
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

5G Edge Offloading for Drone Swarms

Supervisors

Prof. Fulvio RISSO

Ing. Jacopo MARINO

MSc. Daniele CACCIABUE

Candidate

Sasha ALGISI

July 2025

Summary

Over the past few years, we have experienced a significant evolution in cloud
technologies and paradigms, such as the "Edge Computing" model, which allows to
deliver quick responses by offering services at the network’s edge, thus significantly
reducing the latency in favor of responsiveness. In order to find a solution that
could efficiently leverage the computational capability present at the network’s edge,
the “Flexible, scaLable, secUre, and decentralIseD Operating System” (FLUIDOS)
European project has been proposed, which has as its main goal the creation
of a seamless computing continuum that can be used to integrate heterogeneous
devices, thus creating a single virtual cluster between the IoT devices, such as
drones, and the network’s edge. This work aims at enhancing FLUIDOS capabilities
by providing the appropriate support for ensuring seamless operations even in
fluctuating network conditions, like in 5G networks, through the “Distributed
Edge Analytics Service” (DEAS) open call. The thesis will discuss the design and
implementation of the solution required to achieve an autonomous, adaptive, and
efficient workload distribution that allows to dynamically offload tasks between
drones and the edge by using the quality of the 5G channel as a decision criterion,
thus ensuring a responsive computing continuum. As a conclusion, the thesis will
evaluate the performance of the proposed solution and will discuss the possible
future directions of the project.

ii

Acknowledgements

“Ai miei genitori, per avermi sempre sostenuto nella vita davanti alle difficoltà.”

iii

Table of Contents

List of Figures viii

Acronyms x

1 Introduction 1
1.1 The importance of a responsive computing continuum 2
1.2 Goal of the thesis . 2
1.3 Thesis structure . 3

2 Edge Computing 5
2.1 The need of an edge computing model 5
2.2 State of the art . 7

2.2.1 FogROS . 7
2.2.2 Further optimizations . 7

3 Kubernetes 9
3.1 Kubernetes history . 9
3.2 Kubernetes architecture . 9

3.2.1 Control plane components 10
3.2.2 Node components . 12

3.3 Kubernetes objects . 13
3.3.1 Common concepts . 13
3.3.2 Operations on objects . 14
3.3.3 Pod . 14
3.3.4 Namespace . 14
3.3.5 ReplicaSet . 14
3.3.6 Deployment . 15
3.3.7 Service . 15

3.4 Kubernetes scheduling concepts . 16
3.4.1 Taints and Tolerations . 16
3.4.2 Affinity and Anti-Affinity . 17

v

3.4.3 Kubernetes Descheduler . 17
3.5 Prometheus . 18

3.5.1 Prometheus architecture . 18
3.5.2 Prometheus metrics . 20
3.5.3 Discovering Kubernetes targets with Prometheus 20

4 Liqo 22
4.1 Liqo: motivations . 22
4.2 Liqo main concepts . 22

4.2.1 Liqo peering . 23
4.2.2 Liqo offloading . 24

5 FLUIDOS 26
5.1 FLUIDOS: introduction . 26
5.2 FLUIDOS: a transparent computing continuum 27

5.2.1 FLUIDOS Node . 27
5.2.2 Discovery of new Nodes . 27

5.3 DEAS . 28
5.3.1 Addressing fluctuating network conditions 28
5.3.2 Channel quality representation 29

6 Edge offloading for drone swarming scenarios 30
6.1 Score management and task offloading 30
6.2 System design and functioning . 31

6.2.1 Architecture of the system 31
6.2.2 Technical design choices . 34

6.3 Possible design solutions for the offloading process 35
6.3.1 First solution . 35
6.3.2 Second solution . 35
6.3.3 Confronting the two solutions 37

6.4 Exporting the channel score to Prometheus 39
6.4.1 Interacting with the external metrics server 39
6.4.2 Collecting the metrics for Prometheus 39
6.4.3 Executing the HTTP calls to the endpoints 41
6.4.4 Possible alternative to the channel score: the 5G signal strength 43

6.5 Discovery of new clusters . 43
6.5.1 Explaining the Discovery Agent logic 44
6.5.2 Implementing the discovery process 44

6.6 Offloading the workload between multiple clusters 46
6.6.1 Arbiter logic . 46
6.6.2 Outer control loop . 47

vi

6.6.3 Executing the PromQL query to Prometheus 47
6.6.4 Performing the offloading operation 47

7 Experimental evaluations 50
7.1 Setup of the test environment . 50
7.2 Simulating a workload offloading scenario 51

7.2.1 Performing a remote offloading 51
7.2.2 Performing a local offloading 52

7.3 Comparing the offloading operations: local and remote 53
7.4 Comparing the Arbiter reaction time: 5G signal strength and channel

score . 54

8 Conclusions 57
8.1 Future directions . 58

A Listings 59

Bibliography 65

vii

List of Figures

1.1 Different layers in a computing continuum scenario [1] 4

2.1 Typical edge computing architecture 6

3.1 Kubernetes architecture [12] . 10
3.2 Prometheus architecture [18] . 18

4.1 Namespace offloading in Liqo [24] 25

5.1 DEAS offloading logic . 29

6.1 Example of score evolution over time 32
6.2 System architecture diagram . 33
6.3 Bad score case example . 33
6.4 Good score case example . 34
6.5 First solution architecture diagram 36
6.6 Second solution architecture diagram 37
6.7 System architecture where the 5G signal strength is used 43
6.8 Flowchart representing the Arbiter logic 49

7.1 Testing environment . 51
7.2 Task executing on the local cluster 52
7.3 Task executing on the remote cluster 52
7.4 Task executing again on the local cluster 53
7.5 Time required by both of the offloading operations 54
7.6 Arbiter reaction time . 56

viii

Acronyms

FLUIDOS
Flexible, scaLable, secUre, and decentralIseD Operating System

REAR
REsource Advertisement and Reservation

DEAS
Distributed Edge Analytics Service

K8s
Kubernetes

ROS
Robot Operating System

VM
Virtual Machine

MEC
Mobile Edge Cloud

CNCF
Cloud Native Computing Foundation

UE
User Equipment

CNR
Consiglio Nazionale delle Ricerche

x

Chapter 1

Introduction

Nowadays, Cloud Computing has become one of the most important technologies
in our society due to its great capability of delivering multiple services like storage,
infrastructures and software products to companies and final users through the
internet by offering, at the same time, benefits in terms of scalability, flexibility,
reduced costs, security and many others. This paradigm has some limitations
though, like for example the fact that the data centers that are typically employed
for cloud services are centralized entities, distant from the users; this can lead
to several problems as increased latency and lower bandwidth, especially for IoT
devices, which typically execute real-time tasks that require great responsiveness.
For this reason, the Edge Computing model has been introduced, which is a
paradigm that has as its main goal the delivering of quick responses by offering
services at the network’s edge through the addition of multiple smaller data centers
located near the users instead of just relying on a bigger (and distant) data center,
this allows to significantly reduce the latency, as now services are also offered near
the users, by increasing the available bandwidth and the overall responsiveness.
There is one problem though, which is the fact that now the architecture is far more
complex than it was before, as we have multiple layers to consider now (Figure
1.1), furthermore, it is worth mentioning that these layers are formed by devices
with different hardware running different operating systems and with different
purposes, this complicates the scenario even more; for this reason, the Computing
continuum paradigm has been conceived.

1

Introduction

1.1 The importance of a responsive computing
continuum

The Computing continuum is the paradigm that integrates, organizes and considers
the computing and network resources across different infrastructures (endpoint
devices, edge nodes, cloud data centers, and the networks connecting them) for
deploying workloads, instead of relying on a specific infrastructure [1]. As already
mentioned, this paradigm becomes particularly relevant when considering the fact
that the infrastructure’s layers are composed by heterogeneous devices, hence, in
traditional scenarios, resources’ allocation and management can be challenging.
The Computing continuum allows to consider all these different layers as a single
entity, where computational tasks can be deployed without paying particular
attention to the diversities of the devices or where the tasks are executed, this can
eventually lead to a better utilization of the resources inside the system by creating
a dynamic and fluid environment. The biggest challenge in the realization of what
has been previously discussed is the dynamicity of the network, as the quality of
the channels can change over time in an unpredictable way, an example of this
are wireless networks, which are more prone to this eventuality; this problematic
further emphasizes the importance of making the existing Computing continuum
responsive to the network conditions, so that computational tasks can be optimally
allocated between different layers by considering as an additional decision criterion
the eventual changes in the channels’ quality, thus making sure that the workload
is dynamically offloaded from one layer to the other without any service disruption.

1.2 Goal of the thesis
The goal of this thesis is to create an infrastructure capable of ensuring seamless
operations in scenarios where tasks are periodically offloaded between different
layers, even during fluctuating network conditions. This work will mainly focus on
developing a solution that can dynamically offload the workload of IoT devices (such
as drones) between them and the network’s edge in 5G networks, depending on the
network’s quality; this will make sure that the system’s computational resources
usage is always kept optimal, as this allows to lighten the drones’ workload when
the conditions are met, by creating a responsive computing continuum. The first
step is to conceive a valid strategy that allows the system to understand whether
its the case to execute the workload on the drones or on the network’s edge by
discussing the advantages and disadvantages of said strategy, the next step is
to design the required architecture needed to reach this goal by also analyzing
various solutions for the implementation of the offloading process. The last step
is to evaluate the obtained performance by comparing it with possible alternative

2

Introduction

strategies; the validity of the solution will take into account characteristics like
efficiency, adaptability, absence of manual interventions and time cost.

1.3 Thesis structure
1. Chapter 2: This chapter introduces the edge computing paradigm by dis-

cussing its current state of the art.

2. Chapter 3: This chapter explains what Kubernetes is and its main concepts.

3. Chapter 4: This chapter introduces Liqo and how it can help the creation of
dynamic and seamless Kubernetes multi-cluster topologies.

4. Chapter 5: This chapter provides an introduction to the FLUIDOS project
and its goals.

5. Chapter 6: This chapter shows the implementation of an autonomous and
adaptive solution that allows to dynamically offload the workload from one
cluster to the other, even in fluctuating network conditions.

6. Chapter 7: This chapter shows how the system behaves in a real scenario
and its performances.

7. Chapter 8: This chapter concludes the thesis by discussing the obtained
results and its possible future directions.

3

Introduction

Figure 1.1: Different layers in a computing continuum scenario [1]

4

Chapter 2

Edge Computing

This chapter will present a more in-depth overview about the edge computing
paradigm by explaining why it matters and its main benefits. As a conclusion, it
will analyze the paradigm’s current state of the art by discussing some of the most
relevant works regarding this subject.

2.1 The need of an edge computing model
As already explained in Chapter 1, the edge computing paradigm represents an
extension to the cloud computing technology that allows to deliver services at
the network’s edge, hence near the final users; this is mainly done by deploying
additional smaller data centers near them, so that requests may be served quicker
(Figure 2.1). This approach is particularly relevant for real-time applications, which
are the ones that are typically executed on IoT devices, as the smaller latency
allows to achieve an increased responsiveness for said applications. There are
several benefits that the introduction of this paradigm offers, let us discuss some of
the most important ones:

• Reduced latency: the services are now located at the network’s edge, thus
quicker responses are guaranteed by making sure to place the data processing
closer to where this data is generated.

• Increased Bandwidth: considering that now user devices can make requests
to the nearest data center instead of having all of them visiting the remote
one, the available bandwidth will be greater due to fact that less devices will
make requests to the same servers.

• Increased security: by keeping users’ sensitive information closer to devices
instead of transmitting them to the main data center by passing through the
network multiple times, an improved level of security can be achieved.

5

Edge Computing

• Increased scalability: due to the fact that now there are multiple smaller
data centers available to serve requests from users, now more devices can be
served without increasing the overall congestion.

