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Chapter 1

Introduction

1.1 Context and motivations

The stochastic motion of tracer particles in complex media has been the focus of many
recent studies [6, 7, 13]. One important example of complex stochastic motion is in the
presence of obstacles, as in porous media or micro-channels, where diffusion is slowed-down
by entropic traps [10]. While the majority of studies consider reflecting walls, the tracer
particle can also interact with the walls, and, in the case of small range attraction, switch
between attached and detached states. This type of motion also plays a key role in first
passage problems, where it has been shown to enhance particle dispersion in undulating
microchannels [2]. Additionally, it was found that boundary excursions can accelerate
search processes in circular domains [5]. A minimal theoretical framework capturing this
behavior is Bulk-Mediated Surface Diffusion (BMSD): particles temporarily attach to the
surface (adsorption), then detach (desorption), diffuse in the bulk medium (e.g., a liquid),
and re-adsorb. The trajectory between the desorption and the subsequent adsorption is
called a flight [14].

This type of motion has recently been observed experimentally using Total Internal
Reflection Fluorescence Microscopy (TIRFM) techniques, in which the motion can be
observed only near the walls [11, 12, 16], and more recently, through 3D single-molecule
imaging methods [15].

However, no existing theory fully explains the experimental observations, and there
is currently no reliable method for extracting the adsorption and desorption rates. In
particular, experimental results show that the waiting times (between adsorption and des-
orption) are not exponentially distributed, and the measured Mean Square Displacement
(MSD) is either diffusive or subdiffusive — while theoretical arguments predict a scaling of
MSD ∼ t3/2 with time t in some regime [4]. In another theoretical study, the MSD ∼ t5/2
is found at short times and linear at long times with a diffusion coefficient different from
the bulk one [3].

The goal of this internship is to re-examine the properties of diffusion near a sticky
(and flat) surface, and to predict the quantities that are effectively measured in TIRF ex-
periments, to enable the determination of the attachment/detachment rates. In particular,
the following questions are asked :

1. Can experimental waiting times be used to estimate the model parameters?
2. In which regime superdiffusion appears and with what exponent ? Can we provide

an explanation for the Mean-Square Displacement obtained experimentally ?
3. Can the surface distribution of particles be characterised ? And in which regime is

it non-Gaussian ?
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The outline of this report is as follows. First, in the rest of this chapter, the experi-
mental results that one aims to explain are presented, and I introduce the model (with the
results that had already been obtained before the internship). Then, in chapter 2 the ana-
lytical expressions for the apparent waiting times (average and tail of the distribution) are
checked. Finally, in chapter 3 the mean square displacement and the surface distribution
are characterised in different limits.

1.2 Single-Molecule Tracking of Polymer Surface Diffusion

The article “Single-Molecule Tracking of Polymer Surface Diffusion” [12] reports an
experiment in which only intermittent immobilisation and desorption-mediated displace-
ments were observed; the surface diffusion coefficient was below the detection limit, (Ds <
0.002µm2/s). Polymers of various Molecular Weights (MW) were tracked at the aqueous-
solution/solid interface. Because diffusion in the bulk phase is rapid, (D > 10µm2/s, as
reported in the Supplementary Information of the article), single-molecule tracking was
restricted to periods when the polymers were adsorbed. Trajectories were reconstructed
by linking nearest-neighbour positions in consecutive images. A maximum displacement
of Rmax = 2.2µm was allowed between successive adsorption events (to be reasonably sure
that the same particle attached).

(a) (b)

(c) (d)

Figure 1.1: Experimental results from the article [12] (a) Experimental distribution of sur-
face displacements (represented by circles) for a time interval ∆t = 0.1 s; (b) Distribution
of desorption times; (c) Average waiting time as a function of chain length N ; (d) Mean
square displacement as a function of time ∆t. The curves in (a) and (b) were vertically
shifted for clarity. In (a), (b) and (d) the different curves correspond to different molecular
weights of the tracer.
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Figure 1.1(a) shows the distribution of surface displacements. The distributions are
clearly non-Gaussian and become increasingly peaked with growing MW.

The waiting-time distribution between desorption-mediated flights is shown in Fig-
ure 1.1(b). Tracers were considered as having desorbed once displaced of a length r > R
with R = 0.2µm. The distribution exhibits a power-law tail: ψ(τ) ∝ τ−5/2.

The average waiting time as a function of MW is shown in Figure 1.1(c).
Finally, the mean-square displacement (MSD) curves (see, Figure 1.1(d) are approxi-

mately linear, with effective diffusion coefficients ranging from 0.05-1µm2/s, much bellow
the bulk diffusion coefficient.

1.3 Theoretical model

In this section, we present the theoretical model to describe bulk-mediated surface
diffusion (BMSD). The model has three parameters κ, kd and D (but to estimate this last
parameter from experiments, standard methods already exist).

Note that, although κ is called attachment rate, it has dimensions of a velocity. More-
over, it is the same parameter as the ”reactivity parameter” in studies of transport influ-
enced reactions [9].

Figure 1.2: Schematic representation of the bulk-mediated surface diffusion mechanism.
A particle desorbs from the surface, diffuses in the bulk, and subsequently re-adsorbs at a
different surface location.

1.3.1 First formulation

The first formulation consists in considering trajectories as a succession of phases in
the bulk or in the adsorbed state.

In the following, z is the distance to the wall and x, y are the in plane cartesian
coordinates. A planar wall is located at z = 0, to which a particle is initially adsorbed at
the origin (x = y = 0). Surface diffusion is neglected (Ds = 0). After a random residence
time t, drawn from an exponential distribution,

ψd(t) = kde
−kdt, (1.1)

the particle desorbs from the surface and diffuses freely in the bulk for a time t′, after which
it re-adsorbs to the surface. This process can be iterated and is illustrated in Fig. 1.2.
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The displacement PDF in the x-direction between the desorption and readsorption
events, knowing that a time t′ is spent in the bulk, is given by a Gaussian distribution:

Q(x|t′, xd) =
1√

4πDt′
exp

(
−(x− xd)2

4Dt′

)
, (1.2)

where xd is the coordinate along the x-axis before desorption, and D is the bulk diffusion
coefficient. The same applies independently in the y-direction.

