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Chapter 1

Abstract

The Odd-One-Out anomaly detection problem is an emerging research direction
aimed at identifying visually distinct instances within multi-object 3D scenes.
Unlike traditional anomaly detection tasks, which rely on predefined notions of
normality or anomaly, the Odd-One-Out task is inherently contextual. An object’s
status as “anomalous” is determined not by global priors but by its dissimilarity
to co-occurring objects in the same scene. This contextual framing introduces
significant modeling challenges, requiring both spatial understanding of individual
objects and relational reasoning to capture how objects relate to each other.

This thesis explores how to learn context-aware object representations for 3D
anomaly detection. We begin by reconstructing 3D voxel grids for each scene
using multi-view 2D feature maps, which are backprojected using known camera
intrinsics and extrinsics. We evaluate feature quality under different encoding
strategies, including a baseline with ResNet50 and a distillation pipeline using
DINOv2. Our experiments reveal that direct use of DINOv2 features outperforms
distillation-based approaches and produces richer embeddings for downstream tasks,
even if naive clustering on these features results insufficient for separating anomalies
from normal objects.

To enhance the discriminativeness of object features, we apply contrastive learn-
ing on compact voxel grid representations, exploring strategies such as synthetic
hard negative generation, positive samples extrapolation and memory banks. De-
spite limited gains, these experiments highlight the complexity of scene-dependent
anomaly separation.

We then propose a more efficient alternative: compressing 3D object features
into fixed-size embeddings and refining them with a Transformer-based architecture.
Attention mechanisms help recalibrate these features within the context, while a
novel Residual Anomaly Module introduces a learnable "normality centroid". This
module allows the system to measure deviation from contextually-defined normality,
effectively modeling scene-specific feature embeddings.
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Abstract

We evaluate our framework on the ToysAD8K and Parts15K datasets, which
handle multi-view 3D scenes. The proposed approach demonstrates strong potential
for real-world applicability in automated inspection pipelines, in particular where
objects are numerous, similar and subtly different when anomalous.
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Chapter 2

Introduction

2.1 Anomalies and the Odd-One-Out problem

In general terms, anomalies could be defined as something that does not match
what we expect. Some examples can be a data point that does not fit into a
particular pattern, a faulty piece inside a factory line, or an unusual shape in
a medial scan. All these examples share the the same idea that an anomaly is
represented by an aspect of what we’re evaluating, that deviates from its standard
behavior.

Usually, when dealing with single objects, anomalies are inferred based on the
deviation computed over a predetermined data distribution in order to evaluate it
quantitatively. In the particular case in which anomalies have to be spot among
other objects, this becomes not trivial, since there could me many scenarios where
the observed object is part of the majority of the objects while not in others. This
defines the Odd-One-Out problem, which emphasizes that what does not fit into
the known standard behavior of what we’re observing, relies heavily on the context.

This makes the definition of anomalies really broad and flexible, since it is linked
directly to the environment in which the observation has taken place. For instance,
a red toys would be considered an outlier inside a box full of green toys, but not if
red toys would have composed the majority of the objects inside the box. Therefore,
anomalies are not defined by predefined rules but rather by comparison with the
context, represented by everything around the observed sample.

This contextual dependency means that adaptive systems are required, in
order to understand and model the surrounding environment or reference group.
This leads to the context-aware anomaly detection methods, where the system is
supposed to learn firstly the typical structure or behavior within a certain setting,
and then infer deviations related to the learned context. Consequently an object
or a pattern can be flagged as an anomaly in one scenario and entirely normal
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Introduction

in another, highlighting the importance of relational understanding over absolute
criteria. This dynamic nature of anomalies open up to new challenges by aiming
to design systems that are sensitive to context and able to compute responses by
reasoning based on situational awareness.

2.2 Anomalies in Computer Vision
Anomaly detection in computer vision relates to the task of identifying unexpected
pattern, objects or events within visual data. Traditionally, the field has focused
mainly on 2D images in order to detect semantic novelty, like new objects or
categories that have not been seen during training, or localized defects like structural
or appearance irregularities. These methods rely on visual clues such as color,
shape, texture or surface inconsistency to recognize between normal and anomalous
regions.

In many practical scenarios, anomaly detection systems are applied in industrial
quality control, where the goal is to identify defects on manufactured parts, or in
surveillance, where unusual behavior or objects must be identified automatically.
Medical imaging also benefits from anomaly detection by highlighting irregular
patterns related to human body parts, which may indicate a certain disease.

Recently, the scope of anomaly detection has expanded to incorporate richer
and more complex representations of the visual world. Instead of relying purely on
2D data, modern approaches manage to integrate multi-modal data sources such
as depth maps, point clouds and multi-view images. This shift is motivated by the
fact that 2D images alone may be not enough to address structural anomalies that
can be identifies in three dimensions or are only visible from certain view angles.

Moreover, a growing trend of pointing out logical inconsistencies and integrating
auxiliary information like language descriptions are rising, in order to provide a
more comprehensive understanding of anomalies. These developments reflect a
broader interest toward multi-modal and context-aware anomaly detection that
aims approximate human perception and reasoning capability as much as possible.

Despite recent progress, many anomaly detection methods still face significant
challenges when applied outside simple or controlled environments. Real-world
scenarios are often represented by far more complex scenes, which can present
multiple overlapping objects, inconsistent lighting, and varying viewpoints. These
factors introduce noise and ambiguity that models trained in simplified settings
may not handle well enough. To be truly effective, anomaly detection systems must
be robust, efficient, and able to generalize beyond the specific conditions they were
trained on.

Anomaly detection through visual data can be handled in many ways, depending
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on the nature of the task. In certain cases, the goal is to detect global anomalies
without necessarily pointing out where the anomaly occurs, therefore employing
an holistic evaluation. This is common in settings like medical diagnostics or
scene-level quality control, where a model should simply determine whether an
input is normal or not, without localizing the cause.

Anyway, in many real-world applications, anomalies are tied to specific instances
of regions within a scene. In this case object detection become a valuable component,
since it let the downstream algorithm analyze visual data with finer granularity by
inspecting each detected instance in its own context. For example, in manufacturing,
each detected product can be analyzed for defects, and in surveillance, object
detection can isolate people or vehicles before evaluating whether their behavior
is unusual or not. Thus, object detection is often used as a first step in order
to enable the anomaly detection module to pay more attention and make more
targeted and focused decisions.

2.3 Current work limitation

Most existing methods mainly focus on simplified settings involving isolated objects
or single-view images, which limits their usage in real-world settings. Consequently
they struggle with generalization when they’re exposed to unseen environments, rare
objects configuration or domain shifts between training and test data distributions,
since they often rely on implicit assumptions or predefined patterns that do not
always hold in practice.

When dealing with multi-object scenes, in particular with multi-view data where
multiple instances are arranged in complex and cluttered layouts, occlusions and
overlapping elements pose significant challenges. The anomaly detection task in
this scenario requires models that can fuse information from various view points, in
order to build a coherent 3D understanding of the scene geometry and appearance.
Additionally, shaping the notion of normalcy is not universal, but rather dependent
on the context, whose meaning is given by all its components and their relative
relationships.

Such models must generalize well to new, unseen object categories and instances,
which is inherently a difficult task due to the diversity and variability of real-
world environments. All these challenges, such as handling multi-object clutter,
leveraging multi-view data, reasoning within complex scenes and ensuring robust
generalization, brings out the current limitations of anomaly detection in multi-view
multi-object centric scenarios and motivate the development of more sophisticated
and adaptable frameworks.
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2.4 Core contributions
In this thesis work, we propose a framework for anomaly detection in multi-object
centric scenes using an odd-one-out formulation. We explore how to handle multi-
view data for obtaining a 3D semantically rich representation of a scene and how
to actually detect objects inside it, in order to assess the ’anomaliness’ of the
detected instances. On top of these modules, we formulate a new lightweight and
fast framework for anomaly detection based on a Transformer Encoder, potentially
being useful in industrial or manufacturing scenarios where speed and efficiency
play a crucial role. In this part of the work, many strategies have been explored to
boost the context-awareness of the model along with its generalization capabilities.