Figure 2.1: Typical edge computing architecture

Of course, the introduction of this idea will inevitably create additional challenges,
as now tasks are geographically distributed between different locations, thus the
overall management is more complex; furthermore it should be considered that
its not simple to effectively understand where these tasks should be placed in
order to obtain the best performance possible, in fact, for example, some of these
smaller data centers’ computational resources could be already used for other tasks,
therefore adding even more workload would overload them. Another important
aspect to consider is that the network itself is unpredictable, thus communications
between different locations could be difficult, especially when we consider fluctuating
network conditions (as for example in 5G networks). The next section will present
some relevant works in the field that tried to propose different solutions and
strategies for the creation of an efficient edge computing infrastructure that could
reach the required level of performance by avoiding, at the same time, some of the
aforementioned problems.

6

Edge Computing

2.2 State of the art
When we consider edge computing, it is important to note that real-time applications
are the ones that can benefit the most from this paradigm, as reduced latencies can
be achieved most of the times for edge devices running said applications. There
is a problem though, which is the fact that the implementation of a system that
can satisfy the latency requirements of these applications can be very challenging,
an example of this are robots, as they often execute time-constrained tasks that
require an optimal level of performance.

2.2.1 FogROS
Some of the aforementioned problems have been addressed by Chen et al. [2]
through the introduction of FogROS, a framework that acts as an extension to
the "Robot Operating System" (ROS); this tool allows to deploy robot software
components to the cloud with minimal effort, hence additional computing resources
like CPU cores, GPUs, FPGAs, or TPUs can be obtained in order to improve the
overall performance, this is particularly relevant for real-time tasks that require
minimal latency. Ichnowski et al. [3] later presented FogROS2 for ROS2, which
increases even more performance, security and automation capabilities compared
to FogROS by enabling cloud and fog computing integration for robots in a simple
way; furthermore it uses VMs instead of K8s (which is more complex). Chen et al.
[4] expanded FogROS2’s capabilities by introducing FogROS2-SGC, an extension
of the former that allows to connect robots that are geographically distant between
them securely without any code modification; this was not possible before, as
FogROS2 originally assumed that all the robots were locally connected.

2.2.2 Further optimizations
Other works, like Chebaane et al. [5], addressed the problem of offloading time-
critical application tasks, as live migration is an important process that has to be
kept efficient; specifically, this research proposed a solution that allows to offload
these tasks from the application initiator to surrounding Fog nodes by using Docker
containers and Checkpointing, thus allowing to restrict the offloading to only
necessary steps in only two message rounds. Some researches tried to implement
innovative strategies that could improve the performance by minimizing the typical
problems that are often present during network transmissions, like Anand et al.
[6], where, in order to overcome some limitations of serverless computing, such
as communication and bandwidth issues, an algorithm that uses different work-
sharing techniques has been presented, one that allows to achieve cost and
execution time optimizations. One of the biggest challenges for latency-sensitive

7

Edge Computing

applications is user mobility, as this may cause several service interruptions for said
applications; this problem has been addressed by Doan et al. [7] by introducing a
framework that aims at separating MEC applications into two different components,
which are the processing and the state management ones. This can be done by
using a distributed key-value store that can ensure seamless service continuity
by enabling state synchronization across MEC servers, hence reducing downtime
by half in most of the cases. Similarly, Machen et al. [8] addressed the challenge
of minimizing service downtime and migration time for MEC applications by
developing a layered framework that can break down these applications into
multiple layers, the main advantage is that only missing layers have to be transferred
to other locations; furthermore, this framework is applicable to both VMs and
containers. This thesis differentiates itself from other researches by developing a
solution that mainly focuses on using the network’s quality in order to understand
the best placement for running tasks (Section 1.2), as this allows to optimize the
overall energy consumption of IoT devices by offloading their workload to the edge
when the appropriate network conditions are met.

8

Chapter 3

Kubernetes

This chapter will present Kubernetes by discussing its origins, architecture and
some of its most relevant scheduling concepts, which are the foundations that allow
to understand the implementation process of this work. In conclusion, Prometheus
will be introduced by explaining its purpose and advantages.

3.1 Kubernetes history
Originally, Google created the Borg system around 2003-2004, which was a large-
scale internal cluster management system that “ran hundreds of thousands of jobs,
from many thousands of different applications, across many clusters, each with up to
tens of thousands of machines” [9]. On June 6, 2014 Google presented Kubernetes
as on open-source version of Borg; it was created by Joe Beda, Brendan Burns,
and Craig McLuckie, and other engineers at Google. As one could imagine, its
development and design were heavily influenced by Borg, additionally many of its
top contributors had previously worked on Borg itself. One of the most notable
differences between Kubernetes and its predecessor is the fact that while the latter
was written in C++, the former has been written by using the Go language. On
July 21, 2015 Kubernetes 1.0 was released, furthermore Google formed alongside
the Linux Foundation the "Cloud Native Computing Foundation" (CNCF)
[10], this eventually led to the adoption of Kubernetes by nearly every big company,
thus becoming the de-facto standard for container orchestration [11].

3.2 Kubernetes architecture
A Kubernetes cluster (Figure 3.1) consists of a control plane plus a set of worker
machines, called nodes, that run containerized applications. Every cluster needs
at least one worker node in order to run Pods. The worker node(s) host the Pods

9

Kubernetes

that are the components of the application workload. The control plane manages
the worker nodes and the Pods in the cluster. In production environments, the
control plane usually runs across multiple computers and a cluster usually runs
multiple nodes, providing fault-tolerance and high availability.

Node 1 Node 2

kube-scheduler kube-controller-manager

CLOUD PROVIDER API

CRI CRI

CONTROL PLANE

CLUSTER

etcd kube-api-server

scheduler controller manager

cloud-controller-manager

kubelet kube-proxy kubelet kube-proxy

pod pod

pod

pod

Figure 3.1: Kubernetes architecture [12]

3.2.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (like starting up
a new Pod). Even though control plane components can be run on any machine
in the cluster, for the sake of simplicity, setup scripts typically start all of these
components on the same machine, which is not the same one where user containers
run.

kube-api-server

The API server is a component of the Kubernetes control plane that exposes the
Kubernetes API, it also serves as the front end for the Kubernetes control plane
itself, as it is the one that receives incoming REST requests. kube-api-server is
designed to scale horizontally, this means that it scales by deploying more instances,

10

Kubernetes

furthermore, several instances of this component can be created in order to balance
traffic between them.

etcd

etcd is a consistent, distributed and highly-available key-value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm, where, if there are several nodes, a leader node is selected through a
vote; this leader will hold all the key-value pairs. After this is done, whenever a new
request is made to any node, it will be forwarded to the leader, which will handle
said request, make the changes in the key-value pair and inform the follower nodes;
these other nodes will make the corresponding changes to match the leader node.
As long as the majority of the nodes in the system are functional, a new leader
can always be elected, thus guaranteeing service continuity in case of breakdowns.
kube-api-server is the only component that can interact with etcd.

kube-scheduler

kube-scheduler is the control plane component that watches for newly created
Pods with no assigned node, and selects a node for them to run on. The main
factors taken into account for scheduling decisions include: individual and collective
resource requirements, hardware/software/policy constraints, affinity and anti-
affinity specifications, data locality, inter-workload interference, and deadlines.

kube-controller-manager

Component that runs controller processes. It is a daemon that acts as a continuous
control loop by comparing the desired state of the cluster, derived from the objects
specifications, with the current one, which is read from etcd. Even though, from a
logical point of view, each controller is a separate process, they are all compiled
into a single binary and run in a single process, this is done in order to reduce
complexity. Some of these controllers are:

• Node controller: responsible for noticing and responding when nodes go
down.

• Job controller: watches for Job objects that represent one-off tasks, then
creates Pods to run those tasks to completion.

• EndpointSlice controller: populates EndpointSlice objects (to provide a
link between Services and Pods).

• ServiceAccount controller: create default ServiceAccounts for new names-
paces.

11

Kubernetes

cloud-controller-manager

cloud-controller-manager runs controllers that are specific to the underlying
cloud providers. In order to separate out the components that interact with other
cloud platforms from components that only interact with the local cluster, it can
link the former into the cloud provider’s API; this will make sure that the cloud
vendor’s code and the Kubernetes code can evolve independently, as, originally, the
Kubernetes code was depended on cloud-provider-specific code for its functionalities.
Similarly to kube-controller-manager, this component combines several logically
independent control loops into a single binary that you run as a single process.
Some controllers that can have cloud provider dependencies are:

• Node controller: checks the cloud provider to determine if a node has been
deleted in the cloud after it stops responding.

• Route controller: responsible of setting up network routes in the underlying
cloud infrastructure.

• Service controller: for creating, updating and deleting cloud provider load
balancers.

3.2.2 Node components
Node components run on every node, maintaining running Pods and providing the
Kubernetes runtime environment.

kubelet

An agent that runs on each node in the cluster, its purpose is to make sure that
containers are running in a Pod. kubelet takes a set of PodSpecs from the API
server and ensures that the containers described in these specifications are running
and healthy.

kube-proxy

kube-proxy is a network proxy that runs on each node in the cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to running Pods from network sessions inside or
outside the cluster.

Container runtime

This is the component responsible for managing the execution and life-cycle of
containers within the Kubernetes environment. Some examples of container

12

Kubernetes

runtime are containerd, CRI-O, Docker and any other implementation of the
Kubernetes CRI (Container Runtime Interface).

3.3 Kubernetes objects
Kubernetes objects are persistent entities in the Kubernetes system, they are used
to represent the state of the cluster. This section will provide the most important
information regarding Kubernetes objects by presenting, at the same time, some of
the resources that are typically used inside a Kubernetes cluster.

3.3.1 Common concepts
There are several pieces of information that are common to all the Kubernetes
objects, they are:

• apiVersion: specifies the API version used to create the object.

• kind: defines the resource that this object represents.

• metadata: used to provide several information regarding the object, like for
example name, namespace, labels and others.

• spec: describes the desired state of the object, this information is provided
by the user.

• status: describes the actual state of the object, this information is provided
by the server.

When creating one of these objects, the user must fill in the spec field that
describes the desired state, furthermore additional basic information about the
object (such as a name) can be provided in the metadata field. The object, most
of the times, is described by a file known as "manifest", which is where all of its
information is located. By convention, manifests are written in YAML format, but it
is possible to specify them in JSON format as well. Tools such as kubectl convert
the information from a manifest into JSON or another supported serialization
format when making the API request over HTTP [13]. Whenever a new object is
created, the Kubernetes control plane will continue to monitor its actual state, so
that it matches the desired state specified by the user. Another important concept
is the fact that it is possible to organize and mark a subset of objects, this can
be done by using Labels, which are key-value pairs that can be attached to the
objects, and Selectors, which are primitives that allow to select a set of objects
with the same label.

13

Kubernetes

3.3.2 Operations on objects
Kubernetes allows to perform different types of actions on its objects:

• Create: it creates the desired resource.

• Read: there are several variants of this operation:

– Get: allows to retrieve a specific object by its name.
– List: allows to retrieve a list of objects of the same type inside a namespace,

additional constraints regarding the selection process can be specified
through a selector query.

– Watch: allows to track the stream of changes made to the object.

• Update: there are several variants of this operation:

– Patch: changes a specific field of the object.
– Replace: replaces the current spec with a new one.

• Delete: it allows to delete a specific resource.

3.3.3 Pod
Pods are are the smallest deployable units of computing that you can create and
manage in Kubernetes, it is a collection of one or more relatively tightly coupled
containers that share the same network and storage. Pods are ephemeral and have
no auto-repair capacities, this is the reason why users never create individual Pods
directly in Kubernetes, in fact they are usually managed by a controller.

3.3.4 Namespace
Namespaces provide a mechanism for isolating groups of resources within a single
cluster, in fact they act as a sort of logical partition. They cannot be nested inside
one another and each Kubernetes resource can only be in one namespace, as a
consequence, even though names of resources need to be unique within a namespace,
they can share the same name across different namespaces.

3.3.5 ReplicaSet
These are objects that allow to control a set of replica Pods running at the same
time. If one of the Pods in this set is deleted, the ReplicaSet will notice that the
current number of replicas is different from the desired one, as a consequence a
new Pod is created to replace the deleted one. Usually ReplicaSets are not used
directly, they are managed through higher-level objects called Deployments.