To determine the distribution g(t′) of bulk diffusion times, consider a 1D diffusion
process along the z-axis. The particle starts at z = 0 and diffuses with diffusion constant
D. The boundary at z = 0 is partially absorbing and is described by Equation (1.5).

The system is governed by the following equations:

∂tp(z, t) = D∂2zp(z, t), (1.3)

p(z, t = 0) = δ(z), (1.4)

D
∂p

∂z

∣∣∣∣
z=0

= κ p(0, t) (1.5)

where p(z, t) is the probability density to be in the bulk at time t and position z, without
having been adsorbed before t.

By taking the Laplace transform of this set of equations, then using the equality
g(t) = − ∂

∂t

∫∞
0 dz p(z, t) and finally taking the inverse Laplace transformation, the follow-

ing expression can be obtained for g(t) (see section A.1, for the detailed calculation):

g(t) =
κ2

D

[ √
D√
πκ2t

− erfcx

(√
κ2t

D

)]
, (1.6)

where erfcx(x) = ex
2
erfc(x) is the scaled complementary error function.

Since in the experiments one does not have access to the true desorption time, but
to an apparent one, we want to compute the distribution ψ(T ) for the apparent waiting
time T . It is defined as the time it takes for a particle to be re-adsorbed at a distance
r > R from its initial location. More precisely, we define T as the time at which the
particle was last observed on the surface before such a flight. Because an exact analytical
expression is difficult to obtain, ψ(T ) is approximated by the effective distribution ψe(t)
defined as the time PDF before the particle does a flight of size r > R for the first time.
This approximation will be tested in chapter 2.

After some calculations, see section A.2, the following expression is obtained for the
Laplace transform of ψe(t) :

ψ̃e(s) =
P ψ̃d(s)

1− (1− P )ψ̃d(s)p̃(s)
, (1.7)

where f̃(s) =
∫∞
0 dt f(t)e−st is the Laplace transform of f(t),

p(t) =
g(t)

1− P

∫
x2+y2<R2

dxdy Q(x|t)Q(y|t) = g(t)

1− P

(
1− exp

(
− R2

4Dt

))
(1.8)

is the probability density of attachment time given that the flight size is r < R, and

P =

∫
x2+y2>R2

dxdy

∫ ∞

0
dt g(t)Q(x|t)Q(y|t) =

∫ ∞

0
dt g(t)e−R

2/(4Dt) (1.9)

is the probability of a flight of length larger than R.
This formulation will allow us to derive expressions for the behavior of the tail of the

waiting-time distribution and for the effective average waiting time.
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1.3.2 Second formulation

An equivalent formulation of the model is now presented, which will allow us to derive
the surface distribution and the Mean-square displacement (MSD), see chapter 3.

Let pb(r, z, t) be the probability density in the bulk, at position r = (x, y) and distance
z, and ps(r, t) on the surface. The particle starts at r = (0, 0) on the surface. The system
evolves according to:

∂tpb = D
(
∇r + ∂2z

)
pb for z > 0, (1.10)

∂tps = −kd ps + κ pb at z = 0, (1.11)

D
∂pb
∂z

∣∣∣∣
z=0

= κ pb(r, 0, t)− kd ps(r, t), (1.12)

ps(r, 0) = δ(r), (1.13)

pb(r, z, 0) = 0. (1.14)

Taking the Laplace transform in time and the Fourier transform in space yields:

˜̃ps(k, s) =
1

s+
kdD

√
k2 + s/D

κ+D
√
k2 + s/D

, (1.15)

where f̂(k) =
∫
dr f(r)e−ik·r is the Fourier transform of f(r). The detailed calculation is

given in section A.4.
In the next chapters, we will analyse these formulas to derive some properties of the

apparent waiting times and of the surface distribution.
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Chapter 2

Properties of apparent waiting
times

In this chapter the properties of apparent waiting times are investigated. More specifi-
cally, we will focus on the average waiting time and the tail of the waiting time distribution.

2.1 Average waiting time

Since an apparent average waiting time can be measured experimentally, it is use-
ful to derive an analytical expression to extract the model parameters corresponding to
experimental conditions.

The effective average waiting time τe, associated to the distribution ψe(t), can be

obtained using τe = − ∂ψ̃e(s)
∂s

∣∣∣
s=0

and is given by:

τe = ne τd + τ0e , (2.1)

where

ne =
1

P
(2.2)

is the average number of desorption events before a flight of size r larger than R, τd =
1
kd

is the average waiting time to desorb from the surface and

τ0e = ne

∫ ∞

0
dt t g(t)

(
1− e−

R2

4Dt

)
(2.3)

is the effective average waiting time for τd = 0.

2.1.1 Analytical analysis

The Π theorem is used to adimensionalize τe using D and R, leading to

τe(κ,D,R, kd) =
R2

D
τ̃e(κ̃, k̃d), (2.4)

where κ̃ = κR
D and k̃d =

kdR
2

D . Moreover,
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τ̃e(κ̃, k̃d) = ne(
1

k̃d
+ I), (2.5)

where I =
∫∞
0 dt g̃(t)(1−e−

1
4t )t, ne = 1/

∫∞
0 dt g̃(t)e−

1
4t and g̃(t) = κ̃2

(
1√
πtκ̃2
− erfcx(

√
κ̃2t)

)
.

Let us evaluate I and ne in the limits κ→ 0 and κ→∞. In the limit κ̃→ 0 we have :

I
t′′=κ̃2t
=

∫ ∞

0

dt′′

κ̃2
κ̃2
(

1√
πt′′
− erfcx(

√
t′′)

)(
1− e−

κ̃2

4t′′

)
t′′

κ̃2

κ̃→0
=

∫ ∞

0
dt′′
(

1√
πt′′
− erfcx(

√
t′′)

)
1

4
=

1

4
,

ne
t′′=κ̃2t
= 1/

∫ ∞

0

dt′′

κ̃2
κ̃2
(

1√
πt′′
− erfcx(

√
t′′)

)
e−

κ̃2

4t′′
κ̃→0
= 1.

In the opposite limit κ̃→∞,

I
κ̃→∞
=

∫ ∞

0
dt

1

2
√
πκ̃t3/2

(
1− e−

1
4t

)
t =

1

2κ̃
,

ne
κ̃→∞
= 1/

∫ ∞

0
dt

1

2
√
πκ̃t3/2

e−
1
4t = κ̃.