To improve context-awareness in our Transformer-based anomaly detection
framework, we explored strategies that let the model reason about each object
in relation to the entire scene (thought as the totality of objects inside it). We
introduced a normality token into the transformer sequence to represent the global
scene context, guiding the interpretation of each object embedding. A contrastive
loss approach was also examined to promote better generalization by clustering
normal instances and separating potential anomalies. Finally, we added a residual
anomaly head that measures how much each object deviates from the learned norm,
enabling more precise and interpretable anomaly scores.
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Chapter 3

Literature Review

3.1 Visual Anomaly Detection
Visual anomaly detection is a challenging task that has raised attention thanks to
its relevance in many real-world domains like manufacturing, industrial inspection
or quality control. The main difficulty lies in the definition of anomaly, since
anomalies are inherently rare and unpredictable and therefore collecting enough
labeled samples still remain a challenge. Normally these kind of tasks have really
imbalanced dataset, with many normal samples, but very few anomalous ones.
However, researchers have explored alternative strategies including supervised
and self-supervised [1],[2], unsupervised [3] [4] [5], few-shot [6] [7], and zero-shot
learning methods [8] [9] [10] that can operate with limited or no anomaly-specific
supervision. In order to solve these challenges, many different models have been
proposed, ranging from traditional computer vision techniques to deep learning-
based architectures. These models differ in their ability to capture semantic and
spatial patterns, which are relevant to detect deviations from normality.

3.1.1 Types of Anomalies

Visual data can be organized in the following categories: data point, entity, relation,
and frame [11]. A data point is the smallest indivisible element captured by imaging
device (e.g. a pixel for an image) and a cohesive set of data points compose an
entity, which represents a real-world object. A relation function takes multiple
entities as input and combines them to form a visual frame, which encapsulates the
relationships between different entities, capturing contextual information within the
visual scene. This leads to the formation of hierarchical anomalies [11], which can
propagate from the lower level, like data points, until higher ones, like relationships
among objects inside a frame.
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Based on the visual data category we’re analyzing, we can distinguish among two
main anomaly types: structural and semantic anomalies [11]. Structural anomalies
refer to deviations of data points regarding geometry, shape or spatial representation
of an object by focusing on local structural irregularities. This means that a more
fine-grained analysis is exploited for detecting deviations on a single object.

Semantic anomalies relate to the entity, relation, and frame levels of visual
data, where deviations emerge from contextual inconsistencies rather than localized
defects. Such anomalies arise when an object appears in an unexpected context,
when relationships between objects violate learned patterns or when the overall
scene composition differ from expected semantics. Detecting these kind of anomalies
requires a higher understanding of object roles, spatial arrangements and inter-
object relationships. This often involves models capable of context-aware reasoning,
leveraging tools such as attention mechanisms, scene graphs, and relational learning
frameworks to capture and interpret the semantics of the visual scene.

This distinctions have brought to the birth of many different datasets for anomaly
detection regarding visual data like MVTec AD [12], which contains high resolution
images of industrial objects and textures with structural defects like scratches, dents
and contaminations, focusing on localize defects. Semantic anomalies instead are
covered in datasets like MVTec-LOCO [13], which includes logical anomalies where
objects appear in incorrect locations, are missing entirely, or violate contextual
rules.

3.1.2 Traditional Methods
Traditional methods for anomaly detection cover statistical, clustering and classic
machine learning models, which have been reliable tools for many applications
thanks to their simplicity, interpretability and low-cost computation. Statistical
techniques try to reconstruct the normal samples probability distribution and
classify anomalies based on whether the samples fall inside the reconstructed
distribution. Typical models that belong to this category are parameter distribu-
tion estimation, such as Gaussian [14] or Gaussian Mixture Models [15], kernel
density estimation method [15] and non-parametric estimation methods like Nearest-
Neighbour.

Clustering methods focus on grouping similar object embeddings into clusters
within the feature space [16] [17]. Anomalies are then detected as data points that
do not fit well into any cluster [18] [19]. This approach works well when anomalies
follow known patterns distinct from normal data. However, their performance
degrades in scenarios where anomalies are context dependent, meaning that their
anomalous nature is defined relative to the surrounding environment. In this
cases, the decision boundary between normal and anomalous instances becomes not
absolute anymore,but rather scene-specific. Additionally, these methods perform
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better with low-dimensional feature representations, which in most real-world
scenario is not the case.

Classical machine learning based methods includes one-class classifiers, whose
task is to classify a single class in feature space. The traditional approach is
represented by one-class support vector machines (OCSVM) [20] and support
vector data description (SVDD) [21], which aim at modeling the boundaries for
normal samples, by flagging everything that that not reside inside it.

However many limitations are met by these models. Statistical methods rely
on strong assumptions on the target distribution, which is not always met due to
the visual data complexity in the modern datasets and large amounts of training
samples for shaping the distribution. Moreover it is hard to model distributions
when dealing with high-dimensional features like images and draw clear separable
decision boundaries for normal and anomalous samples.

3.1.3 Deep Learning-Based Anomaly Detection
Thanks to the advent of deep learning models it has been possible to handle complex
pattern in high dimensional data, therefore a new class of models has raised in order
to deal with these challenges by exploiting the richness of the feature outputted by
a neural network.

Thanks to this kind of feature richness, it has been possible to represent visual
data like images or videos through compact and meaningful feature vectors, useful
for downstream tasks like anomaly detection task. All these qualities, obtained
by the neural network based feature extractor, are already suitable for classical
machine learning algorithms. This fills the gap of interpretability and transparent
decision-making for more complex models like neural networks while still delivering
expressive and adaptable features representations [22]. Clustering-based models
exploit the features coming out of a neural network for clustering data points based
on their proximity in feature space, improving detection accuracy by retaining its
cluster nature [23]. Normalizing flows [24] estimate the probability distribution
of the data and can be used in conjunction with neural feature extractor as
probabilistic estimators [25] [26] Support Vector Data Description (SVDD) [21]
instead is a classical machine learning method and aims to find the boundaries that
separate normal data from anomalous ones. When it is used on top of deep neural
network features it manages to create precise boundaries for high dimensional data.

Reconstruction based models are trained in order to learn the distribution of
the normal data by reconstructing it [27] [28] . The distribution of normal samples
is learned when the reconstruction error for normal instances is relatively low
compared to the anomalous case, which should lead to a big reconstruction error.
Most reconstruction methods have employed GANs, VAEs and Diffusion Model
for the reconstruction task and each of them have advantages and pitfalls, being
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discusses in details in the following studies [29], [30], [31], [32]. This strategy has
been extended to feature reconstruction [33] [34] and knowledge distillation [35] [36],
under the hypothesis that a student network trained to mimic a teacher exposed
only to normal data will underperform on anomalies.

With the availability of large-scale pre-trained vision models, more recent works
have leveraged their rich representations by computing feature distances [37]
[38], though these methods often involve computationally expensive memorization
and matching steps. Another line of research revisits the supervised setting by
synthesizing anomalies through noise injection, image mixing [39], or generative
models [40] [41].

3.2 Foundational Models as Feature Extractor
Recent research in self-supervised learning introduced foundational models capable
of learning general-purpose visual representations from large-scale image datasets
without explicit manual annotations. In particular, DINO [42] (Self-Distillation with
No Labels) and its improved version DINOv2 [43] have demonstrated extraordinary
performance as feature extractors across various downstream tasks, including object
detection, segmentation, and 3D understanding. DINO leverages a self-distillation
framework using Vision Transformers (ViTs), where a student network is trained
to match the outputs of a momentum teacher on different image augmentations.
This approach allows DINO to learn semantically rich and spatially coherent
representations without labels. DINOv2 improves its predecessor by scaling up the
training data, model capacity, and training duration, resulting in more robust and
transferable features. It introduces improvements such as more diverse training
data, stronger regularization, and better optimization techniques. Both DINO and
DINOv2 have proven especially effective in scenarios where high-quality features
are required for tasks involving limited supervision or domain adaptation, making
them ideal as backbone feature extractors in complex pipelines, including 3D scene
understanding and anomaly detection.

