
Politecnico di Torino

Computer Engineering
Academic Year 2024/2025

Graduation Session July 2025

Application of Large Language
Models in Software Testing
An Analysis of Method-Level Bug Detection

Supervisors:
Prof. Flavio Giobergia
Prof. Alexander Felfernig
Prof. Denis Helic

Candidate:
Simone Bugni Duch





Abstract

Software testing is a crucial phase in the software development life cycle, essential
for delivering secure and reliable software systems. Detection of software bugs
is critical in order to deploy robust systems to end users, avoiding unexpected
behaviors and maintaining high software quality. However, traditional testing
methods frequently rely on manual effort or static rule-based tools, approaches
that can be time-consuming and resource-intensive.

With the advancement of Artificial Intelligence (AI), Large Language Models
(LLMs) have emerged as a breakthrough, demonstrating impressive capabilities on
various scenarios, such as machine translation, text summarization, and natural
language understanding. Motivated by these promising results, researchers have
begun exploring the potential of LLMs for a wide range of software engineering
tasks, including applications within software testing.

This thesis explores the application of LLMs to the task of method-level bug
detection in source code. Specifically, it examines the influence of different prompt-
ing scenarios, including zero-shot and few-shot approaches, on six state-of-the-art
open-source LLMs, and it investigates the impact of enriching model prompts
with additional context, such as raised exceptions and method call graphs. The
evaluations, conducted on the widely adopted Defects4J dataset, offer valuable
insights into how model size, prompting strategy, and contextual information affect
bug detection performance. Overall, this research provides a comprehensive analysis
on LLM-based bug detection, highlighting the potential and limitations of these
approaches and identifying directions for future work.





Acknowledgements

I would like to express my sincere gratitude to all those who supported and guided
me throughout the course of this thesis.

First and foremost, I am deeply grateful to my supervisor, Prof. Flavio Giobergia,
for his valuable feedback and his continuous support and encouragement throughout
the development of this work.

I would also like to extend my heartfelt thanks to my co-supervisors from TU
Graz, Prof. Alexander Felfernig, who initially proposed this research topic, and
Prof. Denis Helic, for their insightful guidance. I am especially thankful for the
opportunity they gave me, as an Erasmus student from another university, to work
with them and be part of their research. I would also take this opportunity to
thank the entire research team for their support and for welcoming me into their
group.

Special thanks go to the institutions at Graz University of Technology, in
particular the nvCluster team, for providing the computational resources that made
the experiments possible. I am also especially grateful to the International Office,
and in particular to Gitte Cerjak, for her unwavering patience and invaluable help.

I am truly thankful to my friends for their presence over the years and for all
the unforgettable moments we have shared. Your friendship has filled this time
with laughter, support, and warmth. I am truly grateful to have you in my life.

Finally, I would like to express my deepest gratitude to my family for their
constant and unconditional support throughout this journey. Even if I may not
always show it, I am fully aware of your irreplaceable role in my life. Thank you,
from the bottom of my heart.

ii





Table of Contents

List of Tables vii

List of Figures xi

List of Listings xii

1 Introduction 1
1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Software Testing Description . . . . . . . . . . . . . . . . . . . . . . 3
2.2 LLMs Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Model Architectures . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Optimization Approaches . . . . . . . . . . . . . . . . . . . 6

3 Experimental Setup 8
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Dataset Partitioning . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Common Parameters . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Models List . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Prompting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Computational Environment . . . . . . . . . . . . . . . . . . . . . . 26

4 Results And Discussion 27
4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Few-Shot Examples . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Exceptions Information . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Call Graph Construction . . . . . . . . . . . . . . . . . . . . 30

iv



4.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Partition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Zero-Shot Approach . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Few-Shot Approach . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Partition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Related Work 72
5.1 Automated Program Repair . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Vulnerability Detection . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion and Future Work 76

A Detailed Results for Ablation Studies 79
A.1 Ablation study: position of the explanation in Few-Shot examples . 79
A.2 Ablation study: analyzing different Few-Shot variants . . . . . . . . 82

A.2.1 Partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.2 Partition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 Ablation study: position of the reasoning field in Chain-of-Thought
approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 88

v





List of Tables

3.1 Overview of Defects4J dataset . . . . . . . . . . . . . . . . . . . . . 9
3.2 Number of bugs within static initialization blocks across the dataset 12
3.3 Final state of the dataset after the filter . . . . . . . . . . . . . . . 13
3.4 Combined total of bugs and buggy methods per project . . . . . . . 14
3.5 Three resulting partitions . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Characteristics of the tested models . . . . . . . . . . . . . . . . . . 18

4.1 Models size with 16384 tokens context window . . . . . . . . . . . . 28
4.2 Few-shot examples for Partitions 1 and 2 . . . . . . . . . . . . . . . 29
4.3 Few-shot examples for Partition 3 . . . . . . . . . . . . . . . . . . . 30
4.4 Codes assigned to each model . . . . . . . . . . . . . . . . . . . . . 33
4.5 Partition 1 project weights . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Project: Codec; Approach: Zero-shot; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Project: Gson; Approach: Zero-shot; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Project: Collections; Approach: Zero-shot; Format: value ±

confidence interval; Best results in bold . . . . . . . . . . . . . . . 35
4.9 Project: Mockito; Approach: Zero-shot; Format: value ± confi-

dence interval; Best results in bold . . . . . . . . . . . . . . . . . . 36
4.10 Project: Closure; Approach: Zero-shot; Format: value ± confi-

dence interval; Best results in bold . . . . . . . . . . . . . . . . . . 36
4.11 Weighted Averages; Approach: Zero-shot; Format: value ±

confidence interval; Best results in bold . . . . . . . . . . . . . . . 37
4.12 F1 scores for different position of the explanation (Top: explanation

before the has_bug field; Bottom: explanation after the has_bug
field); (P: Projects; 1: Codec; 2: Gson; 3: Collections; 4: Mockito;
5: Weighted Average); Format: value ± confidence interval; Best
results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.13 Project: Codec; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 39

vii



4.14 Project: Gson; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 39

4.15 Project: Collections; Approach: Few-shot; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 40

4.16 Project: Mockito; Approach: Few-shot; Format: value ± confi-
dence interval; Best results in bold . . . . . . . . . . . . . . . . . . 40

4.17 Project: Closure; Approach: Few-shot; Format: value ± confi-
dence interval; Best results in bold . . . . . . . . . . . . . . . . . . 41

4.18 Weighted Averages; Approach: Few-shot; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 41

4.19 Average processing time per method on Partition 1 projects with
zero-shot approach; Results expressed in s/m (seconds/method) . . 42

4.20 Average processing time per method on Partition 1 projects with
few-shot approach; Results expressed in s/m (seconds/method) . . . 43

4.21 Code assigned to each prompting strategy . . . . . . . . . . . . . . 45
4.22 Partition 2 project weights . . . . . . . . . . . . . . . . . . . . . . . 46
4.23 Partition 2 project weights for the zero-shot-whole-class approach . 46
4.24 Partition 2 project weights for the call graph approach . . . . . . . 47
4.25 Project: Csv; Model: LM70; Format: value ± confidence interval;

Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.26 Project: JxPath; Model: LM70; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 49
4.27 Project: JacksonCore; Model: LM70; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 50
4.28 Project: Compress; Model: LM70; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 51
4.29 Project: Lang; Model: LM70; Format: value ± confidence interval;

Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.30 Project: JacksonDatabind; Model: LM70; Format: value ±

confidence interval; Best results in bold . . . . . . . . . . . . . . . 53
4.31 Weighted Averages; Model: LM70; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 54
4.32 Average processing time per method on Partition 2 projects with

different approaches; Results expressed in s/m (seconds/method);
(JCore: JacksonCore; JData: JacksonDatabind); Best results in
bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.33 Partition 3 project weights . . . . . . . . . . . . . . . . . . . . . . . 56
4.34 Partition 3 project weights for the zero-shot-whole-class approach . 57
4.35 Partition 3 project weights for the call graph approach . . . . . . . 57
4.36 Project: JacksonXml; Model: LM70; Format: value ± confidence

interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 58

viii



4.37 Project: Chart; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.38 Project: Time; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.39 Project: Cli; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.40 Project: Jsoup; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.41 Project: Math; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.42 Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 63

4.43 Average processing time per method on Partition 3 projects with
different approaches; Results expressed in s/m (seconds/method);
(JXml: JacksonXml); Best results in bold . . . . . . . . . . . . . . 65

4.44 F1 scores of different few-shot variants on Partition 2 projects (W.
Average: Weighted Average); Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.45 F1 scores of different few-shot variants on Partition 3 projects (W.
Average: Weighted Average); Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.46 Average processing time per method across few-shot variants; Results
expressed in s/m (seconds/method); Best results in bold . . . . . . 68

4.47 F1 scores for different position of the reasoning field (Before:
reasoning field before the has_bug field; After: reasoning field
after the has_bug field); Format: value ± confidence interval; Best
results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.48 Average processing time per method based on position of reasoning
field; Results expressed in s/m (seconds/method); (Top: reasoning
field before the has_bug field; Bottom: reasoning field after the
has_bug field); Best results in bold . . . . . . . . . . . . . . . . . . 69

A.1 Project: Codec; Top: explanation before the has_bug field; Bot-
tom: explanation after the has_bug field; Format: value ± confi-
dence interval; Best results in bold . . . . . . . . . . . . . . . . . . 79

A.2 Project: Gson; Top: explanation before the has_bug field; Bottom:
explanation after the has_bug field; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Project: Collections; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 80

ix



A.4 Project: Mockito; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 81

A.5 Weighted Averages; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 81

A.6 Project: Csv; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.7 Project: JxPath; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 82

A.8 Project: JacksonCore; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 82

A.9 Project: Compress; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 82

A.10 Project: Lang; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.11 Project: JacksonDatabind; Model: LM70; Format: value ±
confidence interval; Best results in bold . . . . . . . . . . . . . . . 83

A.12 Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 83

A.13 Project: JacksonXml; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 83

A.14 Project: Chart; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.15 Project: Time; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.16 Project: Cli; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.17 Project: Jsoup; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.18 Project: Math; Model: LM70; Format: value ± confidence interval;
Best results in bold . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.19 Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold . . . . . . . . . . . . . . . . . . . . . . 85

A.20 Weighted Averages; Top: reasoning field before the has_bug
field; Bottom: reasoning field after the has_bug field; Format:
value ± confidence interval; Best results in bold . . . . . . . . . . . 86

x



List of Figures

3.1 Number of bugs excluded by the filtering operation . . . . . . . . . 12

4.1 Zero-Shot vs. Few-shot approach on Partition 1 projects (Precision) 43
4.2 Zero-Shot vs. Few-shot approach on Partition 1 projects (Recall) . 44
4.3 Zero-Shot vs. Few-shot approach on Partition 1 projects (F1 Score) 45
4.4 F1 Scores of different approaches on Partition 2 projects . . . . . . 55
4.5 F1 Scores of different approaches on Partition 3 projects . . . . . . 64

xi



List of Listings

3.1 Example of included bug (project: Chart, bug: 1) . . . . . . . . . . 10
3.2 Example of included bug (project: Math, bug: 6) . . . . . . . . . . 11
3.3 Example of excluded bug (project: JacksonDatabind, bug: 87) . . . 11
3.4 Example of excluded bug (project: Codec, bug: 14) . . . . . . . . . 11
3.5 Zero-Shot prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Zero-Shot-Motivation prompt . . . . . . . . . . . . . . . . . . . . . 19
3.7 Zero-Shot-Whole-Class prompt . . . . . . . . . . . . . . . . . . . . 20
3.8 Zero-Shot-Exceptions prompt . . . . . . . . . . . . . . . . . . . . . 21
3.9 Call Graph prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Few-Shot prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Few-Shot-Motivation prompt . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Zero-Shot Chain-of-Thought prompt . . . . . . . . . . . . . . . . . 24
3.13 Few-Shot Chain-of-Thought prompt . . . . . . . . . . . . . . . . . . 25
4.1 Few-shot example used in the prompt (Project: Chart; Bug: 11) . . 28
4.2 Exception information used in the prompt (Project: Chart; Bug: 11) 30
4.3 Generation of a call graph (Project: Csv; Bug: 2) . . . . . . . . . . 31

xii





Chapter 1

Introduction

Software bugs are a persistent challenge in software development, often recognized
as inevitable and destructive. They can lead to unexpected behavior, security issues,
and increasing maintenance costs in terms of both financial burden [1] and time
consumption [2]. As software systems grow in size and complexity, the number of
bugs tends to rise accordingly, reaching hundreds or even thousands within a single
system [3]. Detecting such defects early is essential to ensure software reliability
and to minimize the cost associated with downstream debugging and patching.

Software testing is a crucial activity to ensure the quality and reliability of
software products before they are deployed to end users. It is defined as the set
of practices and processes that verify whether the software’s actual results match
the expected ones, based on the given specifications and requirements [4]. The
goal of this process is to check the characteristics of a software item for differences
between its actual and expected behavior: these differences indicate errors or bugs.
Traditionally, testing methodologies relied on manual efforts by human testers
or static rule-based programs, which, while effective, can be time-consuming and
resource-intensive [5].

The rapid advances in Artificial Intelligence (AI), particularly in Natural Lan-
guage Processing (NLP), have positioned Large Language Models (LLMs) as a
major breakthrough. In recent years, they have received praise worldwide for show-
ing remarkable capabilities when applied across tasks such as machine translation
[6], text summarization [7], or classification [8], generating considerable interest
within the research community. Thanks to their ability to process both natural
and programming languages, LLMs have been leveraged to automate software
engineering tasks, such as code generation [9, 10, 11], code summarization [12, 13],
and automated test generation [14, 15]. LLMs’ ability to reason about code syntax
and semantics has led to increasing interest in their application to software testing
tasks. This opens new possibilities for automating different aspects of software
testing, enhancing efficiency and improving overall software quality.
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Introduction

This thesis explores the application of LLMs in the software testing domain, par-
ticularly in the bug detection phase. Specifically, it explores how different prompting
strategies (including zero-shot, few-shot, and chain-of-thought techniques) affect
the performance of large language models in detecting bugs at the method level
of source code. This investigation is conducted using a real-world dataset and
explores how context, examples, and structures influence model behavior.

The primary contribution of this work is a systematic evaluation and comparative
analysis of multiple state-of-the-art (SOTA) large language models in method-level
bug detection. Furthermore, it evaluates the effectiveness of different approaches and
prompting strategies to determine which performs best under various circumstances.
Finally, it discusses the strengths and limitations of LLM-based bug detection,
identifying key challenges and outlining directions for future improvement.

1.1 Structure of the Thesis
This thesis is structured as follows:

• Chapter 2 provides essential background on software testing and large language
models;

• Chapter 3 describes the experimental setup, including the dataset, models,
and prompting strategies used;

• Chapter 4 presents and analyzes the results obtained through experimentation;

• Chapter 5 offers an overview of the existing related research;

• Chapter 6 summarizes the findings and outlines directions for future work.

2



Chapter 2

Background

2.1 Software Testing Description
Software testing [16] is an essential part of the software development process, as it
evaluates the quality of a software product. The main goal of software testing is to
assess the presence of defects in software systems, which may lead to incorrect or
unexpected behavior. As stated in the introduction (see Chapter 1), testing used to
be performed manually by human testers, relying heavily on their experience and
capabilities. This approach was resource-intensive and prone to errors. Automated
testing, by contrast, involves writing scripts and using dedicated software and
tools to perform tests. This significantly reduces both testing time and the cost of
software development and maintenance.

The software testing life cycle typically includes the following phases:

• requirement analysis: analyze the software requirements and identify the
testing objectives, scope, and criteria;

• test planning: define the testing plan, including the strategy, goals, and
schedule;

• test development: develop and review test cases to ensure they align with
the plan and requirements defined in the previous stages;

• test execution: execute the test cases and record the results to assess the
system’s behavior against expected outcomes;

• test reporting: analyze the results and produce reports that describe the
testing process and identify any discovered defects;

• regression testing: fix the reported defects and execute the test cases again
to ensure that the changes did not introduce new issues;

3



Background

• software release: release the software to customers or end users once all
phases are completed and defects are resolved.

Depending on the requirements and complexity of the software under test, the
testing process may involve multiple cycles of the above steps. During the testing
phase, different types of tests can be performed, including:

• unit testing: test individual units or components (e.g., methods or classes),
focusing on the functionality to ensure correct behavior;

• integration testing: integrate different modules or components and test
their interactions to ensure they function correctly together;

• system testing: test the software system as a whole, including all the
integrated components and the external dependencies;

• acceptance testing: test the whole application to guarantee it meets the
business requirements and is ready for deployment.

This thesis falls within the scope of unit testing. It focuses specifically on
bug detection at the method level, that is, assessing whether individual methods
contain defects. It is important to clarify how this task relates to, and differs from,
other research areas in software quality assurance, such as bug prediction and fault
localization:

• bug detection is the process of determining whether a given piece of code
(e.g., a method) contains a bug. It is usually framed as a binary classification
task and often serves as an entry point for Automated Program Repair (APR)
pipelines;

• bug prediction is typically a statistical or machine learning task that ana-
lyzes historical features (such as code metrics, commit history, and developer
activity) to estimate the likelihood that a software component will contain
bugs in the future [17]. It is often used to prioritize testing or inspection
efforts;

• fault localization is the process of identifying the specific lines or expressions
in a program that are likely to contain the bug, typically after a failure is
observed. Techniques include spectrum-based methods [18], which analyze
both failed and passed test cases to rank suspicious lines.

This work targets bug detection, with a focus on applying LLMs to analyze
individual methods and assess whether they contain bugs. While some approaches
are purely static (i.e., based on code alone), one variant incorporates runtime failure
information, such as failed test cases and exception traces, to enrich the model’s
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reasoning. Although this introduces an element of fault analysis, the goal remains
to determine whether a method is buggy, rather than to pinpoint the exact faulty
line. A more detailed discussion of the prompting strategies is provided in Section
3.4.

2.2 LLMs Description

Pre-trained Language Models (PLMs) refer to language models trained on large-
scale corpora that demonstrate strong performance across a variety of Natural
Language Processing (NLP) tasks. When scaling up the number of parameters,
these models show not only improved performance, but also new capabilities, such
as in-context learning. To distinguish between models with different parameter
sizes, researchers coined the term Large Language Models (LLMs). These models
typically contain billions of parameters and are trained on massive text corpora,
enhancing their ability to process natural language in a human-like manner [19].
Currently, there is no consensus in existing literature on a precise threshold that
defines a language model as large [20].

The roots of LLMs date back to 1986, when Rumelhart et al. [21] introduced
Recurrent Neural Networks (RNNs), opening up the possibility of processing
sequential data by retaining previous input in internal states. In 1997, Hochreiter
et al. [22] proposed Long Short-Term Memory networks (LSTMs), an extension
of RNNs that addressed the long-range dependency problem by relying on a cell
state and three types of gates. In 2003, Bengio et al. [23] introduced the concept
of a language model based on a neural network, which paved the way for a new
paradigm in natural language processing. In 2015, Dai et al. [24] expounded key
ideas that underlie large language models, such as leveraging unsupervised pre-
training followed by supervised fine-tuning. In 2017 Vaswani et al. [25] presented
the Transformer network architecture, which weighs the importance of different
parts of the input data using a self-attention mechanism. This was the innovation
that led to the birth of modern Large Language Models as they are known today.
LLMs are based on the Transformer architecture and follow a pre-training-and-
fine-tuning approach. Firstly, they are trained on a large corpus of unlabeled data
through unsupervised learning; then, they are fine-tuned for downstream tasks
using a smaller amount of labeled data [26]. Some tasks lack high-quality fine-tuned
data; even in these scenarios, LLMs are able to achieve good performance through
prompt engineering [27]. This technique involves providing the model with natural
language descriptions and demonstrations of the desired task before presenting the
actual input. LLMs can be trained on both natural and programming languages,
and some are capable of handling both [28].

