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Abstract

Laminar to turbulent flow transition is a complex phenomenon that is currently
widely investigated in the field of fluid dynamics. In particular, the study of time
irreversibility - intended as statistical asymmetry of signals under time reversal
- of a transitional boundary layer can offer new perspectives in the analysis of
turbulence and non-stationary processes. Therefore, the connection between the
turbulent structure of the boundary layer and the irreversibility of the velocity sig-
nals is an important subject of research.

This thesis proposes a quantitative and point-to-point analysis of the time irre-
versibility of a transitional boundary layer and makes use of numerical data from the
John Hopkins Turbulence Database (JHTDB), which simulate an incompressible
flow on a flat plane subject to a bypass transition induced by isotropic turbulence
at the inlet.

Time series of the velocity components u, v and w are transformed into graphs
using different Visibility Graph methods, which are able to represent and study the
geometric structure of signals using the tools of graph theory. Time irreversibility is
quantified through the Kullback-Leibler divergence Ik of the ingoing and outgoing
degree probability distributions of the nodes and measured by comparison with a
reversible null model through its Z-Score Ik,r.

The results show that the regions exhibiting the highest levels of irreversibility
are located in the transition zone and close to the wall and coincide with regions
characterised by high turbulent fluctuations, particularly in the buffer layer. It
is also observed that irreversibility does not depend directly on the amplitude of
the fluctuations, rather it is influenced by their temporal asymmetry and by the
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geometric structure of the signal. A local analysis by means of temporal windows
suggests a correlation between irreversibility and the overlap regions between lam-
inar and turbulent parts of the signal.

These results offer a new point of view on the interpretation of turbulent tran-
sition using graph theory, thereby providing a first step towards the understanding
of time irreversibility and its connection to the turbulent structures of a bound-
ary layer. Future studies may extend the analysis to the time-space dynamics of
a single spot and its evolution along the plate, in order to unveil the mechanisms
through which local asymmetries and coherent structures contribute to the global
irreversibility of the flow.
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Chapter 1

Introduction

The transition from laminar to turbulent flow is a complex and intriguing phe-
nomenon in fluid dynamics. Despite decades of research, many aspects of this
process are still far from a complete theoretical understanding, especially when
dealing with transitional boundary layers where both laminar and turbulent fea-
tures coexist. The understanding of the dynamics of the transition is crucial not
only for the theoretical development, but also for numerous physical and engineer-
ing applications.

In this framework, the study of time irreversibility is an additional topic of
considerable interest, because it allows to acquire a deepen knowledge of the laminar
to turbulent transition in boundary layers, but also to explore important properties
of out-of-equilibrium systems. Turbulence, in fact, is an emblematic example of
non-equilibrium systems, which are, by constitution, irreversible [1].

A reversible, or equivalently, irreversible, process is defined in terms of its statis-
tics, that is, a dynamical process is reversible if its joint distribution does not change
under time reversal [2, 3]. Reversible processes include, for instance, Gaussian lin-
ear processes, such as white noise, conservative chaotic processes, and in general all
those processes related to thermodynamic equilibrium in stastistical physics [4, 5].
On the contrary, non-linear stochastic processes and dissipative chaotic processes
are generally irreversible [4, 5] and associated to out-of-equilibrium systems in ther-
modynamics [6, 7, 8, 9, 10].

Turbulence is intrinsically irreversible because of the chaotic and strongly non
linear processes that are involved in its development, such as the energy cascade
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Introduction

[11, 12]. Furthermore, in the presence of a wall bounded flow, even more degrees of
complexity come into play, because of the different structures and motions [13, 14]
that are induced in such setup and whose interactions become an additional cause
of irreversibility.

Much of the current literature on irreversibility in turbulence focuses on homo-
geneous isotropic turbulence, often adopting a Lagrangian point of view [15, 16, 17],
following the motion of fluid particles in the flow and revealing the connection be-
tween energy dissipation and time irreversibility [1]. The Eulerian framework has
also been used and compared to the Langrangian one [16, 18], expanding the un-
derstanding of the phenomenon from multiple observational viewpoints. However,
wall-bounded turbulence has only been recently investigated in this sense, exploring
the complex dynamics given by the coherent structures that characterise a bound-
ary layer and the inter-scale interactions [19, 20].

To address the challenge of getting a deeper understanding of wall-bounded
turbulence, this thesis follows the line of a recent research [20], that adopted an
Eulerian multiscale framework based on visibility graphs to analyse time series of
the velocities of a turbulent boundary layer.

This graph-theoretical approach provides a powerful method to study complex
time series by transforming them into networks that preserve the essential features
of the original signals [21, 22]: all information is mapped from the time series to
the graph according to a geometric criterion, creating a one-to-one ordered corre-
spondence between the series data and the nodes of the graph [21].

This method has been previously applied to many study fields and widely used
in non-linear time series analysis [4, 5, 23, 24, 25, 26, 27], and has proven to be ca-
pable of providing highly reliable and robust results, especially because it does not
require any a priory parameter or any pre-processing simbolisation on the signals,
but only the application of the geometric criterion.

The analysis has here been extended to the case of transitional boundary layers,
a domain that has so far received limited attention in the literature. The focus
is placed on the case of a bypass transition, which is characterised by the sudden
onset of turbulence due to external disturbances on a previously completely laminar
boundary layer [28, 13]. The analysis has been performed on data obtained from a
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Introduction

high-resolution numerical simulation of such scenario, publicly available through the
Johns Hopkins Turbulence Database (JHTDB). The choice of a bypass transition
offers a unique opportunity to investigate how coherent structures like streaks and
turbulent spots contribute to the temporal asymmetry of the flow.

In the study, time irreversibility is eventually quantified in the visibility graph
framework by comparing the in-going and out-going degree distributions of the
graph nodes through the Kullback–Leibler divergence, and validated against a null
model of reversible signals via its Z-score.

This work offers a new perspective on the nature of turbulent transition, show-
ing that time irreversibility can serve as a signature of the underlying dynamics
and perhaps as a tool for identifying and characterising transitional processes in
complex flows. Although still in an exploratory phase, the approach adopted here
opens new perspectives to more refined analyses.

The thesis is structured as follows. Chapter 2 provides an overview on the
concepts of time irreversibility in turbulence and on the structure of transitional
boundary layers. Chapter 3 presents the dataset, the pre-processing steps, and
the visibility graph methodology. Chapter 4 introduces basic statistical analyses
to identify the transitional zone. Chapter 5 discusses the main results, including
global and local measurements of irreversibility and their interpretation. Finally,
Chapter 6 draws the conclusions and suggests directions for future research.
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Chapter 2

Time irreversibility

2.1 Time irreversibility in turbulence
The dynamics of a fluid are governed by the Navier-Stokes (N-S) equations

Du

Dt
= −1

ρ
∇p + ν∇2u

where Du/Dt = ∂tu + u∇u is the material derivative of the velocity field, p is
the pressure and ν the kinematic viscosity. In the absence of viscosity the Euler
equation is recovered:

Du

Dt
= −1

ρ
∇p

The description of fluid motion is based on the competition between the inertia
of the fluid and the diffusion of momentum by viscosity [1], which is encoded into
the Reynolds number

Re = ULL

ν
where L is the characteristic length of the flow and UL the associated velocity.

It is the inertial effect that leads the flow towards instability, while the viscosity
drives a damping effect. Hence, turbulent flows are characterised by high Reynolds
number, with the predominancy of inertia, and develop irregular and strong varia-
tions of the velocity.

Fully developed turbulent flows are well described by the Euler equation [29],
when at large scales viscous effects are negligible (ν → 0) and only inertial forces
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Time irreversibility

drive the dynamics (Re → ∞). This equation is invariant under reversal of time
and hence time reversible. In fact, if considering the transformation t → −t and
u → −u, none of its terms is affected.

Conversely, the N-S are not invariant under time reversal, because of the vis-
cous term that changes sign and explicitly breaks their time-reversal symmetry.
Nonetheless, turbulent flows are not reversible, even if characterised by very high
Reynolds numbers. This is due to the fact that the flow is maintained turbulent by
a constant supply of kinetic energy and continously dissipates it via the process of
energy cascade.

Turbulent motion can be interpreted in terms of an energy cascade [30] through
a vast interval of scales. In fact, it is a property of turbulent flows that the scales at
which energy is supplied are very different from those at which it is dissipated [1]:
if turbulence is considered as made of eddies1 of different sizes, the largest ones are
comparable to the flow scale with velocity comparable to the characteristic velocity
[12].

The energy cascade, that is, the transfer of energy, starts because large eddies are
unstable and break up, and move energy to smaller eddies, which are still unstable
and in turn transfer energy to even smaller eddies, in an out-of-equilibrium process.
This flux of energy goes on until the size of the eddy is sufficiently small - of the
Kolmogorov scale η [11] -, with a small Reynolds number such that viscosity is
dominant and dissipates the kinetic energy2.

The rate of energy transfer from the large scales remains constant throughout
the intermediate inertial subrange, that is, from the energy production range up to
the dissipation range, and defines also the dissipation rate ε. In practice, energy
is dissipated even for high Reynolds numbers, with ε independent of the viscosity
ν. This is what is called anomalous dissipation [11] and spontaneously breaks the
time-reversal symmetry associated to large Reynolds number flows, making the en-
ergy flux irreversible [18].

In summary, turbulence is an out-of-equilibrium, and therefore an irreversible,

1The definition is not precise, but it can be considered as a turbulent motion of size l, coherent
in this region [12], or as a swirling movement that deviates from the general flow of the fluid.

