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Summary

Today, unmanned aerial vehicles (UAVs) are gaining more and more interest, their
velocity and precision make them a powerful tool for a wide range of applications,
from aerial photography to search and rescue operations. These systems heavily
rely on the global navigation satellite system (GNSS) as primary source of position
information for navigation. Without reliable satellite signals, a UAV’s ability to
maintain accurate positioning and autonomy is compromised, for this reason the
UAVs are not suitable to work in environments where GNSS signals are either weak
or unavailable, so-called GNSS-denied environments. However, there are many
operations, such as indoor and urban inspections, that take place in GNSS-denied
environments that would benefit from the use of a drone.

The design and development of UAV software capable of enabling reliable nav-
igation in the absence of GNSS signals has become an area of intense research.
Currently, most of the solutions to this problem leverage alternative sensor modal-
ities such as visual odometry, LiDAR, inertial measurement units (IMUs) and
barometric pressure sensors. These modalities, in conjunction with advanced es-
timation algorithms, ensure autonomous flight. Another possible solution is to
triangulate the position of the UAV using radio signals to measure the distance from
known points, but the estimate could be inaccurate due to obstacles in GNSS-denied
environments. The ultra-wideband (UWB) technology is an innovative technology
with low power consumption that implements a communication defined by a wide
frequency spectrum, this characteristic offers high precision and robustness against
any type of interference, making it ideal for indoor and GNSS-denied environments.

This thesis focuses on the design and development of an application to enable
UAVs to operate in GNSS-denied environments. The architecture uses ROS2
humble, PX4 (v 1.15.2 dev) and the DDS-XRCE protocol to create the necessary
architecture to enable and control the flight of the drone. It was developed with the
help of the LINKS foundation for a specific hardware setup, for this reason some
parts of the software are strictly hardware dependent. After the development, the
software has been tested in two different environments that differ in the localization
system used: the first leverages a MoCap system to obtain position information,
while the second uses the UWB technology to obtain those data. The first scenario
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was used mainly to test the correctness of the features of the application and
enhance the performance of the UAV, while the second was used to check the
performance of the system in real-world scenarios.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have witnessed an
increase in popularity across numerous sectors due to their high agility, precision
and ease of deployment. These capabilities have made UAVs indispensable tools in
diverse applications, ranging from aerial photography and infrastructure inspection
to agricultural monitoring and search-and-rescue missions. The increase in the
usage of UAV technology continues to redefine the boundaries of what is possible
in automated aerial operations. However, one of the most critical dependencies
of UAV functionality is the Global Navigation Satellite System (GNSS), which
serves as the primary source of positioning information for autonomous flight and
navigation.

Despite the reliability and global coverage that GNSS provides, its effectiveness
is severely reduced in environments where satellite signals are weak, obstructed
or entirely unavailable, these environments are the so-called GNSS-denied envi-
ronments. These conditions can be found in many common places such as urban
canyons, underground locations, heavily forested regions and indoor areas. In
such environments, the loss or degradation of GNSS signals can make conventional
UAV systems incapable of maintaining accurate localization and trajectory control,
compromising their operational utility, its safety and the safety of its surroundings.

However, many high-impact use cases for UAVs are precisely in those GNSS-
denied environments. For example, indoor inspections of warehouses, tunnels,
or manufacturing facilities are ideal tasks for drones due to their ability to ac-
cess hazardous and confined spaces with ease and precision. Similarly, in urban
environments where tall buildings often block or reflect satellite signals, UAVs
could be instruments for surveillance, maintenance or emergency response missions.
Therefore, overcoming the limitations imposed by the dependency of GNSS is a
key step in expanding the operational envelope of UAVs.

Addressing this challenge has become a focal point of contemporary research
on UAV autonomy. A promising strategy involves integrating alternative sensor
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Introduction

modalities to replace or enhance the GNSS-based navigation. Visual odometry,
LiDAR, barometric sensors and Inertial Measurement Units (IMUs) are the most
popular options. These sensors enable the UAV to extract its position relative to
the environment through a combination of data fusion and advanced estimation
algorithms such as Simultaneous Localization and Mapping (SLAM) or Extended
Kalman Filter (EKF). Although effective, these solutions often face limitations
in computational complexity, power consumption or performance under certain
environmental conditions such as poor lighting or lack of visual features.

An increasingly promising alternative is the use of Ultra-Wideband (UWB)
technology. UWB is a radio-based communication protocol characterized by the
transmission of signals across a large frequency spectrum at low power levels. This
broad spectrum allows high temporal resolution in signal detection, which facilitates
precise ranging between UWB-equipped nodes. Due to its robustness to interference
and its ability to perform an accurate localization in cluttered indoor environments,
UWRB is particularly well suited for UAV navigation in GNSS-denied conditions.
When integrated with other sensors onboard and robust control algorithms, the
UWRB can serve as an important solution for reliable UAV autonomy in constrained
settings.

This thesis investigates and presents the design and implementation of an
application that allows a UAV to operate in GNSS-denied environments, with a
focus on indoor navigation. The system architecture is built on the Robot Operating
System 2 (ROS2) Humble, integrated with the PX4 (v1.15.2-dev) autopilot firmware
and the DDS-XRCE communication protocol. This combination provides a modular
and scalable foundation for real-time control, sensor data integration and mission
planning. This project was developed in collaboration with the LINKS Foundation
using a specific hardware setup tailored for research and development purposes.
Certain parts of the overall implementation strictly depend on the specific setup
of the provided drone, although the core concepts and the architecture remain
applicable to similar UAV platforms.

To validate the proposed system, two distinct testing environments were utilized.
The first employed a motion capture (mocap) system to provide highly accurate
position and orientation data, facilitating performance optimization and software
debugging. The second test environment relied on UWB-based localization for
position information, simulating near-real-world operational conditions. This dual
stage evaluation allowed for both precision calibration and performance assessment.

In the chapters that follow, the thesis will detail the methodology, software archi-
tecture, system integration and experimental results that sustained the development
of this UAV application. Through this work, the research aims to contribute to
the growing body of knowledge surrounding autonomous drone operation in com-
plex environments, ultimately supporting a wider deployment of UAVs in critical
applications where GNSS cannot be relied upon.
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Chapter 2

Software and technologies
preliminaries

2.1 Docker

Docker is an open-source platform designed to automate the deployment, scaling
and management of applications through containerization, a technology that encap-
sulates an application with its libraries, configuration files and dependencies into a
single unit. Introduced in 2013 by Docker Inc., the platform provides an efficient
method to package applications and their dependencies into portable containers,
ensuring consistency across various computing environments [1]. Unlike traditional
virtual machines, Docker containers share the kernel of the host operating sys-
tem, making them more resource efficient while maintaining isolation between
applications.
The core Docker components are:

1. Docker daemon: a background process on the host system responsible for man-
aging Docker objects (such as images, containers, networks and volumes). The
daemon enables the creation of images and the initialization and monitoring
of containers;

2. Docker Images: the building blocks of Docker containers. They are immutable
templates that contain the application code, runtime libraries and dependencies
required to execute the application. Each docker image is created using a
Dockerfile, a file that specifies the instructions to build the image step by step;

3. Containers: lightweight, runtime instances of Docker images. They encapsulate
the application and its environment, ensuring consistent behavior across various
host systems. Containers operate in isolation, utilizing Linux kernel features
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(like namespaces and cgroups) to separate processes, allocate resources and
manage permissions.

2.1.1 Containers life-cycle

The creation of a container starts with the creation of a Docker image using a
Dockerfile, a file that contains a set of instructions to define all the dependencies,
runtime configurations and codes to make the desired applications work. The
Docker images are built from the Dockerfile by the Docker daemon using the docker
build command. After the image has been created, a container can be initialized
from it anytime by calling the Docker daemon with the docker run command. To
efficiently run the container without overloading the host system, each container
has access to a limit amount of hardware resources (such as CPU, memory and
I/O) and operates as an independent process with its own filesystem, network stack
and resource allocation.

The isolation between containers is obtained by dividing the system resources;
this operation is done through namespaces, a particular feature provided by the
kernel that isolates and virtualizes system resources for a specific set of processes.
The namespaces that a container can have access to are:

o Process ID namespace: isolates the process ID space for each container, this
brings the processes inside a container to be able to see only other processes
created in the same container, not those running on the host or in other
containers;

e Mount(MNT) namespace: manages filesystem mount points, allows the
containers to have their own file system and ensures isolation and independent
management;

o Network namespace: with this namesapce each container gets its own virtual
network stack, which includes unique network interfaces and an IP address, this
enables independent network configurations and avoids interference between
containers;

o UTS Namespace (UNIX Timesharing System Namespace): different
host and domain names, presenting the container as an unique machine to
the processes running inside it;

e Interprocess Communication namespace: provides isolation in the inter-
process communication;

o User namespaces: remaps user IDs and group IDs inside the container
to a different UID/GID on the host, this means that a root user inside the
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container is seen as a non-root user outside of it or viceversa, enhancing the
security of the container.