5



Background

2.2.1 Model Architectures
Large Language Models are usually classified into three categories based on their
model architecture:

• encoder-only LLMs: these LLMs only use the encoder part of the Trans-
former architecture. Generally, these models are pre-trained with a Masked
Language Modeling (MLM) approach, where a small percentage of tokens
in the input are randomly masked. The model learns to predict the original
values of these masked tokens based on their bidirectional context. Since these
models only have an encoder component, which is able to generate context-
aware representations for inputs, they are well-suited for code understanding
tasks (i.e., code search), but are less suitable for code generation tasks (i.e.,
program repair). Models like CodeBERT [29] are built upon this architecture;

• decoder-only LLMs: these LLMs only use the decoder part of the Trans-
former architecture. Usually, these models are pre-trained using a Causal
Language Modeling (CLM) approach, learning to predict the next token of a
sequence based on previous tokens. Therefore, such LLMs are used to produce
sequences of words in an autoregressive fashion, producing one token at a
time and using what has been generated so far as context for subsequent
tokens. Given this, these models are capable of naturally performing a variety
of tasks just by relying on a few examples or proper instructions, without the
need for fine-tuning. Notable model families belong to this category, such as
GPT-series models, including the well-known ChatGPT [30];

• encoder-decoder LLMs: these LLMs utilize both the encoder and decoder
parts of the Transformer architecture. The encoder’s role is to capture the
semantics and meaning of the input sequence by encoding it into a fixed-
size hidden state. The decoder then produces the corresponding output by
processing this hidden state and using attention mechanisms to refer to part
of the input sequence when needed. As a result, these models are particularly
well-suited for transforming one sequence into another, thus being used in
tasks like program repair. CodeT5 [31] is among the models that is built on
top of this architecture.

2.2.2 Optimization Approaches
LLMs typically acquire general knowledge from extensive datasets. A fundamental
research question is how to adapt general-purpose models for specific domains and
tasks to improve their performance. This goal can be achieved through two main
strategies:
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• fine-tuning: as briefly discussed earlier, fine-tuning refers to the process
in which LLMs are further trained on a smaller, specific dataset, adjusting
their parameters through supervised learning to improve performance on the
desired task. Fine-tuning was (and remains) a widely used strategy, especially
during the early emergence of LLMs, when off-the-shelf models with millions
of parameters lacked sufficient capacity and required further adaptation to
achieve better performance;

• prompt engineering: in recent years, there has been considerable research
related to the generation of prompts (i.e., the inputs given to the models)
that could improve LLMs’ performance across different tasks. Modern LLMs
demonstrate strong reasoning and generalization abilities, thanks to their
exponential growth in size [32]. Therefore, researchers have focused on prompt
engineering as a way to steer model behavior. This approach allows models
to produce the desired outputs without modifying their internal weights.
According to Wang et al.’s survey [20], the most commonly used approaches
are the following:

– zero-shot learning: this strategy consists of providing the model with
a description of the desired task and requesting an output. The model
solely rely on its prior knowledge and understanding to generate a proper
response;

– few-shot learning: with this approach [33], prompts include a task
description along with a few examples containing both inputs and corre-
sponding outputs. By observing these examples, the model can better
understand what the expected answers are.

– chain-of-thought: Chain-of-Thought (CoT) prompting [34] consists
of generating a sequence of short sentences that describe the reasoning
step-by-step, to guide the model towards the correct final answer. Usually,
prompts include questions followed by reasoning and their respective
results.
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Chapter 3

Experimental Setup

Several datasets have been proposed in the literature to support empirical research
in software testing. Notable examples include QuixBugs [35], TrickyBugs [36], and
Vul4J [37], each targeting different types of bugs and evaluation settings. Among
them, Defects4J [38] has emerged as one of the most widely adopted and influential
benchmarks. Over the last decade, it has become a common standard within the
research community, providing a consistent basis to reflect on the strengths and
weaknesses of proposed approaches in the software testing field [26]. For this reason,
this thesis relies on it as the evaluation dataset.

Section 3.1 describes the experimental methodology, while Section 3.2 gives an
overview of the Defects4J dataset and explains the criteria used to create a filtered
version of the database. Section 3.3 presents the characteristics of the large language
models evaluated in this thesis. Section 3.4 describes the prompting strategies
adopted to test the above-mentioned models. Finally, Section 3.5 describes the
available hardware and software resources.

3.1 Methodology
Starting from the Defects4J dataset, a manual filtering operation is performed
to extract only the bugs that fall within the scope of this research. Afterwards,
each selected bug is manually analyzed to construct the ground truth files for each
project. These files contain information about the buggy methods that meet the
requirements defined in the previous phase. Specifically, for each method, the
following information is reported: the method name, the name of the file in which
it is located, and its occurrence within that file. Sobreira et al. [39] analyzed six
projects in their study. Additionally, the fault localization dataset by Just et al.
[40] provides a partial list of buggy methods from Defects4J. Both sources offer
faster access to the data required for building the ground truth files.
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After filtering out unrelated bugs, the resulting dataset is split into three
partitions. In the first experimental phase, six open-source large language models
are evaluated on the first partition of the dataset. They are prompted with both
zero-shot and few-shot strategies, and the best-performing model is selected for the
second phase. During this phase, the selected model is tested using nine different
prompting approaches on the second dataset partition. The goal is to explore how
performance can be improved, leveraging both standard strategies and auxiliary
information commonly available when working in software testing, such as source
code, exception traces, or failed test cases. Finally, the experiments are repeated
on the third partition to validate and confirm the model’s observed behavior.

3.2 Dataset Description
Defects4J [41] is a well-known dataset that provides a collection of reproducible bugs
from real-world open-source programs written in the Java programming language.
It also features a framework that facilitates the access to faulty and fixed program
versions, along with their corresponding test suites. This framework provides a
high-level interface that enables researchers to perform various tasks in software
testing, such as test generation, test execution, and code coverage analysis.

Defects4J contains 854 bugs, plus 10 deprecated ones that are no longer repro-
ducible due to behavioral changes introduced in newer Java versions. These bugs
span 17 different open-source projects:

Identifier Project name Number of active bugs Active bug ids Deprecated bug ids
Chart jfreechart 26 1-26 None
Cli commons-cli 39 1-5, 7-40 6
Closure closure-compiler 174 1-62, 64-92, 94-176 63, 93
Codec commons-codec 18 1-18 None
Collections commons-collections 28 1-28 None
Compress commons-compress 47 1-47 None
Csv commons-csv 16 1-16 None
Gson gson 18 1-18 None
JacksonCore jackson-core 26 1-26 None
JacksonDatabind jackson-databind 110 1-64, 66-88, 90-112 65, 89
JacksonXml jackson-dataformat-xml 6 1-6 None
Jsoup jsoup 93 1-93 None
JxPath commons-jxpath 22 1-22 None
Lang commons-lang 61 1, 3-17, 19-24, 26-47, 49-65 2, 18, 25, 48
Math commons-math 106 1-106 None
Mockito mockito 38 1-38 None
Time joda-time 26 1-20, 22-27 21

Table 3.1: Overview of Defects4J dataset

The goal of the dataset is to identify real bugs (i.e., bugs fixed by a developer)
and to obtain, for each bug, a faulty and a fixed version that differ only by the
bug fix. In particular, each bug of the Defects4J dataset meets the following
requirements:
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• relation to source code: the commit corresponding to the bug fix must
be explicitly labeled as a bug-fixing commit, and the fix must directly affect
source code. Bug fixes involving configuration files, tests, or documentation
are excluded;

• reproducibility: the bug must be accompanied by at least one test that
fails on the faulty version and succeeds on the fixed one. Additionally, the
bug must be reproducible using the project’s build system and a Java Virtual
Machine (JVM);

• isolation: the only difference between the faulty and fixed versions of the
bug must be the bug fix itself (that is, the bug fix does not include irrelevant
changes, such as features or refactorings).

The following sections describe the operations performed on the dataset. Section
3.2.1 outlines the filtering procedure, while Section 3.2.2 explains how the dataset
is partitioned.

3.2.1 Dataset Preparation
Since this thesis focuses on bug detection at the method level, the first step is to
extract buggy methods from the dataset. In the Defects4J context, a bug refers
to a set of related faults and the corresponding Java classes in which they occur.
Each Java class contains multiple methods and may include more than one buggy
method. Due to this discrepancy between bugs and buggy methods, the focus of
this section will be on buggy methods, since they are the target of this evaluation.

To adhere to the research scope, only defects located within methods and
constructors are considered, excluding bugs affecting other parts of the source code,
such as static initialization blocks or missing imports.

The following list illustrates the types of bugs that are either included in or
excluded from the dataset based on the filtering criteria:

• bug within a method
public LegendItemCollection getLegendItems () {

(...)
int index = this.plot. getIndexOf (this);
CategoryDataset dataset = this.plot. getDataset (index);
-if ( dataset != null) {
+if ( dataset == null) {

return result ;
} (...)

Listing 3.1: Example of included bug (project: Chart, bug: 1)
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In the fixed version of the project, the line labeled with ’-’ is removed, while
the one labeled with ’+’ is inserted. The bug is located within the body of
the method getLegendItems, which is therefore labeled as a buggy method.

• bug within a constructor
protected BaseOptimizer ( ConvergenceChecker <PAIR > checker ) {

this. checker = checker ;

evaluations = new Incrementor (0, new MaxEvalCallback ());
-iterations = new Incrementor (0, new MaxIterCallback ());
+ iterations = new Incrementor ( Integer .MAX_VALUE , new

MaxIterCallback ());
}

Listing 3.2: Example of included bug (project: Math, bug: 6)

Constructors are a special type of methods used to initialize objects and share
syntactic similarities with regular methods. Due to this correspondence, they
are included in the scope of this research.

• bug outside methods or constructors
(...)
protected final static DateFormat DATE_FORMAT_ISO8601 ;
protected final static DateFormat DATE_FORMAT_ISO8601_Z ;
+ protected final static DateFormat DATE_FORMAT_ISO8601_NO_TZ ;

// since 2.8.10

protected final static DateFormat DATE_FORMAT_PLAIN ;
(...)

Listing 3.3: Example of excluded bug (project: JacksonDatabind, bug: 87)

This example illustrates a bug excluded during the preliminary filtering phase.
The difference between the buggy and the fixed versions lies in the added line
labeled with ’+’, which corresponds to a missing global static field declaration.
The model is fed Java methods or constructors, but this error happens outside
of these structures and is therefore discarded.

• bug within a static initialization block
-private static final String LANGUAGE_RULES_RN = "org/ apache /

commons /codec/ language /bm/lang.txt";
+ private static final String LANGUAGE_RULES_RN = "org/ apache /

commons /codec/ language /bm/% s_lang .txt";

static {
for (final NameType s : NameType . values ()) {
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-Langs.put(s, loadFromResource ( LANGUAGE_RULES_RN ,
Languages . getInstance (s)));

+Langs.put(s, loadFromResource ( String . format (
LANGUAGE_RULES_RN , s. getName ()), Languages . getInstance (s)))
;
}

}

Listing 3.4: Example of excluded bug (project: Codec, bug: 14)

This example shows a bug within a static initialization block. Although these
blocks share structural similarities with regular methods, they do not have
explicit names by which they can be referenced. Initially, placeholder names
were considered to label these cases; however, such bugs are often related to
broader issues, such as missing static imports, as seen in this example, making
them less suitable for isolated evaluation. For this reason, they were excluded
by the filtering operation. In total, nine such bugs were identified across the
projects, and they are listed in Table 3.2:

Codec JacksonDatabind Jsoup Mockito Time Total
1 4 2 1 1 9

Table 3.2: Number of bugs within static initialization blocks across the dataset

Using the dataset’s framework, a manual comparison between faulty and fixed
versions of each bug in the dataset has been performed. These comparisons led to
the extraction of each buggy method. The number of bugs excluded by the filtering
operation is reported in the following list:

• Chart: 1

• Cli: 2

• Closure: 1

• Codec: 2

• Collections: 4

• Compress: -

• Csv: 1

• Gson: -

• JacksonCore: 1

• JacksonDatabind:
8

• JacksonXml: 1

• Jsoup: 4

• JxPath: -

• Lang: 2

• Math: 2

• Mockito: 1

• Time: 1

• Total: 31
Figure 3.1: Number of bugs excluded by the filtering operation

As reported in Figure 3.1, the filtering operation excluded 31 bugs out of the
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original 854. The JacksonDatabind project was the most affected, with 8 bugs
removed, while some other projects remained unaltered.

Table 3.3 shows the final composition of the filtered dataset:

Identifier Number of bugs Number of buggy methods
Chart 25 39
Cli 37 52
Closure 173 313
Codec 16 21
Collections 24 44
Compress 47 74
Csv 15 17
Gson 18 29
JacksonCore 25 56
JacksonDatabind 102 202
JacksonXml 5 5
Jsoup 89 159
JxPath 22 44
Lang 59 87
Math 104 149
Mockito 37 78
Time 25 51
Total 823 1420

Table 3.3: Final state of the dataset after the filter

One project stands out for its size: Closure. In total, four projects contain more
than 100 buggy methods, which are Closure, JacksonDatabind, Jsoup, and Math.
The other projects comprise tens of buggy methods, ranging from 17 to 87. The
smallest project is JacksonXml, which includes only 5 buggy methods.

3.2.2 Dataset Partitioning
The outcome of the filtering phase is shown in Table 3.3. This filtered dataset
serves as the foundation of the experiments conducted in this thesis. As described
in the methodology (see Section 3.1), the dataset is divided into three partitions.
The goal is to create dataset partitions that are as balanced as possible in terms of
the total number of bugs and buggy methods. To achieve this, a greedy partitioning
algorithm is applied. Projects are sorted in descending order based on the sum of
their bugs and buggy methods (a higher number of bugs implies a larger number
of total methods). They are then sequentially assigned to the partition with the
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currently smallest total sum, aiming to balance both buggy and total methods
across partitions.

Table 3.4 lists each project along with the combined total of bugs and buggy
methods:

Identifier Sum of bugs and buggy methods
Closure 486
JacksonDatabind 304
Math 253
Jsoup 248
Lang 146
Compress 121
Mockito 115
Cli 89
JacksonCore 81
Time 76
Collections 68
JxPath 66
Chart 64
Gson 47
Codec 37
Csv 32
JacksonXml 10

Table 3.4: Combined total of bugs and buggy methods per project

The algorithm is outlined below:

Greedy Partitioning Algorithm
Require: Project list P = {p1, p2, . . . , pn} with associated weights w(pi)
Ensure: Three balanced partitions P1, P2, P3

1: Sort P in descending order by w(pi)
2: Initialize partitions P1 ← ∅, P2 ← ∅, P3 ← ∅
3: for all project p in P do
4: Identify partition Pk with minimum total weight
5: Assign project p to Pk

6: end for
7: return P1, P2, P3

A few execution steps are reported below. Each entry follows the format:
Partition(Projects)[Total sum of bugs and buggy methods]:
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• Starting point: P1( )[0]; P2( )[0]; P3( )[0]

• Step 1: P1((Closure, 486))[486]; P2( )[0]; P3( )[0]

• Step 2: P1((Closure, 486))[486]; P2((JacksonDatabind, 304))[304]; P3( )[0]

• Step 3: P1((Closure, 486))[486]; P2((JacksonDatabind, 304))[304];
P3((Math, 253))[253]

• Step 4: P1((Closure, 486))[486]; P2((JacksonDatabind, 304))[304];
P3((Math, 253), (Jsoup, 248))[501]

• (...)

Based on the data in Table 3.4, the application of the above-mentioned greedy
algorithm produces the following three partitions:

Partition 1 Partition 2 Partition 3
Projects Closure JacksonDatabind Math

Mockito Lang Jsoup
Collections Compress Cli

Gson JacksonCore Time
Codec JxPath Chart

Csv JacksonXml
Bugs 268 270 285

Buggy methods 485 480 455
Total 753 750 740

Table 3.5: Three resulting partitions

The adoption of this strategy results in three partitions that are well-balanced in
terms of both bugs and buggy methods. The maximum imbalance between any two
partitions is only 17, and the difference in buggy methods is at most 30, making
these partitions suitable for comparative analysis in the subsequent experiments.

3.3 Model Descriptions
As reported in [26], [20], and [42], the majority of studies conducted in the software
testing research area rely on GPT models, like ChatGPT [30] and Codex [43].
In order to broaden the evaluation in this field, six different open-source models
from the Ollama [44] library are tested. These models are chosen according to the
available hardware resources described in Section 3.5.
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This section presents the characteristics of each model, along with a description
of the parameters that are kept consistent across all models.

3.3.1 Common Parameters
To ensure a fair comparison, some parameters are kept the same across all model
evaluations:

• instruction tuning: the instruction-following variant (instruct) is used for
each model;

• quantization: all models are run in 4-bit standard quantized mode (q4_0);

• temperature: each model uses the default temperature setting to ensure a
uniform degree of randomness in the generated answers.

3.3.2 Models List
To ensure diversity regarding model size, two small models (between 1B and 25B
parameters), two medium models (between 25B and 50B parameters), and two
big models (above 50B parameters) were selected. Moreover, three of them are
specifically tailored for code-related tasks, while the remaining represent general-
purpose models.

The models evaluated within this thesis are reported in the following list. The
default size refers to the memory occupation of models with a context window of
2048 tokens, which is the default value set by Ollama.

• Codellama
Codellama is a family of code-based LLMs built on top of Llama2 architecture.
It supports code generation and discussion across multiple programming
languages, such as Java, Python, and C++. It is available in several parameter
sizes (7B, 13B, 34B, and 70B), each released in three variants:

– instruct: an instruction-following variant fine-tuned to follow user
prompts;

– python: a specialized variant further fine-tuned on Python code;
– code: a variant optimized for code completion.

The version used in this thesis is the following:

– name: codellama:34b-instruct-q4_0

– parameters: 33.7B
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– maximum context length: 16384 tokens
– default size: 19 GB

• Codestral
Codestral is a model designed for code generation tasks, such as writing
tests or completing partially written code, that leverages a fill-in-the-middle
mechanism. It has 22B parameters.
The version used in this thesis is the following:

– name: codestral:22b-v0.1-q4_0

– parameters: 22.2B
– maximum context length: 32768 tokens
– default size: 13 GB

• Llama3.1
Llama3.1 is a family of models available in three different sizes: 8B, 70B, and
405B. These models are known for their strong reasoning capabilities as well as
their proficiency on multilingual translation and in-depth general knowledge.
The two versions used in this thesis are the following:

– Version 1:
∗ name: llama3.1:8b-instruct-q4_0
∗ parameters: 8.03B
∗ maximum context length: 131072 tokens
∗ default size: 4.7 GB

– Version 2:
∗ name: llama3.1:70b-instruct-q4_0
∗ parameters: 70.6B
∗ maximum context length: 131072 tokens
∗ default size: 40 GB

• Llama3.3
Llama3.3 is a pre-trained, instruction-tuned generative model with 70B pa-
rameters.
The version used in this thesis is the following:

– name: llama3.3:70b-instruct-q4_0

– parameters: 70.6B
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– maximum context length: 131072 tokens
– default size: 40 GB

• Qwen2.5-Coder
Qwen2.5-Coder is a family of models available in various sizes: 0.5B, 1.5B,
3B, 7B, 14B, and 32B. They are particularly recommended for tasks like code
generation, code repair, and code reasoning, which is the ability to predict the
model’s inputs and outputs by learning the process of code execution. These
models support multiple programming languages, including Java, Rust, and
Haskell.
The version used in this thesis is the following:

– name: qwen2.5-coder:32b-instruct-q4_0

– parameters: 32.8B
– maximum context length: 32768 tokens
– default size: 19 GB

The following table sums up the characteristics of the chosen models:

Name Version Quantization Parameters Max. Context Length Size
codellama instruct q4_0 33.7B 16384 19 GB
codestral v0.1 q4_0 22.2B 32768 13 GB
llama3.1 instruct q4_0 8.03B 131072 4.7 GB
llama3.1 instruct q4_0 70.6B 131072 40 GB
llama3.3 instruct q4_0 70.6B 131072 40 GB

qwen2.5-coder instruct q4_0 32.8B 32768 19 GB

Table 3.6: Characteristics of the tested models

3.4 Prompting Strategies
As briefly introduced in Section 2.2.2, various strategies exist for generating input
prompts aimed at improving the performance of LLMs. This thesis explores nine
different approaches, described in the following list:

• Zero-Shot
Listing 3.5 shows the zero-shot prompt used in the experiments. It begins by
setting the context for the model: it is tasked with analyzing Java methods
to detect potential bugs. Then, it instructs the model to evaluate a specific
method (indicated by method_name) and determine whether it contains any
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bugs. The model is asked to produce a binary decision and is warned not to
assume that all methods are buggy, which helps mitigate potential biases in
its output. The source code of the method under evaluation is then included.
Finally, the model is instructed to generate output in JSON format to ensure
structured responses, which facilitate automatic evaluation of the results.
You are analyzing Java methods to determine whether they

contain bugs.

