0) =
Ψ(0)∫∞

0 dtΨ(t)
=

1

⟨τ⟩
,

we see that as long as the non-equilibrium steady state exists, h(0) is a positive constant,
namely the effective resetting rate. As shown in the Appendix A.2, the small-z asymptotics
of Eqs. (2.60)–(2.62) simplify to

R(z) ≈ R0
1 −R0

2|z|,
S(z) ≈ 2 h̃(0) z,

D(z) ≈ D0
1 +D0

2 z ln z,
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Similarly (see A.2), for the full counting statistics one obtains, as k → 1−,

H(k) ≈ H0
1 (1− k)−1 | ln(1− k)|−3/2,

The constants R0
1, R0

2, D0
1, D0

2 and H0
1 are positive and their specific value only depend on

h(τ = 0). These results are highly non-trivial, as the z-dependence of all the scaling functions
in these regimes never changes and depends solely on the existence of resetting, regardless of the
specific form of the resetting protocol.

There are also some universal behaviours at large z (or low k), but, in this case, we have to
consider three different universality classes. These classes are defined depending on the tail of
h̃(y) for large y in the following way:

(I) h̃(y) ∼ e−yν for large y.

(II) h̃(y) ∼ (T − y)γ , for y ∈ [0, T ] and h̃(y) = 0 outside this domain.

(III) h̃(y) ∼ y−β for large y.

We have defined the three classes in this way because of the way in which their asymptotics
can be treated (cf. Appendix A.2). For example, in the scaling function of the density (2.60), the
integral contains an exponential term. As a result, in the limit z → ∞, the integral is dominated
by the large-y behavior of h̃(y) and we can then substitute the asymptotic form of h̃(y) into it.
In case (I), the integral is dominated by a saddle point; in case (II), the dominant contribution
comes from the boundary of the domain at T ; in case (III), a simple change of variables is
sufficient to evaluate the asymptotics. In this way we get (cf. Appendix A.2):

R(z) ≈


R∞

1 z
1−ν
ν+1 exp

(
−R∞

2 z
4ν

2ν+2

)
for type (I)

R∞
3 e−

z2

4T for type (II)
R∞

4

z2β−1 for type (III)

(2.64)

where R∞
i for i = 1, 2, 3, 4 are positive constants. We see that in case (I), i.e. when h̃(τ) ∼ e−τν

for large τ , the density has also a stretched exponential behavior at large z with an exponent
that lies in the interval (0, 2): it approaches 0 as ν becomes small and tends to 2 for ν → ∞.
This is interesting since, as we can see, a stretched exponential with an exponent 2 is obtained
for (II), i.e. when h̃(τ) has a domain bounded from above. This makes sense since a bounded
domain [0, T ] means that in each time interval T there is for sure at least a resetting event, which
is not true when ψ(τ) is unbounded.

For the function S(z) it is easy to see that S(z) ≈ S∞
1 z e−z2ν when h̃(y) is in class (I),

and S(z) ≈ S∞
2

z2β−1 for class (III). For the case (II) S(z) has a bounded domain at z = L
√
T .

It approaches that point as S(z) ≈ S∞
3 z(T − z2)γ . Since S(z) is the scaling function of both

the order statistics and the EVS, the result above implies that the probability of finding the
rightmost particle at a distance x from the origin becomes exactly zero in the N → ∞ limit for
x > L

√
T or x < 0. Thus, at leading order, the gas is confined within a symmetric region of size

2L
√
T centered around the origin.
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Regarding the scaling function of the spacing distribution, since in (2.62) we have an expo-
nential term inside the integral, we find again that the integral is dominated by a saddle point
for (I), for (II) it is dominated by the boundary of the domain of h̃(y) and for (III) we just have
to make a change of variable. We obtain (cf. Appendix A.2) respectively that, in the limit of
large z:

D(z) ≈


D∞

1 z
1−ν
2ν+1 exp

(
−D∞

2 z
2ν

2ν+1

)
for type (I)

D∞
3 e

− z√
T for type (II)

D∞
4

z2β−1 for type (III)

(2.65)

where D∞
i for i = 1, 2, 3, 4 are positive constants. As before for the density, in case (I) the tail is

a stretched exponential with an exponent θ = 2ν
2ν+1 that this time lies in the interval (0, 1). As

for the density, the upper limit θ = 1 is attained for ν → ∞ and it corresponds to the behavior
of D(z) in the case of h̃(y) of type (II), i.e. with a bounded domain. When instead we are in
case (III) we get a power-law tail.

Finally, we recall that the scaling function of the FCS is given by

H(k) = σ
√
π u(k)−3 exp

[
u(k)2

]
h̃(y∗) , (2.66)

having defined

u(k) = erf−1(k), σ =
rL2

4D
, and y∗ =

σ

u(k)2
.