All of these namespaces can be set in the docker build command to obtain the
desired behavior from the container and the application itself.

After the creation of the container, it is possible to use it as an independent
application or even as an entire system.

When a container is deleted or stopped, all of its data is lost, to address this,
there are two possible solutions: docker volumes or bind mounts. The docker
volumes are persistent data stores created and managed by docker on the host file
system, while bind mounts means setting up the mount namespace in order to
directly map a host directory or file into the container.

2.1.2 Containers characteristics

The characteristics common to all containers are:

« Portability: the containers package all the dependencies and configurations
into a single unit;

o Efficiency: containers are lightweight and consuming minimal system re-
sources compared to traditional virtual machines;

o Consistency: Docker containers ensure a uniform runtime environment,
reducing discrepancies across development, testing, and production stages;

e Scalability: containers can be easily replicated or scaled horizontally to
handle varying workloads;

o Flexibility: Docker supports multi-platform deployment, enabling seamless
operation on Linux, Windows, or cloud environments.

2.2 Robotic operating system 2

The robotic operating system (ROS) 2 is a standardized framework for robotic
development [2] [3]. It was born in 2014 from the Open Source Robotics Foundation
(OSRF) as an improvement of the previous ROS 1. The idea behind its creation
is to maintain the communication structure of ROS 1 but solve its limitations in
real-time and distributed systems, limitations caused by its reliance on a single-
threaded architecture and the use of a centralized master node, characteristics no
longer present in ROS 2.
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2.2.1 Key Features of ROS 2

ROS 2 introduces a series of architectural enhancements that address the short-
comings of its predecessor:

« Middleware abstraction with the data distribution service (DDS):
DDS is an industry-standard protocol designed for real-time systems and
distributed applications. This abstraction enables peer-to-peer communication,
which allows decentralized communication and enhances scalability, and to
support various Quality of Service (QoS) settings, developers can configure
QoS policies to prioritize data delivery, ensure reliability or reduce latency.
DDS ensures reliable communication in distributed and resource-constrained
environments;

» Real-time capabilities: ROS 2 integrates real-time capabilities by allowing
developers to use real-time operating systems (RTOS). These systems ensure
deterministic behavior by prioritizing high-priority tasks and minimizing
latencys;

e Security enhancements: ROS 2 incorporates DDS Security, providing tools
for authentication, encryption and access control. These features mitigate the
risks associated with malicious actors and unauthorized access, ensuring the
integrity of robotic systems;

o Cross-platform support: ROS 2 is designed to run on multiple operating
systems, including Linux, Windows and macOS. This flexibility makes it
accessible to a broader range of developers and applications. The modularity
of ROS 2 allows developers to use only the components they need, reducing
complexity and resource usage.

2.2.2 Structural components of ROS 2

The architecture of ROS2 is based on 4 core elements, these elements form the
backbone of ROS 2’s decentralized architecture, enabling perfect interactions
between distributed system components and a highly adaptable communication
infrastructure for robotic systems. The elements are as follows:

o Nodes: nodes serve as the origin or destination of all data flows in ROS 2 and
are the fundamental units of computation in ROS 2, encapsulating distinct
functionality in a highly modular form. Each node is responsible for executing
specific tasks, such as sensor data acquisition, control algorithms or actuation
commands. Furthermore, nodes can operate independently or collaboratively
in a distributed environment, enhancing system robustness and fault tolerance;
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» Topics: topics are the elements that truly manage and allow the exchange
of messages in the ROS2 architecture; they create an asynchronous, many-
to-many communication through a publish-subscribe model. Nodes publish
messages to topics and other nodes subscribe to these topics to receive the data.
This approach is particularly well-suited for high-frequency unidirectional data
streams, such as sensor readings or telemetry data. The topics are enhanced
using Quality of Service (QoS) policies, which provide control over message
delivery reliability, durability and latency;

» Services: Services provide a synchronous one-to-one communication model
between nodes. They are analogous to function calls, where one node sends
a request and awaits a response from another node. Services are typically
used for operations that require immediate feedback, such as querying a
robot’s current state, triggering a specific behavior or setting parameters. This
tightly coupled communication pattern is well-suited for tasks requiring precise
coordination between components;

« Actions: Actions are an extension of services; they are designed to handle
long-running tasks that require progress feedback and cancellation capabilities.
Unlike the request-response model of services, actions allow for ongoing interac-
tion between nodes during task execution. An action consists of three message
types: goal, feedback and result. The goal initiates the task, feedback provides
updates on the progress of the task, and the result signals its completion.
Actions provide a robust mechanism for managing complex behaviors that
take time.

An example of connection between the above elements is shown in Figure 2.1.

Service

Request

Response

Figure 2.1: ROS2 communication structure. Image taken from [3]
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2.3 PX4

PX4 is an open source flight control software for drones and other unmanned
vehicles [4][5]. The project provides a flexible set of tools for drone developers
to share technologies to create customized solutions for drone applications. PX4
provides a standard to deliver drone hardware support and software stack, allowing
an ecosystem to build and maintain hardware and software in a scalable way:.

2.3.1 System architecture

The architecture of the PX4 system is composed by three main parts (as shown
with three different colors in Figure 2.2):

Ground Station

(with integrated manual controls)

\

Flight Controller

(e.g. Pixhawk)
PWM/CAN I2C/CAN/SPI/
UART
Sensors

Motors

| e |

Figure 2.2: PX4 system architecture. Image taken from [5]

« Remote controller (an RC system or a ground station): the only part of the
system architecture outside the vehicle and the one which the user interacts
to. This element remotely controls the behavior of the unmanned vehicle. If
the controller is a ground station, it usually runs QGroundControl (or some
other ground station software) and a robotic software like MAVSDK or ROS

Distance, IMU,
Baro, GPS, Flow

Telemetry
Radio / LTE

Mission Computer

(e.g. Raspberry Pi)

\

4

|

|

Payload J ‘ Sensors

MAVLink Camera

Depth Camera

(1 or 2) to communicate with the flight controller;

« Mission computer (also called companion board): a small board with
computation capacities, the only non-mandatory component in the system
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architecture. If present, it is directly connected to the flight controller through
a serial connection or IP link and communicates with the ground station; it
can also be connected to external sensors to improve the information about
the position and orientation of the system. It provides advanced features to
the vehicle like mission managing and computer vision applications (collision
avoidance, collision prevention, visual odometry, safe landing, etc.). Its
software part is composed of the applications it provides and a middleware
to communicate with the flight controller, the type of middleware depends
on the software architecture and PX4 version. In this work, the connection
between the companion board and the flight controller is obtained through
the DDS-XRCE protocol, a protocol that is well suited to communicate with
ROS2 nodes;

Flight controller: the most important part of the vehicle, contains all the
software needed to make the vehicle fly, it directly communicates with the
motors and some sensors through serial connection. On the software side, we
have two main parts: the middleware and the flight stack. The middleware
consists of two parts: device drivers for embedded sensors and communication
with the external world (companion computer, GCS, etc.) and the nORB
asynchronous publish-subscribe message API. The pORB API consists of a
bus used for interthread/interprocess communication, its publish-subscriber
scheme makes the system reactive and thread safe and parallelizes all the
operation and communication. The flight stack is a collection of guidance,
navigation and control algorithms for autonomous drones, its building blocks
are shown in Figure 2.3: the estimator is composed by an EKF2 that takes
in input all the data coming from the sensors and/or a companion board
and computes the odometry of the vehicle, it works as explained in [6]; the
position, attitude and rate controllers compose the control architecture of PX4
and depends on the UAV type; the navigator manages the autonomous flying
modes; the mixer takes force commands (such as "turn right") and translates
them into individual motor commands while ensuring that vehicle velocity
and acceleration limits are not exceeded.

S Posi'tion_ & Attitude
Estimator
Navigator Position Controller Attitude & Rate Mixer Actuator
Controller

B

Figure 2.3: PX4 flight stack overview. Image taken from [5]
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2.3.2 DDS-XRCE protocol

The DDS-XRCE protocol is a specification that enables a resource-constrained,
low-power device to communicate with a DDS network, like ROS2, and ensures
compatibility between applications based on different vendors” implementations of
the XRCE protocol. In this work, the protocol is implemented with the eProsima
Micro XRCE-DDS library [7], which respects the protocol guidelines specified in
the DDS for eXtremely Resource Constrained Environments standard as defined
and maintained by the Object Management Group (OMG) consortium [8].

