POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Practical Evaluation of DDPG, TD3, and
SAC for HVAC Control: A Comparative
Study of Training Methods and
Deployment Strategies

Supervisors Candidate
Prof. Lorenzo BOTTACCIOLI Filippo BERTOLOTTI
Dott. Pietro RANDO MAZZARINO

Academic Year 2024-2025

Abstract

Heating, Ventilation, and Air Conditioning (HVAC) systems account for a significant
proportion of the world’s total energy consumption. In recent years, research in
the HVAC area has focused on developing new control systems based on artificial
intelligence, particularly reinforcement learning. Reinforcement learning algorithms
are well suited to the prior objective of HVAC: reducing energy consumption while
maintaining good thermal comfort. However, the commercial application of such
technology is still uncommon. This study aims to investigate the most effective
training methods for algorithms with a view to future real-world applications. Three
different reinforcement learning algorithms (DDPG, TD3, and SAC) were trained
in a simulated residential environment using Energym, each in three different
ways: online as is, offline, and offline with online fine-tuning. The resulting agents
were compared to find the combinations that yielded the best results, such as the
convergence period, loss of thermal comfort or energy during training, and, of
course, the capability to perform better than a widespread controller, such as PID,
during the testing phase. The study concluded that TD3 and DDPG, when trained
offline with just two weeks of online fine-tuning, achieve faster convergence to an
optimal trade-off between energy reduction and thermal comfort.

Table of Contents

List of Tables
List of Figures
List of Listing
List of Acronyms
1 Introduction

2 Enabling Technologies

2.1 Reinforcement learning
2.1.1 Model-free vs model-based
2.1.2 Policy-based vs value-based
2.1.3 Onlinevsoffline.,
2.2 Deep Reinforcement Learning
22.1 DDPG
222 TD3 ...
2.2.3 SAC . . .
23 d3rlpy ..o
24 OpenAI Gym
2.5 Energymo
3 Literature Review
4 Methodology
4.1 Problem definition
4.2 Simulation environment
4.3 PID . . .
4.4 Offline training dataset oL L.
4.5 MDP formulation
4.5.1 Actionspace

v

VII

VII

4.5.2 State space .
4.5.3 Reward functio

5 Experimental Setup

N .o s s s e e

5.1 Algorithms hyperparameters
5.1.1 Hyperparameter optimization with Optuna
5.1.2 Selected hyperparameters

5.2 Training methodso

5.2.1 Online training
5.2.2 Offline training

5.2.3 Offline with online fine-tuning
5.3 Online training phase analysis

6 Experimental Results
6.1 Online

6.2 Offline
6.3 Offline with online fine-tuning
6.4 Online training phase analysis

7 Conclusions
7.1 Final conlusions . . .
7.2 Future improvements

Bibliography

II1

32
32
32
33
35
35
36
36
37

38
38
44
46
51

54
54
95

o7

List of Tables

2.1
3.1
4.1

5.1
5.2
5.3

6.1

6.2

6.3

DRL algorithms parameters 10
RL studies taxonomy oo 23
Summary of action, state, and reward 31
Optimized hyperparameters for DDPG 33
Optimized hyperparameters for TD3 34
Optimized hyperparameters for SAC 35

Average temperature error (AT) and power consumption (P) of
online-trained agents over 5 evaluation runs, including energy saving
compared to a PID baseline (1766.284 W). 43
Average temperature error (A7) and power consumption (P) of
offline-trained agents over 5 evaluation runs, including energy saving
compared to a PID baseline (1766.284 W). 46
Average temperature error (A7) and power consumption (P) of
offline-to-online trained agents over 5 evaluation runs, including
energy saving compared to a PID baseline (1766.284 W). 50

v

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4

6.1

6.2

6.3

6.4
6.5

6.6
6.7

6.8

RLcycle o o
RL algorithms classification

Deep neural network structure

Environment framework o000
Heating and cooling seasons
SimpleHouseRad heating model
Reward function weights heatmap

Boxplot of the average temperature error (AT') of agents trained
online for different training durations (1, 2, 3, 6, and 12 months).
Each box summarizes five independent runs using 2019 weather data.
Boxplot of the average power consumption (P) of agents trained
online for different training durations. Each box summarizes five
independent runs using 2019 weather data.
DDPG average reward for different training lengths. Each line
plots the average cumulative reward per day, calculated across five
independently trained agents for each respective training length. . .
Zoom of DDPG reward function
TD3 average reward for different training lengths. Each line plots
the average cumulative reward per day, calculated across five inde-
pendently trained agents for each respective training length.

Zoom of TD3 reward function
SAC average reward for different training lengths. Each line plots
the average cumulative reward per day, calculated across five inde-
pendently trained agents for each respective training length.

Boxplot of the average temperature error (AT') of agents trained
offline over different dataset lengths (1, 2, 3, 6, and 12 months).
Each box summarizes five independent runs using 2019 weather data.

\Y%

39

40

41
41

42
42

43

6.9 Boxplot of the average power consumption (P) of agents trained
offline over different dataset lengths. Results are based on five
simulations per configuration using unseen weather data.

6.10 Boxplot of the average temperature error (A7) of agents trained
offline and optimized online for different training durations (1 week,
2 weeks, 1, 2, and 3 months). Each box summarizes five independent
runs using 2019 weather data

6.11 Boxplot of the average power consumption (P) of agents trained
offline and optimized online for different training durations. Each
box summarizes five independent runs using 2019 weather data . . .

6.12 DDPG average reward for different training lengths of the offline
trained and than optimized online agents. Each line plots the average
cumulative reward per day, calculated across five independently
trained agents for each respective training length

6.13 TD3 average reward for different training lengths of the offline trained
and than optimized online agents. Each line plots the average
cumulative reward per day, calculated across five independently
trained agents for each respective training length

6.14 SAC average reward for different training lengths of the offline trained
and than optimized online agents. Each line plots the average
cumulative reward per day, calculated across five independently
trained agents for each respective training length

6.15 Energy savings and control quality by month for the agents trained
online

6.16 Monthly energy savings during online training

6.17 Energy savings and control quality by week for the agents pre-trained
offline

6.18 Weekly energy savings during online fine-tuning

VI

48

VII

Chapter 1

Introduction

In the contemporary context of rising energy costs and a growing focus on occupant
well-being, ensuring thermal comfort within indoor environments has become im-
perative for maintaining optimal health and productivity. A survey spanning two
decades, as conducted by Graham et al. [1], across more than one thousand build-
ings worldwide revealed that 39% of building occupants expressed dissatisfaction
with the temperature of their workspace. In addition, Heating, Ventilation, and
Air Conditioning (HVAC) systems account for approximately 40% of the annual
energy consumption in the US, a trend that is reflected in much of the world [2].
Achieving an equilibrium between thermal comfort and energy efficiency constitutes
a considerable challenge for the HVAC industry.

The energy consumption of an HVAC system is strongly influenced by its con-
troller, deploying optimal control strategies could lead to significant improvements
in energy savings. Currently, Rule-Based Control (RBC) is the most widespread
approach, determining parameters such as temperature setpoints, heat pump power
levels, and airflow rates based on fixed rules. However, RBC methods are typically
static and do not adapt to varying environmental conditions, which limits their
efficiency.

An alternative to RBC is represented by Model Predictive Control (MPC), which
optimizes a cost function over a prediction horizon based on a thermal model of the
building [3]. Although MPC can achieve better performance, it requires an accurate
model of the thermal dynamic of the building, which makes its application highly
specific and often impractical. In practice, different buildings require different
models, and inaccuracies in modeling can lead to suboptimal and unstable control
behaviors.

The extensive implementation of Artificial Intelligence (AlI) in recent years has
facilitated the evolution of pioneering control methodologies, particularly through
the use of Deep Reinforcement Learning (DRL). The potential of DRL has been
demonstrated by its remarkable performance in complex tasks, including playing

1

Introduction

Atari games, mastering the game of Go [4], controlling robotic manipulators [5],
and autonomous driving [6]. A significant benefit of DRL is its model-free nature,
which enables it to learn optimal control policies directly from interaction with
the environment, without requiring explicit physical or thermal models and acting
as a black-box system. DRL agents are based on artificial neural networks whose
weights are updated during a trial-and-error training phase. However, because
of its trial-and-error nature, during the early stage of training phase agents may
engage in arbitrary actions, which can result in undesired situations, for example
thermal discomfort or elevated energy consumption. This behavior discourages
the commercial deployment of such a control system. To address these issues, a
potential strategy that has been recommended is to train DRL agents within a
simulated environment prior to real-world deployment.

This thesis investigates the application and comparative performance of three
reinforcement learning algorithms, Deep Deterministic Policy Gradient (DDPG),
Twin Delayed DDPG (TD3), and Soft Actor-Critic (SAC), under three distinct
training strategies: online learning, offline learning, and a hybrid offline-to-online
fine-tuning approach. The objective of this study is to identify which combination
of algorithm and training method is optimally suited to realistic HVAC control
scenarios, with particular emphasis on commercial deployment.

Although previous research has explored reinforcement learning for building
energy management, systematic comparisons between algorithms and training
strategies remain limited. This thesis aims to fill that gap through a structured
evaluation using a simulated HVAC environment built with the Energym library.

The main scientific contributions of this work are:

o A systematic comparative study of DDPG, TD3, and SAC across three training
strategies (online, offline, offline with online optimization), using consistent
environments, metrics, and evaluation procedures.

o An empirical analysis of agent behavior during training in different scenar-
ios, with a focus on convergence speed, stability, and sensitivity to training
conditions, offering practical insight into each algorithm’s robustness and
reliability.

o A quantitative evaluation of the offline with online fine-tuning approach,
highlighting its potential as a safe and effective pathway for the deployment
of RL agents in real-world HVAC systems by combining historical data with
online adaptation.

o A discussion of real-world constraints such as comfort, safety, and computa-
tional cost to assess the feasibility of each training method in commercial
applications.

Introduction

o Actionable guidelines for deployment, based on the observed trade-offs between
performance, data requirements, and implementation complexity.

By focusing on both performance and practical applicability, this thesis con-
tributes to bridging the gap between reinforcement learning research and its
real-world use in intelligent building control systems.

The structure of the thesis is as follows:
e Chapter 1 — Introduces the topic and research questions addressed.
o Chapter 2 — Describes the technologies and tools used.

o Chapter 3 — Reviews the related work on HVAC control and energy opti-
mization.

o Chapter 4 — Details the adopted methodology.
o Chapter 5 — Explains the experimental setup.
o Chapter 6 — Presents and analyzes the results.

o Chapter 7 — Summarizes the conclusions and outlines the future research
directions.

Chapter 2

Enabling Technologies

2.1 Reinforcement learning

Reinforcement Learning (RL) is one of the main branches of machine learning,
alongside supervised and unsupervised learning. Its fundamental concept is derived
from behavioral psychology, where researchers explored how animals and humans
learn from interaction with their environment. In particular, Thorndike’s "Law
of Effect" [7] states that behaviors followed by favorable consequences are more
likely to be repeated, whereas behaviors followed by unfavorable consequences
are less likely to recur. In the 1950s and 1960s, early computational models of
learning, such as temporal-difference methods and dynamic programming, laid
the groundwork for formalizing these ideas in mathematical terms. In the 1980s,
algorithms like Q-learning and actor-critic methods marked a turning point in the
development of RL as a distinct area within machine learning. The field gained
significant momentum in the 2010s with the rise of deep reinforcement learning,
especially after DeepMind’s success with Deep Q-Networks (DQN) applied to Atari
games, which demonstrated the power of combining neural networks with RL.

Reinforcement learning is a machine learning technique designed to solve se-
quential decision-making problems. Currently, it is employed in a wide range of
applications, including optimization, control, monitoring, and maintenance tasks.
Examples span across domains such as robotics, advertising, resource management,
and web system configuration.

In RL algorithms, an agent learns how to act optimally in an environment through
trial-and-error interactions, where each action executed in a specific environment
configuration yields a reward which can be positive or negative, providing a
quantitative evaluation of its effectiveness within that particular configuration.
The interaction between the agent and the environment is typically modeled as
a Markov Decision Process (MDP). An MDP is a mathematical framework for

4

Enabling Technologies

modeling decision-making problems and is characterized by a set of states, a set of
actions, a transition probability function, a reward function, and a discount factor.

Here are the main elements defining the environment in a reinforcement learning
setting, typically modeled as a Markov decision process:

« State space: The agent observes the environment at each time step. The set
of all possible configurations of the system is called the state space, denoted
by S.