3.3 Contrastive Learning for Anomaly Detection
In the context of visual representations, Contrastive Learning represents a learning
framework whose focus is to distinguish between similar (positive) or dissimilar
image pairs (negative), in order to obtain a discriminative visual representation of
input data. It is self-supervised learning paradigm, meaning that no labeled data
is required for training. Among the most popular frameworks there’s SIMCLR [44],
which exploits image augmentations of the same image (positives) against all the
other samples in the batch for learning (negatives). MoCo (Momentum Contrast)
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[45] maintains a dynamic memory bank of negatives and uses a momentum encoder
for stability while BYOL and DINO avoid explicit negatives by using asymmetric
networks to align positive pairs. Contrastive Learning has shown robust performance
in representation learning for downstream tasks like classification, detection, and
segmentation by improving consistency for intra-class samples while spreading out
outliers [46]. This benefits both one-class classifiers and clustering-based detectors.
In the anomaly detection setting, CL has been used widely for learning meaningful
representation in the embedding space [SPADE, CutPaste, DRAEM] for images,
patches or synthetically generated samples, since the main goal in these scenarios
is to pull all the positive samples together while pushing all the negatives apart.

Although CL has gained attention as a self-supervised framework, its supervised
version SupCon [47] has also shown promising results. SupCon builds upon the
same core idea but incorporates class label information during training. Instead
of treating only augmented views of the same image as positives, SupCon pulls
all examples of the same class closer in the embedding space while pushing apart
those from different classes explicitly.

3.4 3D Anomaly Detection
Thanks to the advances in 3D sensing technologies, many other data modalities
have been explored (like point clouds, depth maps and RGB-D images) in order to
represent real-world objects and scenes. This richer representations provide 3D-
aware information that is often missing from traditional 2D color images, making
them useful in scenarios where subtle or complex anomalies must be detected.

Recent research extends 2D methods to leverage additional structural information
[48] [49], focusing on improving detection through feature fusion and robust anomaly
simulation. Other techniques combining RGB and depth information are showing
interesting results [50] [51]. These hybrid data fusion techniques demonstrate
that multimodal approaches outperform RGB pure based methods on MVTec
3D-AD dataset [52], allowing for more precise anomaly localization by leveraging
complementary information from both modalities.

When we face settings with limited sensor data, diffusion-based reconstruc-
tion models like R3D-AD offer promising solutions [53]. By transforming data
distributions during the diffusion process to obscure input anomalies, these mod-
els achieve high performance on diverse datasets, including Real3D-AD [54] and
Anomaly-ShapeNet [55].

In our work, we focus on multi-view images of object-centric scenes, coming
from the ToysAD and PartsAD datasets [56]. We backproject the image features
for each view into a common 3D voxel grid reference, representing an entire scene,
where features are accumulated and then further analyzed for the Odd-One-Out
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task.

3.4.1 3D Object Detection

The 3D object detection task’s main goal is to localize and identify objects in the
real-world three-dimensional space, by providing information about their position,
size and orientation. Instead of working on images that live in the 2D plane, as
the totality of 2D detection algorithm do, 3D object detectors deal with depth and
spatial data from sensors like LiDAR, stereo cameras or RGB-D devices, in order
to build a richer representation of the environment. These type of data are really
important when dealing with scenarios that require in-depth spatial awareness,
such as in autonomous systems and robotics applications. For example, in self-
driving cars, these capabilities are essential for identifying pedestrians, vehicles
and obstacles, ensuring safe navigation. In a similar way, robotic systems rely on
3D object detection to interact with dynamic environments like manufacturing
production lines and warehouses. These examples highlight the importance of
detecting individual objects in 3D space, since it allows to perform a fine-grained
analysis based on each object’s spatial attributes, rather than analyzing the scene
(composed of many instances) directly as a whole. 3D object detectors can be
classified based on the data they operate on, like image-based, point-cloud based
and hybrid approaches [57]. Among these methods, recent multi-view image-
based models exploit multiple camera perspectives to predict 3D object locations
by learning 3D position embeddings directly, while aligning them to multi-view
features [58] [59].

Voxel-based methods instead, convert raw 3D point clouds into structured
voxel grids, allowing the use of 3D convolutional neural networks to extract spatial
features. VoxelNet [60] employs this approach by learning end-to-end from voxelized
point clouds, while other frameworks like PointPillars [61] and PV-RCNN [62]
improved computational efficiency and accuracy by combining voxel and point-based
features.

Hybrid methods that fuse multi-view image inputs with voxel or point cloud
representations are also emerging, aiming to combine the rich semantic information
from images with the precise spatial attributes from point clouds [63] [64]. Their
goal is to combine the strenghts resulting from both modalities and enhance object
representations.
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3.5 Multimodal Large Language Models for Vi-
sual Tasks

MultiModal Large Language Models (MM-LLMs) have made significant advance-
ments by enabling standard LLMs to handle multimodal (MM) inputs and outputs
through cost-effective training methods. These enhanced models keep the strong
reasoning and decision-making abilities of traditional LLMs, while also supporting a
wide variety of multimodal tasks [65]. Image-focused MM-LLMs, often called Large
Vision Language Models, typically include a vision encoder, a language encoder,
and a cross-modal alignment network [66]. MM-LLMs use LLMs as their core
“cognitive engine” bringing valuable features such as robust language generation,
the ability to transfer knowledge to new tasks without retraining, and in-context
learning (ICL) [65]. Early research in this area mainly targeted understanding
multimodal content and generating text, with tasks like image-text comprehension
seen in systems such as LLaVA [67], MiniGPT4 [68], and OpenFlamingo [69]. More
recently, MM-LLMs have been further developed to support outputs in specific
modalities, including tasks that generate both images and text, as demonstrated
by models like Emu [70], MiniGPT-5 [71] and Gemini Flash 2.0 [72] .
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Chapter 4

Methods

4.1 The Odd-One-Out existing architecture
The method we took inspiration from is the one presented in [56], a transformer-
based architecture designed for object-centric anomaly detection in 3D scenes.
Built on voxelized DINOv2 features, OddOneOut architecture encodes object-level
representations while leveraging scene-level context to identify anomalies relative
to their surroundings.
It considers a scene containing N instances of an object category. In particular, it
takes M multi-view images, along with their camera parameters {(It,Pt)}M

t=1 and
aims at learning a mapping from these multi-view input to object-centric anomaly
labels and their corresponding 3D bounding boxes

ψ : {(It,Pt)}M
t=1 → {(yn,bn)}N

n=1.

The entire architecture can be divided in four main components:

• The 3D feature volume construction module computes a 3D feature
volume with the multi-view images. They’re processed through a shared 2D
CNN-based encoder that outputs 2D feature maps Ft = E2D(It) ∈ Rd×h×w,
which are projected in voxel space through the camera parameters. The
projected features are accumulated inside a voxel grid and then averaged. The
final feature volume is then fed to a 3D CNN-based network in order to refine
the projected features

Fv = E3D
1
aggr

1
{Πproj(Ft,Pt)}M

t=1

22
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• The feature enhancemenet module is needed for reconstructing the
appearence and the geometry of the scene and is actually used only at training
time. It makes use of two-layered 1x1x1 convolution blocks αc and ασ, which
are employed for obtaining color and density volumes. Then, the pixel-wise
color and density maps are composed by integrating along a camera ray using
volume renderer R.
Additionally, in order to enrich the reconstructured features, a distillation
process, with DINOv2 as the teacher network, is exploited. A similar 1x1x1
convolution block β is employed in order to compute a neural feature field
starting from the initial 3D feature volume. These feature volumes are then
fed to the volume renderer (just like with color and density heads outputs) for
computing a view-specific render. The rendered view is then compared directly
with the teacher’s features. The image rendering and its corresponding loss
function for a single viewpoint Pt are shown below:

Lim
t = ∥It − Ît∥2 + ∥Itσ − Îtσ∥2, (3)

where [Ît, Îtσ] = R([Vc, Vσ], Pt), Ît and Îtσ are the rendered image and mask.