The communication defined by the protocol is based on a client-server architec-
ture where the server (XRCE Agent) acts as an intermediary between the clients
(XRCE Clients), which run on the constrained devices, and the DDS global data
space. The communication between XRCE Clients and XRCE Agents is based on
operations and responses. Clients request operations to the agents, which generate
responses with the result of these operations, and once the clients are informed
about the result of the operation, they can perform subsequent actions or request
further operations. The architecture can be created with both serial and wireless
connections.

The setup of the architecture of the PX4 system is shown in Figure 2.4, the
XRCE-Client runs on the flight controller, while the XRCE-Agent runs on the
companion board.

CDR FAST-CDR

uORB topic |« . .| ROS2
| node
(XX
[ 40RS topic |+ uXRCE-DDS ||| uXRCE-DDS || $$¢ 2
client agent 'YX
_ | ros2
uORB topic |*+> ~ 7| node

FAST-DDS

Figure 2.4: PX4 flight stack overview. Image taken from [5]

2.3.3 Control architecture

The control architecture varies with the UAV type, since a multicopter was used
for this work, only its architecture will be analyzed more in-depth.

The high-level composition, comprehensive of the mixer block, is shown in Figure
2.5, it is a cascaded mix of P and PID controllers. Depending on the flight mode,
the outer loop (the position loop) can be bypassed and behaves like a multiplexer;
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this loop is only used when holding position or when the requested velocity on an
axis is null. The input of the architecture are the desired position and yaw angle,
the output is the computed thrust force to apply to the rotors. All of the estimates
needed, from any block, come from the EKF2.

__________________________________

] I

| I
P PID P PID |
| ! \ |
: ! ! | 0ag,
i ! ! Angular| |

Xsp | |Position| Ysr | Velocity| =g @sp' | Angle |$%p | 0B,

=== N —" T A 1 f Rﬂte | T

. | Control Control | 1 CCereration ! | Control C 1|19, sp
I ! and Yaw | ontrol| | e | \fixer —»
| | . \ |

bep | . to Attitude : P
; 50 Hz ! | 250 Hz 1kHz

Inertial Frame Body Frame

Figure 2.5: PX4 global control architecture. Image taken from [5]

Starting from the left, we have:

o Position control: is composed by two P controllers, one for the altitude and
one for the horizontal position, which command in velocity. The output is
saturated to not damage the vehicle. Its simple structure is shown in Figure

2.6;
Tsp Ar P l» | e Vsp

L B

Figure 2.6: PX4 position controller architecture. Image taken from [5]

» Velocity control: contains three PID controllers, one for each axis, that
stabilize velocity and command in acceleration. In this case, the output is not
limited because the saturation will be applied in the next step. The controllers

have a low pass filter in the derivative path to reduce noise (as shown in Figure
2.7);
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LPF» & » D

v

Figure 2.7: PX4 velocity controller architecture. Image taken from [5]

Acceleration and yaw to attitude: this part of the architecture converts
the acceleration generated by the velocity controller and the input yaw angle
into desired orientation, in the quaternion form, and thrust;

Angle (or attitude) control: this controller takes as input the desired
orientation, derived from the transformations in the previous block, in quater-
nion form. The controller scheme is shown in Figure 2.8 and implements the
controller explained in [9];

Extract qo.

X sgn
magnitude
Gsp Qsp
== Error gde Extract Qje X =
—» quaternion component
q

Figure 2.8: PX4 attitude controller architecture. Image taken from [5]

Angular rate control: controls the three body rates (roll, pitch and yaw)
with a K-PID controller each. The K-PID controller is a controller that,
depending on the values of P and K, can change its form: with K equal to 1
we have the parallel form, the form commonly used in textbooks; with P equal
to 1 we have the standard form, a form that decouples the proportional gain
tuning from the integral and derivative gain; this facilitates the tuning phase
because it is possible to tune the controller starting from the parameters of a
drone with similar size and inertia and tune only the K parameter.
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In each controller (as shown in Figure 2.9) there is an LPF to reduce noise
and a limitation in the integral path to reduce wind up;

" P

Pep K Y= %L

K [—LPF 2 I D

Figure 2.9: PX4 rate controller architecture. Image taken from [5]

o Mixer: translates the commands that arrived from the previous blocks into
torque to assign to each actuator to achieve the desired movement of the
vehicle.

2.3.4 Multicopter flight modes

PX4 offers several multicopter flying modes; they can be divided into two macro
categories: manual and autonomous. Manual modes are programmed to maintain
the drone stable and execute the command received from an RC, autonomous
modes instead focus on the execution of one or more specific maneuvers without
the necessity of external command sources, with the exception of the offboard mode
that receives external commands but not from an RC. The flight modes are:

e« Manual:

— Position mode: maintain the vehicle stable at the current horizontal
position; in this mode the radio control can only change the horizontal
orientation and the altitude of the drone, if one of them is changed, this
mode will maintain the new position and orientation. This mode requires
a position fix or a GPS;

— Position slow mode: this mode works just like the Position mode, but
with limitations on the velocity and yaw rate;

— Altitude mode: similar to position mode, but in this case the GPS and
a position are not needed. This mode only maintains the altitude and
does not actively hold the horizontal position;

13



Software and technologies preliminaries

— Stabilized mode: focuses on the horizontal posture of the vehicle, the
vehicle will continue to move with momentum, and both altitude and
horizontal position may be affected by wind;

— Acro mode: only acrobatic mode. This mode only stops the rotation of
the vehicle if not required, but otherwise does not stabilize the vehicle.

e« Autonomous:

— Hold mode: vehicle stops and maintains its current position and altitude
against wind and other forces;

— Return mode: the vehicle ascends to a safe altitude, flies a clear path
to a safe location (home or a rally point) and then lands. This mode
requires a global position estimate (GPS);

— Mission mode: activating this mode, the vehicle executes a predefined
mission /flight plan that has been uploaded to the flight controller. A GPS
is required for this mode;

— Takeoff mode: vehicle automatically takes off vertically, after reaching
a desired altitude, it switches to Hold mode;

— Land mode: the vehicle immediately starts the landing procedure;

— Orbit mode: vehicle flies in a circle, ensuring that the yaw axes always
face towards the center of the orbit. RC control can optionally be used to
change the orbit radius, direction and speed;

— Follow Me mode: vehicle follows a beacon that provides position
setpoints. RC control can optionally be used to set the follow position;

— Offboard mode: Vehicle obeys position, velocity or attitude setpoints
provided via MAVLink or ROS 2.

2.4 Vicon tracker

The Vicon tracker is a MoCap system developed and sold by Vicon Inc., its purpose
is to analyze and register objects or human movement. The main features of this
application are that it can easily be integrated in various external platforms and
can achieve a micrometer accuracy while maintaining immediate feedback. The
performance of Vicon tracker system are obtained by integrating high-performance
hardware with advanced real-time software processing.

2.4.1 System architecture

The system architecture of the Vicon tracker is made up of four elements:
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» High-speed optical cameras: high-resolution cameras capable of capturing
thousands of frames per second. They must be strategically placed to obtain a
comprehensive coverage around the desired volume and capture markers from
multiple angles (for accurate triangulation). To obtain a clear representation
of the object, at least three cameras must be able to see and identify the
object. Furthermore, the cameras are synchronized to capture data at the
same time to increase the accuracy of the reconstruction algorithm;

o Infrared illumination and reflective markers: the cameras use infrared
illumination to uniformly illuminate the capture volume. To identify and
track an object, it must be covered with markers, small items covered with
retro-reflective material that reflect back the infrared light of the cameras to
obtain a precise detection. The disposal of the markers must be: visible, most
of the markers must be always visible by at least one camera in any position
and orientation; unique, to prevent incorrect identification; asymmetric, to
increase the orientation precision;

o Central processing unit: the cameras transmit image data to the central
unit through a high-bandwidth connection to ensure minimal delay; the raw
image data are passed through a data pipeline where real-time processing
algorithms extract and compute the 3D position of the object;

o« Communication interfaces: the system uses high-speed network interfaces
that transmit processed tracking data to external devices with minimal latency.
The tracker supports various communication protocols and APIs, making its
integration with other applications almost immediate.

2.4.2 Software and algorithms

The data processing pipeline is made up of three steps:

o Image processing and marker detection: each frame is processed to
identify and isolate the markers, the identification is based on the intensity
of the reflected infrared light, the markers should be the brightest points in
the cameras view. Once the markers are identified, the tracker assigns unique
identifiers to each to ensure consistent tracking across frames, even when they
temporarily disappear;

« Data filtering and noise reduction: to ensure smooth motion tracking,
temporal filters, such as the Kalman filter, are used to predict the position of
the marker and maintain the identity of each marker between frames. The
software continuously monitors the data for anomalies or outliers caused by
occlusions or reflective interferences and corrects them in real time;
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» 3d reconstruction: after the identification of the object, using the known
camera positions and orientations and the 2D coordinates of the markers in
the frames received, the software applies triangulation techniques to compute
the 3D position and orientation of the object, with respect to the origin and
orientation of the tracker volume, in real time.