Analyze the method named ’{ method_name }’ to identify any bugs.
If you find any , set " has_bug " to true; otherwise , set "

has_bug " to false. Do not assume that all methods have bugs
.

Method code:
{ method_code }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false
}
Do not include any other comments or explanations .

Listing 3.5: Zero-Shot prompt

The next prompts are based on the structure of this zero-shot prompt.

• Zero-Shot-Motivation
The prompt shown in Listing 3.6 extends the basic zero-shot formulation by
requiring the model to provide a short justification for its decision. While the
overall structure remains the same, the model is now asked to include a brief
motivation within the JSON response object. This requirement encourages the
model to explicitly articulate its internal decision-making process, even though
the explanation is expected to remain concise. This approach, that could be
seen as a lightweight version of Chain-of-Thought strategy (see Listing 3.12),
aims to improve both prediction quality and transparency, offering insights
into whether the model’s rationale aligns with human expectations.
You are analyzing Java methods to determine whether they

contain bugs.
Analyze the method named ’{ method_name }’ to identify any bugs.
If you find any , set " has_bug " to true; otherwise , set "

has_bug " to false. Do not assume that all methods have bugs
.

Explain briefly your reasoning in the " motivation " field.
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Method code:
{ method_code }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false ,
\t" motivation ": " string "
}
Do not include any other comments or explanations .

Listing 3.6: Zero-Shot-Motivation prompt

• Zero-Shot-Whole-Class prompt
Listing 3.7 shows the first prompt that investigates the impact of adding
additional context on the model’s performance. In particular, the model is
fed the source code of the entire Java class from which the target method is
extracted. It is explicitly stated that this serves as context to aid the model’s
analysis. However, the evaluation still focuses on a single method, as enforced
by the prompt. This strategy aims to determine the influence of a realistic
class-level code environment on the model’s ability to detect possible bugs.
You are analyzing Java methods to determine whether they

contain bugs.

The full Java class code is provided below to give you context
:

{ class_code }

Now focus on the method named ’{ method_name }’ extracted from
the class above. Analyze this method to identify any bugs.

If you find any , set " has_bug " to true; otherwise , set "
has_bug " to false. Do not assume that all methods have bugs
.

Method code:
{ method_code }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false
}
Do not include any other comments or explanations .
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Listing 3.7: Zero-Shot-Whole-Class prompt

• Zero-Shot-Exceptions prompt
The prompt shown in Listing 3.8 is the second variant to provide contextual
information, this time in the form of runtime failure reports. Specifically, the
prompt includes information about the failing test cases and the exceptions
raised when running the test suite on the class containing the target method.
These details are extracted by parsing the output of the defects4j info
command (see Section 4.1.2 for an example). The model is asked to determine
whether the method under evaluation could be responsible for the observed
failures. This approach investigates the role of dynamic feedback (i.e., failing
behavior from test suites) and mimics real-world debugging scenarios, in which
developers start from failing test cases to locate faults in the source code.
You are analyzing Java methods to determine whether they

contain bugs.

Below is a report of the exception (s) or assertion failure (s)
triggered by executing the test suite for this class:

{ exception_info }

Now analyze the method named ’{ method_name }’ from this class
and determine whether it could be responsible for the
failure (s) described above.

If you find a bug in this method , set " has_bug " to true;
otherwise , set " has_bug " to false. Do not assume that all
methods have bugs.

Method code:
{ method_code }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false
}
Do not include any other comments or explanations .

Listing 3.8: Zero-Shot-Exceptions prompt

• Call Graph prompt
The prompt shown in Listing 3.9 introduces contextual information in the form
of a call graph. Alongside the method code, it also provides the source code of

21



Experimental Setup

the methods directly called by the method under investigation. This context is
introduced solely as supporting information to aid the model’s understanding.
The prompt clearly states that these called methods should not be evaluated.
This approach aims to help the model reason about a method’s behavior in
relation to its dependencies, potentially offering key insights for detecting
bugs. Section 4.1.3 describes how call graphs are constructed.
You are analyzing Java methods to determine whether they

contain bugs.

Analyze the method named ’{ method_name }’ to identify any bugs.
If you find any , set " has_bug " to true; otherwise , set "

has_bug " to false. Do not assume that all methods have bugs
.

To help you better understand how this method works , the code
of the methods it directly calls is also provided . These
called methods are included for context only --- do not
evaluate them for bugs.

Method code:
{ method_code }

Called methods ( context only):
{ method_calls }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false
}
Do not include any other comments or explanations .

Listing 3.9: Call Graph prompt

• Few-Shot prompt
Listing 3.10 presents the first prompt built using a few-shot learning strategy.
While the overall structure mirrors that of the previous prompts, this prompt
also includes six illustrative examples of Java methods, each paired with
its corresponding evaluation and a brief justification. These examples are
designed to implicitly teach the model the expected reasoning process and
output format. This approach tests whether in-context learning [45], which
is the ability of LLMs to learn from examples provided directly in the input
prompt, can enhance the model’s performance by evaluating its ability to
generalize from a small set of labeled instances. The examples included in the
prompt are reported in Section 4.1.1.
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You are analyzing Java methods to determine whether they
contain bugs.

Below are six examples of Java methods with explanations on
whether they contain bugs and their corresponding
evaluations :

{ examples }

Now analyze the method named ’{ method_name }’ to identify any
bugs.

If you find any , set " has_bug " to true; otherwise , set "
has_bug " to false. Do not assume that all methods have bugs
.

Method code:
{ method_code }

Provide your response as a JSON object with the following
structure :

{
\t" method_name ": " string ",
\t" has_bug ": true or false
}
Do not include any other comments or explanations .

Listing 3.10: Few-Shot prompt

• Few-Shot-Motivation prompt

The prompt displayed in Listing 3.11 builds upon the few-shot structure by
incorporating the same enhancement introduced in Listing 3.6. The model
is required to provide a brief justification for its prediction by filling the
additional motivation field of the JSON object. This formulation combines
the benefits of few-shot learning and lightweight reasoning, potentially leading
to better performance.

You are analyzing Java methods to determine whether they
contain bugs.

Below are six examples of Java methods with explanations on
whether they contain bugs and their corresponding
evaluations :

{ examples }

Now analyze the method named ’{ method_name }’ to identify any
bugs.
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If you find any , set " has_bug " to true; otherwise , set "
has_bug " to false. Do not assume that all methods have bugs
.

Explain briefly your reasoning in the " motivation " field.

Method code:
{ method_code }
Provide your response as a JSON object with the following

structure :
{
\t" method_name ": " string ",
\t" has_bug ": true or false ,
\t" motivation ": " string "
}
Do not include any other comments or explanations .

Listing 3.11: Few-Shot-Motivation prompt

• Chain-of-Thought Zero-Shot prompt
Listing 3.12 introduces the first Chain-of-Thought (CoT) prompting strategy,
which explicitly instructs the model to perform step-by-step reasoning before
reaching a final decision. Unlike previous similar approaches, where only a
brief explanation was required (see Listings 3.6 and 3.11), this prompt clearly
encourages the model to reflect on various aspects of the target method (such
as control flow and data handling) and to reason aloud before answering.
This step-by-step reasoning can reduce hallucination (i.e., when a model
generate nonsensical or unsupported responses [46]) and improve the model’s
performance.
You are analyzing Java methods to determine whether they

contain bugs.

Analyze the method named ’{ method_name }’ step -by -step to
identify any bugs. If you find any , set " has_bug " to true;
otherwise , set " has_bug " to false.

Think carefully about the control flow , data handling , method
calls , and edge cases. Reason aloud before making a final
decision . Do not assume that all methods have bugs.

Method code:
{ method_code }

Explain your step -by -step reasoning in the " reasoning " field.
Provide your response as a JSON object with the following

structure :
{
\t" method_name ": " string ",
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\t" has_bug ": true or false ,
\t" reasoning ": " string "
}
Do not include any other comments or explanations .

Listing 3.12: Zero-Shot Chain-of-Thought prompt

• Chain-of-Thought Few-Shot prompt

Listing 3.13 presents the final tested approach: a few-shot version of the
previous CoT prompt. Here, the instructions on how to conduct the reasoning
are preceded by a set of examples. To ensure a fair comparison among the
approaches, the few-shot examples are the same as those used in previous few-
shot strategies, but the explanations are replaced with step-by-step reasoning,
to align with the model’s expected output. This approach aims to combine
the benefits of both in-context learning and structured reasoning, potentially
guiding the model towards more accurate predictions.

You are analyzing Java methods to determine whether they
contain bugs.

Below are six examples of Java methods with step -by -step
reasoning and final evaluations :

{ examples }

Now analyze the method named ’{ method_name }’ step -by -step to
identify any bugs. If you find any , set " has_bug " to true;
otherwise , set " has_bug " to false.

Think carefully about the control flow , data handling , method
calls , and edge cases. Reason aloud before making a final
decision . Do not assume that all methods have bugs.

Method code:
{ method_code }

Explain your step -by -step reasoning in the " reasoning " field.
Provide your response as a JSON object with the following

structure :
{
\t" method_name ": " string ",
\t" has_bug ": true or false ,
\t" reasoning ": " string "
}
Do not include any other comments or explanations .

Listing 3.13: Few-Shot Chain-of-Thought prompt

25



Experimental Setup

3.5 Computational Environment
The experiments are conducted on the nvCluster infrastructure at TU Graz, a
computing cluster comprising four compute nodes. Each node features eight Nvidia
Quadro RTX 8000 GPUs, each providing 48 GB of memory. These GPUs are
designed for high-performance workloads and large-scale inference tasks, making
them well-suited for the demands of LLM evaluation. More information on their
specifications is available in the official datasheet [47].

On the software side, the experimental pipeline is implemented primarily in
Python. Model interaction is performed via the Ollama client, which communicates
with the examined large language models.

Java code analysis is enabled using JavaParser through JPype, allowing seamless
integration between Java and Python. This setup is used to extract individual
methods and constructors from source files for model evaluation.
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Results And Discussion

This chapter reports the results obtained through the conducted experiments.
Section 4.1 describes the selection of the examples used in the few-shot prompting
approaches and the construction of call graphs. It also presents the evaluation
metrics adopted to measure the models’ performance and an example of exception-
related information. The results obtained on the three dataset partitions are
reported and discussed in Sections 4.2, 4.3 and 4.4. Section 4.5 discusses the
potential threats to the validity of this study.

4.1 Implementation Details
As reported in Section 3.2.1, in the Defects4J context, each bug represents one
or more Java classes that contain one or more actual defects. Since this anal-
ysis focuses on method-level bug detection, the experiments are conducted by
extracting individual methods from the buggy classes and prompting the models
with each method separately. The corresponding JavaDoc comment (if present)
immediately preceding each method is retained during extraction, ensuring that
the model receives not only the method implementation but also its accompanying
documentation. This can provide valuable semantic context that may aid in bug
detection.

To ensure a fair comparison among the evaluated models, the context window
size is uniformly set to 16384 tokens, which is the smallest maximum context length
supported across all models considered in this study, as reported in Table 3.6.
Table 4.1 reports the models’ memory usage with the context window set to 16384
tokens. Each model fits within the available resources described in Section 3.5.
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Model Size
Codellama:34b-instruct-q4_0 41GB

Codestral:22b-v0.1-q4_0 35GB
Llama3.1:8b-instruct-q4_0 8.3GB
Llama3.1:70b-instruct-q4_0 48GB
Llama3.3:70b-instruct-q4_0 48GB

Qwen2.5-Coder:32b-instruct-q4_0 41GB

Table 4.1: Models size with 16384 tokens context window

The experiments follow the evaluation workflow described in Section 3.1, where
models are tested across three dataset partitions and multiple prompting strategies.

4.1.1 Few-Shot Examples
The zero-shot approach measures the inherent capabilities of the models, hence
serving as the baseline for the experiments. Regarding the few-shot approach, the
examples are selected from actual buggy methods within the Defects4J dataset,
ensuring alignment with the methods being evaluated. In order to avoid data
leakage, the examples used in the prompts for Partitions 1 and 2 are selected from
projects in Partition 3, while those used for Partition 3 are picked from projects
in Partitions 1 and 2. With the aid of the Defects4J dissection by Sobreira et al.
[39], the selection process aims to cover a diverse range of bug types. The number
of examples included in each prompt is empirically set to six, with an equal split
between buggy and non-buggy methods, to avoid biasing the model’s behavior.
Since Defects4J bugs are non-trivial, each example shows, alongside its code and
evaluation, a brief explanation justifying the label. This additional reasoning is
meant to help the model understand why a method is considered buggy or not,
thereby preserving the effectiveness of the few-shot approach.

Listing 4.1 shows one of the few-shot examples actually used in this thesis,
along with both its evaluation and explanation, to clarify how such examples are
presented to the model. The entire source code of the method is omitted due to
space constraints.
Example 1
Method code:
(...)
if (p1. getWindingRule () != p2. getWindingRule ()) {

return false;
}
PathIterator iterator1 = p1. getPathIterator (null);
PathIterator iterator2 = p1. getPathIterator (null);
double [] d1 = new double [6];
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double [] d2 = new double [6];
(...)
Result :
{

" method_name ": "equal",
" has_bug ": true

}
Explanation : This method is intended to compare two ’GeneralPath ’

objects for equality . However , it mistakenly uses ’p1.
getPathIterator (null)’ for both ’iterator1 ’ and ’iterator2 ’,
meaning it compares ’p1 ’ to itself instead of comparing ’p1 ’ to

’p2 ’. This logic causes the method to always return true when
’p1. equals (p1)’, even if ’p1 ’ and ’p2 ’ are different .

Listing 4.1: Few-shot example used in the prompt (Project: Chart; Bug: 11)

The characteristics of the selected examples are reported in Tables 4.2 and 4.3.
The column Repair Patterns refers to the terminology used in the above-mentioned
dissection [48].

Project Bug
Number Repair Patterns Version

Chart 11 Wrong variable reference
Single line Buggy

Math 80 Arithmetic expression modification
Single line Fixed

Chart 15

Conditional block addition with return statement
Missing non-null check addition

Missing null check addition
Wraps-with if statement

Buggy

Time 15 Conditional block addition with exception throwing Buggy
Math 53 Conditional block addition with return statement Fixed

Math 92

Conditional block addition with exception throwing
Conditional block addition
Conditional block removal

Conditional block addition with return statement
Arithmetic expression modification

Wrong method reference

Fixed

Table 4.2: Few-shot examples for Partitions 1 and 2

The repair patterns reported in Table 4.3 follow the same categorization used in
Table 4.2.
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Project Bug
Number Repair Patterns Version

Lang 61
Arithmetic expression modification

Single line
Wrong variable reference

Buggy

Closure 97 Arithmetic expression modification
Single line Fixed

Mockito 4
Conditional block addition with return statement

Missing null check addition
Wraps-with method call

Buggy

Lang 11 Conditional block addition with exception throwing
Conditional block addition Buggy

Lang 49 Conditional block addition
Conditional block addition with return statement Fixed

Closure 32 Conditional block addition
Conditional block removal Fixed

Table 4.3: Few-shot examples for Partition 3

4.1.2 Exceptions Information
As described in the Zero-Shot-Exceptions prompt (see Listing 3.8), the information
regarding failed test cases and the corresponding raised exceptions is parsed from
the output of the defects4j info command. Listing 4.2 contains an example of
how this information is inserted into the prompt. To maintain consistency with the
previous example, the following entry also refers to bug 11 of the Chart project:
(...)

Below is a report of the exception (s) or assertion failure (s)
triggered by executing the test suite for this class:

Test case: ShapeUtilitiesTests :: testEqualGeneralPaths
Failure : AssertionFailedError

(...)

Listing 4.2: Exception information used in the prompt (Project: Chart; Bug: 11)

4.1.3 Call Graph Construction
A call graph is a data structure that represents invocation relationships between
functions (or methods) within a program. Call graphs can be built in two directions:
downstream graphs (also known as callee graphs), which represent all the methods
invoked by the target method, and upstream (caller) graphs, which capture all the
methods that invoke the target method.
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In this thesis, call graphs are used as part of the call graph prompting approach
(see Listing 3.9), and are generated using the Soot [49] framework for static analysis
of Java programs. This analysis only focuses on downstream calls, i.e., method
calls from the target method to other methods, as they provide insights into the
internal logic of the method being analyzed.

Since LLMs are already trained on vast amounts of code, each call graph includes
only method calls that target other methods within the same project, excluding
external calls, such as those to the standard library or third-party dependencies.
This design choice ensures that the model focuses only on project-specific logic,
which is more relevant in this context.

The following example, extracted from bug 2 of the Csv project, illustrates this
situation:

Method code:

/**
* Checks whether a given column is mapped and has a value.
*
* @param name
* the name of the column to be retrieved .
* @return whether a given columns is mapped .
*/

public boolean isSet(final String name) {
return isMapped (name) && mapping .get(name). intValue () < values

. length ;
}

Called methods :

/**
* Checks whether a given column is mapped .
*
* @param name
* the name of the column to be retrieved .
* @return whether a given columns is mapped .
*/

public boolean isMapped (final String name) {
return mapping != null ? mapping . containsKey (name) : false;

}

Listing 4.3: Generation of a call graph (Project: Csv; Bug: 2)

The call graph of the isSet method shown in Listing 4.3 includes only the
method isMapped, as it is the only method that belongs to the same project. Other
method calls, such as get and intValue, are excluded since they refer to standard
library classes (e.g., Map and Integer).
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4.1.4 Evaluation Metrics
Since this bug detection analysis can be seen as a binary classification task, model
performance is evaluated using precision, recall, and F1 score (which is the harmonic
mean of the two former metrics). These metrics rely on the standard classification
outcomes:

• True Positives (TP): correctly identified buggy methods;

• False Positives (FP): non-buggy methods that are incorrectly labeled as
buggy;

• False Negatives (FN): buggy methods that are incorrectly labeled as non-
buggy;

• True Negatives (TN): correctly identified non-buggy methods.

