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Abstract

Climate teleconnections are long-range relationships among climate phenomena
that underpin the foundation for explaining the climate dynamics of the planet
and forecasting extreme events. Although there has been remarkable progress in
climate science, many teleconnections remain inadequately characterized or even
unidentified, partly due to the limitations of conventional statistical methods that
cannot capture complex spatio-temporal dependencies and causality. A machine
learning model can address these limitations. One approach to representing spatio-
temporal relationships in climate data is through graphs, where nodes are points
in space and time projected onto a spherical approximation of Earth, and edges
connect each node at a specific time step to its neighbors in the subsequent time
step. In this way, a model is directed to learn causal directions of influence.
Graph neural networks (GNNs), especially graph attention networks (GATs),
can extract causal patterns in the graphs through message-passing mechanisms.
However, we need a reliable approach to assess the significance of those patterns. A
straightforward solution is to assume that attention weights computed by the model
yield estimates of causal strength. However, teleconnection analysis lacks ground
truth data, making it difficult to determine whether model choices are random or
reflect genuine causal relationships. Therefore, this represents an unsupervised
task that requires modeling the probability of inference correctness. To guide the
neural network in learning significant graph relationships, we employ a GAT as
the encoder in a variational graph autoencoder (VGAE) architecture, with the
training objective of learning meaningful data representations while minimizing
the entropy of attention weight distributions. If the model chooses a same long-
range connection at different scales of input data, then we can assume this is a
real teleconnection pattern. Results show that the model can potentially detect
known teleconnection patterns on ERA5 reanalysis dataset. However, current
limitations - including low spatial resolution, neglect of inter-variable relationships,
and absence of appropriate causality tests - indicate clear directions for future work
in discovering new teleconnections.
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Chapter 1

Introduction

1.1 Background

1.1.1 Teleconnections and climate challenges

The term teleconnection originates from the combination of two components: tele-,
a Greek-derived prefix meaning distant or far, and connection, referring to a link
or relationship between entities. Thus, teleconnection literally means a connection
over a distance. In climatology, teleconnections are significant relationships or
links between weather phenomena at widely separated locations on earth, which
typically entail climate patterns that span thousands of miles. Many teleconnection
patterns behave like a seesaw, with atmospheric mass/pressure shifting back and
forth between two distant locations — an increase in, say, atmospheric pressure in
one location results in a decrease in pressure somewhere far, far away [1].

Teleconnections are important because they highlight climate variability and
anomaly conditions at a global scale, thus allowing to understand the intercon-
nections between different regions and their climate systems. They can influence
weather patterns, precipitation, and temperature anomalies across vast distances,
affecting agriculture, water resources, and ecosystems. They can also play a role in
understanding and predicting extreme weather events, such as droughts, floods,
and hurricanes. They are often associated with atmospheric circulation patterns,
such as the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation
(NAO), and the Arctic Oscillation (AO). By analyzing such systems, scientists gain
insights into the underlying dynamics of climate variability, which is fundamental
for developing predictive models. These models are particularly vital in the context
of a changing climate, as they provide valuable tools for forecasting future trends,
managing natural resources, and preparing for climate-related risks.
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Introduction

1.1.2 A tribute to SDG 13: Climate action
The United Nations (UN) Sustainable Development Goal 13 (SDG 13) aims to
combat climate change and its impacts, recognizing the urgent need for global
action to address this pressing issue. Climate change poses significant threats to
ecosystems, human health, and economies worldwide, making it imperative to take
immediate and effective measures to mitigate its effects. SDG 13 emphasizes the
importance of reducing greenhouse gas emissions, enhancing resilience to climate-
related hazards, and promoting sustainable practices across all sectors. It calls
for increased investment in renewable energy, sustainable transportation, and
climate-resilient infrastructure, as well as the integration of climate considerations
into national policies and strategies. By fostering international cooperation and
knowledge sharing, SDG 13 aims to build a more sustainable and resilient future for
all, ensuring that future generations can thrive in a stable and healthy environment
[2].

In this context, the study of teleconnections becomes particularly relevant. The
ability to recognize and model distant climate relationships supports efforts to
anticipate and respond to climate variability, enhancing preparedness for extreme
events and long-term shifts. This thesis, by leveraging artificial intelligence (AI) to
explore and interpret teleconnection patterns, contributes to the broader objectives
of SDG 13. Through improved understanding of global climate interdependencies,
AI-driven approaches can inform climate-resilient policies, optimize resource man-
agement, and ultimately foster more effective climate action—advancing the shared
goal of a stable and sustainable future.

1.1.3 Climate indices
Climate indices are numerical values derived from climate data that summarize and
quantify specific climate phenomena, patterns, cycles. They are essential tools for
understanding and monitoring climate variability, trends, and anomalies [3]. There
are different examples of climate teleconnections that can be explained through
climate indices, and they can be classified into different categories based on their
characteristics and the phenomena they represent [4].

For instance, atmospheric pressure-based climate indices include North Atlantic
Oscillation (NAO), which is based on the surface sea-level pressure difference
between the Subtropical (Azores) High and the Subpolar Low. Fluctuations of this
difference lead to an atmospheric cycle characterized by positive and negative phases.
The positive phase of the NAO reflects below-normal heights and pressure across
the high latitudes of the North Atlantic and above-normal heights and pressure
over the central North Atlantic, the eastern United States and western Europe.
The negative phase reflects an opposite pattern of height and pressure anomalies
over these regions. Both phases of the NAO are associated with basin-wide changes
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in the intensity and location of the North Atlantic jet stream and storm track,
and in large-scale modulations of the normal patterns of zonal and meridional
heat and moisture transport, which in turn results in changes in temperature and
precipitation patterns often extending from eastern North America to western and
central Europe. Both phases alternate regularly, but the climate index can be used
to identify periods of persistent or strong positive or negative phases. Strong positive
phases of the NAO tend to be associated with above-normal temperatures in the
eastern United States and across northern Europe and below-normal temperatures
in Greenland and oftentimes across southern Europe and the Middle East. They
are also associated with above-normal precipitation over northern Europe and
Scandinavia and below-normal precipitation over southern and central Europe.
Opposite patterns of temperature and precipitation anomalies are typically observed
during strong negative phases of the NAO. During particularly prolonged periods
dominated by one particular phase of the NAO, abnormal height and temperature
patterns are also often seen extending well into central Russia and north-central
Siberia. The NAO exhibits considerable interseasonal and interannual variability,
and prolonged periods (several months) of both positive and negative phases of
the pattern are common [5]. Other atmospheric indices include Arctic Oscillation
(AO), Pacific North America pattern (PNA), Eastern Pacific Oscillation (EPO),
Western Pacific Oscillation (WPO), Scandinavian Pattern (SCAND), East Atlantic
/ Western Russia pattern (EAWR), Southern Oscillation Index (SOI), Antarctic
Oscillation (AAO).

Sea surface temperature (SST) based climate indices include the El Niño-
Southern Oscillation (ENSO), which is characterized by periodic fluctuations in
sea surface temperatures and atmospheric conditions in the tropical Pacific Ocean.
The ENSO has two main phases1: El Niño, characterized by warmer-than-average
sea surface temperatures in the central and eastern tropical Pacific, and La Niña,
characterized by cooler-than-average sea surface temperatures in the same region.
These phases have significant impacts on global weather patterns, including changes
in precipitation, temperature, and storm activity across various regions. The ENSO
is often monitored using the Oceanic Niño Index (ONI), which is based on sea
surface temperature anomalies in the central equatorial Pacific (Niño 3.4 region).
Positive values of the ONI indicate El Niño conditions, while negative values indicate
La Niña conditions. The ENSO is a key driver of interannual climate variability and
has far-reaching effects on ecosystems, agriculture, and water resources worldwide
[6]. Other sea surface temperature-based indices include Pacific Decadal Oscillation
(PDO), Atlantic Multidecadal Oscillation (AMO), Indian Ocean Dipole (IOD),

1Actually, there is a third phase called neutral phase, which is characterized by near-average
sea surface temperatures in the central and eastern tropical Pacific.
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North Pacific Gyre Oscillation (NPGO), Tropical North Atlantic Index (TNA),
Tropical Southern Atlantic Index (TSA).

Subseasonal climate indices include the Madden-Julian Oscillation (MJO), which
is a tropical atmospheric phenomenon characterized by eastward-propagating
disturbances in tropical convection and circulation. The MJO consists of two main
phases: the active phase, characterized by enhanced convection and rainfall over
the Indian Ocean and western Pacific, and the suppressed phase, characterized
by reduced convection and drier conditions over the same regions. The MJO has
significant impacts on global weather patterns, including changes in precipitation,
temperature, and storm activity across various regions. It is often monitored using
the Real-time Multivariate MJO Index (RMM), which combines information from
multiple atmospheric variables to provide a comprehensive view of the MJO state.
The MJO is a key driver of subseasonal climate variability and has far-reaching
effects on ecosystems, agriculture, and water resources worldwide [7].

Climate indices can be used to quantify climate dipoles, which refer to patterns
of climate variability characterized by opposing anomalies (e.g., temperature or
precipitation) in two spatially distinct regions. However, the term climate dipole
has a different meaning from climate index, because the former implies that there
are necessarily two opposing regions with respect to a specific phenomenon, while
the latter can also involve a single region.

1.2 Research question

1.2.1 Motivation and challenges
Understanding climate teleconnections remains one of the most pressing challenges
in contemporary climate science. While well-documented patterns such as ENSO,
NAO, and AO have provided valuable insights into global climate dynamics, the
complexity of Earth’s climate system suggests that numerous teleconnections re-
main undiscovered or inadequately characterized. This knowledge gap represents
a significant limitation in our ability to predict climate variability and extreme
events, particularly in the context of ongoing climate change. Traditional statistical
approaches to teleconnection analysis face fundamental constraints when dealing
with modern climate datasets: they assume linear relationships between climate
variables and struggle to capture the non-linear dynamics inherent in atmospheric
and oceanic systems. These approaches also lack the ability to establish causal di-
rectionality, making it difficult to distinguish between genuine physical connections
and spurious statistical associations. The increasing availability of high-resolution,
multi-dimensional climate datasets has exacerbated these methodological limita-
tions. As the volume and complexity of climate data continue to grow, traditional
statistical techniques become computationally prohibitive and fail to exploit the
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rich spatio-temporal information contained in modern climate observations. This
creates a paradox where our access to climate data has never been greater, yet
our ability to extract meaningful teleconnection patterns remains constrained by
outdated analytical tools.

The emergence of machine learning presents unprecedented opportunities to
overcome these limitations. Advanced neural network architectures have demon-
strated remarkable success in capturing complex patterns in high-dimensional
data across various scientific domains. However, the application of machine learn-
ing to teleconnection discovery faces unique challenges that distinguish it from
typical pattern recognition tasks. The absence of labeled training data means
that supervised learning approaches cannot be directly applied, requiring novel
unsupervised methodologies that can identify significant patterns while quantify-
ing their reliability. Furthermore, the physical nature of teleconnections imposes
additional constraints on machine learning approaches. Any method for telecon-
nection discovery must respect the spherical geometry of Earth, account for the
temporal evolution of climate patterns, and provide interpretable results that can
inform physical understanding of climate processes. These requirements necessitate
specialized architectures and training procedures that go beyond standard machine
learning applications.

The potential impact of advancing teleconnection research extends far beyond
academic interest. Improved understanding of global climate connections directly
supports the objectives of SDG 13 by enhancing our ability to predict climate vari-
ability, assess climate risks, and develop adaptive strategies. Better teleconnection
models could inform seasonal forecasting, improve extreme event prediction, and
support climate-resilient planning across multiple sectors.

1.2.2 Research objectives
We therefore set the research question for this work as follows:

How can we leverage machine learning to discover and interpret telecon-
nections in high-dimensional, spatio-temporal climate datasets?

To address this research question, the primary goal of the present work is to
develop and test machine learning methods for finding and understanding climate
teleconnections in observational climate data, addressing the problems of traditional
statistical methods while providing reliable identification of important climate re-
lationships. This research has several connected objectives that work together
to advance climate teleconnection analysis. The first objective involves creating
better ways to represent climate data that can capture the complex relationships
in space and time within Earth’s climate system. This includes building structural
frameworks that keep the round geometry of global climate observations and handle
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changes over time, while allowing analysis of long-distance climate connections,
without needing labeled training data. The data representation should also encour-
age causal relationships, enabling the identification of significant teleconnections
in a way that is computationally efficient and interpretable. The second objective
focuses on using advanced neural network methods to find patterns of climate
connectivity from these data representations. This involves using attention-based
mechanisms that can focus on relevant climate relationships across different spatial
and temporal scales, allowing the extraction of meaningful teleconnection patterns
from high-dimensional climate datasets while testing the framework’s ability to find
known teleconnections and exploring the potential for finding previously unknown
or poorly understood climate relationships. The third objective centers on building
strong methods for interpreting and checking the climate relationships identified
by machine learning models. This includes creating quantitative measures for
evaluating how significant discovered teleconnections are across different dataset
resolutions and time periods, ensuring that identified teleconnections represent real
physical connections rather than statistical artifacts.

This thesis aims to explore a scientific approach to address the described
objectives, and it should be considered as a starting point for future research in
this area. The methods and findings presented here are intended to provide a
foundation for further exploration and refinement of machine learning techniques
for teleconnection discovery, with the ultimate goal of enhancing our understanding
of global climate dynamics.

1.3 Thesis structure
The thesis is structured as follows. Chapter 2 provides an review of relevant
literature and existing methods. Chapter 3 outlines the methodology used in the
study, including data collection, preprocessing, and analysis techniques. Chapter 4
presents the results of the research, including key findings and insights. Chapter
5 discusses the implications of the findings, addresses limitations, and suggests
directions for future research. Finally, the thesis concludes with a summary of the
main contributions.
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Chapter 2

Literature review

In the following, we review the existing literature on climate teleconnections,
focusing on the methods and approaches used in previous studies. We start
considering the traditional statistical methods and how they are applied in climate
science, then we explore data-driven decomposition methods, which are increasingly
used to analyze complex climate data. Finally, we discuss the use of artificial
intelligence and neural networks. In general, we highlight features, advantages and
limitations of each approach, providing a comprehensive overview of the state of
the art in climate teleconnection analysis.

2.1 Statistical methods for climate science
A traditional approach to climate science is based on statistical methods, which
include regression analysis, time series analysis, and hypothesis testing [8]. These
methods are based on mathematical models that describe the relationships between
variables and can be used to identify trends, correlations, and anomalies in climate
data. Regression analysis is used to model the relationship between a dependent
variable and one or more independent variables [9].

2.1.1 Regression analysis
Regression analysis can be used to examine the impact of various factors on climate
variables, such as temperature or precipitation. For example, multiple linear
regression can be used to assess the influence of greenhouse gas concentrations
on global temperatures, while logistic regression can be employed to analyze the
likelihood of extreme weather events based on historical data. There are different
kinds of regression analysis, and they are described in Appendix A.1.

Traditional regression analysis relies on several key assumptions that may be
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challenging to satisfy in climate science applications [10]. While simpler regres-
sion models assume data independence, this assumption is particularly difficult
to achieve in climate data due to inherent temporal and spatial correlations in
climate variables. All regression approaches, in different forms, assume some form
of linearity: linear regression assumes a direct linear relationship between inde-
pendent and dependent variables; polynomial regression accommodates non-linear
relationships within a polynomial framework; logistic regression assumes linearity
between log-odds and predictors [11]. Additionally, these methods typically require
normally distributed errors with constant variance (homoscedasticity). In climate
science, complex non-linear relationships between variables, presence of outliers,
and non-normal distributions often violate these assumptions, potentially leading
to biased estimates and incorrect conclusions [12]. While temporal and spatial
correlations pose significant challenges for traditional approaches, modern methods
such as Graph Neural Networks (GNNs) have emerged to explicitly address these
spatial-temporal dependencies in climate data [13, 14]. These developments, along-
side time series analysis techniques, provide alternative frameworks for analyzing
climate data that can better accommodate the complex correlation structures
inherent in environmental systems.

2.1.2 Time series analysis
Time series analysis involves analyzing data points collected or recorded at specific
time intervals to identify trends, seasonal patterns, and cyclic behavior. Time series
analysis can be used to forecast future values based on historical data, making
it valuable for climate prediction. Common techniques include AutoRegressive
Integrated Moving Average (ARIMA) models [15], Seasonal-Trend decomposition
using LOESS (STL) [16], and exponential smoothing [17]. Please see Appendix
A.2 for a detailed description of these techniques.

The problem of time series analysis is that it assumes stationarity, i.e. mean
and variance constant over time, which is a property that allows for more reliable
predictions. However, climate data is often non-stationary due to trends, seasonality,
and other factors [18]. This non-stationarity can lead to biased estimates and
inaccurate predictions if not properly addressed. To overcome this issue, researchers
often apply transformations or differencing techniques to make the data stationary
before applying time series models, but this operation can sometimes remove
important information from the data. Moreover, classical time series analysis is
not effective at handling non-linearity and complex interactions between variables,
which are common in climate data. For example, teleconnections can involve
multiple climate variables interacting in complex ways, making it difficult to isolate
their individual effects. Additionally, time series analysis may struggle with high-
dimensional data, where the number of variables exceeds the number of observations,
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leading to overfitting and unreliable predictions [19]. STL tries to overcome these
limitations, and it is actually meant for handling non-stationary data, but it is
still based on linear assumptions. It also assumes that the seasonal component is
constant over time, which may not hold true in all cases. Moreover, STL relies
on the choice of smoothing parameters, which can significantly impact the results
because it can be challenging and may require trial and error or optimization
techniques [16]. Additionally, STL may not perform well with short time series
or when the seasonal patterns are weak or irregular. Therefore, researchers also
consider the approach of hypothesis testing.

2.1.3 Hypothesis testing
Hypothesis testing is a statistical method used to determine whether there is
enough evidence to support a specific hypothesis about a population based on
sample data [20]. In climate science, hypothesis testing can be used to assess
the significance of observed trends, correlations, or differences between groups.
Different kinds of hypothesis tests are available, and two main approaches can be
identified: frequentist and bayesian [21].

Frequentist hypothesis testing relies on the concept of p-values, which represent
the probability of observing the data given that the null hypothesis is true. A low p-
value (typically less than 0.05) indicates that the observed data is unlikely under the
null hypothesis, leading to its rejection in favor of the alternative hypothesis. The
frequentist approach assumes that the null hypothesis is true until proven otherwise
and focuses on the long-run frequency of events. It does not incorporate prior
knowledge or beliefs into the analysis, making it less flexible in certain situations.
Frequentist methods can be parametric or non-parametric. Parametric tests assume
that the data follows a specific distribution, usually normal distribution, they are
suitable for continuous data and can be used to compare means or variances
between groups, while non-parametric tests do not make such assumptions and
are suitable for ordinal data or when the assumptions of parametric tests are
not met. Non-parametric tests are generally more robust to outliers and skewed
distributions, making them suitable for analyzing climate data, which can often
exhibit non-normal characteristics. Parametric tests include t-tests [22], F-tests [23],
ANOVA [23] and some correlation tests, like Pearson’s correlation coefficient [24].
Non-parametric tests include Mann-Kendall (MK) [25], Sen’s slope [26], Pettitt
test [27] and some correlation tests, like Spearman’s rank correlation coefficient
[28]. See Appendix A.3.1 for details.

The problem of p-values is that they do not provide a direct measure of the
strength of evidence against the null hypothesis, and they can be influenced by
sample size, leading to false conclusions. This is the main limitation of frequentist
hypothesis testing, which can result in Type I and Type II errors. Type I error
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occurs when the null hypothesis is incorrectly rejected, while Type II error occurs
when the null hypothesis is incorrectly accepted. This limitation leads to consider
the Bayesian approach.

Bayesian hypothesis testing incorporates prior knowledge and beliefs, such as
expert opinions or historical data, into the analysis. It allows for a more flexible and
intuitive interpretation of results, as it provides a posterior probability distribution
for the parameters of interest. This enables researchers to quantify uncertainty
and make probabilistic statements about the hypotheses. Bayesian hypothesis
testing uses Bayes’ theorem to update the prior probability of a hypothesis based
on observed data. The posterior probability is calculated as:

P (H|D) = P (D|H)P (H)
P (D)

where P (H|D) is the posterior probability of the hypothesis H given the data
D, P (D|H) is the likelihood of the data given the hypothesis, P (H) is the prior
probability of the hypothesis, and P (D) is the marginal likelihood of the data. The
posterior probability can be interpreted as the degree of belief in the hypothesis
after observing the data. Bayesian hypothesis testing allows for a more nuanced
understanding of uncertainty and can provide more reliable conclusions in complex
situations. Bayesian methods can also be used to estimate parameters, make
predictions, and assess model fit. For example, Bayesian regression can be used to
model the relationship between climate variables while accounting for uncertainty in
the parameter estimates. Bayesian methods can also incorporate prior information
about the parameters, allowing for more robust predictions and better handling of
small sample sizes or missing data. There are different kinds of Bayesian hypothesis
tests, such as Bayes factor, Bayesian ANOVA, and Bayesian regression (please see
Appendix A.3.2).

Here the advantage is also the main challenge: the choice of prior distributions
can significantly influence the results and it can be subjective, so it can lead to biased
conclusions if the priors are not carefully chosen or if they do not accurately reflect
the underlying processes. Additionally, Bayesian methods can be computationally
intensive, requiring specialized software or algorithms for implementation. This
can make them less accessible to researchers who may not have the necessary
expertise or resources. Furthermore, Bayesian methods may not always provide
clear guidance on how to interpret the results, particularly when it comes to making
decisions based on posterior probabilities.

2.1.4 Usage for climate teleconnections and limitations
Statistical methods described above have been widely used in climate science to
analyze and model climate data, including teleconnections. For instance, multiple
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linear regression was employed by Rust et al. [29] to investigate the relationship
between the indices of twelve atmospheric teleconnection patterns and temperature
in Europe. Time series analysis, specifically ARIMAX (AutoRegressive Integrated
Moving Average with eXogenous variables), a variation from standard ARIMA,
was used by Rahman et al. [30] to improve rainfall predictions involving climate
teleconnection indices as predictors. MK and Sen’s slope tests were applied by
Abdullahi et al. [31] to detect trends in hydro-meteorological data. We observed
that all the statistical methods have important limitations, and additionally they
also may not be able to handle missing data or outliers effectively, which can
impact the accuracy of predictions. As a result, researches often employ statistical
methods in conjuction with other techniques.

2.2 Data-driven decomposition methods for cli-
mate science

Data-driven decomposition methods are a class of techniques used to analyze
complex datasets by breaking them down into simpler components. These methods
are particularly useful in climate science, where data can be high-dimensional and
exhibit non-linear relationships. Data-driven decomposition methods can help
identify patterns, trends, and relationships in the data, making it easier to under-
stand and model complex phenomena. Some common data-driven decomposition
methods include empirical orthogonal functions (EOF), singular spectrum analysis
(SSA) and dynamic mode decomposition (DMD).

2.2.1 Empirical orthogonal functions
Empirical orthogonal functions (EOFs) [32] are a statistical technique used to
analyze spatial and temporal patterns in climate data. They decompose a dataset
into orthogonal modes, which represent the dominant patterns of variability in
the data. EOF analysis is particularly useful for identifying spatial patterns in
climate variables, such as temperature or precipitation, and can help reveal under-
lying processes driving climate variability. See Appendix B.1 for a mathematical
description of EOF analysis. Some experiments show the usage of EOF analysis to
study teleconnections and other climate phenomena. For example, Huang et al. [33]
employed EOF to investigate the spatial patterns of the North Atlantic Oscillation
(NAO) and its relationship with temperature and precipitation in Europe. Although
powerful, EOF analysis suffers from a variety of limitations, for instance temporal
mixing: EOF modes often mix different temporal scales and physical processes, so
a single EOF mode might capture both trends and oscillations, making physical
interpretation difficult. EOF provides a snapshot view without explicitly capturing
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the temporal evolution of patterns. EOF modes are forced to be orthogonal, which
can lead to artificial splitting of coherent patterns that are not naturally orthogonal
in the data. EOF also assumes the covariance structure is stationary over time,
which often is not realistic for climate and geophysical data. These limitations lead
to explore alternative frameworks, like singular spectrum analysis.

2.2.2 Singular spectrum analysis
Singular spectrum analysis (SSA) [34] is a data-driven decomposition method
used to analyze time series data by decomposing it into a sum of components,
including trends, oscillations, and noise. SSA is particularly useful for identifying
periodic patterns and trends in climate data, making it a valuable tool for studying
teleconnections and other climate phenomena. A mathematical description of SSA
is provided in Appendix B.2. In climate teleconnections analysis, SSA proves partic-
ularly powerful for identifying and characterizing the dominant modes of variability
that link distant regions, so each component of the decomposition can correspond to
different teleconnection patterns. SSA is able to extract quasi-periodic oscillations
with time-varying amplitudes and frequencies, which are characteristic of climate
teleconnections. Unlike traditional spectral analysis methods that assume stationar-
ity, SSA can capture the non-stationary nature of climate oscillations, revealing how
teleconnection patterns evolve over time. Moreover, SSA enables the identification
of trend components that may be masked by high-frequency variability, providing
insights into long-term climate changes. The method can separate externally forced
trends from internal climate variability, helping researchers distinguish between
anthropogenic climate change signals and natural climate fluctuations. SSA can be
also applied to multiple climate time series simultaneously (MSSA), allows for the
identification of common modes of variability across different locations or climate
variables. This extension is particularly valuable for teleconnections analysis, as it
can reveal spatially coherent patterns and their temporal evolution, providing a
comprehensive view of how climate anomalies propagate across different regions
and time scales. Groth and Ghil [35] applied both SSA and MSSA to identify
weak oscillatory behavior in high-dimensional data and show shared mechanisms
of variability between the Gulf Stream and the North Atlantic Oscillation in the
interannual frequency band. Manta et al. [36] applied MSSA to the ERA5 data
to discover the main oscillators, in particular the South Atlantic Dipole (SAD),
which is probably related to PDO and ENSO. Like EOF, also SSA has important
limitations. For example, the mathematical nature of SSA imposes a significant
computational complexity, which grows with the length of time series. Although
different from EOF, SSA still assumes the time series is approximately stationary
over the analysis window, limiting its effectiveness for highly nonstationary or
transient phenomena. The window length is an important hyperparameter that
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can significantly affect the results: too short misses important patterns, too long
creates computational burden and can mix unrelated dynamics. SSA is also difficult
to interpret, because the components extracted may not correspond to physically
meaningful processes. A better option is to consider dynamic mode decomposition.

2.2.3 Dynamic mode decomposition
Dynamic mode decomposition (DMD) [37] is a data-driven technique for analyzing
complex dynamical systems by extracting coherent spatial-temporal patterns from
time-series data. Unlike traditional methods that separate spatial and temporal
analysis, DMD simultaneously identifies spatial patterns and their associated
temporal evolution, making it particularly valuable for understanding oscillatory
phenomena in climate systems. DMD assumes that the dynamics of a system can
be locally approximated by a linear operator, even when the underlying system
exhibits nonlinear behavior. Mathematical details are available at Appendix B.3.

In climate teleconnections analysis, DMD offers several advantages over tra-
ditional methods. First, temporal coherence: unlike EOF analysis, DMD modes
are coherent in time, meaning each spatial pattern evolves according to a single
temporal frequency, making it ideal for identifying oscillatory climate patterns
such as ENSO, NAO, and PDO. Second, frequency decomposition: the method
naturally separates patterns based on their temporal frequencies, enabling the
isolation of interannual, decadal, and multidecadal climate variability without
prior assumptions about the underlying dynamics. Third, predictive capability:
since DMD modes evolve according to known frequencies and growth rates, they
can be extrapolated forward in time for short-term climate prediction, providing
a data-driven forecasting framework. The linear superposition property allows
the system state to be expressed as x(t) = qr

i=1 biϕie
ωit, where bi are the mode

amplitudes determined by initial conditions [38]. Ferré et al. [39] developed a non-
stationary DMD that captures seasonal and ENSO-related modes in sea surface
temperature data from 1990-2016, showing distinct turn on/off spatial amplitude
patterns during El Niño and La Niña years. Despite its advantages, DMD has
important limitations that must be considered in climate applications. The linear
approximation assumption may not capture strongly nonlinear climate dynamics,
particularly during extreme events or regime transitions, although this limitation
is often acceptable for large-scale circulation patterns that exhibit quasi-linear
behavior. The method requires sufficient temporal resolution and length to capture
the frequencies of interest, typically necessitating monthly or seasonal data over
several decades for meaningful climate analysis. DMD assumes that the underlying
dynamics are stationary over the analysis period, which may be violated by cli-
mate change and natural variability in very long time series. The identification of
physically meaningful modes versus numerical artifacts requires careful analysis of
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eigenvalue magnitude, spatial patterns, and temporal evolution, as spurious modes
can arise from noise or insufficient data. Additionally, the method’s performance
can be sensitive to the choice of time lag and the number of snapshots, requir-
ing careful parameter selection based on the specific climate phenomena under
investigation. These limitations have led to the development of various extensions,
including sparsity-promoting DMD for noise reduction, multi-resolution DMD for
multiple time scales, and kernel DMD for handling nonlinear dynamics, making it
an increasingly sophisticated tool for climate teleconnection analysis.

While data-driven decomposition methods represent a significant advancement
over traditional statistical approaches, they still face fundamental limitations
when dealing with the full complexity of climate systems. The linear assumptions
underlying EOF analysis, the stationarity requirements of SSA, and the local
linearity constraints of DMD all restrict their ability to capture the highly non-
linear, multiscale, and interactive nature of climate teleconnections. Moreover, as
climate datasets grow in size, resolution, and complexity—encompassing satellite
observations, reanalysis products, and high-resolution model outputs—the need for
more flexible and powerful analytical frameworks becomes increasingly apparent.

2.3 Machine learning methods for climate science
The above mentioned challenges have led to the adoption of machine learning (ML)
methods in climate science, which offer several key advantages over traditional
approaches. ML methods can capture complex non-linear relationships without
requiring explicit mathematical formulation of these relationships; they can handle
high-dimensional datasets where the number of variables exceeds the number of
observations, a common scenario in modern climate science; many ML algorithms
are designed to work with non-stationary data and can adapt to changing patterns
over time. Finally, ML methods can automatically identify interactions between
variables that might be missed by traditional approaches, potentially revealing new
insights into climate teleconnections and their underlying mechanisms. Please see
Appendix C for a detailed description on how AI and ML methods work.

2.3.1 Evolution of machine learning approaches over time
The evolution of machine learning approaches in climate teleconnection analysis can
be traced through several key developments, beginning with early neural network
applications in the late 1990s and progressing to sophisticated deep learning
architectures in recent years.

Neural networks first entered climate science through Tangang et al. [40], who
pioneered the integration of artificial neural networks with Extended EOF anal-
ysis for ENSO forecasting. Breaking away from conventional linear statistical
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approaches, this research harnessed the non-linear pattern recognition strengths of
neural networks. Their hybrid framework initially employed EOF analysis to com-
press sea surface temperature data dimensionality, followed by a feed-forward neural
network for predicting ENSO indices with 12-month lead times. This breakthrough
demonstrated neural networks’ ability to capture intricate non-linear ENSO dy-
namics, matching or exceeding the performance of established statistical techniques.
Nevertheless, the research faced constraints including its narrow focus on a single
teleconnection pattern, reliance on basic neural network architecture, and failure
to address overfitting concerns typical in neural network implementations.

Expanding upon these foundational advances, Gershunov and Barnett [41] broad-
ened neural network applications to California’s regional precipitation forecasting,
emphasizing long-range predictions tied to large-scale atmospheric circulation dy-
namics. Their research employed MLPs to forge connections between Pacific Ocean
sea surface temperature anomalies and California precipitation patterns, extending
forecast horizons to several months. The study’s primary achievement lay in show-
casing neural networks’ capacity to translate global climate signals into actionable
regional precipitation forecasts—a vital bridge toward practical teleconnection
applications. Results indicated that neural networks consistently outperformed
conventional regression techniques in modeling the non-linear ocean-precipitation
relationships. Yet the investigation remained geographically constrained, offered
limited exploration of alternative neural network designs, and lacked thorough
validation using independent datasets.