The entire process is designed to be scalable and modular, allowing additional
cameras or processing units to be added if needed, and to facilitate the update or
integration of new tracking algorithms or fusion techniques.

Even if the tracking is extremely precise, it is possible to incorporate other
sensors into the tracking system to increase its robustness even in challenging
conditions.

2.5 UWB technology

The ultra-wideband (UWB) technology was developed in the early twentieth century
and was used in the military field until the 1980s. In the 1990s the United States
Federal Communication Commission (FCC) released the first regulations for UWB
communications, and because of the potential of this technology, in the 2000s also
the IEEE started regulate it, opening its commercial use.

The ultra-wideband technology is optimized for short-range communication,
from a few meters up to 100 meters. Its main characteristics are:

o High bandwidth: as the name suggests, the main feature of this technology
is its high bandwidth (from 3.1 to 10.6 Ghz), which allows transmission of
signals with a wide frequency band (typically greater than 500 Mhz) that
corresponds to a high data rate;

o Low power consumption: since power is spread over a large bandwidth,
UWB communication systems are power efficient and operate at very low
power levels, causing minimal interference to other systems;

« High temporal resolution: the UWB technology operates by sending short-
duration pulses (nanoseconds or less), and it focuses on the precise timing of
pulse arrival rather than the frequency, these features achieve fine temporal
resolution.

These characteristics are particularly useful in the localization problem [10],
the high bandwidth can penetrate obstacles and take advantage of multipath
reflection (where the signal bounces on the obstacles in the environment), giving
reliable performances even in non-line of sight (NLOS) environments, while the
temporal resolution, when integrated with time-based localization algorithm, offers
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a position estimation with a centimeter-level precision. Despite these benefits,
UWB technology requires precise synchronization and complex signal processing to
obtain good performance. Moreover, although the low power consumption makes
the UWB resilient to interference, it is not immune.

However, considering its characteristics, the UWB technology remains a suitable
candidate for applications operating in challenging and GNSS-denied environments,
both indoors and outdoors.

Among all the possible localization techniques, in this work the localization
with UWB is obtained through trilateration with a two-way ranging time of flight
(TWR-ToF).

Trilateration is a technique that enables the determination of the absolute or
relative position of a point by measuring distances and exploiting the geometry
of circles, spheres and triangles. This localization process is performed measuring
the distance between the target (or tag) and multiple fixed references (or anchors),
the target position is located at the intersection of these measurements. Since
the distances are obtained using waves without the aid of directional antennas, a
minimum number of three anchors is needed to obtain a precise location. With
one antenna there could be infinite possible positions along the circumference of a
circle, while with two the intersection of the corresponding distance circles gives
two possible locations, resulting in ambiguity. Therefore, in both scenarios, the
localization is not achieved. With three (or more) anchors, we obtain a setup as the
one shown in Figure 2.10 that gives only one possible solution to the localization
problem.

Figure 2.10: Trilateration obtained with three references. Image taken from [10]

The TWR-ToF is a technique to measure the distance between a target (or tag)
and a transmitter (or anchor), it falls under the time of arrival (ToA) umbrella,
where the distance is obtained with the time of flight. Usually, the time of flight is
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computed with a single message exchange that the anchor uses to know the total
round-trip time and compute the time of flight with:

(zjt:vfrecv — ,I;szsend) — (Trmfsend - Trmfrecv)
2
(Ttz—recv — Tia—sena) 1s the total roundtrip time and (Tyy—send — Trz—recv) 1S the

response time). After the computation of the ToF, the total distance is obtained
with:

Tol =

(2.1)

Distance = Speedof Light x ToF (2.2)

The main problems with this approach are that the transmitter must know the
reply time of the target and both the entities must be perfectly synchronized. To
address these problems, the TWR-ToF implemented in the LINKS laboratory uses
a Poll-Response-Final method to compute the ToF [11]. The method is shown in
Figure 2.11 (DEVICE A is the tag, DEVICE B is the anchor and 7T}, is the ToF),
in the final message the tag sends its T, oyng and Trepy, to the anchor that computes
the ToF with:

T o Troundl * Tround? - Treplyl - Treply2 (2 3)
prop — .
Troundl + TroundQ + Treplyl + TreplyQ
- Trnur.dl L Trr.l’-‘:\.-: —l-
DEVICE & H 4
™ El:-J: . ! RX :E:l ™ II: A
B e P e— .
: Torer | i Teraw i Torep
DEVICE B i 7 T—r—“T ‘I_I—‘i
1
I_.,],l—,l | I I LT 1 "
R ol ™ ] RX
RMARKER % Trapiya - > ~ Troundz — >

Figure 2.11: Poll-Response-Final method messages exchange. Image taken from
[11]

2.6 UAV components

The UAV used in this work was assembled and provided by the LINKS foundation,
it is a small quadcopter composed by a flight controller and a companion board
connected through a UART port.
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The flight controller, shown in Figure 2.13, is a Kakute H7 v 1.3, the main
features of this board are the presence of an IMU sensor and a barometer sensor,
both helpful during flight, and the absence of a network adapter, which can be a
useful alternative communication channel in some scenarios. This board comes with
a preinstalled version of BetaFlight, a software to manage the flight of a vehicle,
but it can be easily substituted with the PX4 firmware. For a deeper understanding
of the hardware components of the flight controller, refer to [12].

The companion board mounted on the UAV is a VOXL board (Figure 2.12),
a board with high computational and memory capacities developed to be an
onboard computer. It has a Yocto version of Linux as its operative system and has
preinstalled several software and services to enhance its role as onboard computer,
the most important preinstalled software and service for the development of this
work is an older (but perfectly working) version of Docker and its service "docker-
autorun', which automatically starts a container when the board is started. Another
important feature of this board is that all serial ports and GPIO pins are internally
mapped to the Sensors DSP (SDSP), with the benefit that the low-level and time-
sensitive interaction with sensors and telemetry communications can be handled by
the SDSP’s real-time operating system, freeing up CPU cycles on the applications
processor. However, this means that it is not possible to talk to serial ports with
reads and writes to /dev/i2cX or /dev/ttyOX as in other embedded Linux systems.
Communication is permitted by a library provided by the VOXL development
team, called libvoxl-io. More information on VOXL components and software can
be found in [13].

Figure 2.12: VOXL board. Image Figure 2.13: Kakute H7 v 1.3 board.
taken from [13] Image taken from [12]
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Chapter 3

Software design and
implementation

The software architecture is built upon PX4 and ROS2 Humble, these two software
were chosen because they are at the forefront in their field and have plenty of
documentation and community support. The specific ROS2 distribution was chosen
to match the one used in other LINKS foundation works in order to simplify a
possible integration or communication with them. Both software have a specific
role: PX4 manages vehicle flight, from data acquisition to rotor commands; ROS2
builds the network to enable communication from external sources to the flight
controller. The "external sources" are entities physically detached from the drone
but still included in the architecture; they are: a ground station from which a user
can activate and control the drone and, since we are in a GPS denied environment,
the external source of position and orientation. In this work, the Vicon tracker and
UWB technology were used as external sources of position and orientation.

3.1 UAYV setup and internal connections

The components chosen require a specific setup to make this application work, the
VOXL board has to install and run the ROS2 libraries while the flight controller has
to install the PX4 firmware and change its parameters to match the shape and the
characteristics of the drone to obtain good performances. After installation, it is
necessary to use the serial connection of the two boards to set up the communication
channel that allows the two software to communicate with each other.
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3.1.1 VOXL configuration

The VOXL board naturally does not support any ROS2 distribution. However, it
is possible to use the ROS2 libraries on the board using the preinstalled docker
daemon. The first step is to create a docker image that builds an environment that
contains all ROS2 dependencies and nodes. Starting from that image, it is possible
to run a docker container with all the requirements needed for this application.
Since this container is the only solution to use ROS2 in the VOXL, it must always
be active. To address this, it is possible to set the container to start at the start
of the board using the docker-autorun service present it. With this procedure,
the VOXL board is virtually transformed into a system with ROS2 installed and
running. However, this solution has several problems: even if the container is set
to be removed when it is properly stopped, it will not be removed if the board is
turned off while the container is still running; is not possible to create more than
one container with the same name and it is not possible to create again the same
container with a new name every time the board is restarted, it will fill the memory
of the board. These problems have been resolved by assigning to the container
a specific name and, before creating the new container at the start of the board,
removing the old container, if present.