The metrics are defined as follows:

Precision = TP

TP + FP
Recall = TP

TP + FN

F1 Score = 2 · Precision · Recall
Precision + Recall

95% Confidence Intervals (CI) are computed to estimate the variability of the
results. They are calculated using the following formula:

CI95% = x̄± t0.025,n−1 ·
s√
n

where:

• x̄ is the sample mean across runs;

• s is the sample standard deviation;

• n is the number of runs (which are five in this context);

• t0.025,n−1 is the critical value from the Student’s distribution with n-1 degrees
of freedom.

In order to mitigate the intrinsic randomness of LLMs, each experiment is
repeated across five independent runs. The scores obtained by each run are
aggregated using NumPy and SciPy. The values reported in the following tables
represent the arithmetic mean of each metric across those five runs.
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As reported in Tables 4.5, 4.22, and 4.33, the proportion of buggy methods
relative to the total number of methods is low for every project (only one project
exceeds a 10% ratio). This implies that models have to evaluate a large number
of non-buggy methods, while only a few are actually buggy. This significant class
imbalance increases the difficulty of the task, making low precision values (and
consequently low F1 scores) expected, since even a small number of false positives
can significantly impact the metric.

4.2 Partition 1
As briefly reported in Section 4.1, the six selected models are tested on the projects
from Partition 1 using two approaches: zero-shot and few-shot. The two prompts
are shown in Listings 3.5 and 3.10. The goal of this initial evaluation is to identify
the best-performing model, which will be used for subsequent experiments.

For clarity in the result tables, Table 4.4 provides the shorthand codes assigned
to each model:

Code Model
CDL Codellama:34b-instruct-q4_0
CST Codestral:22b-v0.1-q4_0
LM8 Llama3.1:8b-instruct-q4_0

LM70 Llama3.1:70b-instruct-q4_0
LM3 Llama3.3:70b-instruct-q4_0
QWC Qwen2.5-Coder:32b-instruct-q4_0

Table 4.4: Codes assigned to each model

Table 4.5 reports the number of buggy and total methods for each project in
Partition 1, along with the percentage of buggy methods.

Project Number of
buggy methods

Number of
total methods Ratio (%)

Codec 21 460 4.57%
Gson 29 627 4.63%

Collections 44 981 4.49%
Mockito 78 630 12.4%
Closure 313 10016 3.12%

Table 4.5: Partition 1 project weights
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4.2.1 Zero-Shot Approach
Table 4.6 shows the performance of the six models on the Codec project using the
zero-shot strategy. CDL and CST achieve relatively high precision (14.12% and
19.30%, respectively), but perform very poorly in recall, particularly CST, which
has the lowest recall across all models (8.57%). LM8 achieves the highest recall
(70.48%) but suffers from the lowest precision (6.20%), resulting in the lowest F1
score (11.40%). LM70, LM3, and QWC exhibit more balanced performance, with
F1 scores of 13.69%, 12.95%, and 14.32%, respectively.

Model Precision Recall F1 Score
CDL 14.12% ± 7.76 21.90% ± 12.26 17.16% ± 9.48
CST 19.30% ± 9.52 8.57% ± 4.95 11.84% ± 6.54
LM8 6.20% ± 0.74 70.48% ± 7.71 11.40% ± 1.35

LM70 7.94% ± 1.74 49.52% ± 10.74 13.69% ± 2.98
LM3 8.04% ± 1.13 33.33% ± 4.18 12.95% ± 1.76
QWC 9.36% ± 1.60 30.48% ± 5.29 14.32% ± 2.44

Table 4.6: Project: Codec; Approach: Zero-shot; Format: value ± confidence
interval; Best results in bold

Table 4.7 reports the performance of the six models on the Gson project. The
results highlight the difficulty of this project: every model achieves low values in
terms of F1 score. CDL results in a modest F1 score (6.94%), reporting moderate
precision (6.52%) and poor recall (7.59%). LM8 and LM70 achieve higher recall
values (42.07% and 38.62%, respectively), but are penalized by their low precision,
resulting in modest F1 scores (7.70% and 8.78%, respectively). LM3 offers the best
F1 score (10.80%), benefiting from a slightly better trade-off between precision
(6.61%) and recall (29.66%). CST and QWC are the worst-performing models on
this project, reporting the lowest F1 scores (4.93% and 4.18%, respectively).
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Model Precision Recall F1 Score
CDL 6.52% ± 4.23 7.59% ± 5.58 6.94% ± 4.65
CST 3.40% ± 1.82 8.97% ± 4.88 4.93% ± 2.66
LM8 4.24% ± 1.03 42.07% ± 9.76 7.70% ± 1.86

LM70 4.95% ± 1.06 38.62% ± 7.04 8.78% ± 1.84
LM3 6.61% ± 1.19 29.66% ± 6.49 10.80% ± 2.01
QWC 2.62% ± 0.78 10.34% ± 3.03 4.18% ± 1.24

Table 4.7: Project: Gson; Approach: Zero-shot; Format: value ± confidence
interval; Best results in bold

Table 4.8 displays the performance of the six models on the Collections project.
Overall, performance remains modest across all models, with F1 scores below 14%.
CST achieves the highest F1 score (13.94%) thanks to the top precision (10.35%),
while its recall is the second-lowest (21.36%). LM8 still gets the best recall (75.91%),
but at the same time it exhibits the worst precision (5.43%), resulting in an F1
score of 10.14%. LM70, LM3, and QWC show modest results in terms of recall
(each above 43%) and are penalized by low precision values (around 6%). CDL
demonstrates poor performance with balanced yet low precision and recall (7.60%
and 10.45%, respectively), resulting in the lowest F1 score (8.79%) among all
models.

Model Precision Recall F1 Score
CDL 7.60% ± 3.52 10.45% ± 4.72 8.79% ± 3.99
CST 10.35% ± 1.03 21.36% ± 2.52 13.94% ± 1.41
LM8 5.43% ± 0.48 75.91% ± 7.08 10.14% ± 0.90

LM70 5.92% ± 0.71 57.73% ± 8.13 10.74% ± 1.31
LM3 5.74% ± 0.38 43.64% ± 3.09 10.14% ± 0.68
QWC 6.69% ± 0.60 48.64% ± 4.72 11.76% ± 1.07

Table 4.8: Project: Collections; Approach: Zero-shot; Format: value ±
confidence interval; Best results in bold

Table 4.9 reports the results obtained by the six models on the Mockito project.
This time, LM8 achieves the highest F1 score (26.70%), thanks to its leading recall
(50.77%) and solid precision (18.12%). LM70 reports the highest precision (18.79%),
but, due to its modest recall (36.67%), it results in an F1 score of 24.83%. LM3 and
QWC follow closely, with F1 scores of 21.10% and 19.29%, respectively, showing
slightly lower values for precision and recall. While CDL exhibits a relatively high
precision (18.13%), its recall is the lowest across all models (8.21%), resulting in
the weakest F1 score (11.27%). CST pairs the lowest precision (12.61%) with poor
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recall (16.41%), achieving a modest F1 score of 14.26%. As shown in Table 4.5,
this project features the highest proportion of buggy methods relative to total
methods in Partition 1, which likely contributes to higher precision values, especially
compared to other projects.

Model Precision Recall F1 Score
CDL 18.13% ± 6.51 8.21% ± 3.49 11.27% ± 4.53
CST 12.61% ± 2.45 16.41% ± 3.45 14.26% ± 2.84
LM8 18.12% ± 0.87 50.77% ± 0.87 26.70% ± 1.01

LM70 18.79% ± 3.14 36.67% ± 5.91 24.83% ± 3.99
LM3 15.56% ± 1.16 32.82% ± 2.89 21.10% ± 1.58
QWC 15.56% ± 0.72 25.38% ± 1.74 19.29% ± 1.04

Table 4.9: Project: Mockito; Approach: Zero-shot; Format: value ± confidence
interval; Best results in bold

Table 4.10 presents the performance of the six models on the Closure project,
which is the last one in Partition 1. Overall, F1 scores are low across all models,
highlighting the challenges posed by the project’s size and the large number of
analyzed methods. CDL achieves the highest F1 score (9.53%), despite modest
values for both precision (7.90%) and recall (12.01%). LM8, LM70, and LM3 show
relatively high recall, ranging from 35% to 52%, but their F1 scores remain below
8% due to poor precision. QWC, despite a lower recall (19.62%) than those models,
exhibits a better F1 score (7.78%), benefiting from a more balanced trade-off
between precision and recall. CST is by far the worst-performing model, with both
precision and recall below 3%, yielding an F1 score of just 2.29%.

Model Precision Recall F1 Score
CDL 7.90% ± 1.69 12.01% ± 3.11 9.53% ± 2.20
CST 1.87% ± 0.44 2.94% ± 0.65 2.29% ± 0.53
LM8 3.81% ± 0.15 51.63% ± 2.11 7.10% ± 0.28

LM70 4.21% ± 0.19 40.89% ± 2.30 7.63% ± 0.34
LM3 4.09% ± 0.30 35.78% ± 2.59 7.34% ± 0.54
QWC 4.85% ± 0.25 19.62% ± 1.14 7.78% ± 0.42

Table 4.10: Project: Closure; Approach: Zero-shot; Format: value ± confidence
interval; Best results in bold

Table 4.11 presents the weighted average results for the zero-shot strategy across
all projects in Partition 1. The weights are based on the total number of methods
per project, as reported in Table 4.5, to reflect each project’s relative size and
contribution to the evaluation.
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The results show that CDL achieves the highest weighted F1 score (9.71%)
thanks to the highest precision (8.54%), despite a low recall (11.84%).

LM8 reaches the highest recall (53.67%) by a large margin, but is penalized by
its low precision (4.75%), the second-lowest among all models. A similar trend
is observed for LM70, LM3, and QWC, which show good recall but suffer from
limited precision, resulting in comparable F1 scores around 9%.

CST is the worst-performing model, with the lowest values in precision (3.77%),
recall (5.53%) and F1 score (4.26%). Moreover, its confidence intervals are the
highest among all models, indicating that its performance is not only poor but also
highly inconsistent across runs. This highlights the model’s unreliability in the
zero-shot setting.

Model Precision Recall F1 Score
CDL 8.54% ± 3.11 11.84% ± 2.88 9.71% ± 2.00
CST 3.77% ± 5.38 5.53% ± 6.96 4.26% ± 5.17
LM8 4.75% ± 3.86 53.67% ± 9.51 8.49% ± 5.34

LM70 5.23% ± 3.97 42.18% ± 6.09 9.00% ± 4.80
LM3 5.05% ± 3.21 35.85% ± 3.35 8.61% ± 3.95
QWC 5.58% ± 3.14 22.08% ± 10.32 8.71% ± 3.75

Table 4.11: Weighted Averages; Approach: Zero-shot; Format: value ±
confidence interval; Best results in bold

4.2.2 Few-Shot Approach
Ablation study: position of the explanation in few-shot examples

As reported in Section 4.1.1, each few-shot example includes the method’s source
code, its evaluation (i.e., whether it is buggy or not) and a brief explanation
justifying the assigned label. In order to determine the optimal placement of
the explanation (either before or after the classification result), a small ablation
study is conducted on a subset of Partition 1 projects (specifically Codec, Gson,
Collections, and Mockito), considering all models except Codestral, due to its poor
performance.

Table 4.12 summarizes the results of this study, reporting the obtained F1
scores over five independent runs. Within each cell, the upper value represents the
configuration where the explanation is placed before the classification result, while
the bottom value corresponds to the explanation placed after the result.

The complete results for each metric are reported in Section A.1 of Appendix A.
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P CDL LM8 LM70 LM3 QWC

1 9.83% ± 5.76
11.76% ± 2.14

9.68% ± 2.93
9.37% ± 2.86

13.77% ± 3.29
12.95% ± 2.94

12.72% ± 3.61
11.24% ± 1.75

10.08% ± 2.71
12.21% ± 3.78

2 9.66% ± 5.31
9.08% ± 2.31

6.24% ± 2.28
7.42% ± 2.64

7.68% ± 5.27
10.69 ± 1.57%

6.54% ± 3.29
5.59% ± 1.82

5.92% ± 0.98
7.55% ± 1.98

3 9.73% ± 3.49
9.16% ± 1.70

9.86% ± 1.18
9.90% ± 1.87

11.98% ± 1.37
11.21% ± 1.54

15.45% ± 2.27
14.62% ± 1.49

12.27% ± 1.43
13.33% ± 1.61

4 13.95% ± 5.63
20.10% ± 7.88

19.79% ± 2.24
21.88% ± 1.72

23.52% ± 3.60
24.32% ± 2.91

17.53% ± 1.11
17.14% ± 3.55

22.81% ± 0.98
22.28% ± 1.97

5 10.72% ± 2.84
12.14% ± 7.16

11.31% ± 7.79
12.03% ± 8.78

13.98% ± 8.99
14.45% ± 8.75

13.40% ± 6.47
12.53% ± 6.75

12.88% ± 9.51
13.88% ± 8.17

Table 4.12: F1 scores for different position of the explanation (Top: explanation
before the has_bug field; Bottom: explanation after the has_bug field); (P: Projects;
1: Codec; 2: Gson; 3: Collections; 4: Mockito; 5: Weighted Average); Format:
value ± confidence interval; Best results in bold

The results show that positioning the explanation after the result generally
leads to better performance, as four out of the five tested models achieve higher
F1 scores with this configuration. It also tends to produce narrower confidence
intervals, making the model’s behavior more consistent across repeated runs. In
addition to its empirical advantages, this ordering mimics the natural reasoning
flow: evaluation first, justification after. Based on this analysis, the configuration
in which the explanation follows the result is adopted in all subsequent few-shot
experiments.

Results

Table 4.13 presents the results of the six models on the Codec project under the
few-shot prompting strategy. LM70 achieves the best F1 score (12.95%), combining
a moderate precision (7.61%) with a high recall (43.81%). Both CDL and QWC
obtain competitive F1 scores (11.76% and 12.21%, respectively), though their recall
is lower than that of LM70. LM3 has a slightly lower precision than LM70 (7.19%
vs. 7.61%) and lower recall (25.71%), leading to lower F1 score (11.24%). LM8
obtains the highest recall (44.76%) even in this few-shot setting, but it is again
penalized by a low precision value (5.23%), which results in a modest F1 score
of 9.37%. Interestingly, CST shows the highest average precision (60.00%), but
it is accompanied by an extremely large confidence interval (±68.01) and a very
low recall (4.76%), leading to the lowest F1 score (8.77%) among all models. This
suggests that CST may be highly inconsistent in its predictions across runs.
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Model Precision Recall F1 Score
CDL 7.85% ± 1.38 23.81% ± 5.91 11.76% ± 2.14
CST 60.00% ± 68.01 4.76% ± 5.91 8.77% ± 10.80
LM8 5.23% ± 1.62 44.76% ± 12.26 9.37% ± 2.86

LM70 7.61% ± 1.81 43.81% ± 7.71 12.95% ± 2.94
LM3 7.19% ± 1.19 25.71% ± 3.24 11.24% ± 1.75
QWC 8.11% ± 2.38 24.76% ± 8.77 12.21% ± 3.78

Table 4.13: Project: Codec; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold

Table 4.14 shows the performance of the six models on the Gson project. Overall,
all models obtain low scores, confirming the struggle on this project already observed
with the zero-shot setting (see Table 4.7). LM70 achieves the highest F1 score
(10.69%), thanks to a relatively strong recall (40.69%) and a modest precision
(6.15%). This time, LM8 does not have the highest recall (33.10%) and its precision
remains low (4.18%), resulting in a modest F1 score of 7.42%. CDL and QWC
obtain similar results, with the same recall (20.00%) and comparable precision
values (5.88% and 4.65%, respectively). LM3 performs worse with this project,
with both low precision (3.61%) and recall (12.41%), leading to an F1 score of
just 5.59%. CST completely fails to identify any buggy methods across all five
runs, resulting in 0% score for each metric. This suggests either a complete lack of
generalization from the few-shot examples or a failure in its prediction strategy for
this specific project.

Model Precision Recall F1 Score
CDL 5.88% ± 1.50 20.00% ± 5.58 9.08% ± 2.31
CST 0.00% ± 0.00 0.00% ± 0.00 0.00% ± 0.00
LM8 4.18% ± 1.49 33.10% ± 11.57 7.42% ± 2.64

LM70 6.15% ± 0.94 40.69% ± 4.69 10.69% ± 1.57
LM3 3.61% ± 1.19 12.41% ± 3.83 5.59% ± 1.82
QWC 4.65% ± 1.25 20.00% ± 4.69 7.55% ± 1.98

Table 4.14: Project: Gson; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold

Table 4.15 reports the results of the six models on the Collections project. This
time LM3 exhibits the best F1 score (14.62%), with strong results both in precision
(8.45%, the second-highest) and recall (54.09%). QWC follows closely with an F1
score of 13.33%, demonstrating a good balance between precision (7.56%) and recall
(56.36%). LM8 and LM70 perform well in terms of recall (64.09% and 57.73%,
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respectively), but low precision values (around 6%) limit their F1 scores to 9.90%
and 11.21%, respectively. CDL delivers a modest F1 score (9.16%), driven mainly
by its low recall (20.45%). CST continues to be the worst-performing model, with
consistently low values across all three metrics.

Model Precision Recall F1 Score
CDL 5.90% ± 1.08 20.45% ± 3.99 9.16% ± 1.70
CST 8.51% ± 3.32 6.82% ± 2.00 7.55% ± 2.51
LM8 5.36% ± 1.02 64.09% ± 12.20 9.90% ± 1.87

LM70 6.21% ± 0.86 57.73% ± 7.88 11.21% ± 1.54
LM3 8.45% ± 0.86 54.09% ± 6.12 14.62% ± 1.49
QWC 7.56% ± 0.89 56.36% ± 7.83 13.33% ± 1.61

Table 4.15: Project: Collections; Approach: Few-shot; Format: value ±
confidence interval; Best results in bold

Table 4.16 reports the results obtained by the six models on the Mockito project.
LM70 obtains the best F1 score (24.32%), showing a good balance between precision
(19.24%) and recall (33.08%). LM8 and QWC also perform well (with F1 scores of
21.88% and 22.28%, respectively), with LM8 once again achieving the highest recall
(37.18%). CDL offers a solid performance with the F1 score of 20.10%, thanks to
the highest precision value (20.24%) across all models. LM3, while having lower
recall (19.23%) compared to the others, still obtains a reasonable F1 score (17.14%).
CST remains the weakest performer across these models, with the lowest precision
(13.74%), recall (3.08%), and F1 score (5.02%).

Model Precision Recall F1 Score
CDL 20.24% ± 7.37 20.00% ± 8.47 20.10% ± 7.88
CST 13.74% ± 4.46 3.08% ± 1.42 5.02% ± 2.18
LM8 15.51% ± 1.34 37.18% ± 2.52 21.88% ± 1.72

LM70 19.24% ± 2.17 33.08% ± 4.42 24.32% ± 2.91
LM3 15.47% ± 3.18 19.23% ± 4.06 17.14% ± 3.55
QWC 18.00% ± 1.73 29.23% ± 2.36 22.28% ± 1.97

Table 4.16: Project: Mockito; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold

Table 4.17 shows the performance of the six models on the Closure project. This
time, LM3 has the highest F1 score (9.32%), combining a decent recall (34.82%)
with moderate precision (5.38%). LM70 achieves the best recall (47.99%) across
all models, while LM8 struggles, with a recall of 30.99%, low precision (3.27%),
and an F1 score of 5.92%. CDL and QWC obtain similar F1 scores (between 8%
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and 9%), benefiting from a decent precision (5.60% and 4.96%, respectively). CST,
once again, shows the worst performance across models, with extremely low values
for precision (2.99%), recall (1.66%), and, consequentially, F1 score (2.14%).