» Action space: The action space represents the set of possible actions that an
agent can take when in a given state. It can be discrete, with a finite number
of choices, or continuous. The set of available actions in the state s is denoted

by A(s).

« Transition function: The transition function P(s’ | s, a) defines the prob-
ability of the system changing into state s’ from state s after the agent has
taken action a.

« Reward function: The reward function quantifies the immediate benefit
received after taking an action in a specific state. The environment satisfies
the Markov property if the reward and the next state depend only on the
current state and action, not on the sequence of past states and actions.

Algorithm 1 Basic reinforcement learning algorithm

1: Inizialize agent:
2: Choose an initial policy m(als)
3: Initialize value function Q(s,a)
4: Initialize environment state s
5. for t =1,2,...T do
6: Select action a; <— sample from 7(a;|s;)
7 Obtain new state and reward §',r < execute (a, s)
8 Update value function
Q(S7 a) A Q(Su CL) +a [T + vmaX(Q(s/, a/)) - Q(Su CL)]
9: Update policy m(als) < w(als) + BV J(0)
10: Update current state s < s’
11: end for

According to MDP, an RL agent receives a state s; within a state space S, at

5

Enabling Technologies

each time step. Subsequently, the agent selects an action a; from an action space
A, based on a policy m(a; | s;), which defines the agent’s behavior. Afterward,
the agent receives a reward r; and moves to the next state s;,1, according to the
transition function P(s;1 | $¢, a;). This cycle iterates until either a terminal state
is reached or a terminal condition is met.

The reinforcement learning agent aims to learn an optimal policy that allows it
to select the best possible action in each state. Its objective is to maximize the
expected cumulative reward, or minimize it when the reward represents a cost. The
typical reinforcement learning cycle is illustrated in Fig. 2.1.

"J Agent ||
state reward action
Sr R, Ar
l_ Rr+l (

S... | Environment]4

\,

<

Figure 2.1: RL cycle

Balancing exploration and exploitation is crucial for the development of a
sophisticated reinforcement learning agent. These two behaviors represent different
strategies an agent can adopt when attempting to identify an optimal solution.
Exploitation involves selecting the action that currently appears to be the best
choice based on the agent’s knowledge, from the agent’s perspective this is a "safe"
decision. However, this choice may correspond only to a local optimum, leading
to suboptimal long-term results. In contrast, exploration encourages the agent to
take actions that may initially seem less promising, with the aim of discovering
better solutions over time. Through exploration, the agent deliberately takes risks,
betting on the possibility that its current knowledge is insufficient to identify the
truly optimal policy.

2.1.1 Model-free vs model-based

A key distinction among reinforcement learning algorithms is whether they are
model-free or model-based. Model-free algorithms aim to directly optimize the
policy or value function based on observed transitions and rewards. They do
not attempt to understand the underlying dynamics of the environment, instead
taking actions based on the changes and feedbacks of the environment, essentially
operating as a black-box system. On the other hand, model-based algorithms

6

Enabling Technologies

require a model of the dynamics of the environment, allowing the agent to plan
ahead by using this knowledge to make informed decisions. In this thesis, we will
focus on model-free algorithms.

2.1.2 Policy-based vs value-based

Model-free algorithms can pursue the goal of maximizing the reward through the
optimization of either the value function or the policy. The value function predicts
the expected future reward and quantifies the "goodness" of a given state or a
state-action pair. The agent will then select actions that lead to states with the
highest value function. When considering state-action pairs, the value function is
represented by the Bellman equation:

Q(s,a) + Q(s,a) + ar+ymax(Q(s',a’)) — Q(s, a)] (2.1)

These methods are referred to as value-based algorithms, such as Q-learning.
In contrast, policy-based algorithms aim to directly identify the optimal policy 7*
which dictates the agent’s behavior by mapping states to actions. Policy-based
methods update the policy without relying on a value function. Fig. 2.2 shows the
taxonomy of the RL algorithms.

RL Algorithms

!

{ ¥
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient «—— a— DQON — World Models L' AlphaZero
> DDPG E—
A2C/A3C <« — C51 > 12A
> TD3 <

PPO I —> QR-DQN — MBMF
— SAC E—

TRPO - —> HER > MBVE

Figure 2.2: RL algorithms classification

Enabling Technologies

2.1.3 Omnline vs offline

Reinforcement learning algorithms can be trained using two primary approaches:
online and offline training.

Online training occurs when the agent interacts directly with the environment,
learning through trial and error by observing the outcomes of its actions in real
time. This allows the agent to continuously refine its policy based on immediate
feedback, but may require significant time and resources and may not always be
safe or feasible in real-world applications.

Offline training, on the other hand, involves learning from a pre-collected dataset
of experiences. Each entry in the dataset typically contains a state, the action
taken in that state, the resulting reward, and the next state. In this setting, the
agent is not allowed to interact with the environment during training. This has the
advantage of being safer and more practical in domains where live experimentation
would be costly or risky (e.g., robotics, healthcare, energy systems). However, a
key limitation is that the agent is constrained by the quality and diversity of the
data: it cannot explore new policies beyond what is represented in the dataset. In
the best cases, it ends up imitating the behavior of the agent that generated the
dataset.

A common and effective strategy is to combine both approaches: using offline
training to pre-train the agent on historical data, followed by online fine-tuning to
adapt and optimize its behavior through exploration. This hybrid approach can
significantly reduce training time and improve sample efficiency.

2.2 Deep Reinforcement Learning

The term Deep Reinforcement Learning (DRL) is used to describe a particular
type of RL algorithm that employs a Deep Neural Network (DNN) to optimize the
value function or the policy. The concept of Neural Network (NN) has its origins
in biology; in fact, they were developed as generalizations of mathematical models
of biological nervous systems [8].

A neural network is built from networks of neuron-like nodes clustered in layers.
There are three types of layers: input, hidden, and output layers. In the context of
an MDP problem, the input layer is responsible for describing the environment state,
while the output layer corresponds to the actions to be taken in that state. The
hidden layers are used to apply mathematical functions to the collected data. The
neurons are connected by weighted edges, and each neuron’s impulse is computed
as the weighted sum of the input signals. The signal typically flows from the input
layer to the output layer in a feed-forward direction. The learning capability of an
NN is achieved by adjusting the weights # between the nodes through optimization
algorithms such as stochastic gradient descent. Typically, a neural network is

8

Enabling Technologies

considered deep when it has more than two hidden layers.

The adoption of DNNs in reinforcement learning allows agents to approximate
complex functions, enabling them to handle high-dimensional state or action spaces
that would be intractable with traditional tabular methods. This synergy between
deep learning and reinforcement learning has led to impressive results in fields such
as robotics, autonomous vehicles, and game playing. An example of a deep neural
network is shown in Fig. 2.3.

Hidden
Layer 2

o E)
. ///,‘A\ Ouput

\"' ‘\" ll “" ’
....... ‘ ' ‘l,‘

):":V ' ::: ' ‘ >
...... AR \ o 00 \

A\ (N VX \3\‘ P
....... ‘ ol

\ /‘\\ Output

Input X W ‘ [N,3]
[N4] 1 ” 3

[4,5] f2
H'»_)

[5.7]

f3

Figure 2.3: Deep neural network structure

Many DRL algorithms have been developed over time, including DQN, PPO,
TD3, SAC, and DDPG. While they are classified by the macro-charachteristics
described previously, they also differ in their policy for updating the weights be-
tween the nodes of neural networks. However, all of them share some important
parameters that influence the agent’s learning strategy, and these parameters are
summarized in Tab. 2.1

2.2.1 DDPG

The first reinforcement learning algorithm examined in this study is the Deep
Deterministic Policy Gradient (DDPG). The algorithm was first introduced in
2015 by Lillicrap et al. [9] and is capable of dealing with a continuous action
space. DDPG is a hybrid algorithm that combines elements of policy-based and
value-based methods. The algorithm employs an actor-critic technique, meaning
it is split into two models: the actor and the critic. Each of these comprised two

9

Enabling Technologies

Parameter Description

Learning rate () Controls how much the weights of
the network are adjusted with re-
spect to the loss gradient.

Discount factor (v) Determines the importance of fu-
ture rewards in the optimization
process.

Buffer size Size of the replay buffer, where ex-

perienced data are stored.

Batch size Size mini-batch data on which gra-
dient loss is calculated.

Soft target update coefficient (7) Determines the rate at which the
target network is updated towards
the online network, improving sta-
bility.

Table 2.1: DRL algorithms parameters

distinct neural networks, resulting in a total of four NN. The actor network pu(s |
0") is policy-based and takes actions according to the current state and updates
the policy in the direction suggested by the critic. The critic network Q(s,a | 9)
is a value-based network and estimates the value function and evaluates the actor’s
behavior. DDPG stores experiences in a replay buffer R, from which samples are
drawn to update the NN parameters. It is essential that the replay buffer maintains
a balance between old and new experiences in order to guarantee stability. At
each weights update, the algorithm samples a set of N experiences from the replay
buffer, N is equal to the dimension of the mini-batch. The loss function for the
critic and the actor network is then calculated. The objective of both models is to
minimize the respective loss function. The loss function for the critic and the actor
is as follows:

To = 5 32 1+ 1(1 = d)Qurs s) = Qo5 (22
= v 2 Qs) 23)

In equations (2.1) and (2.2), Qarg and fiteg represent the target networks of the
10

Enabling Technologies

two models. Both the critic target network and the actor target network are similar
to the main networks, but they update their weights at a slower rate because they
provide a more stable estimate.

Algorithm 2 DDPG

1: Randomly initialize critic network Q(s, a|#?) and actor network p(s|6#) with

weights 09 and 6

2: Initialize target networks @’ and i/ with weights 09 < 9 and 6* « g~

3: Initialize replay buffer R
4: for episode =1,2,...M do

5: Receive the initial environment state sg
6 fort=12,..T do
7: Select action a; = pu(s¢|0*) according to the current policy
8 Execute action a;, observe reward r; and new state s,
9: Store transitions (s, ay, 7y, S¢41) in R
10: Sample a random minibatch of N transitions (s, at, 74, S¢41) from R
1L Set y; = ri + Q' (541, 1/ (5i11[0*)[09")
12: Update critic by minimizing the loss: L = % :(y; — Q(s;, a;169))?
13: Update the actor policy using the sampled policy gradient:
1
Vou =~ N ZVCLQ(S,a|€Q)\szsi’a:u(si)vguu(slﬁu) si (2.4)
14: Update the target networks:
09 « 709 + (1 —7)09 (2.5)
O — 0" + (1 — 7)o" (2.6)
15: end for
16: end for
2.2.2 TD3

Twin Delayed DDPG (TD3) is a reinforcement learning algorithm built on DDPG
[10] that addresses its biggest limitation, the overestimation of the Q-values. TD3
can only be used for environments with continuous action spaces. The "Twin" in
the name refers to the fact that the critic networks are two. TD3 simultaneously

11

Enabling Technologies

learns two distinct Q-functions @y, and Q)4,, the target is then calculated using the
smaller Q-value. The actor network in TD3 has the same function as in DDPG: it
takes the current state and returns a deterministic action. The two critic networks
Qs (s,a) and (Qy,(s,a) are trained independently to estimate the value of the
action taken in a specific state. When computing the target value, the algorithm
uses the minimum between the two Q-values, mitigating the overestimation bias
typically found in actor-critic methods. The target value is calulated as follows:

y =+l = d) miy QN i) +) 2.7

e ~ clip(N(0,0), —¢,c) is a clipped random noise added to the target action to
implement target policy smoothing. The loss function of the critic is then computed
as

Jo = ;,Z (: — Qo (s ai))Q (2.8)

The actor policy is updated less frequently than the critic (every d steps, with
d > 1) and aims to maximize the estimated Q-value of the first critic network:

o= =37 3 Qs) (29

As in DDPG, TD3 uses target networks for both the actor and the critic. These
target networks are updated using a soft update rule to ensure training stability. In
total, TD3 employs six neural networks: two critics, one actor, and their respective
target networks. This architecture, combined with delayed policy updates and
target smoothing, leads to more stable and reliable learning in environments with
continuous action spaces.