A pivotal methodological leap emerged through Hsieh et al. [42], who leveraged
neural network models to uncover nonlinear winter atmospheric teleconnection
patterns linked to ENSO and AO. This research marked a fundamental shift toward
applying neural networks for understanding intricate climate relationships beyond
mere forecasting objectives. The investigators utilized neural network frameworks
to detect nonlinear teleconnections across surface air temperature, precipitation, sea
level pressure, and 500 hPa geopotential height, revealing quadratic relationships
with ENSO and AO indices. Remarkably, these nonlinear teleconnections demon-
strated enhanced perturbation propagation compared to their linear counterparts.
The investigation’s significance lies in providing tangible evidence that nonlinear
methodologies could expose teleconnection patterns invisible to traditional ap-
proaches, specifically establishing that climate indices exhibit quadratic rather
than purely linear relationships with atmospheric fields. Furthermore, the research
enhanced understanding of climate influence spatial extent, revealing that nonlinear
teleconnections propagate climate signals across greater distances than previously
recognized through linear analysis. Despite these advances, the study remained
confined to winter atmospheric patterns without exploring seasonal variations or
temporal evolution of nonlinear relationships.

Neural network sophistication escalated during the early 2010s with Spellman
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[43], who engineered specialized neural network models to examine large-scale
circulation patterns’ influence on regional temperature dynamics. This research
advanced the field methodologically by implementing more refined neural network
architectures and training protocols than predecessor studies. The investigators
concentrated on deciphering how global circulation patterns, especially the NAO
and PDO, shape regional temperature variations across diverse geographical areas.
Their primary accomplishment involved establishing that neural networks could
effectively model intricate, non-linear relationships between large-scale circulation
indices and regional temperature patterns, yielding insights into climate variability
mechanisms at regional scales. The research also enhanced comprehension of
these relationships’ temporal stability and seasonal fluctuations. Nonetheless, the
study’s scope remained restricted to temperature variables exclusively, without
investigating potential interactions among multiple climate variables.

Parallel innovations in convolutional neural networks materialized through Hoyos
et al. [44], who engineered technology for detecting climate patterns during flood
events using GCM data with CNNs1. This research tackled the formidable challenge
of linking global climate patterns to regional extreme events, with particular
emphasis on flood occurrences. The researchers implemented CNN architectures to
automatically recognize spatial patterns in climate model output associated with
elevated flood risk, constituting a major leap in pattern recognition capabilities
for climate science. Their central achievement involved proving that CNNs could
effectively learn complex spatial relationships in climate data without manual feature
engineering, resulting in enhanced identification of flood-prone climate states. The
investigation also advanced understanding of how global climate patterns manifest
regionally during extreme events. However, the research remained constrained by
its specific focus on one extreme event type and did not investigate the temporal
evolution of identified patterns.

Among the most recent breakthroughs, Papacharalampous et al. [46] introduced
the modeling of spatial asymmetries in teleconnected extreme temperatures through
advanced statistical and machine learning methodologies. This investigation rep-
resents current state-of-the-art understanding of complex spatial structures in
climate teleconnections, particularly examining how extreme temperature events

1A CNN (Convolutional neural network) is a type of deep learning architecture specifically
designed to process grid-like data, such as images or spatially distributed climate variables. It
employs convolutional layers to automatically learn spatial hierarchies of features, making it
particularly effective for tasks involving spatial patterns and relationships. The architecture
typically consists of multiple convolutional layers followed by pooling layers, which reduce
dimensionality while preserving important spatial information. The final layers are usually fully
connected layers that output predictions based on the learned features. CNNs have been widely
used in computer vision and image analysis, but they have also found applications in climate
science, especially for tasks like pattern recognition and classification of climate phenomena [45].
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display asymmetric patterns across different geographical regions. The researchers
constructed sophisticated statistical models capable of capturing spatial hetero-
geneity in teleconnection responses, addressing a substantial limitation of earlier
approaches that frequently assumed spatial homogeneity. Their fundamental con-
tribution involved establishing that spatial asymmetries in teleconnection patterns
constitute meaningful information about underlying physical processes governing
climate variability rather than mere noise. The study further enhanced compre-
hension of how extreme events propagate through the climate system and exhibit
location-dependent characteristics. Nevertheless, the investigation remained limited
to temperature extremes without exploring potential applications to other climate
variables, and lacked comprehensive causal inference methods to establish the
directionality of identified teleconnection relationships.

Contemporary developments in the field have been characterized by adopting
cutting-edge deep learning architectures, exemplified by Ham et al. [47], who
pioneered Graph Neural Networks (GNNs) for enhanced El Niño forecasting. This
investigation marked a conceptual transformation by treating climate data as graph-
structured information, where spatial relationships between regions are explicitly
modeled as graph edges. The researchers constructed a GNN-based framework
capable of capturing both local and remote influences on ENSO evolution, yielding
substantial improvements in forecast accuracy over traditional methods. Their
essential contribution involved proving that explicit spatial relationship modeling
through graph structures could enhance climate teleconnection representation
and boost predictive capability. The GNN approach delivered state-of-the-art
performance in ENSO forecasting with lead times reaching 18 months, constituting
a remarkable advancement over previous methodologies. Yet the study concentrated
primarily on ENSO prediction without exploring broader GNN method applicability
to other teleconnection patterns. The research also lacked detailed interpretability
analysis to identify which graph connections were most crucial for forecasting
performance.

2.3.2 Challenges and opportunities
Throughout the described chronological progression, persistent limitations surface
consistently across the literature. In general, the state of the art in machine
learning for climate science is more focused on predicting weather and climate
patterns rather than understanding the underlying physical mechanisms driving
teleconnections. This means that most approaches assume the existence of some
known climate indices, and base their observations on these indices, rather than
exploring the data to discover new teleconnections. This can lead to a limited
understanding of the complex interactions between different climate variables and
their impact on teleconnections. Perhaps most critically, the overwhelming majority
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of investigations lack rigorous causal inference methodologies, depending instead on
correlation-based approaches that cannot definitively establish climate relationship
directionality. This constitutes a substantial gap in the field, as comprehend-
ing causal relationships proves essential for developing reliable climate prediction
systems and understanding physical mechanisms underlying teleconnections. Fur-
thermore, numerous studies suffer from inadequate statistical significance testing,
especially regarding multiple comparisons and high-dimensional climate data.

Some attempts in literature have been made to address these limitations. For
example, Kawale et al. [48] proposed a method for causal discovery in climate data
using a combination of statistical tests and machine learning techniques, which can
help identify causal relationships between climate variables. Their approach inte-
grated Granger causality tests2 with conditional independence testing to distinguish
between spurious correlations and genuine causal relationships in high-dimensional
climate datasets. The methodology employed a two-stage framework: first applying
dimensionality reduction techniques to manage the curse of dimensionality inherent
in climate data, followed by systematic causal inference testing that accounts for
confounding variables and temporal dependencies. The authors demonstrated their
approach on sea surface temperature and atmospheric pressure data, successfully
identifying known causal pathways while filtering out spurious associations that
traditional correlation-based methods would incorrectly classify as causal. This
work represented an important step toward more rigorous causal analysis in climate
science, though it remained limited by computational constraints when applied to
very high-dimensional datasets and did not fully address the challenge of identifying
time-varying causal relationships that may evolve seasonally or during extreme
climate events.

The insufficient exploration of model interpretability represents another area
demanding future attention. While the progression from basic neural networks to
sophisticated deep learning architectures illustrates the field’s growing capacity to
capture complex non-linear relationships in climate data, this increased complexity
has frequently compromised interpretability, creating a performance-understanding
trade-off regarding underlying physical processes. The interpretability problem
extends beyond mere academic curiosity, but it poses significant practical challenges
for climate science applications. Climate scientists require understanding of not
just what a model predicts, but why it makes specific predictions, which physical
mechanisms it has learned to recognize, and whether its decision-making process
aligns with established climate physics. Traditional “black box” approaches, while

2Granger causality tests are a statistical hypothesis test for determining whether one time
series can predict another time series. In the context of climate data, this can help identify
whether changes in one climate variable (e.g., sea surface temperature) precede changes in another
variable (e.g., atmospheric pressure), suggesting a potential causal relationship [49].

18



2.3 – Machine learning methods for climate science

potentially offering superior predictive performance, fail to provide the mechanistic
insights necessary for advancing scientific understanding or building confidence in
model predictions among domain experts and policymakers.

Recent developments in Explainable Artificial Intelligence (XAI) offer promising
avenues for addressing these interpretability challenges in climate applications. XAI
encompasses a suite of techniques designed to make machine learning models more
transparent and interpretable, including attention mechanisms that highlight which
input regions most influence predictions, gradient-based attribution methods that
identify the importance of individual features, and layer-wise relevance propagation
techniques that trace prediction pathways through neural network layers. In the
climate domain, these approaches could potentially reveal which spatial patterns,
temporal sequences, or physical variables drive teleconnection predictions, thereby
bridging the gap between statistical performance and physical understanding [50].
Several studies have begun applying XAI techniques to climate problems. Attention-
based neural networks have been employed to identify which geographical regions
contribute most to climate predictions, while gradient attribution methods have
been used to understand how seasonal cycles and interannual variability influence
model decisions [51]. Shapley values and other game-theoretic approaches have
shown promise in quantifying the contribution of different climate variables to
extreme event predictions. However, these applications remain in their infancy,
and significant challenges persist in adapting XAI methods to the unique character-
istics of climate data, including its high dimensionality, complex spatio-temporal
dependencies, and the need for interpretations that align with physical processes
rather than purely statistical patterns [52, 53]. Recent comprehensive evaluation
frameworks have been developed to guide the selection and ranking of appropriate
XAI methods for specific climate science applications, addressing the challenge of
choosing among the growing number of available techniques [51].

Based on the above discussion, an important research gap can be addressed: the
concept of attention as a mechanism for explainable neural networks, integrated in
the GNN architecture, with a careful arrangement of data structure to represent
spatio-temporal relationships and recover causal patterns, and a proper interpreta-
tion of the results, can be a powerful tool for climate teleconnection analysis and
discovery without any prior knowledge on existing teleconnections, and constitutes
the foundation of the present work.

This concludes the discussion on the state of the art in climate teleconnec-
tion analysis, highlighting the evolution of methods from traditional statistical
approaches to advanced machine learning techniques. In the next chapter, we
will present the methodology employed in this research, which builds upon these
advancements to address the identified limitations and explore new avenues for
understanding climate teleconnections.
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Chapter 3

Methodology

In this chapter, we describe the methodology used in this project, including
the dataset choice, data processing, model architecture, training objectives, and
evaluation metrics.

The first step in the project execution was to choose a dataset that is suitable
for the purpose of the project, i.e. to analyze and discover climate teleconnections.
Various sources provide climate data, including paleoclimate proxies, in-situ ob-
servations, remote-sensed data, climate models, reanalysis data [54]. In Appendix
D, each of them is analyzed in detail. All them have their own strengths and
weaknesses. Specifically, each of them is suitable to a specific research question:
paleoclimate proxies are useful for long-term climate trends, in-situ observations are
valuable for local and regional studies, satellite data provides a global perspective,
climate models are essential for simulating complex interactions, and reanalysis
datasets offer a comprehensive view of the climate system. Choosing a dataset is
the basis for making any analysis, but then models and methods must be identified
in order to correctly analyze the data. For the purpose of this work, we assume to
use a reanalysis dataset, because we need full spatio-temporal information, gridded
data and long-range temporal coverage. After choosing the dataset, the next step
in the project execution was to analyze the dataset, to understand its structure
and the relationships between the variables. This task has been accomplished by
visualizing the data using various techniques, such as plotting the monthly averages
of the variables. This allowed to identify patterns and trends in the data, as well
as to detect any anomalies or missing values.
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3.1 Graph construction

3.1.1 Coordinates encoding
After analyzing the dataset, a proper data structure was identified in order to
represent the data in a way that is suitable for the neural network. We assume that
the dataset is gridded, meaning that the data is projected on a grid that covers
the entire globe, with each grid cell representing a specific geographical area. The
dataset is also spatio-temporal, because for each spatial location there are multiple
measurements taken at different times. First, some coordinates were defined, to
determine the meaning of each data sample. Since the objective is to analyze
climate teleconnections, which involves dealing with spatio-temporal information,
coordinates were defined as latitude and longitude for the spatial dimension, and
month and year for the temporal dimension. However, this information cannot be
directly used as input for the neural network, because, except for the year that
progresses linearly in the integer domain, the rest of the coordinates are defined
into a finite or periodic range. Let C be the set of coordinates, then:

C = {(y,m, ℓ, g) | y ∈ N, m ∈ [1, 12], ℓ ∈ [−90◦,+90◦], g ∈ [−180◦,+180◦]}

where y is the year, m is the month, ℓ is the latitude and g is the longitude. For
what concerns years, we just normalize them considering the range of years in the
dataset, namely Y = y1, y1, . . . , yn, where y1 is the first year in the dataset and yn

is the last year in the dataset. The normalization is performed as follows:

ϕy = y − y1

yn − y1

This way, the year is mapped to a value in the range [0, 1], which can be used as
input for the neural network. For the rest, a proper way to handle information in
m, ℓ, g is to use a cyclic encoding, which is not strictly necessary in the case of
latitude, because it has a continuous domain, but it is useful to avoid discontinuities
in the case of longitude, where −180◦ and +180◦ are the same point on the globe.
The advantage of this kind of encoding is easy to visualize in the case of months,
because January and December are adjacent in the month domain, but they are
not adjacent in the integer domain. In general, a cyclic encoding can be defined as
follows:

ψ(x, T ) = x

T
· 2π

where x is the value to be encoded and T is the period of the cyclic domain. For
months, we can use the following mapping:

ψ(m, 12) = m− 1
12 · 2π ∈ [0, 2π]
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For latitude and longitude, we first need to convert them from degrees to radians,
to map them to the ranges, respectively, [−π/2,+π/2] for latitude and [−π,+π]
for longitude. In other words:

ψ(ℓ, 180) = ℓ

180 · 2π ∈
5
−π2 ,+

π

2

6
ψ(g, 180) = g

180 · 2π ∈ [−π,+π]

Then, for more expressiveness of the coordinates, we can use a sine and cosine
encoding, which allows to represent the cyclic nature of the coordinates in a more
compact way. Therefore, the full mapping is the following:

ϕm =
5
cos

3
m− 1

12 · 2π
4
, sin

3
m− 1

12 · 2π
46

ϕℓ =
C
cos

A
ℓ

180 · 2π
B
, sin

A
ℓ

180 · 2π
BD

ϕg =
5
cos

3
g

180 · 2π
4
, sin

3
g

180 · 2π
46 (3.1)

where ϕ is the mapping function that transforms the coordinates into a two-
dimensional vector. Thus, a point in space and time is identified by the following
vector:

c = [ϕy, ϕm, ϕℓ, ϕg]

The point has associated a vector of features f = [f1, f2, . . . , fk], where fi is the
value of the i-th variable at that point in space and time, for a total of k variables,
selected in the dataset analysis. Hence, any point is represented by the tuple:

p = [c, f ]

The outcome of this step is a mapping between a data entry d from the original
dataset D and a point p in the new representation P . We can think about D,P as
two different spaces, and:

enc : D → P
d→ p

as a function that maps a data entry from the original dataset to a point in the
new representation. The mapping is one-to-one, meaning that each data entry
corresponds to a unique point in the p-space, and vice versa. Therefore, let D = |D|
be the cardinality of the original dataset, and P = |P| be the cardinality of the
p-space, then we have D = P . In other words, we have a bijective mapping between
the two spaces, which preserves the information contained in the original dataset.
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3.1.2 Grid2mesh

The encoding process described before is a first step towards a data representation
that takes into account the shape of the Earth. In fact, the Earth can be approxi-
mated as a sphere, but a gridded dataset collects measurements assuming a flat,
rectangular Earth. As a result, points at a same time step but in different grid
cells do not necessarily correspond to different locations on the globe: the identity
holds for all locations at the equator, but as we get closer to the poles, the distance
between two points at the same latitude but different longitudes decreases, until it
becomes zero. A proof of this is shown in Appendix E.1. The grid distortion leads
to an overrepresentation of information at the poles, and a proper data handling
mechanism should take care of this. Therefore, we chose to adopt a grid2mesh
strategy, which consists in mapping the gridded data onto a triangular mesh that
approximates the spherical shape of the Earth. In general, a polygon mesh is a
collection of vertices, sides, and faces that defines the shape of a 3D object in space.
In the case of a triangular mesh, each face is a triangle defined by three vertices. A
polygon mesh can approximate, up to a specified refinement level, complex shapes
and curved surfaces more effectively than a regular grid, and triangular mesh is
particularly suitable to the purpose of representing the Earth’s surface. The refine-
ment level is defined as the number of times the mesh is subdivided into smaller
triangles, starting from a base shape, and can be interpreted as the resolution of the
mesh. Refinement can be performed through different strategies, but for triangular
meshes it is quite common to use the midpoint subdivision method, which consists
in connecting the midpoints of each side of the triangles to create new vertices,
and then forming new triangles with these vertices. Theoretically, the mesh could
have higher resolution than the grid, but that would mean that the same feature
values are replicated across multiple mesh vertices, because the mesh cannot extract
more information than the grid already contains. In the following, we assume
that the mesh resolution is always lower than or equal to the grid resolution. The
simplest form of triangular mesh for a spherical surface is the icosahedron, which
is a polyhedron with F = 20 triangular faces, V = 12 vertices and E = 30 sides.
Assuming a unit sphere, i.e. a sphere with radius equal to 1, let:

φ = 1 +
√

5
2 ≈ 1.6180339887
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be the golden ratio, i.e. the limit of the ratio of consecutive Fibonacci numbers1.
Then, assuming cartesian coordinates (x, y, z), a common way to define the vertices
of the icosahedron is the following:

V1 = (−1, φ, 0) V2 = (1, φ, 0) V3 = (−1,−φ, 0) V4 = (1,−φ, 0)
V5 = (0,−1, φ) V6 = (0, 1, φ) V7 = (0,−1,−φ) V8 = (0, 1,−φ)
V9 = (φ, 0,−1) V10 = (φ, 0, 1) V11 = (−φ, 0,−1) V12 = (−φ, 0, 1)

Each face can be represented as a triplet of vertices:

F1 = (V1, V12, V6) F2 = (V1, V6, V2) F3 = (V1, V2, V8) F4 = (V1, V8, V11)
F5 = (V1, V11, V12) F6 = (V2, V6, V10) F7 = (V6, V12, V5) F8 = (V12, V11, V3)
F9 = (V11, V8, V7) F10 = (V8, V2, V9) F11 = (V4, V10, V5) F12 = (V4, V5, V3)
F13 = (V4, V3, V7) F14 = (V4, V7, V9) F15 = (V4, V9, V10) F16 = (V5, V10, V6)
F17 = (V3, V5, V12) F18 = (V7, V3, V11) F19 = (V9, V7, V8) F20 = (V10, V9, V2)

This structure corresponds to a mesh without any refinement, i.e. the refinement
level is 0. To get to refinement level 1, each triangle is subdivided into smaller
triangles, by connecting the midpoints of each side of the icosahedron, and so
on. Figure 3.1 shows this process. Starting from this mesh, we need to map grid
points to mesh points. Latitude ℓ and longitude g are geographical coordinates that
inherently hold a spherical nature, in fact they are angular distances respectively
from the equator and the prime meridian. However, they need to be converted to
cartesian coordinates to be represented on a mesh. The conversion is performed as
follows:

xγ = cos (ℓ) · cos (g)
yγ = cos (ℓ) · sin (g)
zγ = sin (ℓ)

1The Fibonacci sequence is defined as:

F (n) =


0 if n = 0
1 if n = 1
F (n− 1) + F (n− 2) if n ≥ 2

where F (n) is the n-th Fibonacci number.
The golden ratio is defined as:

φ = lim
n→∞

F (n)
F (n− 1) = 1 +

√
5

2
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Figure 3.1: Mesh refinement process: starting from a single triangle (Level 0),
each triangle is subdivided into four smaller triangles by connecting the midpoints
of its sides (Level 1). The process can be repeated recursively for higher refinement
levels (Level 2).
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where (xγ, yγ, zγ) are the cartesian coordinates of the grid point on the sphere
corresponding to the geographical coordinates (ℓ, g), expressed in radians. From
Equation 3.1, we know a sine-cosine encoding of latitude and longitude, so we can
use the following mapping:

xγ = ϕℓ[1] · ϕg[1]
yγ = ϕℓ[1] · ϕg[2]
zγ = ϕℓ[2]

where ϕk[i] is the i-th component of the encoding of the coordinate k. Unless lucky
cases, the grid point does not correspond to any vertex of the mesh, so we need
to find the closest vertex to the grid point, and this implies computing a distance
metric. Let g = (xγ, yγ, zγ) be the grid point, and mi = (xi, yi, zi) be the i-th
vertex of the mesh. One could think to use the Euclidean distance:

d(g,mi) =
ñ

(xγ − xi)2 + (yγ − yi)2 + (zγ − zi)2

where Vi is the i-th vertex of the mesh, and (xi, yi, zi) are its cartesian coordinates.
However, for the spherical assumption, this is wrong, and we need an angular
distance metric, rather than a linear, plain one. The angular distance can be
computed using:

d(g,mi) = arccos
A

g ·mi

∥g∥ · ∥mi∥

B
(3.2)

where g ·mi is the dot product between the two vectors, and ∥g∥ and ∥mi∥ are
their respective norms. The norm is necessary because the dot product is not
normalized, so it can lead to values outside the range [−1, 1], on which the arccos
function is defined. The closest vertex is the one with the minimum distance:

mg = arg min
mi

d(g,mi)

Using the logic of the closest one, it is possible, and it is more likely as the mesh
refinement level is lower, that two or more grid points are mapped to the same
mesh vertex. One could think to just average pooling the features over the grid
points that are mapped to the same vertex, i.e.:

fk = 1
|Gk|

Ø
g∈Gk

fg

where Gk is the set of grid points mapped to the vertex mk, and fg is the vector
of features associated to the grid point g. However, this does not solve the
overrepresentation at the poles, because in the original grid each cell has the same
size, but the spherical area of a cell near the poles is much less than near the
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equator. To avoid this, we can use an area-weighted average pooling, where the
weights are proportional to the actual area of the grid cells on the sphere:

fk ≈
q

g∈Gk
cos(ℓg) · fgq

g∈Gk
cos(ℓg)

A proof of this approximation is provided in Appendix E.2. This means that we
can approximate the area-weighted average pooling with a cosine-weighted average
pooling, where the weights are proportional to the cosine of the latitude of the
grid cell. This approach is then applied to both spatio-temporal information and
climatology, in order to extract, from the mesh representation, feature anomalies,
that are computed as the difference between the feature value at a given point and
the climatology value at that point. Climatology was obtained by averaging the
values of each variable over a predefined time period, resulting in a single value for
each grid cell and for each month, regardless of the year. Let ft,s be the feature
vector at a given point in space and time, and f clim

mt,s be the climatology feature
vector at that spatial location for the month of the year mt associated to time step
t, then the anomaly is defined as:

fanomaly
t,s = ft,s − f clim

mt,s

In the following, anomalies are used in place of the original features, because they
are more informative and allow to highlight the deviations from the climatology.

This step, as anticipated, does not preserve the cardinality of the original dataset,
because an aggregation is performed over the grid points mapped to the same mesh
vertex. Therefore, the mapping is not one-to-one anymore, but it is many-to-one.
LetM be the space of the mesh representation and m a mesh point. The following
function:

grid2mesh : P →M
p→m

maps each grid point to a mesh vertex. Let M = |M| be the cardinality of the
mesh representation, then we have P ≥ M . In other words, the mapping is not
injective anymore, and it is not a bijection anymore, because the information is
virtually lost in the aggregation process. We can say that:

M = 1
α
P

where α ≥ 1 is the average number of grid points mapped to each mesh vertex,
and depends on the mesh refinement level, the grid resolution and distance metrics.
This average can be expressed as function of the latitude:

α(ℓ) = 2ᾱ
π · cos(ℓ)
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where ᾱ is the mean value of the integral over the surface of the Earth, described
in Appendix E.3. At the equator, ℓ = 0, so:

α(0) = 2ᾱ
π

At the poles, ℓ = ±π
2 , so:

lim
ℓ→± π

2

α(ℓ) = lim
ℓ→± π

2

2ᾱ
π · cos(ℓ) = +∞

This means that, if the grid resolution is high enough, the average number of grid
points mapped to each mesh vertex is very high at the poles, and very low at the
equator.

3.1.3 Time windowing
Now that we have a mesh representation of the data, we can construct a graph
from it. A graph is defined as a set of nodes and edges, where each node represents
a point in space and time, and each edge represents a relationship between two
nodes. In our case, the nodes are built using the encoding of year and month as
temporal coordinates, the mesh vertices as spatial coordinates and the feature
anomalies as features. In other words, each node is defined as:

vi =
è
ϕy, ϕm,mi, fanomaly

i

é
We now introduce this notation2:

vt,s = [ct,s, ft,s]
ct,s = [ϕyt , ϕmt ,ms]
ft,s = fanomaly

t,s

where t is the time step, s is the spatial location, ϕyt is the encoding of the year at
time step t, ϕmt is the encoding of the month at time step t, and ms is the mesh
vertex corresponding to the spatial location s. Making explicit the dependence on
time and space is necessary because we want a graph representation that captures
both dimensions. In fact, considering the broader objective to analyze climate
teleconnections, we need to account for variation of features over time, and above

2Beware that ft,s is actually a redefinition, because it was already used to denote the feature
vector at a given point in space and time, but here it is used to denote the anomaly feature vector.
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all the neural network architecture must be able to learn these variations effectively.
From the point of view of graph construction, there are several ways to represent
data, by creating a graph where nodes represent the measurements collected at
either:

(s1) one spatial location

(s2) multiple spatial locations but not all together

(s3) all spatial locations

for the spatial setting, and at either:

(t1) one time step

(t2) multiple time steps but not all together

(t3) all time steps

In Figure 3.2, a graphical example of all the 9 possible configurations is provided.
The nodes are represented as circles on the planet map for simplicity, but from
Section 3.1.2 we know that they are actually mesh vertices, and therefore they are
uniformly distributed on the sphere but not on a planar projection. Each node
incorporates measurements collected at a specific point in space and time. Shown
edges are just a subset of the possible ones, to highlight the different configurations,
and here they are meant exclusively as connecting spatial locations at consecutive
time steps, but it is not the only possible choice. Each map is associated with
a point in time, whose unit of measure, in our convention, is the month of the
year. Therefore, a graph should be intended as made up of one map, or more
maps connected each other, depending on the configuration. From this list, we can
actually exclude the cases whose spatial setting is (s1), because the resulting graph
would not capture the spatial relationships between different locations. Similarly,
we can also filter out the cases whose temporal setting is (t1), because they do not
account for temporal relationships.

For the moment, we focus on the choice of the better configuration with respect to
the spatial setting. (s2) can be a good approach if the network is able to keep track
of the spatial views observed for each input data. However, these views must be
carefully designed. In fact, if each spatial view is obtained by selecting near locations
on the Earth, the result is a graph that does not capture the global relationships
between distant locations, so the neural network should combine information from
different spatial views to have a comprehensive understanding of the data: for each
spatial view, the network can elaborate a meaningful representation of that portion
of the Earth, and then connect representations belonging to different spatial views
to capture the global relationships. This approach is reasonable if the spatial
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(a) (s1, t1) (b) (s2, t1) (c) (s3, t1)

(d) (s1, t2) (e) (s2, t2) (f) (s3, t2)

(g) (s1, t3) (h) (s2, t3) (i) (s3, t3)

Figure 3.2: Spatio-temporal graph configurations: all combinations of spatial
(s1, s2, s3) and temporal (t1, t2, t3) settings. The labels indicate the spatial and
temporal settings used in each configuration.
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complexity of the dataset is high, so it is not feasible for the network to learn the
relationships between all locations at once. A possible network architecture for this
case, assuming that for any input the time view is the same, is a shared encoder,
combined with a set-based aggregator. For instance, a GNN encoder can be applied
on each spatial view to learn separate representations, and then a Set Transformer3

combines all them into a single representation, to be used for the final prediction.
Instead, if each spatial view contains random locations, the network can learn the
correlation between the features of those locations, but it is not guaranteed that the
resulting representation is meaningful. In fact, the network could learn to associate
locations that are not actually related, leading to a poor generalization. For what
concerns the case (s3), if the dataset is not too large, it is the most straightforward
approach, because the network can learn the relationships between all locations at
once, without the need to combine representations from different spatial views.

We now focus on the temporal setting. (t2) is a good choice if the network is
able to keep track of the temporal views observed for each input data. Again, the
effectiveness of this configuration depends on how time views are defined. It does not
really make sense to build graphs with information coming from random time steps,
because we have no guarantee that edges connecting nodes at different time steps
are significant. Instead, if the time view is obtained by selecting some consecutive
time steps, the resulting graph captures meaningful temporal relationships, and
hopefully, depending on how edges are defined, they could also express causal
patterns. The challenge, similarly to the case of (s2), is to design a network capable
to extract such relationships, taking into account different inputs. If the objective
is to model complex temporal dynamics, the network should be able to learn from
multiple time steps simultaneously, potentially using techniques such as temporal
convolutions or recurrent layers. In other words, assuming that the spatial view
is the same for any input, a possible network architecture is a shared encoder,
combined with a temporal aggregator. The case (t3) can be feasible only if the
dataset’s temporal dimension is not too large, but teleconnection analysis implies a
long-term perspective, so it is not the best choice. In fact, if the dataset contains
many time steps, the network could struggle to learn meaningful relationships,
because it would be overwhelmed by the amount of information.

Considering these insights, we can conclude that the best choice is to use
the configuration (s3) and (t2): this allows the network to learn meaningful
relationships between spatial locations, while still capturing temporal dynamics.
We then introduce the concept of time window wη = {t1, t2, . . . , tη}, which is a
set of consecutive time steps, where t1 is the first time step, tη is the last one

3A Set Transformer is a neural network architecture designed to process sets of elements, where
the order of the elements does not matter. It uses self-attention mechanisms to learn relationships
between elements in the set, and it can be used to aggregate information from different sets [55].
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and η is the number of time steps in the window. Time windows can partially
overlap, meaning that the same time step can be included in multiple time windows.
However, we assume that a total overlap is not possible, as it would generate
identical time windows. Let T be the set of time steps and Wη be the set of all
time windows of length η. The following function:

time2window : T → Wη

t→ wη

maps each time step to a time window, where t is the time step and wη is the
time window containing that time step. Let Wη = |Wη|, T = |T |. We assume that
each time window is shifted by one time step, so is trivial to show that, given η,
Wη = T − η + 1.

As anticipated, we want to build a graph G whose nodes vt,s are points in space
and time. We state that each graph represents a time window, so it should be
identified by the first and last time steps of the window. We can introduce the
following notation:

Gi,η = (Vi,η, Ei,η)
where Gi,η is the graph that starts in month i and ends after η time steps, so it
represents the time window {i, i + 1, . . . , i + η}, Vi,η is the set of vertices of the
graph and Ei,η is the set of edges. The set of vertices is defined as:

Vi,η = {vt,s | t ∈ {i, i+ 1, . . . , i+ η}, s ∈ {1, 2, . . . ,M}}

This better highlights the fact that a same spatial location appears in every time
step, and so for each time window. Hence, S = η ·M is the number of points in
space and time in each time window and Nη = Wη · S is the total number of points
in all time windows. The following function:

spatiotemporal2graph : Wη → Gη

wη → Gη

maps each time window to a graph. The set of graphs Gη is then defined as:

Gη = {Gi,η | i ∈ {1, 2, . . . , T − η}}

where T is the total number of time steps. For each time window, a corresponding
graph is built, so the total number of graphs is |Gη| = Wη, each graph contains S
nodes and the total number of nodes in all graphs is Nη.

3.1.4 Temporal influence
The edges can be defined as connections between nodes at consecutive time steps,
or more complex relationships depending on the specific task. In this case we deal
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with task of teleconnection analysis, so we seek for causal relationships. Therefore,
edges should be directed, otherwise the network could just recover the strength
of the correlation, but not the direction of influence. A generalist approach is to
define a fully connected graph, where each node is connected to all other nodes
(see Figure 3.3).

