POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

V4 ~0 W
P \m?; /Aj‘
yida_ oV Politecnico
T e & di Torino
\\\ 1859 ‘,j"

h XN w2 e’

Master’s Degree Thesis

Optimizing peer-to-peer multi-cluster
communications for Liqo-based
multi-cloud deployments

Supervisors Candidate
Prof. Fulvio RISSO Santo CALDERONE
Dott. Davide MIOLA

July 2025

Summary

The growing complexity of cloud-native infrastructure, particularly in hybrid and
multi-cloud contexts, has led to the widespread adoption of Kubernetes as the
standard platform for orchestrating containerized workloads. While Kubernetes
offers robust mechanisms for managing resources within a single cluster, it lacks
native support for seamless multi-cluster deployments. To bridge this gap, the
open-source Liqo framework enables dynamic federation of Kubernetes clusters,
allowing workload offloading, resource sharing, and secure cross-cluster networking.
Despite these capabilities, Liqo’s default networking model remains consumer-
centric: all traffic between provider clusters must be routed through the consumer,
introducing unnecessary latency, limiting effective bandwidth between providers,
and creating a potential single point of failure. This architecture limits the scal-
ability and resilience of Liqo-based infrastructures in real-world scenarios. This
thesis introduces an architectural enhancement to overcome this limitation. A new
Kubernetes Custom Resource Definition (CRD), ForeignClusterConnection, is
designed and implemented, enabling declarative and automated provisioning of
direct tunnels between provider clusters. A dedicated operator orchestrates the
lifecycle of these resources, interacting with Liqo’s internal APIs and CLI tools to
discover cluster metadata, manage network endpoints, and propagate connection
status. The implementation, based on the Kubebuilder SDK, follows established
Kubernetes operator patterns, ensuring high modularity and seamless integration.
Experimental evaluation under simulated WAN conditions demonstrates improve-
ments in latency, throughput, and system resilience when direct inter-provider
communication is established. The proposed solution aligns with Kubernetes’
declarative model and GitOps principles, paving the way for advanced features
such as dynamic endpoint rewriting, policy-driven routing, topology awareness,
and monitoring integrations. It enhances the efficiency, robustness, and observ-
ability of Liqo-powered multi-cluster deployments, contributing to the evolution of
Kubernetes-based federated networking in heterogeneous environments.

11

Ringraziamenti

Con tutto il cuore ringrazio i miei genitori e mia sorella: so di non essere sempre
facile da gestire, eppure mi avete sempre sostenuto, ascoltato e incoraggiato in ogni
mia decisione. Questo traguardo e tanto vostro quanto mio.

Un caloroso ringraziamento ai nonni, agli zii, ai cugini e a tutta la famiglia:
la vostra vicinanza e i ricordi meravigliosi che abbiamo condiviso hanno illuminato
ogni passo di questo percorso, rendendo ogni fatica pitu leggera e ogni successo piu
bello.

A Morena: sei arrivata in un momento in cui credevo di bastare a me stesso,
e invece mi hai mostrato che con te la vita ¢ migliore, dandomi tutto senza mai
farmi pesare o togliermi nulla. Grazie di essere stata e di continuare ad essere
sempre al mio fianco.

Un ringraziamento sincero al prof. Risso, a Davide Miola, a Mirco Barone e
a tutto il gruppo di data-plane per la vostra competenza, pazienza e disponibilita
che mi hanno guidato lungo questo percorso.

Grazie di cuore al gruppo dei “Terroni a Torino”: siete stati la mia “casa” lontano
da casa, nei momenti di difficolta e in quelli di festa. Porterd sempre con me le
risate, il calore e il vostro affetto; sappiate che io ci saro sempre per voi.

Ai miei amici di “giu”: grazie per aver condiviso con me 27 anni di avventure, per
le risate spensierate e gli “insulti” affettuosi che valgono piu di mille complimenti.
Mi avete permesso di staccare la testa quando ne avevo piu bisogno, rendendo ogni
momento insieme leggero e memorabile.

Infine, un ringraziamento a chiunque sia entrato o uscito dalla mia vita durante

questo percorso: ogni incontro e ogni addio mi hanno aiutato, nel bene e nel male,
a crescere e a diventare la persona che sono oggi.