12

Enabling Technologies

Algorithm 3 TD3

1: Initialize policy parameters 6, Q-function parameters ¢, ¢, replay buffer R
2: Set target parameters equal to main parameters: Giare < 0, Grarg1 < @1,

3:
4

5:
6:
7.
8

9:
10:
11:

12:

13:
14:

15:

16:
17:
18:
19:

gbtarg,Q — ¢2
repeat

Observe state s and select action a = clip(ug(s) + €, arow, GHign):
Execute action a, observe next state s’ and reward r
Store (s,a,r,s’,d) in replay buffer R
if it’s time to update then
for j in range(however many updates) do
Sample a batch of transitions B = {(s,a,r,s’)} from R
Compute target actions:

a'(s") = clip(Hpya,, () + clip(e, —¢, €), Arow, Gmign), €~ N(0,0)

Compute targets:
y<T’ 8,7 d) =r + ’Y(]‘ - d) IE%% Q¢targ,i (8,7 a,(sl))

Update Q-functions by one step of gradient descent:

V@i Z (Qg, (s,a) —y(r, s, d))2 fori=1,2

| (s,a,r,s',d)EB

if j mod policy_ delay = 0 then
Update policy by one step of gradient ascent:

“; 3 Qo (5, 10(5)

seB

\%

Update target networks:

gbtarg,i «— p¢targ,i + (1 — P)Cbz for 7 = 1’ 2

Gtarg — p@targ -+ (1 — p)@

end if
end for
end if

until convergence

e~ N

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

13

Enabling Technologies

2.2.3 SAC

Soft Actor-Critic (SAC) is a reinforcement learning algorithm designed to achieve
high sample efficiency and stability by maximizing the trade-off between expected
return and entropy [11]. SAC is specifically intended for environments with
continuous action spaces. Unlike deterministic algorithms like DDPG and TD3,
SAC employs a stochastic actor, meaning that the policy outputs a probability
distribution over actions instead of a single deterministic action.

The "Soft" in the name refers to the inclusion of an entropy term in the objective
function, encouraging exploration by penalizing certainty in the action choices.
This mechanism allows the agent to balance exploration and exploitation more
effectively. SAC maintains two critic networks Qy, (s,a) and Qy, (s, a), similar to
TD3, and uses the minimum of the two Q-values to reduce positive bias in critic
estimates. The target value is calulated as follows:

y=r+v(1-d <m1n Qtarg(s', a') — alog W(&’]S')) (2.16)

7=1,2

where a’ ~ 7(-]s’) and « is the temperature parameter that controls the importance
of the entropy term.

The critic loss function is defined as:
Jo = —1 EN - Q ? 2.17
Q N - (yz qu(Si, ai)) (.)

The actor policy is optimized to maximize not just the expected Q-value but
also the entropy of the policy itself:

L= g: (alogm(as|s;) — Qg (si, as)) (2.18)

z:l

SAC also uses target networks for the critics, updated via a soft update mecha-
nism to ensure stability during training. In total, SAC employs five neural networks:
two critics, one actor, and two target critics. The combination of entropy maxi-
mization, double Q-learning, and soft target updates makes SAC one of the most
robust and efficient algorithms for continuous control tasks.

14

Enabling Technologies

Algorithm 4 SAC

1: Initialize policy parameters #, Q-function parameters ¢;, ¢, temperature

parameter «, replay buffer R

2: Set target Q-function parameters: Giarg1 < @1, Grarg2 < P2

3: repeat
4: Observe state s and sample action a ~ my(+|s)
5: Execute action a, observe next state s’ and reward r
6: Store (s,a,r,s’,d) in replay buffer R
7 if it’s time to update then
8: for j in range(however many updates) do
9: Sample a batch of transitions B = {(s,a,r,s’)} from R
10: Sample actions and compute log probabilities:
a'(s") ~ ma(-|s"), logma(a'(s')]s") (2.19)
11: Compute target values:
y(r, ' d) =+ 51 = d) (it Quny (5,0/(5) — alogmola'()]s')) (2:20)
12: Update Q-functions by one step of gradient descent:
1
v(ﬁii Z (Q¢i(57a) - y(r, S/7d))2 for i = 1?2 (221)
| (s,a,r,s',d)€B
13: Update policy by one step of gradient ascent:
> (alogmg(als) — Qg (s,a)), a~ mo(:]s) (2.22)
|B| seB
14: Adapt temperature « (optional, if automatic entropy tuning is used):
> —a(logm(als) + H) (2.23)
|B| seEB
15: Update target networks:
¢targ,i — p¢targ,i + (1 - p>¢1 fOI' Z - 17 2 (224)
16: end for
17: end if

18: until convergence

15

Enabling Technologies

2.3 d3rlpy

In this work, the d3rlpy library (Deep Deterministic Dataset-driven Reinforcement
Learning in Python) [12] was adopted as the main framework for implementing,
training, and evaluating reinforcement learning algorithms. d3rlpy is an open-source
library built on top of the PyTorch and scikit-learn libraries, providing a high-level
and user-friendly interface specifically designed to support both offline and online
reinforcement learning.

Initially, the project started with the use of Stable-Baselines3 [13], a widely
adopted library for reinforcement learning. However, it became clear that its
focus on online learning and lack of native support for offline training made it less
suitable for the goals of this thesis. For this reason, the decision was made to
switch definitively to d3rlpy, which offers built-in compatibility with offline training
workflows.

Moreover, d3rlpy allows one to easily save and load the trained agents and
to transfer a trained policy from one algorithm to another. The library enables
consistent training workflows, efficient hyperparameter tuning, and a standardized
collection of performance metrics. Integration with monitoring tools such as Ten-
sorBoard allows real-time visualization of training progress and model evaluation.

In general, d3rlpy has proved to be a key enabling technology for this work, fa-
cilitating reproducibility, flexibility in experimentation, and rigorous benchmarking
of offline RL algorithms.

2.4 OpenAl Gym

OpenAl Gym [14] is an open-source library that is widely used and provides a
standardized interface for reinforcement learning environments. It was developed to
facilitate the development, sharing, and benchmarking of RL algorithms by offering
a collection of pre-built environments (ranging from classic control problems to
Atari games) along with a simple and consistent API. This API defines how agents
interact with environments through functions such as reset() to start a new episode,
step(action) to take an action and observe the result, and render() to visualize the
current state. By defining clear conventions for the interaction between agents
and environments, Gym has become a foundational component in the RL research
community and continues to influence the design of many modern RL frameworks
and toolkits.

Although the experiments in this thesis were conducted in a custom-built
simulation environment tailored to HVAC control, the structure and design of the
environment were inspired by the Gym interface. Following this standard allowed
for smoother integration with RL libraries like d3rlpy, and made the development

16

Enabling Technologies

of training and evaluation pipelines more modular and easier to maintain. In the
initial phase of the study, the library was utilized to facilitate familiarization with
the world of reinforcement learning. OpenAl Gym provides a selection of basic
environments, including "cartpole" and "pendulum", which are useful in evaluating
the capabilities of the library and facilitating an understanding of the operational
principles of an RL algorithm.

2.5 Energym

Energym [15] is a Python-based open-source library designed for the testing and
development of controllers for HVAC systems in simulated building environments. It
has been developed with the objective of facilitating research on energy consumption
optimization, providing a user-friendly framework that is particularly suited for the
implementation of advanced control strategies. The library includes a variety of
simulation models, based on the widely adopted platforms Modelica or EnergyPlus.
These models vary in terms of building size, number of rooms, installed technical
systems, and available control points. Each environment is associated with different
weather profiles, which dynamically affect the simulation conditions.

Energym is especially suited to the development of Reinforcement Learning (RL)
agents, offering an interface closely resembling that of the well-known OpenAi Gym
library. The environment follows the standard structure of returning observations,
rewards, termination signals, and additional information at each simulation step,
ensuring compatibility with most RL frameworks. As an open-source project, it is
under continuous development and improvement, driven by contributions from its
active community.

17

Chapter 3

Literature Review

The objective of this chapter is to provide an overview of the scientific contributions
related to the development of DRL algorithms in HVAC systems. Considering the
complexity of an HVAC system, many different applications have been proposed
in the last years. This review takes into account the diverse applications of the
algorithms, without focusing on a particular aspect of the heating and cooling
systems. Each scientific paper is classified according to macro categories, including
the section of the HVAC system that has been controlled, the control’s action
space (discrete or continuous), and the algorithm that has been employed. The
study reveals that the most prevalent algorithm is DQN, an algorithm specific
to controllers with a discrete action space. For controls with a continuous action
space, the algorithms are more heterogeneous. Each paper gives great priority to
reducing energy consumption while maintaining thermal comfort. In some cases,
additional objectives, which are not marginal, are also addressed. The studies used
to build the state-of-the-art are classified in Tab. 3.1

Initially we will focus on those studies that implement a discrete action space
algorithm. Heidari et al. [16] propose a discrete control strategy for the heat
pump, which simply alternate ON/OFF, with the objective of achieving a balance
between energy consumption, hygiene, and comfort in the context of water heating
systems. The DDQN algorithm, tested in real life during COVID home period,
achieved a reduction in energy consumption of 24.5% over the deployment phase,
despite the relatively simple action space. Wei et al. [17] control the airflow rate of
different zones of temperature, training and testing a DQN algorithm in a simulative
environment modeled with EnergyPlus. In their study, Sakuma and Nishi [18],
focus on a specific aspect of air conditioning control: the direction of airflow. They
identify three actions, labelled as left, center and right. The performances of the
DRL controller outperform a rule-based method, achieving a reduction in energy
consumption by 35% on average. Zhiang and Khee [19] implement a DRL-based
optimal control method for a radiant heating system in an office building. The

18

Literature Review

real-life test yields optimal results, however, they suggest more investigation into
the problem of the delayed rewards caused by the slow thermal response of the
HVAC system. Lork et al. [20] concentrated on the development of an automated,
data-driven AC controller capable of regulating the airflow setpoint temperature
with a power saving percentage of 3.6%, in comparison to a rule-based control
scheme. By aggregating the training data from multiple rooms in a neural network
framework, the issue of overfitting and data imbalance can be addressed. McKee
et al. [21] seek to regulate the AC of a simulated house comprising two distinct
zones. When a decision is required, the controller considers the current energy
price and the projected energy price over the subsequent thirty minutes. The
system, subject to certain constraints, is capable of reducing energy consumption
while maintaining thermal comfort for occupants. In Overgaard et al. [22], a
Q-learning algorithm is trained in simulation for a period of five months in order
to learn how to control a mixing loop. The results demonstrate that after 55
days of training, the proposed controller reached the same performances of an
industrial controller. Furthermore, after five months of training, the controller was
capable of reducing costs by 20.5%. In Solinas et al. [23], an adaptive controller is
developed based on a system identification model representing the thermodynamic
response of a target building, utilising historical data. The controller has a discrete
action space, represented by the setpoint temperature at which the air is heated
before being supplied to the room. The DDQN algorithm with different values
of its parameters is finally compared with a rule-based controller and a MDP
controller. The comparison demonstrates that the DRL controller outperforms
the two baselines in both the thermal comfort and energy consumption. Yu et
al. [24] conducted a training session for a DQN agent during lesson period in
a university classroom. During the training phase, the algorithm considers the
varying metabolic rates of students, which are higher during examinations and
lower during lessons, in order to calculate the PMV (predicted mean vote), which
is an estimation of the thermal comfort of occupants. The agent has been trained
and tested in a real-life environment, resulting in a reduction of 13% in the average
carbon dioxide concentration. The objective of the study conducted by Kazmi et
al. [25] was to develop a DRL agent for the purpose of controlling a hot water
system. The deployment of the controller in 32 houses in the Netherlands has
resulted in a reduction in energy consumption for the production of hot water by
200 kWh per annum, on average, for a single house. In their study, Peirelinck et al.
[26] focus on the optimization of an electric water heating system with through
the utilisation of a RL algorithm. A secondary objective is to minimize the initial
learning time, with the aim of avoiding a period of thermal discomfort and high
energy consumption due to the random behavior of the algorithm. The proposed
solution is to pre-train the agent’s policy offline and then deploy it online. The
results demonstrate that the pre-training phase ensures an 8.8% cost reduction

19

Literature Review

compared to starting the learning phase from scratch. Mocanu et al. [27] investigate
the possibility of applying a DRL agent within the context of a smart grid for a
smart home energy management system. Additionally, the researchers focus on
the distinctions between an agent starting from scratch in an online setting and
one that is trained offline. In particular, the offline training phase initially prevails
over the online training, yet the performance of both agents reaches a point of
equivalence after approximately 80% of the total episodes.