The resulting expression is:

τ̃0e = ne I =

{
1
4 , for κ̃→ 0,
1
2 , for κ̃→∞.

(2.6)

and

ne =

{
1, for κ̃→ 0,

κ̃, for κ̃→∞.
(2.7)

As a consequence, in the limit κ̃ → 0 and when R2

D ≪ τe, the average waiting time
becomes independent of κ and τe ≃ 1

kd
.

2.1.2 Numerical Simulations

To verify whether the analytical expression of the average τe given in Equation (2.1)
is a good approximation or not, numerical simulations are performed. These consist in
generating waiting times in the bulk drawn from g(t′), but also flight sizes from Q(x|t′, xd)
and Q(y|t′, xd). The trajectories were generated until the distance from the initial position
is larger than R (thus giving τ , the apparent average waiting time, associated to distribu-
tion ψ(t)) or until a single flight of size larger than R is obtained (thus giving τe). The
average time at the surface is τd = 0. More details on the numerical simulations can be
found in Appendix B. Simulations confirmed that the form of Equation (2.1) is satisfied
for τ when replacing ne by n and τ0e by τ0, where n is the average number of desorption
events before the particle adsorbs at a distance r larger than R from its initial position
and τ0 is the average waiting time τ when τd = 0.
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Figure 2.1: Dimensionless average waiting times from distributions ψ and ψe for different
values of κRD , with τd = 0. The blue line represents Equation (2.3)

.

The τe obtained from simulations follows the theoretical curve, as expected, see Fig-
ure 2.1. Additionally, we observe that τ is significantly smaller (by about a factor of
two) compared to τe for κ̃ ≫ 1, but they become approximately equal for κ̃ < 1. This is
expected, since the average number of desorption events tends toward one for κ̃ < 1, and
the two distributions are equivalent when the particle escapes after a single desorption.
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Figure 2.2: Average number of desorptions n (from the initial position) and effective
number ne (from the last desorption point) before adsorption at a distance r > R, as a
function of κ̃ = κR

D . The blue line follows Equation (2.2).

Using the same simulation framework as for waiting times, we sampled the number
of desorptions. Figure 2.2 shows that the theoretical prediction matches the simulation
results for ne. Additionally, the average number n corresponds to the analytical result for
κ̃ < 1, but differs (by slightly less than a factor of two) when κ̃ > 1.

In conclusion, Equation (2.1) could be used to estimate the model parameters when
κ̃ < 1.

2.2 Tail of the PDF of apparent waiting times

In the experiments, the tail of the apparent waiting time distribution is found to decay
as t−5/2. The goal of this section is to verify whether this tail behavior can be fitted to
estimate the parameters of the model.

An analytical expression for the waiting time distribution in the limit t → ∞ can be
obtained from Equation (1.7); see section A.3 for the detailed calculation.

ψe(t)
t→∞
= ce t

−5/2 (2.8)

where

ce =
R2

8κ
√
πDP

=

{
R3

8D3/2
√
π

for κ→∞,
R2

8
√
πDκ

for κ→ 0.
(2.9)

Additionally, the survival probability Se(t) = Prob(Effective desorption time > t) in the
long-time limit is given by:

Se(t) =
2

3
ce t

−3/2. (2.10)
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2.2.1 Numerical validation

Numerical simulations were conducted to obtain the apparent and effective waiting
time distribution, as for the average waiting time. More details are given in Appendix B.
The objective was to compare the tails of the distributions ψ(t) and ψe(t). The simulations
were performed at τd = 0, since the tail coefficient ce is expected to be independent of τd.
This assumption was tested for c and seems to be accurate for all κ.

Figure 2.3: Coefficient of the adimensional tail of the apparent distribution c̃ = D3/2c
R3 or

effective c̃e =
D3/2ce
R3 as a function of κ̃ = κR

D for τd = 0. The analytical expression for the
blue line is given in Equation (2.9).

Firstly, it can be observed in Figure 2.3 that the analytical curve and the simulation
data for ψe are in good agreement, as expected. Moreover, for κ̃ < 10, the coefficients c̃
obtained from both ψ and ψe match closely, indicating that the analytical approximation
is valid in this regime.

However, for κ̃ > 10, the two distributions appear to be different, c is slightly below
the analytical curve of about 40%.

As a consequence, it should be possible to estimate the value of κ̃ from experimental
measurements of c̃e if κ̃ < 1, where the analytical model remains sensitive to changes in
κ̃. For larger values of κ̃, the coefficient c̃e becomes approximately constant, making the
parameter estimation ineffective.
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Chapter 3

Surface displacements

In this chapter we investigate the properties of the surface distribution. In what
follows, we will first obtain the MSD among particles on the surface at a given time and
then present analytical results for their PDF in the fast exchange limit.

3.1 Mean square displacement

The MSD ⟨x2⟩s(t) among particles on the surface is defined as :

⟨x2⟩s(t) =
∫∞
−∞ dx

∫∞
−∞ dy x2ps(r, t)∫∞

−∞ dx
∫∞
−∞ dy ps(r, t)

=
L−1
s [ ˜⟨x2⟩(s)](t)

L−1
s [ ˜̂ps(k = (0, 0), s)](t)

(3.1)

with L−1 the inverse Laplace transform operator,

˜⟨x2⟩(s) = −∂
2 ˜̂ps(k = (kx, ky), s)

∂k2x

∣∣∣∣
kx=ky=0

=
D2κkd√

Ds
(
κs+D(kd + s)

√
s
D

)2 (3.2)

and
˜̂ps(k = (0, 0), s) =

1

s+ kd
√
Ds

κ+
√
Ds

(3.3)

Note that, only ⟨x2⟩s(t) is computed as we know that ⟨r2⟩s(t) = 2⟨x2⟩s(t) due to the
symmetries of the surface distribution. In the next sections of this chapter, the MSD
will first be characterised analytically and then be verified numerically. Finally, to try to
better understand experimental results an effective diffusion constant will be defined.