Model Precision Recall F1 Score
CDL 5.60% ± 0.97 21.60% ± 4.28 8.89% ± 1.57
CST 2.99% ± 0.57 1.66% ± 0.33 2.14% ± 0.41
LM8 3.27% ± 0.10 30.99% ± 1.09 5.92% ± 0.19

LM70 5.03% ± 0.34 47.99% ± 3.22 9.10% ± 0.62
LM3 5.38% ± 0.44 34.82% ± 2.72 9.32% ± 0.76
QWC 4.96% ± 0.33 23.96% ± 1.32 8.22% ± 0.53

Table 4.17: Project: Closure; Approach: Few-shot; Format: value ± confidence
interval; Best results in bold

Finally, Table 4.18 reports the weighted average performance of the six models
across all Partition 1 projects under the few-shot setting. The weights are based
on the total number of methods for each project reported in Table 4.5.

Among all models, LM70 achieves the best F1 score (10.24%), having the highest
recall (47.49%) and a moderate precision (5.97%).

LM3 and CDL follow closely, as they combine the highest values for precision
(6.10% and 6.44%, respectively) with moderate recall, resulting in F1 scores of
10.00% and 9.58%, respectively. QWC exhibits a slightly lower F1 score (9.43%),
due to its modest precision (5.91%) and recall (26.56%).

LM8 performs poorly in precision (4.16%) and F1 score (7.22%), despite having
a moderate recall (34.45%).

CST is confirmed as the worst-performing model, with particularly low values
in recall and F1 score (2.16% and 2.83%, respectively).

Model Precision Recall F1 Score
CDL 6.44% ± 3.95 21.43% ± 0.88 9.58% ± 3.06
CST 5.87% ± 13.48 2.16% ± 1.92 2.83% ± 2.49
LM8 4.16% ± 3.32 34.45% ± 11.21 7.22% ± 4.43

LM70 5.97% ± 3.83 47.49% ± 5.74 10.24% ± 4.15
LM3 6.10% ± 2.92 34.10% ± 10.23 10.00% ± 2.92
QWC 5.91% ± 3.60 26.56% ± 10.86 9.43% ± 4.11

Table 4.18: Weighted Averages; Approach: Few-shot; Format: value ±
confidence interval; Best results in bold
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4.2.3 Processing Time
To provide further insights into the characteristics of the models, the time required
to process each method under both prompting strategies has been measured. The
average processing time per method is expressed as the number of seconds required
to process a single method, and is computed with the following formula:

Processing Time (s/method) = Total time (s)
Total number of processed methods

Table 4.19 reports the average processing time per method for each model under
the zero-shot setting. As expected, smaller models (CST and LM8) are the fastest,
with average latencies below 1.2 seconds per method. On the other hand, larger
models like LM70 and LM3 require more than twice as long on average, with
latencies over 2.5 seconds per method.

Model Codec Gson Collections Mockito Closure Average
CDL 1.53 1.42 1.37 1.43 2.04 1.56
CST 1.09 1.12 1.01 1.03 1.58 1.17
LM8 0.82 0.85 0.61 0.88 1.14 0.86

LM70 2.67 2.56 2.46 2.83 2.87 2.68
LM3 2.57 2.45 2.22 2.17 3.10 2.50
QWC 1.70 1.61 1.37 2.21 2.45 1.87

Table 4.19: Average processing time per method on Partition 1 projects with
zero-shot approach; Results expressed in s/m (seconds/method)

Table 4.20 presents the corresponding values for the few-shot approach. As
expected, this strategy results in a slightly slower processing across all models due
to longer prompts. Despite this, the relative ranking of models remains the same,
with smaller models that continue to be the fastest, while larger ones remain the
slowest. Overall, these values highlight a clear trade-off between model complexity
and execution time.
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Model Codec Gson Collections Mockito Closure Average
CDL 1.72 1.60 1.60 1.60 1.79 1.66
CST 1.30 1.22 1.21 1.23 1.42 1.28
LM8 0.88 0.69 0.94 0.71 1.10 0.86

LM70 3.19 3.03 2.91 2.93 3.20 3.05
LM3 3.03 2.88 2.74 2.67 2.99 2.86
QWC 1.94 1.79 1.80 1.77 2.09 1.88

Table 4.20: Average processing time per method on Partition 1 projects with
few-shot approach; Results expressed in s/m (seconds/method)

4.2.4 Model Choice
Figure 4.1 compares the precision scores obtained by each model under zero-shot
and few-shot configurations across Partition 1 projects. In general, precision values
remain low across all models, with all scores falling below 10%. Only two models
(CDL and LM8) experience a drop in precision when transitioning from the zero-
shot to the few-shot setting. The other models show slight improvements, with
CST exhibiting the most notable gain (+2.1%). However, the overall impact of
changing the prompting strategy remains limited. CDL stands out as the most
precise model in both configurations, achieving 8.54% in the zero-shot and 6.44%
in the few-shot setting. The other models perform similarly, with values ranging
from around 4% to 6% for both configurations.
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Figure 4.1: Zero-Shot vs. Few-shot approach on Partition 1 projects (Precision)

Figure 4.2 shows the recall scores achieved by each model under zero-shot and
few-shot settings across Partition 1 projects. In contrast to precision, recall values
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show greater variability and, in most cases, higher absolute values. LM8 and
LM70 obtain the best results in the zero-shot setting, reaching 53.67% and 42.18%,
respectively. Under the few-shot configuration, LM70 further improves to 47.49%,
achieving the highest recall overall, while LM8 experiences a notable decrease to
34.45%. LM3 also records a slight reduction in performance. CDL and QWC
show moderate improvements when moving from zero-shot to few-shot, although
their scores remain modes, ranging between 10% and 20%. CST consistently
underperforms across both settings with scores below 6%.
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Figure 4.2: Zero-Shot vs. Few-shot approach on Partition 1 projects (Recall)

Figure 4.3 displays the F1 scores achieved by each model under zero-shot and
few-shot configuration across Partition 1 projects. CDL produces consistent results
across both settings, although its performance reflects a balanced trade-off between
relatively low precision and recall values, rather than strong results in either metric.
LM8 performs better under the zero-shot configuration, with a drop when moving
to the few-shot setting. LM70 demonstrates the most consistent and reliable
performance, improving from 9.00% in the zero-shot setting to 10.24% in the
few-shot one, which is the highest F1 score overall. LM3 and QWC follow similar
trends, each showing a modest improvement with the few-shot strategy, though
their scores remain slightly lower than LM70’s ones. CST is confirmed as the
weakest performer across all models, with both F1 scores remaining below 5%.
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Figure 4.3: Zero-Shot vs. Few-shot approach on Partition 1 projects (F1 Score)

Given these results, LM70 stands out as the best-performing model overall,
offering strong and reliable F1 scores in both prompting scenarios. Therefore, it is
selected for further experiments, despite being the slowest model, as reported in
Section 4.2.3.

4.3 Partition 2
For clarity in the result tables, each prompting strategy (listed in Section 3.4) is
associated with a corresponding code, as reported in Table 4.21:

Code Prompting Strategy
ZS Zero-Shot
ZS-Mot Zero-Shot-Motivation
ZS-Class Zero-Shot-Whole-Class
ZS-Exc Zero-Shot-Exceptions
CG Call Graph
FS Few-Shot
FS-Mot Few-Shot-Motivation
CoT-ZS Chain-of-Thought Zero-Shot
CoT-FS Chain-of-Thought Few-Shot

Table 4.21: Code assigned to each prompting strategy

Table 4.22 shows the number of buggy and total methods for each project in
Partition 2, along with the percentage of buggy methods.
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Project Number of
buggy methods

Number of
total methods Ratio (%)

Csv 17 382 4.45%
JxPath 44 730 6.03%

JacksonCore 56 1889 2.96%
Compress 74 1368 5.41%

Lang 87 3483 2.50%
JacksonDatabind 202 5252 3.85%

Table 4.22: Partition 2 project weights

Among the evaluated prompting strategies, two approaches require special
consideration due to their structural constraints: zero-shot-whole-class and call
graph (see Listings 3.7 and 3.9).

In the zero-shot-whole-class approach, the entire Java class is included in the
prompt. To accomodate this, the context window is increased from 16384 to
20480 tokens, which is the maximum supported by the LM70 model on a single
GPU. However, some classes still exceed this limit and are thus excluded from
the evaluation. Table 4.23 presents the number of buggy and total methods after
excluding the affected classes. Three projects are impacted: JacksonCore, Lang,
and JacksonDatabind.

Project Number of
buggy methods

Number of
total methods Ratio (%)

Csv 17 382 4.45%
JxPath 44 730 6.03%

JacksonCore 38 1140 3.33%
Compress 74 1368 5.41%

Lang 70 2034 3.44%
JacksonDatabind 196 4441 4.41%

Table 4.23: Partition 2 project weights for the zero-shot-whole-class approach

In the call graph approach, only methods with a valid call graph representation
are taken into account. Since not all methods invoke other methods within the
same project, those without a valid call graph are excluded. Table 4.24 shows the
number of buggy and total methods under this setting, with all the projects being
affected.
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Project Number of
buggy methods

Number of
total methods Ratio (%)

Csv 11 258 4.26%
JxPath 44 552 7.97%

JacksonCore 49 1498 3.27%
Compress 60 857 7.00%

Lang 53 1791 2.59%
JacksonDatabind 188 4174 4.50%

Table 4.24: Partition 2 project weights for the call graph approach

These two approaches are marked with an asterisk (*) in the following tables.

4.3.1 Results
Table 4.25 presents the results obtained by LM70 on the Csv project. ZS-Exc (zero-
shot with exception context) achieves the best overall performance, with a precision
of 15.62%, an outstanding recall of 80.00%, and the highest F1 score (26.13%), nearly
doubling that of the second-best approach. Among the other zero-shot approaches,
ZS-Mot (which asks the model to briefly justify its decision) outperforms the basic
zero-shot setting, achieving a more stable recall (62.35%) and a higher F1 score
(13.80% vs. 11.61%). The call graph variant performs slightly better than the
basic ZS setting, with an F1 score of 12.80%, while the setting with the whole
class inserted into the prompt has the lowest F1 score (10.97%) among zero-shot
variants. Few-shot variants follow a similar trend: the motivated version (FS-Mot)
outperforms the plain few-shot setup, with a consistently higher recall (58.82% vs.
27.06%) and F1 score (13.50% vs. 9.50%). Chain-of-Thought approaches, which
incorporate step-by-step reasoning, yield modest recall performance, with both
zero-shot and few-shot variants reaching only 34.12%. The zero-shot variant gains a
higher F1 score than the few-shot one (12.59% against 11.88%) thanks to a slightly
higher precision (7.73% vs. 7.19%).
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Approach Precision Recall F1 Score
ZS 6.73% ± 2.83 42.35% ± 20.92 11.61% ± 5.00

ZS-Mot 7.76% ± 0.66 62.35% ± 4.00 13.80% ± 1.11
ZS-Class* 6.58% ± 2.64 32.94% ± 12.22 10.97% ± 4.33

ZS-Exc 15.62% ± 1.14 80.00% ± 8.33 26.13% ± 2.01
CG* 7.63% ± 2.96 40.00% ± 15.14 12.80% ± 4.93
FS 5.76% ± 1.97 27.06% ± 8.33 9.50% ± 3.18

FS-Mot 7.63% ± 1.93 58.82% ± 13.66 13.50% ± 3.37
CoT-ZS 7.73% ± 1.29 34.12% ± 6.11 12.59% ± 2.07
CoT-FS 7.19% ± 1.96 34.12% ± 9.52 11.88% ± 3.22

Table 4.25: Project: Csv; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.26 shows the results obtained by the LM70 model on the JxPath project.
The trend observed in the Csv project continues here. The ZS-Exc strategy stands
out once again, having the highest F1 score (21.00%) and the best precision (12.57%).
The call graph approach (CG) also performs strongly, achieving an F1 score of
16.14% thanks to a solid recall of 61.36%. ZS-Mot shows a 10% improvement
in recall over the zero-shot baseline, but their F1 scores are nearly identical (a
difference of just 0.01%) due ZS-Mot’s lower precision. ZS-Class performs better
than in the previous case, with an F1 score of 13.95%. Among few-shot variants,
FS-Mot slightly improves over the basic few-shot setup (13.32% vs. 12.84%), mainly
due to its recall, which is the highest across all the approaches (74.09%). CoT-ZS
is the weakest-performing approach, combining the lowest precision (6.55%) with
modest recall (43.18%), which results in the lowest F1 score (11.37%). This time
the few-shot CoT variant obtains a higher F1 score (13.44%) due to better precision
and recall (7.57% and 60.00%, respectively).
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Approach Precision Recall F1 Score
ZS 6.87% ± 1.59 52.73% ± 12.53 12.16% ± 2.82

ZS-Mot 6.73% ± 0.49 62.73% ± 4.28 12.15% ± 0.88
ZS-Class* 8.09% ± 0.96 50.45% ± 5.05 13.95% ± 1.60

ZS-Exc 12.57% ± 0.70 63.64% ± 3.46 21.00% ± 1.12
CG* 9.30% ± 1.43 61.36% ± 10.56 16.14% ± 2.51
FS 7.27% ± 0.90 55.00% ± 7.30 12.84% ± 1.60

FS-Mot 7.32% ± 1.19 74.09% ± 10.67 13.32% ± 2.15
CoT-ZS 6.55% ± 0.97 43.18% ± 6.91 11.37% ± 1.69
CoT-FS 7.57% ± 1.60 60.00% ± 12.56 13.44% ± 2.84

Table 4.26: Project: JxPath; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.27 presents the results obtained on the JacksonCore project using the
LM70 model. Overall, the scores are noticeably lower than in previous projects,
likely due to project-specific challenges, such as subtle bug patterns or code struc-
tures that are more difficult for the model to interpret. ZS-Exc is confirmed as the
best-performing approach, achieving the highest F1-score (11.55%) by combining
the best precision (6.24%) with the best recall (77.14%). All the other approaches
struggle with precision, showing values around 4%. ZS-Class and CG both perform
relatively well, with F1 scores between 8% and 9%, and achieving solid recall values
(50.00% and 59.18%, respectively). Baseline zero-shot and few-shot approaches offer
modest performance, with F1 scores of 6.81% and 7.27% each. Their motivation
variants (ZS-Mot and FS-Mot) reach similar F1 scores, at least with better recall
(55.00% and 63.21%, respectively). The zero-shot Chain-of-Thought approach
yields a modest F1 score (6.95%), penalized by poor precision (3.85%) and low
recall (35.36%). However, the worst-performing approach is the few-shot version of
the CoT strategy, which records the lowest scores in precision, recall, and F1 score
(3.17%, 34.29% and 5.81%, respectively).
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Approach Precision Recall F1 Score
ZS 3.67% ± 0.46 47.14% ± 6.76 6.81% ± 0.86

ZS-Mot 3.56% ± 0.49 55.00% ± 7.42 6.69% ± 0.91
ZS-Class* 4.88% ± 0.88 50.00% ± 8.00 8.89% ± 1.57

ZS-Exc 6.24% ± 0.45 77.14% ± 5.06 11.55% ± 0.83
CG* 4.33% ± 0.55 59.18% ± 8.40 8.07% ± 1.04
FS 3.94% ± 0.26 47.14% ± 2.53 7.27% ± 0.47

FS-Mot 3.71% ± 0.42 63.21% ± 7.45 7.02% ± 0.80
CoT-ZS 3.85% ± 0.75 35.36% ± 7.08 6.95% ± 1.35
CoT-FS 3.17% ± 0.74 34.29% ± 8.21 5.81% ± 1.36

Table 4.27: Project: JacksonCore; Model: LM70; Format: value ± confidence
interval; Best results in bold

Table 4.28 displays the results obtained by the LM70 model on the Compress
project. The best result is once again achieved by the ZS-Exc strategy, which
reaches an F1 score of 18.93%, driven by its strong recall (62.43%) and the highest
precision (11.15%). Other context-enriched strategies also perform well. Call graph
and ZS-Class reach good F1 scores, 14.30% and 12.63%, respectively. As in previous
cases, ZS-Mot achieves higher recall than the baseline zero-shot approach (57.30%
vs. 45.68%), but, due to its lower precision, it results in similar F1 scores (around
12%). The same goes for the few-shot counterparts: the baseline has a lower
recall than the motivation-oriented approach, but their F1 scores are comparable
(13.50% vs. 13.11%), as the baseline few-shot has higher precision. Interestingly,
both versions of the CoT strategy continue to struggle, recording the lowest values
in precision (6.32% for the zero-shot version, 5.99% for the few-shot one), recall
(31.62% and 35.41%, respectively) and, consequently, F1 score (10.54% and 10.25%,
respectively).
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Approach Precision Recall F1 Score
ZS 7.06% ± 0.92 45.68% ± 5.09 12.23% ± 1.55

ZS-Mot 6.76% ± 0.76 57.30% ± 7.28 12.10% ± 1.37
ZS-Class* 7.21% ± 1.37 50.81% ± 10.04 12.63% ± 2.40

ZS-Exc 11.15% ± 0.86 62.43% ± 5.62 18.93% ± 1.49
CG* 8.34% ± 1.12 50.00% ± 6.21 14.30% ± 1.89
FS 7.77% ± 0.76 51.35% ± 6.28 13.50% ± 1.36

FS-Mot 7.26% ± 0.38 67.84% ± 4.34 13.11% ± 0.68
CoT-ZS 6.32% ± 0.42 31.62% ± 3.48 10.54% ± 0.77
CoT-FS 5.99% ± 0.92 35.41% ± 6.21 10.25% ± 1.60

Table 4.28: Project: Compress; Model: LM70; Format: value ± confidence
interval; Best results in bold

Table 4.29 reports the results obtained on the Lang project by the LM70 model.
The trend observed in previous projects holds, with ZS-Exc once again emerging
as the best-performing approach. It achieves a remarkable recall of 83.45%, along
with the highest precision (9.29%) and F1 score (16.72%). The call graph strategy
also performs well, with an F1 score of 14.79%, combining good precision (8.53%)
and recall (55.47%). ZS-Class achieves slightly lower performance, with an F1 score
of 10.98%, although showing a modest precision (6.09%). The baseline approaches
(zero-shot and few-shot) remain stable but unremarkable, with F1 scores around
9%. Their motivation-enhanced versions consistently achieve higher recall (64.14%
for ZS-Mot and 65.06% for FS-Mot), but are again limited by lower precision, which
results in similar F1 scores. CoT-ZS exhibits a good F1 score (9.52%), although
having the lowest recall (38.39%) across all approaches. The few-shot CoT version
also struggles on this project, showing the weakest F1 score (8.01%) due to low
precision (4.40%) and modest recall (44.83%).
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Approach Precision Recall F1 Score
ZS 4.79% ± 0.43 51.03% ± 4.69 8.77% ± 0.79

ZS-Mot 4.72% ± 0.50 64.14% ± 7.44 8.80% ± 0.94
ZS-Class* 6.09% ± 0.63 56.00% ± 5.23 10.98% ± 1.12

ZS-Exc 9.29% ± 0.57 83.45% ± 6.27 16.72% ± 1.04
CG* 8.53% ± 1.10 55.47% ± 8.54 14.79% ± 1.95
FS 5.12% ± 0.77 55.63% ± 8.11 9.37% ± 1.40

FS-Mot 4.18% ± 0.32 65.06% ± 5.85 7.86% ± 0.62
CoT-ZS 5.43% ± 0.77 38.39% ± 5.94 9.52% ± 1.36
CoT-FS 4.40% ± 0.75 44.83% ± 8.86 8.01% ± 1.38

Table 4.29: Project: Lang; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.30 presents the results obtained by the LM70 model on the Jackson-
Databind project. The best-performing approach is once again ZS-Exc, with an F1
score of 17.81%, by combining the highest recall (60.30%) with the strongest preci-
sion (10.45%). ZS-Class and CG also perform well, reaching F1 scores of 13.45%
and 13.74%, respectively. Baseline methods deliver solid yet low performance, with
F1 scores around 12%, mainly due to moderate recall (both reach only 41.58%)
and limited precision. FS-Mot achieves a high recall (62.57%) but is penalized by
low precision (6.40%), resulting in an F1 score of 11.61%, which is lower than its
corresponding baseline strategy. The same is observed for ZS-Mot, which achieves
a modest F1 score of (9.69%), lower than the basic zero-shot approach. CoT-ZS
records both the lowest recall and F1 score (25.74% and 9.24%, respectively),
while also having the second-lowest precision (5.63%; only ZS-Mot performs worse,
with 5.43%). The corresponding few-shot version performs slightly better, though
obtaining a weak recall (40.30%) and a modest F1 score (10.27%).
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Approach Precision Recall F1 Score
ZS 6.65% ± 0.66 41.58% ± 4.60 11.47% ± 1.15

ZS-Mot 5.43% ± 0.27 44.75% ± 2.56 9.69% ± 0.49
ZS-Class* 7.78% ± 0.49 49.49% ± 2.72 13.45% ± 0.83

ZS-Exc 10.45% ± 0.45 60.30% ± 2.44 17.81% ± 0.75
CG* 8.15% ± 0.68 43.94% ± 4.30 13.74% ± 1.18
FS 7.29% ± 0.42 41.58% ± 2.61 12.40% ± 0.71

FS-Mot 6.40% ± 0.19 62.57% ± 1.54 11.61% ± 0.34
CoT-ZS 5.63% ± 0.30 25.74% ± 1.68 9.24% ± 0.52
CoT-FS 5.89% ± 0.69 40.30% ± 4.45 10.27% ± 1.19

Table 4.30: Project: JacksonDatabind; Model: LM70; Format: value ±
confidence interval; Best results in bold

Table 4.31 reports the weighted average performance of the LM70 model across
all projects in Partition 2. The weights are based on the total number of methods
of each project reported in Tables 4.22, 4.23, and 4.24, ensuring that each project
contributes proportionally to the results.