We will now examine studies that developed a controller with a continuous
action space. The study conducted by Gao et al. [28] illustrates that algorithms
requiring a continuous action space are more efficient than those requiring a discrete
action space. This due to the fact that the former do not need the discretization of
the potential control range and require less training data. The DDPG algorithm
was compared with some discrete algorithms, such as DQN, Q-learning and SARSA
resulting in a thermal comfort improvement by 13.6%, 17.6% and 8.6% respectively.
Bo et al. [29] attempted to reduce the training time by developing a multi-agent
framework. Each agent in this framework controls the airflow rate of a specific
zone of a simulated building. During the training phase, the agents learn from
each other’s observations through a process of centralised training. However, when
performing an action, they rely only on the local state (distributed execution).
The proposed method achieve comfortable thermal conditions while reducing costs.
furthermore, it has demonstrated good convergence and stability. Sometimes it may
be helpful to integrate the DRL algorithm with an MPC model, as demonstrated
by Fu and Zhang [30]. In their study, they utilise an MPC algorithm to generate
the input for a TD3 algorithm, in order to define the optimal temperature setpoint.
The TD3-MPC algorithm produces superior results compared to the conventional
DDPG due to of its capacity to delay policy updates, thus reducing errors and
preventing the emergence of suboptimal policies. Silvestri et al. [31] seek to bridge
the gap between the simulated environment and the real world. The proposed work
investigates the deployment of an RL algorithm, which has been pre-trained offline
in a simulative environment, into a real building with real occupants interacting with
the environment, such as opening doors and windows. The results obtained from
this deployment are then compared against those obtained from the deployment of
more popular PI and RBC algorithms. The resulting data confirm the superiority
of DRL algorithms over the other competitors and illustrate the potential of these
algorithms to be effectively deployed in real-world scenarios without the necessity
for invasive technical operations. In a recent study, Schmitz et al. [32] implemented
a DRL controller for a residential heat pump in Germany. The controller does not
require a building model. researchers proposed two distinct reward functions that
consider the variable energy price over time. The results are based on space heating
data exclusively. The authors recommend that future studies would incorporate
also domestic hot water usage. Delgoshaei et al. [33] conducted research on a

20

Literature Review

optimal controller for a component of the hydronic system of a laboratory at
the NIST (National Institute of Standards and Technology). The DRL agent
employed an actor-critic algorithm on a continuous action space that involved
the control of a valve regulating the air flow from the thermal energy storage.
They determined that historical experimental data for offline training required an
extensive preprocessing phase to reduce noise and enhance convergence. In 2020,
Yu et al. [34] published their study on the use of DRL for the optimization of smart
home energy management, with a particular focus on the charging and discharging
phases of the energy storage system powered by renewable energy sources. The
DDPG algorithm, which is entirely model-free, has been trained and tested offline
on a dataset that includes the variable electricity price. The results demonstrate
that the proposed algorithm achieves better performance than the two baselines
used for evaluation.

21

Literature Review

Study Control actions Algorithm Training notes Testing notes
Heidari et al. [16] Heat pump DDQN Offline on Real life office for
ON/OFF (discrete) TRNSYS model 14 weeks
Wei et al. [17] Airflow rate of DQN 100 month of Three buildings
different zones training over a with one, four and
(discrete) simulation five zones modeled
environment in EnergyPlus
modeled in
EnergyPlus
Sakuma and Nishi Direction of airflow DQN Simulated on CFD Simulated on a
(18] (discrete) software residential building
with large rooms
Zhiang and Khee Radiant heating A3C Offline on a Real life office
(19] system supply simulated model building for three
water temperature (EnergyPlus) months
setpoint (discrete)
Lork et al. [20] Airflow setpoint DQN Trained on Evaluated on real
temperature historical weather data, no real world
(discrete) conditions and user test
ON/OFF
sequences
McKee et al. [21] Air conditioning DQN Trained in a No real world test

ON/OFF of two
zones (discrete)

simulated
environment

Overgaard et al.
22]

Mixing loop
temperature
setpoint and pump
speed (discrete)

Q-learning

5 months of offline
training over data
gathered on an
office building

Tested on a mixing
loop hardware
combined with a
building model

Solinas et al. [23] Temperature DDQN Offline on three Tested over the
setpoint at which month of building same simulated
the air is heated and weather building with
before being historical data different weather
supplied to the generated with data
room (discrete) EnergyPlus

Yu et al. [24] Room temperature DQN 30 days of Tested in the same
and fresh air flow experiments in a classroom for one
rate (discrete) campus classroom month during

with 4 fans and summer
three conditioners

Kazmi et al. [25] Vector of ON/OFF Deep PILCO Trained directly Tested on 32 real
actions (discrete) online on real houses, 13 with

houses rule-based
controller and 19
with the proposed
framework

Peirelinck et al. Electric water DDQN Offline pre-training Tested in

[26] heating system simulation

ON/OFF (discrete)

22

Literature Review

Study Control actions Algorithm Training notes Testing notes
Mocanu et al. [27] Three devices DQN and DPG Trained offline and Tested on training
ON/OFF (discrete) online on a environment
simulated
environment
Gao et al. [28] Temperature and DDPG Offline over an 5000 hours for
humidity setpoints HVAC system testing
(continuous) simulated with performances, no
TRNSYS, one year real-world test
of simulation data
Bo et al. [29] Airflow rate of Multi-Agent TD3 Simulated building 7 random days of
different zones on TRNSYS, the training
(continuous) episode environment
corresponds to one
day, 15 minutes
slot
Fu and Zhang [30] Temperature TD3-MPC 100 episodes (1 day Tested in the same
setpoint each) on simulated environment of
(continuous) building with five training phase
zones
Silvestri et al. [31] Percentage of valve = SAC Trained on a Real-life building
opening in a simulated RC
cooling system system, 30 episodes
(continuous) (91 days each)
Schmitz et al. [32] Heat pump power PPO Trained offline on 5 Tested on
(continuous) years of data with simulation

timeslot of 15
minutes on

Delgoshaei et al.
(33]

Mixing valve
position
(continuous)

Actor-critic

Trained on
historical data

Tested in a
laboratory

Yu et al. [34]

Energy storage
system charg-
ing/discharging
power and HVAC
input power
(continuous)

DDPG

Trained offline over
two summer
months of data

Table 3.1: RL studies taxonomy

23

Tested offline on
one summer month
of data

Chapter 4

Methodology

This section presents the system model and the problem formulation.

4.1 Problem definition

The main objective of this work is to evaluate and compare different approaches for
applying Reinforcement Learning (RL) algorithms to the control of HVAC systems,
with the ultimate goal of enabling their deployment in real-world and commercial
settings. HVAC control presents a complex problem that involves the trade-off
between energy efficiency and thermal comfort, making it a suitable candidate for
optimization strategies such as RL.

In this context, RL agents are trained and tested in a simulated environment
that replicates the thermal behavior of a building equipped with a heat pump and
a radiator. The agents’ goal is to modulate the output power of the heat pump to
maintain a desired indoor temperature profile, specifically 289.15K (16°C) during
nighttime hours and 293.15K (20°C) during daytime, while minimizing energy
consumption.

The benchmark for comparison is a traditional Proportional-Integral-Derivative
(PID) controller, which represents a widely adopted and well-understood control
strategy in the HVAC industry. The effectiveness of each RL approach is, therefore,
assessed by its ability to achieve lower energy consumption than the PID controller,
without sacrificing thermal comfort.

The study investigates not only the performance of different RL algorithms,
but also the impact of various training methodologies, including offline training
based on historical data, online training through interaction with the environment,
and hybrid strategies that combine both. By comparing these approaches, the aim
of the work is to highlight their respective strengths, limitations, and potential
applicability in real-world deployment scenarios.

24

Methodology

4.2 Simulation environment

The building model used in this study is the "Simple-HouseRad" model from
Energym, developed in Modelica. This environment simulates a single thermal
zone that represents a poorly insulated American-style house. The HVAC system
includes a water-to-water heat pump connected to a radiator. This type of heat
pump transfers heat between two water loops, a source side and a load side, and is
commonly used in both heating and cooling applications. However, for the purpose
of this study, only the heating mode is considered due to the limitations of the
simulator. A schematic diagram of the system is shown in Fig. 4.3.

The simulation operates with a time step of 5 minutes, ensuring a fine temporal
resolution suitable for control applications.

To integrate this system with d3rlpy reinforcement learning algorithms, which
require environments that conform to the OpenAl Gym interface, the Energym
environment was wrapped as a custom Gym environment. This involved implement-
ing standard Gym methods like reset() and step(action), as well as custom utility
functions such as get_obs() and get_reward(), defining the observation space and
reward logic. This adaptation enabled direct integration of Energym within th
d3rlpy training and evaluation pipelines, ensuring compatibility and simplifying
experimentation.

Accurate modeling of the thermal behavior of the building requires realistic
external weather data. For this purpose, five weather files in Modelica’s standard
.mos format were obtained from NASA’s POWER (Prediction Of Worldwide Energy
Resources) Data Access Viewer. These files represent the climate of Aosta, Italy,
for the years 2019 to 2024, and were sourced from the NASA Langley Research
Center (LaRC) POWER Project, funded by the NASA Earth Science / Applied
Science Program.

The weather datasets were used as follows:

e 2019 was reserved exclusively for testing.
e 2020-2024 were used for training.

Since Energym only simulates the heating, only the months of January, February,
March, October, November, and December were considered for each year. This
ensures that the agent is trained and evaluated in periods when the heating demand
is significant.

Because only six months per year are usable, a “training year” in this context
refers to two combined heating seasons from different calendar years (e.g., the six
months of 2021 joined with those of 2022). The heating and cooling seasons are
illustrated in Fig. 4.2.

25

Methodology

get_reward()
) get_obhs() 4
Action Custom Gym Energym
Agent . .
J L Environment Environment
J step() _

reset()

Figure 4.1: Environment framework

M Cooling B Heating

Figure 4.2: Heating and cooling seasons

26

Methodology

timTab

sunRad gaisun sunHea preHea

Solar . . e = JE—e———
r‘ Lt ol
Z k=sun_heat_...

weaDat TOut
% theCon o
B
weabus wEanus TOryBul V

% G=therm_cond_G

temBoo

<

temRet temSup

wingesund

gd:‘r Mol W

gaiHP

k=1 y heaPum

mi_sou

hale

gnd_temp

k=10 +273.15

Figure 4.3: SimpleHouseRad heating model

27

Methodology

4.3 PID

As a baseline to evaluate the performance of reinforcement learning agents, a
traditional Proportional-Integral-Derivative (PID) controller [35] was implemented.
The PID controller serves as a well-established benchmark in control systems due
to its simplicity, robustness, and widespread use in HVAC applications. It operates
by continuously computing the error between the current indoor temperature and
a desired setpoint and adjusting the heating power accordingly to minimize this
error.
The controller output is the sum of three components:

« A proportional term K, that reacts to the current error.
o An integral term K; that accumulates past errors.

e A derivative term K, that predicts future error trends.

de(t)
dt

For this study, the PID parameters were manually adjusted to provide a reason-
able balance between comfort and energy efficiency in the simulation environment.
Specifically, the proportional gain was set to K, = 0.1, the integral gain to K; =0,
and the derivative gain to Ky = 220. These values prioritize fast and anticipative
responses (through a strong derivative component) while avoiding integral wind-up,
given the slow dynamics of the thermal system.

The PID controller was used to generate the datasets for offline training and
as a reference to assess the relative improvement of the trained agents in terms of
comfort and energy consumption.

u(t) = K, - e(t) +Ki-/0te(7) dr + Ky - (4.1)

4.4 OfHine training dataset

The datasets used for offline training were generated by running the PID controller
across multiple simulated heating seasons. These simulations produced diverse
state-action-reward trajectories, which were recorded and later used to train the
offline agents. To assess the effect of data availability, datasets of varying lengths
were collected, allowing an analysis of each algorithm’s learning capabilities under
constrained versus abundant data conditions.

The data collected reflect a wide range of operational scenarios, including
different outdoor temperatures and heating demands. This diversity is crucial for
training robust policies capable of generalizing to unseen conditions. Using this
consistent and reproducible dataset, it is possible to evaluate the performance of

28

Methodology

offline agents in a controlled yet realistic setting, without requiring live interaction
with the environment.

4.5 MDP formulation

At each time step t, the environment is fully characterized by the current conditions,
without dependence on past states, thus satisfying the Markov property. Conse-
quently, the control problem for the building’s HVAC system can be formulated as
an MDP. The main components of this formulation are detailed below and resumed
in Tab. 4.1.

4.5.1 Action space

The control input for the HVAC system is the setpoint of the heat pump power
fraction, denoted by u. This continuous control variable is normalized between 0
and 1, representing the fraction of the maximum heat pump power to be applied.
A value of 0W corresponds to no heating, while I corresponds to the maximum
power 5000W. An increase in the heat pump power results in a higher water supply
temperature to the radiator, enhancing the system’s heating capacity.