3.1.1 Asymptotic Expansions and Regime Transitions

The behavior of the normalized MSD at small and large times is summarized in Ta-
ble 3.1. Results are also provided in the Fast Exchange (FE) limit in which κ, kd → ∞
while maintaining the ratio δ = κ/kd = O(1). In this limit, the Laplace expressions (3.2)
and (3.3) reduce to:

˜⟨x2⟩
FE

(s) =
D3/2δ

√
s(δs+

√
Ds)2

, ˜̂pFEs (k = (0, 0), s) =
1

s+
√
Ds
δ

The asymptotic behaviors are obtained by evaluating the Laplace transforms in the
limits s→∞ (for t→ 0) and s→ 0 (for t→∞), followed by inverse Laplace transforma-
tion.
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f(t) t→ 0 t→∞
Ps(t) 1 κ√

πDkd
t−1/2

PFE
s (t) 1 δ√

πD
t−1/2

⟨x2⟩s(t) 8
√
Dκkd

15
√
π
t5/2 2Dt

⟨x2⟩FEs (t) 4D3/2

3δ
√
π
t3/2 2Dt

Table 3.1: Asymptotic expansions of the MSD on the surface ⟨x2⟩s(t) and of the probability
to be on the surface Ps(t) = p̂s(k = (0, 0), t). Results in the fast exchange limit (κ, kd →∞,
κ/kd = δ = O(1)) can be identified by FE.

The short-time MSD is consistent with the expression derived in [3], in the absence of
surface diffusion (Ds = 0).

Three distinct regimes of MSD behavior can be identified. The transition times are
estimated as follows for kd ≫ D

δ2
:

• The time t5/2→3/2 is determined by equating ⟨x2⟩s(t) and ⟨x2⟩FEs (t) at short times,
using κ = δkd.

• The time t3/2→1 is obtained from the condition ⟨x2⟩FEs (t→ 0) = ⟨x2⟩FEs (t→∞).

The corresponding estimates are:{
t5/2→3/2 =

5D
2δ2k2d

t3/2→1 =
9πδ2

4D

A similar calculation can be done for kd ≪ D
δ2
. Finally the following results are

obtained:

⟨x2⟩s(t) =


8
√
Dκkd

15
√
π
t5/2 for t ≲ D

δ2k2d
4D3/2

3δ
√
π
t3/2 for D

δ2k2d
≲ t ≲ δ2

D

2Dt for t ≳ δ2

D

for kd ≫
D

δ2
, (3.4)

⟨x2⟩s(t) =


8
√
Dκkd

15
√
π
t5/2 for t ≲ D1/3

δ2/3k
4/3
d

2Dt for t ≳ D1/3

δ2/3k
4/3
d

for kd ≪
D

δ2
(3.5)

The t3/2 and t5/2 regimes of the MSD had already been identified in separate papers[3,
4], but this result clarifies the conditions under which they appear. Also, the prefactor for
the t3/2 regime was not known.

3.1.2 Numerical Validation

The analytical results are validated in Figure 3.1, where the inverse Laplace transforms
of Equation (3.2) and Equation (3.3) are computed numerically using the Euler inversion
algorithm [1].

As expected, all three regimes are observed for k̃d ≫ 1, and the predicted transition
times seems to agree with numerical simulations. Furthermore, in the regime k̃d ≪ 1,
a direct transition from the t5/2 regime to the linear regime is observed, as described in
(3.5).
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Figure 3.1: Different regimes of the MSD as a function of t̃ = Dt
δ2

for k̃d = kdδ
2

D . The
dotted lines are obtained by numerically computing the inverse Laplace transform as
written in Equation (3.1), while the solid lines correspond to the analytical expressions
for the different regimes of the MSD.

3.1.3 Effective diffusion constant

In the experiment presented in section 1.2 a linear behaviour is obtained for the MSD
to which an effective diffusion constant is associated. According to the model, when the
MSD increases linearly with time the slope should be 4D (for < r2 >), which seems to
be problematic as according to the article D > 10µm2/s but the experimental effective
diffusion constant (obtained by fiting the MSD) Deff, exp < 1 µm2/s. Additionally, the
surface diffusion should not explain this behaviour, as it is significantly smaller Ds <
0.002µm2/s.

To try to solve this apparent inconsistency, we need to obtain an analytical expression
for an effective diffusion constant that would take into account the fact that flights cannot
be larger then a distance Rmax. The exact calculation is still an ongoing work. But we
guessed the expression (3.6) because with the constraint Rmax the variance of r = |r| and
the mean waiting time between two adsorptions are finite.

Deff (Rmax) =
⟨x2 + y2, Rmax⟩

4⟨t, Rmax⟩
=

∫∞
0 dtg(t)[4Dt− e−

R2
max
4Dt (R2

max + 4Dt)]

4( 1
kd

+
∫∞
0 dtg(t)t(1− e−

R
max2
4Dt ))

, (3.6)

where ⟨x2 + y2, Rmax⟩ represents the average size of one flight which is smaller then Rmax
and ⟨t, Rmax⟩ is the average waiting time between two subsequent desorptions when the
flight size is smaller than Rmax.

As it can be seen in Figure 3.2 the expression (3.6) is in good agreement with the
diffusion coefficients obtained by doing simulations (and fitting the MSD with a linear
curve at long time).
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Figure 3.2: Effective diffusion constant D̃eff =
Deff

D as a function of k̃d =
kdδ

2

D for different

values of R̃max = Rmax
δ . The numbers in the legends are the values of R̃max for which

simulations are done. The analytical curve is given by Equation (3.6)

3.2 Non Gaussian distribution of displacement in a simpli-
fied model

In this section the goal is to predict the surface distribution of particles in the fast
exchange limit (defined in subsection 3.1.1). In this case the Fourier-Laplace transform of
the jump distribution, Equation (1.15), becomes:

˜̂pFEs (k, s) =
1

s+ D
δ

√
k2 + s

D

(3.7)

In order to invert the distribution numerically, an analytical expression for ˜̂pFEs (k, t) =
p̂FEs (k = (k, 0), t) must first be obtained using the residue theorem [8]. More precisely,
the poles and branch cuts of the integrand are first identified. Then, a suitable contour
is defined, the residues are calculated, and partial fraction decomposition is applied to
evaluate the remaining integral. The detailed calculation is given in Appendix C. The
final result is :

P̂s
FE

(k, t) =e−W+

√
D t
δ

√
1 + 4δ2k2 − 1√
1 + 4δ2k2

+
e−Dk

2t

√
D
δ

√
1 + 4δ2k2

[W−erfcx(W−
√
t)

−W+erfcx(W+

√
t)] (3.8)

with W± =
√
D

2δ |1∓
√
1 + 4δ2k2|
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In what follows, we will first derive asymptotic analytical expressions for the surface
distribution and then verify them with numerical calculations.