Figure 3.3: Fully connected graph representation with bidirectional edges using a
mesh of M = 4 points and T = 3 time steps. Arrows are omitted for clarity. On
the left, intra-temporal edges, connecting nodes at the same time step, are shown
in blue. On the right, the geometry of the mesh is ignored, mesh points belonging
to the same time step are disposed on a line, and inter-temporal edges, connecting
nodes at different time steps, are shown in green.

However, trivial domain knowledge suggests that it does not make sense to
connect a point in space and time to points belonging to previous time steps,
because the present or future cannot influence the past. Therefore, a more plausible
approach is to define a graph where edges are directed from past to future time
steps, possibly changing spatial location, and from one spatial location to another
one at the same time step (see Figure 3.4).

Figure 3.4: Graph representation with directed edges using a mesh of M = 4
points and T = 3 time steps. Arrows are omitted on the left for clarity. On
the right, some edges are highlighted to show all the possible kinds of temporal
relationships: from t to t+ 1, from t to t+ k ∀k, with and without changing spatial
location. See Figure 3.3 for the meaning of shapes and colors.

We ask ourselves whether this graph structure is the best choice, thinking
about how a neural network should interpret the graph to obtain a meaningful
representation. Since, over the entire training, the network sees all time windows,
it can learn to associate spatial locations with their temporal dynamics, even
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if not all times are connected each other. In other words, given t, s, instead of
connecting node vt,s to node vt+k,s ∀k, it is enough to connect it to node vt+1,s:
on one hand, putting connections for all k would guide the model to analyze all
possible temporal causal paths, but on the other hand, it would introduce a lot of
redundant connections, which could lead to overfitting. Therefore, we can simplify
the representation as shown in Figure 3.5.

Figure 3.5: Graph representation with directed edges using a mesh of M = 4
points and T = 3 time steps, where edges are directed only to the same and next
time step. Arrows are omitted on the left for clarity. See Figure 3.3 for the meaning
of shapes and colors.

3.1.5 Spatial influence
Still keeping in mind the objective of teleconnection analysis, we can further simplify
the graph structure by removing edges connecting nodes at the same time step:
although they inherently represent teleconnections, since they associate climate
features in different, even far, locations, they are not useful for causal inference,
because they do not provide any information about temporal relationships. In
particular, we can assume that a current event can only influence future events,
and not other current events. Hence, with respect to Figure 3.5, we just ignore the
left diagram. The current configuration assumes that any node vt,s can influence all
nodes at the next time step, regardless of their spatial location. However, although
in general each phenomenon is never totally independent from the others, it is
reasonable to assume that a node vt,s can influence only nodes at the next time step
that are close in space. This is also justified by the fact that the time granularity
is one month, which is a relatively little time step for most climate phenomena,
so it is unlikely that an event can spread across the globe in just 30 days: some
conditions become evident in years or decades.

We can assume that a node vt,s can influence only nodes vt+1,s′ , where s′ ∈ Ns,
i.e. the mesh point s′ is a neighbor of the mesh point s in the mesh representation.
Consequently, a node vt,s can be influenced only by nodes vt−1,s′ , where s′ ∈ Ns.
A neighbor s′ is a point adjacent to the point s in the mesh representation, i.e.
the polyhedron based on which the mesh is built has a side between s and s′.
Figure 3.6 shows this concept of influence on a mesh without refinement. This
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Figure 3.6: Graph representation of an icosahedron mesh with M = 12 points
and T = 2 time steps. First time step is shown on the left, second time step is
shown on the right. Since the mesh is not refined, node τ has 5 neighbors σi, edges
are shown in red and highlight the present-future relationships. The same rule is
applied to every other node.
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assumption is very strong and could seem to exclude the possibility of long-range
teleconnections. However, again we consider the fact that climate phenomena take
long time to manifest on a global scale. Therefore, single edges, that traverse a
time step and move in the neighborhood of the starting spatial location, cannot
express teleconnection patterns. We then introduce the concept of path of length k
as a sequence of k edges that connect a node vt,s to a node vt+k,s′ through k − 1
intermediate nodes. s, s′ are related by the following condition:

s′ ∈ N (k)
s =

kÛ
i=1
N (i)

s (3.3)

where N (i)
s is the set of neighbors of s at distance i, i.e. the set of mesh points that

are reachable from s by traversing i sides of the mesh. As anticipated, each edge of
the path connects a node at time t to a node at time t+ 1, so a path inherently
captures spatio-temporal relationships and can express long-range teleconnections
by connecting distant nodes through intermediate neighbors. A path is defined as:

P
(k)
t,s,s′ = (evt,s,v

t+1,s(1) , . . . , ev
t+k−1,s(k−1) ,vt+k,s′ )

where t is the time step of the first node, s is the spatial location of the first node,
s′ is the spatial location of the last node, and s(i) is the spatial location of the i-th
intermediate node. Each edge is defined as:

ev
t∗,s(i) ,v

t∗+1,s(j) =
1
vt∗,s(i) , vt∗+1,s(j)

2
where t∗ is the time step of the source node, s(i) is the spatial location of the source
node and s(j) is the spatial location of the destination node. An example of path is
shown in Figure 3.7. Considering Equation 3.3, we can imagine that, as the length
of the path increases, given a destination node vt+k,s′ , the number of possible source
nodes vt,s increases, because the set of neighbors N (k)

s grows. In other words, the
longer the path, the more distant the source node can be from the destination
node. This has also another interpretation: the longer the path, the bigger is the
area of the Earth that can influence a single node. We can express this concept
by introducing the notion of cone-shaped relationship between points in space and
time, where the apex of the cone is the destination node and the base is the set of
source nodes that reach it by traversing a path of length k. The cone is defined as:

C
(k)
t,s =

î
vt−k,s′ | s′ ∈ N (k)

s

ï
where t is the time step of the destination node, s is the spatial location of the
destination node, and s′ is the spatial location of the source node. The cone-shaped
relationship is shown in Figure 3.8.
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Figure 3.7: Graph representation of a path of length k = 3 over the planet
connecting North America with Central Africa with T = 4 time steps. The position
of mesh points is not exact and is just to illustrate that, at each time step, the
spatial location moves to a geographical neighbor.
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Figure 3.8: Cone-shaped relationship between mesh nodes on a graph with T = 3
time steps. For simplicity, a cone is represented as a magnifying glass, where the dot
at the top represents the destination node, and the circle at the bottom represents
the set of source nodes that can reach it by traversing a path of length k = 1,
i.e. the neighbors of the destination node. Backward in time, the exploration of
the neighbors continues just for one node, to avoid excessive graphical complexity.
In red is indicated the cone of influence of the destination node with respect to
the previous time step. In green is shown the cone of influence of one of the
intermediate nodes of the path. In blue is indicated the extension of the cone
of influence in a specific time step, i.e. the farthest nodes that can influence the
destination node at that time step.
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Please note that, since we are accounting for neighbors, we are actually excluding
the temporal relationships for the same spatial location, so a mesh node does not
influence itself at the next time step. We do not explicitly constrain in any way
the distance between the source and destination mesh nodes along a path, so it
is possible that the mesh node at the beginning of the path is the same as the
mesh node at the end of the path. However, we force that, for any edge evt,s,vt+1,s′

in the path, the source and destination nodes must be different, i.e. s /= s′. This
setup can guide the neural network to search for paths that explore the space,
potentially connecting distant locations, but if for any reason the network prefers
a self-connecting path, this is not excluded by the graph structure, and can be
analyzed for interpretability purposes.

There is an additional aspect to consider: the above discussion assumes the
capability of input graphs to represent spatial relationships regardless of the mesh
refinement level. In fact, an edge connecting two neighbor points in a coarse mesh
cannot connect the same points in the refined mesh, because they are not neighbors
anymore, and they require more edges, i.e. a path, to reach connection. From
Equation 3.3, we know that, given any mesh refinement level m, there exists a path
between two mesh points s and s′ of length k. We can intuitively think that, each
time we refine the mesh, the length of a path connecting the same points increases.
Since the refinement process uses the midpoint strategy, let’s imagine a straight
line connecting two points: at refinement level 0, the line is made up of two points,
so the path length is 1, at refinement level 1, the line is made up of three points, so
the path length is 2, at refinement level 2, the line is made up of five points, and
the path length is 4, because divisions are computed recursively. Therefore, each
time the mesh is refined, the path length doubles, so:

k(m) = 2m

If we want to make sure that the graph structure is able to represent the relationships
of the coarse mesh in the refined one, we can define edges considering not simply
the neighborhood, but the k-order neighborhood, i.e. the set of mesh points that
can be reached from a given mesh point s by traversing k edges, and precisely the
2m-order neighborhood. Let dm(s, s′) be the minimum number of edges needed to
connect s and s′ in a m-refined mesh, then we can redefine:

N (m)
s = {s′ | dm(s, s′) ≤ 2m}

and from now on we can assume that an edge in the graph is:

evt,s,vt+1,s′ = (vt,s, vt+1,s′) ∀s′ ∈ N (m)
s

It can finally be trivially adapted the definition of the cone-shaped relationship.
In Appendix E.4, some properties of the neighborhood are shown, which can be
useful to understand the relationships between mesh points in a graph.
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3.1.6 Edge features
As anticipated, each input graph is characterized by vertices and edges. We want
also to include in the graph construction some additional information that can be
useful to the neural network to learn spatio-temporal relationships. In particular,
we assume that the neural network does not have any prior knowledge about the
spatio-temporal structure of the data. In fact, as from Section 3.1.3, the vertices
incorporate spatio-temporal coordinates, but the edges have all the same meaning,
regardless of the spatio-temporal distance. Therefore, we add edge features that
include a spatial distance and a temporal distance. Given two points in space and
time vt,s and vt′,s′ , we define the spatial distance following Equation 3.2:

∆σ(vt,s, vt′,s′) = d(ms,ms′) = arccos
A

ms ·ms′

∥ms∥ · ∥ms′∥

B

i.e. the angular distance between the mesh points s and s′. Instead, the temporal
distance is defined as:

∆τ (vt,s, vt′,s′) = |t− t′|

where t and t′ are known in months, so the result is an integer number of months.
The edge feature vector is then defined as:

evt,s,vt′,s′ = [∆σ(vt,s, vt′,s′),∆τ (vt,s, vt′,s′)]

3.2 Neural architecture
The data structure has been defined without explicitly choosing the neural network
architecture, but assuming that it should rely on processing graph-structured input
data and thus making some assumptions about how the model should interpret the
graph. Therefore, the model should be based on GNN (Graph Neural Network).
We want that the network learns spatio-temporal relationships by exploring paths
of various lengths and directions, selects relevant paths and thus provides causal
patterns over the globe and the time window. As anticipated, each input graph
represents a different time window, and each of them are shifted by one month,
so the network can learn repetitive patterns. Moreover, different mesh refinement
levels can be given as input to the model to analyze consistency between outputs,
i.e. if the model learns the same relationships regardless of the mesh resolution.

3.2.1 Graph neural networks
GNNs are a class of neural networks specifically designed to operate on graph-
structured data. Differently from traditional neural networks, which typically
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operate on fixed-size inputs, GNNs can handle variable-sized graphs and learn
representations that capture the structure and relationships within the graph.
Depending on how the model uses information from the graph, transductive and
inductive GNNs can be distinguished. Transductive GNNs are trained on a specific
graph and can only make predictions for nodes within that graph. In contrast,
inductive GNNs can generalize to unseen graphs or nodes, allowing them to make
predictions on new data that was not present during training. This is particularly
useful in applications where the graph structure may change over time or when
new nodes are added. Also, a classification can be made depending on the task
of the GNN. Node-level tasks involve predicting labels for individual nodes, such
as classifying the type of a node based on its features and its connections. Edge-
level tasks focus on predicting the existence or type of edges between nodes, such
as determining whether two nodes are connected or predicting the weight of an
edge. Graph-level tasks involve predicting properties of the entire graph, such as
classifying the graph into different categories based on its structure and features.
In general some variants of GNNs can be identified [56]: GAT (Graph Attention
Network), GCN (Graph Convolutional Network) [57] and GraphSAGE (Graph
Sample and Aggregate) [58]. However, all of them are based on the same principles
of message passing and aggregation, with different mechanisms for computing
messages and updating node representations. The foundational framework is
indeed MPNN (Message Passing Neural Network).

3.2.2 MPNNs and message passing
MPNNs are a general framework for designing GNNs that can operate on arbitrary
graph structures. They provide a flexible and powerful way to model graph-
structured data by allowing nodes to exchange information through a message
passing mechanism, which enables nodes in a graph to iteratively exchange and
update information based on their neighbors. The key components of MPNNs
include the message function, the aggregation function, and the update function.
The message function computes messages based on the features of neighboring nodes,
the aggregation function combines these messages to form a new representation for
each node, and the update function updates the node’s representation based on
the aggregated messages. The process can be expressed abstractly as follows:

h(k)
v = Update

1
h(k−1)

v ,Aggregate
1
{M(h(k−1)

u ) | u ∈ Nv}
22

where h(k)
v is the representation of node v at iteration k, Nv is the set of neighbors

of node v, and M is the message function that computes messages from neighboring
nodes. The process can be repeated for multiple iterations, allowing nodes to
exchange information with their neighbors over several hops in the graph. A more
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concrete representation, that considers that nodes appear as vectors of features
and even edges can have features, is the following:

x(k)
i = γ(k)

x(k−1)
i ,

n
j∈Ni

ϕ(k)
1
x(k−1)

i ,x(k−1)
j , ej,i

2
where x(k)

i is the feature vector of node i at iteration k, Ni is the set of neighbors
of node i, ϕ(k) is the message function that computes messages from neighboring
nodes, ej,i is the edge feature between nodes j and i, and γ(k) is the update
function that combines the node’s previous features with the aggregated messages.
The aggregation function m can be any permutation-invariant operation4, such
as summation, mean, or max pooling5. The choice of aggregation function can
significantly impact the performance of the GNN. In Figure 3.9 the concept of
message passing is shown graphically. Message passing can be interpreted as a
generalization of the convolution operation to irregular domains, like in this case
graph-structured data. In fact, in traditional CNNs, the convolution operation is
applied to local neighborhoods of pixels in an image. In GNNs, the message passing
operation allows nodes to exchange information with their neighbors, effectively
performing a convolution-like operation on the graph structure [61]. In an MPNN,
each iteration of message passing is performed by a different layer of the network,
so if K is the number of layers, it is also the number of message passing iterations.
Moreover, each message passing iteration allows a node to gather information
from its immediate neighbors. By stacking multiple message passing layers (i.e.,
increasing K), each node incrementally receives information from nodes that are
further away in the graph. After K layers, a node’s representation will incorporate
information from nodes up to K hops away. This layered structure enables the
model to capture broader contextual dependencies within the graph. However,
in the real world if K is too large, experimentally bigger than 3, the model may
struggle to learn meaningful representations, as the noise from distant nodes can
overwhelm the signal from closer ones. In other words, deep MPNN architecture
suffer from oversquashing: when many messages from a large neighborhood must be
aggregated into a fixed-size representation, which constitutes a bottleneck, crucial

4Permutation-invariant operations are operations that yield the same result regardless of the
order of the inputs.

5Pooling consists of aggregating information from a set of inputs to produce a single output,
often used in neural networks to reduce the dimensionality of the data and capture important
features. In the context of GNNs, pooling can be applied to aggregate information from neighboring
nodes or edges, allowing the model to learn hierarchical representations of the graph structure.
Common pooling operations include max pooling, average pooling, and sum pooling, each of
which computes a summary statistic from the input set [59].
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Figure 3.9: Message passing in a graph neural network. Each node receives
messages from its neighbors, aggregates them, and updates its representation based
on the aggregated information. The ℓ indicates the current level of the message
passing, while the ℓ + 1 indicates the next level. The red arrows indicate the
messages sent from one node to another [60].

44



3.2 – Neural architecture

information can be squashed, i.e., compressed in a way that prevents the model
from capturing long-range dependencies. They also suffer from oversmoothing: as
the number of message passing iterations increases, the representations of nodes
become increasingly similar, leading to a loss of discriminative power, as all nodes
converge to similar embeddings. This is because the aggregation operation tends
to average out the features of neighboring nodes, causing the representations to
converge towards a common value. To mitigate this issue, techniques such as
residual connections, skip connections, or attention mechanisms can be employed
to preserve information from earlier layers and prevent oversmoothing [62, 63].

3.2.3 Graph attention networks
GATs [64] are a type of GNN that incorporates attention mechanisms to weigh
the importance of neighboring nodes when aggregating their features. The key
idea behind GATs is to assign different attention scores to different neighbors,
allowing the model to focus on the most relevant edges in the graph. This is
particularly useful in scenarios where the graph structure is heterogeneous or when
some neighbors are more informative than others. The attention mechanism in
GATs can be expressed as follows:

αij =
exp

1
LeakyReLU

1
aT [Wxi||Wxj]

22
q

k∈Ni
exp (LeakyReLU (aT [Wxi||Wxk]))

where αij is the attention score for the edge ej,i, a is a learnable weight vector, W
is a learnable weight matrix, xi and xj are the feature vectors of nodes i and j,
respectively, and || denotes concatenation. The attention scores are normalized
across all neighbors of node i to ensure that they sum to 1. The final node
representation can be computed as follows:

hi = σ

Ø
j∈Ni

αijWxj


where σ is a non-linear activation function (e.g., ReLU). GAT layers can be stacked
to form a multi-layer architecture, allowing the model to learn hierarchical repre-
sentations of the graph. GATs also allow for multi-head attention, where multiple
attention mechanisms are applied in parallel, and their outputs are concatenated
or averaged to produce the final node representation. This can help to capture
different aspects of the graph structure and improve the model’s performance. In
this case, final node representation can be computed as follows:

hi = σ

 Kn
k=1

Ø
j∈Ni

α
(k)
ij W(k)xj


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where K is the number of attention heads, α(k)
ij is the attention score for the

k-th head, and W(k) is the weight matrix for the k-th head. The aggregation
operation m can be either concatenation or averaging, depending on the specific
implementation. In Figure 3.10 an example of how attention works in a GAT is
shown: The image highlights that, among the neighbors of node i, node i itself is

Figure 3.10: Graph attention mechanism. In this case, 3 attention heads are
defined, respectively represented by the blue, green, and mauve arrows. The final
node representation is computed by aggregating the outputs of all attention heads
[64].

considered, so GATs are designed to handle self-loops, i.e. edges that connect a
node to itself. This is useful to stabilize learning, since it helps preserve identity
and prevents over-dependence on the local neighborhood. Moreover, it allows the
model to incorporate information from the node’s own features when computing
attention scores and updating its representation. However, in our case, we do
not want to consider self-loops, because we are interested in inter-node causality
and influence propagation patterns, so we will not consider them in the attention
mechanism. The attention mechanism in GATs is similar to the one used in natural
language processing tasks, where the model learns to weigh the importance of
different words in a sentence based on their context [64]. In our case, GAT-based
architectures are fundamental to learn the relationships between nodes and edges
in the graph, because the attention mechanism allows recovering causal patterns in
the data: if the model assigns high attention scores to certain edges, it indicates
that those edges are more relevant to explain feature values of destination nodes of
those edges, and therefore a potential causal path between source and destination
nodes.

Depending on the implementation, GATs can incorporate additional features,
such as edge features. In this case, which is our goal, the attention mechanism
can be extended to consider edge features when computing attention scores. The
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attention score between nodes i and j can be computed as follows:

αij =
exp

1
LeakyReLU

1
aT [Wxi||Wxj||Weeij]

22
q

k∈Ni
exp (LeakyReLU (aT [Wxi||Wxk||Weeik]))

where eij is the edge feature vector between nodes i and j, and We is a learnable
weight matrix for the edge features. In other words, the GAT can incorporate
edge features into the attention mechanism by concatenating them with the node
features.

A variation from standard GAT is represented by GATv2, that introduces some
modifications to the attention mechanism to improve its performance. The authors
of GATv2 motivate the need for a new version stating that the traditional GAT
layer computes only static attention. In other words, for any set of nodes V and a
trained GAT layer, the attention function α defines a constant ranking (argsort)
of the nodes, unconditioned on the query nodes i. Instead, GATv2 introduces
a dynamic attention mechanism, where the attention scores are conditional on
their query nodes, allowing for a strictly more expressive attention mechanism.
Therefore, let e : Rd × Rd → R be a score function that computes the attention
score between two nodes based on their features. In the two versions of GAT, the
attention scores are computed as follows:

GAT : e (hi,hj) = LeakyReLU
1
a⊤ · [Whi∥Whj]

2
GATv2: e (hi,hj) = a⊤LeakyReLU (W · [hi∥hj])

where hi and hj are the feature vectors of nodes i and j, respectively, W is a
learnable weight matrix, a is a learnable weight vector, and ∥ denotes concatenation.
Edge features are ignored for simplicity, but the reasoning is analogue to standard
GAT. This different formulation is justified by the fact that the application of
consecutive linear operations in original GAT on W,a can be collapsed into a
single linear layer, which leads to the model’s choices be independent by the query
node i.

Based on these considerations, we can conclude that GATv2 is more suitable for
our task and we will use GATv2 as the main building block of our neural network
architecture. In particular, we employ a single attention head and some consecutive
graph attention layers. Each layer independently computes the attention scores
and updates the node representations based on the aggregated messages from their
neighbors, and the output of each layer is a new set of node representations, which
can be used as input to the next layer. Therefore, each layer chooses a different
set of neighbors to aggregate information from, and if we combine single choices of
different layers, that represent causal relationships, we can obtain a more complex
causal path, that can define a spatio-temporal teleconnecton pattern. 2 consecutive
layers are interleaved by a ReLU activation function, because it allows for the
standard practice of introducing non-linearity in the model.
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3.2.4 Autoencoders
Thanks to GATv2 architecture, given an input graph the model can learn a latent
representation of the node features, compute for each node the attention scores
with respect to its neighbors and therefore highlight the most relevant incoming
edges. Our objective is that the model learns to effectively assign different weights
to different edges, but the latent representation must also be meaningful. The
main challenge of GNN-based architectures is that they are generally designed for
supervised tasks, like classification, so they usually require a ground truth label for
each node or edge in the graph. However, since we deal with known and unknown
teleconnection patterns, we do not have any ground truth data, and we want the
model to learn the relationships between nodes and edges without any supervision.
Therefore, a simple GNN architecture is not sufficient, and we need a more general
framework that can encapsulate the advantages of GATv2 while also making sure
that the model understands data structure and is sensible to feature variations.

To this purpose, we can introduce the concept of autoencoders. An autoencoder
is a type of neural network architecture that learns to encode input data into a
lower-dimensional representation (latent space) and then reconstruct the original
data from this representation. Therefore, it is meant for unsupervised learning
tasks, like ours. The main components of an autoencoder are the encoder and the
decoder. The encoder maps the input data to a latent space:

Z = fenc(X)
where Z ∈ RN×F is the latent representation of the input data, fenc is the encoder
network, X ∈ RN×D is the input data matrix, N is the number of samples, D is the
dimensionality of the input data, and F is the dimensionality of the latent space.
The decoder then reconstructs the original data from the latent representation:

X̂ = fdec(Z) (3.4)
where X̂ ∈ RN×D is the reconstructed data and fdec is the decoder network. The
encoder and decoder are typically implemented as neural networks, where the
encoder compresses the input data into a lower-dimensional latent space, and the
decoder reconstructs the original data from the latent representation. Autoencoders
can be classified into deterministic and probabilistic.

Deterministic autoencoders learn a fixed mapping from the input data to the
latent space and they are mainly used for dimensionality reduction or anomaly
detection. In a deterministic autoencoder, the encoder is defined as:

Z = WX + b

where W ∈ RF ×D is the weight matrix, b ∈ RF is the bias vector, and Z is the
latent representation of the input data. The decoder is defined as:

X̂ = WT Z + b
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where WT is the transpose of the weight matrix [65]. The training process involves
minimizing a reconstruction loss. In case of continous data, it is the MSE between
the original input data and the reconstructed data:

L(X, X̂) = ∥X− X̂∥2

where X is the original input data, X̂ is the reconstructed data, and ∥ · ∥2 is the
squared Euclidean norm. Instead, for binary data, it is the binary cross-entropy
(BCE):

L(X, X̂) = − 1
N

NØ
i=1

(xi log(x̂i) + (1− xi) log(1− x̂i))

where xi is the i-th element of the input data X, x̂i is the i-th element of the
reconstructed data X̂, and N is the number of samples. See Section C.3.1 for
reference.

Probabilistic autoencoders learn a distribution over the latent space, allowing
for sampling and generation of new data points. Variational autoencoders (VAE)
are a type of probabilistic autoencoder that learns a distribution over the latent
space using variational inference [66]. The encoder outputs the parameters of a
Gaussian distribution N (µ,σ2):

µ, log σ2 = fenc(X)

where fenc is the encoder network and µ,σ2 ∈ RF are the mean and variance of the
approximate posterior. A latent variable Z is sampled using the reparameterization
trick:

Z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I) (3.5)

where ⊙ denotes element-wise multiplication, and ϵ is a random noise vector
sampled from a standard normal distribution. The decoder then reconstructs the
input, following Equation 3.4. The VAE architecture does not constrain the nature
of the encoder and decoder networks, so they can be implemented using any type
of neural network. This is an important foundation for what we are going to build.
The objective function of a VAE is to maximize the evidence lower bound (ELBO)
on the log-likelihood of the data, which can be expressed as:

ELBO(X, X̂,µ,σ) = Eqϕ(Z|X)[log pθ(X|Z)]−DKL(qϕ(Z|X) ∥ p(Z))

where qϕ(Z|X) is the approximate posterior distribution, pθ(X|Z) is the likelihood
of the data given the latent variable, and p(Z) is the prior distribution over the
latent variable. The first term is the expected log-likelihood of the data given
the latent variable, which encourages the model to reconstruct the input data
accurately. The second term is the Kullback-Leibler (KL) divergence between the
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approximate posterior and the prior distribution, which encourages the latent space
to follow a known prior distribution, typically a standard normal distribution. The
KL divergence is defined as:

DKL(q ∥ p) = Eq

C
log q

p

D
=
Ú
q(x) log q(x)

p(x)dx (3.6)

where q is the approximate posterior and p is the prior distribution. The KL
divergence measures how much the approximate posterior deviates from the prior
distribution [67]. Since a neural network is trained by minimizing a loss function,
we can take as loss function the negative ELBO:

L(X, X̂,µ,σ) = −Eqϕ(Z|X)[log pθ(X|Z)] +DKL(qϕ(Z|X) ∥ p(Z))

We can rewrite:

Lrecon(X, X̂) = −Eqϕ(Z|X)[log pθ(X|Z)]
LKL(µ,σ) = DKL(qϕ(Z|X) ∥ p(Z))

L(X, X̂,µ,σ) = Lrecon(X, X̂) + LKL(µ,σ)

and realize that, with respect to deterministic autoencoders, the loss function of a
probabilistic autoencoder can be seen as a regularized version of its reconstruction
loss.

3.2.5 Graph autoencoders
With respect to the general purpose of autoencoders, our goal is slightly different.
In fact, we want our model to learn a meaningful latent representation of data,
but we do not impose that the latent space has smaller dimensionality than the
input space. Instead, it can be much higher, because capturing spatio-temporal
relationships requires a lot of information. Moreover, we need a way to account
for both node features and edge features, and a regular autoencoder is not able to
do that. Therefore, we need to adapt the autoencoder architecture to the graph
structure, and this is where graph autoencoders (GAE) come into play. GAEs are
a type of autoencoder specifically designed to work with graph-structured data.
They extend the concept of autoencoders to graphs by incorporating the graph
structure into the encoding and decoding processes. The main components of a
GAE are the encoder, which learns a latent representation of the graph, and the
decoder, which reconstructs the graph structure from the latent representation.
The encoder can be implemented using various types of GNNs which learn to
aggregate information from neighboring nodes and edges, while the decoder can
be implemented using another GNN that reconstructs the graph structure based
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on the learned embeddings, or a simple MLP, or even an inner product operation.
In the following, just for explaination purposes, we assume that, for each graph
G = (V,E), the set of edges E is passed to the GAE as an adjacency matrix A,
which is a square matrix where the entry (i, j) indicates the presence or absence
of an edge between nodes i and j. The adjacency matrix could also be weighted,
meaning that the entries can take real values instead of just 0 or 1. However, our
edge features are not meant as weights, but rather as additional information about
the edges (they could not be used as weights, since they are made of more than
one feature). Therefore, we use the standard definition of adjacency matrix:

Ai,j =
1 if ei,j ∈ E

0 otherwise

The output of the encoder can be described as follows:

Z = fenc(X,A)

where Z ∈ RN×F is the latent representation of the graph, X ∈ RN×D is the node
feature matrix, A ∈ RN×N is the adjacency matrix of the graph, N is the number
of nodes, D is the dimensionality of the node features, and F is the dimensionality
of the latent space. As seen for GAT, depending on the neural network chosen
for the encoder, edge features can be also incorporated into the encoding process.
Again for simplicity, we assume that the edge features are passed to the GAE as
a 3D tensor E ∈ RN×N×De , where De is the dimensionality of the edge features.
Each entry (i, j, k) corresponds to the k-th feature of the edge between nodes i and
j. Therefore, the encoder can be extended to incorporate edge features as follows:

Z = fenc(X,A,E)

While the reconstruction performed by standard autoencoders focuses on input data
(nodes), in GAE reconstructing the graph structure from the latent representation
means that the decoder must learn to predict the adjacency matrix Â from the
latent representation Z. The output of the decoder is:

Â = fdec(Z) (3.7)

where Â ∈ RN×N is the reconstructed adjacency matrix of the graph. In the most
simple case of an inner product decoder, the reconstruction can be expressed as:

Â = σ(ZZT )

where σ is a non-linear activation function (e.g., sigmoid) applied element-wise to
the resulting matrix. This operation computes the pairwise similarity between the
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latent representations of nodes, effectively reconstructing the adjacency matrix of
the graph. The result can be interpreted as the predicted probabilities of edges
between nodes based on their latent representations. Unlike standard autoencoders,
since A is a binary matrix, the loss function is a binary cross-entropy loss:

L(A, Â) = − 1
N2

NØ
i=1

NØ
j=1

1
Ai,j log(Âi,j) + (1−Ai,j) log(1− Âi,j)

2
(3.8)

The training task of a GAE aims to learn a meaningful latent representation
of the graph while reconstructing the adjacency matrix as accurately as possible.
While this is a good starting point, we are actually interested in something more:
given a node i, we want that the attention weights αi,j ∀j ∈ Ni computed by the
GATv2 follow a certain distribution, such that we reduce the risk that all attention
weights are uniformly distributed. First of all, we can constrain the latent space
distribution, so that the model learns to encode the graph structure in a more
meaningful way. We can think to use a VGAE (Variational graph autoencoder),
which, as expected, extends the concept of VAE to graphs. Again, the outcome
of a VGAE is a probabilistic graph representation, allowing for more expressive
modeling of the graph structure with respect to standard GAE. The encoder of
VGAE outputs the parameters of a Gaussian distribution:

µ, log σ2 = fenc(X,A,E)

where fenc is the encoder network, µ is the mean, and σ2 is the variance of the latent
space distribution. A latent variable Z is sampled using the reparameterization
trick described in Equation 3.5. The reconstruction of the adjacency matrix is
performed like in Equation 3.7. The VGAE loss function is the same as the one of
VAE, but applied to the adjacency matrix:

Lrecon(A, Â) = −Eqϕ(Z|X,A,E)[log pθ(A|Z)]
LKL,Z(µ,σ) = DKL(qϕ(Z|X,A,E) ∥ p(Z))
L(A, Â,µ,σ) = Lrecon(A, Â) + LKL,Z(µ,σ)

(3.9)

Using VGAE implies a slight variation on how the different GATv2 layers are
stacked. Let K be the number of GATv2 layers in a standard GAE architecture,
and let K ′ be the number of GATv2 layers in a VGAE model. In order to get the
same number of transformations of the latent space, we need to set K ′ = K + 2,
because the first K layers are used to compute the latent representation of the
graph, while the last 2 layers are used to compute the mean and variance of the
latent space distribution. More precisely, for both GAE and VGAE the output of
the k-th layer is:

Z(k) = f
(k)
GATv2(Z(k−1),A,E) ∀k ∈ [1, K]
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where Z(0) = X and f (k)
GATv2 is the computation performed by the k-th GATv2 layer.