14

Kubernetes

3.3.6 Deployment
Deployments manage the creation, update and deletion of Pods by creating a
ReplicaSet at a lower level that will manage the desired number of Pods according to
the logic specified in Subsection 3.3.5. An example of Deployment can be viewed by
looking at Listing 3.1: this manifest creates a Deployment called nginx-deployment
labeled as app:nginx. It specifies that three replicated Pods have to be created
and managed, furthermore, the selector field specifies that this Deployment will
manage Pods with label app:nginx. The template field is used to summarize the
information of the created Pods, in fact, as it can be seen, they are labeled as app:
nginx and will launch one container running the nginx:1.14.2 image on port 80.

1 ap iVers ion : a p p s / v1
2 kind : D e p l o y m e n t
3 metadata :
4 name: n g i n x −d e p l o y m e n t
5 l a b e l s :
6 app: n g i n x
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app: n g i n x
12 template :
13 metadata :
14 l a b e l s :
15 app: n g i n x
16 spec :
17 c o n t a i n e r s :
18 - name: n g i n x
19 image : n g i n x : 1 . 1 4 . 2
20 p o r t s :
21 - co nta ine rPo rt : 80

Listing 3.1: Example of Kubernetes Deployment [14]

3.3.7 Service
Services are resources used to expose network applications running as one or more
Pods inside the cluster. There are several types of services, each with its own

15

Kubernetes

purpose depending on the situation:

• ClusterIP: this is the default type of Service, it is accessible only from within
the cluster.

• NodePort: it exposes the Service on a static port of each Node’s IP, this
means that it can be accessed from outside the cluster.

• LoadBalancer: it exposes the Service externally using an external load
balancer, like the cloud provider’s load balancer.

• ExternalName: it references to an external DNS address instead of only
Pods, this will allow local applications to reference external services.

An example of Service (ClusterIP) can be viewed by looking at Listing 3.2: it is
named my-service, its purpose is to redirect requests coming from TCP port 80
to port 9376 of any Pod labeled as app.kubernetes.io/name:MyApp.

1 ap iVers ion : v1
2 kind : S e r v i c e
3 metadata :
4 name: my− s e r v i c e
5 spec :
6 s e l e c t o r :
7 app . kubernetes . i o /name: MyApp
8 p o r t s :
9 - p r o t o c o l : TCP

10 port : 80
11 t a r g e t P o r t : 9 3 7 6

Listing 3.2: Example of Kubernetes Service [15]

3.4 Kubernetes scheduling concepts
There are different instruments and mechanisms that Kubernetes uses to deal with
the scheduling problem, each one of them with their advantages and disadvantages.
Let’s introduce some of the most important ones:

3.4.1 Taints and Tolerations
They are properties, of a node and a Pod respectively, that can be used to ensure
that Pods are not scheduled onto inappropriate nodes. One or more taints are

16

Kubernetes

applied to a node, this marks that the node should not accept any Pods that do
not tolerate (don’t match) the taints, this is one of the most important advantages,
as only specific Pods can be selected to run on a tainted node, thus excluding
the others and ensuring a fine-grained approach for the scheduling problem inside
clusters. One disadvantage is the risk of “over-tainting” nodes inside the cluster,
as this can lead to scheduling issues and inefficiencies if not managed properly (for
example, this can lead to pending Pods).

3.4.2 Affinity and Anti-Affinity
These are features that can be used to specify whether a Pod should be running on
a dedicated node or be executed on the same node of other specific Pods (or on a
totally different node if Anti-Affinity is specified). The clear advantage of these
features is the considerable customization capabilities that they offer when new
Pods need to be scheduled. There are two main policies that can be specified when
dealing with affinities:

preferredDuringSchedulingIgnoredDuringExecution

It specifies that node affinity have to be respected when scheduling, if that is
possible. If not, the Pod gets scheduled anyway according to Kubernetes default
scheduling policies.

requiredDuringSchedulingIgnoredDuringExecution

It specifies that node affinity have to be respected all the time. If not, the Pod
enters in pending state and cannot be executed until the affinity condition is met,
this can be a disadvantage if not managed properly.

3.4.3 Kubernetes Descheduler
This isn’t a native feature of Kubernetes [16], it is an additional component that can
be installed inside clusters to deal with a limitation of kube-scheduler, Kubernetes
native scheduler, which is the fact that the latter do not schedule Pods once they
are scheduled the first time, this can be problematic, as flexibility can be greatly
reduced when scheduling Pods. The descheduler component dynamically finds
Pods that can be moved (when the appropriate conditions are met) and evicts
them, several examples of this are when for example new taints are added to some
nodes, new affinities are specified or removed and so on. This is a great advantage,
as it automates Pods scheduling whenever necessary. It is important to note that,
when Pods are evicted, the descheduler does not schedule replacement for them,
but instead relies on the default scheduler (kube-scheduler) for that.

17

Kubernetes

3.5 Prometheus
Prometheus [17] is an open-source systems monitoring and alerting toolkit. It col-
lects and stores its metrics as time series data, this means that metrics information
is stored with the timestamp at which it was recorded, alongside optional key-value
pairs called labels. It offers several features, some of them are the following:

• It offers a multi-dimensional data model (time series defined by metric name
and set of key/value dimensions).

• It provides a powerful and flexible query language to leverage this dimension-
ality called PromQL.

• Uses an HTTP pull model for time series collection.

• Targets are discovered via service discovery or static configuration.

• Multiple modes of graphing and dashboarding support.

3.5.1 Prometheus architecture

Figure 3.2: Prometheus architecture [18]

The architecture of Prometheus can be viewed by looking at Figure 3.2, let us
analyze some of its most important components:

18

Kubernetes

Prometheus server

This component is formed by three parts:

• Retrieval: it is responsible for collecting metrics from the targets through
HTTP requests, which will be stored in a time series database.

• TSDB: this database is where all the metrics are stored, its designed to support
the requirements of monitoring by handling large-scale, high-throughput
metrics collections by providing at the same time fast and reliable access to
historical data.

• HTTP server: it is the component responsible of retrieving the data stored
in the database, this can be done by sending to this server a PromQL query
for the desired metrics.

Pushgateway

Even though Prometheus follows a pull-based model, the Pushgateway has been
introduced in order to deal with scenarios where metrics need to be pushed by
short-lived batch jobs that cannot be scraped. This component can act as a
temporary buffer that accepts pushed metrics from these jobs, thus making them
available for scraping by the Prometheus Server itself.

Alertmanager

This component handles alerts generated by Prometheus, it allows for routing,
grouping, and processing of alerts that can be sent to various notification channels.
Examples of these channels are the email, Slack, and others.

Exporters

These components extract metrics from the target system, converts them into the
Prometheus data format and expose an HTTP endpoint where the Prometheus
Server can scrape the metrics. There are numerous third-party exporters available
for popular systems and frameworks, otherwise one can create its own custom
exporters to expose specific metrics. Conventionally, metrics are exposed on
the /metrics endpoint of each target, but this can be changed by configuring
Prometheus.

Service Discovery

This process allows Prometheus to automatically discover and monitor targets
without any manual configuration.

19

Kubernetes

Grafana

While not a core component of Prometheus itself, Grafana [19] is commonly
used to display data coming from various data source such as Prometheus, it is a
popular open-source analytics and monitoring platform that provides a user-friendly
interface to create custom dashboards and graphs.

3.5.2 Prometheus metrics
There are four types of metrics that Prometheus offers:

• Counter: this is a cumulative metric that represents a single monotonically
increasing counter whose value can only increase or be reset to zero on restart.

• Gauge: it represents a single numerical value that can arbitrarily go up and
down.

• Histogram: it samples observations and counts them in configurable buckets.
It also provides a sum of all observed values.

• Summary: it samples observations; while it also provides a total count
of observations and a sum of all observed values, it calculates configurable
quantiles over a sliding time window.

3.5.3 Discovering Kubernetes targets with Prometheus
Some projects make it possible to easily integrate Kubernetes and Prometheus, the
most famous one is probably Prometheus Operator [20], as it provides Kubernetes
native deployment and management of Prometheus and related monitoring compo-
nents; the purpose of this project is to simplify and automate the configuration of
a Prometheus based monitoring stack for Kubernetes clusters, furthermore it uses
Kubernetes custom resources to deploy and manage Prometheus, Alertmanager,
and related components. Sometimes it is convenient to generate metrics from appli-
cations exposed by Kubernetes Services, just like if they were regular Prometheus
targets; for this reason Prometheus Operator provides the ServiceMonitor CRD,
which is a resource used to identify Services that are used to expose applications
that generate metrics to scrape from within Kubernetes, additionally it specifies
how often these metrics should be scraped. An example of ServiceMonitor can
be viewed by looking at Listing 3.3: it specifies a ServiceMonitor resource called
prometheus-k8s inside the monitoring namespace, furthermore several labels
are associated to it; scrapings should be performed every 30 seconds on Services
associated to all the labels present in the spec.selector.matchLabels field.

20

Kubernetes

1 ap iVers ion : m o n i t o r i n g . c o r e o s . com / v1
2 kind : S e r v i c e M o n i t o r
3 metadata :
4 l a b e l s :
5 app . kubernetes . i o /component: p r o m e t h e u s
6 app . kubernetes . i o / i n s t a n c e : k 8 s
7 app . kubernetes . i o /name: p r o m e t h e u s
8 app . kubernetes . i o / part−o f : kube −p r o m e t h e u s
9 app . kubernetes . i o / v e r s i o n : 3 . 4 . 0

10 name: p r o m e t h e u s −k 8 s
11 namespace : m o n i t o r i n g
12 spec :
13 endpoints :
14 - i n t e r v a l : 30 s
15 port : web
16 - i n t e r v a l : 30 s
17 port : r e l o a d e r −web
18 s e l e c t o r :
19 matchLabels :
20 app . kubernetes . i o /component: p r o m e t h e u s
21 app . kubernetes . i o / i n s t a n c e : k 8 s
22 app . kubernetes . i o /name: p r o m e t h e u s
23 app . kubernetes . i o / part−o f : kube −p r o m e t h e u s

Listing 3.3: Example of ServiceMonitor [21]

21

Chapter 4

Liqo

This chapter will introduce Liqo by discussing its main motivations and concepts.
It is worth mentioning that this chapter will specifically refer to Liqo v0.10.3, the
version used during the development of this work.

4.1 Liqo: motivations
Liqo [22] is an open-source project that enables dynamic and seamless Kubernetes
multi-cluster topologies, supporting heterogeneous on-premise, cloud and edge
infrastructures. It aims at connecting Kubernetes clusters together, so that they
may work alongside each other to reach shared goals; this is particularly important
because, sometimes, these clusters tend to have more resources than needed, as a
consequence it would be beneficial for other clusters to use some of these unused
resources when they are overloaded. All of this is made possible by the fact that
Liqo is capable of establishing peering sessions between these clusters, thus creating
a larger virtual cluster that hosts the sum of the resources exposed by each cluster
involved in the peering process; everything is kept simple, as clusters see their
peers just as virtual nodes that are automatically added to the group of its other
(real) nodes, this allows to schedule some of the cluster’s task to these virtual
nodes as well. By scheduling parts of its workload to the other clusters, all of the
unused resources that would normally be wasted are now leveraged in a smart and
convenient way, hence multi-cluster topologies are now possible and beneficial.

4.2 Liqo main concepts
This section will discuss some of the most import foundations behind Liqo, specifi-
cally it will just focus on the theoretical aspects behind tasks’ offloading that were
particularly relevant in this work.

22

Liqo

4.2.1 Liqo peering
In Liqo, the term peering indicates a unidirectional resource and service consumption
relationship between two Kubernetes clusters, where one consumer cluster has the
capability to offload tasks to a provider cluster, but not vice versa. To be specific,
the consumer establishes an outgoing peering towards the provider, which in turn
is subjected to an incoming peering from the consumer; of course, by combining
two simultaneous peerings, one could achieve a bidirectional peering where both of
the clusters are consumer and provider at the same time. Let us discuss in more
details how the peering process works [23]:

• Authentication: each cluster, once properly authenticated through pre-
shared tokens, obtains an identity to interact with the other cluster, which
will be used to negotiate the necessary parameters in the next phase of the
peering process.