Among all strategies, ZS-Exc (zero-shot with exception context) achieves the
highest F1 score (17.15%), combining the best recall (69.86%) with the highest
precision (9.88%). This confirms its dominance across individual projects and
demonstrates that information about raised exceptions and failed tests is among
the most effective contextual knowledge for LLM-based bug detection.

Other context-enriching approaches perform well: call graph approach and
ZS-Class (where the entire class is included in the input prompt) achieve F1 scores
of 13.19% and 12.27%, respectively. Both approaches combine reasonable recall
(50.21% for the CG strategy, 50.48% for the ZS-Class one) with decent values for
precision (7.67% and 7.01%, respectively). These results highlight the importance of
structural and semantic context in enhancing model performance, with information
about method calls appearing more useful than including the entire class in the
input prompt.

The two baseline approaches (zero-shot and few-shot) perform similarly, with
F1 scores of 10.20% and 10.91%, respectively. This highlights that the addition of
examples in the input prompt does not significantly improve performance in such
complex code bases. The motivational variants yield mixed results: both achieve
high recall (especially FS-Mot, with 64.41%) but suffer from low precision (5.25%
for the zero-shot variant, 5.60% for the few-shot one), resulting in modest F1 scores
of 9.53% and 10.26%, respectively. This suggests that, while brief explanations
help with recall, they do not consistently improve overall detection accuracy.

Chain-of-Thought strategies remain the least effective. The zero-shot version
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has the lowest recall (32.32%) and a weak F1 score of 9.34%, while the CoT-
FS strategy records the lowest overall F1 score (9.25%) among all approaches.
They both achieve similar F1 scores to their lightweight versions (ZS-Mot and
FS-Mot), with values between 9% and 10%, although showing lower values for
recall. This highlights that unguided reasoning alone does not aid complex tasks
as bug detection.

Overall, the results reveal a clear pattern: strategies that incorporate contextual
information in the prompt (e.g., exceptions, class structure, or call relationships)
consistently outperform standard or purely reasoning-based prompts, particularly
in large and complex projects.

Approach Precision Recall F1 Score
ZS 5.79% ± 1.27 45.97% ± 4.41 10.20% ± 1.98

ZS-Mot 5.25% ± 1.07 54.21% ± 8.72 9.53% ± 1.79
ZS-Class* 7.01% ± 1.07 50.48% ± 4.48 12.27% ± 1.67

ZS-Exc 9.88% ± 2.01 69.86% ± 10.72 17.15% ± 3.01
CG* 7.67% ± 1.58 50.21% ± 7.20 13.19% ± 2.48
FS 6.23% ± 1.43 47.46% ± 7.31 10.91% ± 2.20

FS-Mot 5.60% ± 1.44 64.41% ± 3.15 10.26% ± 2.45
CoT-ZS 5.51% ± 0.86 32.32% ± 6.22 9.34% ± 1.30
CoT-FS 5.24% ± 1.26 41.04% ± 6.24 9.25% ± 2.05

Table 4.31: Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold

To provide a visual comparison, Figure 4.4 shows the F1 scores achieved by
each prompting strategy on Partition 2 projects. ZS-Exc visibly stands out as the
top-performing strategy, with an F1 score of 17.15%. ZS-Class and CG are also
distinguishable for their relatively high positions. On the other hand, the shortest
bars correspond to CoT-based methods, reflecting their weaker performance. The
chart also clearly shows how baseline approaches (ZS and FS) slightly outperform
their motivation-enhanced variants (ZS-Mot and FS-Mot), which are themselves
ahead of the CoT-based prompts. Finally, the plot highlights a slight improvement
when moving from the ZS configuration to the FS one, suggesting the benefit
offered by the examples in the few-shot setting.
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Figure 4.4: F1 Scores of different approaches on Partition 2 projects

Table 4.32 presents the average processing time for each approach on the
Partition 2 projects. These results reveal significant differences among the evaluated
prompting strategies. As expected, Chain-of-Thought approaches are the most
time-consuming, requiring on average over 17 seconds per method, due to their
step-by-step reasoning generation. The ZS-Mot and FS-Mot strategies, which
include a short motivational statement, can be considered lightweight versions of
CoT. While faster than their CoT counterparts, they still require over 8 seconds per
method on average. On the other hand, the baseline ZS approach is more efficient,
requiring around 3 seconds per method. Naturally, approaches with longer prompts,
such as ZS-Class, CG, and FS, require more time, averaging nearly 5 seconds per
method. Interestingly, ZS-Exc not only delivers the best performance but is also the
fastest approach, with an average processing time of under 3 seconds per method.
This suggests that providing exception-related context helps the model narrow its
search space when assessing the presence of a bug.
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Approach Csv JxPath JCore Compress Lang JData Average
ZS 2.79 2.67 3.05 3.66 3.10 2.95 3.04

ZS-Mot 8.80 7.87 9.00 9.01 8.77 8.31 8.63
ZS-Class 5.14 3.63 5.81 4.12 5.64 4.77 4.85
ZS-Exc 2.64 2.60 3.11 2.89 2.98 2.82 2.84

CG 4.25 3.19 5.66 4.60 4.22 3.87 4.30
FS 3.71 3.58 3.70 3.99 4.04 3.76 3.80

FS-Mot 7.45 8.20 10.1 9.26 9.20 8.59 8.80
CoT-ZS 18.7 16.0 17.8 17.4 17.1 16.7 17.3
CoT-FS 18.8 18.2 21.1 19.8 19.1 18.4 19.2

Table 4.32: Average processing time per method on Partition 2 projects with
different approaches; Results expressed in s/m (seconds/method); (JCore: Jack-
sonCore; JData: JacksonDatabind); Best results in bold

4.4 Partition 3
To ensure clarity in presenting the results, each approach is again assigned to a
code, as shown in Table 4.21. Table 4.33 shows the number of buggy and total
methods for each project in Partition 3, along with their corresponding ratios.

Project Number of
buggy methods

Number of
total methods Ratio (%)

JacksonXml 5 152 3.29%
Chart 39 1503 2.59%
Time 51 1753 2.91%
Cli 52 769 6.76%

Jsoup 159 4097 3.88%
Math 149 3046 4.89%

Table 4.33: Partition 3 project weights

As previously discussed in Section 4.3, two approaches, due to their structural
constraints, require different weighting than those listed above. Table 4.34 reports
the number of buggy and total methods for Partition 3 projects when using the
zero-shot-whole-class approach. This time four projects are affected: Chart, Time,
Jsoup, and Math.
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Project Number of
buggy methods

Number of
total methods Ratio (%)

JacksonXml 5 152 3.29%
Chart 30 628 4.78%
Time 50 1575 3.17%
Cli 52 769 6.76%

Jsoup 157 4091 3.84%
Math 143 2741 5.22%

Table 4.34: Partition 3 project weights for the zero-shot-whole-class approach

Table 4.35 reports the number of buggy and total methods for each project
when using the call graph strategy.

Project Number of
buggy methods

Number of
total methods Ratio (%)

JacksonXml 5 92 5.43%
Chart 35 1108 3.16%
Time 37 1061 3.49%
Cli 40 432 9.26%

Jsoup 109 2515 4.33%
Math 122 2182 5.59%

Table 4.35: Partition 3 project weights for the call graph approach

4.4.1 Results
Table 4.36 presents the performance of the LM70 model on the JacksonXml project.
Due to the small size of this project (only 5 buggy methods among 152 total), the
confidence intervals are wide, especially for recall, making it a particularly unstable
evaluation scenario. The best overall performance is achieved by the call graph
approach, with an F1 score of 16.34%, obtained by combining the highest precision
(9.39%) with a strong recall (64.00%). The second-best approach is ZS-Exc, that
achieves the highest recall (96.00%) and a good precision (7.59%), resulting in
an F1 score of 14.07%. The base few-shot approach also performs well, reaching
an F1 score of 13.22%, suggesting that well-chosen examples can effectively guide
the model in small-scale project settings. ZS-Class shows reasonable performance,
with an F1 score of 11.25%. The zero-shot strategy and its motivation-enhanced
variant perform similarly, with F1 scores of 10.13% and 10.14%, respectively. In
contrast, FS-Mot underperforms compared to its baseline counterpart, penalized
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by low precision (5.02%) despite achieving a higher recall (64.00% against 52.00%).
Both the zero-shot and few-shot CoT approaches once again deliver the weakest
performance, combining the lowest recalls (both with 36.00%) with the poorest
precision values (4.34% and 4.60%, respectively).

Approach Precision Recall F1 Score
ZS 5.54% ± 2.45 60.00% ± 30.41 10.13% ± 4.53

ZS-Mot 5.48% ± 1.49 68.00% ± 13.60 10.14% ± 2.70
ZS-Class* 6.17% ± 3.04 64.00% ± 32.38 11.25% ± 5.56

ZS-Exc 7.59% ± 0.64 96.00% ± 11.11 14.07% ± 1.19
CG* 9.39% ± 2.12 64.00% ± 20.78 16.34% ± 3.88
FS 7.57% ± 1.73 52.00% ± 13.60 13.22% ± 3.07

FS-Mot 5.02% ± 1.65 64.00% ± 20.78 9.32% ± 3.05
CoT-ZS 4.34% ± 2.50 36.00% ± 20.78 7.74% ± 4.46
CoT-FS 4.60% ± 2.10 36.00% ± 20.78 8.15% ± 3.83

Table 4.36: Project: JacksonXml; Model: LM70; Format: value ± confidence
interval; Best results in bold

Table 4.37 shows the results obtained by the LM70 model on the Chart project.
The most effective prompting strategy is ZS-Class, which achieves an F1 score
of 16.28%, thanks to the highest precision (9.37%) and a strong recall (62.00%).
ZS-Exc also performs well, combining a relatively good precision (7.45%) with the
best recall (75.90%), for a resulting F1 score of 13.57%. Both the zero-shot and
few-shot baselines perform moderately well, with F1 scores of 10.71% and 11.32%,
respectively. The corresponding motivation-enhanced versions show better recalls,
but their overall F1 scores are substantially lower due to poor precision values
(4.85% for ZS-Mot and 5.04% for FS-Mot). Surprisingly, the call graph approach
underperforms here, with an F1 score of just 7.91%, caused by both weak precision
and recall (4.30% and 49.14%, respectively). This time CoT variants are not
the worst-performing approaches (as they are surpassed by ZS-Mot and FS-Mot),
hovering around 10% F1 score. Their recalls remain mediocre, particularly in the
few-shot version (41.54%), which represents the lowest value among all approaches.
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Approach Precision Recall F1 Score
ZS 5.85% ± 0.88 63.59% ± 9.92 10.71% ± 1.61

ZS-Mot 4.85% ± 0.27 66.67% ± 5.03 9.04% ± 0.51
ZS-Class* 9.37% ± 0.78 62.00% ± 6.28 16.28% ± 1.34

ZS-Exc 7.45% ± 0.51 75.90% ± 5.33 13.57% ± 0.92
CG* 4.30% ± 0.70 49.14% ± 7.69 7.91% ± 1.28
FS 6.38% ± 0.70 50.26% ± 6.21 11.32% ± 1.25

FS-Mot 5.04% ± 0.71 72.31% ± 10.89 9.42% ± 1.33
CoT-ZS 5.85% ± 1.18 49.23% ± 8.83 10.46% ± 2.07
CoT-FS 5.41% ± 0.79 41.54% ± 7.26 9.56% ± 1.41

Table 4.37: Project: Chart; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.38 presents the results obtained by the LM70 model on the Time project.
As in other projects, ZS-Exc is the best-performing approach, achieving an F1
score of 16.40% by combining the highest precision (9.33%) and recall (67.84%).
The other approaches appear to struggle on this project. CG shows relatively
good precision (6.53%) along with a modest recall (48.11%), resulting in an F1
score of 11.50%. ZS-Class ranks third with 9.54% F1 score, combining modest
values for precision and recall (5.30% and 47.20%, respectively). The zero-shot
and few-shot baseline strategies yield mediocre results, with F1 scores around 8%.
Their motivation-based counterparts perform even worse, with F1 scores of 7.45%
for ZS-Mot and 7.62% for FS-Mot. While they consistently achieve higher recall,
the accompanying drop in precision heavily impact their resulting F1 scores. Both
CoT strategies rank among the worst-performing, especially the few-shot variant,
which exhibits the lowest precision (3.49%) and recall (25.49%), resulting in a poor
F1 score of 6.14%.
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Approach Precision Recall F1 Score
ZS 4.42% ± 0.45 43.53% ± 4.68 8.03% ± 0.82

ZS-Mot 4.02% ± 0.67 50.98% ± 8.26 7.45% ± 1.24
ZS-Class* 5.30% ± 0.54 47.20% ± 4.16 9.54% ± 0.96

ZS-Exc 9.33% ± 0.49 67.84% ± 2.78 16.40% ± 0.83
CG* 6.53% ± 2.07 48.11% ± 17.01 11.50% ± 3.68
FS 4.66% ± 0.80 34.12% ± 5.86 8.20% ± 1.39

FS-Mot 4.10% ± 1.20 53.73% ± 15.07 7.62% ± 2.23
CoT-ZS 4.18% ± 0.80 32.94% ± 6.06 7.41% ± 1.41
CoT-FS 3.49% ± 1.09 25.49% ± 7.70 6.14% ± 1.90

Table 4.38: Project: Time; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.39 presents the performance of the LM70 model on the Cli project.
This is one of the most favorable cases, as all the approaches show relatively high
values compared to other projects, especially for precision. ZS-Exc is the best-
performing strategy once again, thanks to the highest values for precision (17.62%),
recall (76.54%), and, consequentially, F1 score (28.64%). CG and ZS-Class also
demonstrate strong performance, with F1 scores of 23.41% and 21.90%, respectively.
ZS and FS baseline approaches achieve good results, especially the few-shot version,
with an F1 score of 18.60%. ZS-Mot results in a slightly higher F1 score than ZS
(15.71% vs. 15.42%), primarily due to a stronger recall (72.31% against 59.23%).
The FS-Mot strategy also significantly improves recall compared to FS (67.31%
against 45.38%), but is penalized by relatively low precision, resulting in an F1
score of 16.99%. The CoT variants also show competitive results, with F1 scores
around 17%, although the few-shot version still struggles with recall, as it only
reaches 42.69%.
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Approach Precision Recall F1 Score
ZS 8.86% ± 1.20 59.23% ± 7.44 15.42% ± 2.06

ZS-Mot 8.82% ± 0.66 72.31% ± 4.34 15.71% ± 1.15
ZS-Class* 13.27% ± 1.34 62.69% ± 5.99 21.90% ± 2.12

ZS-Exc 17.62% ± 0.80 76.54% ± 3.54 28.64% ± 1.21
CG* 14.28% ± 1.87 65.00% ± 7.91 23.41% ± 2.97
FS 11.71% ± 2.83 45.38% ± 9.93 18.60% ± 4.38

FS-Mot 9.73% ± 0.68 67.31% ± 5.85 16.99% ± 1.20
CoT-ZS 9.44% ± 0.55 53.08% ± 4.34 16.03% ± 0.99
CoT-FS 10.89% ± 1.37 42.69% ± 5.95 17.35% ± 2.22

Table 4.39: Project: Cli; Model: LM70; Format: value ± confidence interval;
Best results in bold

Table 4.40 displays the results for the LM70 model on the Jsoup project. Here,
the ZS-Exc configuration clearly outperforms the other approaches, achieving the
highest values for precision (11.41%), recall (72.08%), and F1 score (19.70%). CG
also performs competitively, reaching an F1 score of 13.34%, while the ZS-Class
variant only obtains an F1 score of 10.67%, mainly due to a modest recall (47.64%).
The FS baseline achieves a better performance than its zero-shot counterpart
(11.28% against 9.68%) thanks to its higher precision (6.46% for FS, 5.34% for ZS).
Their motivation-enhanced versions follow the trend observed so far: they achieve
higher recall at the cost of lower precision, leading to reduced F1 scores. Both CoT
strategies achieve decent F1 scores (9.74% for the zero-shot version, 10.10% for
the few-shot one), although they struggle with recall, exhibiting the lowest values
(43.40% and 40.25%, respectively).

Approach Precision Recall F1 Score
ZS 5.34% ± 0.42 51.70% ± 4.11 9.68% ± 0.75

ZS-Mot 5.19% ± 0.41 64.15% ± 5.18 9.61% ± 0.75
ZS-Class* 6.01% ± 0.36 47.64% ± 2.59 10.67% ± 0.63

ZS-Exc 11.41% ± 0.67 72.08% ± 4.51 19.70% ± 1.16
CG* 7.53% ± 0.65 58.17% ± 6.37 13.34% ± 1.18
FS 6.46% ± 0.54 44.53% ± 3.96 11.28% ± 0.94

FS-Mot 5.17% ± 0.40 62.26% ± 5.30 9.55% ± 0.74
CoT-ZS 5.49% ± 0.38 43.40% ± 3.54 9.74% ± 0.69
CoT-FS 5.77% ± 0.50 40.25% ± 3.36 10.10% ± 0.87

Table 4.40: Project: Jsoup; Model: LM70; Format: value ± confidence interval;
Best results in bold
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Table 4.41 reports the performance of the LM70 model on the Math project.
The trend observed so far is confirmed. ZS-Exc is once again the best-performing
approach, achieving the highest values for all the three metrics, with 12.03% for
precision, 77.05% for recall, and 20.81% for F1 score. CG performs well, combining
strong recall (60.98%) with relatively high precision (10.18%), resulting in an F1
score of 17.45%. ZS-Class follows closely, with an F1 score of 15.93%. Zero-shot
and few-shot baseline configurations show similar performance, with F1 scores
around 14%, while their motivation-based variants perform slightly worse, having F1
scores around 13%. Despite higher recall, these variants tend to sacrifice precision,
suggesting that the motivation component may cause the model to over-predict.
Chain-of-Thought approaches yield decent results, with F1 scores around 13%,
despite showing the worst recall values (41.88% for the zero-shot version, 38.93%
for the few-shot one).