Ay = (u) (4.2)

4.5.2 State space

As stated above, the state constitutes the input of the DRL agent. In this research,
the optimal control output is determined based on the following observations: the
current heat pump power P which is equal to the previous control taken, the
temperature of the water supplied to the radiator 7}, the outdoor air temperature
T,, the temperature difference AT between the room setpoint temperature and the
current room temperature. The first three observed values are normalized between
0 and 1 while the AT has a value between 243.15K and 303.15K.

P W]
T, [K]
T, [K]
AT[K]

S, = (4.3)

4.5.3 Reward function

The reward function in this study is designed as a penalty to be minimized by
the DRL agent. Specifically, the reward at each time step is calculated as the

29

Methodology

negative weighted sum of two terms, the heat pump power consumption P[W] and
the temperature deviation AT[K]. The reward is defined as follows:

ry=—(0.6 x P+2.4x |AT)) (4.4)

where the weight e 0.6 and the weight t 2.4, were optimized using the Optuna
hyperparameter optimization library [36]. The optimization process involved 280
trials, each of which an agent was trained over a training year. After training, each
trial was evaluated on the basis of the normalized sum of total energy consumption
and temperature deviation. The objective was to identify the weight combination
that led the agent to achieve the best trade-off between minimizing energy usage
and maintaining thermal comfort. The purpose of this reward structure is twofold:
to encourage energy-efficient operation of the HVAC system by minimizing power
consumption and to maintain thermal comfort by reducing deviation from the
desired indoor temperature. By penalizing both excessive energy use and large
temperature errors, the agent learns to balance comfort requirements with energy ef-
ficiency. Fig. 4.4 shows a heatmap of the optimization results obtained with Optuna.

o
ol
ey
L)
@
2

weight_e

Figure 4.4: Reward function weights heatmap

30

Methodology

Table 4.1: Summary of action, state, and reward
Element Definition Range
Action Ay Heat pump power fraction u [0,1]

Heat pump power P [W] [0, 1]
Supply water temperature T, K 0,1
State S, pply p (K| 10,1]
Outdoor air temperature 7, [K] [0,1]
Temperature difference AT [K] | [—30, 30]
Reward 7, —(0.6 x P+ 2.4 x |ATY) (—o0, 0]

31

Chapter 5
Experimental Setup

This chapter outlines the methodology adopted to carry out the experiments whose
results will be presented and analyzed in the final part of this thesis. The objective
is to define a clear and reproducible experimental protocol for evaluating different
reinforcement learning strategies in the context of HVAC control.

The chapter is organized according to the three training paradigms considered:
online, offline, and offline-to-online learning. For each of these, we describe how
the agents were trained, how the datasets (if any) were generated, and under what
conditions the agents were evaluated. Common settings such as the simulation
environment, episode structure, evaluation metrics, and baseline comparisons are
also detailed.

By clearly defining the experimental setup, this chapter establishes the foun-
dation for an objective comparison of algorithm performance in terms of energy
efficiency and thermal comfort, under consistent and controlled conditions.

5.1 Algorithms hyperparameters

The performance of reinforcement learning algorithms is strongly influenced by the
choice of hyperparameters. In this work, all hyperparameters for DDPG, TD3, and
SAC were optimized using Optuna. Optimization was carried out separately for
each training setting: online, offline, and offline-online.

In the following sections, we first describe how Optuna was used to tune the
algorithms, and then report the final selected values for each configuration.

5.1.1 Hyperparameter optimization with Optuna

For each algorithm and training setting, a search space that includes relevant hyper-
parameters such as learning rates, discount factor (), soft update coefficient (1),

32

Experimental Setup

batch size, and others depending on the specific algorithm (e.g., target smoothing
parameters for TD3, entropy temperature learning rate for SAC).

Each trial consisted of training the agent for the duration of one simulated year,
followed by an evaluation phase on a fixed 6-month test period. The objective
function to maximize was defined as the negative sum of the average power con-
sumption and the average temperature error over the test period. This formulation
reflects the trade-off between energy efficiency and comfort that is central in HVAC
control tasks.

Optimization was performed separately for online training, offline training, and
offline-online training. In the offline-online training, the offline phase was initialized
using the same hyperparameters previously selected during the stand-alone offline
training.

Typically, 100 to 140 trials per algorithm were performed, with an early stop
when convergence was detected. The best-performing set of parameters for each
configuration is reported in the following sections.

5.1.2 Selected hyperparameters

Table 5.1: Optimized hyperparameters for DDPG

Parameter Online Offline Offline-Online
Discount factor ~ 0.95 0.88 0.95
Actor learning rate 0.0007 9.34e-05 0.0007
Critic learning rate 0.0002 8.58e-04 0.0002
Batch size 2048 256 2048

Soft target update coefficient 7 0.05 0.05 0.05
Buffer length 50000 - 50000
Update interval 8 - 4
Number of updates 2 — 1

33

Experimental Setup

Table 5.2: Optimized hyperparameters for TD3

Parameter Online Offline Offline-Online
Discount factor ~ 0.9 0.88 0.88
Actor learning rate 5.97e-04 3.90e-04 9.93e-04
Critic learning rate 1.30e-04 2.35e-04 2.67e-05
Batch size 2048 128 2048
Soft target update coefficient 7 0.05 0.001 0.02
Target smoothing o 0.2 0.5 0.2
Target smoothing clip 0.5 0.3 0.5
Update actor interval 2 — -
Buffer length 50000 - 50000
Update interval 9 - 2
Number of updates 1 — 1

34

Experimental Setup

Table 5.3: Optimized hyperparameters for SAC

Parameter Online Offline Offline-Online
Discount factor ~ 0.88 0.88 0.88
Actor learning rate 9.93e-04 1.33e-04 9.93e-04
Critic learning rate 2.67e-05 1.19e-05 2.67e-05
Temperature learning rate 2.02e-04 1.12e-05 2.02e-04
Batch size 2048 512 2048
Soft target update coefficient 7 0.02 0.05 0.02
Number of critics 4 - 4
Buffer length 50000 - 50000
Update interval 8 - 2
Number of updates 1 — 1

5.2 Training methods

5.2.1 Online training

To evaluate the performance of online reinforcement learning, each algorithm
(DDPG, TD3 and SAC) was trained multiple times over progressively longer
simulation periods, specifically 1, 2, 3, 6, and 12 months. For each duration, five
agents were independently trained using different combinations of weather files.

This setup enables the analysis of the impact of training duration on both final
performance and learning dynamics. The evaluation includes performance in a fixed
test period after training, as well as the evolution of the reward function during
training. This approach allows for an assessment of the convergence behavior
and the identification of the point at which each algorithm begins to produce
satisfactory results.

Furthermore, the feasibility of applying online training in real-world conditions
was investigated by analyzing agent performance during the training process itself,
without interrupting or resetting the simulation. This evaluation aims to determine
whether acceptable performance can be achieved while learning is still ongoing, as
would be required in a real deployment scenario.

35

Experimental Setup

5.2.2 Offline training

To evaluate the effectiveness of offline reinforcement learning, a comprehensive
experimental setup was implemented. For each of the three algorithms, a total of
25 agents were trained on datasets generated by a PID controller. These datasets
differ in size and weather conditions.

Specifically, five dataset sizes were considered: 1 month, 2 months, 3 months,
6 months, and 12 months. For each size, five distinct datasets were generated
using different weather files, resulting in a diverse range of training experiences.
Each dataset was used to train a separate agent, allowing the evaluation of both
variability due to weather conditions and the influence of the size of the dataset on
learning outcomes.

This experimental design allows for the investigation of two key aspects of offline
learning: the effect of dataset size on the quality of the learned policy, and the
robustness of each algorithm to variations in the training data distribution. By
systematically increasing the amount of data, the minimum dataset size required
to achieve satisfactory performance can be estimated.

All agents were evaluated within the same fixed test environment to ensure
comparability. This setup enables a direct analysis of the impact of both algorithmic
configurations and dataset characteristics on generalization and performance in
previously unseen scenarios.

5.2.3 Offline with online fine-tuning

To evaluate the impact of combining offline pre-training with online fine-tuning, a
hybrid training approach was applied. For all algorithms, the agent trained offline
that performed the best was selected based on its performance in a fixed test period.
The selected DDPG and TD3 agents had been trained offline using 1 month of
data, while the SAC agent had been trained using 2 months of data.

These agents were then used as starting points for further online training over
different durations: 1 week, 2 weeks, 1 month, 2 months, and 3 months. For
each configuration, five agents were individually fine-tuned using distinct weather
conditions, following the same simulation framework adopted in the pure online
training experiments.

This setup enables an analysis of the effectiveness of leveraging prior offline
knowledge in an online learning context. The results can be compared with those
obtained from purely offline and purely online training to assess whether pre-
training contributes to improved sample efficiency, faster convergence, or enhanced
control performance.

36

Experimental Setup

5.3 Online training phase analysis

To gain a deeper understanding of how each agent behaves during training, a
detailed step-by-step analysis of the best-performing agents was carried out for
each algorithm. Specifically, for each of the algorithms tested, the following agents
were selected:

e The best agent trained fully online for a period of 6 months.
e The best agent trained offline and then online, over a period of 1 month.

The analysis was performed by examining every training step from the respective
training periods. Each step was classified into one of four possible categories based
on two key criteria: thermal comfort and energy consumption. These criteria were
used to construct a two-dimensional classification table with two binary axes.

For thermal comfort, the classification was based on the absolute temperature
error (AT') between room temperature and the setpoint:

e Good control: AT <0.5K
e Bad control: AT > 0.5K

For energy efficiency, the agent’s energy usage at each step was compared to
that of a reference PID controller:

e Saving: the agent used less energy than the PID
o Waste: the agent used more energy than the PID

This allowed for a direct comparison between agents trained online from scratch
and those initialized with offline policies, in order to determine whether real-time
fine-tuning is feasible without causing critical performance degradation during the
learning process.

In addition to this per-step classification, a second analysis was carried out
to assess the total energy difference between the agent and the PID over time.
Specifically, for each time step, the difference in energy consumption (agent versus
PID) was recorded and aggregated to calculate the cumulative energy gain or loss
throughout the training period.

For both analyses, results are grouped by time intervals to highlight the evolution
of agent behavior, monthly results are reported for agents trained online for 6
months, and weekly results are reported for agents trained offline with online
optimization over 1 month.

This dual perspective enables a more complete interpretation of how agents
improve over time, both in terms of comfort-quality trade-offs and overall energy
performance.

37

Chapter 6
Experimental Results

This chapter presents the results obtained from the evaluation of reinforcement
learning agents trained in different strategies. Each configuration is assessed in
terms of its ability to control the HVAC system effectively and efficiently.

The evaluation test is conducted over a six-month heating season, using the
Aosta 2019 weather file, which was not included in the training data. This setup
allows for a reliable assessment of the agents’ generalization capabilities under
realistic and previously unseen conditions.

The key performance indicators (KPIs) considered to evaluate the quality of a
test are:

e The mean absolute error between indoor temperature and the target setpoint,
representing thermal comfort and control accuracy.

o The average power consumption of the heat pump during the evaluation period,
representing the energy efficiency.

All agents were tested under identical environmental and operational conditions,
allowing for a consistent and fair comparison between learning strategies. The
results are presented and discussed in the following sections.

An additional section follows the evaluation of the trained and tested agents,
focusing on the analysis of online training to assess its deployability in a real-world
environment.

6.1 Online

The performance of agents trained exclusively in an online model is illustrated
through the boxplots shown in Fig. 6.1 (average temperature error) and in Fig. 6.2

38

Experimental Results

(average power consumption), while the numerical results of the tests are listed in
Tab. 6.1.

From the results, it is evident that DDPG and TD3 perform consistently well over
different training durations, particularly in terms of maintaining low temperature
errors. For example, after 1 month of training, both algorithms are already able to
keep the average temperature deviation below 1K, with TD3 performing slightly
better in terms of stability.

In contrast, SAC appears to struggle during the early stages of training. For
1 and 2 month durations, SAC shows significantly higher temperature deviations
(up to 6.3K) and elevated energy consumption. However, its performance improves
substantially with longer training durations, converging toward the levels of DDPG
and TD3 after 6 and 12 months. This suggests that SAC may require more extensive
interaction with the environment to achieve stable and efficient behavior.