• Parameters negotiation: the two clusters involved in the peering process
exchange the set of parameters required to complete the peering establishment;
examples of parameters are the amount of resources shared with the consumer
cluster, the information concerning the setup of the network VPN tunnel, and
others.

• Virtual node setup: this is the point where the consumer cluster creates
a new virtual node for the provider cluster, thus abstracting the resources
shared by the latter.

• Network fabric setup: the two clusters configure their network fabric and
establish a secure cross-cluster VPN tunnel, according to the parameters
previously negotiated. The network fabric is a subsystem that transparently
extends the Kubernetes network model across multiple independent clusters,
this enables Pods hosted by the local cluster to seamlessly communicate with
the Pods offloaded to the remote one, regardless of the underlying CNI plugin
and configuration.

There are two non-mutually exclusive peering approaches that could be used
between two clusters:

• Out-of-band control plane: by choosing this strategy, which is the default
one, Liqo control plane traffic will flow outside the VPN tunnel interconnecting
the two clusters; additionally, it is characterized by high dynamism, as upon
parameters modifications the negotiation process ensures synchronization
between clusters and the peering automatically re-converges to a stable status.

23

Liqo

• In-band control plane: in this approach, Liqo control plane traffic will flow
inside the VPN tunnel interconnecting the two clusters, as a consequence,
if parameters are modified, the connectivity is lost due to the fact that the
cross-cluster VPN tunnel was statically configured, hence manual intervention
is required.

4.2.2 Liqo offloading
In order to enable seamless workload offloading, Liqo extends Kubernetes names-
paces across the local cluster boundaries, this means that, once a given namespace
is selected for offloading, Liqo will proceed with the creation of a twin namespace
in the remote cluster. Remote namespaces host the actual Pods offloaded to the
corresponding cluster, as well as other additional resources that are present in the
local namespace, which are propagated by the resource reflection process. As can
be seen by looking at Figure 4.1, there is a given namespace existing in the local
cluster and extended to a remote one; a group of Pods is contained in the local
namespace, while a subset is scheduled onto the virtual node and offloaded to the
remote namespace (they are the faded-out ones). Furthermore, as already specified
before, the resource reflection process propagated other resources in the remote
namespace, this is done in order to make sure that Pods are properly executed.
The main advantage of this process is that it provides many possibilities regarding
Pods’ placement, for example it is possible to choose whether to schedule Pods onto
physical nodes, virtual ones or both, another example is that users could select
a specific subset of the available remote clusters by means of standard selectors
matching the label assigned to the virtual nodes, so that the workload may be
offloaded only to specific clusters. When a Pod is scheduled onto a virtual node, a
twin Pod object is created in the remote cluster for actual execution. It’s worth
mentioning that Liqo provides 3 different offloading strategies for namespaces:

1. LocalAndRemote: Pods deployed in the local namespace can be scheduled
both onto local nodes and onto virtual nodes, hence possibly offloaded to
remote clusters; this is the default offloading strategy.

2. Local: Pods deployed in the local namespace are enforced to be scheduled
onto local nodes only, hence never offloaded to remote clusters.

3. Remote: Pods deployed in the local namespace are enforced to be scheduled
onto remote nodes only, hence always offloaded to remote clusters.

24

Liqo

Remote ClusterLocal Cluster

Figure 4.1: Namespace offloading in Liqo [24]

25

Chapter 5

FLUIDOS

This chapter will present the FLUIDOS project by discussing its goals and how
it can provide a transparent computing continuum. As a conclusion the DEAS
sub-project, which is what this thesis work has focused on, will be presented as
well.

5.1 FLUIDOS: introduction

The "Flexible, scaLable, secUre, and decentralIseD Operating System"
(FLUIDOS) [25] aims to leverage the enormous, unused processing capacity at the
edge, scattered across heterogeneous edge devices that struggle to integrate with
each other and to coherently form a seamless computing continuum. As a matter
of fact, the constant growing in the adoption of the edge computing paradigm has
inevitably led to an increase of the computational capabilities located at the edge
of the network, as a consequence it would be convenient to leverage it by creating a
transparent computing continuum that can efficiently move tasks between different
layers of the network, just as already explained in Section 1.1. This the reason
behind the creation of FLUIDOS, in fact its purpose is to create a computing
infrastructure that allows to unify all the different layers of the network, thus
making the physical location of where tasks are executed irrelevant. Considering
that FLUIDOS uses Kubernetes’s capabilities in order to work efficiently in cloud-
native environments, the goal is to create just one "virtual" cluster coming from
the union of multiple Kubernetes clusters where applications can be executed and
moved from one cluster to the other seamlessly, so, for this other reason, FLUIDOS
uses Liqo functionalities as well in order to create peerings between clusters and
offload the workload as needed.

26

FLUIDOS

5.2 FLUIDOS: a transparent computing contin-
uum

FLUIDOS is capable of creating a virtual computing environment that can seam-
lessly offload tasks between clusters, hence creating a transparent computing
continuum that can leverage efficiently the unused computational power present
at the edge of the network. To be specific, in FLUIDOS, Kubernetes clusters are
typically referred as FLUIDOS Nodes, even though they are much more than
that. This section will present what a FLUIDOS Node is and what allows them to
discover other Nodes.

5.2.1 FLUIDOS Node
A FLUIDOS Node, as already discussed, essentially corresponds to a Kubernetes
cluster. This Node is orchestrated by a single control plane instance, and it can be
composed of either a single machine, like an embedded device, or a set of servers,
like a datacenter. Of course, device homogeneity is desirable, as it allows to simplify
the overall management, but it is not requested within a FLUIDOS Node, this
allows to integrate heterogeneous devices between them. A FLUIDOS Node handles
problems such as orchestrating computing, storage, network resources and software
services within the cluster and, by leveraging Liqo’s capabilities, can transparently
access to resources and services that are running in another remote cluster, which
is in fact a remote FLUIDOS Node. Among its main components, there is one that
is particularly relevant for the service provisioning process, which is the The REAR
protocol.

REAR

The "REsource Advertisement and Reservation" (REAR) protocol [26] enables
different actors such as cloud providers and customers to advertise and reserve
resources and/or services. Specifically, this is the protocol that allows FLUIDOS
Nodes to exchange information about their available resources and services with
other Nodes; this is convenient, as it allows them to filter remote Nodes depending
on whether the resources and services they can offer match the requirements of the
local Node.

5.2.2 Discovery of new Nodes
An important concept in FLUIDOS is the Network Manager, which is a compo-
nent that implements a multicast-based discovery protocol that allows FLUIDOS
Nodes to learn about nearby Nodes, so that they may establish new peerings. For

27

FLUIDOS

each Node, there will be a KnownCluster CRD, which is a resource that contains
all the relevant information regarding that specific FLUIDOS Node. There is one
important limitation though, which is the fact that multicast transmissions are
restricted on the Internet, so, for this reason, the Network Manager can only work
properly in private networks. In order to address this problem, FLUIDOS later
introduced Neuropil [27], a discovery protocol that allows to find other FLUIDOS
nodes on the Internet, this is done by creating an overlay network where multicast
transmissions are not used; it is worth mentioning that, during the development of
this work, this last feature was not yet available, hence an alternative strategy had
to be conceived (more details in Section 6.5).

5.3 DEAS
The “Distributed Edge Analytics Service” (DEAS) open call is a FLUIDOS
sub-project that focuses on enhancing the capabilities of the latter by providing the
appropriate support for seamless operations even in fluctuating network conditions,
like in 5G networks, thus improving the already existing computing continuum
by making it responsive and adaptive. The main goals of the project can be
summarized as follows [28]:

• Real-Time Data Processing: Enable real-time data processing and analyt-
ics at the network’s edge.

• Resource Optimization: Provide telemetry and radio link information for
optimal resource allocation.

• Service Continuity: Enhance service and computing continuity in dynamic
environments, such as drone swarming.

• Dynamic Resource Distribution: Facilitate dynamic distribution of com-
putational resources among micro edges.

5.3.1 Addressing fluctuating network conditions
Considering that the 5G network can be unreliable and that the bandwidth between
the clusters may be insufficient, DEAS will use 5G small cells to receive real-time
channel metrics that can be leveraged to have an indication about the quality of
the channel itself. These metrics will be used according to the following logic: if
the channel quality is good enough, then all the workload will be offloaded from the
drones to the network’s edge, on the contrary, if the quality is bad, the workload will
return to the drones (Figure 5.1). The channel quality management process allows
to improve the overall resource usage, thus overcoming the current limitations

28

FLUIDOS

regarding the drones’ battery and hardware by lightening their workload when
possible, and, at the same time, leveraging the unused computational power present
at the network’s edge to execute drones’ tasks. Another clear advantage is the fact
that there is no need for any manual configuration regarding tasks’ allocation, as
everything is done automatically depending on the network’s condition.

5.3.2 Channel quality representation
The process of estimating the quality of the 5G channel by looking at the metrics
offered by the 5G cell can be quite complicated, as many different metrics need
to be considered for our specific use case. To simplify the management of the
channel quality, it has been decided to use as a reference not all the metrics taken
individually, but rather a single value that "summarizes" them, which, in the context
of this project, is called "score value". This score value, just as all the other metrics,
is offered by the 5G cell and the higher it is the more the channel quality is good.
The score will be used according to the logic already specified in Subsection 5.3.1.

Figure 5.1: DEAS offloading logic

29

Chapter 6

Edge offloading for drone
swarming scenarios

This chapter will discuss the design and implementation of the system required to
achieve an autonomous, adaptive, and efficient workload distribution, where tasks
are automatically moved from the drones to the network’s edge and vice versa by
using a 5G network. The first topic that will be covered is how the score value
fetched from the 5G cell can be used to decide if it is the case to move the drones’
workload or not, after that, two possible design solutions for our system will be
taken into account by examining the advantages and disadvantages of each one
of them. Lastly, the architecture of the system will be shown and discussed by
examining every single component and its purpose.

6.1 Score management and task offloading
Considering that the offloading operation requires the temporary termination of the
tasks, an eventual fluctuation of the score value would cause several interruptions
of the service. In order to deal with this problem, it would be better to take as
reference not a single score value, but instead an average calculated over a range of
N score values as follows:

Average score = 1
N

NØ
i=1

Single score valuei (6.1)

From now on, for the sake of simplicity, this thesis will refer to the average score
just as "score", "score value" or "channel score". Now let us talk about how the
system can understand when the score value is high or low enough to perform an
offloading operation by introducing two important concepts that play a role in this
scenario:

30

Edge offloading for drone swarming scenarios

• Score Threshold: this value will be used to distinguish high score values
from low score values.

• Delta: Given the fact that the score fluctuation phenomenon still exists, a
delta value is needed in order to deal with it.

The logic is the following: whenever we are in the situation depicted by Equation
6.2, no action will be performed since the score has not changed enough to justify
an offloading operation, this will allow the system to deal with the aforementioned
score fluctuations.

Threshold − Delta

2 ≤ Score ≤ Threshold + Delta

2 (6.2)

Let us see a real example by looking at Figure 6.1, where the evolution of the
score over time is graphically represented. In this example, the score threshold is
set to 1.5 (the yellow line), while the delta is set to 1, this means that whenever
the score value is located between 1 and 2 (the green and red lines respectively)
the system will perform no action. Whenever the score is less than 1, a local
offloading will be performed, so the tasks will be moved from the edge to the drone,
on the contrary, whenever the score is greater than 2, a remote offloading has to
be performed in order to move the tasks’ execution from the drone to the edge.

6.2 System design and functioning
This section will present the architecture of the system by illustrating its overall
functioning and the main tools that were used to develop it.