Approach Precision Recall F1 Score
ZS 8.26% ± 0.61 58.39% ± 5.10 14.47% ± 1.10

ZS-Mot 7.25% ± 0.45 62.01% ± 3.61 12.99% ± 0.80
ZS-Class* 9.17% ± 0.47 60.42% ± 3.76 15.93% ± 0.83

ZS-Exc 12.03% ± 0.63 77.05% ± 3.20 20.81% ± 1.05
CG* 10.18% ± 1.15 60.98% ± 7.57 17.45% ± 1.99
FS 8.14% ± 0.24 44.83% ± 2.46 13.78% ± 0.45

FS-Mot 7.31% ± 0.37 65.23% ± 3.56 13.15% ± 0.67
CoT-ZS 7.63% ± 0.88 41.88% ± 4.19 12.91% ± 1.46
CoT-FS 8.17% ± 0.59 38.93% ± 1.77 13.51% ± 0.88

Table 4.41: Project: Math; Model: LM70; Format: value ± confidence interval;
Best results in bold

Finally, Table 4.42 summarizes the overall performance of the different prompting
strategies on Partition 3 projects. The weights are represented by the total number
of methods of each project reported in Tables 4.33, 4.34, and 4.35.

As already observed in Partition 2 (see Table 4.31), the best-performing approach
is ZS-Exc, which consistently outperforms the other strategies and reaches an
average F1 score of 19.21%, combining the best precision (11.10%) with the highest
recall (73.89%). This result confirms that exception-related information is crucial
for enhancing LLMs performance in bug detection tasks.

Call graph and ZS-Class approaches again show competitive performance, with
F1 scores of 12.00% and 13.17%, respectively. These results align with what has
been observed in Partition 2: structural or class-level context provides valuable
information that helps the model in its evaluations.

The baseline ZS and FS strategies achieve moderate results, with F1 scores of
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11.25% and 12.00%, respectively. Here, as it happened in Partition 2, the few-shot
version offers a slightly better performance, highlighting the benefit of adding
meaningful examples in the input prompt, though the impact remains minimal.
The motivation-enhanced versions confirm the patterns observed in Partition 2:
they both heavily improve recall, especially in the few-shot variant, at the expense
of lower precision, which ultimately result in lower F1 scores. This indicates that
the lightweight CoT variant is not as effective as expected.

The struggle of reasoning-based approaches is confirmed by the fact that, just
like in Partition 2, both Chain-of-Thought strategies present mediocre results. The
zero-shot version reaches an F1 score of 10.73%, with a poor recall of 42.70%,
while the few-shot version, although it has the lowest recall across all approaches
(37.89%), performs slightly better, with an F1 score of 10.80%. They both achieve
comparable results to their lightweight versions (ZS-Mot and FS-Mot), with F1
scores around 10%, despite showing consistently lower recall values.

In conclusion, Partition 3 results confirm the key findings already observed
in Partition 2: prompts enriched with contextual information, such as exception
traces or program structure, lead to better model performance than those relying
only on reasoning strategies, like chain-of-thought prompting. This suggests that,
in real-world scenarios, models alone are not sufficiently effective, even when
explicitly prompted to reason carefully about the code. However, when provided
with relevant contextual information about the target method, their performance
improves significantly.

Approach Precision Recall F1 Score
ZS 6.29% ± 1.62 54.44% ± 6.51 11.25% ± 2.68

ZS-Mot 5.77% ± 1.46 62.48% ± 5.83 10.53% ± 2.47
ZS-Class* 7.54% ± 2.41 53.41% ± 7.14 13.17% ± 3.83

ZS-Exc 11.10% ± 2.48 73.89% ± 4.34 19.21% ± 3.73
CG* 8.10% ± 2.61 56.67% ± 5.75 14.10% ± 4.11
FS 6.99% ± 1.78 43.92% ± 4.88 12.00% ± 2.64

FS-Mot 5.87% ± 1.60 63.44% ± 5.50 10.71% ± 2.68
CoT-ZS 6.16% ± 1.54 42.70% ± 5.62 10.73% ± 2.43
CoT-FS 6.35% ± 2.06 37.89% ± 5.70 10.80% ± 3.10

Table 4.42: Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold

To complement the numerical results, Figure 4.5 visually compares the F1 scores
obtained by each prompting strategy on Partition 3 projects. As in the previous
partition, ZS-Exc clearly dominates, showing a 5.11% margin on the second-best
approach. Both ZS-Class and CG also stand out for their relatively high bars,
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reinforcing the benefit of structural context in prompting. The other approaches
range between 10% and 12%, with the chart highlighting slight differences that
might be less evident in tabular format.
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Figure 4.5: F1 Scores of different approaches on Partition 3 projects

Table 4.43 shows the average processing time per method for each approach
across the Partition 3 projects. The results are consistent with those observed in
Partition 2 (see Table 4.32), with the CoT strategies remaining the most time-
consuming (especially the few-shot variant, reaching nearly 20 seconds per method).
The motivation-enhanced approaches also require considerable time, with around
8 seconds on average, but they are still faster than full CoT prompting. The ZS
baseline requires 3.15 seconds per method on average, while approaches with longer
prompts, like ZS-Class, CG, and FS, intuitively require more time (taking around
4 seconds). Once again, the fastest approach is ZS-Exc, averaging 2.83 seconds per
method. This reinforces the idea that exception-related context can simplify the
model’s task by better aligning with its reasoning process.
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Approach JXml Chart Time Cli Jsoup Math Average
ZS 3.24 3.30 3.09 3.29 2.80 3.20 3.15

ZS-Mot 6.53 7.83 7.39 8.01 7.26 7.87 7.48
ZS-Class 3.55 5.43 4.71 3.42 3.58 4.93 4.27
ZS-Exc 2.71 3.03 2.95 2.70 2.63 2.97 2.83

CG 3.77 4.70 3.97 3.94 3.38 4.93 4.11
FS 3.31 3.68 3.47 3.47 3.08 3.78 3.46

FS-Mot 8.51 8.60 8.90 8.57 8.68 9.54 8.80
CoT-ZS 15.2 16.0 16.8 15.7 16.9 17.6 16.4
CoT-FS 18.4 19.5 20.6 18.4 20.3 21.1 19.7

Table 4.43: Average processing time per method on Partition 3 projects with
different approaches; Results expressed in s/m (seconds/method); (JXml: Jack-
sonXml); Best results in bold

Ablation study: analyzing different few-shot variants

As described in Section 4.1.1, the main few-shot prompting strategy adopted in
this work includes six examples, each accompanied by a textual explanation that
explicitly states why the corresponding code is labeled as buggy or non-buggy.
This ablation study investigates two key aspects of that setup: the impact of the
explanation field and the effect of the number of examples included in the prompt.

For the first case, a variant called P-FS (pure few-shot) is defined, which omits
the explanation. In this setup, the examples only consist of method code and its
corresponding evaluation, reflecting a more traditional few-shot format. To ensure
a fair comparison, the examples are kept the same as the ones used in the original
few-shot strategy, reported in Tables 4.2 and 4.3.

The second variant is defined as FS-LE (few-shot with less examples), which
reduces the number of in-context examples from six to three. These examples
retain the explanation field and are selected among the ones used in the original
few-shot strategy to ensure comparability. The chosen examples are listed below:

• Examples for partitions 1 and 2:

– Project: Chart; Bug Number: 11; Version: Buggy
– Project: Chart; Bug Number: 15; Version: Buggy
– Project: Math; Bug Number: 92; Version: Fixed

• Examples for partition 3:

– Project: Lang; Bug Number: 61; Version: Buggy
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– Project: Mockito; Bug Number: 4; Version: Buggy
– Project: Lang; Bug Number: 49; Version: Fixed

For more details on their characteristics, refer to Tables 4.2 and 4.3. All these
experiments were conducted with the LM70 model.

Table 4.44 displays the results obtained on the Partition 2 projects. Overall,
the performance difference among the three variants is relatively small, with only
minor gains or losses observed in most cases. The pure few-shot variant achieves
the highest F1 scores on the smaller projects, which are Csv and JxPath, both with
13.37%. On the other hand, in projects like JacksonCore, Compress, and Lang,
the original few-shot configuration remains slightly superior to both alternatives.
Regarding the FS-LE approach, reducing the number of examples from six to
three does not lead to a drop in performance, with an F1 score similar to FS
in projects like JacksonCore and Lang. Overall, the weighted average across all
projects reveals only a minimal gap between the variants, with the original FS
configuration reaching the highest average F1 score of 10.91%.

The complete results for each metric are reported in Section A.2.1 of Appendix
A.

Project FS P-FS FS-LE
Csv 9.50% ± 3.18 13.37% ± 2.17 11.23% ± 5.82

JxPath 12.84% ± 1.60 13.37% ± 0.88 12.45% ± 2.08
JacksonCore 7.27% ± 0.47 6.62% ± 0.41 7.15% ± 0.44

Compress 13.50% ± 1.36 12.79% ± 1.27 12.26% ± 2.02
Lang 9.37% ± 1.40 8.27% ± 0.79 9.08% ± 0.63

JacksonDatabind 12.40% ± 0.71 12.54% ± 0.19 12.01% ± 0.72
W. Average 10.91% ± 2.20 10.65% ± 2.65 10.56% ± 1.99

Table 4.44: F1 scores of different few-shot variants on Partition 2 projects (W.
Average: Weighted Average); Format: value ± confidence interval; Best results in
bold

Table 4.45 reports the results obtained by the three few-shot variants on the
Partition 3 projects. The differences in performance across these configurations are
again limited, with no single variant outperforming the others. The pure few-shot
variant once again performs well on small projects like JacksonXml, with a resulting
F1 score of 13.35%. In all the other projects, the FS-LE version surprisingly
achieves the best results, especially in Cli project, with an F1 score of 20.61%.
However, in most projects the results remain very close, with minimal variation
across the three variants. The weighted averages show that FS-LE performs slightly
better than the others, with a final F1 score of 12.49%, against 12.00% for FS and
11.96% for the pure few-shot strategy.
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The complete results for each metric are reported in Section A.2.2 of Appendix
A.

Project FS P-FS FS-LE
JacksonXml 13.22% ± 3.07 13.35% ± 4.97 10.49% ± 4.33

Chart 11.32% ± 1.25 12.29% ± 1.62 12.54% ± 1.35
Time 8.20% ± 1.39 8.47% ± 1.07 8.44% ± 0.89
Cli 18.60% ± 4.38 16.32% ± 1.71 20.61% ± 1.58

Jsoup 11.28% ± 0.94 10.90% ± 0.67 11.31% ± 0.54
Math 13.78% ± 0.45 14.06% ± 0.90 14.45% ± 1.37

W. Average 12.00% ± 2.64 11.96% ± 2.30 12.49% ± 3.08

Table 4.45: F1 scores of different few-shot variants on Partition 3 projects (W.
Average: Weighted Average); Format: value ± confidence interval; Best results in
bold

Overall, the results indicate that including an explanation alongside the examples
offers a performance benefit with respect to the pure few-shot strategy, as shown
by the higher average F1 score across both partitions. Therefore, the initial design
choice is supported by these results, although the impact remains limited. As for
the number of examples, reducing the count from six to three does not lead to a
drop in performance, indicating that using fewer examples can still be effective.

Table 4.46 reports the average processing time per method of the three few-shot
variants, measured across the projects in both Partition 2 and 3. The results
confirm the expectations: the original few-shot approach (FS), which includes
six examples along with their explanation, has the highest average processing
time due to its longer prompt length. The pure few-shot variant, which excludes
explanations, performs slightly faster, averaging 3.54 seconds per method compared
to 3.63 seconds per method, on average. As expected, FS-LE, which uses only
three examples, is the fastest variant, requiring 3.06 seconds on average to process
a single method.
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Project FS P-FS FS-LE
Csv 3.71 3.67 3.07

JxPath 3.58 3.20 1.99
JacksonCore 3.70 3.43 3.42

Compress 3.99 4.83 3.24
Lang 4.04 3.51 3.37

JacksonDatabind 3.76 3.41 3.19
JacksonXml 3.31 3.29 2.86

Chart 3.68 3.57 3.22
Time 3.47 3.32 3.05
Cli 3.47 3.31 3.01

Jsoup 3.08 3.23 2.96
Math 3.78 3.69 3.34

Average 3.63 3.54 3.06

Table 4.46: Average processing time per method across few-shot variants; Results
expressed in s/m (seconds/method); Best results in bold

Ablation study: position of the reasoning field in Chain-of-Thought
approaches

The prompt presented in Listing 3.12 describes the zero-shot variant adopted for
the Chain-of-Thought strategy. This ablation study investigates the impact of the
position of the reasoning field in the model’s JSON response. Specifically, the
goal is to evaluate the model’s performance when it has to produce tokens before
its final evaluation (the has_bug field), compared to placing it after. Apart from
this, the remainder of the prompt remains unchanged. This experiment resembles
the earlier ablation study discussed in Section 4.2.2.

Table 4.47 reports the F1 scores with the CoT-ZS variant. The analysis was
conducted on a smaller portion of the dataset, covering six projects from both
Partition 2 and 3. The results highlight that positioning the reasoning field after
the has_bug field generally leads to better performance, yielding higher F1 score
overall. Moreover, this ordering results in smaller confidence intervals, suggesting
more stable and reliable predictions across runs. These findings show a measurable
effect of field ordering on the model’s performance, although the impact remains
minimal.

The complete results for each metric are reported in Section A.3 of Appendix A.

68



Results And Discussion

Project Before After
Csv 13.23% ± 4.53 12.59% ± 2.07

JxPath 8.50% ± 2.74 11.37% ± 1.69
JacksonCore 7.33% ± 2.17 6.95% ± 1.35

Compress 10.10% ± 1.60 10.54% ± 0.77
JacksonXml 6.16% ± 8.30 7.74% ± 4.46

Cli 15.75% ± 3.68 16.03% ± 0.99
Weighted Average 9.82% ± 3.11 10.24% ± 3.24

Table 4.47: F1 scores for different position of the reasoning field (Before:
reasoning field before the has_bug field; After: reasoning field after the
has_bug field); Format: value ± confidence interval; Best results in bold

Table 4.48 reports the average processing time per method of the two ZS-
CoT variants. Interestingly, placing the reasoning field after the has_bug field
consistently reduces average processing time, with improvements ranging from 3
to 5 seconds per method. This ordering offers both improved performance and
reduced processing time, making it the more efficient of the two. Therefore, it was
adopted for the reported experiments.

Csv JxPath JacksonCore Compress JacksonXml Cli Average
18.7
15.6

20.0
16.0

22.1
17.8

21.5
17.4

18.2
15.2

21.5
15.7

20.3
16.3

Table 4.48: Average processing time per method based on position of reasoning
field; Results expressed in s/m (seconds/method); (Top: reasoning field before
the has_bug field; Bottom: reasoning field after the has_bug field); Best results
in bold

4.5 Threats To Validity
This section discusses the potential threats to validity that could affect the results
presented in this thesis.

Internal Threats

The experimental pipeline relies on a combination of Python scripts and Java
programs to extract methods from the dataset, interact with large language models,
and evaluate their outputs. Although these components were thoroughly tested
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during development, undetected bugs may still be present. To support transparency,
these scripts can be made available upon request.

Another source of potential threats lies in the manual selection of buggy methods
from the dataset and their manual annotation to build the ground truth files. This
process, while carefully repeated to ensure accuracy, can still be prone to human
error or subjective judgment.

Furthermore, the explanations and reasoning included in the few-shot examples
were initially generated using ChatGPT and subsequently refined manually. Alter-
native formulations may be more effective and lead to better model performance.

External Threats

The experiments were conducted exclusively on Defects4J dataset, which contains
only Java programs. While this dataset is widely adopted and represents a solid
benchmark for evaluation, the results may not generalize to other programming
languages or codebases.

Given Defects4J’s reputation, it is possible that some of its bugs were included
in the training data of the evaluated LLMs. While this bias cannot be ruled out, it
would be unfeasible to re-train these models to eliminate it. However, the results
highlight that context-enriched approaches, which provide additional code-level
information, outperform baseline strategies, suggesting that the models are not
simply memorizing exact instances from the dataset.

Construct Threats

In this work, the ability of LLMs to detect bugs was evaluated as a binary classi-
fication task. Therefore, model performance has been measured using precision,
recall and F1 score, in line with standard practices in related work.

Conclusion threats

In order to mitigate the intrinsic randomness of LLMs, each prompting strategy
was evaluated over five independent runs, and results were aggregated using 95%
confidence intervals. This approach aligns with best practices in recent literature.

Additional Considerations

Beyond the above-mentioned threats, several other factors deserve discussion.
Prompt engineering was performed manually, guided by intuition and insights

from existing literature. However, it may not represent the optimal way to extract
reasoning from LLMs. Other more sophisticated strategies, such as automatic
prompt generation [50], could potentially lead to better results.

70



Results And Discussion

LM70 was the model that was chosen for the subsequent experiments on projects
of Partition 2 and 3. It achieved the best results, but its high processing time and
large resource requirements may limit its feasibility in many real-world scenarios.
Practical applications may prefer smaller and more efficient models, accepting a
trade-off between performance and resource constraints.

Moreover, this study did not cover every available model or every size configura-
tion, focusing on a limited set of LLMs whose parameters sizes ranges from 8B to
70B. Other models which were not evaluated in this work, especially newer ones,
could potentially obtain better results.
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Related Work

In recent years, Artificial Intelligence (AI), and particularly Large Language Models
(LLMs), have been extensively applied to various software engineering tasks. This
chapter presents a review of relevant literature across this area, with a focus on
topics that are related to the objectives of this thesis, such as automated program
repair (APR), vulnerability detection, and code analysis.

5.1 Automated Program Repair
Automated Program Repair (APR) refers to the process of automatically fixing
software bugs without requiring human intervention, and is widely recognized as a
key step toward software automation. The goal is to produce a patched version of
the code based on the original program and the identified buggy location.

Hossain et al. [51] proposed Toggle, a program repair framework that exploits
LLMs both to pinpoint the location of the bug at the token level and to fix the
corresponding buggy code. They explore various prompting strategies for the
bug-fixing model, to determine which yields the best performance. Their framework
achieves state-of-the-art performance on the CodeXGLUE [52] benchmark, and
obtains strong results on other datasets too (such as Defects4J).

Xia et al. [53] evaluate nine state-of-the-art LLMs on their ability to generate
patches across three different repair settings, in order to identify the most effective
configuration. Their study is conducted on five datasets and shows that directly
applying LLMs to APR tasks outperforms traditional techniques.

Fan et al. [54] explore the application of existing APR techniques to fix code
produced by LLMs for complex programming tasks. Their study revealed that the
code generated by LLMs shares common mistakes with the human-written one,
highlighting the potential of APR techniques to fix the automatically generated
code.
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Prenner et al. [55] evaluated Codex [43] model on the QuixBugs [35] dataset,
finding that it performs competitively on Python programs, but encounters greater
challenges with Java.

Kolak et al. [56] also evaluated Codex (alongside two smaller models) on the
same dataset, assessing its ability to generate correct patches based on a given
code prefix. The results confirm the scaling effect of LLMs, where performance
improves with model size.