3.2.1 Asymptotic analytical PDF of displacements

We could not perform the inverse Fourier transform of Equation (3.8) since e−Dk
2t

seemed to lead to divergences of the contour integrals. Instead, by computing ps(x, t) =∫∞
−∞ dy ps(r, t) numerically, taking the inverse Fourier transform of Equation (3.8), it is
found that the surface distribution at short time behaves as :

pFEs (x, t)
t→0
=

{
1
tϕ(

x
t ) for x = O(t)

ψ( x√
t
) for x = O(

√
t)

(3.9)

and at long time, for x = O(
√
t) :

pFEs (x, t)
t→∞
=

1

t
H(

x√
t
). (3.10)

where ϕ, ψ, H are scaling functions which need to be identified.
As a consequence the following equation should be respected at short time:

limx1=
x
t
→∞

1
tϕ(x1) = limx2=

x√
t
→0 ψ(x2), otherwise the different regimes in Equation (3.9)

do not match for t≪ x≪
√
t. This leads to :

ϕ(x1) =
A
x21

for x1 →∞
ψ(x2) =

A
x22

for x2 → 0
. (3.11)

Let us first try to obtain the expression of ϕ and ψ from Equation (3.8). To do that
we use the following : the t→ 0, x ∼ tα limit for the distribution can be found from the
t→ 0, k ∼ t−α limit of it’s Fourier transform. We proceed as follow:

P̂FE
s (k =

k̃

t
, t) = 2

∫ ∞

0
dx cos(

k̃

t
x)ps(x, t)

= 2(

∫ ϵ

0
dx cos(

k̃

t
x)

1

t
ϕ(
x

t
) +

∫ ∞

ϵ
dx cos(

k̃

t
x)ψ(

x√
t
))

where we split the distribution ps(x, t) between the two regimes (x = O(t) and x = O(
√
t))

by introducing ϵ satisfying t1/2 >> ϵ >> t.
Assuming the second term in the sum to give a negligible contribution in the t → 0

limit

P̂FE
s (k =

k̃

t
, t)

x1=
x
t= 2

∫ ϵ/t

0
dx1 cos(k̃x1)ϕ(x1)

The upper bound of the integral in x1 can safely be extended to +∞ when t→ 0 due
to the expected behaviour of ϕ(ξ) as x1 →∞. Thus :

P̂FE
s (k =

k̃

t
, t)

t→0
= ϕ̂(k̃)

From the expression above ϕ can be obtained by taking the leading order of the left
hand side in the t→ 0 limit and then doing the inverse Fourier transform. The final result
is:

ϕ(x1) =
Dδ

π(D2 + δ2x21)
(3.12)
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Now that the expression for ϕ has been found the expression for ψ can be obtained, in
a similar manner:

P̂s
FE

(k =
k̃√
t
, t) = 2(

∫ ϵ

0
dx cos(

k̃√
t
x)

1

t
ϕ(
x

t
) +

∫ ∞

ϵ
dx cos(

k̃√
t
x)ψ(

x√
t
))

= 2{
∫ ∞

0
dx cos(

k̃√
t
x)

1

t
ϕ(
x

t
) +

∫ ∞

ϵ
dx cos(

k̃√
t
x)[ψ(

x√
t
)− 1

t
ϕ(
x

t
)]}

where we used
∫ ϵ
0 dx cos(

k̃√
t
x)1tϕ(

x
t ) =

∫∞
0 dx cos( k̃√

t
x)1tϕ(

x
t )−

∫∞
ϵ dx cos( k̃√

t
x)1tϕ(

x
t ).

Now by taking x1 =
x
t , x2 =

x√
t
we get:

P̂s
FE

(k =
k̃√
t
, t) = 2{

∫ ∞

0
dx1 cos(k̃x1

√
t)ϕ(x1) +

∫ ∞

ϵ/
√
t
dx2
√
t cos(k̃x2)[ψ(x2)−

1

t
ϕ(
x2√
t
)]}

By taking the t→ 0 limit ϕ( x2√
t
) = A t

x22
and thus the lower bound of the second integral

can be safely set to 0. So the following equation is obtained:

P̂s
FE

(k =
k̃√
t
, t) = 1− |k̃|

√
t+
√
tĜ(k̃),

where G(x2) = ψ(x2) − A
x22

and ϕ̂(k̃
√
t) = 1 − |k̃|

√
t + O(t) are used. By expanding the

equation above in the t→ 0 limit we get an equation for Ĝ(k̃) from wich ψ can be obtained:

ψ(x2) =
D e−

x22
4D

πδx22
−

Γ(0,
x22
4D )

4πδ
(3.13)

where Γ(0, x) =
∫∞
x dt e

−t

t .
Now that we obtained ϕ and ψ, let us obtain H, as follow :

pFEs (x = x2
√
t, t) =

1

2π

∫ ∞

−∞
dk cos(k x2

√
t) p̂s(k, t) (3.14)

k̃=kx2
√
t

=
1

πx2
√
t

∫ ∞

0
dk̃ cos(k̃) p̂s(

k̃

x2
√
t
, t) (3.15)

Then, by keeping only the leading order of the long time expansion of p̂s(
k̃

x2
√
t
, t) the

integral can be computed. Which allows us to obtain:

H(x2) =
δe−

x22
4D

2πD
(3.16)

Note that the constraints of Equation (3.11) are satisfied and that A = D
πδ . Moreover,

the normalised distribution on the surface, in the long time limit, for x = O(
√
t), can be

deduced from H(x2) and is Gaussian :

pFE,Ns (t, x) =
pFEs (t, x)

Ps(t)

t→∞
= N (0, 2Dt) (3.17)

where Ps(t) is the probability to be on the surface (given for t → ∞ in Table 3.1) and

N (0, 2Dt) = e−
x2

4Dt√
4πDt

.
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3.2.2 Numerical Validation

Now that the distribution has been characterised analytically in three different regimes
let’s compare them to numerical calculations. The surface distribution is obtained numer-
ically by using fast Fourier transform on Equation (3.8).