6
Algorithm
I DDPG
5 [TD3
I SAC
---- PID
4 f—
3
=3
=
2

1m 2m 3m 6m 12m
Training lenght

Figure 6.1: Boxplot of the average temperature error (AT') of agents trained
online for different training durations (1, 2, 3, 6, and 12 months). Each box
summarizes five independent runs using 2019 weather data.

A notable phenomenon is the performance drop observed for DDPG and TD3
between the 2-month and 3-month training durations. Both algorithms exhibit
an increase in the temperature error and variability in energy consumption. This
temporary degradation could be due to instabilities in the policy updates caused
by over-exploration or learning dynamics that fail to adapt efficiently to changing

39

Experimental Results

Algarithm
2600 I DDPG
. TD3
2400 I SAC
---- PID
2200
2000
z
)
$ 1800
=
[im|
1600
1400
1200
1000
im 2m 3m 6m 12m
Training lenght

Figure 6.2: Boxplot of the average power consumption (P) of agents trained
online for different training durations. Each box summarizes five independent runs
using 2019 weather data.

seasonal conditions. It is also possible that the replay buffer retained outdated
experiences that temporarily disrupted learning. However, after this phase, both
agents show signs of recovery and convergence: by 6 and 12 months, DDPG and
TD3 once again achieve strong control performance with minimal energy usage and
high temperature accuracy.

The convergence of the reward function reflects the evolution of the agents
during the training phase. In particular, the quick convergence of DDPG and TD3
to an optimal reward value after just 14 days is shown in Fig. 6.3 and Fig. 6.5, and
the slow and constant improvement of SAC is represented in Fig. 6.7. Looking
at the graphs of DDPG and TD3 zoomed in Fig. 6.4 and Fig. 6.6 it’s evident the
drop of performance after 60 days. Although the difference in the graphs may
appear small, an increase of more than 100 points in the daily cumulative penalty
translates to a per-step penalty increase of approximately 0.35 points, which is
approximately 20% higher and results in a significant performance degradation.

These observations highlight the robustness of DDPG and TD3 in online learning,
although with some sensitivity to the duration and timing of training. SAC, while
initially less efficient, proves to be a competitive alternative given sufficient time to
learn. All algorithms yield a savings in terms of energy consumption, but with a

40

Experimental Results

0 J
(1]
(=]
£ —2000
L
>
(1
o
£
3 —4000 -
E
2
o
5 —6000]
u
2
©
2 —80001
] —— DDPG 1 month
;'!? —— DDPG 2 months
g —10000 - —— DDPG 3 months
z —— DDPG 6 months
—— DDPG 12 months

0 20 40 60 80 100 120 140 160
Episode (Day)

Figure 6.3: DDPG average reward for different training lengths. Each line plots
the average cumulative reward per day, calculated across five independently trained
agents for each respective training length.

_ 400

()

[=)]

©

£ 600

(1]

(=}

=

B

2 —-800

e

s

$ 1000+

[

2

® —~1200

=

E

3 —— DDPG 1 month
% —14001 ___ DDPG 2 months
o —— DDPG 3 months
z —— DDPG 6 months

—1600
—— DDPG 12 months

20 30 40 50 60 70 80 90 100
Episode (Day)

Figure 6.4: Zoom of DDPG reward function

slight loss of thermal comfort with respect to the PID controller.

41

Experimental Results

—2000 4
—4000

—6000

—8000 1 —— TD3 1 month
—— TD3 2 months
—— TD3 3 months
—10000 4 —— TD3 6 months
0

Average cumulative reward (moving average)

—— TD3 12 months

20 40 60 80 100 120 140 160
Episode (Day)

Figure 6.5: TD3 average reward for different training lengths. Each line plots the
average cumulative reward per day, calculated across five independently trained
agents for each respective training length.

—400

—600 4

—1200+

—— TD3 1 month
—1400 1 —— TD3 2 months
—— TD3 3 months
—— TD3 6 months
—— TD3 12 months

Average cumulative reward (moving average)
|
-
o
=]
=]
;

—1600 4

20 30 40 50 60 70 80 90
Episode (Day)

Figure 6.6: Zoom of TD3 reward function

42

Experimental Results

—— SAC 1 month
SAC 2 months
SAC 3 months
SAC 6 months
SAC 12 months

—2000 4

—4000

—6000

—8000

Average cumulative reward (moving average)

—10000 4

0 20 40 60 80 100 120 140 160
Episode (Day)
Figure 6.7: SAC average reward for different training lengths. Each line plots the

average cumulative reward per day, calculated across five independently trained
agents for each respective training length.

Table 6.1: Average temperature error (A7) and power consumption (P) of online-
trained agents over 5 evaluation runs, including energy saving compared to a PID

baseline (1766.284 W).

Length Algorithm Mean AT (K) Std AT Mean P (W) Std P Saving (%)

1m DDPG 0.90 0.25 1,680.23 119.06 4.87
1m TD3 0.64 0.12 1,719.28 42.51 2.66
1m SAC 4.52 1.32 2,390.04 304.84 —35.31
2m DDPG 0.87 0.15 1,660.56 85.44 5.98
2m TD3 0.99 0.44 1,660.07 155.50 6.01
2m SAC 3.04 1.43 1,351.94 257.98 23.46
3m DDPG 0.85 0.22 1,689.31 67.03 4.36
3m TD3 0.76 0.09 1,702.29 76.75 3.62
3m SAC 1.73 0.62 1,5634.57 145.07 13.12
6m DDPG 0.71 0.18 1,711.49 30.02 3.10
6m TD3 0.69 0.12 1,729.04 55.05 2.11
6m SAC 1.75 1.33 1,5658.43 243.05 11.77
12m DDPG 0.56 0.10 1,737.75 22.71 1.61
12m TD3 0.52 0.10 1,738.80 33.88 1.56
12m SAC 0.66 0.12 1,725.92 33.77 2.28

43

Experimental Results

6.2 Offline

The performance of agents trained offline is illustrated through the boxplots shown
in Fig. 6.8 (average temperature error) and Fig. 6.9 (average power consumption).
Each box summarizes five evaluation runs using unseen 2019 weather data.

From the results, SAC consistently outperforms both DDPG and TD3 in terms
of control precision and robustness over longer training durations. Even with just
2 months of data, SAC is able to maintain a low temperature error, typically
around 1K, with limited variability. As the amount of training data increases, SAC
continues to deliver stable performance with minimal degradation, suggesting a
strong ability to generalize from offline experiences.

Interestingly, TD3 achieves remarkably good performance even with very limited
offline data. After just 1 month of training, TD3 is able to maintain a temperature
deviation below 1K, with low variance and moderate energy usage. This makes it
a particularly compelling choice in scenarios where collecting extensive datasets is
not feasible. However, its performance becomes less stable as the dataset grows:
after 2 and 3 months, TD3 exhibits noticeable outliers and increased variability
in both temperature error and power consumption, possibly due to sensitivity to
dataset composition or the accumulation of suboptimal experiences.

6
Algarithm
Il DDPG
5 3 TD3
_— I SAC
---- PID
4
<
=3
5
2 !

im 2m 3m Bm 12m
Training lenght

Figure 6.8: Boxplot of the average temperature error (A7) of agents trained offline
over different dataset lengths (1, 2, 3, 6, and 12 months). Each box summarizes
five independent runs using 2019 weather data.

44

Experimental Results

5000
Algorithm -
I DDPG
4500 mm D3
I SAC
4000 ____ PID -
3500
g3{}00
>
2
2
W 2500
B
= T
1500
1000
im 2m 3m 6m 12m

Training lenght

Figure 6.9: Boxplot of the average power consumption (P) of agents trained
offline over different dataset lengths. Results are based on five simulations per
configuration using unseen weather data.

DDPG, on the other hand, shows the most erratic behavior across all durations. It
suffers from severe performance drops at 3 and 12 months, with extreme temperature
errors (up to 13K) and energy peaks exceeding 4800W. Although it occasionally
performs well, its results are inconsistent and generally less reliable than those of
TD3 and SAC.

Despite these issues, both DDPG and TD3 tend to recover partially with longer
training durations. After 6 months, both algorithms demonstrate improved control
performance and reduced variance, although SAC remains the most stable overall.
This pattern suggests that while all three algorithms are capable of learning useful
control policies offline, SAC provides the most robust and data-efficient solution,
while TD3 stands out for its effectiveness with minimal data, although at the cost
of lower long-term stability.

With the only use of offline training, all three algorithms were unable to achieve
good performance compared to the PID benchmark or to the online trained agents.

45

Experimental Results

Table 6.2: Average temperature error (AT) and power consumption (P) of offline-

trained agents over 5 evaluation runs, including energy saving compared to a PID
baseline (1766.284 W).

Length Algorithm Mean AT (K) Std AT Mean P (W) Std P Saving (%)

1m DDPG 1.42 0.61 1,675.70 65.59 5.13
1m TD3 0.85 0.07 1,790.09 39.09 —1.35
1m SAC 1.15 0.19 1,884.22 36.30 —6.68
2m DDPG 2.32 1.51 1,534.08 202.23 13.15
2m TD3 2.49 2.10 1,559.30 289.99 11.72
2m SAC 1.09 0.13 1,809.53 152.79 —2.45
3m DDPG 241 2.99 2,063.83 878.88 —16.85
3m TD3 3.02 2.88 1,525.10 382.66 13.65
3m SAC 1.25 0.34 1,915.87 65.42 —8.47
6m DDPG 2.12 1.00 1,745.73 328.33 1.16
6m TD3 1.68 0.75 1,724.61 218.92 2.36
6m SAC 1.17 0.26 1,897.16 52.78 —7.41
12m DDPG 4.37 4.56 2,247.21 1,346.14 —27.23
12m TD3 1.36 0.33 1,831.36 101.70 —3.68
12m SAC 1.37 0.13 1,948.80 42.07 —10.33

6.3 Offline with online fine-tuning

The performance of agents trained offline and fine-tuned online is illustrated through
the boxplots shown in Fig. 6.10 (average temperature error) and in Fig. 6.11 (average
power consumption) while the numerical results of the tests are listed in Tab. 6.3.

As for the agents trained exclusively online, DDPG and TD3 maintain solid
performance throughout all training durations. For example, after just one week of
training, both algorithms already achieve average temperature deviations compara-
ble to the agents trained for six months online results, with TD3 generally showing
slightly better stability.

A notable observation is the variability in power consumption for SAC during the
earliest phase (1 week), where the energy use is erratic and occasionally significantly
lower or higher than for the other algorithms, accompanied by higher temperature
errors. This suggests that SAC experiences instability in its early learning stage
and possibly struggles with the offline-to-online transition. However, unlike the
online-only training case, SAC shows a more immediate improvement as the training
duration increases, with temperature errors quickly dropping below 1K and energy

46

Experimental Results

6
Algarithm
Il DDPG
5 3 TD3
BN SAC
---- PID
4
<
=3
=
2

Tw 2w im 2m 3m
Training lenght

Figure 6.10: Boxplot of the average temperature error (AT) of agents trained
offline and optimized online for different training durations (1 week, 2 weeks, 1, 2,
and 3 months). Each box summarizes five independent runs using 2019 weather
data

consumption becoming more consistent by 2 weeks and beyond.

Overall, the results of the offline-to-online suggest that DDPG and TD3 agents
are capable of quickly adapting and maintaining performance across all durations
tested, while SAC benefits from longer training, but demonstrates faster convergence
and stabilization compared to purely online training. This confirms that offline
pretraining followed by online fine-tuning effectively reduces the initial instability
of SAC and improves its data efficiency.

As demonstrated in the reward function plots shown in Fig. 6.12, Fig. 6.13 and
Fig. 6.14, the efficacy of offline pre-training is evident. In all three figures, the
initial lower peak is significantly superior to the corresponding peak in the fully
online case, with the exception of the SAC, which exhibits an initial unstable phase,
as previously mentioned.

All algorithms trained offline and then fine-tuned online achieved energy savings
compared to the PID controller, with a moderate trade-off in thermal comfort.
Similarly to the fully online case, this compromise is gradually reduced over time,
but thanks to the initial offline training, satisfactory performance is reached in a
shorter training duration.