6.2.1 Architecture of the system
The architecture of the offloading system is represented in Figure 6.2, for the
sake of simplicity this diagram takes into account the case of just a single drone
interacting with the network’s edge, even though multiple drones can perfectly
interact with the edge in parallel, further details regarding this aspect will be shown
later. As it can be seen, the diagram depicts two FLUIDOS Nodes, the local one
(the drone) and the remote one (the network’s edge), the latter will be responsible
of fetching the channel score from an external metrics server, which is located on
the 5G cell. The HTTP calls to the external server are periodically performed by a
custom Prometheus exporter that provides this score value as a Prometheus
metric. At this point, the score can be used by another component that is located
inside the drone called Arbiter, which is responsible of the offloading operations

31

Edge offloading for drone swarming scenarios

Figure 6.1: Example of score evolution over time

themselves1, the workload in this case is represented by a single task that can
be moved from the drone to the edge and vice versa, depending on the situation.
Another important aspect to take into account is the fact that the drone and the
edge could be separated by multiple network devices, this means that at times the
drone could not be able to establish a peering with the remote cluster by using
FLUIDOS’s default features, which, during the development of this work, were not
yet able to perform this operation; for this reason an additional component that can
discover new clusters that are not directly connected to the drone has been created,
which is called Discovery Agent. Now let us present the two main cases that
could happen in this scenario, for this discussion we will refer to the same threshold
and delta values that were used in Section 6.1, which are 1.5 and 1 respectively.
The first case is the one where the channel score is not high enough, let us say

1The Arbiter uses the channel score to understand where the workload should be offloaded for
execution; at that point, this component will perform the offloading operation.

32

Edge offloading for drone swarming scenarios

Figure 6.2: System architecture diagram

for example that it has a value of 0.5, what would happen is the situation that is
depicted in Figure 6.3, where the workload is located on the drone for execution.
The other case is the one where the channel score is high, let us say 5. As can be
seen in Figure 6.4, the workload is placed on the network’s edge for execution.

Figure 6.3: Bad score case example

33

Edge offloading for drone swarming scenarios

Figure 6.4: Good score case example

6.2.2 Technical design choices

The system uses Prometheus for storing score values as time series, this is a
convenient representation for numerical metrics that change over time, furthermore
Prometheus exporters are particularly useful when there is need to translate some
data fetched from an external source to a syntax that Prometheus can understand,
this happens for example in this scenario, where the data returned by the external
metrics server is represented by using JSON. Every single component present in
the architecture has been written by using the Golang language, one of the reasons
is that its the most used language when it comes to Cloud native applications, as
all major Cloud providers use Go APIs for their services, but most importantly,
it integrates perfectly with all the main technologies used in this field, such as
Kubernetes and Docker, which are both written in Golang [29]. Another reason is
that Golang provides a powerful set of tools for interacting with Prometheus in a
convenient way, such as the Prometheus Go client library2. The system uses Liqo
v0.10.3 and FLUIDOS v0.1.1 APIs to interact with their respective resources.

2https://github.com/prometheus/client_golang

34

Edge offloading for drone swarming scenarios

6.3 Possible design solutions for the offloading
process

There are two possible solutions that could be alternatively used to implement the
offloading logic, each one with their advantages and disadvantages.

6.3.1 First solution
This solution completely relies on Kubernetes native features, so there is no need
to complicate the system architecture by adding new components. Let us discuss
about the local and remote offloading operations by analyzing the actions that are
required to implement the both of them.

• Local offloading: in order to perform this kind of operation, the arbiter
needs to mark the virtual node representing the remote cluster with an
additional taint that allows the Kubernetes scheduler to evict the tasks that
were previously offloaded to it. At the same time, the arbiter has to change
Liqo’s offloading strategy to “Local” on all the namespaces that contain the
offloaded tasks, by doing so it can be assured that local execution is enforced.

• Remote offloading: the remote offloading operation has to be performed by
removing the previously mentioned additional taint (if present), so that the
tasks can be chosen for execution onto the virtual node without restrictions,
furthermore, the namespaces’ offloading strategy has to be set to “Remote”.
The inconvenient is that, by doing so, the tasks aren’t actually “forced” to
execute onto the virtual node, in order to do that the Pods representing the
tasks have to be manually deleted and recreated, this guarantees that the
changes will be applied to the new Pods.

In this case, the architecture of the system will remain the same as the one that
was already presented in Section 6.2, as can be seen in Figure 6.5.

6.3.2 Second solution
This solution exploits the Kubernetes Descheduler as an additional component to
compensate the fact that the first one requires to manually delete the Pods in order
to apply new scheduling policies. The first thing is to install the Descheduler inside
the local cluster and configure it with the RemovePodsViolatingNodeAffinity
policy (which will be able to make sure that affinity properties are automatically
applied, even when Pods are already running), the type that has to be specified is
preferredDuringSchedulingIgnoredDuringExecution; after that, it is needed

35

Edge offloading for drone swarming scenarios

Figure 6.5: First solution architecture diagram

to define an affinity property for all the tasks3 that can leverage the benefits offered
by the Descheduler. At this point, a new label has to be added to the virtual node,
so that it can be used for the tasks’ affinity; all of this is needed because the affinity
mechanism will be used to perform the remote offloading operation by suggesting
a better node for execution (the virtual node) to the Kubernetes scheduler, further
details will be provided later. In addition to that, a taint property will also be
used in order to perform the local offloading by specifying that the tasks can no
longer execute on the virtual node. The steps are the following:

• Local offloading: the logic is the following, the label used to mark the virtual
node, if present, has to be removed, so that the Kubernetes scheduler won’t
be able to prefer the virtual node over the other ones; after this is done, a
new taint has to be added to the virtual node, thus preventing the tasks
from executing on it. This operation requires to pay particular attention in
executing the steps exactly as presented, because considering that the taint
has to be used in conjunction with an affinity property, the offloading logic
could behave not quite as expected, for example, if the taint is added before
removing the affinity label from the virtual node, the Kubernetes scheduler
will give priority to the affinity by trying to execute the tasks on the virtual

3With the same type, preferredDuringSchedulingIgnoredDuringExecution.

36

Edge offloading for drone swarming scenarios

node, this won’t be possible since a new taint has been previously specified,
the result is that the tasks will constantly be terminated and restarted on
the local cluster since execution is forbidden on the remote one under those
specific conditions.

• Remote offloading: the logic here is the exact opposite of the previous case,
so the virtual node taint, if present, has to be removed to allow execution;
after that, a label has to be specified for the virtual node in order to make
sure that the Kubernetes scheduler will prefer that specific node for tasks’
execution.

The introduction of the Descheduler slightly modifies the architecture, as can
be seen in Figure 6.6.

Figure 6.6: Second solution architecture diagram

6.3.3 Confronting the two solutions
Now let us compare the two possible solutions that were previously discussed by
presenting their advantages and disadvantages.

First solution

• Advantages:

1. This solution completely relies on Kubernetes native features, there’s no
need to install additional components.

37

Edge offloading for drone swarming scenarios

2. The offloading logic is kept simple.
3. There’s no need to use complex scheduling mechanisms.

• Disadvantages:

1. When executing a remote offloading, in order to apply the changes4, the
Pods have to be manually deleted and recreated.

2. The offloading strategy has to be changed every time an offloading opera-
tion occurs.

Second solution

• Advantages:

1. This solution allows to dynamically schedule Pods whenever necessary,
even during their execution, as a consequence there’s no need for any
manual intervention5.

2. There’s no need to change Liqo’s offloading strategy.

• Disadvantages:

1. The Descheduler needs to be installed and configured in order to implement
this solution.

2. An affinity property has to be specified for the task, furthermore a label
needs to be added to/removed from the virtual node at every offloading
operation.

Final decision

By confronting the two solution, one can note that it is preferable to not rely on
additional components that have to be manually installed on each drone, such
as the Kubernetes Descheduler, when there is an alternative that is completely
based on Kubernetes native features; furthermore, considering that a controller
that modifies various scheduling properties has to be created anyway (the Arbiter),
there is no point in adding a Descheduler just to automatize the descheduling of
the Pods, this would create an additional useless dependency. Considering all the
aforementioned reasons, the first solution is preferable for the specific use case of
this project, so it is going to be used to implement the offloading process logic.

4Taint deletion and offloading strategy set to “Remote”.
5No need to manually delete Pods.

38

Edge offloading for drone swarming scenarios

6.4 Exporting the channel score to Prometheus
This section will explain how the system fetches the required channel scores and
how it makes them available as Prometheus metrics. As a conclusion, a possible
alternative to the channel score will be presented, one that does not require to
contact an external metrics server by going through the network, but instead relies
on an approximative value of the channel quality, which is the 5G signal strength.

6.4.1 Interacting with the external metrics server
The metrics server has 3 endpoints, each one of them has to be contacted in order
to get the channel scores, this is because, inside the path relative to the endpoint
responsible for providing said scores, two pieces of information that can only be
returned by the other two endpoints have to be specified; they are the so called
gnb_id, which identifies the gNB device, and the imsi of all the drones. The
endpoints are:

1. /amf_gnb_stats: This endpoint returns an array of JSON objects represented
in Listing A.1; the only relevant piece of information is the third field of every
object, which is the gnb_id. There is only one gNB in this scenario, so there
will always be just one entry in the returned array.

2. /amf_ue_stats: This endpoint returns an array of JSON objects represented
in Listing A.2; the only relevant piece of information is the seventh field of
every object, which is the imsi value of a single drone. Considering that there
could be multiple drones connected to the 5G cell, it is more likely that this
array will contain more entries, one for each drone.

3. /ue_mac_stats/{gnb_id}/imsi/{imsi}/score: This endpoint returns the
JSON object represented in Listing A.3; depending on the imsi value used,
the channel score of the connection between the 5G cell and that specific drone
will be returned, which is the second field of the response.

6.4.2 Collecting the metrics for Prometheus
The component that will contact the metrics server is a custom Prometheus exporter
located inside the edge cluster. Let us analyze its functioning by looking at Listing
6.1; the first action is to get two parameters that are necessary for the exporter, the
first one is the URL of the API server, which is the aforementioned metrics server,
the other one is the port on which the exporter will listen for new requests. The
next three instructions create the so called ScoreCollector struct (Listing A.4),
which implements the Collector interface in order to collect new score values,

39

Edge offloading for drone swarming scenarios

and register it. The last passages are to make sure that the exporter can handle
incoming requests to the endpoint /metrics, which is where the score metrics
are available, and make the exporter listen for new requests on the port that was
previously passed as a configuration parameter.

1 func main () {
2

3 var ap iServerUr l , exporterPort = normal i zeConf igurat ionParameters
ñ→ (os . Getenv ("API_SERVER_URL") , os . Getenv ("EXPORTER_PORT"))

4

5 s c o r e C o l l e c t o r := s c o r e c o l l e c t o r . NewScoresCol lector (ap iSe rve rUr l)
6

7 reg := prometheus . NewRegistry ()
8

9 reg . MustRegister (s c o r e C o l l e c t o r)
10

11 // Star t the HTTP s e r v e r on the d e s i r e d port .
12 s l o g . In f o (" S ta r t i ng s e r v e r on port " + exporterPort)
13 http . Handle (" / metr i c s " , promhttp . HandlerFor (reg , promhttp .

ñ→ HandlerOpts {}))
14 http . ListenAndServe (" : "+exporterPort , n i l)
15 }

Listing 6.1: Main function for the Prometheus exporter

Every single request that the exporter receives is going to trigger the Collect
function of the ScoreCollector struct, its logic can be seen by looking at Listing
6.2. The first operation it executes is to call the function getScores, which takes
as a parameter the URL of the API server (the metrics server) to contact the three
endpoints of said server and returns a map of IMSIs associated to their relative
score values called ScoreMap (Listing A.4); more details about this function will be
provided later. After this is done and new score values are retrieved, if something
went wrong the exporter signals it by sending back to Prometheus an HTTP 500
error, just as expected from every Prometheus exporter [30], otherwise a new metric
will be created for every single entry of the map returned by getScores, where
the IMSI and the channel score of the drone to which the current entry is referring
to are used as the label and the value of the metric respectively.