(a)

(b)

(c)

Figure 3.3: Surface distribution of particles at short time for (a) x = O(t), (b) x = O(
√
t)

and (c) at long time with x = O(
√
t). The analytical curves in (a), (b) and (c) are given

respectively by the adimensionalised Equation (3.12), (3.13)and (3.16). The numbers in
the legends are the values of t̃ = Dt

δ2
for which the distribution is evaluated, by numerically

computing the inverse Fourier transform of Equation (3.8).

As can be seen in Figure 3.3 the analytical expressions obtained for the distributions
ϕ(xt ), ψ(

x√
t
) and H( x√

t
) are in very good agreement with the numerical results. The fact

that the blue points are spread in Figure 3.3( a) is due to the numerical errors arising for
large x2 and short t.

So, the behaviour of the surface distribution, in the fast exchange limit has been
characterised at short time for two different regimes and at long time in one regime.
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Chapter 4

Conclusion

In the introduction, we stated that the experimental results showing Bulk mediated
surface displacements were poorly understood by the theory. For this reason, in this work
we tried to provide explanations for the experimental results, using the simplest model for
BMSD.

First, we tried to provide a method for extracting the parameters of the model from
the average and the tail distribution of the apparent waiting times. From numerical
simulations, it appears that the parameters can be estimated when κ̃ < 1, as the analytical
approximation we obtained is valid only in this regime.

Then, the MSD was characterized in different regimes, depending on time and the
desorption rate kd. The results suggest that the different time scalings of the MSD, already
predicted by theoretical arguments at short times, could correspond to different regimes
of kd. Moreover, we presented a first attempt to explain the effective MSD observed in
experiments.

Finally, we characterized the surface distributions in the fast exchange limit, at both
short and long times. At short times, the distribution is non-Gaussian, both in its peak
and its tail. However, at long times, the normalized surface PDF becomes Gaussian.

To conclude this report, our results suggest that the model we used can provide a
qualitative explanation for the experimental observations. However, to achieve a quanti-
tative explanation, further work is needed: first, to derive an analytical expression for the
effective MSD (or diffusion constant), and then to fit the two model parameters (κ and kd)
to the apparent waiting time distribution (for example), and finally to check whether the
predicted effective diffusion constant is correct. Lastly, it would be interesting to obtain
the general surface distribution without taking the fast exchange limit.
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Appendix A

Preliminary calculations

In this chapter of the Appendix, preliminary computations, that had been obtained
before the internship, are presented.

A.1 Derivation of the waiting time distribution for bulk dif-
fusion

The distribution of waiting time g(t) to readsorb after a desorption is computed, in
the followi. To obtain g, we consider p(z, t) the PDF of z for particles that have not
been absorbed at t, which satisfies Equation (1.3)–(1.5). Taking the Laplace transform of
Equation (1.3) with respect to the position z, with u the name of the Laplace variable, we
obtain

∂tp̃(u, t) = D[u2p̃(u, t)− ∂zp(0, t)− u p(0, t)]. (A.1)

Then the boundary condition (1.5) is used :

∂tp̃(u, t) = Du2p̃(u, t)− κ p0(t)−Du p0(t) (A.2)

where we have defined p0(t) = p(z = 0, t). Now we take the Laplace transform with
respect to the variable t, with s the name of the Laplace variable:

s ˜̃p(u, s)− 1 = Du2 ˜̃p(u, s)− κ p̃0(s)−Dup̃0(s). (A.3)

Since p(z, t) decays at long z, its Laplace transform must be finite for all u. Therefore,
writing the above equation for s = Du2 leads to

p̃0(s) =
1

κ+
√
sD

. (A.4)

Inserting this value back into Eq. (A.3) leads to

˜̃p(u, s) =

√
D

(
√
s+
√
Du)(κ+

√
sD)

. (A.5)

The probability that the particle is not adsorbed at t is S(t) =
∫∞
0 dzp(z, t) = p̃(u = 0, t),

so that with g(t) = −∂tS, we have

g̃(s) = 1− s ˜̃p(u = 0, s) =
κ

κ+
√
sD

. (A.6)
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Inverting the Laplace transform leads to an analytical expression for the distribution of
adsorption times, right after a desorption event:

g(t) =
κ2

D

[ √
D√

π t κ2
− erfcx

(√
κ2t

D

)]
, (A.7)

A.2 Computation of the Laplace transform of the effective
waiting time distribution

In the following, the Laplace transform of the effective waiting time distribution is
obtained. Consider a scenario where a random walk has a probability P to end at each
flight. Then let us call pn the probability that the escape occurs at the nth flight, with
n ≥ 1. In this case

pn = (1− P )n−1P (A.8)

Now, let us call p(t) the probability that a jump starting from the origin lasts a time t
given that it does not escape out of the disk, hence

p(t) =
g(t)

1− P

∫
|r|<R

dr
e−r

2/(4Dt)

4πDt
=

g(t)

1− P
2π

∫ R

0
dr r

e−r
2/(4Dt)

4πDt

=
g(t)

1− P

(
1− e−R2/(4Dt)

)
. (A.9)

Now, consider p∗(t) the probability density that the sum of the detachment time and of
the jump time given that the size of the flight is less than R:

p∗(t) =

∫ t

0
dt′ψd(t

′)p(t− t′) (A.10)

with ψd(t) = e−kdtkd the distribution of desorption times. Call Fn(T ) the distribution of
the time before the last flight, given that the escape occurs at the flight number n. Then

F1(T ) = ψd(T ), (A.11)

Fn(T ) =

∫
dt1dt2....dtnψd(t1)p

∗(t2)....p
∗(tn)δ(T − t1 − t2....− tn) (n ≥ 2) (A.12)

Hence, taking the temporal Laplace transform leads to

F̃n(s) = ψ̃d(s)[p̃
∗(s)]n−1 = [ψ̃d(s)]

n[p̃(s)]n−1 (n ≥ 1) (A.13)