But then, assuming that the k + 1-th layer is used to compute the mean of the
latent space distribution, and the k + 2-th layer is used to compute the variance,
we have:

µ = f
(K+1)
GATv2(Z(K),A,E)

log σ2 = f
(K+2)
GATv2(Z(K),A,E)

Please note that these two layers are not stacked one after the other, but they both
branch from the output of the K-th layer, so they can be computed in parallel.
The outputs of the K + 1-th and K + 2-th layers are then used to sample the latent
variable Z using the reparameterization trick, as described previously. Like the other
layers, they also produce attention weights. However, for the causal path discovery
task, we are not interested in them, because they are not associated to some edges
of the path, but rather to the latent space distribution. Figure 3.11 shows the
difference between GAE and VGAE architectures, highlighting the additional layers
used to compute the latent space distribution in VGAE. VGAE is a powerful
framework that, thanks to the probabilistic modeling, improves generalization
capabilities of GAE and prevents overfitting. Its stochastic nature introduces a
kind of implicit data augmentation: a node is represented by a distribution of latent
vectors, rather than a single point in the latent space. Of course, this comes at the
cost of increased computational complexity, but still manageable [68]. Equation 3.9
highlights that, as expected, the loss function of VGAE is a regularized version of
the reconstruction loss of GAE. A target distribution defined for the latent space
is fine, but we also need a regularization for the attention weights computed by
each GATv2 layer.

3.2.6 Loss function
First of all, with respect to Equation 3.9, we need to consider that the adjacency
matrix A, in real-world cases, is usually sparse, meaning that most of the entries
are zero. We call positive edges the edges that are present in the graph, and negative
edges the edges that are not present in the graph. We know that A is a binary
matrix, for positive edges Ai,j = 1 and for negative edges Ai,j = 0. Therefore, the
VGAE reconstruction loss can be rewritten as:

Lrecon(A, Â) = − 1
N2

 Ø
ei,j∈E

log(Âi,j) +
Ø

ei,j /∈E

log(1− Âi,j)


where E is the set of positive edges in the graph. However, A is also strongly
imbalanced, i.e. the number of negative edges vastly exceeds the number of
positive edges. This training objective leads to poor generalization and uncontrolled
overfitting. We then introduce a negative sampling strategy to address this issue.
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Figure 3.11: Latent space computation comparison between GAE and VGAE
architectures. ZGAE is the latent representation of the graph computed by GAE,
while µ and σ are the mean and variance of the latent space distribution computed
by VGAE. The reparameterization trick is used to sample the latent variable Z
from the distribution defined by µ and σ.

In other words, we randomly select negative edges from the graph, and we add
them to the loss function, in place of all the negative edges. The number of negative
edges is chosen to be equal to the number of positive edges, so that the loss function
is balanced. Let Ē be the set of negative edges sampled from the graph, then:

Lrecon(A, Â) = − 1
2|E|

 Ø
ei,j∈E

log(Âi,j) +
Ø

ei,j∈Ē

log(1− Âi,j)

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because |E| = |Ē|.
For what concerns the VGAE KL divergence term, we can assume a standard

normal distribution as prior, i.e. p(Z) = N (0, I). Therefore, the KL divergence can
be computed as:

LKL,Z(µ,σ) = DKL(qϕ(Z|X,A,E) ∥ p(Z)) = Eqϕ(Z|X,A,E)

C
log qϕ(Z|X,A,E)

p(Z)

D
which can be computed as:

LKL,Z(µ,σ) = − 1
2N

NØ
i=1

1
1 + log(σ2

i )− µ2
i − σ2

i

2
where µi and σ2

i are the mean and variance of the latent space distribution for the
i-th node, respectively.

Finally, we introduce a regularization term for the attention weights computed
by each GATv2 layer. We can use again Equation 3.6 as reference, but we assume
as target distribution:

p(x) = U(x) =


1
N

if x ∈ [0, 1]
0 otherwise

i.e. a uniform distribution over the interval [0, 1] - the same on which attention
weights are defined - where Ni is the number of neighbors of node i. Let αk ∈ RN×N

be the attention matrix computed by the k-th GATv2 layer, and N is the number
of nodes in the graph. An attention matrix is a square matrix where the entry
(i, j) indicates the attention weight assigned by node i to node j for the edge ej,i.
The distribution of attenton weights is indicated as αk

i . Let α be the set of all
attention matrices, i.e., α = {αk | k = 1, . . . , K}. For the moment, we assume
just one layer of GATv2, for simplicity. The KL divergence between the attention
weights distribution αi and the target distribution can be computed as follows:

DKL,α(αi ∥U) = Eαi

C
log αi

U(αi)

D
= Eαi

[logαi − logU(αi)]

= Eαi

5
logαi − log 1

Ni

6
= Eαi

[logαi + logNi]
= Eαi

[logαi] + logNi

where Eαi
is the expectation with respect to the attention weights distribution αi.

The term logNi is constant for each node i, so we can ignore it in the loss function.
What remains is strictly linked to the concept of entropy:

H(αi) = −Eαi
[logαi]
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The entropy of a distribution measures the uncertainty or randomness of the
distribution. In other words, it quantifies how much information is contained in the
distribution. The higher the entropy, the more uncertain or random the distribution
is. The entropy is maximized when the distribution is uniform. Therefore:

DKL,α(αi ∥U) = −H(αi) + logNi

Maximizing the KL divergence, which means making the distribution of attention
weights as less uniform as possible, is equivalent to minimizing the entropy of the
attention weights. Therefore, we can define the entropy loss as:

Lentropy(αi) = H(αi) = −Eαi
[logαi] = −

Ø
j∈Ni

αi,j logαi,j

Since attention weights are computed separately by each GATv2 layer, we can
define the entropy loss for the k-th layer as:

Lk
entropy(αk

i ) = −
Ø

j∈Ni

αk
i,j logαk

i,j

where αk
i,j is the attention weight computed by the k-th GATv2 layer on the edge

ej,i. Consequently, the average entropy loss for all K layers is:

Lentropy(αi) = 1
K

KØ
k=1
Lk

entropy(αk
i )

The entropy loss should act as a regularization term. Hence, let λ > 0 be a
hyperparameter that controls the trade-off between the VGAE loss and the entropy
loss. The overall loss function for the VGAE with entropy regularization can be
defined as:

L(A, Â,µ,σ,α) = Lrecon(A, Â) + LKL,Z(µ,σ) + λ · Lentropy(α) (3.10)

The defined loss is one of the main metrics to evaluate the performance of the
model during training, validation and testing. Some additional measurements are
performed to assess the generalization capabilities of the model: the AP (Average
Precision) and the AUC (Area Under the Curve) [69]. The AP assumes that the
edges are sorted by their predicted probabilities, and it computes the average
precision at each rank. Let y(k) be the ground truth label for the edge at rank k,
i.e., y(k) = 1 if the edge is positive, so it really exists, and 0 otherwise. Let E ′ be
the total number of edges predicted by the model, and E be the total number of
positive edges in the graph. The AP is defined as:

AP = 1
E

E′Ø
k=1

P (k) · y(k)

56



3.2 – Neural architecture

where P (k) is the precision at rank k, defined as:

P (k) = 1
k

kØ
j=1

y(j)

The AUC is defined as the area under the receiver operating characteristic (ROC)
curve, which is a plot of the true positive rate (TPR) against the false positive rate
(FPR) at various threshold settings. The TPR is defined as:

TPR = TP
TP + FN = TP

E

where TP is the number of true positives, i.e, the number of positive edges correctly
predicted by the model, and FN is the number of false negatives, i.e., the number
of positive edges not predicted by the model. The FPR is the following:

FPR = FP
FP + TN = FP

Ē

where FP is the number of false positives, i.e., the number of negative edges
incorrectly predicted as positive by the model, and TN is the number of true
negatives, i.e., the number of negative edges correctly predicted as negative by the
model. Assuming that TPR is a function of FPR, the AUC is then defined as:

AUC =
Ú 1

0
TPR(f) dFPR(f)

3.2.7 Final model architecture
As anticipated, edges can be represented as an adjacency matrix, but also as an
edge list, which is a common standard if the graph is sparse. In our case, graphs
contain many edges, but the edge configuration is far from being fully connected,
as described previously. Therefore, we prefer to use the edge list. Moreover, the
network is trained by providing in the each epoch more input graphs that are
packed into a batch. Please see Appendix C.3.3 for more insights on how to train
a neural network.

The neural network architecture proposed for this work is shown in Figure
3.12. Different colors are used to highlight different components in the network,
and also identify inputs and outputs of each component. Rectangles with solid
borders contain any kind of information and also report the size of data, while
rectangles with dashed borders perform transformations on input data. Dashed
borders are used also to organize components in some modules: input data, encoder,
latent representation, decoder, loss and metrics. Edge labels report the size of
data flowing through some transformations. For simplicity, in the decoder module
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positive and negative edges are provided together and the sigmoid outputs two
different sets of edge probabilities. Actually, these are two distinct computations
that are both needed to compute loss and metrics. SG, TG are respectively the
spatial and temporal cardinalities of the gridded raw dataset, while D is the number
of features. B is the batch size, E is the number of edges in the graph, SM is the
number of spatial locations on the mesh, TW is the number of time steps in each
window, F is the number of features in the latent space, and K is the number of
GATv2 layers. This diagram assumes some implementation details. For instance,
edge features have 2 items in the last dimension because we store separately spatial
and temporal distance. Positive and negative edges have 2 rows to represent one
edge, because source and target node are stored separately.

We now recap the flow of data textually:

1. The raw dataset is transformed through the Grid2mesh approach described in
Section 3.1.2 to produce a graph representation of the data.

2. The graph is passed to the encoder GATv2 layers. The first K layers process
input graphs, while the last 2 layers compute the mean and variance of the
latent space distribution. All GATv2 layers compute attention scores.

3. Mean and variance are then reparametrized to produce the latent representa-
tion.

4. From positive edges, negative edges are sampled.

5. The latent representation is then passed to the decoder, which computes
probabilities separately for positive and negative edges.

6. The entropy loss is computed by combining the attention weights computed
by each of the first K GATv2 layers.

7. The KL loss is computed using the mean and variance of the latent space
distribution.

8. The reconstruction loss combines the reconstruction error on positive and
negative edge probabilities.

9. AUC and AP are computed from edge probabilities.

3.3 Model outputs interpretation

3.3.1 Computation tree
As anticipated, our objective is to discover causal paths in the graph, which are
built by traversing the edges in the graph that are highlighted by the attention
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Figure 3.12: Proposed architecture for the neural network. See Section 3.2.7 for
a detailed description of the meaning of shapes and colors.
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weights distribution. Since each GATv2 layer of the neural network computes a set
of attention weights, one could think to just select, for each layer and for each target
node, the best incoming edge according to the attention weights. Nevertheless, this
can only highlight local choices of the model and is not meaningful to discover
causal paths. The main challenge is how to combine the attention weights of
different layers. As described in Section 3.2.2, each layer operates over the same
graph structure and therefore aggregates information from the same set of direct
neighbors. However, while the graph topology remains unchanged, successive
layers expand the receptive field of each node, effectively allowing it to incorporate
information from progressively more distant parts of the graph. Let h(0)

i denote
the initial feature vector of node i at the input of the first layer. Then, h(1)

i - the
output of the first layer - depends on h

(0)
i and the features h(0)

j of its immediate
neighbors j ∈ Ni. Similarly, h(2)

i , computed by the second layer, depends on h
(1)
i

and the updated features h(1)
j from its neighbors, which themselves already encode

information from their own neighbors in the previous layer, and so on. In other
words, remembering that the GATv2 update rule at layer k is:

h
(k)
i = σ

Ø
j∈Ni

α
(k)
ij ·W(k)h

(k−1)
j


where σ is a non-linear activation function, W(k) is the weight matrix of the k-th
GATv2 layer, and α

(k)
ij is the attention weight computed by the k-th GATv2 layer

on the edge (j, i), we can expand the representation of node i at layer k recursively.
Let k = 2:

h
(2)
i = σ

Ø
j∈Ni

α
(2)
ij ·W(2) · σ

Ø
ℓ∈Nj

α
(1)
jℓ ·W(1)h

(0)
ℓ


The recursion can be continued for any k, finding that at every step of the expansion
the neighborhood of the node i is expanded by one hop, and the representation h(k)

i

at layer k incorporates information from all nodes within a k-hop neighborhood of
node i. This means that we can make an insightful analysis on the relation between
the attention weights computed by each layer. Shin et al. [70] took care about
the challenge of combining attention weights across layers. They introduced the
concept of computation tree, which is a conceptual unrolling of the message-passing
layers of a GAT into a tree structure starting from a target node. Each layer of the
GAT corresponds to one step in the tree, and each node in the tree corresponds to
a node in the original graph that can influence the target node’s representation
through a path of length equal to the number of layers. The tree shows all possible
computation paths from the neighbors, neighbors-of-neighbors, etc., that contribute
to the representation of the target node after multiple layers. The concept of
computation tree is useful to highlight some observations. In fact, identical edges
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can appear multiple times in the computation tree, because they can be traversed
by different paths. Moreover, nodes do not appear uniformly in the computation
tree, because those ones that are closer to the target node are traversed by more
computation paths, whereas those ones that are farther away are traversed by fewer
of them, and only if the number of layers is large enough.

3.3.2 Attention matrix
In the following, for simplicity, we will use GAT to refer to GATv2.

Before discussing how to combine attention weights across layers, we need to
analyze how attention weights can be represented. An attention matrix A(k) is
the matrix of attention weights computed by the k-th GAT layer on the incoming
edges with respect to any target node i. More precisely:

A(k) =


αk

1,1 αk
1,2 · · · αk

1,n

αk
2,1 αk

2,2 · · · αk
2,n

... ... . . . ...
αk

n,1 αk
n,2 · · · αk

n,n


where αk

i,j ≥ 0 is the attention weight computed by the k-th GAT layer on the
edge (j, i), and n is the number of nodes in the graph. The attention matrix A(k)
is a square matrix of size n× n, where n is the number of nodes in the graph. We
know that the attention weights are computed as follows:

αk
i,j =

exp(ek
i,j)q

l∈Ni
exp(ek

i,l)
∀i, j ∈ {1, . . . , n}

where ek
i,j is the attention score computed by the k-th GAT layer on the edge (j, i),

and Ni is the set of neighbors of node i. Therefore:Ø
j∈Ni

αk
i,j = 1 ∀i ∈ {1, . . . , n}

This means that the attention weights αk
i,j are normalized. This property can be

reflected on the attention matrix A(k). In fact, in each row i, attention weights
αk

i,j are related to any edge (existing or not) having as destination node i. We say:

αk
i,j

> 0 if j ∈ Ni

= 0 if j /∈ Ni

∀i, j ∈ {1, . . . , n}

Hence:
nØ

j=1
αk

i,j =
Ø

j∈Ni

αk
i,j +

Ø
j /∈Ni

αk
i,j = 1 + 0 = 1 ∀i ∈ {1, . . . , n}
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so each row in the attention matrix A(k) sums to 1. This leads us to consider A(k)
a row-stochastic matrix [71], i.e. it could be interpreted as a transition matrix
of a Markov chain, where the nodes are the states of the Markov chain and the
attention weights are the transition probabilities between the states.

3.3.3 Correlation matrix
We want to combine different attention matrices. Shin et al. [70] defined the
correlation matrix as a way to account for the influence of multiple layers in
the GAT architecture and it captures how attention weights from different layers
interact and contribute to the final representation of nodes in the graph. The
correlation matrix CL(k) for the k-th layer of a GAT network with L6 layers can
be defined recursively as:

CL(k) =
I if k = 1

CL(k − 1) ·A(L− k + 2) if k > 1
(3.11)

In other words, the k-th correlation matrix for L layers is the product of the
attention matrices A(k) of the last k layers. Therefore, the product is computed in
reverse order, starting from the last layer, i.e. the layer near the output, and going
back to the first one. CL(k) is a square matrix of size n×n, where n is the number
of nodes in the graph. The correlation matrix can be interpreted as a transition
matrix of a Markov chain, where the nodes are the states of the Markov chain and
the attention weights are the transition probabilities between the states. We are
interested to know if the correlation matrix CL(k) is a row-stochastic matrix. In
general, let A,B be two row-stochastic matrices. Then, the product C = A · B
is also a row-stochastic matrix [72]. A proof for this for the correlation matrix is
provided in Appendix E.5.

Shin et al. [70] use correlation matrix and attention matrix to calculate Gatt:

ϕv
i,j =

LØ
m=1

[CL(L−m)]v,i[A(m)]i,j (3.12)

where ϕv
i,j is the edge attribution of an edge ei,j with respect to node v in a L-layer

GAT network, [CL(L−m)]v,i is the v-th row and i-th column of the correlation
matrix CL(L−m), and [A(m)]i,j is the i-th row and j-th column of the attention
matrix A(m). This metric accounts for the proximity effect - because the closer the
edge to the target node, the higher is its impact for the computation of the target

6From now on, L has the meaning of number of layers of the GAT network, and it is not
related to the mesh refinement level anymore.
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node’s representation - and adjusts the contribution of an edge by its position with
respect to a target node. However, it depends on the choice of a target node v,
so we cannot use it because we are interested in the whole graph and not just a
single node. From Equation 3.11, we can easily understand that each term of the
sum in Equation 3.12, fixed the target node v, multiplies the correlation matrix by
the attention weight representing the missing edge in the computation tree. Let’s
make an example, assuming that L = 3:

C3(1) = I
C3(2) = C3(1) ·A(3) = I ·A(3) = A(3)
C3(3) = C3(2) ·A(2) = A(3) ·A(2)

Let:
ϕv

ij,m = [CL(L−m)]v,i[A(m)]i,j
Then, we can rewrite Equation 3.12 as:

ϕv
i,j =

LØ
m=1

ϕv
ij,m

where ϕv
ij,m is the edge attribution of an edge ei,j with respect to node v in the

m-th layer of a L-layer GAT network. Since L = 3, we have:

ϕv
ij,1 = [C3(3)]v,i[A(1)]i,j = [A(3) ·A(2)]v,i[A(1)]i,j
ϕv

ij,2 = [C3(2)]v,i[A(2)]i,j = [A(3)]v,i[A(2)]i,j
ϕv

ij,3 = [C3(1)]v,i[A(3)]i,j = [I]v,i[A(3)]i,j
We can see that the last term in the product of each ϕv

ij,m is the attention weight
computed by the farthest layer from output for a path of length m. Therefore,
we can think of extending this concept to the whole graph, by defining a new
correlation matrix RL that includes also the missing layer:

RL(k) =
I if k = 0

RL(k − 1) ·A(L− k + 1) if k > 0

In this way, we defined a correlation matrix that captures the relationships between
different layers of the graph. Therefore, each entry ck

ij of RL(k) represents the
strength of the attention weights of the edges involved in a path from node j to
node i of length k, that, as explained, traverses k layers in the GAT network.

3.3.4 Paths
We are interested to show that paths computed in the computation tree correspond
to paths in the spatio-temporal graph. From now on, we use the term correlation
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matrix to identify RL. Let ck
i,j be the i-th row and j-th column of the correlation

matrix RL(k). Then:

RL(k) =


ck

1,1 ck
1,2 · · · ck

1,n

ck
2,1 ck

2,2 · · · ck
2,n

... ... . . . ...
ck

n,1 ck
n,2 · · · ck

n,n


We know that each node of any input graph is a point in space and time. Therefore,
n is the number of nodes over all time steps and spatial points considered in the
input data. Let T be the number of time steps and S be the number of spatial
points. Then, we can rewrite the correlation matrix as divided into T × T blocks:

RL(k) =


RL,1,1(k) RL,1,2(k) · · · RL,1,T (k)
RL,2,1(k) RL,2,2(k) · · · RL,2,T (k)

... ... . . . ...
RL,T,1(k) RL,T,2(k) · · · RL,T,T (k)


where each block RL,i,j(k) is a S × S correlation matrix for the i-th and j-th time
steps:

RL,i,j(k) =


ck,L

[i,1],[j,1] ck,L
[i,1],[j,2] · · · ck,L

[i,1],[j,S]
ck,L

[i,2],[j,1] ck,L
[i,2],[j,2] · · · ck,L

[i,2],[j,S]
... ... . . . ...

ck,L
[i,S],[j,1] ck,L

[i,S],[j,2] · · · ck,L
[i,S],[j,S]


where ck,L

[i,l],[j,m] is the k-order correlation computed by a L-layer GAT between the
l-th spatial point at the i-th time step and the m-th spatial point at the j-th time
step. To facilitate the transition between the standard notation (that uses two
indices to identify an element of the matrix) and the one defined for our dataset
(that uses two pairs of indices to identify an element of the matrix), we define the
following functions:

time(vp) = i

space(vp) = l

where p = (i − 1) · S + l is the index of the node vp in the input graph, i is the
time step of the node vp, and l is the spatial point of the node vp. This mapping
can be trivially extended also to attention weights and edges. Let:

Pv1→v2→···→vm→vm+1 = (ev1,v2 , ev2,v3 , . . . , evm,vm+1)

be a path of length:
|Pv1→v2→···→vm→vm+1| = m ≤ L
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from node v1 to node vm+1 passing through nodes v2, . . . , vm, where vi refers to
a generic node in the graph, without any specific spatial and temporal meaning,
that takes the i-th position in the path. The path is a defined sequence of edges,
where evi,vi+1 is the edge from node vi to node vi+1, and crosses m layers of the
GAT network. A single edge in the path is identified by:

Pv1→v2→···→vm→vm+1 [l] = evl,vl+1 ∀l ∈ {1, 2, . . . ,m}

The following functions are useful:

first(Pv1→v2→···→vm→vm+1) = v1

last(Pv1→v2→···→vm→vm+1) = vm+1

Therefore, given pm any path of length m:

Πm
v1,vm+1 = {pm | first(pm) = v1 ∧ last(pm) = vm+1}

is the set of all paths having length m from node v1 to node vm+1. Because of how
graphs are defined in our dataset, each edge evi,vi+1 is characterized by:

time(vi+1) = time(vi) + 1 (3.13)
space(vi+1) ∈ Nspace(vi) (3.14)

Let also αk
vi+1,vi

be the attention weight computed by the k-th layer of the GAT
network on the edge evi,vi+1 . Since CL(k) is obtained as a product of attention
matrices, each term of the correlation matrix involves products of attention weights.
In particular, the correlation ck,L

i,j is the sum of the products of attention weights
along all paths of length k from node vi to node vj. This means that:

ck,L
i,j =

Ø
pk∈Πk

vi,vj

kÙ
l=1

αL−k+l
pk[l]

where the sum is taken over all paths pk of length k from node vi to node vj, and
αl

pk[l] is the attention weight computed by the l-th layer of the GAT network and
associated with edge pk[l], i.e. the l-th step in the path pk. A proof of this statement
is provided in Appendix E.6. In particular, each element of the correlation matrix
CL(k) is the sum of the products of attention weights along all paths of length k
from node [t, s] to node [t′, s′], so the correlation matrix, if properly analyzed, can
be used to extract significant paths of length k.

3.3.5 Entropy
As anticipated, the attention matrix A(m) can be interpreted as a transition
matrix of a Markov chain. To understand how much information is contained in
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the attention weights, we can compute the entropy of the attention matrix. The
entropy of a Markov chain is defined as:

H(X) = −
nØ

i=1

nØ
j=1

pi,j log(pi,j)

where X is the Markov chain, n is the number of states in the Markov chain, and
pi,j is the transition probability from state i to state j [73]. A per-row entropy can
instead be defined as:

Hi(X) = −
nØ

j=1
pi,j log(pi,j)

where Hi(X) is the entropy of the i-th row of the transition matrix. While the
matrix-level entropy H(X) measures the uncertainty of the transition probabilities
of the entire Markov chain, the per-row entropy Hi(X) measures the uncertainty
of the transition probabilities from a specific state i to all other states. The
per-row entropy is useful to understand how much information is contained in
the transition probabilities from a specific state, while the matrix-level entropy
is useful to understand the quantity of information contained in the transition
probabilities of the entire Markov chain. A high entropy value indicates that
the transition probabilities are uniformly distributed, and so the model is more
uncertain and less interpretable, while a low entropy value indicates that the
transition probabilities are concentrated on a few states, so the model is more
certain and more interpretable. In our case, the transition probabilities are the
attention weights αm

i,j computed by the m-th layer of a GAT network. Therefore,
we can define the row-level entropy of the attention matrix A(m) as:

Hi(A(m)) = −
nØ

j=1
αm

i,j log(αm
i,j)

This entropy tells how concentrated or dispersed the attention weights are for each
target node i in the m-th layer of the GAT network, i.e. if all incoming edges have
similar attention weights or if some edges are much more important than others.
We can extend this definition to the correlation matrix RL(k):

Hi(RL(m)) = −
nØ

j=1
cm,L

i,j log(cm,L
i,j )

We can easily understand that the meaning is the same of the row-level entropy of
the attention matrix, but instead of analyzing the distribution of attention weight
on incoming edges, it considers the distribution of attention weights of all paths
of length m directed to node i. Since our GAT network is made of L layers, we
can repeat this computation for each layer (or length) m. This means we are free
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to choose the length of the paths we want to analyze. In the following, we will
assume to analyze the longest paths possible in our network, i.e. m = L. To use
the entropy as a filter for the paths, we start considering the entropy of a uniform
probability distribution U over n elements:

U =
; 1
n
,

1
n
, . . . ,

1
n

<
where |U | = n. The corresponding entropy is:

HU = −
nØ

i=1

1
n

log
3 1
n

4
= log(n)

Let now consider a Dirac distribution D over n elements [74]:

D = {1, 0, . . . , 0}

where again |D| = n and the non-zero element can take any position in the vector.
The entropy of the Dirac distribution is:

HD = −1 · log(1)− 0 · log(0)− . . .− 0 · log(0) = 0

where 0 · log(0) is defined to be 0, because:

lim
x→0

x log(x) = 0

For any other distribution, the entropy will be between 0 and log(n), i.e.:

0 ≤ H ≤ log(n)

Assuming that only one path is significant for each target node, the ideal distribution
for a perfect, significant teleconnection is a Dirac distribution, where the attention
weight of the significant path is 1 and all other attention weights are 0. However,
this is rarely the case in practice: in real-world scenarios, the attention weights
are often distributed among multiple paths, leading to a non-zero entropy value.
Therefore, we can use as threshold a positive value t < log(n), where n is the
number of incoming paths for a target node, to filter out the paths that are not
significant. The problem of this approach is that constraining the entropy does not
guarantee any property about the shape of the distribution of attention weights,
and moreover the entropy is not a linear function, so it is not possible to define a
threshold that works for all cases. We can introduce the following distribution:

Q(β) =
I
β + 1− β

n
,
1− β
n

, . . . ,
1− β
n

J
67



Methodology

where β ∈ [0, 1] is a parameter that controls the concentration of the distribution
around the first value, which is greater or equal than the others. The entropy of
this distribution is:

HQ(β) = −
A
β + 1− β

n

B
log

A
β + 1− β

n

B
− (n− 1) · 1− β

n
log

A
1− β
n

B

The relationship between the entropy and the parameter β is shown in Figure 3.13.
As β increases, the entropy decreases, meaning that the distribution becomes more
concentrated around the first value. The entropy is 0 when β = 1, i.e. when the
distribution is a Dirac distribution, and it approaches log(n) as β approaches 0,
i.e. when the distribution becomes uniform. Choosing a suitable value for β is a

Figure 3.13: Relationship between the entropy HQ(β) and the parameter β for
different values of β. As β increases, the entropy decreases, indicating a more
concentrated distribution.

more straightforward way to control the concentration of the distribution around
the first value. The impact of this choice can be visualized in Figure 3.14, where
a distribution of n = 5 numbers summing to 1 is shown for different values of β.
After choosing a proper β value for the dataset, we can filter out the paths that do
not satisfy the condition:

Hi(RL) < HQ(β) (3.15)

This means that the computation is performed separately for each target node, and
therefore using the definition of per-row entropy. The assumption that only one
path is significant for each target node is not always true, and it can happen that
multiple paths have more similar, high attention weights for the same target node.
However, we remember that the training objective of the neural network regularizes
the distribution of attention weights to be far from the uniform distribution, so we
can expect that the network, properly trained, already assigns the highest attention
weight to one edge per target node, except for few cases. Consequently, for each
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3.3 – Model outputs interpretation

Figure 3.14: Impact of the parameter β on the distribution of values. As β
increases, the distribution becomes more concentrated around the first value, leading
to a lower entropy. pi are just placeholders for the values of the distribution, and
they are not related to the paths in the graph.
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target node we select the source node linked to it through the path with the highest
attention weight. Let:

Pi = {pL | first(pL) = vj ∧ last(pL) = vi}

be the set of paths from vj to vi of length L, where i is one of the rows resulting
from Equation 3.15. From this set, we can extract the path with the highest
attention weight:

pi = arg max
pL∈Pi

LÙ
l=1

αL−l+1
pL[l]

3.3.6 Fine2coarse mapping
Now that we have one path for each target node, we want to assess the robustness
of model predictions. In Section 3.1.2, we described the process of mesh refinement
and how it can impact the attention mechanisms in the model. In particular, the
latent representation of input data of a same temporal period can be completely
different depending on the mesh resolution. This means that the paths we identified
may not be stable across different levels of mesh refinement, and we need to evaluate
their significance accordingly. For this purpose, assuming that the neural network
has been trained on a dataset with a mesh refinement level M > 0, we can evaluate
the model on input data with any mesh refinement M ′ such that 0 ≤ M ′ ≤ M .
We can also assume that the output of the selection of high-attention paths is
represented through a binary mask B, that has the same shape of the correlation
matrix RL, where each element is 1 if the corresponding path is candidate for
significance and 0 otherwise. Since RL has shape (T ·S)× (T ·S), and S depends on
M ′, we cannot directly compare the masks obtained for different mesh refinement
levels. To this purpose, we can set the mesh refinement level 0 as baseline and
map any binary mask to the baseline. For simplicity, we start defining a matrix
that maps spatial points in the refined mesh to the ones in the coarse mesh. Let
S(0) be the number of spatial points in the coarse mesh, and S(M ′) be the number
of spatial points in the M ′-level refined mesh. We remember that the technique
used to refine the spherical mesh is the midpoint triangulation, so starting from
the coarse mesh, i.e. the 0-level refined mesh, each point generates 5 points in the
1-level refined mesh, as can be easily visualized in Figure 3.15. Again, each point
in the 1-level refined mesh generates 5 points in the 2-level refined mesh, and so on.
All the points in the l + 1-level refined mesh that are generated by a same point
in the l-level refined mesh have the same distance from that point, and can be
considered as neighbors. For simplicity, we include in these points also the coarser
one, and we therefore define N l,l+1

i as the set of the finer points generated by the
i-th point in the l-level refined mesh, including the point itself. The neighborhood
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3.3 – Model outputs interpretation

Figure 3.15: Midpoint triangulation of a spherical mesh. Each point in the coarse
mesh generates 5 points in the refined mesh. In red is highlighted how one single
point in the coarse mesh is triangularized in the refined mesh. M indicates the
mesh refinement level.
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grows as more refinement levels are involved, and we can generalize that:

N a,b
i =

b−1Û
l=a

N l,l+1
i , ∀a < b

The cardinality of this set can be computed by considering that N a,b
i exploration is

a descendance tree, and so using the formula for the partial sum of a geometric
series:

|N a,b
i | =

rb−a+1 − 1
r − 1 = 5b−a+1 − 1

5− 1 = 5b−a+1 − 1
4

where r is the branching factor of the tree, which in this case is 5. Assuming a = 0:

|N 0,1
i | =

52 − 1
4 = 6

|N 0,2
i | =

53 − 1
4 = 31

and so on. We can define the mapping matrix M(l) from the l-level refined mesh to
the coarse mesh as a matrix of shape S(0) × S(l). For each entry of the matrix:

M(l)
i,j

> 0 if j ∈ N 0,l
i

= 0 otherwise

Since all points in N 0,l
i have the same distance from the i-th point in the coarse

mesh, they should uniformly contribute to the coarse point. We can assume that
the contribution of each point is a probabilistic event, and therefore each row in
Ml should sum to 1:

M(l)
i,j =


1

|N 0,l
i |

if j ∈ N 0,l
i

0 otherwise
RL is computed for each time step in the time window, but of course the structure
of the mapping matrix M(l) will always be the same. In order to apply the mapping
to the binary mask B, we can use the Kronecker product7 between the identity

7The Kronecker product is a mathematical operation that takes two matrices and produces
a block matrix. It is defined as follows: given two matrices A of shape m× n and B of shape
p× q, the Kronecker product A⊗B is a matrix of shape mp× nq, where each element aij of A
is multiplied by the entire matrix B, resulting in a block matrix [75]:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


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matrix IT , where T is the number of time steps in the time window, and the
mapping matrix M(l):

M(l),T = IT ⊗M(l) =


M(l) 0 · · · 0

0 M(l) · · · 0
... ... . . . ...
0 0 · · · M(l)


The resulting matrix M(l),T has shape (T · S(0))× (T · S(l)). Let B(l) be the binary
mask of shape (T · S(l))× (T · S(l)). We can now project B(l) to the coarse mesh in
the following way:

Π = M(0),T ×B(l) × (M(0),T )⊤

The both-sided multiplication ensures that both the rows and columns of the binary
mask are correctly mapped to the coarse mesh, and each item in the resulting matrix
can be interpreted as how many paths from the l-level refined mesh contribute
to the corresponding point in the coarse mesh. This means that the output is
not binary anymore. However, we can assume that just one contribution from the
l-level refined mesh is enough to consider the corresponding point in the coarse
mesh as significant, so we can define the items of the binary mask B(0),l as:

B(0),l
i,j =

1 if Πij > 0
0 otherwise

and this output is specific for the l-level refined mesh and can be compared with
the binary masks obtained from other levels of mesh refinement.