It is evident that, given the dependence of y∗ on k, the behavior of h(τ) for large τ determines
that of H(k) for small k. We then obtain that (cf. Appendix A.2):

H(k) ≈ H∞ k−3h

(
4σ

πk2

)
(2.67)

when k → 0. Sobstituting the three possible tails in (2.67) we get

H(k) ≈ H∞
1

k3
exp

(
−H

∞
2

k2ν

)
when h̃(y) is of type (I), (2.68)

H(k) ≈ H∞
3

(
T − σ

u(k)2

)γ

with a lower bound at k = erf
(√

σ

T

)
when h̃(y) is of type (II) ,

(2.69)

H(k) ≈ H∞
4 k2β−3 when h̃(y) is of type (III). (2.70)

The values H∞ and H∞
i for i = 1, 2, 3, 4 are positive constants. The case (II) is particularly

interesting since it tells us that, fixed the size of the box L, it contains for sure at least a fraction

k = NL
N = erf

(√
rL2

4DT

)
of particles. This reflects the fact that imposing a maximum inter-reset

time confines the particles more tightly around the origin than in the other cases.



Conclusions

In this work, we have introduced and analyzed a general class of non-Poissonian resetting pro-
tocols for a gas of N independent Brownian particles in one dimension, extending the classical
Poissonian case, characterized by the inter-reset time distribution ψ(τ) = re−rτ , to arbitrary dis-
tributions ψ(τ). While our analysis focused on the one-dimensional case, the approach and main
results are easily generalizable to higher-dimensional systems. By exploiting the renewal struc-
ture of the dynamics and the concept of conditionally independent and identically distributed
(c.i.i.d.) variables, we have characterized the non-equilibrium steady state of the system. This
framework enabled the computation of a broad range of observables, including the single-particle
density, extreme value statistics, order statistics, gap statistics, and full counting statistics, by
expressing them as averages over diffusive processes conditioned on a fixed elapsed time since
the last reset. These averages are taken over the distribution h(τ) = rh̃(rτ), which represents
the normalized probability of a time interval τ without a reset. While the detailed forms of
these observables depend on the specific shape of h̃(z), their characteristic scales are universal,
determined solely by the diffusion coefficient D and the typical reset rate r. We have identified
three universality classes based on the tail behavior of h̃(z): stretched-exponential, power-law,
and bounded support. Each class leads to distinct asymptotic forms for the scaling functions
associated with the observables studied, namely R(z), S(z), D(z), and H(k), which describe
the single-particle density, order and extreme value statistics, gap statistics, and full counting
statistics, respectively. Beyond these class-dependent behaviors, we have also found fully uni-
versal features in each scaling function, governed solely by the value of h̃(0). Our theoretical
predictions were illustrated and validated numerically through two explicit examples, alongside
the classical Poissonian case, each representing one of the universality classes. These results
provide a systematic framework to understand and characterize the rich phenomenology arising
from non-Poissonian simultaneous resetting of N diffusing particles, offering a class of strongly
correlated non-equilibrium systems in which many observables can be computed exactly. This is
particularly valuable given that non-equilibrium systems are, in general, poorly understood, and
it is often not even possible to compute their steady state. Having a class of models where the
steady state is always accessible, and where a wide range of physically measurable observables
can be exactly characterized, offers an important opportunity to gain insight into the behav-
ior of out-of-equilibrium systems. Future directions include extending this approach to other
many-body systems and to explicit interactions among particles, as resetting can be generalized
to arbitrary stochastic processes [36]. Recent experimental realizations of stochastic resetting
with colloidal particles [28–31] open the door to exploring the effects of direct interactions in
many-body systems under resetting, such as hard-core or hydrodynamic forces.
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Appendix A

A.1 EVS for i.i.d. variables

We briefly summarize some classical results concerning the statistics of extremes for independent
and identically distributed (i.i.d.) random variables. Let {x1, x2, . . . , xN} be i.i.d. random
variables drawn from a PDF p(x), and let their ordered values be denoted as {M1 > M2 > . . . >

MN}. This problem is well studied in the literature [44–47].
According to the Fisher–Tippett–Gnedenko theorem, in the limit N → ∞, the distribution

Prob{M1 = ω}, when properly centered and rescaled, converges to one of three universal forms:

Prob{M1 = aN + bNz}
N→∞−−−−→ fρ(z), (A.1)

where ρ = I, II, III indicates the three classes. The scaling factors aN and bN depend on the
parent distribution p(x), while the scaling function fρ(z) is universal, determined solely by the
tail behavior of p(x). The three universality classes are:

1. Gumbel (Class I): When p(x) decays faster than any power law on an unbounded domain,
the limiting form is the Gumbel distribution:

fI(z) = e−z−e−z
.