2This is valid for 3D turbulence. In the case of 2D turbulence the process is the inverse and it
is called inverse energy cascade, from small to large scales [1, 16, 29].
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2.2 – Transitional boundary layer

system, because of the energy flux from large to small scales that is the cause
of the spontaneous time-reversal symmetry breaking and is due to the nonlinear
terms of the N-S equations, which are formally symmetric (except for the viscous
term). On the other side, the dissipative term of the equations represent an explicit
symmetry breaking and allows to distinguish between the intrinsic irreversibility,
imposed by the viscous dissipation, and the statistical irreversibility, deriving from
the collective, chaotic behaviour of complex systems, even if the underlying laws
are reversible over time [29].

It is natural, being the aim of this work, to focus the attention on the case of
boundary layers when invested by turbulence. Boundary layers form when a viscous
stream flows over a solid surface, creating a region with strong shear. The behaviour
of the flow can vary, from being completely laminar to completely turbulent, passing
through states of strong intermittency.

Boundary layers present a layered structure: a viscous sublayer, the buffer layer
and an outer layer dominated by inertia, that interact dynamically [12]. In par-
ticular, during the transition, the boundary layer is characterised by the presence
of coherent structures, such as streaks or vortices, which are organised along these
regions, interacting with each other in non-linear ways and creating turbulent spots.

This is the reason why these flows are particularly interesting for the study of
irreversibility: in fact, the interaction between these coherent structures induced
by the wall and the evolution of turbulence add a further level of complexity [20]
to the investigation of the symmetry breaking.

Studying time irreversibility within boundary layers in transition could be a
starting point to understand how temporal asymmetry emerges in complex systems
out of equilibrium, even in the absence of dominant dissipation.

2.2 Transitional boundary layer

Within the fascinating and complex study of turbulence, there are several ways for
a flow to transition from laminar to turbulent, for instance via Tollmien-Schlichting
instability waves, cross-flow instabilities, Görtler instabilities and many others [13].

When it comes to boundary layer with zero pressure gradient, the two main
routes to transition are the orderly transition and the bypass transition. The former
is briefly introduced, while the latter is examined in depth, since it constitutes the
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Time irreversibility

primary focus of the present thesis, as the available data are obtained from a
simulation specifically reproducing a bypass transition scenario.

2.2.1 Orderly transition

Orderly transition to turbulence is a gradual process and usually passes through
three different stages: receptivity, linear instability and non-linear breakdown.

1. Receptivity: Transition process start with the receptivity from the boundary
layer, that is, its response to (not too high) environmental disturbances such
as acoustic waves, vortical perturbations, vibrational fluctuations and so on.
Their interaction with leading edge of the boundary layer causes the generation
of instability waves, like the Tollmien-Schlichting waves, in a region of low
local Reynolds number [31]. In this case the transition to turbulence is a slow
process, since these waves are weakly unstable because of viscous mechanisms
[28].

2. Linear instability: If the flow is sufficiently unstable, the T-S bidimensional
waves grow exponentially as described by linear stability theory (a brief de-
scription of such theory is given in Appendix A). Then secondary tridimen-
sional instabilities are activated because of nonlinear interactions between
waves, through different mechanisms (K-type, N-type, etc... [31]). In this
phase different structures like streamwise vortices or peak and valleys are ob-
served.

3. Non-linear breakdown: When perturbations’ amplitude reach 1-2% of the free-
stream velocity the flow collapses in a non linear breakdown, transitioning to
turbulence through a randomisation phase and through the creation of coher-
ent tridimensional structures. In this phase turbulent spots, small localised
chaotic regions of turbulence, are generated. Then they spread throughout the
surface and progressively merge in a fully turbulent region.

A schematic picture of the phenomenon is shown in figure 2.1.
Between the creation of the first turbulent spots and the establishment of turbu-

lence, the boundary layer presents a transition zone, a region characterised by high
levels of intermittency, that is, the random alternation of laminar and turbulent
areas, described by the variable γ, the fraction of time in which the flow is turbulent
[32].
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2.2 – Transitional boundary layer

Figure 2.1: Schematic picture of the orderly transition to turbulence. Instability
waves are generated at low Reynolds numbers by external disturbances. Then they
amplify linearly and non-linearly until the breakdown into a turbulent flow. Image
reproduced from Kachanov, 1994 [31].

2.2.2 Bypass transition

Bypass transition takes place when a laminar boundary layer is exposed to free-
stream turbulence with intensity of order 1% or more [28]. The term bypass is
representative of the fact that the transition bypasses the preliminary phase of
Tollmien-Schlichting instability waves, with a much faster process. However, the
stochastic and sporadic nature of the onset of turbulence makes it a quite compli-
cated process to be studied, and often necessitates deep investigation by means of
techniques capable to discriminate turbulent regions from laminar ones [13].

It is commonly described as a multi-stage process:

1. Shear sheltering of high frequency perturbations.

2. Generation of elongated distorsions of the velocity, the streaks.

3. Amplification of the streaks.

4. Secondary instability of the streaks.

5. Breakdown into turbulent spots.

6. Merging of the spots.

When free-stream vortical turbulence invest a laminar boundary layer, not all
perturbations are able to penetrate it.
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Time irreversibility

The shear flow, in fact, works as a filter and shelters high frequency components
of the free-stream disturbances, allowing, at finite Reynolds numbers (much lower
than those predicted by linear stability theory [33]), only low frequency ones to
enter the boundary layer locally, not only at the leading edge.

This leads to the formation of velocity perturbations that are are dominated by
the streamwise velocity component and are elongated in this direction by rapid dis-
torsion mechanisms [28], forming the so-called streaks3. Meanwhile, the turbulence
in the free-stream decays while being convected downstream [13], as it can be seen
in figure 2.2.

The low frequency modes that penetrate the boundary layer are generated by
viscously decaying free-stream turbulence and cannot lead directly to instability
[35]. However, in the presence of shear - that is, a velocity gradient in the wall-
normal direction - a small cross-stream disturbance can advect the mean velocity
upward or downward, even in the absence of an inflection point (as required by
Rayleigh’s criterion for classical instability [36]). This vertical transport modifies
the local streamwise velocity: low-speed fluid is lifted away from the wall, while
high-speed fluid is pushed downward creating elongated streaks in the streamwise
velocity. This is what is called the lift-up effect [37]. The result is the formation of
alternating high- and low-speed streaks in the spanwise direction [38].

In particular, the most intense low-speed streaks, also called backward jets [39],
play a crucial role in initiating the transition, as they locally reduce the streamwise
velocity below the mean and can act as receptivity sites for incoming free-stream
disturbances.

While such jets exist throughout the boundary layer, they are able to couple with
small-scale free-stream turbulence only when upwelling motions lift them toward
the upper portion of the boundary layer [28].

There, they become receptive to external disturbances and act as initiators of
localized instabilities by creating new three-dimensional, low-frequency structures

3The streaks are also named Klebanoff modes [34], not in the sense that they are eigenfunctions
of a response equation, but because they can be Fourier-decomposed and are coherently organized
in space. In fact, their maximum growth is defined for a limited range of spanwise wavenumbers
and this allow to create the streaky structure in this direction. Furthermore, their growth is not
exponential in time - as usual modal instabilities - but is linear due to the lift-up effect.
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2.2 – Transitional boundary layer

Figure 2.2: Contours of the streamwise velocity perturbation for a plane in the
boundary layer (down) and a plane in the free-stream (up). The free-stream tur-
bulence decays while convected downstream. Inside the boundary layer elongated
structures (streaks) are evident upstream the plate, then some turbulent spots
appear, and finally downstream the complete turbulent boundary layer. Image re-
produced from Zaki, 2013 [13].

that again can overcome the shear sheltering effect at the border of the boundary
layer.

After the lift up, the flow is in a more complicated laminar state characterised by
nonlinear interaction. The streaks grow linearly with the boundary layer thickness
over time, reaching very high amplitudes, from 10% to 25% of the mean flow speed,
depending on the intensity of the free-stream turbulence.

The streaks are constantly being perturbed by external turbulence, nonetheless,
instability events are rare4 and most perturbations remain subcritical or decay [38].

4Only streaks with highest amplitude generate breakdown to turbulence. This is why it is
important to study them by considering the amplitudes distribution, rather than mean values of
the fluctuations, such as urms, that could hide rare events in the tails of the distribution [13].

17



Time irreversibility

But when their amplitude increases up to a sufficiently high value, they can trigger
secondary instabilities by distorting the local streamwise velocity and introducing
new inflection points in both the wall-normal and spanwise velocity profile [40, 41].

The secondary instabilities generates oscillations of the streaks, both symmetric
and antisymmetric, that break the streak coherence and lead to the formation of
localised turbulent spots, which are already developed regions of turbulence and
the transition mechanism is already well underway [28].

The majority of the spots originate near the top of the boundary layer, being
generated by free-stream eddies, and afterwards cascade towards the wall. Once
these patches of irregular motion are formed, they spread and fill the boundary
layer, getting more and more intense as they propagate downstream. At some
point they start to merge, forming juxtaposed zones of turbulent and laminar flow,
just upstream of a fully turbulent region.

Eventually they all join in a main turbulent area which will grow until forming
a fully turbulent region downstream the boundary layer.[28]

A schematic picture of the bypass transition is depicted in figure 2.3.

Figure 2.3: Schematic picture of the bypass transition to turbulence. Free-stream
vortical turbulence enters the boundary layer by shear sheltering, longitudinal
streamwise streaks are generated and amplify along the boundary layer, activating
secondary instabilities that will lead to turbulence through the formation of turbu-
lent spots. Image reproduced from Zaki, 2013 [13].