• The object-centric feature extraction module aims at localizing the
objects inside the scene in order to compare all the instances among each other.
In this case the density volume obtained in the feature enhancement block is
used for obtaining a coarse point-cloud through a pre-defined threshold. Then,
a DBSCAN algorithm is employed for distinguish among foreground objects
and producing the related bounding boxes. The predicted bounding boxes
are then brought all to the same 8x8x8 dimension thanks to RoI pooling, in
order to be comparable. This method specifically, does not need ground truth
bounding boxes.

• The Cross-instance matching module aims at computing local similarities
among instance volumes pairs (zn and zm). After retrieving the projected
feature volumes through β, instances are compared by means of voxel-wise
similarity and a topk operation takes only the most similar ones:

Cnm
k [i] = topk

è
β(zn[i])⊤β(zm[i])

é
The result of this operation is employed for performing a sparse-attention
based comparing between two volumes. Finally, the updated feature volume
is passed through 3D CNN blocks to downsample by a factor of 1/8, which
is finally reshaped into a vector and fed to a 2-layer MLP outputting the
final prediction label yn. A binary cross entropy loss is used for computing
classification loss.
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A schematic illustration of the above method is displayed in 4.1.

Figure 4.1: Illustration of the OddOneOut [56] framework.

In this work, we begin by analyzing the original method proposed in [56],
highlighting its main strengths and limitations through extensive experiments.
We tackle challenges related to the clusterability of object representations in
feature space and explore how pre-trained models like DINOv2 can enrich 3D
spatial features. Moreover, we investigate the role of contrastive learning in
enhancing the discriminative power of features within object classes. We also
propose a more memory-efficient embedding strategy for object representations
that keep competitive performance while significantly reducing memory usage. On
top of these considerations, we introduce a novel approach that leverages these
compact embeddings to compute a ’normality’ prototype for each scene and measure
deviations from it, in order to detect odd objects.
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4.2 MLLM Baseline
Recent advances in Multimodal Large Language Models (MLLMs) have demon-
strated remarkable reasoning capabilities. By leveraging textual knowledge, these
models significantly enrich visual understanding and enable a wide range of down-
stream tasks in a zero-shot setting (i.e. without task-specific training), including
anomaly detection [73] [74]. While MLLMs have proven effective in identifying
anomalies based on the global appearance of objects, they still exhibit limitations
in visual grounding [75]. Furthermore, their ability to reason about fine-grained
anomalous details is currently an open question [76], especially considering that
most existing benchmarks are restricted to single-object scenes observed from a
single viewpoint. To explore the performance of MLLMs on the odd-one-out task,
we present a tailored pipeline that leverages the Set-of-Mark (SoM) prompting
method [77]. This strategy supports spatial understanding by detecting the objects
in the scene and overlaying visual marks directly on the images, which are then
provided as input to the MLLM. Specifically, we use gemini-flash 2.0 [78] and feed
it the following prompt: Here is a list of images taken from multiple view-points of
the same scene, each object is annotated with an index and the bounding box, one
or more objects are different from the majority of all other objects, reply only with
a list of indices of the odd objects. The annotated images are concatenated to the
prompt by following [77] as shown in 4.2. The model outputs the annotated index
of the odd objects from which we can evaluate the prediction accuracy.

Figure 4.2: Illustration of the OddOneOut [56] framework.
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Chapter 5

Experiments and Results

5.1 Dataset

We adopt the same experimental setup of [56], considering three tracks from
two datasets containing objects with synthetically generated anomalies. Toys is
composed of 8K scenes with 3-6 objects from the 51 categories of the Toys4D
dataset [79] rendered in 20 views. The collection is divided into a training set
with 5K scenes from 39 categories and two disjoint test sets: one (seen) with 1K
scenes from the seen categories but with unseen object instances, and the other
(unseen) containing 2K scenes from the remaining 12 novel categories like shown in
5.1. Parts was defined from the ABC dataset [80] mostly containing mechanical
parts shapes. The collection contains 15K scenes, each consisting of 3-12 objects
rendered from 20 viewpoints, and is divided into train and test splits of respectively
12K and 3K scenes, with the latter including only unseen shapes.

Categories
Seen
dinosaur, fish, frog, monkey, light, lizard, orange, boat, dog, lion, pig, cookie,
panda, chicken, orange, ice, horse, car, airplane, cake, shark, donut, hat, cow,
apple, bowl, hamburger, octopus, giraffe, chess, bread, butterfly, cupcake,
bunny, elephant, fox, deer, bus, bottle, hammer, mug, key
Unseen
plate, robot, glass, sheep, shoe, train, banana, cup, penguin

Table 5.1: Toys ’seen’ and ’unseen’ object categories
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Figure 5.1: Illustration of the OddOneOut [56] framework.

Figure 5.2: Illustration of the OddOneOut [56] framework.
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5.2 Metrics
As in [56], we evaluate the anomaly prediction performance via two metrics. The
Area Under the ROC curve (AUC) measures the ability of a model to discriminate
odd from normal objects regardless of the chosen confidence threshold. The
Accuracy considers an operating scenario with a threshold equal to 0.5. In our
analysis we feed the models with the ground truth location of the objects and focus
only on the odd identification performance. This is justified by observations of the
previous work [56] about the negligibility of the localization error due to the relative
simplicity of the setting. Note that for the zero-shot MLLM baseline we collect the
Accuracy, but we do not have access to the confidence score so we omit the AUC.
Moreover, since the concept of majority heavily depends on the number and type
of objects inside the scene, we decided to introduce also a clustering metric when
analyzing the approach with clustering algorithm, the adjusted random score, to
evaluate how good the model is at grouping objects of the same type regardless of
the class they belong to. The Adjusted Rand Score (ARS) measures the similarity
between two clusterings by considering all pairs of samples and counting those that
are assigned consistently in both. This is justified by the fact that a clustering
algorithm could correctly group objects of the same type, but label them incorrectly
due to the dynamic definition of anomaly.

5.3 Implementation details
A ResNet50-FPN [81] is employed as the 2D image encoder and a four-scale encoder-
decoder-based 3D CNN [82] as the 3D backbone. For input, we use M=5 views, each
with a resolution of 256× 256, though our model can accept a different M during
inference. The 3D volume Fv contains 96× 96× 16 voxels with a voxel size of 4cm.
Regarding rendering, 128 points per ray are sampled for rendering, and the rendered
features have a spatial dimension of 32× 32 (hf × wf ). The threshold applied to
the density volume Vσ is set to be 0.2 and the DBScan algorithm is run with its
default parameters. Moreover, the object crops are normalized to 32× 8× 8× 8
through bilinear interpoation. Three sparse voxel attention blocks are employed,
and each applies 8-headed attention. The model is trained in two different stages.
The first one focuses on the training of the 3D feature volume construction and
the feature enhancement module, in order to let the model learn how to represent
the 3D scene starting from multi-view images and camera parameters (50 epochs).
Once the model manages to accomplish this task, these modules are further trained
along with the matching module, which is in charge of identifying odd objects
from their 3D voxel representation (other 50 epochs). The batch size is 4, and the
Adam optimizer is used with a fixed learning rate 2 × 10−5. Moreover in the first
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experiments, only the unseen test set has been tested regarding Toys dataset, while
the seen test set has been employed in the last section of experiments (along with
the unseen test set).

5.4 Study on clustering behaviour
A key question we addressed regarding the OddOneOut architecture was the ac-
tual contribution of the matching module in identifying anomalous objects. After
training, the model is expected to produce 3D object representations that are in-
formative enough to distinguish outliers from the dominant object category within
a scene. To investigate this, we applied various clustering algorithms to the objects
voxel representations, to evaluate whether the features produced at this stage were
sufficient to separate normal and anomalous objects. This analysis allowed us
to assess whether the matching module plays a critical role in odd object detec-
tion, or if the initial feature representations alone are already discriminative enough.

The followings are the clustering algorithms that we chose to use:

• KMEAN: it is a centroid-based clustering algorithm that partitions data
into k clusters by minimizing the within-cluster variance. It iteratively assigns
points to the nearest cluster center and updates the centers until convergence.