1 func (c o l l e c t o r S c o r e C o l l e c t o r) C o l l e c t (ch chan<− prometheus . Metric)
ñ→ {

2

3 var sco re s , e r r = ge tSco r e s (c o l l e c t o r . ap iSe rve rUr l)
4

5 i f e r r != n i l {

40

Edge offloading for drone swarming scenarios

6 ch <− prometheus . NewInval idMetric (
7 prometheus . NewDesc (" f lu idos_5g_channel_score_error " ,
8 "An e r r o r occured whi l e g e t t i n g new channel s c o r e s . " ,

ñ→ n i l , n i l) ,
9 e r r)

10 } e l s e {
11

12 f o r imsi , s i n g l e S c o r e := range s c o r e s {
13 ch <− prometheus . MustNewConstMetric (c o l l e c t o r . ScoreValue ,

ñ→ prometheus . GaugeValue , s i ng l eS co r e , ims i)
14 }
15 }
16 }

Listing 6.2: Implementation of the Collect function

6.4.3 Executing the HTTP calls to the endpoints
Now let us analyze in further details the getScores function, this is where the
actual HTTP requests to the endpoints are sent. The first call is made to the
endpoint /amf_gnb_stats in order to get the gNB ID, this request can be seen
by looking at Listing 6.3, where the function getContent is just a utility function
that has been created to act as a wrapper to the HTTP call itself by returning its
body content in string format. As it can be seen, we just get the first entry, as our
system has just a single gNB.

1 bodyContent , e r r := getContent (ap iSe rve rUr l + " /amf_gnb_stats ")
2

3 i f e r r != n i l {
4 re turn n i l , e r r
5 }
6

7 e r r = j son . Unmarshal ([] byte (bodyContent) , &gnb_array)
8

9 i f e r r != n i l {
10 re turn n i l , e r r
11 }
12

13 i f l en (gnb_array . S e r i e s [0] . Values) == 0 {
14 re turn n i l , e r r o r s .New(" unable to get the s co r e : no gNBs

ñ→ a v a i l a b l e ")
15 }
16

17 // For the sake o f s i m p l i c i t y , s i n c e we have a s i n g l e gnb we j u s t get
ñ→ the f i r s t r e s u l t

41

Edge offloading for drone swarming scenarios

18 gnbIDFirstRow := gnb_array . S e r i e s [0] . Values [0]

Listing 6.3: Getting the gNB ID

The next request is sent to the endpoint /amf_ue_stats in order to get all
the IMSIs of all the drones connected to the 5G cell, the procedure is similar to
the first call, the only difference is that, in this case, we consider the entire array,
since all the IMSIs are required. The last thing to do is to get all the score values
for every IMSI that the second endpoint returned, this can be seen by looking at
Listing 6.4. For every single IMSI (drone), the program executes a call to the third
endpoint by using the gNB ID returned by the first endpoint and the IMSI value
of the drone that we are referring to in the current cycle of the for loop. After the
HTTP call has been performed, the IMSI value is associated to its relative score
value by using a ScoreMap variable called newScores, which is later returned to
the Collect function.

1 f o r i := 0 ; i < l en (ue_array . S e r i e s [0] . Values) ; i++ {
2

3 ueFirstRow := ue_array . S e r i e s [0] . Values [i]
4 gnbID := gnbIDFirstRow [2] . (s t r i n g)
5

6 bodyContent , e r r = getContent (
7 ap iSe rve rUr l + " /ue_mac_stats/ " +
8 forgeGnbID (gnbID) + " / ims i / " +
9 ueFirstRow [6] . (s t r i n g) + " / s co r e ")

10

11 i f e r r != n i l {
12 re turn n i l , e r r
13 }
14

15 e r r = j son . Unmarshal ([] byte (bodyContent) , &score_array)
16

17 i f e r r == n i l {
18 newScores [ueFirstRow [6] . (s t r i n g)] = f l o a t 6 4 (score_array . Score

ñ→)
19 }
20 }
21

22 re turn newScores , e r r

Listing 6.4: Getting the score values for all the IMSIs

42

Edge offloading for drone swarming scenarios

6.4.4 Possible alternative to the channel score: the 5G
signal strength

Even though this project uses the channel score just as presented in this section,
there is a problem, which is the fact that all the channel scores are located on an
external metrics server, this could lead to a small degradation in performances, as
the network needs to be traversed multiple times. In this thesis work, a potential
alternative to the channel score has been conceived, it consists in using an indicator
of the channel quality that the drone can get locally, this is the 5G signal strength
that is present between the drone itself and the 5G cell. The resulting architecture
can be seen by looking at Figure 6.7, in this case Prometheus is going to run in
the local cluster alongside an additional component that replaces the Prometheus
exporter, which is called dB exporter, as its purpose is to fetch the value in
decibels of the 5G signal strength that is locally available in order to expose it as a
Prometheus metric. Its worth mentioning that this is only an alternative design
proposition, no real implementation was done for this part, its logic has only been
simulated for testing purposes. More details about this subject will be provided in
Subsection 7.4.

Figure 6.7: System architecture where the 5G signal strength is used

6.5 Discovery of new clusters
As already mentioned in Section 6.2, the drones and the network’s edge could
be separated by multiple network devices; this can be a problem, as, during the
development of this work, FLUIDOS’s auto-discovery mechanism, which is running
inside the drone, was not yet able to locate other clusters (such as the edge), thus

43

Edge offloading for drone swarming scenarios

making the establishing of new peerings not possible in such conditions. One way
to resolve this issue is to create an additional component that tries to locate clusters
that are not directly reachable by the drone, this is what has been done in this
project with the "Discovery Agent".

6.5.1 Explaining the Discovery Agent logic
In order to locate the remote cluster (the network’s edge), the Gateway present
inside it has to be contacted, specifically the port on which FLUIDOS’s REAR
protocol is listening; this can be useful because, if the remote cluster exists, an
HTTP 200 code will be returned to the Discovery Agent, otherwise the latter will
periodically try to send other requests to this address until the desired response is
received. After this procedure, the Discovery Agent can create a KnownCluster
CR for the remote cluster, just as expected from FLUIDOS’s usual behavior,
furthermore, as soon as said CR is created, the program will keep contacting the
same address in order to check if the remote cluster is still reachable; if the response
is negative, the Discovery Agent will try again for a specific amount of times before
deleting the KnownCluster CR and restarting the whole procedure from the start,
otherwise, if the response is positive, the total number of current attempts will be
set to 0, as the remote cluster is reachable again. The Discovery Agent takes three
configuration parameters:

1. Gateway address: this represents the pair of address and port number that
have to be contacted.

2. Attempts: the number of attempts after which the KnownCluster CR is
deleted.

3. Polling interval: the time interval between each HTTP request from the
Discovery Agent.

6.5.2 Implementing the discovery process
The first operation that the discovery process executes is to get the configuration
parameters, after that a DiscoveryAgent struct (Listing A.5) is created in order
to store and manage the configuration parameters, so that they can be used during
the control loop. The last operation is to start the discovery control loop by calling
periodically the DiscoverNewClusters function, which manages the logic of a
single HTTP request. The implementation of the DiscoverNewClusters function
can be seen by looking at Listing 6.5, it implements the exact logic that was
already explained in Subsection 6.5.1, so it will start by sending an HTTP request
to the address passed as configuration parameter, specifically the request will be

44

Edge offloading for drone swarming scenarios

sent to the endpoint /api/v2/flavors; if the response is an HTTP 200 code, a
KnownCluster CR will be created, otherwise the control loop will keep executing
this function, thus sending other requests, until a positive response is received
or the number of total attempts has reached its maximum, in which case the
KnownCluster will be deleted.

1 func (agent ∗ DiscoveryAgent) DiscoverNewClusters () e r r o r {
2

3 response , e r r := http . Get (" http :// " + agent . Conf ig . GatewayAddr +
ñ→ " / api /v2/ f l a v o r s ")

4

5 i f e r r != n i l {
6 re turn e r r
7 }
8

9 i f r e sponse . StatusCode == 200 {
10

11 agent . CurrentAttempt = 0
12 e r r = agent . createKnownCluster ()
13

14 i f e r r != n i l {
15 re turn e r r
16 }
17 }
18

19 agent . CurrentAttempt++
20

21 i f agent . CurrentAttempt == agent . Conf ig . TotalAttempts {
22

23 e r r = agent . deleteKnownCluster ()
24

25 i f e r r != n i l {
26 re turn e r r
27 }
28 }
29

30 re turn n i l
31 }

Listing 6.5: Implementation of the DiscoverNewClusters function

45

Edge offloading for drone swarming scenarios

6.6 Offloading the workload between multiple
clusters

This section shows the implementation of the Arbiter, which is the most important
component in the system, by providing a thorough explanation about its purpose
and logic.

6.6.1 Arbiter logic
There are multiple configuration parameters that the Arbiter needs:

1. Drone IMSI: the IMSI of the drone on which the Arbiter is executing.

2. Prometheus URL: the URL of the Prometheus endpoint located in the
remote cluster.

3. Delta: the same delta value that was already discussed in Section 6.1.

4. Scores scraping window: this value will be used when executing the
PromQL query to Prometheus; it represents the number of seconds to be
considered when calculating the average score, more details about this will be
provided later.

5. Decision timeout: the number of seconds between each cycle of the Arbiter
control loop.

6. Threshold: the same threshold value that was already discussed in Section
6.1.

7. Solver filters: this is a file that contains the filters required by the Solver
CR during the act of its creation.

The Arbiter logic is represented in Figure 6.8, as it can be seen it starts its
execution by getting the required configuration parameters and by checking whether
a Solver CR already exists, in that case the Arbiter proceeds to wait for new
peerings to be established, otherwise it needs to create it by waiting until new
KnownCluster CRs appears6, at this point a new Solver is going to be created
and the execution flow can proceed as normal; when new peerings are established,
the Arbiter control loop can start. A single cycle of this loop can be presented as
follows: the first operation is to execute the proper PromQL query to Prometheus in

6The same ones created by the Discovery Agent or by FLUIDOS’s default auto-discovery.

46

Edge offloading for drone swarming scenarios

order to get the average score that the Arbiter needs, then the offloading operation
has to be performed according to the logic that was already explained in Section
6.1; after this is done, the cycle terminates its execution and another one will start
soon after.

6.6.2 Outer control loop
The Arbiter control loop periodically calls the MonitorScore function, which is the
one that actually implements the logic of a single iteration; all these iterations are
separated by a certain amount of time that is specified through the configuration
parameter known as "Decision timeout", this is done in order to wait for the channel
score to actually change over time, otherwise the Arbiter would keep sending useless
queries to Prometheus that would only add unnecessary workload inside the system,
as it is unlikely that said score changed much right after the last query. The first
operation performed by the MonitorScore is to invoke the executeQuery function,
which executes the PromQL query in order to get the average score.

6.6.3 Executing the PromQL query to Prometheus
The query that the executeQuery function sends will compute the average score
according to the logic that was already discussed in Section 6.1, specifically this
query has to be formulated by using the IMSI value of the drone on which the
Arbiter is executing as the label, this is needed in order to get the score values
associated to the drone. The configuration parameter called "Scores scraping
window" is going to be used here as the time interval to consider when computing
the average score, for example, if this parameter is set to 10, then the average will
be computed by considering all the score values generated in the last 10 seconds.
If the response to the query is positive the average score will be returned by the
function to its caller, which is MonitorScore, otherwise, if the query failed due
to the fact that Prometheus is unreachable7, a local offloading operation will be
forced, thus moving the entire workload to the drone.

6.6.4 Performing the offloading operation
The average score returned by the executeQuery function will now be used in order
to understand what kind of offloading operation is needed (Figure 6.8). Listing 6.6
shows the implementation of the offloading functions, they were both implemented
according to the logic of the solution presented in Subsection 6.3.1.

7This can be caused, for example, by the fact that the drone lost its connection to the 5G cell.

47

Edge offloading for drone swarming scenarios

1 // This func t i on performs the remote o f f l o a d i n g opera t i on (from Drone
ñ→ to Edge) .

2 func ExecuteRemoteOff loading (ctx context . Context , c l i e n t c l i e n t .
ñ→ Cl i en t) e r r o r {

3

4 e r r := updateTaint (ctx , c l i e n t , Remove)
5

6 i f e r r != n i l {
7 re turn e r r
8 }
9

10 re turn changeOf f l oad ingStrategy (ctx , c l i e n t , o f f l o ad ingv1a lpha1 .
ñ→ RemotePodOffloadingStrategyType)

11 }
12

13 // This func t i on performs the l o c a l o f f l o a d i n g operat i on (from Edge
ñ→ to Drone) .