Since the VOXL system will be virtually replaced by a docker container to allow
the execution of this application, the container needs some properties to carry out
its task. Those properties are set during the initialization of the container. The
command to start the container is:

docker run —-rm --privileged —-net=host -—name <container name> -v /home/-
root: /root/yoctohome/:rw -w /root/ <docker image> /entrypoint.sh

Each of the options of this command gives the container a particular feature:

o ——rm: completely removes the container from the memory of the board after
it is properly stopped;

o ——privileged: gives the container the possibility to do all the operations that a
privileged user can do;

o —-net=host: connects the network of the container to the one of the host, with
this property the container can sand and receive messages to all the systems
connected to the same network of the board;

o —-name: sets the name of the container, it must be unique;
e -v: mounts a directory on the host to the container;

o -w: sets the working directory of the container;
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o the last two parameters are the starting docker image and the file to be
executed at the start of the container, respectively.

3.1.2 PX4’s parameters setup

The Kakute h7 board comes with a BetaFlight firmware, the procedure to upload
PX4 to the Kakute h7 is not hard and well explained in [5].

Normally, the firmware cannot work in this kind of application, it is programmed
to use GPS’s data to fly a vehicle, however, it requires small changes to be suitable
for the purpose. The firmware requires two fundamental features to be set before
uploading it on the board (they cannot be modified after). These features are:

o Disable GPS module: Disabling the GPS module prevents the upload of
the GPS drivers on the flight controller. All the positional information sent to
the flight controller is received and handled by the PX4 estimator, it combines
the data and computes the current position and orientation of the drone.
This process is not executed if the estimator does not receive the GPS data,
the firmware is programmed to merge the received data only if at least one
of them comes from a GPS device, if this requirement is not satisfied, the
EKF2 will ignore all the data. Disabling the GPS module before the upload of
the firmware removes the block, it prepares the EKF2 to work without GPS
data and compute the position and orientation with other sources, which is
fundamental for the target purpose of this work;

o External vision module enabled: this module set the firmware to receive
data from an external vision source, this setting enables several parameters to
manage the messages from this source and creates a communication channel
that sends the external vision messages to the EKF2 to combine them. In this
application, information on the position and orientation of the drone will be
transmitted using the external vision communication channel.

These two modules are the only two that have to be set as explained to make
the application work; every other module can vary the performances of the flight
but does not change the flow of the application. All modules and drivers to be
installed can be selected using a GUI provided by the PX4 development team, it
can be found with all the default firmware versions for all the supported boards at
this link:https://github.com/PX4/PX4-Autopilot.git. The GUI can be accessed
with the command:

make holybro__kakute h7 boardconfig
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3.1.3 Components communication: voxl-parser

As mentioned in chapter 2.3, the communication between ROS2 and PX4 is obtained
through the DDS-XRCE protocol; in this work, the protocol is implemented with the
eProsima Micro XRCE-DDS library (recommended by the PX4 documentation).
This library creates a client-server architecture to permit resource-constrained
devices to take part in DDS communication, it can create the architecture with
both serial and IP-based (e.g. UDP or TCP) communication channels. The
Micro XRCE-DDS client is pre-installed within the PX4 firmware and uses the
communication type supported by the flight controller it runs on, the serial one
in this case. The Micro XRCE-DDS agent runs on the VOXL inside the docker
container created to use the ROS2 libraries; this solution was adopted since some
of the programs needed to install and run the agent are not present on the board
and cannot be installed or are present but with an old and not compatible version
that cannot be updated.

However, the hardware choices brought a big problem to this communication setup,
the lack of an IP-network interface on the flight controller precludes the IP-based
connection while the management of the serial ports by the VOXL system unite to
the necessity to run the agent inside a container blocks the serial connection (the
docker containers do not have the authorization to use the libapq8096 library). To
address this problem, I created the voxl-parser.

The voxl-parser is a software module that I created to enable the communication
between the Micro XRCE-DDS client and agent in this hardware setup. It runs as
a service on the VOXL board, outside of docker, and serves as a bridge between
the serial connection wanted by the flight controller and the IP-based connection
needed by the agent (in this case the UDP protocol was chosen), its addition creates
the communication architecture shown in Figure 3.1.

/ - 2

\
ROS topic uORE message
|
ROS topic UDP-—UART— uORB meszage
|
ROS topic uORB message
Docker
4

\ VOXL \ KAKUTE H7 /

Drone

Figure 3.1: UAV internal communication architecture

The voxl-parser is a program written in C language composed of three threads,
two threads handle the messages from the client to the agent and one thread for
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the opposite ones. The number of threads and their purposes have been chosen
looking at the operation that the program has to do. The program has to handle an
asynchronous bidirectional communication, to not lose any message and to increase
the overall speed, each side of the communication has to be handled separately.
The different number of threads for each side of the connection comes from the
amount of messages that each side has to handle. After some tests, it has been
observed that the stream of messages from the agent to the client can be handled
by one thread without worsening the performance, while the other part of the
connection, with longer and more numerous messages, benefited from the use of
two threads, the division between the reception and manipulation of bytes and the
submission improved the overall performance. The three threads work as follows:

e The first thread handles the first part of the communication client-agent

(Algorithm 1), it continuously tries to read the bytes arriving at the serial
port from the client, if there is something to read, it extracts the messages
contained and stores them in a queue waiting to be processed by the other
thread.
The read operation is executed using the specific voxl function vozl_uart_read())
this function reads all the bytes arrived on the UART port and stores them in
a vector, if the vector cannot contain all the incoming bytes, an error occurs.
The extraction operation is performed with the read_msg() function, this
function takes the vector of bytes and extracts all the payloads of all the
messages contained in it one at a time, the extraction is possible by following
the known message structure of this type of communication and the serial
protocol. The function processes each byte to find and extract the payload, it
also verify the correctness of the message by comparing the cyclic redundancy
check (CRC) bytes contained in the message to the ones computed during the
processing of the bytes. The extracted payloads are stored in a shared queue
waiting to be send to the agent;

o The second thread work is to send the messages arrived from the client to the
agent (Algorithm 2), this thread pops the messages from the queue and send
them to the agent with an UDP message, if no message is present, this thread
waits without spend machine cycles;

o The last thread (Algorithm 3) solely handles the communication agent-client,
it uses a blocking function (recyfrom()) to wait, without use any machine
cycle, a message from the agent, every message that arrive is slightly modified
and sent to the client.

The necessary changes to the messages are made with the function recv_ from(),
this function adds the serial header to the message given as input and modifies
it to respect the serial communication protocol.
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Algorithm 1 Handles the incoming messages from the client and stores them in a
queue. The queue is protected by a mutex lock

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

procedure CLIENT TO QUEUE(queue)

> queue contains the message queue
> Initialization

rb < 0 > bytes received from the client
msg < 0 > bytes to send to the client set to 0
> Execution
while 1 do

rb < voxl_uart_read() > read bytes arrived to the uart port

if no errors occured then
while 7b is not end do

msg <— read_msg(rb) > extract a msg from the bytes
push msg into queue
end while
end if
end while
free memory

return 0

18: end procedure

Algorithm 2 Sends the messages to the agent. The queue is protected by a mutex

lock

1:
2
3
4:
5:
6
7
8

9:

procedure QUEUE TO AGENT(sd,queue)

> sd contains all the information about the udp communication
> queue contains the message queue
> Execution
while 1 do
pop msg from queue
sendto(sd,msg) > send msg to the agent
end while
return 0

10: end procedure
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Algorithm 3 Agent to client transmission algorithm.

1: procedure AGENT TO CLIENT(sd)

2 > sd contains all the information about the udp communication

3 > Initialization

4: wb 0 > bytes to send to the client set to 0
5: msg < 0 > bytes received from the agent set to 0
6 > Execution

7 while 1 do

8 msg < recv from(sd) > bytes sent by agent
9: if no errors occured then
10: wb < compose__msg(msg) > adapt msg to serial comm.
11: send wb to the client

12: end if

13: end while

14: free memory

15: return 0

16: end procedure

3.2 Software architecture

The software architecture, shown in Figure 3.2, is a network to enable communica-
tion from any source of position and orientation to PX4 and to control the drone
from a ground station without the use of a radio controller. The communication
between the external source of position and orientation and the drone is obtained
through UDP messages, every other communication in the network uses ROS2
topics. The structure of the network has been chosen to permit an easy change of
the source of position and make the architecture adapt to any application; with
this modular design, if the external source changes, only one node (the coordinate
publisher) needs to be changed. The only prerequisite of this application is that
PX4 must be set in offboard mode, every other mode will not execute any command
received from the companion board.

3.2.1 External source of position and orientation

The external source of position and orientation can be any source, even more
than one, the only requirement is that the results of the measurements can give
information about both position and orientation of the object. In this work, two
slightly different setups were used; the first setup used only a MoCap system
(VICON) to obtain all the necessary information, while the second setup used
the UWB technology for the horizontal position and the Mocap system for the
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Figure 3.2: Logical environment setup

vertical position and the orientation. Both setups have a centralized structure, the
computation of the position and orientation is made by a single unit and these units
communicate with the drone through an IP-based communication. The MoCap
system used can broadcast a single VICON message containing all the information
needed with a minimum frequency of 100 hz, the central unit of the UWB setup
can instead send a message with a frequency of 40 hz. In both cases, it is up
to the coordinate publisher node to handle the messages received. The physical
implementation of the two types of external sources is explained in Section 4.1.