2. Fréchet (Class II): When p(x) ∼ x−1−α for large x (heavy-tailed), the limiting distribu-
tion is:

fII(z) =
α

z1+α
e−z−α

, z > 0.

3. Weibull (Class III): When p(x) has bounded support, i.e., p(x) ∼ B(a−x)γ−1 for x ≤ a,
the distribution becomes:

fIII(z) = γ(−z)γ−1e−(−z)γ , z < 0.

For Mk with k = O(1), a similar result holds: the scaling function of the rescaled variable
z = Mk−aN

bN
depends on k, but aN and bN remain the same as for k = 1.

Likewise, the statistics of the gaps dk =Mk −Mk+1 obey the scaling form [44–47]:

Prob{dk = bNz}
N→∞−−−−→ p̃k,ρ(z),

with the following asymptotic distributions:
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1. Gumbel (Class I):
p̃k,I(z) = Θ(z) ke−kz

2. Fréchet (Class II):

p̃k,II(z) = Θ(z)
α2

(k − 1)!

∫ ∞

0
e−x−α

x−α−1(x+ z)−αk−1 dx

3. Weibull (Class III):

p̃k,III(z) = Θ(z)
γ2

(k − 1)!

∫ ∞

0
(x+ z)γ−1e−(x+z)γxγk−1 dx

These results are valid for k ≥ 1, provided k = O(1).

A.2 Derivations of some analytical results

In this subsection, we derive general results for the scaling functions of the observables considered
in the main text.

A.2.1 Small z behaviour for R(z), D(z), S(z)

We start by recalling that, as long as the non-equilibrium steady state exists, h(0) is a positive
constant.

Density profile R(z)

The density of particles can be written in the scaling form

ρN (x) =
1

l
R
(x
l

)
, (A.2)

where l =
√

D
r , and

R(z) =
1√
π

∫ ∞

0
du h̃(u2) exp

(
− z2

4u2

)
. (A.3)

We aim to show that, since h̃(0) is a non-zero value, the small-z behavior of R(z) is

R(z) ≈ R0
1 −R0

2|z|,

A direct expansion of (A.3) is not effective, so we consider instead its derivative:

R′(z) =
dR(z)

dz
= − 2z√

π

∫ ∞

0
du

h̃(u2)

u2
exp

(
− z2

4u2

)
. (A.4)

Performing the change of variables y = z/u, we obtain

R′(z) = − 2√
π

∫ ∞

0
dy h̃

(
z2

y2

)
exp

(
−y

2

4

)
. (A.5)
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In the limit z → 0, the argument of h̃ tends to zero, so we can approximate h̃(z2/y2) ≈ h̃(0).
Thus,

R′(z)
z→0−−−→ −2h̃(0)√

π

∫ ∞

0
dy exp

(
−y

2

4

)
,

which is a finite constant. This implies that R(z) ≈ R0
1−R0

2|z| for small z, consistently with the
even symmetry of the density profile.

The constants R0
1 and R0

2 are given by

R0
1 = R(0) =

1√
π

∫ ∞

0
du h̃(u2), R0

2 =
2h̃(0)√
π

∫ ∞

0
dy exp

(
−y

2

4

)
= 2h̃(0). (A.6)

Gap statistics D(z)

We now consider the scaling function associated with the spacing distribution:

D(z) = 2

∫ ∞

0
du h̃(u2) exp

(
− z
u

)
. (A.7)

We can reason as we have done above for R(z): we consider the derivative D′(z) and perform
the change of variable y = z

u inside the integral. This leads to

D′(z) ≈ −
∫ ∞

z
dy

e−y

y
h̃

(
z2

y2

)
(A.8)

As z → 0 we can set h̃
(
z2

y2

)
= h̃(0) and perform an integration by parts. This leads to

D′(z) ∝ ln z and, after another integration, to

D(z) ≈ D0
1 +D0

2 z ln z,

Order and extreme value statistics S(z)

In this case the scaling function is S(z) = 2z h̃
(
z2
)
. This trivially gives S(z) z→0−−−→ 2h̃

(
0
)
z, which

is a linear behavior independent of the reset protocol except for its value in the origin.

A.2.2 Large z behaviour for R(z), D(z), S(z)

We now study the large-z behavior of R(z), D(z), S(z) for the three universality classes defined
as

(I) h̃(y) ∼ e−yν for large y.

(II) h̃(y) ∼ (T − y)γ , for y ∈ [0, T ] and h̃(y) = 0 outside this domain.

(III) h̃(y) ∼ y−β for large y.

For the first case (I), in the limit z → ∞, the integral in (A.3) is dominated by large u. Substi-
tuting the asymptotic form, we write

R(z) ≈ 1√
π

∫ ∞

0
du exp [−f(u)] , with f(u) = u2ν +

z2

4u2
.