14 func ExecuteLoca lOf f load ing (ctx context . Context , c l i e n t c l i e n t . C l i en t
ñ→) e r r o r {

15

16 e r r := changeOf f l oad ingStrategy (ctx , c l i e n t , o f f l o ad ingv1a lpha1 .
ñ→ LocalPodOff loadingStrategyType)

17

18 i f e r r != n i l {
19 re turn e r r
20 }
21

22 re turn updateTaint (ctx , c l i e n t , Add)
23 }

Listing 6.6: Implementation of the offloading functions

After the execution of the appropriate action, the current iteration of the Arbiter
control loop terminates; the next one will start after the amount of seconds specified
by the "Decision timeout" configuration parameter.

48

Edge offloading for drone swarming scenarios

Figure 6.8: Flowchart representing the Arbiter logic

49

Chapter 7

Experimental evaluations

This chapter will discuss the results obtained by testing the system’s capabilities in
a real-world scenario. It will be first presented the testing environment used for the
development of the video that shows a functioning demo of the system, then the
time required by both of the offloading operations will be discussed. In conclusion,
the chapter will make a comparison between the performances obtained by using
either the channel score or the 5G signal strength that was already presented in
Subsection 6.4.4 for what concerns the Arbiter reaction time to changes in the
channel quality.

7.1 Setup of the test environment
All the tests were conducted in the "Consiglio Nazionale delle Ricerche" (CNR)
facility located at Politecnico di Torino by using a 5G cell that was deployed
there. The device used to simulate the drone was a laptop running Ubuntu 20.04
LTS on which the kernel has been patched in order to allow a connection to
the 5G cell through another device used as a UE, which was a Quectel modem
(RG50xQ/RM5xxQ Series) attached to the laptop via USB. The network’s edge
was simulated by a mini-PC running the same version of Ubuntu used for the
laptop, which was connected to the 5G cell through a router. By looking at Figure
7.1, the overall testing setup can be seen. The Arbiter was configured with the
following configuration parameters:

• Delta: 1

• Scores scraping window: 5 seconds

• Decision timeout: 10 seconds

• Threshold: 1.5

50

Experimental evaluations

In order to simulate the workload, a simple nginx job running inside an offloaded
Liqo namespace has been used. The local cluster is located on the laptop, the
remote one is on the mini-PC; whenever an offloading operation occurs, the nginx
job will be offloaded from one cluster to the other as needed.

Figure 7.1: Testing environment

7.2 Simulating a workload offloading scenario
The tests were conducted by physically moving the laptop used to simulate the
drone; whenever said laptop was moved away from the 5G cell, it simulated a
decrease of the channel quality, on the contrary, if it was moved closer to the 5G
cell, an increase of the channel quality would have occurred. The execution flow
described in the following Subsections represents the situation from the laptop’s
standpoint.

7.2.1 Performing a remote offloading
The simulation started by executing the aforementioned nginx job on the local
cluster, as the channel quality never surpassed the value of 2 (the red line), this
can be seen by looking at Figure 7.2; specifically, the task was executing on a
node called ubuntu-thinkpad-x13-gen-1. The first thing to do was to simulate a
remote offloading by placing the nginx job on the remote cluster, which, as already
mentioned, was simulated by a mini-PC. As soon as the laptop was moved closer
to the 5G cell, we experienced an increase of the channel quality, just as expected.
In Figure 7.3, it is possible to observe what has been described before: the channel
quality surpassed 2, this triggered a remote offloading that moved the task to the
remote cluster, in fact it can be seen that now the node on which this job is running
is called liqo_edge, this is the virtual node that Liqo created to represent the
remote cluster.

51

Experimental evaluations

Figure 7.2: Task executing on the local cluster

Figure 7.3: Task executing on the remote cluster

7.2.2 Performing a local offloading
The last thing to do was to simulate a local offloading by moving the laptop away
from the 5G cell, this situation is represented in Figure 7.4. As it can be seen, the
channel quality is now below 1 (the blue line), this has triggered a local offloading

52

Experimental evaluations

that moved the task back to the local cluster, in fact the node on which this job
is executing is again ubuntu-thinkpad-x13-gen-1. By looking at the obtained
results, we have assured that the system can properly work in real environments,
as both of the offloading operations are performed efficiently just as intended.

Figure 7.4: Task executing again on the local cluster

7.3 Comparing the offloading operations: local
and remote

By looking at Figure 7.5, the obtained performances for both of the offloading
operations can be seen. The time interval that was considered is the one that starts
as soon as their respective functions are called (Listing 6.6) and ends when the
workload starts to run on the other cluster; in this graphical representation, 100
different time values have been considered for each one of them. The obtained
results show that the execution time for both of these operations is around 1 second,
with the local offloading operation being slightly slower than the remote one, this
could be caused by Liqo and/or Kubernetes internal functioning, as both of these
operations perform the exact same actions, just in reverse order. In conclusion, we
could say that the system can maintain good performances for what concerns the
workload offloading.

53

Experimental evaluations

Figure 7.5: Time required by both of the offloading operations

7.4 Comparing the Arbiter reaction time: 5G
signal strength and channel score

In Subsection 6.4.4, we already discussed about the possible usage of the 5G
signal strength in order to replace the channel score used by the system; the main
advantage of this approach is the increase in responsiveness, as this "local score"
would be fetched by the drone locally, without the need to go through the network
multiple times, as a consequence the Arbiter should be able to react even quicker
to any change in the quality of the channel1. The detailed approach would be the
following: the component called "dB exporter" (Figure 6.7) should periodically
fetch the 5G signal strength, represented in decibels, from the Quectel modem that
is connected to the local device through the appropriate AT commands, this value
should be made available to Prometheus as a metric, at this point the Arbiter
can use the metric for the offloading process, just as always. Considering that,
as already mentioned, this was not part of the implementation process, in fact
its behavior has only been simulated by creating a component that periodically
opens a file containing a random series of possible values in decibels that could
have been returned by the modem. By looking at Figure 7.6, it can be seen a

1A change in the channel quality could be the transition from a positive score to a negative
one or vice-versa.

54

Experimental evaluations

graphical comparison of the performances obtained by the two alternatives for what
concerns the Arbiter reaction time; just as always, 100 different time values have
been considered for both of them, specifically the time interval that was considered
is the one that starts as soon as the channel quality changes and ends when the
workload starts to run on the other cluster due to an offloading operation triggered
by the aforementioned change in the channel quality. As can be seen, by using the
5G signal strength, we could achieve great performances compared to the channel
score approach, as, in the first case, the Arbiter can react to changes in the channel
quality in around 8 seconds, while the second approach makes the Arbiter react
in around 37 seconds, this is a great improvement. It is worth mentioning though
that this graph compares real data, obtained by using the channel score, with
data obtained through a simulation, which is the case of the 5G signal strength,
this means that the results that were previously discussed are just speculative and
should not be considered as an actual fact. The 5G signal strength is not always
the best option though, as this value is just an indication about the channel quality
and not a precise measurement; on the contrary the channel score provides a more
accurate estimation, as it is derived by multiple real 5G metrics instead of just a
single indicator.

55

Experimental evaluations

Figure 7.6: Arbiter reaction time

56

Chapter 8

Conclusions

The purpose of this work was to enhance FLUIDOS capabilities by providing the
appropriate support for ensuring seamless operations even in fluctuating network
conditions through the DEAS open call. The goal was to develop an infrastructure
capable of ensuring dynamic offloading capabilities in scenarios where the workload
is periodically moved between IoT devices, such as drones, and the network’s
edge in 5G networks, depending on the network’s quality; the main advantage
is that the drones’ workload can be reduced by offloading some of their tasks to
the network’s edge, and, by doing so, all the unused computational power present
at the edge will not be wasted, this allows to optimize the resources and the
overall energy consumption of the system by creating a responsive computing
continuum. The offloading process needed to perform the following logic: if the
channel quality is good enough, the workload has to be offloaded from the drones
to the network’s edge, on the contrary, if the quality is bad, the workload has to
return to the drones. Two main strategies were taken into account in order to
implement the offloading process; the first one just involved the usage of Kubernetes
and Liqo native features, while the second considered the usage of the Kubernetes
Descheduler. Even though the Descheduler is particular convenient when it comes
to offload tasks that are already executing (there is no need to manually evict
Pods), the first one is preferable, as no additional components need to be installed,
furthermore the offloading logic can be kept simple. The functioning of the system
is the following: the remote cluster (the edge) periodically collects an indicator
of the channel quality from an external metrics server, which will be stored as a
Prometheus metric; at this point, the local cluster (the single drone) will fetch this
score from the remote cluster by contacting its Prometheus endpoint, after this is
done the Arbiter, a component responsible of the offloading operation that runs
inside the local cluster, will perform the offloading decision according to the logic
that was previously discussed. The final system has been tested in the CNR facility
located at Politecnico di Torino by using a 5G cell; the drone (the local cluster) has

57

Conclusions

been simulated by a laptop, the network’s edge (the remote cluster) by a mini-PC
and the workload by a simple nginx job. The workload started its execution on the
local cluster due to a bad channel quality, which has been simulated by physically
moving away the laptop from the 5G cell, so the first operation that needed to
be performed was a remote offloading. In order to simulate an increase of the
channel quality, the laptop has been moved closer to the 5G cell, this triggered a
remote offloading operation that placed the workload on the remote cluster, just
as expected. The last operation that needed to be tested was the local offloading,
in fact, by moving again the laptop away from the 5G cell, the channel quality
gradually decreased, hence the workload has been placed for execution on the local
cluster. Additionally, the performance level of the offloading operations has been
evaluated, in fact both of them allow to dynamically move the workload from one
cluster to the other in about 1 second. Another alternative approach has been
considered, one that does not rely on 5G metrics fetched from an external metrics
server, but one that instead allow drones to directly fetch the value in decibels of the
5G signal strength locally by contacting the local modem; even though this other
approach has only been simulated with no real implementation, the performance
level could be drastically increased compared to the external metrics server strategy
(8 seconds for the first one against 37 seconds for the second). Considering the
obtained results and the good performance level, we can achieve an autonomous,
adaptive, and efficient workload distribution that allows to offload tasks between
drones and the edge by using the quality of the 5G channel as a decision criterion,
thus creating a responsive computing continuum; a demo showing the system’s
functioning is available online [31].

8.1 Future directions
A possible future direction for the project could be the actual implementation of an
additional component that fetches the 5G signal strength by making it available on
Prometheus alongside the channel score fetched from the external metrics server,
so that these two different paradigms could alternatively be used by the Arbiter as
needed. An example of this is where the user wants to give priority to a scenario
where responsiveness is more important than the accuracy of the channel quality,
in that case the 5G signal strength could be a better option, on the contrary,
if the user prioritizes accuracy over responsiveness, the external metrics server
would be the preferred alternative. Another possible future work is the dynamic
configuration of the optimal values for the threshold and delta, as it could be
difficult to understand if the inserted values are correct for the specific use case,
this would make the system even more efficient by reducing to a minimum the
errors and the need for manual configurations.