• Spectral clustering: it leverages the eigenvalues of a similarity matrix de-
rived from the data to perform dimensionality reduction before applying a
standard clustering algorithm, such as k-means. By projecting the data onto
the subspace spanned by the top eigenvectors, it captures the most significant
structural relationships in the similarity graph, enabling better separation of
complex or non-linearly separable clusters.

• DBSCAN: DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [83] is a density-based algorithm that groups together points closely
packed in space and marks as outliers those that lie in low-density regions. It
does not require specifying the number of clusters and is robust to noise.

• Anomaly score based clustering: computes a score for each object inside
a scene by averanging the distances with all the other objects. In this case
the threshold is scene-dependent since it is the mean of each object’s average
distance from all the others inside a scene.
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• Graph cut: we cast our clustering problem to a problem solvable by using
graphs. We first build our graph representing the scene (each object inside
the scene is a node in the graph) and then try to divide it into two sub-graphs
containing hopefully the anomalous elements.

• N-cut: This function performs spectral clustering on a set of features using the
second eigenvector of the normalized Laplacian matrix (Fiedler vector) to par-
tition the data into two groups (that represent anomalous and normal objects).

The main information that these kind of algorithms need is how to compute
distances between instances: the more the distance in feature space, the more the
objects are different. We test them with some basic and custom metrics:

• Cosine similarity: Measures the angular difference between two vectors,
capturing their orientation regardless of magnitude.

• Euclidean distance: Computes the straight-line distance between two points
in the feature space, reflecting their absolute difference.

• Max dissimilarity: We use the maximum euclidean distance between voxels
of two objects representations.

• Min Max dissimilairty: We take inspiration from [4] and compute the
euclidean distance for each pair of voxels between two objects representations.
Then we compute the minimum distance for each voxel w.r.t. all the other
ones belonging to the other object and finally take the maximum value.

• Optimal transport: The maximum distance among two objects representa-
tions is computed by solving the optimal transport problem over the voxels
features (we want to discover "how far" is the distribution of the first object
voxels features w.r.t. the second one).

5.4.1 Discussion and Results
The clustering results suggest that the object voxel features do not contain relevant
discriminative information and are not sufficient for reliably identifying anomalies
on their own. Performance varies significantly across both methods and datasets.
On Toys Unseen, N-Cut and Graph Cut showed slightly better results, but overall
scores remained modest, indicating that object features alone don’t consistently
separate normal and anomalous objects 5.2.

Employing a custom distance metric did not manage to get higher performance
as shown in 5.3, 5.4, 5.5 and posed other challenges. The fact that we do not
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Table 5.2: Performance of the clustering algorithms over objects representations
obtained through ResNet50 feature projection. In this case we employ basic distance
metrics such as cosine similarity and euclidean distance

Toys Unseen Parts
Clustering Distance AUC ACC ARS/ AUC ACC ARS/
approach metric std. dev. std. dev.

Anomaly score cosine similarity 54.58 55.68 0.0395/0.1418 62.49 65.21 0.1092/0.2277
KMeans euclidean 51.15 57.29 0.0223/0.1500 59.41 66.61 0.1258/0.2783
Spectral Clustering euclidean 55.56 60.44 0.0706/0.1944 63.70 68.82 0.1882/0.3041
DBSCAN euclidean 57.13 53.38 0.0060/0.1224 65.42 79.14 0.2556/0.3098
Graph-Cut cosine similarity 56.16 64.05 0.0770/0.2188 59.85 75.15 0.1795/0.3345
N-Cut cosine similarity 62.23 61.44 0.0872/0.1913 54.52 53.87 0.0448/0.1684

know the anomaly distribution a priori means we cannot define a fixed distance
for determining how much an object differs from another, causing density-based
algorithms like DBSCAN to suffer because their performance heavily depends on
parameters such as ϵ (epsilon), which may not adapt well to varying densities or
unknown anomaly patterns in the data (ϵ is the maximum radius within which
points are considered neighbors and thus potentially part of the same cluster).
Moreover, methods like optimal transport are often too time-consuming due to
their high computational complexity, making them impractical for large or real-time
datasets.

Table 5.3: Performance of the clustering algorithms when optimal transport is
chosen as distance metric

Toys Unseen

Clustering AUC ACC ARS/
Approach std. dev.

Anomaly score 50.20 50.68 0.0138/0.1144
DBSCAN 50.00 69.28 0.00/0.00
Graph-Cut 52.42 60.88 0.0327/0.1585

N-Cut 59.09 59.32 0.0533/0.1671

Overall, these findings confirm that the matching module adds meaningful value.
Without it, object features only partially capture what makes an object "odd" in a
scene-specific context. Clustering gives a useful baseline, but it’s not robust enough
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Table 5.4: Performance of the clustering algorithms when ’max dissimilarity’ is
chosen as distance metric

Toys Unseen Parts
Clustering AUC ACC ARS/ AUC ACC ARS/
approach std. dev. std. dev.

Anomaly score 42.57 43.13 0.0264/0.1201 32.49 33.78 0.1413/0.2492
DBSCAN 50.00 31.46 0.00/0.00 50.00 23.44 0.00/0.00
Graph-Cut 44.90 54.47 -0.0151/0.1208 44.31 64.31 -0.0771/0.1298

N-Cut 54.99 55.76 0.0194/0.1427 50.56 50.67 -0.0069/0.1082

Table 5.5: Performance of the clustering algorithms when ’min max dissimilarity’
is chosen as distance metric

Toys Unseen Parts
Clustering AUC ACC ARS/ AUC ACC ARS/
approach std. dev. std. dev.

Anomaly score 39.97 40.28 0.0664/0.2804 32.07 31.97 0.2518/0.4768
DBSCAN 50.00 31.09 0.00/0.00 53.27 52.97 0.0845/0.3823
Graph-Cut 47.80 56.70 0.0030/0.2501 46.70 65.88 -0.1006/0.3799

N-Cut 58.56 59.32 0.0764/0.2957 - - -

to replace learned context-aware comparisons.

5.5 DINO-centric architecture
The feature enhancement block in the OddOneOut architecture leverages the rich
semantic capabilities of DINOv2 features to improve the 2D feature maps generated
by an existing encoder like ResNet50 through a distillation process. However,
this distillation is computationally expensive due to the 3D nature of the data:
to mimic DINOv2 features from multiple viewpoints, a renderer must operate
on DINOv2 feature volumes predicted by a 1×1×1 convolution block. The high
dimensionality of these features (384-dimensional) does not scale efficiently with
the voxel grid resolution used to represent the scene, and significant training time
is consumed generating renders required for comparison with the DINOv2 ground
truth feature maps. This complexity arises because volume rendering is needed to
reconstruct features from different perspectives, which is costly both in memory
and computation, especially for high-resolution 3D grids. With the goal of solving
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these challenges, we decided to replace the ResNet50 image encoder employed in the
original architecture directly with DINOv2, which inherently provides richer and
more robust semantic features. In order not to project the entire DINOv2 features,
we employ 1x1x1 convolution to reduce the channels dimensionality (from 384 to
32) and at the same time upscaling the 2D feature maps with bilinear interpolation
so that it matches the ones coming out from ResNet50.

This substitution eliminates the need for costly volume rendering of high-
dimensional feature volumes from multiple viewpoints, significantly reducing com-
putational overhead and training time. Leveraging DINOv2 also enhances feature
generalization across different perspectives, improving the overall efficiency and
effectiveness of the feature enhancement block.

Moreover, with the image encoder now replaced by DINOv2, we re-evaluate
whether the projected DINOv2 features can still be directly leveraged by clustering
algorithms as in Section 5.4. Since DINOv2 embeddings are semantically richer, we
hypothesize that they may enable better separation between normal and anomalous
objects even without the matching module. This also allows us to reassess the
necessity of additional context-aware mechanisms by isolating the contribution of
the improved encoder alone.

5.5.1 Discussion and Results
We used DINOv2 as image encoder in three different setups:

• Dinov2 is simply substituted inside the original architecture and both training
stages (one for the reconstruction and the other for the matching module part)
are performed, therefore including also distillation.