II1

Table of Contents

List of Figures

Acronyms
1 Introduction
1.1 Goal of the Thesis
1.2 Structure of the Thesis
2 Background: Kubernetes

2.1 Introduction to Kubernetes
2.2 Kubernetes Architecture
2.2.1 Control Plane Components
2.2.2 Data Plane Components (Worker Nodes)
2.3 Core Kubernetes Resources
23.1 Pods
2.3.2 ReplicaSets
2.3.3 Deployments oo
2.3.4 Services
2.3.5 Namespaces
2.3.6 Labels & Selectors
2.3.7 EndpointSlices
2.3.8 ConfigMaps
2.3.9 Secrets
2.4 Networking in Kubernetes
2.4.1 Pod Networking
2.4.2 Service Networking L.
2.4.3 Ingress and Egress Traffic,
2.4.4 Network Policies
2.4.5 Container Network Interface (CNI)
2.4.6 Network Architecture Models
2.5 API Extensibility oL

IX

2.6
2.7

2.5.1 Custom Resource Definitions (CRDs)
2.5.2 Operator Pattern
2.5.3 Admission Controllers
Access Control: Role-Based Access Control (RBAC)
Developer Tooling: Kubebuilder
2.7.1 Overview and Capabilities
2.7.2 Scaffolding APIs and Controllers
2.7.3 Reconciliation Loop and Finalizers

Background: Liqo

3.1
3.2

3.3

3.4

3.5
3.6
3.7

Overview of Liqo
Peering
3.2.1 Peering Lifecycle
3.2.2 Declarative Peering
Core Components
3.3.1 Liqo Agent
3.3.2 Network Manager
3.3.3 Virtual Kubelet
3.3.4 Reflection Manager
Custom Resources (CRDs)
3.4.1 ForeignCluster
3.4.2 ResourceSlice
3.4.3 VirtualNode
3.4.4 NamespaceOffloading,
3.4.5 ShadowPod & ShadowEndpointSlice
3.4.6 GatewayServer & GatewayClient
3.4.7 Connectiono

348 IP . .
3.4.9 Configuration
Offloading

Resource Reflection
Security and Trust
3.7.1 Mutual TLS and WireGuard
3.7.2 Role-Based Access Control

Design: foreign_cluster_connector

4.1
4.2
4.3

Baseline Topology and Routing Behavior
Communication Path and Drawbacks
Proposed Solution: Consumer-Side CustomResource and Controller
4.3.1 Lightweight Declarative APT
4.3.2 Key Advantages

13
13
14
14
15
15
15
15
17
17
17
18
18
18
18
18
19
19
19
19
20
21
21
21
22

4.4 Architectural Impact 30

Implementation of the foreign_cluster_connector Controller 31
5.1 Core Components 31
5.1.1 Operator Overview 31
5.1.2 Custom Resource Definition 32
5.2 Project Generation with Kubebuilder 34
5.2.1 [Initializing the Module 35
5.2.2 Creating the API 35
5.2.3 Generating Code and Manifests 36
5.2.4 Project Structure 37
5.3 Controller Implementation 38
5.3.1 Reconcile Loop oL 38
5.3.2 Connection Logic L. 42
5.3.3 Status Management 46
5.3.4 CIDR Retrieval 46
5.3.5 Disconnection Logic 49
5.4 Build & Deploymento oL 50
5.4.1 Build Process Lo 50
5.4.2 Deployment oL 51
5.4.3 Applying a Sample Resource 51
Command-Line Utility for Mlanaging the Controller and Shortcuts 55
6.1 Command Structure and Design Goals 55
6.2 Controller Lifecycle Commands 56
6.3 Shortcut Management Commands 57
6.4 Auxiliary Logic and Operational Guarantees Y
6.5 Practical Benefits and Recommended Usage 58
Evaluation 59
7.1 Testbed Description 59
7.1.1 ICMP Round-Trip Time 60
7.1.2 HTTP GET Latency 61
7.1.3 TCP Throughput 62
7.2 Results under Emulated WAN Conditions 62
7.2.1 ICMP Round-Trip Time under WAN-like Delay 63
7.2.2 HTTP GET Latency under WAN-like Delay 63
7.2.3 TCP Throughput under Emulated WAN Conditions 64
7.3 Tunnel Provisioning Time 65
7.4 Evaluation Summary oL o 66