47

Experimental Results

- Algarithm
2200 B DDPG
m D3
B SAC
2000 ---- PID
1800 g e — -
3 iy —=l - =~ —f?
)
& 1600
[=
L
1400
1200
1000 —+

Tw 2w m 2m 3m
Training lenght

Figure 6.11: Boxplot of the average power consumption (P) of agents trained
offline and optimized online for different training durations. Each box summarizes
five independent runs using 2019 weather data

T —5001

o

o

a

@ —750-

o

=

3

5 —1000

e

vl

2z —12501

[

o

2

& —1500 -

=]

£

U _1750 —— DDPG 1 week

& —— DDPG 2 weeks

§ 5000 —— DDPG 1 month

<" —— DDPG 2 months

—— DDPG 3 months

—2250

0 20 40 60 80

Episode (Day)
Figure 6.12: DDPG average reward for different training lengths of the offline
trained and than optimized online agents. Each line plots the average cumulative

reward per day, calculated across five independently trained agents for each respec-
tive training length

48

Experimental Results

—400
o
o
o
2 —600
©
o
£
3 —800
E
2
£ -1000
[
[
=
& 1200 -
3
g
¥ —— TD3 1 week
;gu: —14001 TD3 2 weeks
§ —— TD3 1 month
< —~1600 4 —— TD3 2 months
—— TD3 3 months
0 20 40 60 80
Episode (Day)

Figure 6.13: TD3 average reward for different training lengths of the offline trained
and than optimized online agents. Each line plots the average cumulative reward
per day, calculated across five independently trained agents for each respective
training length

< —1000 -
o
il
% 2000+
o
£
2 —3000 4
E
el
£ —4000
H
[
g —5000
=
£ —6000 -
3 —— SAC 1 week
§ —7000 - SAC 2 weeks
§ —— SAC 1 month
< _8000 —— SAC 2 months
—— SAC 3 months
0 20 40 60 80
Episode (Day)

Figure 6.14: SAC average reward for different training lengths of the offline trained
and than optimized online agents. Each line plots the average cumulative reward
per day, calculated across five independently trained agents for each respective
training length

49

Experimental Results

Table 6.3: Average temperature error (AT') and power consumption (P) of offline-
to-online trained agents over 5 evaluation runs, including energy saving compared
to a PID baseline (1766.284 W).

Length Algorithm Mean AT (K) Std AT Mean P (W) Std P Saving (%)

1w DDPG 0.812 0.119 1,697.83 28.16 3.88
1w TD3 0.693 0.074 1,706.02 27.20 3.41
1w SAC 3.243 2.172 1,670.87 466.62 5.40
2w DDPG 0.668 0.053 1,730.36 40.90 2.03
2w TD3 0.668 0.116 1,703.85 34.00 3.53
2w SAC 0.778 0.145 1,722.32 70.36 2.49
1m DDPG 0.640 0.070 1,746.92 15.15 1.10
1m TD3 0.626 0.099 1,750.21 29.27 0.91
1m SAC 0.645 0.091 1,747.67 56.46 1.05
2m DDPG 0.653 0.057 1,723.79 20.93 241
2m TD3 0.823 0.088 1,680.56 39.84 4.85
2m SAC 0.797 0.219 1,682.81 54.08 4.73
3m DDPG 0.541 0.050 1,750.00 10.66 0.92
3m TD3 0.685 0.126 1,711.08 20.66 3.13
3m SAC 0.748 0.132 1,739.91 64.67 1.49

50

Experimental Results

6.4 Online training phase analysis

For this analysis, it is important to remember that the percentage of steps with “bad
control” between 12% and 15% is partly structural. They disproportionately occur
around setpoint transitions, where a delay in temperature response is expected.
This delay also affects PID, which routinely accumulates a 12-15% bad-control rate
for the same reason. Therefore, we adopt the thresholds that bad control below
15% and good control with saving above 50% indicate a practically satisfactory
policy balancing comfort and energy.

The results of the online-only training, shown in Fig. 6.15 and Fig. 6.16, reveal
a clear learning curve across all algorithms. In the first month, performance is
markedly poor: thermal control is imprecise, energy usage is high, and most time
steps fall into inefficient quadrants, often accompanied by significant energy losses
compared to baseline PID.

From the second month onward a divergence emerges, the DDPG and TD3
agents begin to demonstrate more than 50% of their time steps in the “good control
with energy savings” quadrant, indicating more effective temperature regulation
and tangible energy savings relative to PID.

Analyzing the cumulative energy difference with respect to PID: all agents start
with negative energy savings (i.e., higher energy consumption). However, by month
2 for DDPG and TD3 and month 3 for SAC they start to exhibit positive net
savings.

In considering the practical implementation of such a controller, it is evident
that the training phase would require a period of at least two months, during which
a significant amount of energy and thermal discomfort would be incurred. This
observation renders the notion of a straightforward plug-and-play application of an
online algorithm rather implausible.

The findings represented in Fig. 6.17 and Fig. 6.18 demonstrate that the re-
sults for agents that have been trained offline with online fine-tuning differ from
those observed for agents that have been trained exclusively online. Following
a preliminary period in which effective regulation proved difficult and resulted
in considerable thermal discomfort, the different algorithms demonstrated con-
sistently superior performance throughout the subsequent week, with a steady
enhancement continuing until the final week. Following completion of the four-week
online training period, it was observed that DDPG and TD3 exhibited a mere 14%
occurrence of suboptimal controls. This is analogous to the PID, and is attributed
to the temporal requirement to attain the new setpoint subsequent to a setpoint
alteration.

A notable observation is that, in the second week, both TD3 and DDPG achieve
significant energy savings, approximately 125 kW and 198 kW respectively, despite
still issuing a considerable number of suboptimal control actions. However, this

51

Experimental Results

B Good Control, Saving (ldeal)

_ [N
Good Control, Waste

Month 1

B Bad Control, Waste (Worst)

Month 2

Month 3

Month 4

Month 5

Month 6

40% 60% 80% 100%

Percentage of Time (%)

0% 20%

Figure 6.15: Energy savings and control quality by month for the agents trained
online

-8,621 DDPG B Energy Saving (Gain)
Month 1 15,637 SAC mmm Energy Waste (Loss)
6,529 D03
DDPG 198
Month 2 5,784 SAC
TD3 125
DDPG 1,030
Month 3 SAC 3,355
TD3 276
DDPG 594
Month 4 SAC o
TD3 735|
DDPG 402|
Month 5 SAC 711
TD3 71
DDPG 428
Month 6 SAC ==
TD3 17
—10% -103 —-102 -10! 0 10! 102 103

Energy Saving (vs PID) [kw]

Figure 6.16: Monthly energy savings during online training

may not pose a practical concern in real-world deployments: in systems where
the RL controller is introduced during the final stages of construction, when the
building is still unoccupied, a three-week setup period to reach optimal performance
could be commercially acceptable.

This analysis, in general, corroborates the significance of offline pre-training in

52

Experimental Results

anticipation of real-life deployment.

B Good Control, Saving (ldeal)

D?—E(; i I N . oo Control, Waste
o3 i I L : ool Saving
_ B Bad Control, Waste (Worst)

PID

Week 1

DDPG
D3
Week 2 SAC

PID

DDPG
TD3
SAC

PID

Week 3

DDPG
TD3
SAC

PID

Week 4

0% 20% 40% 60% 80% 100%
Percentage of Time (%)

Figure 6.17: Energy savings and control quality by week for the agents pre-trained
offline

B Energy Saving (Gain)
Energy Waste (Loss) bDPG
Week 1
DDPG
Week 2 D3
SAC
DDPG 129
Week 3 TD3 69
81 SAC
DDPG
Week 4 D3
SAC
-102 -10! 0 10t 102

Energy Saving (vs PID) [kw]

Figure 6.18: Weekly energy savings during online fine-tuning

53

Chapter 7

Conclusions

The present chapter thus brings the study to a conclusion by offering a synthesis of
the key findings and a response to the initial research questions. Furthermore, the
concluding section of this study proposes several prospective future investigations
and enhancements.

7.1 Final conlusions

The present study has evaluated the potential of reinforcement learning technology
in the context of a HVAC controller, highlighting its feasibility with such a spe-
cific application. The challenge that must be overcome to facilitate the effective
implementation of a smart controller based on an RL algorithm in real-world sce-
narios is the significant potential for substantial energy wastage and the resulting
uninhabitable state of the building during the training phase of the agent.

The results of the evaluation test demonstrate that certain RL algorithms,
including DDPG and TD3, demonstrate enhanced proficiency in on-sight training,
resulting in a two-month training period following which the control group begins
to comprehend the dynamics of the environment. However, these results do not
align with the characteristics of a commercially available product. A product that
consumes energy to this extent over a period of two months is likely to have a
negative impact on the sales of the smart control.

The study demonstrated that training agents exclusively on historical data
yielded constrained outcomes. The agents were unable to enhance their policy
towards optimal behavior. Nevertheless, for algorithms such as TD3 and SAC, a
dataset of only one month and two months, respectively, is sufficient to achieve the
optimal result that an offline trained agent can attain in this environment. This is
advantageous in cases where data mining is challenging.

In general, DDPG and TD3 have been shown to be more conducive to online

o4

Conclusions

training, while the SAC algorithm performs better when training is carried out
offline.

As anticipated, optimal outcomes are achieved through the integration of offline
and online training methodologies. The two algorithms that are more suitable for
online training have been demonstrated to achieve favorable results after a minimal
training phase, with DDPG and TD3 requiring only two weeks. Simultaneously,
the SAC has corroborated the challenges it faces in terms of its capacity to direct
learning from the environment, which it perceives to be arduous and time-consuming.
Unlike their counterparts, which were exclusively trained online, both DDPG and
TD3 demonstrated a propensity to avoid energy expenditure throughout the
designated two-week training period. In the context of a commercial environment,
this capacity to conserve energy could be a significant advantage. It is important to
note that while agents may not exhibit optimal control during the training phase,
they will not incur financial losses compared to a PID control. As was stated during
the presentation of the results, such a training phase could be implemented during
the construction phase of the building, at a time when it is still unoccupied, so no
one experiences thermal discomfort.

Overall, RL agents have the ability to obtain a percentage reduction, between
2% and 5%, of energy consumption compared to the PID controller. This may
lead to the perception that the outcomes don’t worth the effort. However, it is
imperative to take into account the fact that this simulated environment provides
a highly elementary control system, with the PID controller already functioning in
an optimal way. The primary objective in the context of a real-world application
is to identify the most suitable application of RL technology, for example, a rule
based controller could find more difficulties controlling a more complex system
where is not known which control is optimal.

It has been demonstrated that RL control based on DDPG and TD3 trained
both offline and online has exhibited the potential of Al in the HVAC context, and
their capacity to learn optimal control strategies in short periods of time.

7.2 Future improvements

Although the results presented in this work are promising, there is still space for
further improvements and extensions. Several directions could be explored to
enhance the robustness and applicability of the study:

o Comparing additional algorithms with those presented in this work.
o Using real-world data to build the historical dataset.

 Including the cooling season in the training and testing phases.

59

Conclusions

e Developing more complex controllers, possibly by adding an additional control
variable and extending the action space.

56

Bibliography

1]
2]

L.T. Graham, T. Parkinson, and S. Schiavon. «Lessons learned from 20 years
of CBE’s occupant surveysy. In: Buildings and Cities (2021) (cit. on p. 1).

Luis Pérez-Lombard, José Ortiz, and Christine Pout. «A review on buildings
energy consumption informationy». In: Energy and Buildings 40.3 (2008),
pp. 394-398. 1SSN: 0378-7788 (cit. on p. 1).

Radu Godina, Eduardo M. G. Rodrigues, Edris Pouresmaeil, Joao C. O.
Matias, and Joao P. S. Catalao. «Model Predictive Control Home Energy
Management and Optimization Strategy with Demand Response». In: Applied
Sciences 8.3 (2018) (cit. on p. 1).

David Silver, Aja Huang, Chris J. Maddison, et al. «Mastering the game
of Go with deep neural networks and tree search». In: Nature 529 (2016),
pp. 484-489. 1SSN: 1476-4687 (cit. on p. 2).

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. «End-to-End
Training of Deep Visuomotor Policies». In: CoRR abs/1504.00702 (2015).
arXiv: 15604.00702. URL: http://arxiv.org/abs/1504.00702 (cit. on p. 2).

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,
John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning
to Drive in a Day. 2018. arXiv: 1807.00412 [cs.LG]. URL: https://arxiv.
org/abs/1807.00412 (cit. on p. 2).

Edward L. Thorndike. «The Law of Effect». In: The American Journal of
Psychology 39.1/4 (1927), pp. 212-222. 1sSN: 00029556. URL: http://www.
jstor.org/stable/1415413 (visited on 10/01/2024) (cit. on p. 4).

Ajith Abraham. «Artificial neural networksy». In: Handbook of measuring
system design (2005) (cit. on p. 8).

Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas
Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, and Daniel Pieter
Wierstra. Continuous control with deep reinforcement learning. US Patent
10,776,692. Sept. 2020 (cit. on p. 9).

57

https://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1807.00412
https://arxiv.org/abs/1807.00412
https://arxiv.org/abs/1807.00412
http://www.jstor.org/stable/1415413
http://www.jstor.org/stable/1415413

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[15]

[16]

[18]

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function
Approximation Error in Actor-Critic Methods. 2018. arXiv: 1802 . 09477
[cs.AI]. URL: https://arxiv.org/abs/1802.09477 (cit. on p. 11).

Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2019.
arXiv: 1812.05905 [cs.LG]. URL: https://arxiv.org/abs/1812.05905
(cit. on p. 14).

Takuma Seno and Michita Imai. d3rlpy: An Offline Deep Reinforcement
Learning Library. 2022. arXiv: 2111.03788 [cs.LG]. URL: https://arxiv.
org/abs/2111.03788 (cit. on p. 16).

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. «Stable-Baselines3: Reliable Reinforcement
Learning Implementations». In: Journal of Machine Learning Research 22.268
(2021), pp. 1-8. URL: http://jmlr.org/papers/v22/20-1364.html (cit. on

p. 16).

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016. arXiv:
1606.01540 [cs.LG]. URL: https://arxiv.org/abs/1606.01540 (cit. on
p. 16).

Paul Scharnhorst et al. «Energym: A Building Model Library for Controller
Benchmarkingy. In: Applied Sciences 11.8 (2021). 1sSN: 2076-3417. DOT1: 10.
3390/app11083518. URL: https://www.mdpi .com/2076-3417/11/8/3518
(cit. on p. 17).

Amirreza Heidari, Francois Marechal, and Dolaana Khovalyg. « An adaptive
control framework based on Reinforcement learning to balance energy, comfort
and hygiene in heat pump water heating systems». In: Journal of Physics:
Conference Series 2042.1 (Nov. 2021), p. 012006. DOI: 10.1088/1742-6596/
2042/1/012006. URL: https://dx.doi.org/10.1088/1742-6596/2042/1/
012006 (cit. on pp. 18, 22).

Tianshu Wei, Yanzhi Wang, and Qi Zhu. «Deep reinforcement learning for
building HVAC control». In: 2017 54th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC). 2017, pp. 1-6. DOIL: 10.1145/3061639 . 3062224
(cit. on pp. 18, 22).

Yuiko Sakuma and Hiroaki Nishi. « Airflow Direction Control of Air Condi-
tioners Using Deep Reinforcement Learningy. In: 2020 SICE International
Symposium on Control Systems (SICE ISCS). 2020, pp. 61-68. DOI: 10.
23919/SICEISCS48470.2020.9083565 (cit. on pp. 18, 22).

58

https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2111.03788
https://arxiv.org/abs/2111.03788
https://arxiv.org/abs/2111.03788
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.3390/app11083518
https://doi.org/10.3390/app11083518
https://www.mdpi.com/2076-3417/11/8/3518
https://doi.org/10.1088/1742-6596/2042/1/012006
https://doi.org/10.1088/1742-6596/2042/1/012006
https://dx.doi.org/10.1088/1742-6596/2042/1/012006
https://dx.doi.org/10.1088/1742-6596/2042/1/012006
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.23919/SICEISCS48470.2020.9083565
https://doi.org/10.23919/SICEISCS48470.2020.9083565

BIBLIOGRAPHY

[19]

[22]

23]

[24]

[25]

Zhiang Zhang and Khee Lam. «Practical Implementation and Evaluation of
Deep Reinforcement Learning Control for a Radiant Heating System». In:
2018 ACM BuildSys. Nov. 2018. DOI: 10.1145/3276774.3276775 (cit. on
pp. 18, 22).

Clement Lork, Wen-Tai Li, Yan Qin, Yuren Zhou, Chau Yuen, Wayes Tushar,
and Tapan Saha. « An uncertainty-aware deep reinforcement learning frame-
work for residential air conditioning energy management». In: Applied Energy
276 (July 2020). por: 10.1016/j . apenergy.2020.115426 (cit. on pp. 19,
22).

Evan McKee, Yan Du, Fangxing Li, Jeffrey Munk, Travis Johnston, Kuldeep
Kurte, Olivera Kotevska, Kadir Amasyali, and Helia Zandi. «Deep Rein-
forcement Learning for Residential HVAC Control with Consideration of
Human Occupancy». In: 2020 IEEE Power & Energy Society General Meet-
ing (PESGM). 2020, pp. 1-5. DOI: 10.1109/PESGM41954 . 2020 . 9281893
(cit. on pp. 19, 22).

Anders Overgaard, Brian Kongsgaard Nielsen, Carsten Skovmose Kallesge,
and Jan Dimon Bendtsen. «Reinforcement Learning for Mixing Loop Control
with Flow Variable Eligibility Trace». In: 2019 IEEE Conference on Control
Technology and Applications (CCTA). 2019, pp. 1043-1048. por1: 10.1109/
CCTA.2019.8920398 (cit. on pp. 19, 22).

Francesco M. Solinas, Andrea Bellagarda, Enrico Macii, Edoardo Patti, and
Lorenzo Bottaccioli. « An Hybrid Model-Free Reinforcement Learning Ap-
proach for HVAC Control». In: 2021 IEEE International Conference on
Environment and Electrical Engineering and 2021 IEEE Industrial and Com-
mercial Power Systems Europe (EEEIC / I&CPS Europe). 2021, pp. 1-6. DOT:
10.1109/EEEIC/ICPSEurope51590.2021.9584805 (cit. on pp. 19, 22).

Kuan-Heng Yu, Yi-An Chen, Emanuel Jaimes, Wu-Chieh Wu, Kuo-Kai Liao,
Jen-Chung Liao, Kuang-Chin Lu, Wen-Jenn Sheu, and Chi-Chuan Wang.
«Optimization of thermal comfort, indoor quality, and energy-saving in campus
classroom through deep Q learningy». In: Case Studies in Thermal Engineering
24 (Jan. 2021), p. 100842. DOI: 10.1016/j.csite.2021.100842 (cit. on
pp. 19, 22).

Hussain Kazmi, Fahad Mehmood, Stefan Lodeweyckx, and Johan Driesen.
«Gigawatt-hour Scale Savings on a Budget of Zero: Deep Reinforcement
Learning based Optimal Control of Hot Water Systems». In: Energy 144 (Dec.
2017). pOI: 10.1016/j.energy.2017.12.019 (cit. on pp. 19, 22).

59

https://doi.org/10.1145/3276774.3276775
https://doi.org/10.1016/j.apenergy.2020.115426
https://doi.org/10.1109/PESGM41954.2020.9281893
https://doi.org/10.1109/CCTA.2019.8920398
https://doi.org/10.1109/CCTA.2019.8920398
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584805
https://doi.org/10.1016/j.csite.2021.100842
https://doi.org/10.1016/j.energy.2017.12.019

BIBLIOGRAPHY

[26]

28]

[29]

[30]

[31]

32]

[33]

Thijs Peirelinck, Chris Hermans, Fred Spiessens, and Geert Deconinck. «Do-
main Randomization for Demand Response of an Electric Water Heatery.
In: IEEE Transactions on Smart Grid 12.2 (2021), pp. 1370-1379. por:
10.1109/TSG.2020.3024656 (cit. on pp. 19, 22).

Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio
Liotta, Michael E. Webber, Madeleine Gibescu, and J. G. Slootweg. «On-
Line Building Energy Optimization Using Deep Reinforcement Learning».
In: IEEE Transactions on Smart Grid 10.4 (2019), pp. 3698-3708. DOLI:
10.1109/TSG.2018.2834219 (cit. on pp. 20, 23).

Guanyu Gao, Jie Li, and Yonggang Wen. «DeepComfort: Energy-Efficient
Thermal Comfort Control in Buildings Via Reinforcement Learning». In:
IEEE Internet of Things Journal 7.9 (2020), pp. 8472-8484. por: 10.1109/
JI0T.2020.2992117 (cit. on pp. 20, 23).

Wanlin Bo, Xinli Wang, Gang Jing, Haojin Xu, and Lei Jia. «Comfort and
energy management of multi-zone HVAC system based on Multi-Agent Deep
Reinforcement Learning». In: 2023 IEEE 18th Conference on Industrial
FElectronics and Applications (ICIEA). 2023, pp. 1641-1646. pOI: 10.1109/
ICIEAS8696.2023.10241916 (Cit. on pp. 20, 23).

Chenhui Fu and Yunhua Zhang. «Research and Application of Predictive
Control Method Based on Deep Reinforcement Learning for HVAC Systemsy.
In: IEEE Access 9 (2021), pp. 130845-130852. DOI: 10.1109/ACCESS.2021.
3114161 (cit. on pp. 20, 23).

Alberto Silvestri, Davide Coraci, Silvio Brandi, Alfonso Capozzoli, Esther
Borkowski, Johannes Kohler, Duan Wu, Melanie N. Zeilinger, and Arno
Schlueter. «Real building implementation of a deep reinforcement learning
controller to enhance energy efficiency and indoor temperature control».
In: Applied Energy 368 (2024), p. 123447. 1sSN: 0306-2619. DOI: https :
//doi.org/10.1016/ j . apenergy . 2024 . 123447. URL: https://www.
sciencedirect.com/science/article/pii/S0306261924008304 (cit. on
pp. 20, 23).

Simon Schmitz, Karoline Brucke, Pranay Kasturi, Esmail Ansari, and Peter
Klement. «Reinforcement Learning for Residential Heat Pump Operationy». In:
URL: https://api.semanticscholar.org/CorpusID: 270561374 (cit. on
pp. 20, 23).

Parastoo Delgoshaei, Amanda Pertzborn, and Mohammad Heidarinejad. «Re-

inforcement Learning for Building Management Systemsy. In: (2021) (cit. on
pp. 20, 23).

60

https://doi.org/10.1109/TSG.2020.3024656
https://doi.org/10.1109/TSG.2018.2834219
https://doi.org/10.1109/JIOT.2020.2992117
https://doi.org/10.1109/JIOT.2020.2992117
https://doi.org/10.1109/ICIEA58696.2023.10241916
https://doi.org/10.1109/ICIEA58696.2023.10241916
https://doi.org/10.1109/ACCESS.2021.3114161
https://doi.org/10.1109/ACCESS.2021.3114161
https://doi.org/https://doi.org/10.1016/j.apenergy.2024.123447
https://doi.org/https://doi.org/10.1016/j.apenergy.2024.123447
https://www.sciencedirect.com/science/article/pii/S0306261924008304
https://www.sciencedirect.com/science/article/pii/S0306261924008304
https://api.semanticscholar.org/CorpusID:270561374

BIBLIOGRAPHY

[34]

[35]

[36]

Liang Yu, Weiwei Xie, Di Xie, Yulong Zou, Dengyin Zhang, Zhixin Sun,
Linghua Zhang, Yue Zhang, and Tao Jiang. «Deep Reinforcement Learning
for Smart Home Energy Management». In: IEEE Internet of Things Journal
7.4 (2020), pp. 2751-2762. DOL: 10.1109/JI0T.2019.2957289 (cit. on pp. 21,
23).

Mark J Willis. «Proportional-integral-derivative controly». In: Dept. of Chem-
ical and Process Engineering University of Newcastle 6 (1999) (cit. on p. 28).

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. «Optuna: A Next-generation Hyperparameter Optimization Frame-
worky. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2019 (cit. on p. 30).

61

https://doi.org/10.1109/JIOT.2019.2957289

	List of Tables
	List of Figures
	List of Listing
	List of Acronyms
	Introduction
	Enabling Technologies
	Reinforcement learning
	Model-free vs model-based
	Policy-based vs value-based
	Online vs offline

	Deep Reinforcement Learning
	DDPG
	TD3
	SAC

	d3rlpy
	OpenAI Gym
	Energym

	Literature Review
	Methodology
	Problem definition
	Simulation environment
	PID
	Offline training dataset
	MDP formulation
	Action space
	State space
	Reward function

	Experimental Setup
	Algorithms hyperparameters
	Hyperparameter optimization with Optuna
	Selected hyperparameters

	Training methods
	Online training
	Offline training
	Offline with online fine-tuning

	Online training phase analysis

	Experimental Results
	Online
	Offline
	Offline with online fine-tuning
	Online training phase analysis

	Conclusions
	Final conlusions
	Future improvements

	Bibliography