3.2.2 Coordinate publisher

The Coordinate publisher in one of the two ROS2 nodes running inside the VOXL
board, it is posed between the external source of position and orientation and the
firmware. Its role is to acquire the vehicle odometry measures and send them to
PX4 in the correct format. This node has a dual purpose: translating the incoming
data into a format understandable by the destination and guaranteeing that the
messages arrive to the firmware with the frequency required by it (between 30 and
50 hz); otherwise, the data will be ignored. The messages are sent to the firmware
as a VehicleOdometry message through the vehicle wvisual odometry topic, in this
way, the data are sent to the EKF2 and used to compute the estimated position.
Since during this work two different external sources that communicate in two
slightly different ways were used, I implemented two different coordinate publisher
nodes:

e The node for the setup with the MoCap system has to communicate with VI-
CON and handle its messages (the node implemented in this work is a modified
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version of a node specifically designed to translate the messages of a MoCap
system into ROS2 messages, the original node can be found in this repos-
itory: https://github.com/MOCAP4ROS2-Project /mocap4ros2_ vicon.git).
The node works as follows: it connects to the VICON data stream and every
20 ms it extracts a message and uses the data inside to create a new message
to send to PX4 (the extraction frequency has been set to the maximum to
deal with possible delays). A summary of the handling procedure is shown in
Algorithm 4, the procedure can be divided into two parts: data acquisition and
message construction. The data acquisition is made using several functions
specifically developed for the VICON messages, these functions take the data
of the segment of the object whose identifiers are passed as argument (in this
work a single object with a single segment was used, so the identifiers are not so
relevant). The message construction is a simple allocation of the information
previously retrieved in the corresponding fields of the PX4 message.
Unfortunately, VICON does not measure the velocity of the objects it is
tracking. Anyway, to enhanced the precision of the drone, i decided to derive
the velocity on all the axes from the position measurements and pass them to
the firmware with all the other data;

With the second setup, the messages that contain the data are a defined
amount of bytes directly send to the drone over UDP. In this case, the node
has to read the incoming messages and translate the bytes. The message
handling procedure is shown in Algorithm 5, this procedure acquires the
incoming messages, one by one, with the recyfrom() function, then, knowing
the structure of the message, translates each sequence of 4 bytes as a single
double number. After the conversion of the data, they are copied in the PX4
message and sent to the firmware. This procedure is the callback of a 10 ms
timer, this high frequency prevents the formation of a message queue and,
thanks to the blocking function recufrom(), the entire procedure does not
overload the board.

In this case, only the vertical velocity is calculated (the one obtained from
VICON) since the estimation error of the UWB technology for the horizontal
position is too large to obtain a precise and useful value.

Furthermore, both nodes apply some changes to the incoming data. The firmware

requires all the input measures to be with respect to a NED (north, east, down)
reference frame, but the systems used measure the odometry of the object with
respect to its own reference frame, which is an ENU (earth, north, up) reference
frame. To resolve this mismatch, it is necessary to transform both the position
coordinates and the orientation measures. To transform the position it is necessary
to invert the Y and Z position coordinates, the orientation needs to be pre- and
post-multiplied by the quaternion that corresponds to a rotation of 180 degrees
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on the X axis; the result of this operation is equal to an inversion of the Y and Z
components of the quaternion given by the MoCap system. The two implemented
coordinate publisher nodes execute these transform operations during the extraction
of the data.

Algorithm 4 Extracts the data from the VICON data stream and sends them to
the firmware. This algorithm is a function of an object, all the variables used are
created and initialized inside the initializer of the object.

1: procedure STREAMREADING

2: > msg contains the information about the position and orientation of the
drone
3: > Execution
4: subj < GetSubject Name() > Obtain the object identifier
5: seg < GetSegmentName() > Obtain the identifier of the segment of the
object
6: t < now()
7: time__delay <t — old__time
8: old_time <t > Get the timestamp
9: pos < GetSegmentGlobalTranslation(subj, seg)
10: move <— pos — old__pos
11: old__pos < pos > Get the position
12: q < GetSegmentGlobal RotationQuaternion(subj, seq) > Get the
orientation
13: vel < move/time__delay > Compute the velocity
14: > Copy the information in the msg
15: msg <t
16: msg <— pos
17: msg < q
18: msg <— vel
19: send msg
20: return 0

21: end procedure

3.2.3 Command publisher

The command publisher is the simplest ROS2 node among all in this architecture
and it is the only one that runs outside of the drone, its role is to send to the drone
a message containing the user command to be executed. The command publisher
directly communicates with the director node through an ROS2 topic, sending over
that topic a message containing the word that identifies the desired command and,
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Algorithm 5 Reads the UDP message received from the central unit. This
algorithm is a function of an object, all the variables used are created and initialized
inside the initializer of the object.

1: procedure MSG HANDLER(sd)

2: > sd contains all the information about the UDP communication

3: > msg contains the information about the position and orientation of the
drone

4: > Execution

5: bytes < recv from(ip) > Stores the bytes received from the UWB central
unit.

6: t < now()

7: time__delay <t — old__time

8: old time +t > Get the timestamp
9: pos <— read__bytes(bytes)

10: move <— pos|2| — old_pos_ z

11: old_pos__z < pos|2] > Get the position
12: q < read_bytes(bytes) > Get the orientation
13: vel < move/time__delay > Compute the velocity
14: > Copy the information in the msg

15: msg <t

16: msg <— pos

17: msg < q

18: msq < vel

19: send msg
20: return 0

21: end procedure

based on the specific command, it can also contain up to three numbers that can
be coordinates or the yaw angle. Since this work has been developed in a research
environment, this node checks only if the inserted command is valid, all other data
inserted are sent as they are written, the director node has the duty to translate
the string received into a proper command.

3.2.4 Director node

The director node is the most important part of the architecture; it is the core of
the entire application. Its role is to translate the strings received from the command
publisher into a proper command and ensure its execution. As mentioned above,
communication between the director node and the firmware is obtained through
ROS2, this means that every action we want to perform corresponds to a specific
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message to be sent to a specific ROS2 topic.
The commands available at the moment are:

o start: PX4 needs to receive an OffboardControlMode message at 2 hz as proof
that the external controller is healthy, without it, it is not possible to set
PX4 in the offboard mode and externally control it (the firmware requires to
receive this message for at least 1 second to execute any external command),
this message also defines the kind of control the firmware has to perform,
since the focus of this work is to make a working application and not an
optimal one, i chose to perform the position control, the simplest. The start
command initiates the transmission of the required healthy message, since the
2 hz required are a lower bound, i decided to transmit the message with a
frequency of 5 hz to cover possible delays or loss of messages. This has to be
the first command to be executed to enable the control of the drone;

« offboard: set the firmware to offboard mode. The request is made sending
a VehicleCommand message (parameters: 176, 1, 6). This request message
doesn’t work if it is sent before one second from the start of the healthy
message stream;

o arm: activates the drone rotors. This is done by publishing a vehicle command
message with the arming request (parameters: 400,1). This command can be
executed only after at least one second from the start of the healthy messages
stream and if the preflight checks performed by the firmware give positive
results;

e go: this command sets a new destination for the drone by sending a Trajecto-
rySetpoint message with the desired coordinates. To enhance the positional
precision of the drone, the position is sent every 200 ms, the stream of messages
stops if the drone is disarmed, killed or is landing. This command can be
executed only if the drone is armed;

o wait: stops the drone at the current position. Sends a TrajectorySetpoint
message with the coordinates of the drone when the command is received.
The message is sent only if the vehicle is moving;

o yaw: change the yaw angle of the drone. Sends a TrajectorySetpoint message
with the current position of the drone and the desired yaw angle. This
command can be sent only if the drone is armed and still:

o k or kill: stops the rotors of the drone and the stream of healthy messages, this
message is developed to guarantee the safety of the drone or the environment.
This command sends a VehicleCommand message to the firmware requiring
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the immediate disarm of the vehicle (parameters: 400, 0 and 21196), the
difference with the disarm message is the addition of a third parameter, this
parameter tells the firmware to bypass any flight check and execute the disarm
immediately;

o land: land the drone. To make a safe landing i call the predefined maneuver
saved in the firmware. The maneuver is called by sending a VehicleCommand
message with the landing request (parameter: 21). After the landing, the
drone is disarmed;

o disarm: stops the drone rotors. For safety reason, this command can be
executed only if the firmware detects that it is on the ground. As for the arm
command, the desired behavior is obtained publishing a VehicleCommand
with the disarming request (parameters: 400 and 0);

» mission: make the drone follow a predefined path by sending a sequence of
coordinates and orientations to it. This command automatically send several
trajectory point to the firmware, the new point is sent after the previous one is
considered reached, a point is considered reached if the drone stays within an
acceptance radius around it with the desired orientation for a given amount
of time. Every set of coordinates is sent with a TrajectorySetpoint message,
like the go and yaw commands. This command can be executed only if the
drone is armed. More details on the path followed are available in Section 77;

o stop: immediately land the drone, stops all streams of messages and resets
all the variables of the node.