8 Conclusions and Future Work
8.1 Future Work

Bibliography

VIII

List of Figures

2.1

3.1
3.2
3.3

4.1
4.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Kubernetes architecture o0 4
Liqo peering architectureo 14
Liqo network fabric oo 16
Liqo namespace offloading 20
Consumer-centric topology 24
Consumer-centric topology with controller 26
RTT under zero-latency 60
HTTP GET latency under zero-latency 61
TCP throughput under zero-latency 62
RTT under emulated WAN, 63
HTTP GET latency under emulated WAN 64
TCP throughput under emulated WAN 65
Direct tunnel provisioning time 65

IX

Acronyms

API

Application Programming Interface

CLI

Command Line Interface

CNI

Container Network Interface

CRD

Custom Resource Definition

CIDR

Classless Inter-Domain Routing

IETF

Internet Engineering Task Force

IPAM
IP Address Management

RBAC
Role-Based Access Control
RFC

Request for Comments

TCP

Transmission Control Protocol

TLS
Transport Layer Security

TLV
Type-Length—Value

UDP

User Datagram Protocol

VPN

Virtual Private Network
VXLAN

Virtual Extensible LAN

YAML

YAML Ain’t Markup Language

XI

Chapter 1
Introduction

The evolution of cloud-native architectures has heightened the demand for infras-
tructures that are scalable, resilient, and interoperable across heterogeneous cloud
and edge environments. Kubernetes has established itself as the de facto standard
for container orchestration, enabling declarative application deployment and auto-
mated lifecycle management. Although Kubernetes provides robust orchestration
capabilities within single-cluster environments, extending these capabilities to multi-
cluster scenarios introduces several challenges, such as cross-cluster networking,
workload portability, and resource federation.

To address these limitations, frameworks such as Liqo have emerged, offering
dynamic peer-to-peer federation of Kubernetes clusters. Liqo enables transparent
workload offloading, automated trust negotiation, and encrypted cross-cluster
networking. Despite these features, Liqo-based multi-cluster topologies are limited
by a consumer-centric routing model, in which all inter-cluster communications,
including those between provider clusters, are relayed through the consumer. This
design introduces additional latency, increases egress traffic, and represents a
potential single point of failure.

1.1 Goal of the Thesis

The objective of this work is to enhance the network orchestration model provided by
Liqo in peer-to-peer multi-cluster topologies. Specifically, a mechanism is proposed
to enable direct communication between provider clusters, thereby removing the
inefficiencies caused by routing traffic through the consumer cluster.

A new Custom Resource Definition (CRD), named ForeignCluster
Connection, is introduced, along with a dedicated Kubernetes Operator re-
sponsible for automating the lifecycle of inter-provider tunnels. Embedding the
connection logic within a declarative resource managed by the consumer cluster

1

Introduction

ensures consistency with the Liqo architectural model and improves both efficiency
and resilience.

1.2 Structure of the Thesis

The remainder of this thesis is organized as follows:

o Chapter 2 — Background: Kubernetes
Provides an overview of the Kubernetes architecture, with particular focus on
core resources, scalability mechanisms, and API extensibility through CRDs
and the operator pattern.

o Chapter 3 — Background: Liqo
Describes the architecture and key components of Liqo, including peering mech-
anisms, offloading logic, cross-cluster networking, and the custom resources
relevant to multi-cluster orchestration.

o Chapter 4 — Design: foreign_ cluster__connector
Presents the design of the mechanism enabling direct provider-to-provider
communication, including network topology, routing constraints, and the
conceptual model of the ForeignClusterConnection CRD.

o Chapter 5 — Implementation of the foreign_ cluster_ connector Con-
troller
Details the implementation of the controller using the Kubebuilder framework,
including CRD definition, reconcile logic, RBAC rules, project scaffolding,
build and deployment instructions.

o Chapter 6 — Command-Line Utility for Managing the Controller
and Shortcuts
Describes the custom command-line utility developed to manage the controller,
including its design goals, command structure, shortcut management features,
auxiliary logic, and recommended usage patterns.

e Chapter 7 — Evaluation
Presents the experimental setup and analyzes performance under various
network conditions, with metrics such as latency, throughput, and tunnel
provisioning times.

e Chapter 8 — Conclusions and Future Work
Summarizes the contributions of this work and outlines directions for future
research and development in multi-cloud and multi-cluster orchestration.