• Dinov2 is employed,both training stages are performed but without distillation.

• Dinov2 is employed and only the second training stage is actually performed,
without needing to train the reconstruction module and exploiting additional
distillation.

In our analysis we feed the models with the ground truth location of the
objects and focus only on the odd identification performance. This is justified by
observations of the previous work [56] about the negligibility of the localization
error due to relative simplicity of the setting.

By looking at the results in 5.6, we notice that exploiting DINOv2 features
directly without distillation process and geometry reconstruction, yields better
performance in identifying anomalous objects inside a scene, both for Toys and
Parts datasets. For this reason, all the other experiments will follow this particular
setup (therefore only the classification loss is retained).
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Table 5.6: Performance results when leveraging different parts of the original [56]
architecture

Toys Unseen

Feature Encoder AUC ACC

Dinov2 + Distil-Dino-Vox 91.47 85.66
Dinov2 + No Distill 89.41 84.76

Dinov2 + No Recon + No Distill 92.63 84.88

However, the objects feature volumes alone are still insufficient for determining
the anomaliness of an object with standard clustering algorithms as shown in 5.7.

Table 5.7: DINOv2 features clustering capabilities

Toys Unseen

Odd Distance AUC ACC ARS/
Detector Metric std. dev.

Anomaly score cosine similarity 49.72 62.61 -0.0010/0.1364
KMeans euclidean 36.98 45.44 -0.0337/0.0600

Spectral Clustering euclidean 47.15 52.97 -0.0207/0.0830
DBSCAN euclidean 50.57 34.09 -0.0059/0.0571
Graph-Cut cosine similarity 51.18 59.82 0.0084/0.1350

N-Cut cosine similarity 59.15 58.38 0.0383/0.1384

5.6 Contrastive Learning in Dino-centric archi-
tecture

Simply projecting multi-view feature maps on a voxel grid has shown in the previous
experiments about clustering algorithms, to be not enough for encoding discrimi-
native information. Such behaviour happens due to the high dimensional nature
of voxel data, since modeling such feature distribution is not trivial. Therefore,
our main goal is to enhance this kind of representation, by separating as much
as we can the features belonging to normal instances from the anomalous ones.
Supervised contrastive loss can be a solution in this case by putting together normal
objects in feature space, while pushing apart the anomalies. In particular, we do
not mind about where the anomalies are scattered in feature space and clustering
them, but rather to only cluster normal objects. To this end, we employ a InfoNCE
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loss [84] [85], which enforces the embeddings of similar (positive) samples to be
close and those of different (negative) samples to be distant. A query embedding,
which in our case is a normal object representation, is compared with one positive
key and with one or more negative keys. In our setting we consider the objects
embeddings, within a scene, that belong to the normal class as positive keys while
the one belonging to the anomalous class as negative keys.

LInfoNCE = − log exp(sim(q,k+)/τ)
exp(sim(q,k+)/τ) + qK

j=1 exp(sim(q,kj)/τ)

• q: Query embedding (e.g., from an anchor sample)

• k+: Positive key

• kj: Negative key

• sim(·, ·): Similarity function, typically cosine similarity

• τ : Temperature scaling factor

• K: Number of negative samples

In addition, two possible ways can be used for handling negative pairs:

• If paired, then each query sample is paired with a number of negative keys.
It is comparable to a triplet loss, but with multiple negatives per sample.

• If unpaired, then the set of negative keys are all unrelated to any positive
key.

We choose in our particular framework to use unpaired mode, due to the scarcity
of negative samples inside each scene (the positive samples represent the majority
inside each scene).

Unfortunately, due to the high dimensional features of individual objects encoded
through voxel grids, contrastive loss is not directly usable on them. For this reason,
we decide to take the final objects compact representation before being projected
into logit space for classification. In this way, operating on much more compact
representation is more doable and can let us employ our contrastive loss approach.
The features obtained at this point of the architecture are further refined through
an MLP (contrastive head) and then fed to the loss computation.
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5.6.1 Discussion and Results

Despite the theoretical advantages of supervised contrastive learning, our empirical
results did not show improvement over the previous baseline without contrastive
loss, as shown in 5.8. Only a slight improvement on Parts dataset has been notices,
but it is not significant.

Table 5.8: Performance results when using DINOv2 as feature encoder along with
contrastive loss on the compact object features before classification

Toys Unseen Parts
Note AUC ACC AUC ACC

Classification + Contrastive Learning 92.93 85.50 94.17 91.76
Classification Loss Only 90.40 84.17 94.27 90.05

We hypothesize several possible reasons for this outcome:

• Lack of negative samples: Each scene typically contains only one or very
few anomalous instances, making the contrastive loss underconstrained in
terms of meaningful negative sampling. Contrastive methods typically rely on
rich negative sets to learn robust representations. In supervised contrastive
setups, the imbalance between the number of normal and anomalous samples
may cause the model to underestimate minority (anomalous) samples or bias
the embedding space toward normal clusters, reducing sensitivity to true
anomalies.

• Dynamic definition of anomaly: Since anomaly is defined in a scene-
dependent way (i.e., based on context rather than absolute features), enforcing
strict separation in feature space may not generalize well. The boundary
between normal and anomalous shifts across scenes, making a single discrimi-
native space hard to learn.

• Which feature to select: Choosing the right level in the network to apply
contrastive loss is critical. Although we use compact object embeddings, it
is possible that this representation is not sufficiently disentangled to benefit
from contrastive objectives, or even too compressed to preserve meaningful
differences.
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Overall, while supervised contrastive learning remains a promising direction, our
findings suggest that it requires careful adaptation when applied in scene-dependent
anomaly detection with few negatives.

5.7 Contrastive Learning in more compact DINO-
centric architecture

One of the primary drawbacks of employing sparse attention mechanisms, such
as the approach described in [56], is the significant computational overhead they
introduce. Sparse attention requires operations over high-dimensional data, which
restricts the feasible batch size and substantially increases training time. This be-
comes particularly problematic when scaling to large datasets or deploying models
in resource-constrained environments.

Additionally, high-dimensional representations can inhibit the application of
advanced contrastive learning techniques, which often benefit from more compact
and discriminative feature embeddings. Compact embeddings not only facilitate
more efficient storage and faster computation but also enhance the ability to lever-
age a broader range of contrastive objectives, ultimately improving representation
quality and downstream performance.

5.7.1 Context Match Head
To overcome these challenges, our objective is to develop a compact, one-dimensional
representation that captures both spatial and semantic information. In our case,
we squeeze the spatial dimensions of the objects voxel representations through
a mean operation and project them into a 256 dimensional space with a linear
layer. Such a representation enables efficient comparison between object embeddings
without relying on voxel-based data, which can be cumbersome and computationally
expensive. By embedding rich object information into a streamlined vector, we
could therefore use more scalable and flexible learning frameworks.

To this end, we replace the original matching module, previously based on
a sparse attention mechanism, with a Transformer Encoder that uses 3 layered
multi-head attention with 8 different 32-dimensional heads.

The Transformer treats the objects 256-dimensional feature vectors as a sequence
of tokens, allowing it to model complex relationships between features efficiently.
Transformers excel at capturing contextual dependencies through their self-attention
mechanism. Self-attention enables the model to weight the importance of each token
relative to every other token in the sequence, effectively allowing it to aggregate
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information from the entire input when forming each output representation. This
property is crucial for context awareness, as it ensures that each feature vector is
informed by the global structure and semantics present in the data [86].

5.7.2 New techniques for enhancing Contrastive Learning
Now that we have a more compact and suitable features to operate contrastive
learning on, we can exploit further techniques that can enhance the discriminative
power of object features:

• Synthetic hard negative mining: in contrastive learning, hard negative
samples are critical for enhancing model performance. They are challenging
samples that are similar to positive samples, but different enough to guide the
model into learning distinctive features. They also prevent the model to easily
minimize a loss due to the abundance of ’trivial’ negative samples (the ones
that are already distant in feature space) [87].
We follow the approach mentioned in [87], where six methods are presented in
order to synthetically generate hard negative samples hi directly in feature
space, by using query (positive) q and negative n samples:

– Interpolated Negatives are generated by interpolating between the
query feature vector q and negative n samples:

h1
k = αkq + (1− αk)ni, αk ∼ U(0, αmax)

where αmax is typically set to 0.5 to ensure the synthetic negative lie closer
to the hard negative.