The director node has to execute the above commands as explained if the
conditions of the specific command are satisfied and verify the correct behavior of
the drone. To verify if the conditions of a command are satisfied, the director node
has to have information about the state and odometry of the drone, the firmware
gives all the necessary data about the current odometry of the vehicle but does not
give enough information about its state, the node needs to know the maneuvers
the drone is performing while the firmware VehicleStatus messages contains only
the arming state and the flight mode of the vehicle. To address this problem, the
director node implements a state-space machine with five states:

o disarm: this state implies that the drone is on the ground with the rotors still
and is ready to be controlled, the only way to exit from this state is through
the arm command. This is the starting state of the application;

e hold: in this state the drone is armed but steady in its current position, both
on the ground or in the air;
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« move: the drone is moving, this state includes both a rotation on itself and
a shift to reach a position. When the desired orientation and/or position is
reached, the state return to be hold;

» landing: this state means that the drone is executing a landing maneuver. In
this state, is not possible to execute any command until the drone is correctly
landed and disarmed;

o kill: entering this state means that something went wrong and the drone had
to be forcefully stopped. From this state, it is necessary to repeat the starting
procedure (start and then arm command) to control the drone again.

Figure 3.3 shows the implemented state-space machine with the necessary
commands to pass from one state to another. The start and stop commands
activate and deactivate the machine, respectively. The arrows without a command
represent a forced state change; when the maneuver characterized by that state
ends, the state is automatically changed.

Figure 3.3: State machine of the director node

3.2.5 PX4

The last component of the architecture is the vehicle firmware. During the imple-
mentation of the architecture, i did not modify any part of its code, i changed its
editable parameters to make it better fit the purpose of the application and the
vehicle used. In addition to the setup mentioned earlier in this chapter (Section

33



Software design and implementation

3.1.2), i performed a PID tuning to increase drone precision and set the external
vision source as the most important for data fusion. The main focus of the PID
tuning was to reduce overshooting in the horizontal movement to prevent possible
collisions with the environment.
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Chapter 4

Results

The focus of this work was to implement an architecture that would allow the
execution of a controlled flight with a drone without the use of a GPS. To test
the application, i developed a small mission that uses most of the commands
implemented and analyzed the performance. All tests were conducted in the same
space, but, due to the different precision between the two sources of position, the
missions have slightly different waypoints to maintain the safety of the drone. Even
though the waypoints are different, the structure of the mission is the same, the
drone has to reach five waypoints at a given altitude and then reach other five
waypoints at a different altitude, the first five points have to be reached moving
forward while the remaining moving sideways, after the tenth point the drone lands.
A waypoint, which is composed by the XY and Z coordinates of the destination
and the yaw angle to have there, is considered reached if the drone position and
yaw angle are inside an acceptance radius for two seconds (the acceptance radii are
checked separately, creating a "cube" of acceptance instead of a sphere), the time
requirement is used to analyze the capacity of the drone to maintain the position.
Between two different waypoints, the vehicle has to match the destination yaw
angle before moving there (after this change of orientation, the check to verify that
the position has been reached is repeated), in this way we obtain more control over
the flight, but the time needed to complete the mission increases.

The data shown in this chapter were taken from the messages exchanged between
the ROS2 nodes inside the drone and the firmware; the collection has been carried
out by the system where the command publisher was running.

4.1 Physical environment

All tests were performed indoors at the LINKS foundation. The area used for
flight is a cage 3.5 x 7.5 x 2.5 prepared to use the MoCap system and the UWB
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technology (Figure 4.1).

The MoCap system is enabled by the installation of six cameras on the cage
scaffold, four of them are positioned on the four upper corners while the remaining
two are set in the middle of the long sides of the structure, all cameras are at the
same height and oriented to cover all the space inside the cage. With this camera
disposal, we obtain a working area of dimensions 2.5 x 4.5 x 2 centered at the
center of the cage, inside this area, every move and orientation of the drone is
tracked by the system, with any (or, at least, not remarkable) loss of position.

Figure 4.1: Area used for all tests

To enable the VICON tracker to recognize the vehicle, the drone has been
equipped with four markers (shown in Figure 4.2), their position is extremely
important for the definition of the working area, after several tests we discovered
that with this disposal we obtain the biggest working area, the three markers
on the top of the drone help to recognize the drone at lower altitude while the
fourth marker is extremely important to identify the orientation of the drone
and not lose track of it at higher altitude. After recognition, the VICON tracker
continuously computes the vehicle odometry and sends it over the network as a
broadcast message with a frequency of 100 hz.

The UWB setup is enabled by using six anchors (shown in Figure 4.3) mounted
right below the cameras for the MoCap System at slightly different heights. The
UWB technology does not have the limits of the tracker in terms of area covered,
but, since this setup needs part of the measurements of the tracker, the working
area is the same as the other setup, slightly reduced to avoid critical areas where
are present communication delays too high to maintain a position.
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Figure 4.2: UAV used for all tests

In this setup, the drone is equipped with a tag (Figure 4.4), a small board
that, combined with the anchors, enables the measurement technique explained in
Section 2.5 to obtain position information with the UWB technology. All anchors
communicate the measured ranges to each other and one anchor is connected to a
server through a gateway, this gateway extracts all the measurements received from
the anchors and sends them to the server, this server combines the measurement
received to obtain an estimate of the X and Y positions of the tag. After the
computation, the server extracts the Z position and orientation of the vehicle from
the VICON data stream to obtain all the necessary odometry values, and, as last
step, it sends all the data to the drone with a single UDP message. This message
is sent at a rate of 40 hz.
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Figure 4.3: UWB anchor .
Figure 4.4: UWB tag
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4.2 Test with VICON

The waypoints of this mission are shown in Table 4.1, and the desired yaw angles
for each waypoint are shown in Table 4.2, for this setup the acceptance ranges are:
[£ 10] cm for the X coordinate, [+ 10] cm for the Y coordinate, [+5, -10] cm for the
7 coordinate and 4+ 0.03rad for the yaw angle. The initial position and orientation
of the drone are not relevant for the purpose and success of the mission.

1 2 3 1 5 6 7 8 9 10
X -12 106 |06 |-1.2] 06 |-1.2|06|-12| 0
Y| 0 [-18]-18 18|18 |-1.8|-1.8|12] 12| 0O
Z(109{091]09(0909 | 17|17 |17 17 |17

Table 4.1: Waypoints of the mission with the MoCap system. Measured in meters
in an ENU reference frame.

1 2 13 4 5 6 7 8 9 10
Yaw angles | 3.14 | 2.15 | 0 | -1.57 | 3.14 | 1.10 | 1.57 | -2.60 | -1.57 | 2.35

Table 4.2: Yaw angles of the mission with the MoCap system. Measured in
radiant in an NED reference frame.

The results of this test are shown in Figures 4.5, 4.6, 4.7 and 4.8. As you can
see, the mission was a success. The spatial performance of the system is illustrated
in the 3D trajectory graph (Figure 4.5), where the drone path (blue line) intersects
all 11 predefined waypoints (red dots) with high positional precision, showing the
vehicle’s ability to operate in three-dimensional environments. The corresponding
position plots on the X, Y and Z axes (Figure 4.6) show that the vehicle follows the
reference trajectory with small errors over time. The controller exhibits minimal
steady-state error and rapid convergence on all axes with a focus on altitude, the
initial overshoot in the altitude position is due to the dynamic computation of the
weight of the drone, the firmware requires a few moments to correctly estimate
the right amount of force to apply to precisely execute aerial maneuvers. The
transition from a waypoint to an other is quite low, as the horizontal velocity of
the vehicle has been limited for safety reasons.

The attitude response, shown through the evolution of roll (¢), pitch (6) and yaw
(1) angles over time (Figure 4.7), reveals that the system maintains a consistent
angular stability throughout the mission. Both roll and pitch remain around zero,
with transient oscillations during movement, reflecting good stability. The yaw
angle shows distinct step transitions corresponding to the planned heading changes
between the waypoints. These precise changes indicate that the system can change
its orientation without a significant delay or overshoot. The angular velocities

38



Results

profiles (Qx, Qy, Qz shown in Figure 4.8) further confirm the responsiveness of the
system, with variation in rotational rates during trajectory transitions.