In this case it is possible to define three regions relevant to describe the transi-
tion: the buffeted laminar boundary layer, where the streaks develop amplified by
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2.2 – Transitional boundary layer

the shear; the region of intermittent turbulent spot formation - the transition zone
- where secondary instabilities and spots evolve; and the fully turbulent boundary
layer.
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Chapter 3

Data and methods

3.1 The database

The data used in this study have been obtained from the John Hopkins Turbu-
lence Database (JHTDB), an open numerical turbulence laboratory developed by
the John Hopkins University and sponsored by the National Science Foundation.
The database consists of several types of turbulence datasets produced via direct
numerical simulations (DNS), including the transitional boundary layer one [42].

Simulations for the transitional boundary layer have been performed on an in-
compressible flow over a flat plate with an elliptical leading edge, in a zero-pressure
gradient environment and imposing no slip condition at the wall.

Using streamwise, wall-normal and spanwise coordinates x, y, z for the system,
the measures of the plate are (1050 × 240)L, with respect to its half thickness L.

The inflow condition at the leading edge of the plate is given by the superpo-
sition of the uniform free stream velocity U∞ (also used as reference velocity) and
turbulent fluctuations u′ simulated from a homogeneous isotropic turbulence in a
periodic domain of size (240 × 15 × 240)L rotated around z by an angle α.

The length scale of the inflow turbulence is Lk = 1.8L and its intensity is Tu =
3% at the beginning of the plate; then it decays as it is advected downstream as
(x−xg)−0.8 reaching less than Tu = 0.5% at the exit of the domain. The interaction
of the turbulent fluctuations with the laminar boundary layer leads to the bypass
transition to a fully turbulent boundary layer.
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Data and methods

The Reynolds number based on the reference velocity and length and on the
viscosity is ReL = U∞L/ν = 800.

The database domain actually comprehends only the rectangular domain after
the leading edge of lengths Lx × Ly × Lz = (969.8465 × 26.4844 × 240)L, which
corresponds to the coordinates

x ∈ [30.2185,1000.065]L, y ∈ [0.0036,26.4880]L, z ∈ [0,240]L.

At the database inlet the turbulence intensity is Tu = 2.86%. A sketch of the
domain with the reference frame is shown in figure 3.1.

The central point of the transition is supposed to be located around the value
x ≈ 350L, given a change in the growth of the curve u = 0.99U∞, a measure of
the boundary layer thickness, and an abrupt change in the vertical velocity, which
becomes negative as it is required by continuity to effect the change in the profile
of the velocity from laminar to turbulent flow [42].

Figure 3.1: Schematic representation of the computational domain on a flat plate.
The figure shows a side view of the domain, with length Lx and height Ly. The
inlet flow has a turbulence level defined as Tu, indicated by the red arrow. The
Cartesian reference system adopted is shown in the lower left-hand corner, with the
x axis oriented along the main flow direction, the y axis oriented upwards and the
z axis exiting the plane.
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3.2 – Visualizing the time series

The domain grid counts Nx × Ny × Nz = 3320 × 224 × 2048 points, staggered
along x and z with ∆x+ = 11.9 and ∆z+ = 4.07, while along y the grid spacing
is irregular with a ∆y+

min = 0.124 close to the wall and with a grid stretching less
than 3%.

The simulation time-step is 0.005L/U∞, but snapshots have been saved in the
dataset every ∆t = 0.25L/U∞ for a total of 4701 snapshots along a total time of
1175L/U∞.

The parameters’ values used in the simulations are: U∞ = 1, L = 1, ν =
1.25×10−3. The database also provides some flow statistics averaged in z and t, such
as the boundary layer thickness δ99 = (0.9648−15.0433)L, the momentum thickness
θ = (0.1318−1.8775)L, and the Reynolds numbers Reδ ≡ U∞δ99/ν = (772−12035)
and Reθ ≡ U∞θ/ν = (105.5 − 1502.0).

The data that have been queried and used in the following are the velocity com-
ponents u, v, w, respectively the streamwise, wall-normal, and spanwise components
of the velocity of the flow.

3.2 Visualizing the time series

The velocities have been queried in the form of time-series of length 4701 time-
steps, in order to be able to apply the visibility graph method to investigate the
time irreversibility of the system.

Given the large number of points in the domain (Nx × Ny × Nz), each of them
corresponding to a different time-series, a preliminary analysis has been carried out
on a few points to begin with the understanding of the problem.

To give an idea of the evolution of the turbulence from a laminar flow to a
completely turbulent one, some ideally significant points can be along the x domain
1, 597, 1097, 1951 and 3300, corresponding to the coordinates x/L = 30.2185,
x/L = 204.3759 , x/L = 350.4812 (approximately the center of the transition
zone), x/L = 600.0289, x/L = 994.2208.

Here, in particular, at fixed z/L = 0, the wall normal positions y/L = 0.4058,
y/L = 1.0026 e y/L = 5.1266, are considered.

In the first row of figure 3.2, at y/L = 0.4058, position that corresponds to the
peak of the turbulent fluctuations, very close to the wall, the signal presents a small
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Data and methods

Figure 3.2: Time series of the u component of the velocity at different points of the
domain, considering 5 positions along x and 3 along y, that highlight the evolution
of the signals.

amplitude at the beginning of the domain, followed by a lower and almost constant
velocity at the beginning of the transition zone, and then increasing in amplitude
from the center of the zone onwards; as x increases, the velocity values decrease
slightly, but maintain the turbulent fluctuations. Thus we see the transition from
laminar to turbulent flow.

Signals belonging to the transition zone exhibit a big level of intermittency,
alternating laminar and turbulent behaviour along time. They are characterised
by the presence of turbulent spots, localised turbulent zones caused by the primary
instabilities of the flow, that propagates downstream and spread spanwise. They
mark the transition and as they grow while evolving in the flow, they join forming
signals highly intermittent and completely turbulent.

Moving away from the wall, as y increases, this same behaviour appears but
scaled down, with a signal at first laminar evolving into turbulent with x; consis-
tently with the increasing boundary layer thickness, this occurs from larger x if
sufficiently far from the wall.

In the normal and transversal directions (figures 3.3 and 3.4) all signals are
on average null, but also in this case the signal is evidently larger in the center
of the transition zone, where the flow begins to be turbulent, and near the wall.
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3.2 – Visualizing the time series

Figure 3.3: Time series of the v component of the velocity at different points of the
domain, considering 5 positions along x and 3 along y, that highlight the evolution
of the signals.

Figure 3.4: Time series of the w component of the velocity at different points of the
domain, considering 5 positions along x and 3 along y, that highlight the evolution
of the signals.

Moving away from it, the amplitude of the signals decreases. Again, the effect
of the homogeneous turbulence arriving on the plate at x/L = 30.2185 is visible.
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As far as these two components are concerned the most relevant y-position is the
second one, as their peaks are located around y/L ≃ 1, but for completeness the
other signals are also displayed.

3.3 Visibility graph method
The visibility graph methods represent a useful tool which can be used to fill the gap
between nonlinear time series analysis and graph theory [4]. The method consists
in an algorithm [43, 44] able to transform time series into graphs, which will inherit
the main properties and characteristics of the series, allowing one to study them
using complex network techniques. It can be proved that the topology of the graph
conserves the structure of the time series [21].

All information is mapped from the time series to the graph according to a
geometric criterion, creating a one-to-one ordered correspondence between the series
data {xt}t=1,...,N and the nodes of the graph [21].

3.3.1 The Natural Visibility Graph (NVG)

The more general version is encoded in the Natural Visibility Graph (NVG), where
two nodes i and j - corresponding to series data xi and xj - will be connected by an
edge if they are mutually visible, that is, if one can draw a straight line connecting
them without intersecting any other intermediate node k, i < k < j.

Mathematically, visibility can be expressed through a convexity criterion: nodes
i and j are connected if

xk < xi + k − i

j − i
(xj − xi), ∀k : i < k < j

An example is depicted in figure 3.5: each point of the time series correspond to
a node, which is connected to other visible nodes. In this particular case, the time
series is periodic and so is its visibility graph, confirming the previously stated fact
that the structure of the series is conserved in the topology of the graph.

The network can be represented by the adjacency matrix A, with entries

Aij =

1 if the criterion is satisfied
0 otherwise
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With this definition and being the connections undirected and unweighted, the
adjacency matrix is binary and symmetrical.

Figure 3.5: Example of a Natural Visibility Graph constructed from a periodic
time series. To each point of the time series correspond a node in the graph, which
conserves the series’ structure. Image reproduced from Lacasa et al., 2008 [21].

The graph resulting from the mapping will always be connected (the two neigh-
bours of a node are always visible), undirected and invariant under affine transfor-
mation of the series data such as translations and rescaling of the axes, as shown
in figure 3.6. This invariance implies that different series may be described by
the same visibility graph and adjacency matrix, hence some information about the
series gets lost in the mapping.

A problem of this kind can be easily circumvented by generalising the method
with the use of weighted networks, where a weight on the edge of the graph represent
the slope of the visibility line connecting the data [21, 22]. This would also make
the transformation series-graph reversible.