Then the distribution of the time elapsed before the last flight is

ψe(T ) =
∞∑
n=1

pnFn(T ), (A.14)

so that

ψ̃e(s) =
∞∑
n=1

(1− P )n−1P [ψ̃d(s)]
n[p̃(s)]n−1 (A.15)

and thus

ψ̃e(s) =
Pψ̃d(s)

1− (1− P )ψ̃d(s)p̃(s)
(A.16)
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A.3 Analytical calculation of the tail of the effective waiting
time distribution

The waiting time distribution ψe(t) in the limit of t → ∞ can be obtained from
Equation (1.7). First, p̃(s) has to be evaluated as s→ 0 :

p̃(s) =

∫ ∞

0
dte−st

g(t)

1− P
(1− e−

R2

4Dt ) = 1− τpb s+
∫ ∞

0
dt(e−st − 1 + ts)

g(t)

1− P
(1− e−

R2

4Dt )

(A.17)

u=st
= 1− τpb s+

∫ ∞

0

du

s
(e−u − 1 + u)

g(u/s)

1− P
(1− e−

R2

4D(u/s) ) (A.18)

s→0
= 1− τpb s+

R2

6(1− P )κ
√
D
s3/2 +O(s2) (A.19)

Where τpb =
∫∞
0 dt t g(t)1−P (1 − e

− R2

4Dt ) the expression g(t)
t→∞
=

√
D

2t3/2κ
√
π
is used. Moreover,

we know that ψ̃d(s) =
kd
kd+s

.

Thus we can expand ψ̃e(s) at s→ 0 :

ψ̃e(s) =
Pψ̃d(s)

1− (1− P )ψ̃d(s)p̃(s)
s→0
= 1− τes+

R2

6κ
√
DP

s3/2 +O(s2). (A.20)

Combining the following equation∫ ∞

0
dt ψe(t)(e

−st − 1 + st)
t′=st
=

∫ ∞

0

dt′

s
ψe(

t′

s
)(e−t

′ − 1 + t′) (A.21)

with the anzatz ψe(t)
t→∞
= cet

−5/2 and taking the limit s→ 0, we obtain :∫ ∞

0
dt′

ce s
3/2

t′5/2
(e−t

′ − 1 + t′) =
R2

6κ
√
DP

s3/2. (A.22)

After computing the integral, the coefficient ce is found. Finally the tail of the distri-
bution is given by :

ψe(t)
t→∞
= ce t

−5/2.

where ce =
R2

8κ
√
πDP

A.4 Computation of Fourier-Laplace transform of the sur-
face distribution

In the following the Fourier-Laplace transform of the surface distribution is obtained
from Equation (1.10)–(1.14).

We first take the Laplace transform in position z (with u the Laplace variable) we
obtain

∂tp̃b(r, u, t|σ) = D(u2 +∇2
r)p̃b(r, u, t|σ)−D∂zpb(r, 0, t|σ)−Dupb(r, 0, t|σ)] (A.23)

which can also be written

∂tp̃b(r, u, t|σ) = D(u2 +∇2
r)p̃b(r, u, t|σ)− κ p0(r, t|σ)−Dup0(r, t|σ) + kdps(r, t|σ)

(A.24)
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where we have defined p0(r, t|σ) = pb(r, z = 0, t|σ). Now we take the Laplace transform
for the variable t with s the name of the Laplace variable, and the Fourier transform of r
with k the name of the Fourier variable

s ˜̂pb(k, u, s|σ) = D(u2 − k2)˜̂pb(k, u, s|σ)− κ ˜̂p0(k, s|σ)−Du ˜̂p0(k, s|σ) + kd ˜̂ps(k, s|σ)
(A.25)

s ˜̂ps(k, s|σ)− 1 = κ ˜̂p0(k, s|σ)− kd ˜̂ps(k, s|σ) (A.26)

Since ˜̂pb(k, u, s) cannot be infinite for any value of u (because it does not diverge for large

z), applying the above equation for u =
√
k2 + s/D leads to

−κ ˜̂p0(k, s|σ)−D
√
k2 +

s

D
˜̂p0(k, s|σ) + kd ˜̂ps(k, s|σ) = 0 (A.27)

so that

˜̂p0(k, s|σ) =
kd

κ+D
√
k2 + s

D

˜̂ps(k, s|σ). (A.28)

Using Eq. (A.26) we get :

(s+ kd)˜̂ps(k, s|σ)− 1 =
κkd

κ+D
√
k2 + s

D

˜̂ps(k, s) (A.29)

so that

˜̂ps(k, s|σ) =
1

s+ kd − κkd
κ+D
√
k2+ s

D

=
1

s+
kdD
√
k2+ s

D

κ+D
√
k2+ s

D

. (A.30)
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Appendix B

Numerical simulations

During the internship, numerical simulations were done by generating random numbers
from ψd(t), g(t) and Gaussian distributions. It can be done using the equality

X = CDF−1
q (U) (B.1)

where U , X are random variables respectively distributed according to a uniform distribu-
tion between 0 and 1 and q(x). Moreover, CDF−1

q is the inverse Cumulative Distribution
Function (CDF) of q(x) (distribution from which we want to generate samples).

Using Equation (B.1), waiting times t from ψd(t) are generated as follow : t = − 1
kd

lnU .

But for t′ ∼ g(t′) since the inverse CDF of g(t) cannot be obtained analytically, samples
are obtained by finding the time t′ such that U − CDFg(t) = 0 numerically.

Finally, random variables can be generated from more complex distribution such as
ψ(t) and ψe(t) as described in Algorithm 1 and 2

Algorithm 1 ψ(t)

1: function ψ(κ,R,D, τd)
2: x← 0; y ← 0
3: tψ ← 0;

4: while
√
x2 + y2 < R do

5: td ∼ ψd(t | τd)
6: tψ ← tψ + td + tg
7: tg ∼ g(t | κ,D)
8: x← x+N (0, 2Dtg)
9: y ← y +N (0, 2Dtg)

10: end while
11: return tψ
12: end function

Algorithm 2 ψe(t)

1: function ψe(κ,R,D, τd)
2: tψe ← 0

3: while
√
x2 + y2 < R do

4: td ∼ ψd(t | τd)
5: tψe ← tψe + td + tg
6: tg ∼ g(t | κ,D)
7: x ∼ N (0, 2Dtg)
8: y ∼ N (0, 2Dtg)
9: end while

10: return tψe

11: end function
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Appendix C

Inverse Laplace transform of the
surface distribution in the FE limit

In this section the inverse Laplace transform of Equation (3.7) is computed, but first
branch cuts are defined.