Overall, the combined analysis of attitude, angular velocity, position trajectories
and spatial path visualization confirms the effectiveness of the proposed architecture
and control system. The platform demonstrates precise waypoint navigation,
dynamic stability and accurate trajectory tracking in all degrees of freedom. These
results validate the reliability and performance of the control architecture under
realistic conditions, supporting its suitability for complex autonomous missions.
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4.3 Tests with UWB

For the mission in this environment i have slightly approached the waypoints to cope
with the inaccuracy of the UWB technology, the new waypoints are shown in Table
4.3 and with the position i also changed the desired yaw angles to maintain the
structure of the mission, the new ones are shown in Table 4.4. For this environment,
also the acceptance ranges needed a modification to cope with the lower precision
of the localization system, the new ones are: [+ 25] cm for the X coordinate, [+
25] cm for the Y coordinate, [+5,-10] cm for the Z coordinate and [+ 0.03] rad for
the yaw angle. The initial position and orientation of the drone are not relevant
for the purpose and success of the mission.

1 2 3 4 5 6 7 8 9 10
X/01]-09{03]03/-09]031]-09]03(-09| 0
Y| 0O |-12-12]12| 12 |-12|-12|12] 12 | O
Z(109(091]09(09 09|17 |17 |17 17 |17

Table 4.3: Waypoints of the mission with the UWB technology. Measured in
meters in an ENU reference frame.

1 2 |3 4 Y 6 7 8 9 10
Yaw angles | 3.14 | 2.21 | 0 | -1.57 | 3.14 | 1.11 | 1.57 | -2.68 | -1.57 | 2.5

Table 4.4: Yaw angles of the mission with the UWB technology. Measured in
radiant in an NED reference frame.

The results of the mission are shown in Figures 4.9, 4.10, 4.11, and 4.12. This
time, the mission has been completed with some difficulties. The 3D trajectory plot
(Figure 4.9) illustrates the system’s capabilities to reach all the predefined waypoints,
although the actual path (blue) displays more curvature and loop compared to the
lines seen in the other experiment. These deviations and overshoots are caused
by inaccuracies and inconsistencies in the position given by the UWB technology,
which is extremely visible during the landing maneuver, but the actual position
remains within the tolerance band (Figure 4.10).

The attitude plots (¢, § and v, shown in Figure 4.11) show that the system
maintains roll and pitch angles within a bound of +0.2 radians, with higher noise
levels and fluctuations compared to the previous experiment, particularly in the
pitch channel. These transient deviations are caused by rapid changes in the UWB
position measurement. Despite the noisy roll and pitch, the yaw angle continues to
precisely follow the command reference values. This behavior is mirrored in the
angular velocity graphs (Figure 4.12), where the Qx and Qy channels exhibit a less
stable behavior than before, the 2z graph is comparable to previous results.
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All graphs show that this technology does not affect the movement of the drone
but negatively affects its capacity to maintain the position. Despite the increase
of the acceptance radii and the reduction in the distance between waypoints, the
mission lasted longer than the MoCap one. It is important to observe that the
positional error of this technology is not proportional to the environment and
is accentuated by the dimension of the mission, with larger mission it can be
negligible.
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4.4 Discussion

The performance presented earlier are direct results of the implementation carried
out during this thesis. These results were achieved by realizing the system archi-
tecture illustrated in Figure 4.13. As detailed in Chapter 3, the implementation of
this architecture required several key developments:

e The design and deployment of the Voxl-parser service, which enables Micro
XRCE-DDS communication between the companion board and the flight
controller firmware;

o The implementation of three ROS2 nodes (Coordinate publisher, Director and
Command publisher) which constitute the core of the communication network
and encapsulate the application logic;

o Modify the firmware to cope with the structure of the drone and the specific
purpose of the application;

To streamline the operation of the system, all components that are executed
onboard the drone, both on the companion board and the flight controller, were
configured to start automatically upon system boot.

ROS2 ||

\

uORB
message

PX4

Flight controller
(Kakute h7)

Companion board
\ (VOXL) /
K DRONE /

Figure 4.13: Complete architecture

‘GROUND STATION

The development of the application was guided by a series of tests conducted
in simulated and real world environments. The simulated environment served
primarily to support an initial understanding of the firmware and to facilitate the
early stages of the application logic design. However, due to discrepancies between
the simulation and the actual use case, real-world testing was essential for refining
the application and obtaining accurate feedback on its performance.

Although the implementation phase consumed most of the project timeline, it
was relatively straightforward in terms of technical obstacles. The most complex
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aspect involved the development of the Vozl-parser component, which was necessary
to establish a robust communication link between the companion computer and the
flight controller. This task posed a particular challenge, as it required familiarity
with technologies previously unexplored during the course of this work: the Micro
XRCE-DDS communication protocol and UART serial communication.

In contrast to the implementation phase, the testing phase was characterized
by a series of technical difficulties which, although not critical, contributed to a
slowdown in the overall development process:

o Slow deployment times: the creation and upload of the Docker image to the
companion board proved to be significantly time-consuming. Despite various
optimization attempts, each update to the ROS2 nodes required approximately
thirty minutes to be deployed to the vehicle.

» Latency in localization communication: the communication between the
localization system and the firmware suffered from noticeable delays, resulting
in a wavelike oscillation in the drone’s motion. This behavior stemmed from a
mismatch between the drone’s actual position and the position data received
from the localization system. Consequently, the firmware would attempt to
correct a position the drone had already moved beyond, creating a continuous
cycle of overcompensation. This issue was particularly evident in the Ultra-
Wideband (UWB) environment and was successfully mitigated by directly
connecting the UWB server to the network router, thereby reducing latency
in IP-based communication, which was the primary source of the problem;

e Inconsistent behavior on the companion board: some inconsistencies
were observed in the execution of the software on the companion board.
Although the application was configured for automatic startup at boot, certain
components, particularly the Voxl-parser, occasionally failed to launch or
exhibited significant startup delays. Unfortunately, these issues occurred
sporadically and could not be reproduced systematically, making cause analysis
difficult. However, their infrequent nature and the possibility to resolve them
manually ensured that they did not significantly slow the project’s progress.

Despite these challenges and the associated delays, the main objective of this
thesis was achieved successfully. However, several aspects of the application could
be further refined or extended to enhance performance and system reliability, such
as:

o Resolve the previously explained startup inconsistencies observed in the com-
panion board software;

e Conducting more accurate tuning of firmware parameters, which was limited
during development due to connectivity issues and frequent hardware changes;
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o Enabling drone control through velocity commands, in addition to position-
based control, to allow for smoother and more responsive flight behavior;

o Integrating an Inertial Measurement Unit (IMU) and improving the UWB
localization system to estimate altitude (z-axis) as well. These additions
would allow the drone to operate independently of an external motion capture
(mocap) and enable fully autonomous operation in environments where external
tracking systems are not available.
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Chapter 5

Conclusion

This thesis presented the development and implementation of an application that
allows an unmanned aerial vehicle (UAV) to perform controlled indoor flight, with
a focus on remote operation and flexibility in the system architecture. The primary
objective was to design and validate a functional framework rather than optimize
for peak performance, yet the experimental results were highly satisfactory under
different test conditions. The UAV demonstrated the ability to perform stable
and precise maneuvers in a three-dimensional space, even with varying degrees of
localization accuracy.

A key insight from this work is the strong dependency of UAV performance on
the quality of position and orientation data. The system integrated two external
localization methods: the VICON motion capture system and Ultra-Wideband
(UWB) technology. The VICON-based setup delivered exceptional results, with the
UAV maintaining stable flight, accurate trajectory tracking and smooth transitions,
ideal for operations requiring high precision and the possibility to install high
definition cameras to obtain a good cover of the operational area such as industrial
inspection, warehouse navigation or research applications. In contrast, the UWB-
based localization, though less precise and less stable than the MoCap one, still
enabled mission completion. This suggests that UWB technology can be a viable
alternative for tasks where ultra-high accuracy is not essential and have maneuvering
spaces large enough, such as urban monitoring, environmental exploration or initial
mapping in large indoor environments.

The flexibility and modularity of the system also highlight its potential for
adaptation to various applications and environments. Future work could focus
on optimizing control algorithms and improving the robustness of communication
between nodes, potentially incorporating onboard localization fusion techniques to
compensate for lower-quality external data sources. Furthermore, integrating real-
time obstacle avoidance and dynamic path planning would expand the applicability
of the system to more complex and unstructured environments.
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In conclusion, this thesis demonstrates that a UAV can be effectively controlled
indoors using a versatile architecture that supports multiple localization systems.
While high-precision systems like VICON yield superior results, cost-effective
alternatives such as UWB provide a functional solution for less demanding scenarios.
These findings contribute to the broader field of UAV autonomy by emphasizing
the trade-offs between performance and practicality in localization-driven control
strategies.
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