Visibility graphs have a natural order induced by the ordered time structure of
the series that determines them [5]. If one defines the degree of a node k(t) as the
number of links a certain node has with other nodes, it becomes natural to define
the degree sequence of the graph {k(t)}N

t=1 . Making a distinction on this definition
can provide directionality to the network, allowing to create a directed version of the
graph in terms of the temporal direction. This is done by distinguishing between the
number of nodes that can see a given node from the number of nodes that a given
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Data and methods

Figure 3.6: Example of invariance of the visibility graph under transformations of
the time series. (a) Original time series with the connections between visible nodes.
(b) Translation. (c) Vertical rescaling. (d) Horizontal rescaling. (e) Addition of a
linear trend to the data. Image reproduced from Lacasa et al., 2008 [21].

node can see, and by creating two sequences {kin(t)}N
t=1 and {kout(t)}N

t=1, hence
defining for node i an ingoing degree kin and outgoing degree kout, respectively,
such that k = kin + kout.

The main important feature of visibility graphs is that, unlike other methods
[9, 45, 46, 47, 48] often used in the analysis of time series, it does not require any
a priory parameter or any pre-processing simbolisation, but only the application
of the convexity criterion, which uses information from the whole series and makes
the method reliable and robust [23, 49, 19, 20].

3.3.2 The Horizontal Visibility Graph (HVG)

The Horizontal Visibility Graph is a subclass of the Natural Visibility Graph, in
which the time series data {xt}t=1,...,N are mapped into the nodes of the graph and
are connected by horizontal lines. An edge between two nodes is created if the
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following simpler criterium is satisfied:

xk < inf(xi, xj), ∀k : i < k < j

which means that one can draw an horizontal line between i and j without inter-
secting any intermediate datum xk [22]. It is straightforward to see that HVGs
are a subgraph of VGs and that they are outerplanar graphs [5]. In figure 3.7 an
example of Horizontal Visibility Graph is displayed on the right, compared to the
Natural Visibility Graph of the same time series, on the left.

Clearly, this algorithm is characterised by less visibility with respect to the pre-
vious case, due to the restrictions on the visibility given by its geometric criterion.
This will cause the method to provide less statistics quantitatively speaking, but
the quality of its features are not affected by this fact [22].

Figure 3.7: Comparison of a Natural Visibility Graph (left) and Horizontal Visibil-
ity Graph (right) of the same time series. It is evident that the HVG is a subgraph
of the NVG, holding only some of its links. Image reproduced from Ahmadi et al.,
2018 [50].

Both the NVG and HVG are effective in representing the time series and captur-
ing its most important features, including irreversibility, with more or less accuracy
depending on the models in analysis and on the typology of the signals [5].

Despite that, in the study of irreversibility, the main objective of the present
work, it has been chosen to focus primarily on the use of HVG due its slightly
easier implementation and some results will be compared with the NVG version for
a more complete overview.
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3.3.3 Irreversibility

Before defining how the irreversibility analysis of a time series works, it is necessary
to exploit what being time reversible means.

A stationary time series S = {x1, ..., xn} is statistically time reversible if it has
the same joint probability distribution of its time reversed version S∗ = {xn, ..., x1},
∀n, that is, the two time series are equally probable [2, 3].

As already mentioned, the previously defined degree sequence of the graph
{k(t)}N

t=1, representing the sequence of number of connections of each node, can
be split into two sequences {kin(t)}N

t=1 and {kout(t)}N
t=1 for the ingoing and out-

going degrees. These sequences are characterised by the important property that
they are interchangeable under time series reversal [5], that is

kin(t)[S] = kout(t)[S∗], kout(t)[S] = kin(t)[S∗].

Figure 3.8 reports an example of a directed Horizontal Visibility Graph, high-
lighting the difference between the ingoing and outgoing links in the series, which
correspond to different values of kin and kout in the graph.

Figure 3.8: Example of a directed Horizontal Visibility Graph (below) and its
corresponding time series (above), in which the visibility connections follow the
temporal direction, distinguishing between ingoing and outgoing links. A different
value of kin and kout correspond to each node of the graph. Image reproduced by
Lacasa et al., 2012 [4].

The time irreversibility associated to a certain time series can be then measured
by considering the distance between the probability distributions of the ingoing and
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3.3 – Visibility graph method

outgoing degrees, defined as Pout(k) ≡ P (kout = k) and Pin(k) ≡ P (kin = k) [4],
which also share the previous property

Pin(k)[S] = Pout(k)[S∗], Pout(k)[S] = Pin(k)[S∗].

The distance between probability distributions can be calculated by means of the
Kullback-Leibler divergence (KLD), which quantifies how different two distributions
are and is a measure of relative entropy.

It is then possible to define irreversibility as

Ik = D[Pout(k)||Pin(k)] =
Ø

k

Pout(k) log
Pout(k)
Pin(k)

and it vanishes if the two distributions coincide, hence when the time series is
reversible, while it increases the more they are distant, quantifying time-series’
irreversibility.

The choice of the KLD is motivated by its statistical significance. In fact, for
the Chernoff-Stein lemma it represents the exponential error rate associated to hy-
pothesis tests to distinguish two probability distributions, as the error tends to
e−ND(p||q) for N → ∞, or in other words the probability to incorrectly discern the
distributions decreases the larger the KLD is [4]. Furthermore, in statistical me-
chanics the KLD is related to the thermodynamic entropy that a non equilibrium
system is producing and it is hence able to provide information about the time
irreversibility of the process that generates the data [6, 7, 8, 10].

Actually, even in the presence of truly reversible processes, the KLD may provide
positive finite values for finite-size series and they will vanish as N−δ as N → ∞,
being null only asymptotically. That is why reversibility is redefined as:

lim
N→∞

D[Pout(k)||Pin(k)] = 0

and truly irreversible processes will display positive value even in the limit of large
N [5, 51]. Nevertheless, being the convergence quite slow, finite-size values can be
used statistically to compare irreversibility values for finite samples as it happens
in empirical datasets like the one used in this study.

As a final remark, the irreversibility calculation based on visibility graphs not
only determine wether a time series is time reversible or irreversible, but it is also
able to quantify the amount of irreversibility [4].
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3.3.4 Irreversibility ratio

As it has been said previously, finite-size time series can result in positive values
of the KLD even in the presence of reversible processes and this can cause some
interpretability problems to the study of irreversibility.

To solve this issue a confidence index can be introduced [51]. It is calculated by
applying a standardisation with respect to a null model, to see how much a sample
differs from what it would be expected by a truly reversible process. The index is
defined as the Z-Score of Ik:

Ik,r = Ik − µk,r

σk,r

where µk,r is the mean on the null model, built by taking a certain number of
randomisations 1 of the time series obtained by shuffling the original series and by
computing the KLD on each of them, and σk,r is their standard deviation. This
formula expresses mathematically the idea of the distance of the series from its null
reversible model, in standard deviations units.

In fact, for reversible processes both Ik and its null model value are expected to
follow the same trend for increasing N , that is they should both tend to zero, and
the irreversibility ratio should remain below 1, regardless of N .

Conversely, for irreversible processes, Ik is consistently greater than zero and
stays positive even as N increases, while its null model, again, decreases with N ,
letting the irreversibility ratio increase with N . This means that for irreversible
processes the time series length actively affects this measure.

However, generally speaking, after a certain threshold (which can be set to a
value O(1) or O(10)), the signal can be considered irreversible [51].

1Uncorrelated random series are reversible as demonstrated in Theorem 1 in [4].
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Chapter 4

Preliminary analyses

4.1 Identification of the transitional zone

A first necessary step to investigate the transitional boundary layer is to identify
and, if needed, approximate, the area of the domain that we define as the transition
zone, that is where the flow from laminar becomes turbulent.

To this end, the friction velocity uτ has been analysed. It is defined, in every
point of the domain, as

uτ =
ó

τw

ρ
=

öõõôν
∂um

∂y

-----
y=0

where τw is the local shear stress at the wall and it is given by the formula
(ρν ∂um/∂y)y=0, ρ is the fluid density and ν is the kinematic viscosity [12].

uτ is used to normalise the coordinates and the velocities and allows us to iden-
tify the starting and ending points of the transition, considering its minimum and
maximum values, respectively. These points are then located at x/L = 204.3759
and x/L = 447.7873, as it can be seen in fugure 4.1, and delimit an area before
and after which the flow can be considered either laminar or completely turbulent.

4.2 Definition of the domain

In order to lighten the computational cost of the analyses, it has been chosen to
reduce the domain to a smaller one, which remains nonetheless capable to depict
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Figure 4.1: Local friction velocity uτ . Lines in magenta outline the transition zone.

the variations and the complexities of the transitional boundary layer in all their
shades.

This reduction has been made by sampling only some points of the datasets and,
in particular, Nx × Ny × Nz = 100 × 72 × 32 points for three new intervals of the
coordinates:

x/L ∈ [30.2185, 608.7952], y/L ∈ [0.0036, 6.1712], z/L ∈ [0, 232.6236].

The portions of the domain that have been excluded correspond, then, to a
turbulent boundary layer, which we already know how it is supposed to function
in terms of irreversibility [20], and to values of y/L sufficiently far from the wall,
allowing us to focus only on what happens in the proximity of the wall and in the
creation of the boundary layer.

In this new domain, the starting and ending point of the transition zone can be
approximated to the closest point available, as it is summarised in the following
table 4.1. The corresponding normalised values of x, x+ = xuτ /ν are also specified.

4.3 Metrics and statistics
Before proceeding with the analysis of time irreversibility, it can be useful to observe
what happens in the boundary layer in terms of mean velocities and turbulent
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value approx. value normalised value approx. and norm. value
xstart 204.3759L 205.5448L 5.22466e+03 5.25469e+03
xend 447.7873L 445.1573L 1.772373e+04 1.76141e+04

Table 4.1: Starting and ending points of the transition zone.

fluctuations, not only to have a complete picture of the system under study, but also
to undertake a full disclosure on how the turbulence may be related to irreversibility.