3.3.7 Significance test
There are many ways to compare binary masks. For example, we could compute
the union:

MÛ
l=0

B(0),l

which represents the points that are significant in at least one level of mesh
refinement. However, this does not guarantee that the points are significant across
all levels of mesh refinement, and therefore it does not provide a robust assessment
of the model predictions. We could think about taking the average, but this
would not be meaningful in the context of binary masks. We could compute the
cross-entropy between the binary masks, but we are not interested in assessing
the reliability of model predictions at a certain refinement level with respect to
the others, and we also do not have any ground truth to compare with. We can
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define a Pearson correlation metric [24] between all masks and, since the masks are
binary, it corresponds to the Phi coefficient [76]. We introduce:

n
(l1,l2)
11 = #{(i, j) | B(0),l1

i,j = 1 ∧B(0),l2
i,j = 1}

n
(l1,l2)
10 = #{(i, j) | B(0),l1

i,j = 1 ∧B(0),l2
i,j = 0}

n
(l1,l2)
01 = #{(i, j) | B(0),l1

i,j = 0 ∧B(0),l2
i,j = 1}

n
(l1,l2)
00 = #{(i, j) | B(0),l1

i,j = 0 ∧B(0),l2
i,j = 0}

where l1 and l2 are the levels of mesh refinement. The values n(l1,l2)
11 , n(l1,l2)

10 , n(l1,l2)
01 ,

and n
(l1,l2)
00 represent the number of points in the binary masks that agree or

disagree across the two levels of mesh refinement. The Phi coefficient is a measure
of association between two binary variables, and the Phi coefficient matrix Φ is
defined as a matrix of elements:

Φij = n
(i,j)
11 n

(i,j)
00 − n

(i,j)
10 n

(i,j)
01ñ

(n(i,j)
11 + n

(i,j)
10 )(n(i,j)

11 + n
(i,j)
01 )(n(i,j)

00 + n
(i,j)
10 )(n(i,j)

00 + n
(i,j)
01 )

assuming that the denominator is 0, otherwise Φij = 0. This matrix could be
useful to assess how much the binary masks agree, but we are actually interested
in the predictions that are common to all masks. Therefore, we just compute the
intersection between the binary masks:

B(0) =
MÜ
l=0

B(0),l

This intersection gives us a binary mask that contains only the points that are
significant across all levels of mesh refinement, and therefore can be considered as
robust. Please note that in Section 3.1.5 we defined the spatial structure of input
data in a way that self-loops are not possible, but cyclic paths are not avoided: if a
path starts in node vs,t, it could end in node vs,t+k, where k is the length of the path.
Moreover, it could happen that a non-cyclic path in the refined mesh contributes to
a cyclic path in the coarse mesh, if source and target node in the path in the fine
mesh are mapped to the same point in the coarse mesh. Therefore, we will likely
find cyclic contributions in the final binary mask B(0). We can reasonably discard
these contributions, because they do not represent a significant teleconnection. If
we switch to an edge-list representation of the binary mask:

{(vs,t, vs′,t′) | B(0)
[s′,t′],[s,t] = 1}

we can remove the cyclic paths by filtering out the edges where s = s′:

E(0) = {(vs,t, vs′,t′) | B(0)
[s′,t′],[s,t] = 1 ∧ s /= s′}
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This result is the list of significant teleconnections, and the procedure described
in this section can be seen as a significance test for the teleconnections identified
by the model. Assuming that this procedure is applied to the output of a GAT
network for every test sample, we can produce proper statistics, such as the number
of teleconnections and their distribution across time and space. For visualization
purposes, nodes can be converted back from mesh to grid representation, so that the
teleconnections can be plotted on a grid map. We can also compute the intersection
over union (IoU), a.k.a. Jaccard similarity [77], which is usually defined for pairs
of matrices:

IoU(B(0),l1 ,B(0),l2) =
q

i,j min(B(0),l1
i,j ,B(0),l2

i,j )q
i,j max(B(0),l1

i,j ,B(0),l2
i,j )

Where the min operation corresponds to the intersection and the max operation
corresponds to the union. However, we can extend this definition to directly
compare all the matrices:

IoU(B(0)) =
qM

l=0
q

i,j min(B(0),l
i,j )qM

l=0
q

i,j max(B(0),l
i,j )

A high IoU value indicates that the model predictions are consistent across different
levels of mesh refinement, while a low IoU value indicates that the model predictions
are not robust and may depend on the mesh resolution.

We now briefly recap the steps of the proposed approach:

1. The neural network is trained on a dataset with a certain mesh refinement
level M > 0.

2. The model is evaluated on test data with any mesh refinement level M ′ such
that 0 ≤M ′ ≤M .

3. The attention matrix A(m) is computed for each layer m of the GAT network.

4. The correlation matrix RL(k) is computed for each layer L and path length k.

5. The entropy Hi(RL(k)) is computed for each target node i and layer L.

6. The paths are filtered based on the entropy condition Hi(RL(k)) < HQ(β),
where β is a parameter that controls the concentration of the distribution of
attention weights.

7. For each target node i, the path with the highest attention weight is selected.

8. The binary mask B(l) is computed for each level of mesh refinement l.
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9. The binary masks are mapped to the coarse mesh using the mapping matrix
M(l),T .

10. The binary masks are intersected to obtain the final binary mask B(0) that
contains only the points that are significant across all levels of mesh refinement.

11. The cyclic paths are removed from the final binary mask B(0) to obtain the
edge list E(0) of significant teleconnections.

This concludes the exploration of the methodological aspects of the proposed
approach. In the next chapter, we will present the results obtained by applying
this method to a real-world dataset.
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Results

In this chapter, we present the results of the experiments conducted to evaluate
the proposed approach for teleconnection discovery. We begin by detailing the
experimental setup, including the dataset used and the analysis performed. Subse-
quently, we discuss the application of the methodology previously described, and
we highlight our findings.

4.1 Experimental setup, dataset choice and anal-
ysis

4.1.1 Environment and tools
The experiments were conducted using two different environments: a local and
a remote machine. The local machine was equipped with an Apple M1 @ 3.20
GHz processor, 8 cores and 8 GB of RAM. The remote machine was a server with
an Intel Xeon Gold 6130 CPU @ 2.10 GHz processor, 16 cores, 64 GB of RAM,
and a GPU NVIDIA Tesla V100-PCIE with 16GB of VRAM. The project was
developed using Python 3.11.10 [78] and the following libraries: numpy, torch,
pandas, torch_geometric, xarray, lightning, plotly, matplotlib, basemap,
wandb, netcdf4, kaleido, scikit-learn, trimesh,
cartopy, and networkx. The dataset was processed through Xarray [79], which
allows for efficient manipulation of multi-dimensional arrays and supports NetCDF
[80] files. Data modelling through graphs was performed using PyTorch Geometric
[61], which provides implementations of various graph neural network layers and
utilities for working with graph-structured data. In fact, it was also employed to
build the neural network itself, together with PyTorch [81], a widely used deep
learning framework. Models were trained using the PyTorch Lightning framework
[82], which simplifies the training process and allows for easy integration with
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Weights and Biases [83] for experiment tracking and visualization. Charts were
generated using Plotly [84], a powerful library for creating interactive visualizations,
and Matplotlib [85], a widely used library for static visualizations. For geospatial
mapping and analysis, Basemap and Cartopy were used. Mesh-related operations
and 3D geometry processing were handled using Trimesh, while NetworkX was
used for additional graph-related utilities and visualizations.

4.1.2 Dataset
After a comparison of the available datasets, the one chosen for the experiments
is the ERA5 reanalysis dataset [86, 87], because it is one of the most complete in
terms of variables and temporal coverage.

ERA5, developed by ECMWF and released through the Copernicus Climate
Change Service (C3S), is the fifth-generation ECMWF reanalysis and represents a
significant advancement over its predecessors. According to [88], ERA5 provides
hourly estimates of a broad range of atmospheric, ocean-wave, and land-surface
variables from 1940 to the present, with updates provided on a daily basis and a
latency of approximately five days. The data assimilation system1 used is a 12-
hour four-dimensional variational method2 (4D-Var), integrated within ECMWF’s
Integrated Forecasting System (IFS), and enhanced with a 10-member Ensemble
of Data Assimilations (EDA). This ensemble approach enables the generation of
uncertainty estimates every three hours, helping users assess the confidence in the
data based on variability among ensemble members. ERA5 data are offered at
high spatial resolution: 0.25◦ × 0.25◦ for the main reanalysis and 0.5◦ × 0.5◦ for
uncertainty fields (1◦×1◦ for ocean-wave data). It includes 137 vertical model levels,
extending from the surface to 0.01 hPa (approximately 80 km altitude), which
facilitates detailed analysis of atmospheric processes from the troposphere to the
mesosphere [86]. The reanalysis is available in multiple formats, including General
Regularly distributed Information in Binary form (GRIB) [91] and NetCDF3, and
can be accessed via the Copernicus Climate Data Store (CDS). ERA5 comprises

1The data assimilation system is a set of algorithms and techniques used to combine observa-
tional data with numerical models to produce a consistent and accurate representation. In other
words, real-time observations and model forecasts are combined to create a best estimate of the
current state [89].

24D-Var is a data assimilation technique that uses a variational approach to minimize the
difference between the model forecast and the observations, taking into account the uncertainties
in both. It considers four dimensions: three spatial dimensions (latitude, longitude, and altitude)
and time [90].

3NetCDF (Network Common Data Form) is a set of software libraries and machine-independent
data formats that support the creation, access, and sharing of array-oriented scientific data. Data
in NetCDF is self-describing, portable, scalable, appendable, sharable, archivable [80].
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four main data subsets: hourly and monthly products, each provided for single levels
(representing surface and near-surface conditions) and pressure levels (representing
upper-air conditions). Pre-computed monthly averages are available for convenience,
though ensemble mean and spread are not included in these summaries.

The CDS allows selecting the desired variables, the time range, the geographical
area and the data format. The dataset was downloaded in the early December
2024. Considering the general purpose of discovering and analyzing climate tele-
connections, a set of variables has been selected to consider the overall climate
system, including atmospheric, oceanic and land surface variables. In Table 4.1, for
each chosen variable the name, the description and the unit of measurement are
reported [86]. For what concerns time range, data was downloaded from January

Variable Description Unit

d2m 2 m dewpoint temperature K
msl Mean sea level pressure Pa
skt Skin temperature K
sp Surface pressure Pa
sst Sea surface temperature K
t2m 2 m temperature K
tp Total precipitation m
u10 10 m u-component of wind m/s
v10 10 m v-component of wind m/s

Table 4.1: List of selected ERA5 variables used in the experiments.

1st, 1940 to December 1st, 2023, and, for each month for each year, the first day
at 00:00 UTC was selected. The selected geographical area is the whole globe.
For portability and ease of use, the data was downloaded in NetCDF format and
regridded to a resolution of 10 degrees, to analyze big-scale climate phenomena:
although such regridding produces a considerable loss of detail, it allows to reduce
the computational cost of the experiments and to focus on the most relevant
climate teleconnections. Moreover, to properly balance the dataset size for training,
validation and testing, only data until December 2022 was used for the experiments.
The regridding was performed using the Xarray library and following a bilinear
interpolation method, which is a common technique for resampling gridded data:
it calculates the value of a new grid point by taking a weighted average of the
four nearest grid points in the original grid, thus preserving the overall trend
and structure of the data while reducing its resolution. However, it is important
to note that this method may introduce some artifacts and smoothing effects,
especially in areas with high variability or sharp gradients. Also, it is not always
the appropriate technique: the majority of variables considered in the experiments
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are mean-preserving, meaning that the average value of the variable is preserved
during the regridding process, but some variables, such as tp, are additive, so
during the regridding process the result is the sum of the values of the original grid
points, which is not mean-preserving. For simplicity, every variable was regridded
using the same method, because the very coarsed grid is intentional to show the
climatological characteristics of a geographical area, rather than the local variability
of the variable. The regridded dataset was then saved in NetCDF format for further
processing and analysis.

4.1.3 A data example

Data in ERA5 has a lot of expressive power when it comes to representing climate
phenomena. In particular, it allows to analyze how different variables interact with
each other, and how they change over time and space. In Figure 4.1, the monthly
average of all the variables for a time step taken as example (January 1990) is
shown, to give an idea of the data structure and the spatial distribution of the
variables. The figure shows the global distribution of each variable, highlighting
the differences in temperature, pressure, and precipitation patterns across the
globe. The data is presented in a grid format, with each cell representing a specific
geographical area and the color intensity indicating the value of the variable at that
location. What can be observed is that the dataset is generally clean, with only
some NaN value in the SST variable, because it is only computed over the ocean
and not on the land. It is also evident that using the same coarsening strategy
for all the variables is not always the best choice, since some variables are more
sensitive to spatial resolution than others. For example, temperature and pressure
are generally well represented at a coarse resolution, while precipitation is more
sensitive to spatial resolution and requires a finer grid to capture local variations. In
fact, if we look at the precipitation variable, we can see that it is more concentrated
in specific areas, such as tropical regions and coastal areas, where it is more likely
to occur, but values are very low, because rain happens only in specific points
in space and time, not for an entire region or month, so averaging the values is
not the proper way to represent this information. However, for the experiments,
normalized anomalies are considered, so the magnitude of variables does not cause
any loss of information. Wind speed variables show that air flows are generally
stronger in the tropics and weaker in the polar regions. Other variables reflect
elementary notions on climatology: pressure is lower on the mountains and higher
in the valleys, temperature is lower at higher altitudes, and so on. However, it is not
so immediate to visualize the relationships between the variables or geographical
regions.
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Figure 4.1: Monthly average of the selected ERA5 variables for January 1990.
In case of NaN values, the cell is colored in white, with red stripes. Each subplot
represents a different variable, with the color scale on the right indicating the value
range. Unit of measurement is shown in the legend of each subplot. In case of
temperature, values are shown in Celsius for better readability, but the original
values are in Kelvin. The grid resolution is 10 × 10 degrees, covering the whole
globe.
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4.1.4 Statistical distribution of the variables
To better understand the dataset, it is useful to analyze the statistical distribution
of the variables over time. In Figure 4.2, the monthly average of each variable is
shown for the entire time range considered in the experiments, from January 1940
to December 2022. We can make some considerations on how the variables differ
across the globe. For instance, temperature variables show a general increase over
time, with some fluctuations due to seasonal variations; precipitation in Europe
is much less than in any other macro-area; winds are stronger in Australia; sea
level pressure in the northern hemisphere is generally higher than in the southern
hemisphere.

4.2 Graph construction and dataloader

4.2.1 Climatology
Once the dataset was regridded and variables selected, a preprocessing step was
needed to make data suitable to be fed to the neural network. First of all, climatology
was computed. To take into account recent climate change phenomena, the time
period chosen for the climatology computation is from January 1970 to December
1999 and therefore lasts 30 years. Each NetCDF file contains one time step (month
of a specific year), 19 distinct latitudes and 36 distinct longitudes, for a total of
1× 19× 36 = 684 rows. All the NetCDF files belonging to that period were merged
into a unique DataFrame object, which leads to (30 × 12) × 684 = 246,240 rows.
Data was then grouped by latitude, longitude and month, regardless of the year,
resulting into 12× 19× 36 = 8,208 groups. For each group, the mean and standard
deviation were computed for each variable, and the resulting matrices were saved
as tensors to be employed for data anomaly conversion.

4.2.2 Coordinates encoding
Tensor transformation is applied in the same way to both data and climatology.
Each tensor has N rows and D columns. N depends if the tensor is generated by
the data or the climatology: if from data, N = 684, otherwise N = 8,208. Instead,
D = C + F is fixed, where C is the number of coordinates and F is the number of
features. Coordinates are, in order:

1. Normalized year

2. Sine component of the month

3. Cosine component of the month
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Figure 4.2: Statistical distribution of the selected ERA5 variables over time.
Each color represents measurements collected at different macro-areas. The x-axis
represents the time, while the y-axis represents the value of the variable. The
grid resolution is 90 × 90 degrees, covering the whole globe, to show trends of
macro-areas in a clear way. Positions should be intended as entire areas, not single
points.
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4. Sine component of the latitude

5. Cosine component of the latitude

6. Sine component of the longitude

7. Cosine component of the longitude

Since the period considered for the experiments is from January 1940 to December
2022, the normalized year is computed as follows:

year− 1940
2023− 1940 = year− 1940
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Therefore, C = 7. As from Section 4.1.2, F = 9 is the number of features, so
D = 16.

4.2.3 Grid2mesh
We remember from Section 4.1.3 that there is always chance for missing values in
data. Therefore, we substitute NaN values with the average of non-missing values
of the same feature in the tensor.

Tensors all present the same coordinates but differ in the values of the features.
This means that the grid2mesh mapping can be done indifferently on any of the
tensors. Starting from the cosine and sine components of latitude and longitude, we
recover 3D cartesian coordinates, obtaining an auxiliary grid tensor of shape N × 3,
where N again depends if the tensor is generated by the data or the climatology.
We generate an icosahedron mesh and we refine it up to the desired level: to the
purpose of this work, we consider 2 successive refinements. Each time that the mesh
is refined, we keep track of the fine mesh points generated by each coarse point, in
order to define the coarse2fine mapping to be used subsequently. The mesh object
contains vertices and faces, stored in proper matrices: the vertex matrix has shape
V × 3, because points are known in 3D cartesian coordinates, and the faces matrix
has shape F × 34, because each face is defined by 3 vertices. Experiments have
been conducted using 0, 1 and 2 levels of mesh refinement, in order to assess the
impact of the mesh resolution on the model performance, but at the same time to
keep the computational cost manageable. In case of no refinement, V = 12 and
F = 20, after the first refinement, V = 42 and F = 80, while after the second
refinement, V = 162 and F = 320. While faces are used for the mesh refinement
and visualization, vertices are used to define the graph nodes. A spherical distance

4Please do not confuse the F in the faces matrix with the F in the features, they are different.
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is then computed between each row in the mesh vertex matrix and each row in the
grid tensor. These distances are stored as a tensor of shape N × V , and the closest
mesh node to each grid point is determined by an argmin operation, which returns
an array of shape N , where each element is the index of the closest mesh node to
the corresponding grid point.

At this point, for each input tensor (data or climatology) we can perform the
grid2mesh mapping: we isolate the feature columns from the tensor, we multiply
each row by the cosine component of the corresponding latitude (latitude weights),
and, through an index_add operation, we sum for each mesh point the values of
the features of the corresponding grid points, we do the same thing for the latitude
weights, and we divide the summed features by the summed latitude weights, such
that we can average features over the cosine of the latitude and obtain a proper
mesh representation of the data. The resulting tensor has shape V × F . We finally
build a tensor by packing the following coordinates:

1. Normalized year

2. Sine component of the month

3. Cosine component of the month

4. x coordinate of the mesh point

5. y coordinate of the mesh point

6. z coordinate of the mesh point

for a total of C = 6 columns, which, added to the F = 9 adapted features, leads
to a mesh representation of shape V × 15. Given this tensor for both data and
climatology, we can now compute the anomalies. We should just calculate the
difference between the data and climatology tensors. However, for numerical
stability purposes, we prefer to use the climatology mean and standard deviation
to normalize the data. Therefore, we subtract the mean and divide by the standard
deviation for each feature.

4.2.4 Time windowing and edges construction
Once we have the mesh representation for anomalies, we want to construct graphs
where information from consecutive time steps is included. After some experiments,
we found that a time window of T = 13 months, because we want to let edges
make T − 1 = 12 traversals in time, it is also a good compromise between the
amount of information and the computational cost. Therefore, we concatenate
the anomalies of 13 consecutive months through a batching strategy, which leads
to a tensor of shape (13 · V )× 15. We need edges, which connect each node in a
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specific time step to its spatial 2m-neighbors in the following time step, where the
definition of neighbors is given in Section 3.1.5 and m is the mesh refinement level.
Neighbors are stored as a key-value dictionary, where the key is the index of the
spatial node and the value is a list of indices of the neighboring nodes. Starting
from this dictionary, which only includes spatial information, we integrate temporal
information to cover the entire time window. Therefore, edges are computed using
as source the key of the dictionary and as target any of the values associated to
that key. This step is repeated for each value of the key, for each key and for
each time step in the window. Please note that nodes in the first time step do
not have any incoming edge, and edges are the same for every time step, so they
are repeated T − 1 times. Therefore, the resulting edges are stored in a tensor of
shape 2× (12 · E), where E depends on the number of neighbors, and therefore
on the mesh refinement level. We also need edge features, which, as from Section
3.1.6, include a spatial distance and a temporal distance. For the spatial distance,
which is the same regardless of the time step, we compute a distance matrix V × V
between all nodes of the mesh, and for each edge we properly reference the values
of this matrix by using the source and target indices. For the temporal distance,
we simply compute the difference between the time steps of the source and target
nodes, which is always 1 in this case, because we are considering consecutive time
steps. The resulting edge features tensor has shape (12 · E) × 2, where the first
column is the spatial distance and the second column is the temporal distance.
Finally, the graph is constructed using the following tensors:

• x: the node features tensor of shape (13·V )×15, which contains the coordinates
and the features of each node;

• edge_index: the edge index tensor of shape 2× (12 · E), which contains the
source and target indices of each edge;

• edge_attr: the edge features tensor of shape (12 ·E)× 2, which contains the
spatial and temporal distances for each edge.

For numerical stability purposes, both the x and edge_features tensors are
normalized. In Table 4.2, the dimensions of the tensors as a function of the mesh
refinement level are reported. The first column indicates the mesh refinement level
in meters, while the other columns show the shapes of the tensors. As we can see,
the number of edges increases significantly with the mesh refinement level, because
of the 2m-neighborhood rule and the fact that edges at a certain resolution include
edges at lower resolutions.
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m V E x edge_index edge_attr

0 12 60 156× 15 2× 720 720× 2
1 42 600 + 60 = 660 546× 15 2× 7,920 7,920× 2
2 162 8040 + 660 = 8,700 2,106× 15 2× 104,400 104,400× 2

Table 4.2: Tensor dimensions as a function of mesh refinement level. m is the
mesh refinement level, V,E are the number of vertices and edges assuming a single
time step. Tensor shapes are computed considering the entire time window.
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4.2.5 Dataloader

To handle the graph data and feed it to the neural network, a PyTorch Geometric
dataloader was created. The dataloader takes as input the graph tensors and
constructs a dataset object, which can be used to iterate over the data in batches.
When training a neural network, we usually divide the dataset into three subsets:
training, validation and testing. The training set is used to train the model, the
validation set is used to tune the hyperparameters and the testing set is used
to evaluate the model performance on unseen data. This is necessary to avoid
overfitting and to ensure that the model generalizes well to new data. In this case,
we decided to use a time-based split, i.e. once generated the graphs for all time
windows, starting from the first month of the dataset and shifting by one month at
a time, we split the dataset into three subsets based on the time period in which
the graph starts. The training set includes all the graphs where the first time step
is between January 1940 and December 1989; for the validation set, the range
is between January 1991 and December 2000; for the test set, the graphs start
between January 2002 and December 2021. The fact that some months are skipped
is intentional, because of the length of the time window considered: a time window
of 13 steps that starts in the beginning of December 1989 - the last one of the
training set - ends in the end of December 1990, and the following one - the first
one of the validation set - starts in January 1991. Therefore, the entire time period
of the dataset is covered, but it is ensured that there is no overlapping between the
subsets, which is crucial to avoid that the results are biased. In Figure 4.3, the
temporal extension of the training, validation and testing sets is shown graphically,
with the time periods and the number of samples for each subset. The model is
trained on past data and evaluated on future data, which is a common practice
in time series analysis. The dataloader also allows for batching and shuffling of
the data, which is useful for training the model in mini-batches and improving
generalization. Since we work with graph-structured data, the batching strategy
consists in generating, from more graphs (Data objects), a unique graph (Batch
object) where x and edge_index and edge_attr are concatenated over all graphs.
However, indices in edge_index are adjusted to account for the concatenation, so
that they refer to the correct nodes in the batch. In particular, since node indices
start from 0 for each graph, PyTorch Geometric offsets the indices in edge_index
for each graph based on the cumulative number of nodes in previous graphs. The
Batch object also contains a batch attribute, which is an array of length equal
to the number of nodes in the batch, where each element indicates the index of
the graph to which the corresponding node belongs. Batching is enabled for both
training, validation and testing sets, to better exploit the computational resources
and to speed up the training process. For the experiments, batch size was set
to B = 16. Instead, shuffling is only enabled for the training set, to ensure that
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Figure 4.3: Extension of training, validation and testing sets over time. Each
color represents a different subset: red for training, orange for validation, and
green for testing. The left side of a rectangle indicates the first time step, included
from the beginning of that month, whereas the right side indicates the last time
step, included until the end of that month. For each subset, the number of years
(including the last month of the last time window) is reported, as well as the total
number of graphs in that subset.
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the model does not learn any temporal patterns from the data, but only from the
features and edges. The validation and testing sets are not shuffled, to preserve the
temporal order of the data and to evaluate the model performance on unseen data.

4.3 Neural network
After defining the graph construction mechanism, the neural network architecture
was built. We use a VGAE architecture, with a GATv2 encoder and an inner
product decoder.

4.3.1 Model
The encoder is made of L+ 2 GATv2 layers, where L is defined when the encoder
is instanciated, and the 2 additional layers are required by the VGAE architecture
to compute the mean and log variance5 of the latent space. Experiments have been
conducted using from L = 2 to L = 6 layers, to observe how model performance
changes and if oversmoothing and oversquashing damage results. For each layer,
the number of input and output channels is provided. We always assume that
there is one attention head and self-loops are excluded from attention computation.
For the first layer, which takes as input a graph object, input dimension is the
same as the number of features in the node features tensor, i.e. 15. The output
dimension of the first layer is set to 256, to allow the latent space to have a good
representation power. This is the latent space dimension, and therefore is preserved
in the following layers, since we want our model to learn paths traversing layers and
edges, so, for all the remaining layers, including the ones responsible for computing
the mean and log variance of the latent space, input dimension is equal to output
dimension. When input data enters the encoder, x, edge_index and edge_attr
tensors are passed to the first layer, which computes the attention weights for that
layer, of size E, and the output features for each node, of shape (13 · V ) × 256.
These ones are then passed to a ReLU function and then to the next layer. After
the L-th layer, the ReLU function is not activated and the output features are still
a tensor of shape (13 ·V )×256, At this point, both the mean and log variance layers
take this tensor as input and both produce a representation of the same shape.
With the reparametrization trick, the two tensors are combined into a single latent
space tensor of the same shape. The resulting latent space tensor is then passed to
the decoder. The decoder indexes the latent space tensor using the edge_index

5We know from theory that the VGAE computes log σ2, but for numerical stability purposes
we prefer to compute log σ and then square it, so that we can avoid numerical issues when
computing the exponential function.
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tensor, which contains the source and target indices of each edge, and computes
the inner product between the features of the source and target nodes in the latent
space. This results in a tensor of shape 12 ·E, which represents the predicted edge
weights for each edge in the graph. Finally, a sigmoid function is applied to the
predicted edge weights, to obtain a probability distribution over the edges.

4.3.2 Loss function, backpropagation and metrics
In each step of the training, validation or testing, input data is passed to the model
and then outputs are processed to compute the loss and the metrics.

First of all, we take the output of the decoder to compute the reconstruction
loss on positive edges. Then, we perform a negative sampling from positive edges
to obtain negative edges, that have the same shape of positive edges, because
we want a perfect class balance. We use negative edges with z to compute the
reconstruction loss on negative edges. We sum the two losses to obtain the total
reconstruction loss. The tensors of mean and log variance are used to compute the
KL loss. The VGAE loss is then the sum of the reconstruction loss and the KL
loss, which is divided by the number of nodes in the graph. For what concerns
the entropy loss, in this case, separately for each of the L layers, we compute
the entropy of attention weights, which is a scalar. Then, the L entropies are
averaged to compute the entropy loss, which is multiplied by the hyperparameter λ.
After some experiments, we found out that λ = 0.5 is a good value to balance the
contributions of the various losses. In fact, the reconstruction loss and the KL loss
(VGAE loss terms) are usually smaller than the entropy loss, and the difference can
be even one order of magnitude. However, training the model against the VGAE
loss is easier than training it against the entropy loss, because the latter is more
sensitive to the attention weights and it is more difficult to optimize. Therefore,
the entropy loss must give a higher contribution to the total loss, but not too high,
in a way that the order of magnitude of both loss terms is similar. Finally, the
total loss is computed as the sum of the reconstruction loss, the KL loss and the
entropy loss. All loss terms are scalars, so the total loss is also a scalar.

Loss is needed for backpropagation on the model parameters. This is performed
using the Adam optimizer (please see Appendix C.3.3 for more details on how
it works) with a learning rate of 0.001 and no weight decay. The scheduler
is ReduceOnPlateau, which reduces the learning rate by a factor of 0.1 if the
validation loss does not improve for 5 epochs. The model is trained for a maximum
of 400 epochs, but training stops early if the validation loss does not improve for
10 epochs. In Figure 4.4, the validation loss curves over epochs for different loss
terms and mesh refinement levels are shown. The curves show how the loss changes
over time, and how the model converges to a minimum loss value. We know that
the total loss is dominated by the entropy loss, so the curves for the entropy loss
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(a) VGAE loss, m = 0 (b) VGAE loss, m = 1 (c) VGAE loss, m = 2

(d) Entropy loss, m = 0 (e) Entropy loss, m = 1 (f) Entropy loss, m = 2

Figure 4.4: Validation loss curves over epochs for different loss terms, mesh
refinement levels and number of layers.
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are more stable and have a lower variance than the curves for the VGAE loss. The
curves for the VGAE loss show more fluctuations, but we can take them as good
because they are likely due to the randomness introduced by the reparametrization
trick. In general, the VGAE loss converges at a good value, but the difference
with respect to the initial value is not so high. We should pay attention to Figure
4.4c, because for L = 5,m = 2 at epoch 43 the loss diverges significantly, reaching
the value of 1,406. This is an anomaly that comes from the KL divergence, and
is probably due to a numerical issue when computing the logstd tensor under
certain conditions. In Figure 4.4a, the best performing configuration (lowest value)
is for L = 5, which is true also for Figure 4.4b. Instead, in Figure 4.4c, the loss
is minimized for L = 2. For what concerns the entropy loss, L = 2 is the best
performing configuration for Figure 4.4d and Figure 4.4e, while for Figure 4.4f the
optimal choice is L = 5. We should take into account that both losses contribute
to the total loss with specific weights, so the best performing configuration for
the VGAE loss is not necessarily the best performing one for the entropy loss.
Although we anticipated that deep GNN models are prone to oversmoothing and
oversquashing, we can see that in this case the VGAE, and therefore the random
noise in the latent space, helps to mitigate these issues. In fact, even though
configurations with L = 6 are not the best performing ones, the related results are
not dramatically worse than the others. This is an important discovery, because we
are interested in long paths traversing the graph and not being limited to 2 hops.