– Extrapolated Negatives: Extrapolation generates a synthetic embed-
ding that lies beyond the query embedding in the direction of the hardest
negative.

hextra = n + β(n− q), β > 0

– Noise-Injected Negatives: Gaussian noise

ϵ ∼ N (0, σ2I)

is added to a hard negative:

hnoise = n + ϵ

– Perturbed Negatives: Hard negatives are perturbed along the gradient
of similarity loss

∇hL
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to increase difficulty:

hperturb = n + η
∇nL
∥∇nL∥

, η > 0

– Adversarial Negatives: Adversarial perturbations maximize similarity
to the query by solving:

hadv = arg max
n

sim(q,n) s.t. ∥n− h∥ ≤ δ

where δ constrains perturbation magnitude.

• Hard positive mining: Hard positives are generated to increase view variance
within positive pairs, creating more challenging examples that help the model
learn invariant and discriminative features [88]. By synthesizing positives
that lie near the boundary of the positive class distribution, the model is
better equipped to distinguish subtle differences and improve robustness. To
improve the robustness of learned representations, we generate hard positives
by extrapolating between a positive feature vector pi and another randomly
selected positive vector pj from the same scene, where i /= j. The hard positive
is computed as:

phard
i = σpi + (1− σ)pj,

with σ = 1.5 controlling the degree of extrapolation. This operation pushes
the new sample beyond the original feature pi, creating a more challenging
positive example. The resulting vector is then normalized to unit length:

phard
i ← phard

i

∥phard
i ∥2

.

• Memory banks: instead of synthetically generate new samples, we employ
a batch-wise memory bank for hard negatives. Practically, we consider as
negative samples also all the other ones in the scenes belonging to the cur-
rent batch of data. This can be done since the newly introduced Context
Match Head can handle bigger batches thanks to the more compact object
representations.
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5.7.3 Discussion and Results

Our results reveal that the Context Match Head, when trained with contrastive
learning and without any tricks, achieves competitive performance with a much
simpler setting w.r.t. the one employed in the original matching module as shown in
5.9. This suggests that even when reducing the input to a compact 256-dimensional
representation, the model retains enough discriminative power to separate normal
from anomalous instances effectively.

Table 5.9: Performance evaluation of Context Match Module, when different
techniques for enhancing contrastive learning are employed. The basic contrastive
learning setup is the one that performs the best.

Toys Unseen
Note AUC ACC

Context Match + basic CL 86.22 79.47
Context Match + Synth. Hard Neg. (UNPAIRED) 77.62 56.93

Context Match + Synth. Hard Neg. (PAIRED) 52.57 34.49
Context Match + Mem. Bank 86.41 79.25

Context Match + Mem. Bank + Hard Pos. 87.42 80.13

Injecting synthetic hard negatives actually degraded performance in our case. We
hypothesize this is due to the difficulty of generating meaningful and semantically
consistent anomalies in such a compressed latent space. In 256-dimensional space,
perturbation can easily produce features that are either too unrealistic or fall
outside the true distribution of plausible anomalies, leading to confused gradients
and poor generalization.

Moreover, using memory banks instead does not give better results than the
classic contrastive learning approach.

All this considerations highlight the fact that contrastive learning struggles
to capture the dynamic nature of anomaly boundaries. In complex scenes where
what is considered "normal" or "anomalous" can shift depending on context, fixed
negative sampling or static memory banks fail to adapt. The assumption that a
single global boundary can separate all anomalies from normal instances does not
hold in such scenarios, especially in compact feature spaces, where subtle changes
can carry significant semantic weight.

This underscores the need for more adaptive mechanisms that can reshape
the decision boundary based on scene-level or object-level context. Without such
dynamic modeling, contrastive learning may lead to over-simplified representations.
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5.8 Conditioning objects embeddings on external
tokens

Building on top of the Context Match Head, we want to enhance objects em-
beddings with more context-aware information. Since exploiting only the object
embeddings inside the transformer encoder does not manage to give enough contex-
tual information, we decide to inject inside the token sequence an additional token
that represents an external conditioning signal. This conditioning signal should
embed the concept of normalcy inside the scene and can be obtained in many ways.
The self-attention mechanism is well suited for this kind of scenarios, as it allows
the model to dynamically attend to the conditioning token and modulate object
representations based on the broader scene context, effectively guiding the model
toward more informed and adaptive anomaly decisions.

5.8.1 Conditioning on Dinov2 CLS token
The CLS token in Vision Transformers naturally absorbs domain-specific infor-
mation during source-domain training, acting as a compact representation of the
domain characteristics embedded in the data. This phenomenon occurs because
the CLS token captures the low-frequency components of images, which correspond
to domain features in the Fourier frequency space [89].

This makes the DINOv2 CLS token suitable for describing the context of a scene
and therefore can be a valuable conditioning signal for enhancing scene-specific
awareness. Since for each view of the scene we have a CLS feature vector, we
average them in order to have a global prototype that represents the overall scene.
Since the CLS token is 384-dimensional feature vector, we project it to the tokens
256-dimensional space.

We condition the input tokens (objects) by simply adding the averaged CLS
token at the beginning of the sequence. The conditioning token is then discarded
after the Context Match Head and only the objects embeddings are retained.

5.8.2 Learning normalcy via an external learnable token
Instead of enhancing contextual awareness by injecting an external token that
embeds scene-level semantics, we propose a different approach: introducing a
learnable token that represents a "normalcy prototype" of the scene. Rather than
conditioning object embeddings on a predefined notion of normality, we allow this
token to absorb and summarize the dominant characteristics of the scene directly
from the object embeddings through the self-attention mechanism.

At the end of the Context Match module, we discard the individual object

33



Experiments and Results

embeddings and retain only this learned token, which serves as a compact centroid-
like representation of normalcy for the given scene. This token can then be used
as a reference point to compare with other object embeddings, enabling anomaly
detection based on deviation from the learned scene prototype.

Residual Anomaly Module

We can boost the identification of scene-specific anomalies by guiding the model to
focus on how much an object deviates from the average normality. This deviation
can be encoded into discriminative features via a residual anomaly module. We
propose to devise it by adding to the Context Match module a 1-layer transformer
encoder that takes as input the objects’ representations O together with a learnable
token t0 ∈ Rd. The latter attends to all object embeddings, and the corresponding
output z0 ∈ Rq is the only token retained for further processing. Specifically, it
acts as a proxy for the scene-specific normality prototype and is supervised through
a mean squared error loss

Lnormality = ∥z̄ − z0∥2
2 , (5.1)

where z̄ = 1
|{i|yi=0}|

q
i:yi=0 zi is the average embedding of the ground-truth normal

objects. Moreover, the residual anomaly module refines each object embedding
via a projection head f(zi) (composed of linear layer, LayerNorm, and ReLU) to
then calculate the difference between the obtained object representations and the
learned centroid ri = f(zi)− z0.

Finally, a linear layer elaborates on ri to produce the anomaly score, representing
the probability that a given input is anomalous. Thus, when the residual anomaly
head is active, the network is trained by minimizing LBCE +Lnormality. An overview
of the architecture is displayed in 5.3

5.8.3 Discussion and Results
The conditioning approach generally outperformed the contrastive learning-based
method. While the CLS token achieved competitive results, the Residual Anomaly
Module yielded the best performance, particularly on the Parts dataset 5.10. This
improvement may be attributed to the nature of the CLS token, which tends to
capture coarse-grained scene-level context and so might not align well with the
fine-grained representations required for distinguishing individual objects.