4.3.1 Average velocities

A first analysis is performed on the streamwise component of the velocity u, by
considering its time average at all the points of the domain. In figure 4.2 mean
normalised velocities u+

m = um/uτ are depicted on the x+ − y+ plane, where x+ =
xuτ /ν and y+ = yuτ /ν, after averaging over the 32 values of z.

Figure 4.2: Normalised mean u velocities, averaged on z, on the x+ − y+ plane.

For small values of x+ high values of u+
m are soon achieved, corresponding to

those of the laminar flow. Conversely, increasing x+, such values of u are reached
more slowly and at higher values of y+ (it should be noted that the new domain is
limited on its upper part, hence high velocity values are not visible in this figure):
this is representative of the growth of the boundary layer thickness. Normalising the
coordinates allows us to observe how the boundary layer thickens with the onset
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of transition, with a significant increase in the core area due to the turbulence
development.

4.3.2 Fluctuations

u component

Turbulent fluctuations are defined by the Reynolds decomposition [12]:

u′ = u − um

v′ = v − vm

w′ = w − wm.

Taking the root mean square of the velocity, it is possible to get a measure their
intensity:

urms =

öõõô 1
N

NØ
i=1

(ui − um)2

For the streamwise component, the average value on z of u+
rms amplifies at the

beginning and in the middle of the transition zone, along the boundary layer (figure
4.3). As x+ increases, the intensity of the fluctuations decreases and is limited to
an area quite close to the wall, while the peak moves towards it, just above a region
of very low values. Downstream of the transition zone, fluctuations vanish more
slowly and the distribution of a fully turbulent boundary layer is recovered.

Figure 4.4 shows how the peaks value vary with x+ and how their maximum
values correspond to the transition zone, indeed; the curve is increasing until the
maximum in the zone, then it diminishes with almost stable values over a smaller
range once the turbulence has fully developed, as noted above. Such peaks are
located at increasing values of y+, then, as the transition begins, they approach
the wall and stabilise around a certain value in the fully turbulent flow, as can be
noted in figure 4.5.

v and w components

Instead, turbulent fluctuations of the wall-normal (figure 4.6) and spanwise (figure
4.7) components develop exactly in the transition zone, being finite but almost
null upstream of the leading edge, then gradually increase until reaching the fully
turbulent state. As in the previous case, as y+ grows, fluctuations tend to zero
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Figure 4.3: Intensity of the turbulent fluctuations of the u component of the velocity,
averaged on z, on the x+ − y+ plane. Lines in magenta outline the transition zone.

Figure 4.4: Maximum values of u+
rms with respect to x+. The maximum of these

peaks is highlighted in red. Lines in magenta outline the transition zone.

when exiting the boundary layer. However, for these components, the range of y+

that is affected by more intense fluctuations is broader. At the leading edge, slight
fluctuations are caused by the isotropic turbulence impacting the plate. This is also
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Figure 4.5: Values of the maxima of u+
rms and their positions on the x+ − y+ plane.

Lines in magenta outline the transition zone.

visible in the analysis of their peaks, with a small maximum fluctuation decreasing
in the laminar flow zone (figures 4.8). The trend of the peaks then grows rapidly,
marking the transition zone, and, towards the end of this, tends to stabilise at an
approximately constant value. This trend is the same found for the friction velocity
uτ .
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Figure 4.6: Intensity of the turbulent fluctuations of the v component of the velocity,
averaged on z, on the x+ − y+ plane. Lines in magenta outline the transition zone.

Figure 4.7: Intensity of the turbulent fluctuations of the w component of the veloc-
ity, averaged on z, on the x+ − y+ plane. Lines in magenta outline the transition
zone.
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Figure 4.8: Maximum values of v+
rms (left) and w+

rms (right) with respect to x+.
The maximum of these peaks is highlighted in red. Lines in magenta outline the
transition zone.
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Chapter 5

Results

5.1 Irreversibility measure

Finally, the aim of this study is to calculate the time irreversibility of a transitional
boundary layer. It has to be noted that the case of transition is known to be
statistically non-stationary - differently from fully developed turbulence - and, by
definition, non-stationary time series are infinitely irreversible. Hence, it is already
known that the signals are irreversible, but the application of the visibility method
stands to quantify how much the signals are irreversible, that is, the degree of
irreversibility.

As it has been seen in paragraph 3.3.3, a reliable measure of time irreversibility is
represented by the Kullback-Leibler divergence (KLD) of the ingoing degree kin and
outgoing degree kout probability distributions of the nodes of the visibility graph:

Ik =
Ø

k

Pout(k) log
Pout(k)
Pin(k) .

The KLD, here defined by the notation Ik, is null in case of reversible signals,
and it assumes growing values in the presence of strong levels of irreversibility
(even though it is important to recall that it is exactly zero only in the ideal case
of infinitely long signals).

In the following, time irreversibility will be first localised spatially within the
3D domain and then it will possibly be linked to the turbulent structures that
characterise the transitional boundary layer.
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u component

In the case of z fixed (figure 5.1), small areas with higher values, ranging from 0.2 to
0.5, are scattered at different points in the x − y plane, starting near the beginning
of the transition zone and moving towards the centre. This may be attributed to
the presence of isolated turbulent spots distributed in the boundary layer that will
slowly evolve and burst into turbulence once downstream of the zone.

(a) z = 1 (b) z = 10

(c) z = 20 (d) z = 30

Figure 5.1: Irreversibility Ik calculated for the u component of the velocity at 4
fixed values of the coordinate z on the x+ − y+ plane. Lines in magenta outline the
transition zone.

Averaging on z (figure 5.2) enables the visualisation and identification of a rel-
atively expanded area of high irreversibility, with values in the range 0.1 − 0.2,
located at the centre of the transition zone and very close to the wall, which then
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gradually fades increasing y+. In the downstream region of the transition zone, a
tail-shaped area of irreversibility is observed, but with a medium intensity around
0.1. This area is confined to a limited range of y+ values, situated just above the
wall and its position is analogous to that identified in the turbulent fluctuations
analysis depicted in figure 4.3. It has to be noted that a lower intensity irreversibil-
ity zone, with values just below 0.1, is already attained before the starting point
of the transition: this could be due to the averaging of the initial turbulent streaks
that originate exactly in this area [13].

Figure 5.2: Irreversibility Ik average value on z calculated of the u component of
the velocity on the x+ − y+ plane. Lines in magenta outline the transition zone.

v and w components

For the wall normal and spanwise components, whose behaviour is shown directly
after the averaging on z in figures 5.3 and 5.4, the values of Ik are around one order
of magnitude lower, but coherently with the characterisation of these components.
Also in these cases, it is possible to define a well-delimited area of irreversibility
with values between 0.02 and 0.05. It is located close to the wall and it already
begins across the start line of the transition zone spreading until its center, and
vanishing for higher y+s. Very low values of the order of 0.02 are also retrieved in
the fully turbulent flow area in the proximity of the wall. Here we cannot establish
a direct correspondence with the position of turbulent fluctuations, which suggests
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that the matter of what causes irreversibility is not trivial and requires further
investigation.

Figure 5.3: Ik average value on z calculated of the v component of the velocity on
the x+ − y+ plane. Lines in magenta outline the transition zone.

Figure 5.4: Ik average value on z calculated of the w component of the velocity on
the x+ − y+ plane. Lines in magenta outline the transition zone.
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5.1.1 Reliability of the method (Z score)

While it has been seen that positive values of Ik are easily recovered, it is im-
portant to verify that such positive values are actually reliable in quantifying time
irreversibility. To do so, as it has been already done in previous studies [20, 51], and
as it has been pointed out in paragraph 3.3.4, the Z-Score of Ik can be calculated
as

Ik,r = Ik − µk,r

σk,r

High values of this measure can be considered as a confirmation of time irreversibil-
ity. Here µk,r and σk,r represent respectively the mean and the standard deviation
of Ik calculated on an ensemble of random signals, which have been obtained from
the original time-series signals by shuffling the 4701 time steps.

A first attempt has been made by computing 20 permutations of the time series’
time step and by observing all the x − y planes at different z values, concentrating,
for now, only on the u component of the velocity. A problem that has been soon
detected is the presence of some negative values of Ik,r, whose meaning is to be
attributed to irreversibility values lower than the mean of the random signals,
which by definition should be reversible.

Actually, already in the calculation of Ik, the 0.0001% of the values resulted
negative: this has no meaning being Ik a KLD, which by definition assumes only
non-negative values. However, this phenomenon can be explained by observing
that the time series analysed are quite short and do not contain enough points to
confer robustness to the calculation. After having ensured that this was related
neither to a mistake in the code nor to a flaw in the randomisation process for the
calculation of the permutations, the problem has been circumvented by ignoring
these points. Nevertheless, Ik,r still exhibits around 10% of its values as negative,
the explanation for which remains linked to the length of the time series.

To visually show this, let’s see the case of 20 permutations of the time steps
of the time series at z = 1, in figure 5.5. All Ik,rs with a value below 2 are
highlighted, as they are very low (hence, not very reliable) or even negative: they
are prevalently localised outside the transition zone and very close to the wall or
outside the boundary layer (a representation of the x − y plane with respect to
the normalised coordinate y/δ, where δ is the boundary layer thickness, has been
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chosen to point out this feature.)

Figure 5.5: Irreversibility ratio Ik,r evaluated at z = 1, considering its lowest values
on the x+ −y+ plane, having chosen Ik,r = 2 as threshold. Lines in magenta outline
the transition zone.