Test losses are shown in Table 4.3. We notice that the VGAE loss on the test

VGAE loss

L m = 0 m = 1 m = 2
2 1.162 1.047 0.933
3 1.114 1.025 0.945
4 1.064 0.971 0.945
5 63.645 0.972 0.952
6 1.079 0.982 0.985

Entropy loss

L m = 0 m = 1 m = 2
2 7.961 9.131 10.430
3 8.100 9.213 10.488
4 8.157 9.225 10.559
5 8.135 9.309 9.899
6 8.336 9.350 9.951

Table 4.3: Loss comparison on the test set between mesh refinement levels 0, 1
and 2. For visual clarity, the best values for each loss and refinement level are
shown in bold.

set for the 5-layer model with no refinement is extremely high, which is an anomaly
compared to the other values. When performing the reparametrization trick, the
logstd tensor is adjusted with the clamp function by limiting the maximum value
to 10.0. However, when computing the KL loss, the magnitude of the result is
dominated by the logstd.exp()**2 operation, which leads to high values for
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logstd values greater than 1.0. In the worst case, if a logstd value is 10.0, the
result of the KL loss is e20 ≈ 485,165,195.4, which is extremely high. It turns out
that, for this specific configuration, although training and validation perform well,
the model is not able to generalize properly on the test set, and a noticeable amount
of logstd values are greater than 1.0, and even reach 10.0. By the way, again
the insight that the VGAE helps to mitigate oversmoothing and oversquashing is
confirmed by the performance on the test set, regardless of the mesh refinement
level. In general, the entropy loss worsens as the mesh refinement level increases,
but this is expected, because the number of edges increases significantly with
the mesh refinement level, and therefore the entropy loss is more sensitive to the
attention weights.

The resulting total test loss is shown in Table 4.4. We can see that setups with

Total loss

L m = 0 m = 1 m = 2
2 5.143 5.612 6.148
3 5.164 5.632 6.188
4 5.143 5.584 6.224
5 67.713 5.626 5.902
6 5.247 5.657 5.960

Table 4.4: Total loss comparison on the test set between mesh refinement levels 0,
1 and 2. For visual clarity, the best values for each loss and refinement level are
shown in bold.

m = 0 and m = 1 agree on the best performing neural network depth, but the
same depth is the worst one for m = 2.

After computing the loss, we also compute AUC and AP, by taking the out-
put of the decoder on positive edges and negative edges, and comparing them
with a tensor of ones and zeros respectively. The functions roc_auc_score and
average_precision_score from scikit-learn are used to compute these metrics.
In Figure 4.5, we can see the respective validation curves. In general, AUC is higher
than AP, but values of AP are still acceptable: regardless of the mesh refinement
level, the model makes good predictions and the latent space is able to capture
the relationships between nodes and edges. From these charts, we can see that
for m = 2 the configuration with L = 6 performs worse (lower metrics) than the
others, while for m = 0 and m = 1 it can be comparable to other configurations.
Conversely, for m = 0 and m = 1, the metrics are worse for L = 2, which instead
is the best performing for m = 2. AUC and AP show similar trends.

Test values for AUC and AP are shown in Table 4.5.
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(a) AUC, m = 0 (b) AUC, m = 1 (c) AUC, m = 2

(d) AP, m = 0 (e) AP, m = 1 (f) AP, m = 2

Figure 4.5: Validation AUC and AP curves over epochs for different mesh
refinement levels and number of layers.

AUC

L m = 0 m = 1 m = 2
2 0.913 0.915 0.952
3 0.926 0.922 0.940
4 0.942 0.943 0.938
5 0.942 0.941 0.940
6 0.931 0.932 0.921

AP

L m = 0 m = 1 m = 2
2 0.834 0.831 0.919
3 0.856 0.847 0.881
4 0.889 0.886 0.876
5 0.910 0.900 0.897
6 0.891 0.889 0.855

Table 4.5: AUC and AP comparison on the test set between mesh refinement
levels 0, 1 and 2. For visual clarity, the best values for each metric and refinement
level are shown in bold.
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We want to choose the best neural network depth according to all the test
metrics. There is not a unique answer, but we can trace out a rank for each metric
and each mesh refinement level, where 1 means that the model is the best with
respect to that metric and mesh refinement level, and 4 means that the model is the
worst. This is shown in Table 4.6. The total column shows the sum of ranks across

Loss AUC AP
L \m 0 1 2 0 1 2 0 1 2 Total

2 1 2 2 4 4 1 4 4 1 23
3 3 3 3 3 3 2 3 3 2 25
4 1 1 4 1 1 3 2 2 3 18
5 - - - - - - - - - -
6 4 4 1 2 2 4 1 1 4 23

Table 4.6: Ranking of neural network depths by performance metrics across
different mesh refinement levels (m). Lower ranks indicate better performance.

all metrics, excluding the anomalous L = 5 configuration, which is not considered
in the ranking, because of the anomaly on the loss function that could damage the
results. The lower the total rank, the better the model performance. Therefore, we
can reasonably conclude that the best model has L = 4 layers, and we will use it
for the following experiments. This means that paths can have a maximum length
of 4 hops.

All the described operations are performed almost in the same way for training,
validation and testing sets. The only differences are that, for the training set, the
model parameters are updated using backpropagation, while for the validation
and testing sets, the model parameters are not updated. Also, the random noise
employed in the reparametrization trick is not used for the validation and testing
sets, because we want to evaluate the model performance on the deterministic
output of the decoder. Therefore, in this case only the mean tensor is employed for
the reparametrization.

4.4 Model outputs interpretation
To make predictions robust, we want to assess the model’s performance on inputs
with different mesh refinement levels. One strategy can be to train the model
following the dataset split scheme defined in Section 4.2.5 for all the desired mesh
refinement levels. However, a more straightforward approach is to use different
models for different mesh refinement levels, because it is difficult to generalize the
latent representation across different resolutions.
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4.4.1 Correlation matrix
Given a specified mesh refinement level and the depth of the encoder (L), we are
interested in computing the correlation matrix. For any layer of the network, the
attention weights have shape 16 · 12 · E = 192 · E, so each attention weight is
associated to a specific edge in the edge_index tensor. This one is basically a list of
edges, but we need a matrix representation of the edges. Therefore, for every layer
an attention matrix of shape (16·13·V )×(16·13·V ) = (208·V )×(208·V ) is generated,
using the index of the target node of the edge as row and the index of the source
node of the edge as column. Then, correlation matrix is computed by defining an
identity matrix of the same shape and performing a matrix multiplication between
the attention matrix and the identity matrix. The result is iteratively repeated
for every layer, and intermediate results are stored in a dictionary, such that it is
possible to collect correlation matrices at every depth, i.e. for every path length less
or equal than L. Let’s assume we selected a desired path length. When analyzing
correlation matrices, it is better to isolate the attention weights of edges belonging
to different batches, because they are not related to each other. Therefore, we
compute the correlation matrix for each batch separately, and this is possible by
extracting diagonal blocks from the correlation matrix, obtaining 16 matrices of
shape (13 · V )× (13 · V ).

4.4.2 Entropy
Now let’s focus on a single batch. We remember from Section 3.3.3 that the corre-
lation matrix is row-stochastic, because the attention matrices are row-stochastic.
However, this is true for all the nodes that have any incoming edge, and this does
not occur for the first time step. Consequently, in order to perform any analysis
on the correlation matrix, we need to filter out the rows that sum to 0, because
no attention weight is assigned to them. This problem occurs for any underlying
attention matrix. Therefore, depending on the chosen path length, we can have
a different number of rows to filter out. For example, for a path length of 1, the
first time step has no incoming edges, so the first V rows are filtered out, while
for a path length of 2, the first 2 · V rows are filtered out. In general, if the path
length is p, the first p · V rows in the correlation matrix are filtered out. Filtering
operations impose computing a mask, which has the same shape of the correlation
matrix. For the remaining rows, we compute the element-wise entropy and we
sum over the columns to compute a per-row entropy, obtaining an array of shape
13 · V . Then, we are interested to filter out the rows that have an entropy greater
than a certain threshold. The threshold must take into account the number of
positive items of the row, which depends on the path length but also on the mesh
refinement level. For example, for a mesh refinement level of 0 and a path length
of 1, the number of incoming edges for each target node is 5. If N is the number of
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positive items in the row, we set as maximum entropy logN , which corresponds to
a uniform distribution over the positive items. We are interested in distributions
far from uniform, so the threshold must be between logN and 0. However, we
described in Section 3.3.5 that it is difficult to directly determine a good entropy
threshold, and therefore we set a threshold in a β-space where we can control how
much the distribution of the entropy values is concentrated, regardless of the mesh
refinement level and the path length. After some experiments, we found out that
a good value for β is 0.8. In Table 4.7, we show the entropy threshold values for
different mesh refinement levels and path lengths.

m k n Entropy threshold
0 1 5 0.661
0 2 11 0.893
0 3 12 0.916
0 4 12 0.916
1 1 16 0.990
1 2 39 1.202
1 3 42 1.219
1 4 42 1.219
2 1 55 1.279
2 2 143 1.483
2 3 162 1.509
2 4 162 1.509

Table 4.7: Entropy threshold values for different mesh refinement levels and path
lengths. k should be intended as the path length. n is the number of incoming
paths per target node.

We then filter out the rows with an entropy greater or equal to the threshold,
using another mask. Finally, through an argmax operation, we select the highest
attention weight for each row. The obtained mask, namely fine_mask is binary
and has True values for any edge set as candidate for the significance test.

4.4.3 Fine2coarse mapping
In case we are dealing with a mesh refinement level higher than 0, we must
project this mask on the coarse space. To do this, we need a binary mask, namely
coarse_constraint, that has True values for the items corresponding to paths
that are possible in the coarse space for the specified path length, i.e. source-target
pairs that are connected by a path of that length. Moreover, we need a mapping
matrix from fine to coarse space. This mapping is the same regardless of the
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input data, and is defined using a dictionary populated during the mesh refinement
process, as described in Section 4.2.3. This data structure contains, for each node
at a specified mesh refinement level, the indices of the corresponding nodes in the
successive refinement. Therefore, by hierarchically traversing the dictionary, we can
know, for each node at refinement level 0, all the generated nodes at the desired
refinement level. We then build a matrix of shape Vcoarse×Vfine, where, for each row,
we assign uniform scores, summing to 1, to all the columns whose indices are the
nodes in the fine mesh recursively generated by the coarse node represented by the
row. We decide to perform all the evaluations using the mesh refinement 0 as the
baseline coarse mesh, so Vcoarse = 12. The mapping matrix is defined for each time
step. We use the kron function to compute the Kronecker product between the
mapping matrix and the identity matrix of shape 13× 13, resulting into a matrix of
shape (13 ·12)× (13 ·Vfine) = 156× (13 ·Vfine). The projection of our binary mask on
the coarse space is computed through the matrix multiplication mapping_matrix
@ fine_mask @ mapping_matrix.T. Since the result is not boolean anymore, we
create a new mask, namely coarse_mask that has True values for the items that
are greater than 0, because we assume that just one edge contribution in the fine
space is enough to consider it in the coarse space. coarse_mask is then combined
with coarse_constraint using a logical and operation, to obtain the final mask.
Final masks are collected starting from each mesh refinement level, for each path
length and test sample.

4.4.4 Significance test
For each path length and test sample, processed binary masks of different mesh
refinement levels, all having the same shape 156× 156, are combined by computing
their intersection (logical and) and union (logical or). IoU is calculated by dividing
the sum of intersection over all the items of the mask and the sum of union over all
the items. Therefore, IoU is a scalar, while intersection can be visualized on the map,
by associating, for each True entry, the involved nodes and their spatio-temporal
position. In Figure 4.6, the distribution of the IoU values over the test set is shown
for different path lengths k. We can notice that IoU values are very low, and this
suggests that, although the attempts to make the model generalize well on any
mesh resolution, models trained on different mesh refinement levels have a totally
different understanding of data relationships, so a better approach to represent
edges in input graphs is needed, or maybe a different neural network architecture.
However, this also highlights that some paths may be more easily transferable
between different mesh resolutions than others, and they could really represent
causal relationships. Although the magnitude of IoU values, if we want to visualize
the significant paths across the entire test set this would still result into a lot of
paths to be shown. Paths that are significant for one test sample are not necessarily
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.6: IoU histograms for different path lengths (k). The x-axis represents
the IoU values, while the y-axis shows the number of occurrences for each value
over the test set.
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significant for the others, and this variability is fundamental to prove that the model
learns a representation which depends on input data. Also, remembering that each
path traverses multiple time steps, we expect that, depending on the starting time
step we are considering, the paths may be different. Nevertheless, considering the
overall test set, the model’s choices appear less heterogeneous, and visualizations
showing the significant paths at different starting time steps are more similar to
each other. Figure 4.7 shows an example of this situation. Slight differences on

(a) t0 = 3 (b) t0 = 4

Figure 4.7: Comparison of significant paths of length k = 1 for different starting
time steps (t0) over the entire test set. The paths are shown on the map, where
nodes are represented as circles and edges as arrows. For visual clarity, paths
starting and ending in the same node are not show. Moreover, if two paths have
opposite directions, the one with highest frequency is shown. For each path, the
color indicates the frequency in which it appears in the test set.

paths of length k = 1 propagate over longer paths. Therefore, analyzing paths
of length k = 4 can lead to more significant results, and different across different
starting time steps (see Figure 4.8). Some paths are consistently frequent in the
test set, regardless of the starting time step. For instance, the path connecting
Indonesia to New Zealand is very frequent, but it is difficult to associate a specific
meaning to detected paths: they could correspond to unknown teleconnection
patterns, or they could be just noise, considering the low IoU values. To the extent
of this work, although the promising methodology, there is no practical way to
determine the physical meaning of detected paths, and therefore we cannot draw
any conclusion about the existence of teleconnection patterns in the data. However,
we can say that the model is able to learn a representation of the data that is able
to capture relationships between nodes and edges, and this is a good starting point
for future work.

This concludes the discussion about the results obtained by applying the previ-
ously described methodology. The next chapter will summarize the findings and
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(a) t0 = 0 (b) t0 = 1

Figure 4.8: Comparison of significant paths of length k = 4 for different starting
time steps (t0) over the entire test set. See Figure 4.7 for a description of the
visualization.

provide conclusions about the work done in this thesis.
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Chapter 5

Conclusion

In this chapter, we outline some limitations of the current approach and suggest
possible future research directions. Finally, we summarize the main contributions
of this work.

5.1 Considerations on the approach
This research investigated climate teleconnection patterns using a graph-based
deep learning approach applied to the ERA5 reanalysis dataset. The study utilized
global climate data spanning 1940-2023 across 9 variables, which was regridded to
10-degree resolution and preprocessed to compute climatological anomalies relative
to a 1970-1999 baseline. The climate data was represented as graphs using refined
icosahedral meshes at three levels of complexity (12, 42, and 162 nodes), with
edges connecting both spatial and temporal neighbors. The modeling framework
employed a VGAE with GATv2 layers to learn latent representations and infer
teleconnection patterns. The researchers systematically tested different architectural
configurations, varying model depth from 2 to 6 layers and mesh refinement levels.
The training objective combined VGAE loss (reconstruction plus KL divergence)
with entropy loss on attention weights. Performance evaluation revealed that
configurations with 4 layers and mesh refinement levels m = 0 or m = 1 achieved
optimal results. The best-performing models demonstrated strong discriminative
capability with AUC scores of approximately 0.95 and AP scores around 0.92
on the test set. However, entropy loss increased with mesh refinement due to
growing edge complexity, and some configurations (particularly L = 5 with m = 0)
showed numerical instability in KL divergence calculations. The model’s attention
mechanism enabled identification of potential teleconnection pathways through the
graph structure, with influence paths extending up to 4 steps. Significant paths
were extracted using entropy filtering and analyzed through intersection/union
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operations across different mesh refinements. While the low IoU scores between
different mesh levels indicated limited direct transferability of detected patterns,
certain spatial pathways appeared consistently across configurations, suggesting
potentially robust climate connections that warrant further physical interpretation.

5.1.1 Limitations
As anticipated, the present work does not provide a definitive solution to the
problem of teleconnection discovery, but it is a starting point for future research.
Some limitations can be identified in the current approach, taking into account the
methodology, the results and the comparison with the state of the art.

Although innovative with respect to present literature, the discussed approach
does not really provide a solid foundation for proper significance testing of the
discovered teleconnections. Data representation is structured in a way that edges
express causal relationships in space and time, but not necessarily in a statistically
significant way. In fact, we assumed that each spatio-temporal point has an influence
on the neighbors, but this is not necessarily true: it is a first approximation that,
thanks to the model outputs and domain knowledge, can be refined in the future,
defining just a static set of points that are relevant for one node according to some
tangible criteria, different for each node. The same assumption is used to interpret
the attention weights of the model: since the edges are causal, the attention
weights are interpreted as the strength of the causal relationship between two nodes.
However, once switched to a static set of points, attention weights can effectively
represent the strength of the relationship. The significance test is made of a set of
conditions that must be satisfied: the entropy of the attention weights must be low,
the attention weight should be the highest among all incoming edges, the same edge
should be selected in all the mesh resolutions. However, we are not guaranteed that
the selected edges correspond to a statistically significant relationship, but rather
the model consistently prefers those edges over others. In other words, we are
trusting that the model has learned a meaningful representation of the data, but we
do not have a solid statistical foundation to support this assumption. At the same
time, since we deal with an unsupervised problem, there are limited opportunities
for verifying the model representation and its outputs: checking the model outputs
against known teleconnections is a good way to verify the model, but still not
sufficient as a general validation method. We could think to incorporate domain
knowledge to guide the model, for instance a proper edge weight initialization
based on known causal relationships, or a constraint enforcement to prevent the
model from learning implausible causal relationships. However, this would require
a careful selection of the domain knowledge to be used, and a proper integration
into the model. When dealing with edge selection, also the fine2mesh approach is
not guaranteed to be the best one: we could just select the most relevant edges
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for a specific mesh resolution, but then, when comparing results with other mesh
resolutions, we would probably find that the selected edges do not exist in other
resolutions, because they are coarser, so a mapping is still needed to find the
corresponding edges in other resolutions. The main problem of the chosen approach
is that it assumes that just one edge in the fine mesh is enough to activate it in
the coarser mesh, but in general there are a lot of activations, so we could set a
threshold to compute the binary mask. However, this would potentially exclude
some relevant edges, so we would need to find a good threshold that balances the
number of edges selected and the relevance of the relationships.

Other limitations of the proposed approach come from data representation
choices. Although grid2mesh is a good way to represent the data, the batching
strategy to create a temporal window of the data is not optimal: linking nodes of
one time step to nodes of the next time step is fine because it avoids redundant
information, but we are not guaranteed it is the best way to represent relationships.
Moreover, selected node features were chosen as the most relevant for the problem,
but they do not necessarily represent the most informative features for the model, so
a more thorough feature selection process could be performed to identify the most
useful features. For computational complexity reasons, we also packed together
all the features of one node in a single vector, but this imposes that we cannot
analyze the relationships between the different features of the same node, but only
between the nodes. Also, while the edge spatial feature is informative, we can easily
discover that the edge temporal feature is not informative at all, since it is always
equal to 1 (the difference in time between two consecutive time steps). However,
node features include spatial and temporal information, so in general edge features
are not strictly necessary and the model could be trained without them. Another
problem with current data representation is that the computational complexity
explodes as the mesh resolution increases, because 2m-neighbors are considered for
each node. This was intentional to ensure that models trained on fine meshes can
be used to discover teleconnections on coarse meshes, and in general have a view on
data that just extends views in coarser meshes, and does not lose any information.

Finally, the model is not optimized for performance: hyperparameters were
chosen based on a preliminary analysis, but a more thorough hyperparameter
tuning process could be done to improve the model performance, especially for the
relative weights of the loss terms. The limitation of this model is the length of
paths that can be learned: since the neural network is based on a GNN, it cannot
have a high number of layers, otherwise it would compromise the ability of the
model to learn meaningful representations of data.
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5.1.2 Future work

Based on the limitations of the current approach, we can identify some possible
future research directions to improve the model and the results. The main goal is
to provide a more solid statistical foundation for teleconnection discovery, so that
discovered relationships can be considered statistically significant and not just a
consequence of the model representation.

The current approach offers a good starting point, but there is still room for
significant improvement. One of the main challenges is how to better integrate
meteorological and climatological knowledge into the model. Right now, the graph
structure is built without considering physical constraints, and this means that the
model might learn relationships that are not plausible from a scientific point of view.
A better solution would be to initialize the graph edges using known atmospheric
dynamics and teleconnection patterns. This would provide the model with a more
realistic starting point. We could also think of adding constraints during training
to prevent the model from learning connections that don’t make sense physically.
Another possibility is to include domain knowledge through Bayesian priors or
regularization terms, which would help the model focus on meaningful relationships
and reduce the risk of picking up random correlations from noisy, high-dimensional
data. In the long run, it might also be useful to include expert systems to flag
patterns that contradict well-known scientific mechanisms and highlight others
that are potentially interesting and worth deeper investigation.

From an architectural point of view, traditional GNNs struggle with long-range
dependencies, which are very important in climate modeling. Alternatives like
Graph Transformers could help overcome this limitation thanks to their attention
mechanisms, which are better suited for capturing long-distance relationships.
Recurrent Graph Networks could also be useful, especially when trying to model
how climate patterns evolve over time, since they are able to retain memory of
past states. Similarly, Hierarchical Graph Networks might help by learning from
both local and global structures at the same time, which is important because
teleconnections appear at different spatial and temporal scales. Recent attention-
based architectures with skip connections could also be explored, since they are
able to focus on the most relevant patterns while reducing the risk of information
loss through deeper layers.

Another important limitation of the current model is how it deals with mesh
resolution. Right now, the mesh is static and has the same resolution everywhere,
but climate data is not uniform: some regions have more complex dynamics than
others. Using adaptive mesh refinement could allow the model to focus on regions
where teleconnections are more complex, while using lower resolution elsewhere.
This would save computational resources and improve the model’s ability to learn
from the data. It also suggests a better way to combine information from multiple
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resolutions: instead of training separate models, we could develop multi-scale
models that ensure coherence across different resolutions. This would require
changes in the loss function, making it aware of resolution and capable of balancing
information from each level. The way we select edges should also change: instead of
a static approach, we could develop a dynamic system that adjusts to the resolution
and preserves important connections across different scales.

Feature engineering is another area that needs improvement. So far, different
variables like temperature, pressure, and wind have been simply concatenated,
but this does not capture how they interact. A more advanced integration could
reveal patterns that only appear when considering multiple variables together.
The temporal dimension also needs better treatment: currently, the model uses
a fixed-size time window, but climate phenomena operate on different timescales,
from days to decades. A more flexible approach would allow the window size
to adapt based on the type of pattern being learned. Teleconnections also often
involve time lags: a change in one region might affect another region weeks or
months later, and the model should learn these delays automatically.

When it comes to validation, more robust methods are needed. Checking model
outputs against known teleconnections is useful but not sufficient. Using synthetic
data from climate simulations with known patterns could provide a more controlled
environment for testing the model’s ability to recover meaningful relationships.

Finally, computational complexity is still a major bottleneck. As the mesh
resolution increases, the number of nodes and edges grows rapidly, making the
model expensive to train and run. We could address this by using approximate
nearest neighbors to limit the number of considered connections, or by applying
hierarchical clustering to group similar nodes and reduce graph size. Sparse
representations that keep only the most relevant edges would also help reduce
memory and computation requirements, making the results easier to interpret. At
the same time, distributed computing frameworks could allow us to scale up the
model to larger datasets, enabling near real-time analysis of global climate patterns.

5.2 Main contributions
In the following, we summarize the main contributions of this work:

• unsupervised approach to climate teleconnections discovery;

• graph-structured data representation using grid2mesh, time windows and
topological neighborhood to represent spatio-temporal relationships in climate
data;

• VGAE model architecture with a GATv2 encoder to learn the graph structure
and highlight the most relevant edges through the attention mechanism;
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• custom loss function to guide the model towards an optimal distribution of
the attention weights;

• statistical heuristics to select the most relevant edges from the attention
weights, based on their entropy and consistency across different mesh resolu-
tions.

This concludes the present work on the discovery of teleconnections using graph
neural networks. The proposed approach provides a new perspective on how these
complex relationships can be modeled and understood, and opens up new avenues
for future research in this area. The results obtained demonstrate just the potential
of graph neural networks for discovering teleconnections in climate data, without any
expectation on the quality of the actual inference, and highlight the importance of
considering the spatial and temporal dimensions of the data in order to capture the
complex relationships that exist between different regions of the Earth. Code and
data are available at: https://github.com/markdeluk/GNNTeleconnections.

108

https://github.com/markdeluk/GNNTeleconnections


Appendix A

Statistical methods for
climate data analysis

A.1 Regression analysis
Linear regression is used to model the relationship between a single independent
variable and a dependent variable using a linear equation. The goal is to find the
best-fitting line that minimizes the difference between the predicted and actual
values. The linear regression model can be represented as:

y = β0 + β1x+ ϵ

where y is the dependent variable, x is the independent variable, β0 is the intercept,
β1 is the slope of the line, and ϵ is the error term. The slope represents the change
in the dependent variable for a one-unit change in the independent variable. The
intercept represents the value of the dependent variable when the independent
variable is zero. The error term accounts for the variability in the dependent
variable that cannot be explained by the independent variable.

An extension of linear regression is multiple linear regression, which generalizes
standard linear regression at multiple independent variables:

y = β0 + β1x1 + β2x2 + . . .+ βnxn + ϵ

where y is the dependent variable, x1, x2, . . . , xn are the independent variables, β0
is the intercept, β1, β2, . . . , βn are the coefficients for the independent variables,
and ϵ is the error term. The coefficients represent the change in the dependent
variable for a one-unit change in each independent variable while holding all other
variables constant. Multiple linear regression allows for the examination of the
combined effects of multiple factors on a dependent variable.
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Polynomial regression is another extension of linear regression that allows for
non-linear relationships between the independent and dependent variables. It
models the relationship using a polynomial equation, which can capture more
complex patterns in the data. The polynomial regression model can be represented
as:

y = β0 + β1x+ β2x
2 + . . .+ βnx

n + ϵ

where y is the dependent variable, x is the independent variable, β0 is the intercept,
β1, β2, . . . , βn are the coefficients for the polynomial terms, and ϵ is the error term.
The degree of the polynomial determines the complexity of the model: a higher
degree allows for more flexibility in capturing non-linear relationships.

Logistic regression is used for binary classification problems, where the dependent
variable is categorical. It models the probability of the dependent variable belonging
to a specific class based on one or more independent variables. The logistic regression
model can be represented as:

p(y = 1|x) = 1
1 + e−(β0+β1x)

where p(y = 1|x) is the probability of the dependent variable being equal to 1 given
the independent variable x, β0 is the intercept, and β1 is the coefficient for the
independent variable. The logistic function maps the linear combination of the
independent variables to a probability value between 0 and 1.

Logistic regression can be extended to multiple independent variables using the
following equation:

p(y = 1|x) = 1
1 + e−(β0+β1x1+β2x2+...+βnxn)

where p(y = 1|x) is the probability of the dependent variable being equal to 1 given
the independent variables x1, x2, . . . , xn, β0 is the intercept, and β1, β2, . . . , βn are
the coefficients for the independent variables. The coefficients represent the change
in the log-odds of the dependent variable for a one-unit change in each independent
variable while holding all other variables constant.

A.2 Time series analysis
ARIMA models [15] are used to model time series data by combining three main
components: autoregression (AR), differencing (Integrated, I), and moving average
(MA). AR indicates that the current value of the series is based on its previous
values. For instance, today’s temperature may be influenced by temperatures from
the past few days. I represents the differencing of the series, which is used to
make the time series stationary by removing trends and seasonality. MA captures
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the relationship between the current value and past errors. The ARIMA model
is characterized by three parameters: p, d, and q, where p is the order of the
autoregressive part (number of lag observations included in the model), d is the
degree of differencing (number of times that the raw observations are differenced),
and q is the order of the moving average part (size of the moving average window).
The ARIMA model can be represented as:

yt = ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + . . .+ θqϵt−q + ϵt

where yt is the current value of the time series, ϕ1, ϕ2, . . . , ϕp are the coefficients
for the autoregressive part, θ1, θ2, . . . , θq are the coefficients for the moving average
part, and ϵt is the error term. The ARIMA model can be used to forecast future
values by iteratively applying the model to generate predictions. It can also be
extended to include seasonal components, resulting in Seasonal ARIMA (SARIMA)
models, which are particularly useful for modeling seasonal time series data. The
SARIMA model [92] incorporates seasonal autoregressive and moving average terms,
allowing it to capture both short-term and long-term dependencies in the data.
The SARIMA model can be represented as:

yt = ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p

+ θ1ϵt−1 + θ2ϵt−2 + . . .+ θqϵt−q

+ Yt−s + Φ1Yt−s−1 + Φ2Yt−s−2 + . . .+ ΦPYt−s−P

+ Θ1ϵt−s−1 + Θ2ϵt−s−2 + . . .+ ΘQϵt−s−Q

+ ϵt (A.1)

where Yt−s is the seasonal component, Φ1,Φ2, . . . ,ΦP are the coefficients for the
seasonal autoregressive part, and Θ1,Θ2, . . . ,ΘQ are the coefficients for the seasonal
moving average part. The seasonal period s represents the number of observations
in each season (e.g., 12 for monthly data with yearly seasonality). The SARIMA
model can be used to forecast future values by iteratively applying the model to
generate predictions.

STL [16] decomposes a time series into three components: trend, seasonality,
and residuals. The trend component represents the long-term movement in the
data, while the seasonal component captures the repeating patterns that occur
at regular intervals. The residuals represent the random noise in the data. STL
can be used to identify and remove trends and seasonality from the data, making
it easier to analyze and model, and thus improving forecasting accuracy. To
estimate the trend and seasonal components, STL uses the LOESS smoother, a
non-parametric regression method that fits local polynomial regressions to the data,
allowing for flexible modeling of non-linear relationships. The trend component is
estimated by applying the LOESS smoother to the entire time series, which captures
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the underlying trend without being overly influenced by short-term fluctuations.
The seasonal component is estimated by applying the LOESS smoother to the
seasonal subseries, which are obtained by grouping the data by season (e.g., month
or quarter). The residuals are calculated by subtracting the trend and seasonal
components from the original time series. The STL decomposition can be visualized
as a plot showing the original time series, trend component, seasonal component,
and residuals, allowing for a clear understanding of the underlying patterns in the
data. The STL decomposition can be represented mathematically as:

yt = Tt + St +Rt

where yt is the observed value at time t, Tt is the trend component, St is the
seasonal component, and Rt is the residual component.

Exponential smoothing [17] is a family of forecasting methods that apply
weighted averages of past observations to make predictions. The weights de-
crease exponentially as the observations get older, giving more importance to recent
data. Exponential smoothing can be used for both univariate and multivariate
time series data, making it a versatile tool for climate prediction. The simplest
form of exponential smoothing is single exponential smoothing, which is suitable
for time series data without trends or seasonality. It can be represented as:

ŷt+1 = αyt + (1− α)ŷt

where ŷt+1 is the forecasted value for the next time step, yt is the observed value
at time t, ŷt is the forecasted value at time t, and α is the smoothing parameter
(0 < α < 1). The smoothing parameter determines the weight given to the most
recent observation compared to the previous forecast. A higher value of α gives
more weight to recent observations, while a lower value gives more weight to past
forecasts. The choice of α can significantly impact the accuracy of the forecasts,
and it is often determined through optimization techniques or cross-validation.