To make multi-valued functions single-valued branch cuts, in which a function is not
defined needs, need to be introduced . An example of such a function would be

√
z =
√
reiθ = r

1
2 ei

θ
2

since for z ∈ C there are two possible values of
√
z : r

1
2 ei

θ
2 and r

1
2 ei

θ
2
+π.

From now on the adimensional version of Equation (3.7) (equivalent to taking D =
δ = 1) is used.

˜̂pFEs (k, s) =
1

s+
√
k2 + s

. (C.1)

The inverse Laplace transform of Equation (C.1) can be writen as :

p̂s
simp(k, t) =

∫ L+i∞

L−i∞
ds
est

2πi

1

s+
√
k2 + s

(C.2)

where L ∈ R is larger than the real part of all the singularities of f(s) = est

2πi
1

s+
√
k2+s

. We

can notice that f(s) has one branch point in k2 + sbranch = 0 ⇐⇒ sbranch = −k2, we will
choose the branch cut such that −π < arg(k2 + s) < π. Moreover, the function has one

pole which can be found by solving s2 = k2 + s which gives s± = 1±
√
1+4k2

2 but it can be

checked that the only pole is s− = 1−
√
1+4k2

2 .
Based on the position of the branch point and of the pole, we choose to define the

integration contour as illustrated in Figure C.1.
Using the residue theorem [8] we can write :

p̂FEs (k, t) =

∫
c1

ds f(s) = 2πiRes(f, s−)−
∫
c2+c3+c4+c5+c6

ds f(s) (C.3)

Let us try to show that the c2, c4 and c6 integrals are equal to 0 :

|
∫
c2

dsf(s)| s=Re
iθ+L
= |

∫
c2

dθf ′(θ)| ≤
∫ π

π/2
dθ|R i eiθ

e(Re
iθ+L)t

2πi

1

Reiθ + L+
√
k2 +Reiθ + L

|
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Figure C.1: Contour integration used to obtain the inverse Laplace transform of Equa-
tion (C.1). The contour is divided in different parts called c1 to c6, it contains the pole
s− and doesn’t cross the branch cut (located between s = −k2 and s = −∞). The circle
arcs c2 and c6 are at a distance R from the center located in s = L.

R→∞
=

∫ π

π/2
dθR

e(R cos(θ)+L)t

2π

1

R
=
eLt

2π

∫ π

π/2
dθeR cos(θ)t = 0

for finite t, where f ′(θ) = f(s = Reiθ + L) and |Reiθ + L +
√
k2 +Reiθ + L| R→∞→ R are

used. Similarly |
∫
c6
dsf(s)| = 0. Now for c4 :

|
∫
c4

ds f(s)| s=re
iθ−k2
= |

∫
c4

dθf ′(θ)| ≤
∫
c4

dθ|f ′(θ)|

≤
∫ −π/2

π/2
dθ |r i eiθ e

(reiθ−k2)t

2πi

1

reiθ − k2 +
√
k2 + reiθ − k2

|

r→0
≤ re−k

2t

2πk2

∫ −π/2

π/2
dθer cos(θ)t = 0.

Note that it is also equal to 0 when k = 0.
Thus we only have to evaluate the c3 and c5 integrals. Let’s first evaluate the c3

integral :∫
c3

f(s)ds =

∫ −k2

−∞
ds
est

2πi

1

s+
√
k2 + s

=

∫ −k2

−∞
ds
est

2πi

1

s+
√
|k2 + s| i

u=s+k2
=

1

2πi

∫ 0

−∞
du

e−k
2teut

u− k2 + i|u|1/2
v=−u
=

1

2πi

∫ ∞

0
dv

e−k
2te−vt

−v − k2 + iv1/2
.

Similarly, with the appropriate phase and bounds the c5 integral gives :∫
c5

f(s)ds = − 1

2πi

∫ ∞

0
dv

e−k
2te−vt

−v − k2 − iv1/2
.
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Thus : ∫
c3+c5

dsf(s) = −e
−k2t

π

∫ ∞

0
dV

e−V t
√
V

(V + k2)2 + V
.

Partial fraction decomposition is used :

1

(V + k2)2 + V
=

1√
1 + 4k2

(
1

V − V+
− 1

V − V−
) (C.4)

where V± = −(1∓
√
1+4k2

2 )2.
This last simplification permits the computation of the integral :∫

c3+c5

dsf(s) = − e−k
2t

√
1 + 4k2

(
√
−V−erfcx(

√
−V−t)−

√
−V+erfcx(

√
−V+t)) (C.5)

Now the residue is evaluated, since the pole is inside the integration contour. To do so
we use the following theorem [8] : given a function f(z) = g(z)

h(z) , where g and h are both

holomorphic in a neighbourhood of c, and where h(c) = 0, h′(c) ̸= 0. Then

Res(f, c) =
g(c)

h′(c)
.

We already know h(s−) = s− +
√
k2 + s− = 0. h′(s−) = 1 + 1

2
√
k2+s−

=
√
1+4k2√

1+4k2−1
̸=

0 ∀k ∈ R. Thus we get Res(f, s−) =
e
1−

√
1+4k2

2 t

2πi

√
1+4k2−1√
1+4k2

Finally, Equation (C.3) becomes :

P̂FE
s (k, t) = e−

√
−V+ t

√
1 + 4k2 − 1√
1 + 4k2

+
e−k

2t

√
1 + 4k2

(
√
−V−erfcx(

√
−V−t)−

√
−V+erfcx(

√
−V+t)).

Putting dimensions back into the equation and simplifying the notation :

P̂FE
s (k, t) =e−W+

√
D t
δ

√
1 + 4δ2k2 − 1√
1 + 4δ2k2

+
e−Dk

2t

√
D
δ

√
1 + 4δ2k2

(W−erfcx(W−
√
t)

−W+erfcx(W+

√
t))

with W± =
√
D

2δ |1∓
√
1 + 4δ2k2|.
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