Consequently, a small investigation has been performed on a few points x of
the domain, where significant variations of Ik,r were present, from high to very low
values, such as those indicated by the black lines in figure 5.6. Figure 5.6 represents
in full the values of Ik,r, considering all values above 10 as "high".

As an example, here the analysis on the point x = 73 (which correspond to
x/L = 451.0016 and x+ = 17842) is reported for some values of y: y = 12 (y/δ =
0.033), y = 39 (y/δ = 0.219), y = 44 (y/δ = 0.282), y = 58 (y/δ = 0.546). Figure
5.7 depicts the behaviours of Ik,perm, the irreversibility measure calculated after
permuting the points of the time series, as the permutations were performed. Their
mean values (µk,r) and their standard deviations (σk,r) are also shown. The clear
oscillatory character is again a symptom of a too short signal length and is present
at all points analysed, even when performing a greater number of permutations.

The final step entailed increasing the number of permutations to 30, then 40,
then 50 and in some cases 100, with a view to ascertaining whether this parameter
could make the calculation more robust. This is indeed true, as an augmentation
in the number of permutations engenders, in a certain sense, a greater degree of
randomness in the signal in comparison to the original one, and allows a more
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Figure 5.6: Irreversibility ratio Ik,r evaluated at z = 1, highlighting its highest
values on the x+ − y+ plane, having chosen Ik,r = 2 as threshold. Lines in magenta
outline the transition zone.

Figure 5.7: How the irreversibility measure at x = 73 changes while increasing the
number of permutations of the time series’ points. Each color represent a different
y value at the same x coordinate.

reliable comparison.
For 50 permutations, behaviours analogous to those illustrated in figure 5.6 have
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been identified in each z-plane. In order to obtain a more valid statistical evaluation,
the results have been averaged on z, thereby eliminating the "critical" points, i.e.
those that are too low or negative, and making the distribution of the Ik,r values
more uniform. This verifies that, from a statistical perspective, the calculation is
both valid and reliable, as illustrated in figure 5.8. In fact, at the centre of the
transition zone, where major irreversibility was supposed to be found, Ik,r reaches
values of the order of 102 and values slightly below in the surrounding area.

Figure 5.8: Irreversibility ratio Ik,r average value on z, on the x+ −y/δ plane. Lines
in magenta outline the transition zone.

Finally, for comparison, the behaviour of Ik is also reported in figure 5.9 and
it appears identical to the one of Ik,r. This is due to the fact that averages and
standard deviations (figure 5.10) do not show any pattern on the x − y plane,
allowing Ik,r to retain the original pattern of Ik. It is confirmed, therefore, the
presence of a zone with high irreversibility in the center of the transition zone,
followed by a "tail" in the totally turbulent zone.

Localisation of irreversibility within the x−y plane of the boundary layer

The turbulent fluctuations and Ik,r are again displayed, this time with a logarithmic
scale for the y-axis representing y+, in order to discuss their correlation in terms of
the boundary layer structure.
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Figure 5.9: Irreversibility Ik average value on z, on the x+ − y/δ plane. Lines in
magenta outline the transition zone.

Figure 5.10: µk,r and σk,r mean and standard deviations of Ik,perm on the x − y
plane.

It is recalled that the boundary layer can be parted into different wall regions
and layers, depending on the value of y+, with different defining properties [12]:

• viscous sublayer (y+ < 5)

• buffer layer (5 < y+ < 30)

• viscous wall region (y+ < 50)

• log-law region (y+ > 30)
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• inner layer (y+ < 103)

• outer layer (y+ > 50)

• overlap region between inner and outer layer

It is known that the maximum turbulent activity in terms of production of kinetic
energy is to be located in the buffer layer. This phenomenon can be graphically
seen in figure 5.11, where turbulent fluctuations reach their highest levels exactly
in the buffer layer.

Figure 5.11: Intensity of the turbulent fluctuations averaged on z on the x+ − y+

plane. The white dashed lines delimit the buffer layer and lines in magenta outline
the transition zone.

In figure 5.12 it can be seen how also in the case of Ik,r highest values are
achieved in the buffer layer and in particular in the transition zone, but also in the
fully turbulent flow area. In the viscous sublayer the irreversibility remains high at
the transition zone, while both before and after it there are almost zero values, as
already noted above.

5.2 Local analysis by windows
Once the time irreversibility has been located spatially in the domain, its causes
need to be investigated. The question pertains to the potential association of the
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Figure 5.12: Irreversibility ratio Ik,r average value on z, on the x+ − y+ plane.
The white dashed lines delimit the buffer layer and lines in magenta outline the
transition zone.

phenomenon with any structure that constitutes the transitional boundary layer.

Literature clearly portrays the transitional boundary layer structure and the
bypass transition, [13, 14, 28, 33, 34] where the boundary layer transitions from
laminar to turbulent flow bypassing some events that are typical of a normal lam-
inar–turbulent transition. The evolution of the flow is characterised by a first
shear sheltering phase, that allows the penetration in the boundary layer of low
frequency components only, sheltering high frequency ones; then these perturba-
tions are distorted into streaks, turbulent structures elongated in the streamwise
direction, whose amplitude can reach over 10% of mean velocities. At a critical
value, thanks to secondary instabilities, they randomly burst into turbulent spots,
that grow all over the boundary layer and congregate forming the fully turbulent
region.

The observation of the time series in paragraph 3.2 had already highlighted the
great intermittency characterisation of the signals belonging to the transition zone.
These signals are marked by turbulent spots, which increase in intensity and size
with the increase of the x and y coordinates and which are arranged variably with
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the variation of the z coordinates. The preliminary idea is that higher fluctuations
and intermittency are associated to higher irreversibility. To verify such hypothesis
it is necessary to identify and locate the turbulent spots in order to link them to a
certain Ik value.

The procedure that has been chosen to investigate such aspects is a local analysis
of Ik by window, that is using moving temporal windows on the time series’ signals.
This allows isolating bit by bit pieces of the signal that have different types of
intermittency and being able to compare them with the whole signal.

The signal should be divided into 500-point windows with a 50% overlap, on
each of which irreversibility Ik is to be calculated. Subsequently, 20 random signals
should be generated for each window by permuting the time series points, allowing
for the computation of the irreversibility ratio Ik,r. Instant turbulent fluctuations
of the velocity u′ = u − um are also required in order to research a potential corre-
lation with irreversibility.

Before an overall analysis of the whole domain, a focused investigation has been
conducted on a specific z coordinate (in this case, z = 1 has been chosen) and a few
x and y points, with the objective of elucidating the occurrences in that particular
area.

The choice of points was made considering the point (x, y) in which Ik,r assumed
maximum value and exploring, at that same x, some y that presented quite different
values of Ik,r on the complete signal.

As shown in figure 5.13, the oscillatory behaviour of Ik,r on windows does not
correspond to turbulent fluctuations (mediated on the same window). Conversely,
there are instances where high values of urms are concomitant with low values of
Ik,r.

Even with increasing the number of permutations used to generate random sig-
nals, the trends in Ik,r remain relatively similar, but with a slight improvement, as
illustrated in figure 5.14.

In order to investigate the oscillatory behaviour, the time windows have been
observed directly in a view similar to that shown in figure 5.15. This observation
has led to the hypothesis that the increase in the values of Ik,r is linked to zones
which could be designated as "overlap", that is, those pieces of signal in which it
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Figure 5.13: Irreversibility ratio Ik,r calculated by windows and for the whole signal,
compared to turbulent fluctuations in four points of the domain at the same x-
coordinate.

Figure 5.14: Irreversibility ratio Ik,r calculated by windows increasing the number
of permutations and for the whole signal in four points of the domain at the same
x-coordinate.

passes from being very fluctuating to being flat, rather than to areas with many
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fluctuations. The explanation would be that in such cases the signal is very asym-
metric and the visibility method is designed to capture the geometry of the signal
rather than its amplitude. Consequently, signals characterised by significant fluc-
tuations yet greater geometrical uniformity may, nevertheless, yield lower values.

Figure 5.15: Visualisation of the moving windows every 500 points - without con-
sidering the overlap - on a time series and the whole signal.

5.2.1 Analysis of an intermittent signal

The subsequent stage of the process has been to manually search the transition
zone for an intermittent signal in which there were one or two turbulent spots that
were well-defined in comparison to the rest, then to manually define the time length
of the spots to be used as a moving window, in order to understand what happens
before, during, and after the spot in the signal.

This has been done as in figure 5.16, where the areas of the spots and those pre-
ceding and succeeding them are highlighted. For the sake of convenience, the latter
ones are referred to as ‘laminar’ in the subsequent figures. The overlap windows
between these are designated ‘in’ and ‘out’, as if one were ‘entering’ and ‘exiting’
the spot.
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Figure 5.16: Analysis by customised windows on a signal. Above the windows are
identified on the signal, highlighting in violet the ‘laminar’ windows preceeding and
succeeding the spot. Below the values of Ik,r for the five windows of the two spots.

The peculiarity of these results is that once again the highest values of Ik,r do
not correspond to the windows that include the spots; rather, a higher value is
observed "entering" the spot, or even in the laminar zone between the two spots.
It is important to note that the visibility method is significantly influenced by the
length of the signal under analysis, as pointed out in paragraph 3.3.4, and in this
particular instance the signal is very short. Furthermore, the method is based
primarily on symmetry and geometric criteria rather than amplitude ones.