A.3 Hypothesis testing

A.3.1 Frequentist approach
A Student’s t-test [22] is a parametric hypothesis test used to compare the means
of two groups (or datasets) to determine if there is a significant difference between
them. It can be applied to independent samples (two-sample t-test) or paired
samples (paired t-test). The t-test can be represented as:

t = x̄1 − x̄2

sp

ñ
1

n1
+ 1

n2
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where t is the t-statistic, x̄1 and x̄2 are the sample means, sp is the pooled standard
deviation, and n1 and n2 are the sample sizes. The pooled standard deviation is
calculated as:

sp =
ó

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

where s1 and s2 are the sample standard deviations. The t-test assumes that the
data is normally distributed and that the variances of the two groups are equal.
However, its application in climate science is limited due to the autocorrelated
nature of climate data, which can lead to misleading conclusions if not properly
addressed.

F-test [23] is a statistical parametric test used to compare the variances of
two or more groups to determine if there are significant differences between them,
so it is useful to compare variability in climate variables. It is often used as
a preliminary test before conducting an ANOVA to assess the homogeneity of
variances assumption. The F-test calculates an F-statistic, which is the ratio of
the variances of the groups being compared. The F-statistic can be represented as:

F = s2
1
s2

2

where F is the F-statistic, s2
1 is the variance of the first group, and s2

2 is the variance
of the second group. The F-test assumes independent observations and random
sampling from normally distributed populations.

An analysis of variance (ANOVA) [23] extends F-test to compare the means of
three or more groups to determine if there are significant differences between them.
It helps understanding differences in climate variables across different regions or
time periods. ANOVA tests the null hypothesis that all group means are equal
against the alternative hypothesis that at least one group mean is different. The
ANOVA F-statistic is calculated as the ratio of the variance between groups to the
variance within groups:

F = MSbetween

MSwithin

where F is the F-statistic, MSbetween is the mean square between groups, and
MSwithin is the mean square within groups. The F-statistic is then compared to a
critical value from the F-distribution to determine the p-value. The ANOVA test
assumes that the variances of the groups are equal (homoscedasticity), and that
the observations are independent. ANOVA can decompose the total variance into
components attributable to different sources, such as treatment effects and random
error. One-way ANOVA is used when there is one independent variable with three
or more levels, and is expressed as:

yij = µ+ αi + ϵij
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where yij is the dependent variable, µ is the overall mean, αi is the effect of the
i-th group, and ϵij is the error term. The one-way ANOVA tests whether there
are significant differences between the means of the groups. In contrast, two-way
ANOVA is used when there are two independent variables, and it can assess both
main effects and interaction effects between the independent variables. The two-way
ANOVA can be expressed as:

yijk = µ+ αi + βj + γij + ϵijk

where yijk is the dependent variable, µ is the overall mean, αi is the effect of
the i-th group of the first independent variable, βj is the effect of the j-th group
of the second independent variable, γij is the interaction effect between the two
independent variables, and ϵijk is the error term.

Pearson’s correlation coefficient [24] is a parametric test used to assess the
strength and direction of the linear relationship between two continuous variables,
such as temperature and CO2 levels. The Pearson correlation coefficient (r) ranges
from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no
correlation, and 1 indicates a perfect positive correlation. The Pearson correlation
coefficient can be calculated as:

r =
q(xi − x̄)(yi − ȳ)ñq(xi − x̄)2

ñq(yi − ȳ)2

where r is the Pearson correlation coefficient, xi and yi are the individual data
points, x̄ and ȳ are the means of the x and y variables, respectively. The Pearson
correlation test assumes that the relationship between the variables is linear,
homoschedasticity and there are no outliers.

Mann-Kendall (MK) test [25] is a non-parametric test used to assess the signifi-
cance of trends in time series data. It is particularly useful for detecting monotonic
trends in non-normally distributed data. The MK test calculates a test statistic
based on the number of pairs of observations that are in increasing or decreasing
order. The test statistic can be represented as:

S =
n−1Ø
i=1

nØ
j=i+1

sgn(xj − xi)

where S is the test statistic, n is the number of observations, and sgn(xj − xi) is
the sign function that returns 1 if xj > xi, -1 if xj < xi, and 0 if xj = xi. The
MK test can also be extended to account for seasonality and autocorrelation in the
data. In particular, the SK (Seasonal Kendall) test [93] is a modification of the MK
test that accounts for seasonal patterns in the data. The SK test calculates the
test statistic by comparing the ranks of observations within each season, allowing
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for a more accurate assessment of trends in seasonal data. The SK test can be
represented as:

S =
n−1Ø
i=1

nØ
j=i+1

sgn(xj − xi) · sgn(tj − ti)

where S is the test statistic, n is the number of observations, sgn(xj − xi) is the
sign functmaion that returns 1 if xj > xi, -1 if xj < xi, and 0 if xj = xi, and
sgn(tj − ti) is the sign function that returns 1 if tj > ti, -1 if tj < ti, and 0 if tj = ti.
Mann-Kendall test assumes that the data is independent and identically distributed
(i.i.d.), meaning that the observations are drawn from the same distribution and
are not correlated with each other.

Sen’s slope [26] is a non-parametric method used to estimate the slope (regression
coefficient) of a linear trend in time series data, i.e. a measure of the rate of change.
It can be used in conjunction with the MK test to assess the significance of trends.
The Sen’s slope estimator can be calculated as:

Q̂ =
median

1
xj−xi

j−i

2
i < j

where Q̂ is the estimated slope, xi and xj are the observations at times i and j,
respectively. Sen’s slope assumes independence of observations and monotonic
trend over time.

The Pettitt test [27] is a non-parametric test used to detect abrupt changes in
the mean level of a time series, so it can identify shifts in climate variables that may
be associated with teleconnections or other climate phenomena. The Pettitt test
calculates a test statistic based on the number of observations that are greater than
or less than the median of the time series. The test statistic can be represented as:

Ut,T =
tØ

i=1

TØ
j=t+1

sgn(xi − xj)

where t ranges from 1 to T − 1, and T is the total number of observations. The
sign function sgn(x) returns 1 if x > 0, 0 if x = 0, and -1 if x < 0. The significante
test is assessed by calculating:

p ≈ 2 exp
A
− 6K2

T

T 3 + T 2

B

where KT is the maximum absolute value of Ut,T over all possible t, and T is
the number of observations. The Pettitt test can be applied to both univariate
and multivariate time series data, making it a versatile tool for climate analysis.
However, it is mainly meant for univariate data, and extending it to multivariate
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data requires modifications or adaptations to handle the complexity of data itself.
The Pettitt test assumes independence of observations, continuous data and no
long-term trends. It also assumes a single change-point in time series: in other
words, there is an abrupt change in the mean level of the time series at a specific
point in time, and the data before and after this point are independent. This
assumption may not hold true in all cases, especially in climate data, where multiple
change-points or gradual changes may occur.

The Spearman’s rank correlation coefficient [28] is a non-parametric test used
to assess the strength and direction of the monotonic relationship between two
continuous or ordinal variables. It is based on the ranks of the data rather than
the actual values, making it less sensitive to outliers and non-normal distributions.
The Spearman’s rank correlation coefficient (rs) can be calculated as:

rs = 1− 6q d2
i

n(n2 − 1)

where rs is the Spearman’s rank correlation coefficient, di is the difference between
the ranks of the two variables for each observation, and n is the number of
observations. Like Pearson, the Spearman’s rank correlation coefficient ranges from
-1 to 1, where -1 indicates a perfect negative monotonic correlation, 0 indicates
no correlation, and 1 indicates a perfect positive monotonic correlation. The
Spearman’s rank correlation test assumes that the data is ordinal or continuous
and that the relationship between the variables is monotonic.

A.3.2 Bayesian approach
The Bayes factor [94] is a Bayesian approach to hypothesis testing that quantifies
the strength of evidence in favor of one hypothesis over another. It is calculated as
the ratio of the posterior probabilities of the two hypotheses, given the observed
data. The Bayes factor can be represented as:

BF10 = P (D|H1)
P (D|H0)

where BF10 is the Bayes factor comparing hypothesis H1 to hypothesis H0, P (D|H1)
is the likelihood of the data given hypothesis H1, and P (D|H0) is the likelihood of
the data given hypothesis H0. A Bayes factor greater than 1 indicates evidence in
favor of hypothesis H1, while a Bayes factor less than 1 indicates evidence in favor
of hypothesis H0. The strength of evidence can be interpreted using a scale which
categorizes Bayes factors into different ranges:

• 1 : 1 to 3 : 1: Weak evidence

• 3 : 1 to 10 : 1: Substantial evidence
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• 10 : 1 to 30 : 1: Strong evidence

• 30 : 1 to 100 : 1: Very strong evidence

• > 100 : 1: Decisive evidence

The following holds:

BF01 = 1
BF10

= P (D | H0)
P (D | H1)

i.e., the Bayes factor comparing hypothesis H0 to hypothesis H1 is the inverse of
the Bayes factor comparing hypothesis H1 to hypothesis H0. The Bayes factor
can be used to compare multiple hypotheses simultaneously, allowing for a more
comprehensive assessment of the evidence in favor of different models or expla-
nations. It can also be used to update prior beliefs about the hypotheses as new
data becomes available, making it a powerful tool for hypothesis testing in climate
science.

Bayesian ANOVA [95] is a Bayesian approach to analyze variance in data,
allowing for the comparison of means across multiple groups while accounting for
uncertainty in the parameter estimates. It provides a posterior distribution for the
group means and allows for the calculation of Bayes factors to assess the strength
of evidence in favor of different hypotheses. Bayesian ANOVA can be used to
analyze climate data with multiple factors, such as temperature, precipitation, and
other climate variables, while accounting for uncertainty in the estimates. The
mathematical representation of Bayesian ANOVA is similar to frequentist ANOVA.

Bayesian regression [96] is a Bayesian approach to regression analysis. It can
be used to model the relationship between climate variables while accounting for
uncertainty in the parameter estimates, providing a more robust understanding of
climate variability. The Bayesian regression model can be represented as:

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + ϵi

where yi is the dependent variable for observation i, β0 is the intercept, β1, β2, . . . , βp

are the coefficients for the independent variables xi1, xi2, . . . , xip, and ϵi is the error
term. The model can be extended to include random effects, hierarchical structures,
or other covariates, allowing for more complex analyses. The Bayesian regression
model can be estimated using Markov Chain Monte Carlo (MCMC) methods, which
are a class of algorithms used to sample from complex probability distributions,
allowing for the estimation of posterior distributions in Bayesian analysis. They
are particularly useful for high-dimensional parameter spaces and can be applied
to various Bayesian models, including regression, hierarchical models, and latent
variable models. MCMC methods generate samples from the posterior distribution
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by constructing a Markov chain1 that converges to the target distribution. The
most common MCMC algorithm is the Metropolis-Hastings algorithm, which uses
a proposal distribution to generate candidate samples and accepts or rejects them
based on their likelihood.

1A Markov chain is a sequence of random variables where the future state depends only on the
current state and not on the past states. The chain is constructed by iteratively proposing new
samples based on the current sample and accepting or rejecting them based on their likelihood.
The acceptance probability is determined by the ratio of the target distribution at the proposed
sample to the target distribution at the current sample. This process continues until a sufficient
number of samples have been generated, allowing for the estimation of posterior distributions
and credible intervals [97].
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Appendix B

Data-driven decomposition
methods for climate data

B.1 Empirical orthogonal functions

The EOF method can be represented mathematically as:

X(t) =
NØ

i=1
ai(t)ϕi

where X(t) is the observed data at time t, ai(t) are the principal component time
series, ϕi are the EOFs (spatial patterns), and N is the number of EOFs. The
EOFs are obtained by solving the eigenvalue problem of the covariance matrix
of the data, allowing for the identification of the dominant modes of variability.
The first EOF represents the mode with the highest variance, while subsequent
EOFs represent modes with decreasing variance. EOF analysis can be used to
identify teleconnections by examining the spatial patterns associated with different
climate indices or phenomena [98]. EOF decomposition is strictly related to PCA
(Principal Component Analysis), which is a dimensionality reduction technique
that transforms a dataset into a new coordinate system, where the axes (principal
components) are ordered by the amount of variance they explain. EOF analysis
can be seen as a specific application of PCA to climate data, where the goal is to
identify the dominant modes of variability in the data, and the main difference
between EOF and PCA is that EOF focuses on spatial patterns, while PCA focuses
on the overall structure of the data. However, most online sources use the two
terms interchangeably [32].
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B.2 Singular spectrum analysis
The mathematical foundation of SSA begins with the construction of a trajectory
matrix from the original time series. Given a time series X = {x1, x2, . . . , xN} of
length N , and a window length L (where 1 < L < N), the trajectory matrix H is
constructed as a Hankel matrix1 of size L×K, where K = N − L+ 1. Each row
i of this matrix contains L consecutive elements of the time series starting from
position i:

H[i, j] = xi+j−1

This embedding process transforms the univariate time series into a multidimen-
sional trajectory space, capturing the temporal dependencies within the data. The
decomposition phase applies singular value decomposition (SVD) to the trajectory
matrix:

H = UΣVT

where U is an L×L matrix of left singular vectors, Σ is an L×K diagonal matrix
of singular values σ1 ≥ σ2 ≥ . . . ≥ σr, and VT is a K ×K matrix of right singular
vectors. Each singular value represents the contribution of the corresponding mode
to the total variance of the system. The trajectory matrix can then be expressed
as:

H =
rØ

i=1
σiUiVT

i

where each term σiUiVT
i represents an elementary matrix capturing a specific

temporal pattern. The reconstruction process involves grouping related elementary
matrices and converting them back to time series format through diagonal averaging,
also known as Hankelization. For a given elementary matrix Hi, the reconstructed
time series component is obtained by averaging the anti-diagonals of the matrix.
This process ensures that the reconstructed components maintain the temporal
structure of the original data while isolating specific dynamical features [34].

1A Hankel matrix is a square matrix in which each ascending skew-diagonal from left to right
is constant [99]. For example:

H =


x1 x2 x3 x4 x5
x2 x3 x4 x5 x6
x3 x4 x5 x6 x7
x4 x5 x6 x7 x8
x5 x6 x7 x8 x9


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B.3 Dynamic mode decomposition
The mathematical foundation of DMD begins with a sequence of spatial data
snapshots x1,x2, . . . ,xm ∈ Rn, where each snapshot represents the state of a
dynamical system at discrete time intervals. The fundamental assumption is that
the system dynamics can be approximated by a linear operator A:

xk+1 = Axk

From this sequence, two data matrices are constructed:

X1 =
è
x1 x2 · · · xm−1

é
∈ Rn×(m−1)

X2 =
è
x2 x3 · · · xm

é
∈ Rn×(m−1)

with the relationship X2 = AX1. Since the data matrix X1 may be rank-deficient,
SVD is applied: X1 = UΣV∗, where U contains the left singular vectors, Σ is a
diagonal matrix of singular values, and V contains the right singular vectors. A
reduced-order approximation of the linear operator is then constructed:

Ã = U∗X2VΣ−1

The eigenvalues and eigenvectors of Ã provide the essential dynamic information:
Ãwi = λiwi, where λi are the eigenvalues and wi are the corresponding eigenvectors.
The DMD modes are computed as ϕi = Uwi, and each mode represents a spatial
pattern that evolves according to ϕi(t) = ϕie

ωit, where ωi = ln(λi)/∆t is the
continuous-time eigenvalue [100]. Each eigenvalue λi = |λi|eiθi encodes both
amplitude and phase information, providing the growth/decay rate σi = ln(|λi|)/∆t
and oscillation frequency fi = θi/(2π∆t). This dual characterization allows DMD
to identify not only the spatial structure of climate patterns but also their temporal
behavior, including stability properties. Modes with |λi| > 1 are unstable and grow
exponentially, while modes with |λi| < 1 are stable and decay, and modes with
|λi| = 1 are neutrally stable and maintain constant amplitude [37].
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Appendix C

Artificial intelligence and
neural networks

C.1 Artificial intelligence
Artificial intelligence (AI) refers to the capability of a digital computer or computer-
controlled robot to perform tasks typically associated with human intelligence, such
as reasoning, learning, problem-solving, perception, and natural language under-
standing. It encompasses the development of systems endowed with intellectual
processes characteristic of humans, including the ability to reason, discover meaning,
generalize, or learn from past experiences. AI encompasses several key branches,
each focusing on specific aspects of replicating or enhancing human-like intelligence
in machines. For instance, machine learning, natural language processing, computer
vision, and robotics are all integral components of AI [101].

Machine learning (ML), in particular, involves the development of algorithms
that enable computers to learn from data and improve their performance over time
without being explicitly programmed. This branch of AI has gained significant
attention due to its ability to analyze large datasets, identify patterns, and make
predictions based on historical information.

ML algorithms can be categorized into supervised learning, unsupervised learning,
semi-supervised learning and reinforcement learning, each with its own set of
techniques and applications: supervised learning involves training a model on
labeled data, where the input-output pairs are known; unsupervised learning
deals with unlabeled data, seeking to identify hidden patterns or structures; semi-
supervised learning combines both labeled and unlabeled data to improve learning
efficiency; reinforcement learning focuses on training agents to make decisions by
interacting with an environment and receiving feedback in the form of rewards or
penalties [102].
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The world of ML can be divided into two main approaches: shallow learning and
deep learning. Shallow learning refers to traditional machine learning techniques
that typically involve a single layer of processing, such as linear regression, decision
trees, and support vector machines. These methods are effective for simpler tasks
and smaller datasets but may struggle with more difficult problems. They are
easier to interpret and require less computational power. However, they cannot
capture complex relationships and they highly rely on manual feature engineering:
starting from raw data, the user must identify and extract relevant features that
can be used to train the model. This process can be time-consuming and requires
domain expertise, as the success of shallow learning models often depends on the
quality of the features selected [103].

On the other hand, deep learning is a subset of ML that employs multiple layers
of processing to model intricate patterns and relationships in data. Examples
are convolutional neural networks (CNNs) and recurrent neural networks (RNNs).
These models can automatically learn hierarchical representations of data, without
the need for extensive feature engineering. This is particularly useful in tasks
such as image recognition, natural language processing, and speech recognition,
where the data is often high-dimensional and unstructured. However, deep learning
models are more computationally intensive and require larger datasets to achieve
optimal performance. They can also be more challenging to interpret, as the
decision-making process of deep neural networks is often opaque, making it difficult
to understand how they arrive at specific predictions.

C.2 Neural networks
The basis for both shallow and deep learning is the concept of artificial neural
network (ANN): it is a computational model inspired by the structure and function
of the biological neural network in the human brain. ANNs consist of interconnected
nodes (neurons) organized into layers, where each neuron processes input data
and passes it to the next layer. The connections between neurons have associated
weights that are adjusted during the training process to minimize the difference
between predicted and actual outputs. This iterative process allows ANNs to learn
complex patterns and relationships in data, making them powerful tools for various
applications in AI. The structure of ANN is typically composed of an input layer,
one or more hidden layers, and an output layer. The input layer receives the
raw data, while the hidden layers perform computations and transformations on
the data. The output layer produces the final predictions or classifications based
on the learned representations from the hidden layers. Each neuron in a layer is
connected to neurons in the subsequent layer, allowing information to flow through
the network [104].
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C.2.1 Perceptron
The simplest and oldest form of an ANN is the perceptron, which consists of a single
layer of neurons. The perceptron takes multiple input signals, each multiplied by a
weight, sums them up, and applies an activation function to produce an output.
The activation function introduces non-linearity into the model. The perceptron
can be represented mathematically as follows:

y = f

A
nØ

i=1
wixi + b

B

where y is the output, f is the activation function, wi are the weights, xi are the
input signals, and b is the bias term. The bias term allows the model to shift
the activation function, enabling it to fit the data better. The perceptron can be
visualized as a simple diagram, as shown in Figure C.1.

Figure C.1: Structure of a perceptron, a basic unit of an ANN. The input signals
are multiplied by weights, summed, and passed through an activation function to
produce the output.

The perceptron is characterized by its ability to learn linear decision boundaries,
making it suitable for linearly separable problems. It uses a step function as the
activation function, which produces binary outputs (0 or 1) based on whether the
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weighted sum of inputs exceeds a certain threshold:

f(z) =
1 if z ≥ 0

0 if z < 0

where z is the weighted sum of inputs.
The perceptron learns by adjusting the weights based on the error between

predicted and actual outputs using a simple learning rule:

wi ← wi + η(y − ŷ)xi

where wi is the weight for input xi, η is the learning rate, y is the actual output,
and ŷ is the predicted output. The learning rate determines how much the weights
are adjusted during each update. A higher learning rate results in larger weight
updates, while a lower learning rate leads to smaller updates. The perceptron
continues to adjust its weights until it converges to a solution that minimizes the
error [105].

C.3 Multi-layer perceptron
The perceptron is a binary classifier, meaning it can only classify data into two
categories. For complex tasks, it is not enough, and therefore multi-layer perceptrons
(MLPs), some years afterwards, were introduced. MLPs consist of multiple layers
of neurons, where each layer can have different numbers of neurons, and the
connections between layers can be fully connected or partially connected. The
structure of an MLP is shown in Figure C.2.

MLPs can learn complex relationships, and this is proven by the universal
approximation theorem [106], which states that a feedforward neural network with
a single hidden layer containing a finite number of neurons can approximate any
continuous function on compact subsets of Rn, given appropriate weights and
activation functions. This means that MLPs can be useful for a wide range of
tasks, including regression, classification, and time series prediction. The key to
their success lies in the ability to learn non-linear decision boundaries by stacking
multiple layers of neurons and using non-linear activation functions.

Depending on the task, the output layer can have one or more neurons. Con-
sequently, the output layer’s activation function can also vary. For example, in a
binary classification task, a sigmoid activation function is often used in the output
layer to produce a probability score between 0 and 1:

y = 1
1 + e−z
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Figure C.2: Structure of a Multi-Layer Perceptron (MLP) with four inputs, two
hidden layers, and three outputs. Each layer is fully connected to the next layer,
enabling the network to learn complex patterns and relationships in data.
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where z is the weighted sum of inputs. The output can be interpreted as the
probability of the input belonging to a specific class. If the output is greater than
0.5, the input is classified as one class; otherwise, it belongs to the other class.

In contrast, for multi-class classification tasks, a softmax activation function is
typically employed to produce a probability distribution across multiple classes:

yi = eziqk
j=1 e

zj

where yi is the probability of class i, zi is the weighted sum of inputs for class i,
and k is the total number of classes. The softmax function ensures that the sum of
probabilities across all classes equals 1, allowing for a clear interpretation of the
model’s predictions.

Other activation functions, such as the rectified linear unit (ReLU) and hyper-
bolic tangent (tanh), are commonly used in hidden layers. The ReLU activation
function is defined as:

f(z) = max(0, z)
where z is the weighted sum of inputs. The ReLU function introduces non-linearity
into the model while maintaining computational efficiency. It is particularly effective
in deep networks, as it helps mitigate the vanishing gradient problem - i.e. the
issue of gradients becoming too small during backpropagation - allowing for faster
convergence during training.

The tanh activation function is defined as:

f(z) = ez − e−z

ez + e−z

where z is the weighted sum of inputs. The tanh function produces outputs in the
range of -1 to 1, making it suitable for tasks where negative values are meaningful.
It is also a smooth and differentiable function, which is beneficial for gradient-based
optimization methods.

Today every ANN is based on the MLP architecture.
The perceptron learning rule assumed a linear separation rule for the data,

which limited its applicability to linearly separable problems. MLPs, instead, can
learn non-linear decision boundaries by stacking multiple layers of neurons and
using non-linear activation functions. Therefore, a new learning rule was needed to
train MLPs: gradient descent (GD). While the perceptron learning rule adjusted
weights only based on the error of the output neuron, GD computes the gradients
of the loss function, which quantifies the difference between predicted and actual
outputs, with respect to all weights in the network, that are adjusted iteratively to
minimize the loss. Here is the formulation of the GD algorithm:

wi ← wi − η
∂L

∂wi
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where L is the loss function, wi is the weight for input xi, and η is the learning
rate. The gradients indicate how much each weight should be adjusted to minimize
the loss. The learning rate determines the step size taken during weight updates,
and it is crucial for convergence: a too high learning rate can lead to overshooting
the minimum, while a too low learning rate can result in slow convergence [107].

C.3.1 Loss function
The loss function can be seen as a measure of how well the model is performing. In
other words, it is a scalar value that indicates how far off the model’s predictions
are from the true values. By minimizing this loss during training, the model learns
to make more accurate predictions. The choice of loss function depends on the
specific task at hand. For example, in regression tasks, mean squared error (MSE)
is commonly used, while in classification tasks, cross-entropy loss is often employed.

MSE is defined as:
MSE = 1

n

nØ
i=1

(yi − ŷi)2

where n is the number of samples, yi is the true value, and ŷi is the predicted value.
MSE measures the average squared difference between predicted and actual values,
penalizing larger errors more heavily.

Instead, cross-entropy loss is defined as:

Cross-Entropy = − 1
n

nØ
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

where yi is the true label (0 or 1) and ŷi is the predicted probability of the positive
class. Cross-entropy loss measures the dissimilarity between the true distribution
and the predicted distribution, encouraging the model to output probabilities that
closely match the true labels.

C.3.2 Backpropagation
Backpropagation is the algorithm used to compute the gradients of the loss function
with respect to the weights in an ANN. It is a key component of the GD algorithm
and allows for efficient training of deep networks. The backpropagation algorithm
consists of two main steps: forward propagation and backward propagation. During
forward propagation, the input data is passed through the network, layer by layer,
until it reaches the output layer. The output is compared to the true label using
the loss function. The loss is then propagated backward through the network to
compute the gradients of the loss function with respect to each weight. During
backward propagation, the gradients are computed using the chain rule of calculus.
The algorithm can be summarized in the following steps:
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1. Initialize the weights and biases of the network.

2. For each training sample:

(a) Perform forward propagation to compute the output of the network.
(b) Compute the loss using the loss function.
(c) Perform backward propagation to compute the gradients of the loss with

respect to the weights and biases.
(d) Update the weights and biases using the computed gradients and the

learning rate.

3. Repeat steps 2-4 for a specified number of epochs or until convergence.

The backpropagation algorithm is efficient because it reuses the computed
activations from the forward pass to calculate the gradients during the backward
pass. This reduces the computational cost and allows for training deep networks
with many layers. The algorithm can be applied to various types of neural networks,
including feedforward networks, CNNs, and RNNs.

The backpropagation algorithm can be visualized as a computational graph,
where the forward pass computes the output and the backward pass calculates the
gradients of the loss function with respect to the weights. The graph illustrates how
the gradients are propagated backward through the network, allowing for efficient
weight updates during training [108]. Figure C.3 shows a simplified version of the
backpropagation algorithm, highlighting the key steps involved in training an ANN.

C.3.3 Learning process
In the GD approach, weights are updated using an optimization algorithm. The
most common optimization algorithm is stochastic gradient descent (SGD), which
updates the weights based on a small batch of training samples rather than the
entire dataset. This approach was introduced to limit the risk of the network
getting stuck in local minima, which can occur when using the entire dataset for
weight updates. By using just a portion of the dataset at a time, the model can
explore different regions of the loss landscape and potentially find better solutions.
The SGD algorithm updates the weights as follows:

wi ← wi − η
1
m

mØ
j=1

∂L

∂wi

where m is the batch size, and ∂L
∂wi

is the gradient of the loss function with respect
to the weight wi. The batch size determines how many samples are used in each
iteration of the weight update. A smaller batch size leads to more frequent updates,
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Figure C.3: Backpropagation algorithm: the forward pass computes the output,
while the backward pass calculates the gradients of the loss function with respect
to the weights.
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while a larger batch size results in fewer updates but with more accurate estimates
of the gradients.

SGD is a powerful optimization algorithm that can converge faster than tradi-
tional gradient descent methods, especially in large datasets. However, it can also
introduce noise into the weight updates, which can lead to oscillations and slower
convergence. To mitigate this issue, various techniques have been developed, such
as momentum, learning rate scheduling, and adaptive learning rates [109].

Momentum helps to smooth out the updates by considering the previous weight
updates, allowing the model to build up speed in the direction of the optimal
solution. It is calculated as follows:

vi ← βvi + (1− β) ∂L
∂wi

where vi is the velocity term, β is the momentum coefficient (typically set to 0.9),
and ∂L

∂wi
is the gradient of the loss function with respect to the weight wi. The

weights are then updated using the velocity term:

wi ← wi − ηvi

where wi is the weight for input xi, and η is the learning rate. The momentum
term helps to accelerate the convergence process by allowing the model to maintain
its direction of movement, reducing oscillations and improving stability.

Learning rate scheduling adjusts the learning rate over time, starting with a
higher rate and gradually decreasing it as training progresses. This approach
allows the model to explore the loss landscape more aggressively in the beginning
and then fine-tune the weights as it converges to a solution. There are a lot of
different learning rate scheduling techniques, each with its own advantages and
disadvantages. The choice of learning rate schedule can significantly impact the
convergence speed and overall performance of the model. Common learning rate
scheduling techniques include step decay, exponential decay, and cosine annealing.

Step decay reduces the learning rate by a fixed factor after a certain number
of epochs. For example, the learning rate can be halved every 10 epochs. Its
formulation is as follows:

ηt = η0 · γ⌊
t
T ⌋

where ηt is the learning rate at epoch t, η0 is the initial learning rate, γ is the decay
factor (e.g., 0.5), and T is the number of epochs after which the learning rate is
reduced [110].

Exponential decay decreases the learning rate exponentially over time. It is
defined as:

ηt = η0 · e−λt
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where ηt is the learning rate at epoch t, η0 is the initial learning rate, and λ is the
decay rate [111].

Cosine annealing adjusts the learning rate using a cosine function, allowing for
periodic increases and decreases in the learning rate. It is defined as:

ηt = 1
2

3
1 + cos

3
t

T
π
44
· (η0 − ηmin) + ηmin

where ηt is the learning rate at epoch t, η0 is the initial learning rate, ηmin is the
minimum learning rate, and T is the total number of epochs. This approach allows
for a gradual decrease in the learning rate while also providing opportunities for
exploration [112].

Adaptive learning rates adjust the learning rate for each weight based on its
historical gradients, allowing for more efficient convergence. One popular adaptive
learning rate algorithm is Adam (Adaptive Moment Estimation), which combines
the benefits of momentum and adaptive learning rates. Adam is an extension of
SGD that computes the first and second moments of the gradients, allowing it
to adaptively adjust the learning rates for each weight based on their historical
gradients. The Adam update rule is as follows:

mi ← β1mi + (1− β1)
∂L

∂wi

vi ← β2vi + (1− β2)
A
∂L

∂wi

B2

m̂i = mi

1− βt
1

v̂i = vi

1− βt
2

wi ← wi − η
m̂i√
v̂i + ϵ

where mi is the first moment (mean), vi is the second moment (uncentered variance),
β1 and β2 are the decay rates for the first and second moments (typically set to 0.9
and 0.999, respectively), m̂i and v̂i are the bias-corrected first and second moments,
t is the current time step, and ϵ is a small constant added for numerical stability
(typically set to 10−8).

The Adam optimizer has become one of the most widely used optimization
algorithms in deep learning due to its efficiency and effectiveness in training complex
models. It is particularly well-suited for large datasets and high-dimensional
parameter spaces, making it a popular choice for training deep neural networks.
The combination of momentum and adaptive learning rates allows Adam to converge
faster than traditional SGD methods, while also being more robust to noisy gradients
and sparse data [113].
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Appendix D

Climate data types

D.1 Paleoclimate proxies
Paleoclimate proxies are indirect indicators of past climate conditions, in fact they
can provide valuable insights into long-term climate trends and variations over
thousands of years. Paleoclimate proxies can be classified into biological, chemical
and physical.

Biological proxies involve the remains of living organisms, such as pollen and
spores, plant microfossils, charcoal, foraminifera and ostracodes, diatoms, corals,
that reflect past environmental conditions. Pollen and spores are microscopic
reproductive structures from plants, preserved in sediments, indicating past vegeta-
tion; plant microfossils are visible plant remains like leaves and seeds, providing
insights into historical plant communities; charcoal residues from ancient fires,
helping reconstruct past fire regimes; foraminifera and ostracodes are microscopic
marine organisms whose shell compositions reflect past water temperatures and
salinity; diatoms are silica1-based algae sensitive to environmental changes, useful
for reconstructing past aquatic conditions; corals are marine invertebrates with
growth patterns and chemical compositions that record sea surface temperatures
and ocean chemistry.