We show a breakdown of the Accuracy of the Residual Anomaly Module across
different anomaly types in Fig. 5.4 (a), together with success and failure qualitative
results in Fig. 5.5. We can see from the breakdown that the Residual Anomaly
Module is particularly good at detecting material issues, bumps, and fractures that
usually consist of darker regions of the object, while it struggles with 3D specific
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Figure 5.3: Schematic representation of our approach. It takes as input M views
of the scene, which are processed using the DINOv2 encoder. The resulting features
are projected onto a voxel grid and associated with each of the N = 3 objects. A
subsequent pooling step yields per-object representations. These are further refined
by the context and residual anomaly heads, which encode both object-to-object
similarity and the relative deviations of each object from the scene-specific average
normalcy.Table 5.10: Results using the Context Match Head with the conditioning approach.
Residual Anomaly Head reaches the best performance, in particular on Toys dataset

Toys Seen Toys Unseen Parts
Conditioning SEEN SEEN ACC UNSEEN UNSEEN AUC ACC

type AUC ACC AUC ACC

Residual Anomaly 89.49 84.86 85.57 81.43 89.72 88.81
CLS token 88.10 83.49 84.33 80.95 87.53 88.64

anomalies like missing parts, translations, and deformations that require a more
global 3D reasoning.

Furthermore, the right part of Fig. 5.4 shows the AUC of the model when
varying the number of input views during testing (b) and the performance when
changing the object count (c). Both results are obtained on the Parts Unseen
dataset and highlight the advantage provided by a growing amount of images as
well as the relative robustness across scenes becoming progressively more difficult
with a range of 4% point variation around the main result (Accuracy 88.81 in Table
5.11).
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Figure 5.4: We report (a) accuracy across different anomaly types and normalcy
data on Toys Unseen and Parts Unseen; AUC on Parts Unseen when changing (b)
the number of views at inference time and (c) the number of objects in the scene.

Table 5.11: Main results for the three benchmark tracks. Ours presents compa-
rable performance to that of the leading competitor (OOO) on Toys and largely
outperforms it on the challenging Parts dataset.

Toys Seen Toys Unseen Parts
Model AUC ACC AUC ACC AUC ACC

ImVoxelNet [90] 89.49 84.86 85.57 81.43 89.72 88.81
DETR3D [59] 88.10 83.49 84.33 80.95 87.53 88.64

OOO [56] 91.78 83.21 89.15 81.57 86.12 79.68
MLLM baseline - 52.23 - 53.35 - 60.73

Residual Anomaly Module 89.49 84.86 85.57 81.43 89.72 88.81

Table 5.12: Ablation results across the three benchmark tracks for various versions
of our model’s head.

Toys Seen Toys Unseen Parts Memory Inf. time
Our Head AUC ACC AUC ACC AUC ACC (GB) (ms)

Sparse Voxel Attn. 86.11 78.79 85.48 77.32 86.32 84.06 1.23 337
Context 89.18 85.42 85.09 81.27 89.14 88.65 0.36 271

Context + Residual 89.49 84.86 85.57 81.43 89.72 88.81 0.54 286

In Table 5.12 we compare different versions of our model, also ablating the
Residual Anomaly Head. From the obtained results we can conclude that the sparse
voxel attention performs worse than the other versions on average. Moreover, it con-
sumes significantly more memory and is considerably slower. Adding the Residual
Anomaly Module slightly boosts the performance with a minimal change in memory
and inference time. The sparse version of the model also uses significantly more
parameters (72M vs. 48M) and requires much longer training time, lasting about 6h
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Figure 5.5: Qualitative results of our approach on Toys Unseen and Parts Unseen.
We show three views for each scene. The green boxes indicate normal objects while
the red ones indicate anomalous objects.

on Toys and 22h on Parts (our models take around 2.5h on Toys and 5.5h on Parts).

5.9 Qualitative Analysis

The following represents

5.10 MLLM Baseline

The MLLM baseline falls short on the Toys tracks, and on Parts it gets accuracy
results close to those of the detection methods ImVoxelsNet and DETR3D as
shown in 5.11. Overall, MLLM shows a bias towards normal data that might have
been part of its large scale pre-training and, similarly to the detection methods, it
recognizes large cracks and fractures but struggles when intra-group comparisons
over multiple views are necessary. These limitations align with what was discussed
in [76] and call for new tailored modules to guide generalist models when dealing
with tasks requiring multi-view consistency.
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Figure 5.6: Incorrect predictions on Parts dataset

38



Experiments and Results

Figure 5.7: Good predictions on Parts dataset
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Figure 5.8: Incorrect predictions on Toys

5.11 3D Object Detection
Alongside the 3D detection method proposed in [56], we explored an alternative
pipeline that operates directly on multi-view images. Our approach leverages40
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Figure 5.9: Good predictions on Toys dataset

Grounding DINO [91], a foundational model for open-set object detection, to
predict 2D bounding boxes in each view. However, localizing objects in individual
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views is not sufficient—we must also establish correspondence across views to
recover 3D localization. Specifically, to compute 3D bounding boxes by projecting
detections into a voxel grid, we need consistent detections for each object across all
views.

To address this, we employ SAM2 [92], a model effective at tracking and
segmenting objects across video frames given initial guidance. By treating the
multi-view images as frames of a video, we use SAM2 to propagate the initial
detection across views, enabling consistent object segmentation. These multi-view
masks are then backprojected into a voxel grid representing the scene, from which
we estimate the 3D bounding boxes.

Unfortunately, this method faces some important limitations:

• Grounding DINO may fail to detect certain object categories or produce
imprecise boxes.

• Occlusions across views can hinder SAM2’s ability to track objects consistently.

As a result, early detection errors from Grounding DINO propagate through
the pipeline, leading to poor final 3D IoU scores. While promising in concept, this
method remains highly sensitive to its initial detection quality.
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Chapter 6

Conclusion

6.1 Conclusions

In this work we focused on the odd-one-out anomaly detection task that poses
several challenges by moving anomaly detection closer to real world conditions.
It involves multi-object scenes with scene-specific anomaly criteria that can only
be inferred by cross-instance comparisons. This problem calls for models able to
manage spatial reasoning to elaborate on multiple scene views, along with relational
reasoning to interpret the context and generalize over different object categories and
layouts. Considering the relevance of the task for industrial applications, efficiency
is also a key requirement. By focusing on this aspect, we presented a model that,
despite the significantly low capacity (number of parameters) and memory needs,
gets competitive performance compared to the state of the art. Several in-depth
analyses confirmed the effectiveness of the adopted architectural choices as well as
the overall model’s robustness.

We explored different techniques for enhancing feature discriminativeness in
contrastive learning, but the task revealed really challenging especially due to the
non fixed decision boundary that exist between normal and anomalous objects.

To test the zero-shot effectiveness of Multimodal Large Language Models on
the odd-one-out task, we also introduced a baseline that leverages the Set-of-Mark
prompting method to support visual grounding. The low experimental results
revealed the limitations of this approach, signaling the need for new solutions to
leverage the extensive internal knowledge of generalist models when performing
fine-grained comparisons in complex multi-view settings.

We believe that future solutions for the odd-one-out task should continue to
build on the capabilities of pre-trained foundation models, with efficiency remaining
a key objective. This would enable the transition from anomaly detection to full
3D anomaly localization, while allowing models to articulate the rationale behind
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the predictions through natural language. Furthermore, the task could be extended
to encompass logical and functional aspects, bridging perception and robotics, and
evolving into a true intelligence test for autonomous agents.

The work developed around the final Residual Anomaly architecture has been
accepted to an italian computer vision conference, underscoring its scientific contri-
bution and practical relevance: Silvio Chito, Paolo Rabino, Tatiana Tommasi
Efficient Odd-One-Out Anomaly Detection» accepted at ICIAP 2025 -
the International Conference on Image Analysis and Processing

6.2 Future Directions
One promising path for future research lies in leveraging vision-language models
(VLMs) to solve the odd-one-out task. VLMs, with their strong capability to align
visual content with semantic concepts, offer a great fit for identifying objects that
deviate from a given scene’s context. This direction also connects closely with
recent advances in 3D object detection and identification using VLMs. Extending
these methods to support contextual anomaly detection, where the anomaly is
defined not by absolute categories but by deviation from the majority in a scene,
could unlock more general and scalable anomaly detection pipelines.
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