5.2 Vulnerability Detection
Vulnerabilities represent a particular category of bugs that, if exploited, can com-
promise the security of a system. In recent years, several studies have investigated
the use of LLMs for the detection and remediation of such security flaws.

Pearce et al. [57] conducted an analysis into the use of LLMs for vulnerability
repair. Their work focused on the challenges involved in designing effective zero-shot
prompts to guide models in generating secure versions of insecure code.

Lin et al. [58] evaluated different models on Vul4J [37] and Big-Vul [59] datasets
for the task of vulnerability detection. They experimented with both zero-shot and
few-shot prompting strategies and analyzed the impact of various factors, such
as model size, quantization methods, and context window length. Their main
findings are the following: LLMs tend to perform better on Java code rather than
on C/C++; few-shot prompting often leads to worse results than zero-shot across
most models; larger context windows generally yield better performance.

Steenhoek et al. [60] examined the capabilities of eleven LLMs to detect
vulnerabilities in isolated functions, rather than entire source files. Their study
explored various prompting strategies, including in-context learning and chain-of-
thought reasoning. They observed that LLMs struggled with this task, failing to
distinguish between buggy and fixed versions in 76% of cases.

In another work, Steenhoek et al. [61] further explored the limitations of LLMs
in vulnerability detection. They observed that LLMs often struggle to reason
about code semantics, especially on variable relationships or multi-step logic. Their
results suggest that simply scaling up models size or design better prompts is not
sufficient, indicating that new modeling and training approaches may be necessary.

Khare et al. [62] evaluated several pre-trained LLMs across five security datasets,
each covering distinct vulnerability classes. Their experiments, conducted on short
code snippets rather than full source files, highlight that step-by-step reasoning
can significantly improve model performance.

Gao et al. [42] introduced VulBench, a benchmark suite that combines six
different datasets, to standardize evaluation across different programming languages.
Their experiments confirm that LLMs can outperform traditional techniques in
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certain cases; however, they also note that models still struggle with more complex,
real-world scenarios, particularly when analyzing large-scale software systems.

This trend is further confirmed by the study of Ullah et al. [63]. They developed
a framework for the evaluation of LLMs on vulnerability identification and code
reasoning across multiple scenarios, including real-world CVEs (Common Vulnera-
bilities and Exposures). They tested eight different LLMs using various prompting
techniques and they identified some limitations, such as non-deterministic out-
puts and consistently poor performance on real-world scenarios. Their findings
confirm that current LLMs remain unreliable for the automated identification of
vulnerabilities.

Purba et al. [64] analyzed four LLMs to assess their ability to detect software
vulnerabilities using two datasets: a code gadgets dataset [65], where code gadgets
consist of semantically related lines of code, and the vulnerabilities are related to
buffer overflows and memory management issues, and the CVEfixes [66] dataset,
which focuses on SQL injection and buffer overflow problems. Although LLMs have
high false positive rates compared to traditional static analysis tools, the study
highlighted their promising capabilities in recognizing patterns that are typically
associated with security vulnerabilities.

5.3 Code Analysis
Code analysis is a fundamental activity in software engineering that involves the
examination of source code, bytecode, or binary code to ensure software quality
and reliability. It plays a critical role in helping developers identify and address
issues early in the software development life cycle.

Fang et al. [67] conducted an analysis on five popular LLMs, including models
from GPT and LlaMa families, to assess their ability to understand both obfuscated
and non-obfuscated input source code. Their findings show that, for non-obfuscated
code, larger models are more likely to produce detailed explanations of code snippets.
On the other hand, smaller models, even when fine-tuned on code-specific data,
often fail to deliver correct outputs. When analyzing obfuscated code, both large
and small models struggle to generate accurate results. Overall, their findings show
that larger LLMs are a safer choice for code analysis tasks.

Chapman et al. [28] proposed an approach that integrates static analysis with
LLMs to enhance code analysis. This approach interleaves calls to a traditional
static analyzer with queries to LLMs. Specifically, the intermediate results from
the static analysis are inserted into the LLMs queries, and the models responses are
used to further refine subsequent analysis steps. This hybrid approach outperforms
static analysis alone, highlighting the potential benefits of combining LLMs with
other existing tools.
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Li et al. [68] introduced LLift, a framework that combines several prompting
strategies with static analysis results to identify Use Before Initialization (UBI)
bugs in the Linux kernel. This framework combines path-sensitive analysis, guided
by insights on variable usage specific to Linux, with prompts to LLMs which are
carefully designed to complement the analysis. The result is a system that achieves
high precision in bug detection, and it effectively scales across millions of lines of
code. LLift discovered four previously undocumented UBI vulnerabilities in the
Linux kernel, which were subsequently acknowledged by the Linux community.
Their work demonstrates how combining semantically aware static analysis with
LLM reasoning can offer improvements in real-world bug discovery.

Ma et al. [69] conducted an analysis on four state-of-the-art LLMs (specifically,
GPT4, GPT3.5, StarCoder and CodeLlama-13b-instruct) to assess their ability
to understand code syntax and semantic structures, such as abstract syntax trees
(ASTs), call graphs (CGs) and control flow graphs (CFGs). Their evaluation
focused on three dimensions: syntax understanding, static behavior understanding
and dynamic behavior understanding. Their findings reveal that, while LLMs
are good in correctly recognizing code syntax, they struggle in reasoning about
code semantics, especially dynamic semantics. This may help explain why code
generated by LLMs is often syntactically correct yet vulnerable to security issues,
highlighting the need to check the correctness of LLMs outputs.
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Conclusion and Future Work

This thesis explored the application of Large Language Models (LLMs) to the task
of method-level bug detection. The experimental setup involved prompting LLMs
with individual methods and asking them whether the target method contained a
bug. The study was conducted on Defects4J, a widely adopted open-source dataset
containing real-world Java bugs. An initial filtering operation was performed to
retain only those bugs that met specific requirements, and the resulting dataset
was split into three partitions.

Subsequently, six open-source LLMs were evaluated on the first partition using
both zero-shot and few-shot prompting strategies.

Llama3.1:70b-instruct-q4_0 emerged as the best-performing model in terms
of precision, recall, and F1 score. Consequently, it was selected for subsequent
experiments on the second and third partitions of the dataset. The model was
tested on nine different prompting strategies, ranging from standard zero-shot
and few-shot to more elaborate ones, like chain-of-thought and context-enriched
prompts.

The results demonstrate that prompts enriched with contextual information (such
as exception traces, full-class source code, or structural elements like call graphs)
significantly improve model performance, outperforming baseline approaches. In-
terestingly, the best-performing approach (the one with information about failed
test cases and exceptions) also proved to be the fastest, making it appealing from
both effectiveness and efficiency standpoints.

Surprisingly, chain-of-thought prompts (which involve step-by-step reasoning)
consistently underperformed compared to simpler or context-aware strategies. This
suggests that, in complex software scenarios, explicit reasoning alone is not sufficient
to achieve acceptable performance.

Several ablation studies were also conducted. A comparison of different few-shot
variants highlighted that reducing the number of examples (from six to three)
lowers computational overhead without a significant drop in performance. Another
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ablation study conducted on the prompt formatting showed that even the position
of the output fields (e.g., placing the reasoning before or after the actual bug
evaluation) can influence both performance and response generation speed.

Although this thesis evaluates a considerable number of different prompting
approaches, there are still open questions for further research.

One area of interest is the impact of the examples in few-shot learning. This
study used fixed and manually chosen examples; future work could explore how
the choice of examples affects model performance. Similarly, research could also
explore the effect of varying model parameters like quantization and temperature.

The call graph approach can be extended by analyzing different graph configu-
rations. For instance, one could incorporate in the prompt caller methods rather
than callees, or include indirect calls (multi-hop relationships) to expose deeper
program dependencies.

Other combinations of strategies also merit attention. For instance, combining
a reasoning-based approach with exception-related information could bridge the
gap between abstract reasoning and context-aware insights. Furthermore, retrieval-
augmented generation (RAG) could be applied to provide relevant knowledge
dynamically.
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Appendix A

Detailed Results for
Ablation Studies

A.1 Ablation study: position of the explanation
in Few-Shot examples

Model Precision Recall F1 Score

CDL 7.30% ± 4.16
7.85% ± 1.38

15.24% ± 9.72
23.81% ± 5.91

9.83% ± 5.76
11.76% ± 2.14

LM8 5.46% ± 1.62
5.23% ± 1.62

42.86% ± 15.07
44.76% ± 12.26

9.68% ± 2.93
9.37% ± 2.86

LM70 8.63% ± 2.16
7.61% ± 1.81

34.29% ± 7.71
43.81% ± 7.71

13.77% ± 3.29
12.95% ± 2.94

LM3 8.47% ± 2.14
7.19% ± 1.19

25.71% ± 9.89
25.71% ± 3.24

12.72% ± 3.61
11.24% ± 1.75

QWC 6.87% ± 2.01
8.11% ± 2.38

19.05% ± 4.18
24.76% ± 8.77

10.08% ± 2.71
12.21% ± 3.78

Table A.1: Project: Codec; Top: explanation before the has_bug field; Bottom:
explanation after the has_bug field; Format: value ± confidence interval; Best
results in bold
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Model Precision Recall F1 Score

CDL 6.72% ± 3.85
5.88% ± 1.50

17.24% ± 8.56
20.00% ± 5.58

9.66% ± 5.31
9.08% ± 2.31

LM8 3.57% ± 1.30
4.18% ± 1.49

24.83% ± 9.28
33.10% ± 11.57

6.24% ± 2.28
7.42% ± 2.64

LM70 4.65% ± 3.19
6.15% ± 0.94

22.07% ± 15.32
40.69% ± 4.69

7.68% ± 5.27
10.69% ± 1.57

LM3 4.78% ± 2.41
3.61% ± 1.19

10.34% ± 5.24
12.41% ± 3.83

6.54% ± 3.29
5.59% ± 1.82

QWC 3.64% ± 0.62
4.65% ± 1.25

15.86% ± 2.35
20.00% ± 4.69

5.92% ± 0.98
7.55% ± 1.98

Table A.2: Project: Gson; Top: explanation before the has_bug field; Bottom:
explanation after the has_bug field; Format: value ± confidence interval; Best
results in bold

Model Precision Recall F1 Score

CDL 6.73% ± 2.27
5.90% ± 1.08

17.73% ± 7.83
20.45% ± 3.99

9.73% ± 3.49
9.16% ± 1.70

LM8 5.38% ± 0.64
5.36% ± 1.02

59.09% ± 7.19
64.09% ± 12.20

9.86% ± 1.18
9.90% ± 1.87

LM70 6.77% ± 0.77
6.21% ± 0.86

51.82% ± 6.12
57.73% ± 7.88

11.98% ± 1.37
11.21% ± 1.54

LM3 9.25% ± 1.41
8.45% ± 0.86

46.82% ± 5.85
54.09% ± 6.12

15.45% ± 2.27
14.62% ± 1.49

QWC 6.97% ± 0.80
7.56% ± 0.89

51.36% ± 6.50
56.36% ± 7.83

12.27% ± 1.43
13.33% ± 1.61

Table A.3: Project: Collections; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ± confidence interval;
Best results in bold
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Model Precision Recall F1 Score

CDL 16.24% ± 5.46
20.24% ± 7.37

12.31% ± 5.70
20.00% ± 8.47

13.95% ± 5.63
20.10% ± 7.88

LM8 14.47% ± 1.56
15.51% ± 1.34

31.28% ± 4.00
37.18% ± 2.52

19.79% ± 2.24
21.88% ± 1.72

LM70 21.06% ± 2.99
19.24% ± 2.17

26.67% ± 4.56
33.08% ± 4.42

23.52% ± 3.60
24.32% ± 2.91

LM3 17.37% ± 0.93
15.47% ± 3.18

17.69% ± 1.33
19.23% ± 4.06

17.53% ± 1.11
17.14% ± 3.55

QWC 17.95% ± 0.88
18.00% ± 1.73

31.28% ± 1.42
29.23% ± 2.36

22.81% ± 0.98
22.28% ± 1.97

Table A.4: Project: Mockito; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ± confidence interval;
Best results in bold

Model Precision Recall F1 Score

CDL 9.05% ± 6.33
9.58% ± 9.44

15.92% ± 3.46
20.81% ± 2.19

10.72% ± 2.84
12.14% ± 7.16

LM8 7.10% ± 6.59
7.43% ± 7.13

41.87% ± 22.60
47.31% ± 21.01

11.31% ± 7.79
12.03% ± 8.78

LM70 9.93% ± 9.98
9.48% ± 8.61

36.04% ± 19.93
45.64% ± 15.61

13.98% ± 8.99
14.45% ± 8.75

LM3 9.97% ± 7.05
8.75% ± 6.59

27.94% ± 23.97
31.43% ± 28.06

13.40% ± 6.47
12.53% ± 6.75

QWC 8.74% ± 8.36
9.42% ± 7.80

32.91% ± 23.85
36.19% ± 24.78

12.88% ± 9.51
13.88% ± 8.17

Table A.5: Weighted Averages; Top: explanation before the has_bug field;
Bottom: explanation after the has_bug field; Format: value ± confidence interval;
Best results in bold
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A.2 Ablation study: analyzing different Few-Shot
variants

A.2.1 Partition 2

Approach Precision Recall F1 Score
FS 5.76% ± 1.97 27.06% ± 8.33 9.50% ± 3.18

P-FS 7.83% ± 1.17 45.88% ± 10.83 13.37% ± 2.17
FS-LE 7.10% ± 3.58 27.06% ± 16.00 11.23% ± 5.82

Table A.6: Project: Csv; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 7.27% ± 0.90 55.00% ± 7.30 12.84% ± 1.60

P-FS 7.41% ± 0.47 68.18% ± 5.99 13.37% ± 0.88
FS-LE 7.13% ± 1.18 49.09% ± 8.61 12.45% ± 2.08

Table A.7: Project: JxPath; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 3.94% ± 0.26 47.14% ± 2.53 7.27% ± 0.47

P-FS 3.51% ± 0.22 58.21% ± 3.71 6.62% ± 0.41
FS-LE 3.94% ± 0.25 38.93% ± 2.43 7.15% ± 0.44

Table A.8: Project: JacksonCore; Model: LM70; Format: value ± confidence
interval; Best results in bold

Approach Precision Recall F1 Score
FS 7.77% ± 0.76 51.35% ± 6.28 13.50% ± 1.36

P-FS 7.14% ± 0.70 61.35% ± 6.67 12.79% ± 1.27
FS-LE 7.20% ± 1.20 41.35% ± 6.56 12.26% ± 2.02

Table A.9: Project: Compress; Model: LM70; Format: value ± confidence
interval; Best results in bold
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Approach Precision Recall F1 Score
FS 5.12% ± 0.77 55.63% ± 8.11 9.37% ± 1.40

P-FS 4.41% ± 0.42 65.52% ± 5.80 8.27% ± 0.79
FS-LE 5.02% ± 0.35 48.05% ± 3.09 9.08% ± 0.63

Table A.10: Project: Lang; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 7.29% ± 0.42 41.58% ± 2.61 12.40% ± 0.71

P-FS 7.10% ± 0.09 53.56% ± 2.36 12.54% ± 0.19
FS-LE 7.26% ± 0.43 34.85% ± 2.20 12.01% ± 0.72

Table A.11: Project: JacksonDatabind; Model: LM70; Format: value ±
confidence interval; Best results in bold

Approach Precision Recall F1 Score
FS 6.23% ± 1.43 47.46% ± 7.31 10.91% ± 2.20

P-FS 5.91% ± 1.62 58.82% ± 6.07 10.65% ± 2.65
FS-LE 6.16% ± 1.38 40.19% ± 6.44 10.56% ± 1.99

Table A.12: Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold

A.2.2 Partition 3

Approach Precision Recall F1 Score
FS 7.57% ± 1.73 52.00% ± 13.60 13.22% ± 3.07

P-FS 7.46% ± 2.82 64.00% ± 20.78 13.35% ± 4.97
FS-LE 5.84% ± 2.40 52.00% ± 22.21 10.49% ± 4.33

Table A.13: Project: JacksonXml; Model: LM70; Format: value ± confidence
interval; Best results in bold
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Approach Precision Recall F1 Score
FS 6.38% ± 0.70 50.26% ± 6.21 11.32% ± 1.25

P-FS 6.86% ± 0.92 58.97% ± 8.12 12.29% ± 1.62
FS-LE 6.97% ± 0.77 62.56% ± 5.33 12.54% ± 1.35

Table A.14: Project: Chart; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 4.66% ± 0.80 34.12% ± 5.86 8.20% ± 1.39

P-FS 4.76% ± 0.61 38.43% ± 4.42 8.47% ± 1.07
FS-LE 4.75% ± 0.52 38.04% ± 3.69 8.44% ± 0.89

Table A.15: Project: Time; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 11.71% ± 2.83 45.38% ± 9.93 18.60% ± 4.38

P-FS 9.82% ± 0.99 48.46% ± 6.18 16.32% ± 1.71
FS-LE 12.65% ± 0.94 55.77% ± 5.60 20.61% ± 1.58

Table A.16: Project: Cli; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 6.46% ± 0.54 44.53% ± 3.96 11.28% ± 0.94

P-FS 6.10% ± 0.37 50.94% ± 3.12 10.90% ± 0.67
FS-LE 6.37% ± 0.28 50.57% ± 4.83 11.31% ± 0.54

Table A.17: Project: Jsoup; Model: LM70; Format: value ± confidence interval;
Best results in bold
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Approach Precision Recall F1 Score
FS 8.14% ± 0.24 44.83% ± 2.46 13.78% ± 0.45

P-FS 8.20% ± 0.53 49.40% ± 3.71 14.06% ± 0.90
FS-LE 8.44% ± 0.80 50.20% ± 4.62 14.45% ± 1.37

Table A.18: Project: Math; Model: LM70; Format: value ± confidence interval;
Best results in bold

Approach Precision Recall F1 Score
FS 6.99% ± 1.78 43.92% ± 4.88 12.00% ± 2.64

P-FS 6.83% ± 1.47 49.66% ± 6.17 11.96% ± 2.30
FS-LE 7.17% ± 2.00 50.49% ± 7.06 12.49% ± 3.08

Table A.19: Weighted Averages; Model: LM70; Format: value ± confidence
interval; Best results in bold
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A.3 Ablation study: position of the reasoning
field in Chain-of-Thought approaches

Project Precision Recall F1 Score

Csv 8.78% ± 3.04
7.73% ± 1.29

27.06% ± 9.80
34.12% ± 6.11

13.23% ± 4.53
12.59% ± 2.07

JxPath 5.14% ± 1.64
6.55% ± 0.97

24.55% ± 8.32
43.18% ± 6.91

8.50% ± 2.74
11.37% ± 1.69

JCore 4.36% ± 1.30
3.85% ± 0.75

22.86% ± 6.73
35.36% ± 7.08

7.33% ± 2.17
6.95% ± 1.35

Compress 6.48% ± 1.00
6.32% ± 0.42

22.97% ± 4.11
31.62% ± 3.48

10.10% ± 1.60
10.54% ± 0.77

JXml 3.54% ± 4.76
4.34% ± 2.50

24.00% ± 32.38
36.00% ± 20.78

6.16% ± 8.30
7.74% ± 4.46

Cli 10.04% ± 2.38
9.44% ± 0.55

36.54% ± 8.10
53.08% ± 4.34

15.75% ± 3.68
16.03% ± 0.99

W. Avg. 6.14% ± 2.15
5.97% ± 2.03

25.45% ± 4.95
37.98% ± 7.49

9.82% ± 3.11
10.24% ± 3.24

Table A.20: Weighted Averages; Top: reasoning field before the has_bug
field; Bottom: reasoning field after the has_bug field; Format: value ± confidence
interval; Best results in bold
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