58

Appendix A

Listings

1 {
2 " series ": [
3 {
4 " values ": [
5 [
6 "2024 -10 -01 T07 :31:43.428469 Z",
7 "0x000e",
8 "0xe000",
9 "001 ,01",

10 " Connected ",
11 "gNB -Sma -RTy"
12]
13]
14 }
15]
16 }

Listing A.1: Example of JSON object returned by the endpoint /amf_gnb_stats

59

Listings

1 {
2 " series ": [
3 {
4 " values ": [
5 [
6 "2025 -01 -24 T10 :55:44.531977 Z",
7 "5GMM - REGISTERED ",
8 "0x000e",
9 1,

10 14680064,
11 "",
12 " 001010000000025 ",
13 "001, 01",
14 "1"
15]
16]
17 }
18]
19 }

Listing A.2: Example of JSON object returned by the endpoint /amf_ue_stats

60

Listings

1 {
2 time: "2024 -10 -01 T11 :33:37.002967 Z"
3 Score: 8.4
4 Ran_ngap_ue_id : "6"
5 }

Listing A.3: Example of JSON object returned by the endpoint
/ue_mac_stats/{gnb_id}/imsi/{imsi}/score

61

Listings

1 package s c o r e c o l l e c t o r
2

3 import " g ithub . com/prometheus/ c l i en t_go lang /prometheus "
4

5 // S c o r e C o l l e c t o r implements the C o l l e c t o r i n t e r f a c e .
6 type S c o r e C o l l e c t o r s t r u c t {
7 ScoreValue ∗prometheus . Desc
8 ap iSe rve rUr l s t r i n g
9 }

10

11 // This map a s s o c i a t e s IMSIs with t h e i r s co r e va lue s .
12 type ScoreMap map [s t r i n g] f l o a t 6 4
13

14 // These s t r u c t s w i l l be used to s t o r e the r e s u l t returned by
15 // the f i r s t two endpoint , " amf_ue_stats " and "/ amf_gnb_stats " .
16 type S e r i e s s t r u c t {
17 Values [] [] i n t e r f a c e {} ` j son : " va lue s " `
18 }
19

20 type Data s t r u c t {
21 S e r i e s [] S e r i e s ` j son : " s e r i e s " `
22 }
23

24 // This s t r u c t w i l l be used to s t o r e the r e s u l t returned by
25 // the endpoint "/ ue_mac_stats/{gnb_id}/ ims i /{ ims i }/ s co r e " .
26 type Score_struct s t r u c t {
27 Time s t r i n g ` j son : " time " `
28 Score f l o a t 6 4 ` j son : " Score " `
29 Ran_ngap_ue_id s t r i n g ` j son : " Ran_ngap_ue_id " `
30 }

Listing A.4: Data structures used to store the JSON objects returned by the
endpoints

62

Listings

1 package manageClusters
2

3 import (
4 " context "
5

6 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ c l i e n t "
7)
8

9 // This s t r u c t w i l l be used to i n t e r a c t with k8s f u n c t i o n s .
10 type K8sAgent s t r u c t {
11 Cl i en t c l i e n t . C l i en t
12 Context context . Context
13 }
14

15 // This s t r u c t w i l l be used to manage c o n f i g u r a t i o n parameters .
16 type DiscoveryConf ig s t r u c t {
17 GatewayAddr s t r i n g
18 TotalAttempts i n t
19 P o l l i n g I n t e r v a l i n t
20 }
21

22 // This s t r u c t w i l l be used to manage the Discovery c o n t r o l loop l i f e
ñ→ −c y c l e .

23 type DiscoveryAgent s t r u c t {
24 K8s ∗K8sAgent
25 Config ∗ DiscoveryConf ig
26 CurrentAttempt i n t
27 }

Listing A.5: Data structures used to manage the discovery process

63

Listings

1 package scoremoni tor
2

3 import (
4 " g ithub . com/prometheus/ c l i en t_go lang / api "
5 v1 " github . com/prometheus/ c l i en t_go lang / api /prometheus/v1 "
6 " s i g s . k8s . i o / c o n t r o l l e r −runtime /pkg/ c l i e n t "
7)
8

9 // This s t r u c t w i l l be used to i n t e r a c t with Prometheus when
ñ→ per forming a PromQL query .

10 type PrometheusAgent s t r u c t {
11 c l i e n t api . C l i en t
12 api v1 . API
13 }
14

15 // This s t r u c t w i l l be used to s t o r e c o n f i g u r a t i o n data .
16 type ConfigParams s t r u c t {
17 Imsi s t r i n g
18 PrometheusUrl s t r i n g
19 Delta f l o a t 6 4
20 ScoresWindow s t r i n g
21 DecisionTimeout i n t
22 Threshold f l o a t 6 4
23 S o l v e r F i l t e r s P a t h s t r i n g
24 }
25

26 // This s t r u c t w i l l be used to manage the Arb i te r c o n t r o l loop l i f e −
ñ→ c y c l e .

27 type ScoreMonitorAgent s t r u c t {
28 prometheusCl ient ∗PrometheusAgent
29 c l i e n t c l i e n t . C l i en t
30 i s F i r s t I t e r a t i o n bool
31 isRemote bool
32 ims i s t r i n g
33 prometheusUrl s t r i n g
34 de l t a f l o a t 6 4
35 scoresWindow s t r i n g
36 th r e sho ld f l o a t 6 4
37 }

Listing A.6: Data structures used to manage the offloading process inside the
Arbiter

64

Bibliography

[1] Auday Al-Dulaimy et al. «The computing continuum: From IoT to the cloud».
In: Internet of Things 27 (2024) (cit. on pp. 2, 4).

[2] Kaiyuan, Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez, J.
Kubiatowicz, and K. Goldberg. «Fogros: An adaptive framework for automat-
ing fog robotics deployment». In: 2021 IEEE 17th International Conference
on Automation Science and Engineering (CASE) (Aug. 2021), pp. 2035–2042
(cit. on p. 7).

[3] J. Ichnowski et al. «Fogros2: An adaptive platform for cloud and fog robotics
using ros 2». In: 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA) (July 2023), pp. 5493–5500 (cit. on p. 7).

[4] K. Chen, R. Hoque, K. Dharmarajan, E. LLontopl, S. Adebola, J. Ichnowski, J.
Kubiatowicz, and K. Goldberg. «Fogros2-sgc: A ros2 cloud robotics platform
for secure global connectivity». In: 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Dec. 2023) (cit. on p. 7).

[5] A. Chebaane, S. Spornraft, and A. Khelil. «Container-based task offloading
for time-critical fog computing». In: 2020 IEEE 3rd 5G World Forum (5GWF)
(Sept. 2020), pp. 205–211 (cit. on p. 7).

[6] R. Anand, J. Ichnowski, C. Wu, J. M. Hellerstein, J. E. Gonzalez, and K.
Goldberg. «Serverless multi-query motion planning for fog robotics». In: 2021
IEEE International Conference on Robotics and Automation (ICRA) (2023),
pp. 7457–7463 (cit. on p. 7).

[7] T. V. Doan, Z. Fan, G. T. Nguyen, H. Salah, D. You, and F. H. P. Fitzek.
«Follow me, if you can: A framework for seamless migration in mobile edge
cloud». In: IEEE Conference on Computer Communications (INFOCOM)
(July 2020), pp. 1178–1183 (cit. on p. 8).

[8] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis. «Live service
migration in mobile edge clouds». In: IEEE Wireless Communications 25
(Feb. 2018), pp. 140–147 (cit. on p. 8).

65

BIBLIOGRAPHY

[9] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys) (2015) (cit. on p. 9).

[10] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 9).

[11] Melissa Sussmann. Five reasons why every CIO should consider Kubernetes.
Dec. 2023. url: https://www.sumologic.com/blog/why-use-kubernetes/
(cit. on p. 9).

[12] Kubernetes architecture. url: https://kubernetes.io/docs/concepts/
architecture/ (cit. on p. 10).

[13] Objects in Kubernetes. url: https://kubernetes.io/docs/concepts/
overview/working-with-objects/ (cit. on p. 13).

[14] Kubernetes deployments. url: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/ (cit. on p. 15).

[15] Kubernetes services. url: https://kubernetes.io/docs/concepts/servi
ces-networking/service/ (cit. on p. 16).

[16] Kubernetes Descheduler. url: https://github.com/kubernetes-sigs/
descheduler.git (cit. on p. 17).

[17] Prometheus. url: https://github.com/prometheus/prometheus (cit. on
p. 18).

[18] Prometheus overview. url: https://prometheus.io/docs/introduction/
overview/ (cit. on p. 18).

[19] Grafana. url: https://github.com/grafana/grafana (cit. on p. 20).
[20] Prometheus Operator. url: https://github.com/prometheus-operator/

prometheus-operator (cit. on p. 20).
[21] Example of ServiceMonitor. url: https://github.com/prometheus-opera

tor/kube-prometheus/blob/main/manifests/prometheus-serviceMoni
tor.yaml (cit. on p. 21).

[22] Liqo. url: https://github.com/liqotech/liqo (cit. on p. 22).
[23] Liqo peering. url: https : / / docs . liqo . io / en / v0 . 10 . 3 / features /

peering.html (cit. on p. 23).
[24] Namespace offloading in Liqo. url: https://docs.liqo.io/en/v0.10.3/

features/offloading.html (cit. on p. 25).
[25] FLUIDOS. url: https://fluidos.eu/ (cit. on p. 26).

66

https://blog.risingstack.com/the-history-of-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/kubernetes-sigs/descheduler.git
https://github.com/kubernetes-sigs/descheduler.git
https://github.com/prometheus/prometheus
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/grafana/grafana
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/kube-prometheus/blob/main/manifests/prometheus-serviceMonitor.yaml
https://github.com/prometheus-operator/kube-prometheus/blob/main/manifests/prometheus-serviceMonitor.yaml
https://github.com/prometheus-operator/kube-prometheus/blob/main/manifests/prometheus-serviceMonitor.yaml
https://github.com/liqotech/liqo
https://docs.liqo.io/en/v0.10.3/features/peering.html
https://docs.liqo.io/en/v0.10.3/features/peering.html
https://docs.liqo.io/en/v0.10.3/features/offloading.html
https://docs.liqo.io/en/v0.10.3/features/offloading.html
https://fluidos.eu/

BIBLIOGRAPHY

[26] FLUIDOS REAR protocol. url: https://github.com/fluidos-project/
REAR (cit. on p. 27).

[27] Neuropil. url: https://www.neuropil.org/ (cit. on p. 28).
[28] 1st open call winners. url: https://fluidos.eu/1st-open-call-winners/

(cit. on p. 28).
[29] Go for Cloud and Network Services. url: https://go.dev/solutions/

cloud (cit. on p. 34).
[30] General rules for Prometheus exporters. url: https://prometheus.io/

docs/instrumenting/writing_exporters/ (cit. on p. 40).
[31] DEMO - DEAS project: Enhancing Dynamic Workload Offloading with FLU-

IDOS and 5G. url: https://www.youtube.com/watch?v=H9xtZDQkKT0
(cit. on p. 58).

67

https://github.com/fluidos-project/REAR
https://github.com/fluidos-project/REAR
https://www.neuropil.org/
https://fluidos.eu/1st-open-call-winners/
https://go.dev/solutions/cloud
https://go.dev/solutions/cloud
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://www.youtube.com/watch?v=H9xtZDQkKT0

	List of Figures
	Acronyms
	Introduction
	The importance of a responsive computing continuum
	Goal of the thesis
	Thesis structure

	Edge Computing
	The need of an edge computing model
	State of the art
	FogROS
	Further optimizations

	Kubernetes
	Kubernetes history
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Common concepts
	Operations on objects
	Pod
	Namespace
	ReplicaSet
	Deployment
	Service

	Kubernetes scheduling concepts
	Taints and Tolerations
	Affinity and Anti-Affinity
	Kubernetes Descheduler

	Prometheus
	Prometheus architecture
	Prometheus metrics
	Discovering Kubernetes targets with Prometheus

	Liqo
	Liqo: motivations
	Liqo main concepts
	Liqo peering
	Liqo offloading

	FLUIDOS
	FLUIDOS: introduction
	FLUIDOS: a transparent computing continuum
	FLUIDOS Node
	Discovery of new Nodes

	DEAS
	Addressing fluctuating network conditions
	Channel quality representation

	Edge offloading for drone swarming scenarios
	Score management and task offloading
	System design and functioning
	Architecture of the system
	Technical design choices

	Possible design solutions for the offloading process
	First solution
	Second solution
	Confronting the two solutions

	Exporting the channel score to Prometheus
	Interacting with the external metrics server
	Collecting the metrics for Prometheus
	Executing the HTTP calls to the endpoints
	Possible alternative to the channel score: the 5G signal strength

	Discovery of new clusters
	Explaining the Discovery Agent logic
	Implementing the discovery process

	Offloading the workload between multiple clusters
	Arbiter logic
	Outer control loop
	Executing the PromQL query to Prometheus
	Performing the offloading operation

	Experimental evaluations
	Setup of the test environment
	Simulating a workload offloading scenario
	Performing a remote offloading
	Performing a local offloading

	Comparing the offloading operations: local and remote
	Comparing the Arbiter reaction time: 5G signal strength and channel score

	Conclusions
	Future directions

	Listings
	Bibliography