Chemical proxies, e.g. stable isotopes, elemental analyses, biomarkers, biogenic
silica, derive from the chemical composition of natural materials, reflecting en-
vironmental parameters. Stable isotopes are ratios of isotopes like oxygen-18 to
oxygen-16 in materials such as ice cores and marine sediments, indicating past
temperatures and precipitation; elemental analyses involve measuring the concen-
trations of elements like iron and phosphorus in sediments, revealing information

1Silica, or silicon dioxide (SiO2), is a naturally occurring compound composed of silicon and
oxygen [114].
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about erosion, productivity, and land use changes; biomarkers are organic molecules
from specific organisms, preserved in sediments, indicating past biological activity
and environmental conditions; biogenic silica, i.e. silica from organisms like diatoms,
is used to infer past productivity and environmental changes in aquatic systems.

Physical proxies, like sediment composition, texture and structure, color, den-
sity, magnetic properties, involve the physical characteristics of sediments and
geological formations. Sediment composition, i.e. types of minerals and fossils
in sediments, inform about past salinity and temperature; texture and structure,
i.e. grain size and layering in sediments, indicate transportation processes and
depositional environments; sediment color variations can reflect changes in organic
content, oxidation conditions, and source materials; density (mass per unit volume
of sediments) provides clues about composition and depositional conditions; mag-
netization of segments is useful for identifying sediment sources and dating through
Earth’s magnetic field reversals [115].

Examples of datasets based on paleoclimate proxies include NOAA National
Centers for Environmental Information (NCEI) Paleoclimatology Data [116], Past
Global Changes (PAGES) 2k Network [117] and Neotoma Paleoecology Database
[118].

While paleoclimate data are invaluable, they present some challenges. The
interpretation of paleoclimate proxies can be complex, as they often require careful
calibration and validation against modern observations. Additionally, the dating of
sediment cores and other geological materials can introduce uncertainties, particu-
larly when relying on radiometric dating techniques or stratigraphic correlations.
Moreover, paleoclimate proxies may have limitations in terms of spatial coverage
and temporal resolution, for instance they may not capture short-term fluctuations
or recent changes in climate.

D.2 In-situ observations
In-situ observations, or ground-based measurements, are direct measurements
collected at the location of interest, providing essential data for understanding
and monitoring the Earth’s climate system. They are a more straightforward
way to collect climate data, compared to paleoclimate proxies, and are crucial for
calibrating satellite data, validating climate models, and informing policy decisions.
Measurements are collected using various instruments, which can be classified in
marine/oceanographic, atmospheric, and terrestrial. Marine and oceanographic
instruments can monitor surface temperature, ocean temperature, salinity, currents
and wave height. They include include moored buoys, which are anchored to the
sea floor, drifting buoys, that move with ocean currents, argo floats, which can go
up to a depth of 2000 meters; AUVs (Autonomous Underwater Vehicle), that can

136



D.3 – Satellite data

traverse the ocean, research vessels, i.e. ships equipped with advanced sensors, and
tide gauges, that are installed along coastlines and measure sea level changes over
time [119]. Atmospheric platforms include weather stations, radiosondes and air
quality monitors. Weather stations are fixed installations measuring parameters
like temperature, humidity, wind speed, and precipitation; radiosondes are balloon-
borne instruments that ascend through the atmosphere, recording vertical profiles
of temperature, pressure, and humidity; air quality monitors are devices that track
pollutants such as nitrogen dioxide (NO2), particulate matter (PM2.5), and ozone
levels. Terrestrial platforms comprehend hydrological stations, cryospheric mea-
surements and vegetation monitoring stations. Hydrological stations monitor river
discharge, groundwater levels, and soil moisture; cryospheric2 measurements assess
snow depth, ice thickness, and glacier movement; vegetation monitoring stations
evaluate land cover, biomass, and photosynthetic activity. Examples of datasets
based on in-situ observations include United States Climate Reference Network
(USCRN) [121] and European Climate Assessment (ECA) [122]. Although in-situ
observations provide valuable data, they also have limitations. The spatial coverage
of in-situ measurements can be uneven, particularly in remote or inaccessible
regions, leading to gaps in data availability. Additionally, in-situ measurements can
be affected by local environmental conditions, such as urban heat islands or land
use changes, which may introduce biases in the data. Furthermore, the maintenance
and calibration of ground-based instruments are essential to ensure data quality
and reliability.

D.3 Satellite data
Satellite remote sensing involves using instruments aboard satellites to collect data
about Earth’s surface and atmosphere without direct contact. Therefore, with
respect to in-situ measurements, satellite data is collected far from the location of
interest, but it can provide a more comprehensive view of large areas and insights
at different spatial and temporal resolutions, thus complementing ground-based
measurements. Satellite instruments capture electromagnetic radiation (such as
visible light, infrared, and microwave) reflected or emitted by Earth’s features.

They can be divided into passive and active. Passive sensors detect natural
energy emitted or reflected by objects on Earth. They rely on external sources of
energy, primarily the Sun, to illuminate the target. They can cover large areas
quickly and are useful for monitoring surface temperatures, vegetation and ocean
color, but they depend on sunlight limits observations to daytime and measurements

2The cryosphere encompasses the portions of Earth’s surface where water exists in solid form
[120].
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can be disturbed by cloud cover. Active sensors emit their own energy towards
the Earth and measure the reflected or backscattered signals. This allows them to
collect data regardless of external lighting conditions. They operate day and night,
regardless of weather conditions, and provide high-resolution data on surface and
atmospheric features, but typically cover smaller areas compared to passive sensors
and are more complex and expensive to operate [123].

Sensors can also be classified based on the type of data they collect. Optical
sensors detect sunlight reflected from Earth’s surface. They can be panchromatic, i.e.
capture images in a single broad band, producing high-resolution black-and-white
images, multispectral, which capture data in multiple discrete bands (typically 3-10),
including visible and near-infrared wavelengths, or hyperspectral, that capture data
in hundreds of narrow, contiguous spectral bands, allowing for detailed analysis
of materials and land cover. Radar sensors can be Synthetic Aperture Radar
(SAR), i.e. they emit microwave signals and measure their return, enabling imaging
regardless of weather or lighting conditions, and Interferometric SAR (InSAR),
which combine multiple SAR images to detect ground surface changes, useful for
monitoring subsidence, earthquakes, and glacier movements. Thermal sensors
measure emitted infrared radiation to assess surface temperatures, aiding in studies
of urban heat islands, wildfires, and energy efficiency. Light Detection and Ranging
(LIDAR) sensors use laser pulses to generate high-resolution 3D models of Earth’s
surface, valuable for topographic mapping and vegetation analysis [124].

Examples of datasets based on passive sensors include the NOAA Climate
Data Record (CDR) of Advanced Very High Resolution Radiometer (AVHRR)
Reflectance [125], the Moderate Resolution Imaging Spectroradiometer (MODIS)
Land Surface Temperature and Emissivity (MOD11) [126], and the Visible Infrared
Imaging Radiometer Suite (VIIRS) Surface Reflectance CDR [127]. Examples of
datasets based on active sensors include instead Sentinel-1 Synthetic Aperture
Radar (SAR) Data [128], Global Ecosystem Dynamics Investigation (GEDI) LIDAR
[129], and the Advanced Microwave Scanning Radiometer (AMSR) Unified L3 Daily
[130].

Although satellite data provides valuable information, it also has limitations.
The fact that satellite data is available at different spatial and temporal resolutions
is both an advantage and a limitation, because it can lead to inconsistencies in
data quality and interpretation. For example, high-resolution satellite imagery
can capture fine details of land cover changes, while coarser resolution data may
miss important features or variations. This can affect the accuracy of analyses
and models that rely on satellite data. Additionally, the temporal resolution of
satellite data can vary, with some sensors providing frequent observations while
others have longer revisit times. This can impact the ability to monitor rapid
changes in climate or land cover, such as extreme weather events or deforestation.
Moreover, satellite records may have temporal gaps, they are limited to the period
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since satellite observations began, and ensuring consistency across different satellite
instruments and missions requires careful calibration and validation. However,
compared to paleoclimate proxies and in-situ observations, satellite data is much
more used by researchers.

D.4 Climate models
Climate models are mathematical representations of the Earth’s climate system,
simulating the interactions between various components, such as the atmosphere,
oceans, land surface, and ice. They are used to understand past climate changes,
assess current conditions, and project future climate scenarios. Climate models can
be classified into different categories based on their complexity and spatial resolution:
Energy Balance Models (EBMs), Radiative-Convective Models (RadCMs), Earth
system Models of Intermediate Complexity (EMICs), General Circulation Models
(GCMs), Regional Climate Models (RCMs) and Earth System Models (ESMs).

EBMs are simple representations of the Earth’s energy budget, focusing on the
balance between incoming solar radiation and outgoing thermal radiation; RadCMs
extend this concept by incorporating vertical temperature profiles and convection
processes in the atmosphere [131]; EMICs are simplified models that capture
essential climate processes while reducing computational complexity, making them
suitable for long-term climate simulations [132]; GCMs are more complex models
that simulate the three-dimensional circulation of the atmosphere and oceans,
including interactions between different components of the climate system; RCMs
are used to downscale GCM projections to finer spatial resolutions, providing
more localized climate information; ESMs are the most comprehensive models,
integrating physical, chemical, and biological processes in the climate system, such
as the carbon cycle and vegetation dynamics [133, 134].

Most of the climate models are some computational limitations, so they cannot
resolve all physical processes explicitly. Therefore, they rely on parameterizations,
which involve representing small-scale processes, like cloud formation and convec-
tion, through simplified relationships, which is crucial for capturing their effects on
the larger-scale climate system [135]. Moreover, some models have coarse-resolution
grids, and they are translated into finer-resolution grids using downscaling tech-
niques. These techniques include statistical downscaling, which uses relationships
between large-scale climate variables and local observations to create high-resolution
projections, and dynamical downscaling, which involves running a high-resolution
model nested within a coarser-resolution model to capture regional climate features
[136].

Climate models are useful to make in-depth analysis of single climatical processes,
but they are subject to individual biases and uncertainties and may not capture the
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full range of possible climate outcomes. Therefore, today researchers tend to prefer
Multi-Model Ensembles (MMEs). MMEs involve running several climate models
under the same initial conditions and external forcings (such as greenhouse gas
concentrations). The individual model outputs are then combined, typically through
averaging, to produce a consensus forecast. MMEs capture a range of possible
outcomes, reflecting the uncertainties inherent in climate modeling. Therefore,
they provide a more robust assessment of future climate scenarios. MMEs can
be constructed using different approaches, such as simple averaging, weighted
averaging based on model performance, or more sophisticated statistical techniques.
MMEs are widely used in climate research and policy-making. For example,
the Coupled Model Intercomparison Project (CMIP) provides a framework for
comparing outputs from various global climate models, facilitating the development
of comprehensive climate assessments [137]. Similarly, the NCEI North American
Multi-Model Ensemble (NMME) is employed for seasonal climate forecasting,
integrating models from multiple institutions to improve prediction accuracy [138].
Still, MMEs are not without limitations: they can be computationally expensive,
requiring significant resources to run multiple models simultaneously; the choice of
models included in the ensemble can influence the results, and there is no universally
accepted method for selecting or weighting models; they may not fully capture the
range of uncertainties associated with climate projections, particularly in regions
with limited observational data or complex climate dynamics; if all models share
similar biases, the ensemble mean may still be skewed.

D.5 Reanalysis datasets

The most used and appreciated datasets in climate science are reanalysis datasets.
Reanalysis datasets are produced by assimilating observational data into numerical
weather prediction models, resulting in a consistent and high-resolution repre-
sentation of the atmosphere over time. They combine observations from various
sources, such as satellites, weather stations, and buoys, with model simulations to
create a comprehensive picture of the Earth’s climate system. Reanalysis datasets
are valuable for climate monitoring, research, policy making, risk assessment in
commercial applications. Therefore, they are also useful for analyzing climate
teleconnections. They could still be affected by biases, particularly in regions with
sparse observational data or complex topography, but they are generally considered
more reliable than individual observational datasets. Reanalysis datasets are pro-
duced by several institutions, including the European Centre for Medium-Range
Weather Forecasts (ECMWF) [139], the National Oceanic and Atmospheric Admin-
istration (NOAA) [140], and the Japan Meteorological Agency (JMA) [141]. The
most common reanalysis datasets include the ERA5 (European Reanalysis), NCEI
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Reanalysis 1 and 2, MERRA-2 (Modern-Era Retrospective Analysis for Research
and Applications) and JRA-55 (Japanese Reanalysis).

NCEP/NCAR Reanalysis 1 is a global atmospheric reanalysis dataset produced
by the National Centers for Environmental Prediction (NCEP) and the National
Center for Atmospheric Research (NCAR). Spanning from 1948 to the present, it
offers a comprehensive view of the Earth’s climate system. The dataset includes
various atmospheric variables, such as temperature, humidity, wind speed, and
precipitation, at different pressure levels and surface levels. The data is produced
using a combination of numerical weather prediction models and observational data
assimilation techniques. The dataset differs from ERA5 for the data assimilation
methods: while NCEP/NCAR Reanalysis 1 employs a sequential data assimila-
tion approach, integrating observational data into a forecast model to produce
a consistent atmospheric analysis, ERA5 utilizes a more advanced data assimi-
lation system, incorporating a 4D-Var approach that considers both spatial and
temporal variations in the assimilation process. This results in ERA5 providing
higher temporal and spatial resolution data compared to NCEP/NCAR Reanalysis
1. Additionally, ERA5 offers hourly estimates for a wide range of atmospheric,
ocean-wave, and land-surface variables, with uncertainty estimates provided by a
10-member ensemble at three-hour intervals. In contrast, NCEP/NCAR Reanalysis
1 primarily provides daily and monthly mean data, with less frequent temporal
resolution. Furthermore, ERA5 is updated daily with a delay of about five days, en-
suring more timely data availability, while NCEP/NCAR Reanalysis 1 has a longer
update cycle, which may result in less current data for analysis [142]. NCEP/DOE
Reanalysis 2 is an updated version of NCEP/NCAR Reanalysis 1 realized by the
Department of Energy (DOE). It has improved data assimilation techniques and a
more comprehensive representation of the Earth’s climate system. It covers the
period from 1979 to the present, offering enhanced spatial and temporal resolution.
The dataset includes a wider range of atmospheric variables and provides better
estimates of precipitation and other hydrological variables. These datasets provide
data with a resolution of 2.5◦ × 2.5◦ and 17 vertical levels, extending from the
surface to 10 hPa (approximately 30 km altitude) [143].

MERRA-2 is a comprehensive atmospheric reanalysis dataset produced by
NASA’s Global Modeling and Assimilation Office (GMAO). Covering the period
from 1980 to the present, MERRA-2 offers high-resolution data on various atmo-
spheric variables, including temperature, humidity, wind speed, and precipitation.
MERRA-2 is provided in multiple collections tailored to different research needs: the
INST collection delivers hourly instantaneous meteorological and aerosol-coupled
fields, the FLX collection gives grid-box-average surface turbulent fluxes and re-
lated energy/water-budget quantities, and the LND collection isolates land-only
model variables (e.g., soil moisture, vegetation states) without fractional-area
weighting. All analyses are performed on NASA GMAO’s cubed-sphere grid at
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0.5◦ × 0.625◦ (~50 km) resolution with 72 hybrid-eta levels up to 0.01 hPa, and
include representations of ice sheets over Greenland and Antarctica for improved
surface coupling. Data assimilation in MERRA-2 uses the GEOS-5 (Goddard
Earth Observing System) Data Assimilation System (version 5.12.4) with a 3D-
Var3 framework plus incremental analysis updates, jointly ingesting meteorological
observations and space-based Aerosol Optical Depth (AOD) retrievals. This joint
aerosol-meteorology assimilation, the first of its kind in a multi-decadal reanalysis,
allows full radiative coupling of analyzed aerosol fields back into the climate model,
significantly improving simulations of dust, smoke, and other particulates and
their climate impacts [145]. New analyses are produced in near real time, with
hourly meteorological fields and 3-hourly aerosol updates; monthly files undergo
additional quality checks and are released around the 15th-20th of the following
month. MERRA-2 also offers specialized collections such as RAD (radiation diag-
nostics), CLD (cloud parameters), MST (moist processes), TRB (turbulence), SLV
(single-level fields), CHM (chemical forcings), and AER/ADG (aerosol diagnostics
and extended diagnostics) [146].

JRA-55 is a global atmospheric dataset produced by JMA that spans from
1958 to the present, offering a comprehensive and homogeneous record of past
climate conditions for research and operational applications. By assimilating an
extensive array of observations—including radiosondes, surface stations, aircraft
reports, and satellite radiances—within a 4D-Var framework, JRA-55 resolves
many of the temporal inconsistencies and biases present in earlier reanalyses. The
inception of JRA-55 builds upon the earlier JRA-25 product, which covered the
period 1979-2004, and then was subject to a set of updates and improvements
[147]. JRA-55 employs a spectral model at TL3194 horizontal resolution with 60
vertical σ-levels5 reaching up to 0.1 hPa. The data assimilation system integrates
observations over a six-hour window using 4D-Var, augmented by a variational
bias correction for satellite radiances to mitigate instrument and retrieval biases.
This framework also incorporates time-varying concentrations of greenhouse gases
(CO2, CH4, N2O), improving the representation of radiative processes and long-
term climate signals. Covering the full globe on a regular latitude-longitude
grid, JRA-55 delivers three-hourly, six-hourly, daily, and monthly fields of core
atmospheric variables, including temperature, winds, geopotential height, humidity,

33D-Var is a data assimilation technique that considers data as a single time point. It is less
computationally intensive than 4D-Var [144].

4TL319 refers to the triangular truncation of the spectral model, which determines the
horizontal resolution of the model. The number 319 indicates that the model has a total of 319
wave numbers in each direction, resulting in a grid spacing of approximately 60 km [148].

5σ-levels are a coordinate system used in atmospheric models where the vertical coordinate is
defined as the ratio of the pressure at a given level to the surface pressure [149].
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and surface pressure. The dataset also provides surface and flux products—such
as precipitation, radiation components, evaporation, and soil moisture—as well
as diagnostics relevant for climate studies, including storm-track indices, tropical
cyclone metrics, and Madden-Julian Oscillation diagnostics [150].
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Appendix E

Mathematical proofs

E.1 Grid distortion

Let p1 = [c1, f1] and p2 = [c2, f2] be two points at the same time step, i.e. y1 = y2
and m1 = m2, but with different coordinates, i.e. ℓ1 /= ℓ2 and g1 /= g2. Then, the
distance between the two points (assuming flat Earth) is given by:

d(p1,p2) = R
ñ

(ℓ1 − ℓ2)2 + (g1 − g2)2

where R is the radius of the Earth, which is approximately 6371 km. If ℓ1 = ℓ2,
then the distance is:

d(p1,p2) = R|g1 − g2|

If g1 = g2, then the distance is:

d(p1,p2) = R|ℓ1 − ℓ2|

If both ℓ1 = ℓ2 and g1 = g2, then the distance is zero, i.e. the two points are the
same. However, on a spherical surface the situation is different, and the Haversine
formula can be used:

d(p1,p2) = 2R · arcsin

öõõôsin2

A
ℓ1 − ℓ2

2

B
+ cos (ℓ1) · cos (ℓ2) · sin2

3
g1 − g2

2

4
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At the equator, ℓ1 = ℓ2 = 0. Therefore, the distance becomes:

d(p1,p2) = 2R · arcsin
Aó

sin2 (0) + cos (0) · cos (0) · sin2
3
g1 − g2

2

4B

= 2R · arcsin
Aó

0 + 1 · 1 · sin2
3
g1 − g2

2

4B

= 2R · arcsin
3

sin
3
g1 − g2

2

44
= 2R · g1 − g2

2
= R|g1 − g2|

so it is equivalent to the flat Earth case. Instead, at the poles ℓ1 = ℓ2 = π
2 . Then:

d(p1,p2) = 2R · arcsin
Aó

sin2
3
π

2 −
π

2

4
+ cos

3
π

2

4
· cos

3
π

2

4
· sin2

3
g1 − g2

2

4B

= 2R · arcsin
Aó

0 + 0 · 0 · sin2
3
g1 − g2

2

4B
= 2R · arcsin(0) = 0

E.2 Area-weighted grid2mesh average pooling
The calculation of the area of a grid cell requires computing an integral:

Ag =
Ú

Sg
dA

where Sg is the surface of the grid cell g. The area can be computed as a double
integral over the latitude ℓ and longitude g of the grid cell, considering that the
area element on the sphere is given by:

dA = R2 · cos(ℓ) dg dℓ

Therefore:
Ag =

Ú ℓg+

ℓg−

Ú gg+

gg−
R2 · cos (ℓ) dg dℓ

where R is the radius of the Earth, ℓg− and ℓg+ are the lower and upper latitudes
of the grid cell, and gg− and gg+ are the left and right longitudes of the grid cell.
The result is:

Ag = R2 · (gg+ − gg−) (sin(ℓg+)− sin(ℓg−))
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where ℓg−, ℓg+ are the lower and upper latitudes, and gg−, gg+ are the left and right
longitudes of the grid cell. The area-weighted average pooling is then defined as:

fk =
q

g∈Gk
Ag · fgq

g∈Gk
Ag

We can simplify this equation by assuming that, when computing fk, we are only
considering adjacent grid cells, there is no need for very high spatial precision and
variables change smoothly. Therefore, let:

ℓg+ = ℓg + ∆ℓg

2 , ℓg− = ℓg −
∆ℓg

2
where ℓg is a latitude considered as center of the area. Then, for the mean value
theorem, we can approximate the difference between the sine of the upper and
lower latitudes using the derivative of the sine function:

sin(ℓg+)− sin(ℓg−) = sin
A
ℓg + ∆ℓg

2

B
− sin

A
ℓg −

∆ℓg

2

B

≈ d sin(ℓg)
dℓg

·∆ℓg

= cos(ℓg) ·∆ℓg

As a result, the area of the grid cell can be approximated as:

Ag ≈ R2 ·∆ℓg ·∆gg · cos(ℓg)

Since R, ∆ℓg and ∆gg are constant for all grid cells:

fk ≈
q

g∈Gk
R2 ·∆ℓg ·∆gg · cos(ℓg) · fgq

g∈Gk
R2 ·∆ℓg ·∆gg · cos(ℓg) =

q
g∈Gk

cos(ℓg) · fgq
g∈Gk

cos(ℓg)

E.3 Mean value of the grid2mesh cardinality
It is trivial to show that the area of the spherical approximation of the Earth is:

A = 4πR2

Therefore, the area of a mesh cell is:

Amesh = A

M
= 4πR2

M

From previous considerations, we know that the area of a grid cell is:

Agrid = R2 ·∆ℓgrid ·∆ggrid · cos(ℓgrid)
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By combining the two areas, we can express α as function of the latitude:

α(ℓ) = Amesh

Agrid
= 4πR2

M
· 1
R2 ·∆ℓgrid ·∆ggrid · cos(ℓ) = 4π

M ·∆ℓgrid ·∆ggrid · cos(ℓ)
The mean value of the integral over a surface is defined as:

ᾱ = 1
A

Ú
S
f dA

where f is a function defined on the surface S, and A is the area of the surface.
We know A and dA for the Earth, so we can rewrite:

ᾱ = 1
4πR2

Ú 2π

0

Ú π
2

− π
2

α(ℓ) ·R2 · cos(ℓ) dℓ dg

= 1
4πR2

Ú 2π

0

Ú π
2

− π
2

4π
M ·∆ℓgrid ·∆ggrid · cos(ℓ) ·R

2 · cos(ℓ) dℓ dg

= 1
M ·∆ℓgrid ·∆ggrid

Ú 2π

0

Ú π
2

− π
2

dℓ dg

= 1
M ·∆ℓgrid ·∆ggrid

· 2π ·
3
π

2 −
3
−π2

44

= 2π2

M ·∆ℓgrid ·∆ggrid

E.4 Graph neighborhood
When handling an icosahedron geometry, i.e. before any mesh refinement, the
properties of the graph can be inferred from the ones of the polyhedron itself. Let f
be the number of edges per face and d the number of edges per vertex. Icosahedron
is one of the five Platonic solids [151], therefore all its faces are equilater triangles
(f = 3), all edges have the same length and the same number of faces and edges
meet at each vertex (d is constant for all vertices). Since each edge connects 2
vertices and is shared by 2 faces, it is trivial to show that f · F = 2E, and also
d · V = 2E. Therefore:

d = f · F
V

Since F = 20 and V = 12, we can conclude that d = 5, i.e. each vertex is connected
to 5 other vertices, which are its neighbors. However, this does not apply to refined
meshes, because they do not represent Platonic shapes anymore, so we have no
guarantee that the number of neighbors is constant for all mesh points. Given L
the mesh refinement level, since all faces are still triangles, and each edge is shared
by 2 faces:

E(L) = 3
2F (L)
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Starting from F (0) = 20, at every refinement level L the number of faces is
multiplied by 4, so we can express the number of faces as:

F (L) = 20 · 4L

We use the Euler’s formula for polyhedra [152]:

V − E + F = 2

From this, we can express the number of vertices as:

V (L) = E(L)− F (L) + 2 = 1
2F (L) + 2 = 10 · 4L + 2

The degree d(L) of a vertex at level L can then be expressed as:

d(L) = 3F (L)
V (L) = 60 · 4L

10 · 4L + 2
This function is strictly increasing, has a minimum in d(0) = 5, and tends to:

lim
L→+∞

d(L) = 6

When refining the mesh, points in the coarse mesh exist also in the fine one. It
can be shown that they preserve their degree, and so d(L) increases because all the
added points in the fine mesh have degree 6.

What was discussed until now is the topological meaning of neighbors, i.e. the
fact that two mesh points are neighbors if they are connected by an edge (side)
in the mesh representation. However, we can also define a geometric meaning of
neighbors, i.e. two mesh points are neighbors if they are close enough in space,
regardless of the mesh structure. This is a more general definition, because it does
not depend on the mesh representation, but only on the spatial distance between
points. However, if we choose the geometric definition, we should statically define a
k-NN (k-Nearest Neighbors) approach, i.e. always select the k nearest neighbors for
each mesh point according to some distance metric, where k is a constant. Instead,
we want to exploit the properties of our mesh representation, and therefore we
opt for the topological definition. It can be empirically proven that a topological
neighbor vt,s′ of a mesh point vt,s is also a geometric neighbor if:

δ(vt,s, vt,s′)(L) < δ
(L)
min · φ ∀s′ ∈ Ns

where δ(vt,s, vt,s′)(L) is the distance between the mesh points vt,s and vt,s′ at level L,
δ

(L)
min is the minimum distance between two mesh points at level L. Of course, as L

increases, δ(L)
min decreases, so the condition becomes more restrictive. In particular,

the following holds:

δ
(L)
min = δ

(0)
min
2L
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E.5 Row-stochastic correlation matrix
• Base case: k = 0. In this case, we have:

CL(0) = I

where I is the identity matrix. The identity matrix is a row-stochastic matrix,
since each row sums to 1.

• Inductive step: Assume that the statement holds for k = m, i.e. CL(m)
is a row-stochastic matrix. We want to prove that CL(m+ 1) is also a row-
stochastic matrix. We introduce the following notation: given a matrix M, we
denote by [M]i,j the element in the i-th row and j-th column of M. We have:

CL(m+ 1) = CL(m) ·A(L−m)

A(L−m) is a row-stochastic matrix:
nØ

j=1
[A(L−m)]i,j = 1 ∀i ∈ {1, . . . , n}

CL(m), as from the inductive hypothesis, is a row-stochastic matrix:
nØ

j=1
[CL(m)]i,j = 1 ∀i ∈ {1, . . . , n}

Then:
nØ

j=1
[CL(m+ 1)]i,j =

nØ
j=1

A
nØ

l=1
[CL(m)]i,l · [A(L−m)]l,j

B

=
nØ

l=1
[CL(m)]i,l ·

 nØ
j=1

[A(L−m)]l,j


=

nØ
l=1

[CL(m)]i,l · 1

=
nØ

l=1
[CL(m)]i,l

= 1

for all i ∈ {1, . . . , n}.

By the principle of mathematical induction, we conclude that CL(k) is a row-
stochastic matrix for all k ≥ 0.
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E.6 Path interpretation of the correlation matrix
• Iteration 0: k = 0. In this case, we have:

RL(0) = I

where I is the identity matrix. No consideration can be done at this point.

• Iteration 1: k = 1. In this case, we have:

RL(1) = A(L)

Therefore, the correlation c1,L
i,j is given by:

c1,L
i,j = αL

vi,vj

and represents a path of length 1 from node vj to vi, i.e.:

Pvj→vi
= (evj ,vi

)

• Iteration 2: k = 2. In this case, we have:

RL(2) = A(L) ·A(L− 1)

The correlation c2,L
i,j is given by:

c2,L
i,j =

nØ
l=1

αL
i,l · αL−1

l,j

We know that RL(2) can be actually represented as a block matrix, where
each block corresponds to a time step t and a spatial point s. Taking into
account how input data is structured, we can rewrite the correlation as:

c2,L
[t,s],[t′,s′] =

SØ
s′′=1

TØ
t′′=1

αL
[t,s],[t′′,s′′] · αL−1

[t′′,s′′],[t′,s′]

As from Equation 3.13 and Equation 3.14, the attention weight αL
[t,s],[t′′,s′′]

is non-zero only if t′′ = t − 1 and s′′ ∈ Ns. Therefore, we can rewrite the
correlation as:

c2,L
[t,s],[t′,s′] =

Ø
s′′∈Ns

αL
[t,s],[t−1,s′′] · αL−1

[t−1,s′′],[t′,s′]
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where t′ = t−2 and s′ ∈ Ns′′ 1. This sum takes into account all paths of length
2 from node [t, s] to node [t′, s′], where each path has the form:

P[t′,s′]→[t−1,s′′]→[t,s] = (e[t′,s′],[t−1,s′′], e[t−1,s′′],[t,s])
Therefore, the choice of s′′ produces different paths.

• Iteration 3: k = 3. In this case, we have:
RL(3) = A(L) ·A(L− 1) ·A(L− 2)

The correlation c3,L
i,j is given by:

c3,L
i,j =

nØ
l=1

nØ
m=1

αL
i,l · αL−1

l,m · αL−2
m,j

=
nØ

l=1
αL

i,l ·
A

nØ
m=1

αL−1
l,m · αL−2

m,j

B

=
nØ

l=1
αL

i,l · c
2,L−1
l,j

We can extend the previous reasoning, by rewriting the correlation as:

c3,L
[t,s],[t′,s′] =

SØ
s′′=1

TØ
t′′=1

αL
[t,s],[t′′,s′′] · c

2,L−1
[t′′,s′′],[t′,s′]

=
Ø

s′′∈Ns

αL
[t,s],[t−1,s′′] · c

2,L−1
[t−1,s′′],[t′,s′]

The choice of s′′ determines the penultimate point traversed by the path, and
from then on the path depends on the choice of a point [t∗, s∗], and so on.
Therefore, the sum takes all the paths of length 3 from node [t, s] to node
[t′, s′], where each path has the form:

P[t′,s′]→[t−1,s′′]→[t∗,s∗]→[t,s] = (e[t′,s′],[t−1,s′′], e[t−1,s′′],[t∗,s∗], e[t∗,s∗],[t,s])

• Iteration k: k > 3. At this point, it is trivial to show that:
ck,L

[t,s],[t′,s′] =
Ø

s′′∈Ns

αL
[t,s],[t−1,s′′] · c

k−1,L−1
[t−1,s′′],[t′,s′]

=
Ø

s1∈Ns

αL
[t,s],[t−1,s1] ·

 Ø
s2∈Ns1

αL−1
[t−1,s1],[t−2,s2] · (· · · )


=

Ø
s1∈Ns

· · ·
Ø

sk−1∈Nsk−2

αL
[t,s],[t−1,s1] · · ·αL−k+1

[t−k+1,sk−1],[t′,s′]

1In the following, we omit the dependence between [t, s] and [t′, s′], i.e. between the last and
first points of the path, for the sake of simplicity.
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Each product of attention weights corresponds to a path of length k from
node [t, s] to node [t′, s′], where the choice of the intermediate points [t −
1, s1], . . . , [t− k + 1, sk−1] determines the specific path pk. Therefore:

ck,L
[t,s],[t′,s′] =

Ø
pk∈Πk

[t,s],[t′,s′]

kÙ
l=1

αL−k+l
pk[l]
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