A.2. Derivations of some analytical results 37

To apply the saddle point method we notice that the minimum of f(u) occurs at

u∗ =

(
z2

4ν

)1/(2ν+2)

.

Expanding up to the second order f(u) around this point and then performing a Gaussian
integral gives the leading behavior

R(z) ≈ R∞
1 z

1−ν
ν+1 exp

(
−R∞

2 z
4ν

2ν+2

)
, (A.9)

where R∞
1 and R∞

2 are positive constants depending only on ν.
Using the same procedure, we find that for large z,

D(z) ≈ D∞
1 z

1−ν
2ν+1 exp

(
−D∞

2 z
2ν

2ν+1

)
, (A.10)

with positive constants D∞
1 and D∞

2 .

When instead we are in case (II), the integrals defining R(z) and D(z) are given by

R(z) =
1√
π

∫ √
T

0
du h̃(u2) exp

(
− z2

4u2

)
(A.11)

D(z) = 2

∫ √
T

0
du h̃(u2) exp

(
− z
u

)
(A.12)

For large z they are dominated by the boundary u ∼
√
T . This suggests that we can substitute

the tail (II) of h̃(y) and perform the change of variable u =
√
T (1− ϵ). It leads to

R(z) =

√
T

π

∫ 1

0
dϵ
(
T − T (1− ϵ)2

)γ
exp

(
− z2

4T (1− ϵ)2

)
(A.13)

D(z) = 2
√
T

∫ 1

0
dϵ
(
T − T (1− ϵ)2

)γ
exp

(
− z√

T (1− ϵ)

)
(A.14)

For z → ∞ only the values ϵ ∼ 0 will matter and we can further approximate u2 = T (1− ϵ)2 ≈
T (1− 2ϵ), 1/u2 ≈ 1+2ϵ

T and 1/u ≈ 1+ϵ√
T

. We obtain

R(z) =

√
T

π
(2T )γe−

z2

4T

∫ 1

0
dϵ ϵγ exp

(
− z2

2T
ϵ

)
=

√
T

π

(2T )γ

γ + 1
e−

z2

4T (A.15)

D(z) = 2
√
T (2T )γe

− z√
T

∫ 1

0
dϵ ϵγ exp

(
− z√

T
ϵ

)
=

2
√
T (2T )γ

γ + 1
e
− z√

T (A.16)

where we have used that

lim
z→0

∫ 1

0
xγe−a x zα dx =

1

1 + γ
∀ a > 0, γ > −1, for α = 1, 2 (A.17)
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We now consider class (III), i.e. h̃(y) ∼ y−β when y is large. When z → ∞ the scaling
functions R(z) and D(z) are again dominated by large values of u in the integration domain.
We can then sobstitute the tail of h̃ in (2.60) and (2.62) to get

R(z) =
1√
π

∫ ∞

0
du

1

u2β
exp

(
− z2

4u2

)
(A.18)

D(z) = 2

∫ ∞

0
du

1

u2β
exp

(
− z
u

)
(A.19)

Making the change of variable z
u = y, and using the relation

∫∞
0 dy y2β−2e−y2 = 1

2Γ(β − 1
2),

where Γ(x) is the gamma function defined by Γ(x) =
∫∞
0 dy yx−1 e−y. This gives us

R(z) =
22β−2Γ(β − 1

2)√
π

1

z2β−1
(A.20)

D(z) =
Γ
(
β − 1

2

)
z2β−1

(A.21)

This expansion is valid as long as β > 1
2 , but we can only consider β > 1 in order to have a

stationary state.
The z → ∞ behaviour of S(z) is instead trivial, one just needs to insert the three possible

tails in the expression S(z) = 2 z h̃(z).

A.2.3 Asymptotics for the FCS H(k)

The function H(k) is defined as

H(k) = σ
√
π u(k)−3 exp

(
u(k)2

)
h̃(τ∗), (A.22)

where u(k) = erf−1(k), and τ∗ = σ/u(k)2 with σ = rL2

4D .
As k → 1−, the inverse error function diverges logarithmically:

u(k) ∼
√
− ln(1− k). (A.23)

This implies τ∗ → 0, and thus h̃(τ∗) → h̃(0). Substituting (A.23) into (A.22), we find

H(k) ≈ H0
1 (1− k)−1| ln(1− k)|−3/2, (A.24)

with H0
1 ∝ h̃(0).

In the opposite limit k → 0, we use the expansion u(k) ∼
√
π
2 k. This results in

τ∗ ∼ 4σ

πk2
, u(k)3 ∼ k3 , and exp(u(k)2) ∼ 1

From (A.22) we then obtain

H(k) ≈ H∞ k−3h̃

(
4σ

πk2

)
, (A.25)

where H∞ is a positive constant.
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