Comparison between the Kullback-Leibler divergence and the Jensen-
Shannon divergence

To explore the full range of possibilities and drawing inspiration from other studies
[52], the analysis has been extended to include the Jensen–Shannon divergence, a
more robust and symmetric measure compared to the Kullback–Leibler divergence
previously adopted. It is defined as

JSD(P ||Q) = 1
2D(P ||M) + 1

2D(Q||M),

where P and Q are probability distributions, M = 1
2(P + Q) is a distribution’s

average and D(·||·) is the Kullback-Leibler divergence. As can be seen in figure
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5.17, the discrepancy is negligible; therefore, it has been opted to persist with
the Kullback-Leibler approach while concurrently maintaining this alternative as a
possibility.

Figure 5.17: Comparison between the Ik,r values calculated with the Kullback-
Leibler divergence - in blue - and the Jensen-Shannon divergence - in orange - on
five windows for each spot.

5.2.2 Analysis on the turbulent fluctuations

The analysis continues by considering several windows on the same signal. The
primary issue with this form of observation is that even the regions designated as
"laminar" exhibit minor fluctuations, which, as previously mentioned, are detected
by the visibility graph method. Furthermore, the manual selection of windows does
not follow a rigorous and precise criterion for identifying the point of origin and
end of a specific spot and does not allow an easy generalisation on all signals.

The methodological problem of spot detection becomes then an issue, but re-
search in the literature indicates that, in the case of boundary layers subjected to
the effect of an undisturbed flow turbulence, the use of the u component of speed
is not effective for spot detection; instead, components v and w may be. [53]

It is evident from figure 5.18, representing the turbulent fluctuations’ signals,
that the visibility of spots is intensified. However, it is important to note that
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a more reliable identification can be achieved through the implementation of a
thresholding technique on the values of v and w.

Figure 5.18: Time series of the fluctuations of the velocity. Different time windows
are highlighted in different colours: in blue laminar parts of the signal, in orange
the overlaps, in green the spots and in yellow mixed types of windows.

Analysing the turbulent fluctuations on all three components of the velocity, the
previous procedure has been repeated by including, in addition to those of the spot,
overlap and laminar, new windows that include both exclusively "laminar" zones -
such as windows 10, 11, 12 - and windows that include laminar zones and spots
together - such as 13 and 14 (figure 5.18).

This is to make a cumulative comparison, with the aim of understanding what
happens to Ik,r by adding and removing turbulent pieces to a "laminar" signal. The
cumulative comparison is motivated by the fact that, according to the calculations
made so far and due to the problem of signal length which affects the method, it
may not make sense to take turbulent and laminar pieces separately.

However, according to figure 5.19, once again no well-defined patterns can be
observed in the values of Ik,r. High values are present in the areas defined as
"laminar" and in some cases in the overlap zones, and this is motivated, as already
mentioned, by the geometric approach of visibility.
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Figure 5.19: Irreversibility ratio Ik,r calculated by windows of different length (de-
picted in fig. 5.18) and compared to turbulent fluctuations for the three components
of the fluctuations.

5.2.3 Comparison between horizontal visibility graph and
natural visibility graph

So far, the analysis carried out showed that the irreversibility measure Ik,r is not
directly related to turbulent fluctuations of the signal, but seems to be more affected
by the transition zones between laminar and turbulent parts of the signal, therefore
the analysis of these individual parts is less effective than a cumulative analysis of
more signal pieces.

This is due to the fact that the visibility graph method captures more the ge-
ometric structure of the signal than its amplitude, leading to high irreversibility
values even in regions that do not contain turbulent spots, but have significant
variations in the signal morphology.

In an attempt to address the issue of signal length, the Natural Visibility Graph
has also been implemented, in order to provide a more comprehensive overview of
the results. In comparison to the Horizontal Visibility Graph, the Natural Visibil-
ity Graph has the capacity to establish a greater number of links, due to the fact
that the visibility of a node on other nodes is not limited solely to the horizontal
dimension, but extends to all locations that are intervisible.
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An initial comparison has been conducted by considering the measures Ik and
Ik,r on all signals averaged on z. Figure 5.20 shows how higher levels of time
irreversibility are achieved, with the use of the NVG, mainly in the first part of the
transition zone. The highest values of both Ik and Ik,r are confined to an area that
includes the pre-transition zone, where turbulence starts to develop, and to points
in the very proximity of the wall, differently with respect to HVG. In the case of
NVG, the tail-shaped area retrieved with the HVG, is instead absent.

The NVG, thus, focuses irreversibility in a region corresponding to the most ac-
tive one in terms of the turbulence development and is less related to the behaviour
of the fluctuations, unlike the HVG.

Figure 5.20: Comparison of values of Ik and Ik,r when using HVG or NVG, on the
x+ − y+ plane, averaging on z.

In the analysis by windows, in order to obtain a more detailed characterisation
of the signals, the NVG method has been also applied in a modified version, here
called Bottom-NVG (BNVG), which consists in applying the NVG to the signal
after changing its sign. This procedure allows to highlight the connections between
the local minima of the series - instead of the maxima, as the NVG does - and to
observe the vertical symmetry of the signal, and consequently its global asymmetry
when compared to the original one. It then provides additional and complementary
information to those obtained with the classic NVG.
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Fixed time window length

In the following analyses, longer and constant time windows have been used to
overcome the issues previously mentioned.

Taking again as a reference the previously used signal 5.21, which is located
within the transition zone and exhibits two discernible turbulent spots, the time
windows that have been chosen have length equal to half of the signal (2350 time
steps) and move forward in time by 235 time steps.

Figure 5.21: Time series of the fluctuations of the velocity. Windows’ length is 2350
and they move every 235 time steps. Three different time windows are highlighted
in different colours as an example of same-length windows.

The first observation, as illustrated in figure 5.22, is that, in general, both NVG
and BNVG yield higher values of Ik,r in comparison to HVG, either considering
the signal as a whole or considering individual windows. Moreover, the use of suf-
ficiently long windows and a high number of permutations (500) ensures a greater
correlation between the trend of Ik,r and the average fluctuations of the three com-
ponents of the speed (urms, vrms, wrms) on the windows, particularly with the
BNVG. However, it should be noted that this is not a one-to-one match.

Another interesting example is the signal in figure 5.23 which is also belonging
to the transition zone and exhibit a single turbulent spot. In this case the time
windows’ length has been set to 1880 instants, thus enabling analysis of windows
exhibiting solely laminar signals, as well as windows including the spot in part or
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Figure 5.22: Ik,r calculated by constant length windows (identified in fig. 5.21) and
for the whole signal, compared to turbulent fluctuations for the three components
of the fluctuations. NVG, HVG and BNVG are compared.

in its entirety. As before, the windows move forward each 235 time steps.

Figure 5.23: Time series of the fluctuations of the velocity. Windows’ length is 1880
and they move every 235 time steps. Three different time windows are highlighted
in different colours as an example of same-length windows.

In addition to what has already been observed in the previous signal, this case
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presents interesting peaks of Ik,r on windows number 3 and 11 in figure 5.24, that
is those windows that we have previously defined as "entering" and "exiting" the
spot. This fact is thereby substantiating the hypothesis that the most irreversible
zones within the transition are precisely those transitions between the laminar and
turbulent intervals of the signal.

Figure 5.24: Ik,r calculated by constant length windows (identified in fig. 5.23) and
for the whole signal, compared to turbulent fluctuations for the three components
of the fluctuations. NVG, HVG and BNVG are compared.

Sensitivity analysis on laminar signals length

Another investigation has been conducted to test the sensibility of the windows
length when considering laminar parts of the signal. The method has been then
applied on a window of variable length, starting from the whole signal and shrinking
it by 100 time steps to the right and 100 to the left. The objective of this type of
analysis is to investigate the suspected high values of Ik,r in laminar signal ranges
identified in the previous analyses.

The following three cases were considered:

• a signal in the transition zone (same as in figure 5.23),

• one in the laminar zone at a low x coordinate (figure 5.26),

• one in the turbulent zone at a high x coordinate(figure 5.28).
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Figure 5.25: Ik,r calculated by windows as their length decrease by 200 time steps
at each point and compared to turbulent fluctuations for the three components of
the fluctuations. NVG, HVG and BNVG are compared.

In all cases, regardless of whether the signal was extracted from a zone of laminar,
intermittent or turbulent flow, the same behaviour has been obtained, that is, a
decrease of Ik,r as the length of the time window decreases (see figures 5.25, 5.27,
5.29). This helps to justify the fact that turbulent or transition signal segments
presented lower values of Ik,r than laminar ones, because the latter ones have always
been analysed on longer time windows.

The significance of signal length (already mentioned in the previous paragraphs)
in influencing the efficacy of the method is then confirmed, thereby validating the
use of a fixed time window as previously outlined.

5.2.4 Generalisation on all signals

The next step, given the interesting results obtained, would be to generalize the
analysis for all signals at all x, y and z. The problem becomes how to identify
the right lengths for the time windows and how to analyse them without observing
each signal individually, but with a method that can be general regardless of the
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Figure 5.26: Signals of three components of the turbulent fluctuations for a point
in the laminar zone.

Figure 5.27: Ik,r calculated by windows as their length decrease by 200 time steps
at each point and compared to turbulent fluctuations for the three components of
the fluctuations. NVG, HVG and BNVG are compared.

64



5.2 – Local analysis by windows

Figure 5.28: Signals of three components of the turbulent fluctuations for a point
in the turbulent zone.

morphology of the signals, or regardless of the number and intensity of turbulent
spots, that randomly develop throughout the boundary layer.

A first step in this sense has been made by trying to implement a method able
to account for the intermittency of the signal and to count the turbulent spots,
taking inspiration from the research of Hedley and Keffer [54].

A method for turbulent/non-turbulent decisions in an intermittent flow

Among many studies for the identification of the turbulent/non-turbulent interface
in intermittent flows [53, 55, 56, 57, 58, 59], the one from Hedley and Keffer [54]
provides and easy and straightforward method to identify turbulent regions in an
intermittent signal. Here their research has been adapted to our intents; the fol-
lowing implementation adds to the original algorithm steps 3 and 4 that allow to
calculate the number of spots and to fill the gaps in the indicator function.

1. Definition of a Turbulent/Non-Turbulent detection function: a binary indica-
tor function I(t) is constructed, defined as I(t) = 1 if the flow is turbulent,
I(t) = 0 if it is non-turbulent.
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Figure 5.29: Ik,r calculated by windows as their length decrease by 200 time steps
at each point and compared to turbulent fluctuations for the three components of
the fluctuations. NVG, HVG and BNVG are compared.

This classification is based on two criterion functions: S(t), obtained by com-
puting and smoothing (du/dt)2 and S0(t), computed similarly with (d2u/dt2)2,
to enhance sensitivity to high gradients. It has to be noted that the criterion
functions are not global, but strictly depend on the single signal. The binary
decision rule is:

I(t) =

1 if S(t) > C or S0(t) > C0

0 otherwise

where C is the primary threshold, and C0 = C/Cratio is the secondary thresh-
old, typically with Cratio ≃ 0.3, the value that has also been chosen in our
adaptation.

2. Automatic selection of the optimal threshold: to avoid an arbitrary selection,
the optimal threshold is estimated by means of an automatic algorithm based
on the stability of the intermittency of the signal, γ(C), which is defined as
the fraction of time for which I(t) = 1.
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The optimal threshold C∗ is selected where the derivative dγ/dC reaches a
minimum, indicating a region where the indicator is stable with respect to
small changes in threshold. Again, the choice of C∗ depends on the signal.
Alternatively, a minimum desired value for γ, or a maximum allowed threshold
C, can be imposed to prevent unrealistically high threshold values.

3. Counting of the number of turbulent spots: once I(t) has been computed, the
number of turbulent spots, i.e. contiguous regions where I = 1, is determined
by counting the number of transitions from 0 to 1:

Nspot =
Ø

k

[I(tk) − I(tk−1) = 1]

4. Merging of the turbulent spots separated by short gaps: to prevent short
sequences of zeros from splitting a single spot into multiple fragments, a tem-
poral filter is applied. This filter merges two turbulent regions if the number of
zero-valued samples between them is less than or equal to a threshold, that in
this case has been set to 90 time steps. This post-processing step enhances the
robustness of spot identification in the presence of weak signal fluctuations.

As an example, the algorithm has been applied to one of the signals analysed
previously: in figure 5.30 the criterion functions and the two indicator functions
(before and after the filtering) are shown, together with the original signal v′(t).

Through this method it has been possible to quantify the number of spots and
locate them within the domain as depicted in figure 5.31 for the z-averaged values
on the x+ − y+ plane and in figure 5.32 for two values of z on the plane. It is
immediately evident that the areas with the greatest number of spots correspond
to those outside the transition zone, that is to say to the laminar and fully tur-
bulent flow regions. This is because, in these regions, the signals do not actually
present proper turbulent spot, rather they are constituted by quite homogeneous
signals in terms of fluctuations, resulting in a higher number of spots recognised by
the algorithm. It is in fact at the onset of the transition zone that a limited num-
ber of spots can be observed, that is precisely where they start to develop, hence
where the signals start to become more and more intermittent. Approaching the
end of the transition zone, spots merge to form again more homogeneous - but very
fluctuating - signals, hence explaining the increasing of the number of fluctuating
regions in the signals. From a direct comparison with the values of Ik,r, the areas
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Figure 5.30: Application of the Hedley and Keffer inspired algorithm to a signal
belonging to the transition zone, which exhibit two spots. From the top: the
signal v′(t), the criterion functions S(t) and S0(t), the indicator functions I(t) and
Ifiltered(t).

previously identified as more irreversible correspond to the regions with the least
number of spots, confirming the idea of a possible spot-irreversibility correlation
stated in the last few paragraphs.

This is an efficient first step to finally relate time irreversibility to the turbulent
structures characterizing the transitional boundary layer.

68



5.3 – Next studies: correlation between the turbulent spot and irreversibility

Figure 5.31: Comparison of the number of turbulent spots with the irreversibility
ratio Ik,r averaged on z on the x+ − y+ plane.

Figure 5.32: Comparison of the number of turbulent spots with the irreversibility
ratio Ik,r on the x+ − y+ plane for two values of the z coordinate.

5.3 Next studies: correlation between the turbu-
lent spot and irreversibility

An optimal way to conclude this study would be to complete the previous algorithm
with a stratagem to observe each and every spot evolution - its development from
the laminar signal, its growth along the x coordinate in the boundary layer until
its merging with other spots into a completely turbulent signal, how its ‘in’ and

69



Results

‘out’ regions change and behave with respect to the rest of the signal - in a more
automatic way, and correlate it to the results here achieved in the study of time
irreversibility represented by measures Ik and Ik,r.
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Chapter 6

Conclusions

The present work has explored the time irreversibility in a transitional boundary
layer, with the aim of identifying the regions where temporal asymmetry emerges
and understanding its connection to the underlying turbulent structures.

Using data from the JHTDB database and applying both the Horizontal and
Natural Visibility Graph (HVG and NVG) method, the time series of the velocities
have been transformed into graphs, allowing the computation of irreversibility by
means of the Kullback-Leibler divergence between in- and out-degree probability
distributions of the nodes associated to each point of the time series.

The results have revealed that time irreversibility is strongly localised in space
and correlates with the transition zone and areas close to the wall, especially in
the buffer layer. These are the regions mostly characterised by an intermittent
behaviour and strong velocity fluctuations. Nonetheless, it has been shown that
irreversibility does not directly depend on the amplitude of the fluctuations, rather
it is driven by the temporal asymmetry and geometrical features of the signals,
especially at the interface between their laminar and turbulent segments.

A local analysis carried out using moving temporal windows, in fact, has high-
lighted how irreversibility tends to reach higher values in transitional segments of
the signals, rather than in fully developed turbulent or laminar ones. This supports
the hypothesis that time irreversibility is linked to the coexistence and interaction
of coherent structures of the boundary layer, such as streaks and turbulent spots.
The analysis has also underlined the robustness and limitations of the visibility
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graph method when applied to short signals, suggesting the need for complemen-
tary techniques or longer data windows in future works.

Overall, the study demonstrates that time irreversibility could act as an indi-
cation to detect transitional regimes and understand the turbulence onset mecha-
nisms. The use of visibility graphs provides an innovative framework to connect
time-series analysis and complex network theory in the context of fluid dynamics.

Future developments could include an extension of the analysis to spatio-temporal
dynamics, in particular focusing on the evolution of each single turbulent spot and
its contribution to the global irreversibility of the flow. Additionally, the adoption
of more efficient spot detection algorithms could further enhance the precision and
interpretability of the results, contributing to the understanding and theoretical
modeling of turbulent transition.
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Appendix A

Linear theory of stability

The evolution of a small perturbation in a parallel shear flow is governed by the
Orr-Sommerfeld and Squire equations for wall-normal velocity v′ and vorticity η′

[13]:

∂t

v′

η′

 =
∆−1

î
d2

yU∂x + (R−1∆ − U∂x) ∆
ï

0
−dyU∂z R−1∆ − U∂x

 v′

η′


where U(y) is the mean flow profile, R is the Reynolds number, ∆ is the Lapla-

cian operator and ∆−1 its formal inverse.

We look for the modal solutions of equations, by assuming that the flow is
homogeneous in the streamwise and spanwise directions. This allows us to use a
Fourier representation of the perturbations in these directions and in time:v′(x, t)

η′(x, t)

 =
ϕ(y)
χ(y)

 ei(kxx+kzz−ωt)

where ϕ(y) and χ(y) are the wall-normal velocity and vorticity eigenfunction, re-
spectively, kx and kz are the streamwise and spanwise wavenumbers, ω is a frequency
representing the growth rate.

We can then write an eigenvalue problem to solve for the complex frequency ω

and the associated eigenfunctions ϕ(y) and χ(y):

−iω

ϕ(y)
χ(y)

 =
 L 0
−C S

 ϕ(y)
χ(y)


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Linear theory of stability

with
L = ∆−1 {ikxU ′′ + [∆(∆)/R] − ikxU∆}

S = [∆/R − ikxU ]

C = ikzU ′

In the case of boundary layers, the eigenspectrum of Orr–Sommerfeld and Squire
equations is divided into discrete and continous components. The former is con-
stituted by a finite set of eigenvalues ωn, whose associated modes ϕn(y) and χn(y)
are located in the boundary layer and decay in the free-stream [13]. These are
usually associated to classical instabilities such as Tollmien-Schlichting waves and
represent the main mechanisms of orderly transition to turbulence.

The continous component correspond to a continous set of eigenvalues ωky ,
parametrised by a transversal wavenumber ky. These modes are oscillatory in the
free-stream, where they resemble Fourier modes, but decay towards the boundary
layer wall. The penetration depth of each mode depends on its frequency, wavenum-
ber, local Reynolds number and local shear [34], explaining, in a way, the concept
of shear sheltering and how the continous branch of modes plays a fundamental
role in the bypass transition.
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