Chapter 2
Background: Kubernetes

This chapter provides a technical overview of Kubernetes, the leading open-source
platform for container orchestration. It presents the system architecture, core
abstractions, networking model, extensibility via custom APIs, access control
mechanisms, and the developer tooling offered by Kubebuilder. The goal is to
establish a foundation for understanding how Kubernetes can be extended to
support advanced orchestration patterns such as multi-cluster federation.

2.1 Introduction to Kubernetes

Kubernetes is an open-source platform that automates deployment, scaling, and
management of containerized applications, following principles outlined in its official
documentation [1]. It adopts a declarative configuration model and offers strong
fault tolerance. By abstracting the underlying infrastructure, it enables consistent
deployment across different environments and has become the de facto standard
for container orchestration. Initially developed by Google and now maintained by
the Cloud Native Computing Foundation (CNCF), Kubernetes provides a unified
API for interacting with cluster resources.

Application specifications—including the number of replicas, resource constraints,
and network policies—are defined using YAML manifests. The control plane
continuously reconciles the actual state of the cluster with the desired state,
supporting features such as self-healing, rolling updates, and autoscaling.

Thanks to its modular and extensible architecture, Kubernetes supports a
wide range of cloud-native scenarios across heterogeneous environments, both
on-premises and in public clouds.

Background: Kubernetes

2.2 Kubernetes Architecture

Kubernetes is logically divided into two main planes. The Control Plane maintains
the global state of the cluster, while the Data Plane runs containerized applications
on worker nodes.

CLUSTER

‘CONTROL PLANE

cloud-Controller-manager uE e T Tt M CLoUD PROVIDER API

Node | Node 2

kube-api-server
ﬁ i [

scheduler coniroller manager

Kube-scheduler kube-controllermanager

Figure 2.1: High-level architecture of Kubernetes. Source [2]

2.2.1 Control Plane Components

The Control Plane is responsible for maintaining cluster state, processing API
requests, and ensuring that the desired configuration is continuously enforced
through its core components.

kube-apiserver

The API Server exposes a RESTful interface that serves as the central access
point to all cluster operations. It validates and processes API requests, performs
authentication and authorization, and persists cluster state changes in the data
store.

Background: Kubernetes

etcd

etcd is a distributed key—value store used as the single source of truth for the entire
cluster state. It stores configuration data, workload definitions, and metadata. The
Raft consensus algorithm ensures consistency and availability across all etcd nodes.

kube-scheduler

The scheduler is responsible for assigning newly created Pods to suitable nodes. It
filters candidate nodes based on resource availability and scheduling constraints,
then scores them using customizable policies before binding the Pod to a selected
node.

kube-controller-manager

This component manages a set of independent controllers that continuously monitor
cluster state. Examples include the NodeController (monitors node availability),
ReplicaSetController (ensures desired Pod replica count), and EndpointController
(maintains service endpoint records).

cloud-controller-manager

This controller is specific to cloud environments and decouples cloud-provider
logic—such as provisioning volumes or load balancers—from the main Kubernetes
control logic. It enables cloud-agnostic operations by abstracting provider-specific
APIs.

2.2.2 Data Plane Components (Worker Nodes)

Worker nodes host the components required to run application containers and
enforce the desired state defined by the Control Plane. They manage container
execution, networking, and report node and Pod status back to the Control Plane.

kubelet

kubelet is the primary node agent responsible for managing the Pod lifecycle. It
ensures that containers are started, monitored, and remain healthy according to
the desired Pod specification communicated by the Control Plane. It also enforces
resource limits and probes defined in manifests.

5

Background: Kubernetes

kube-proxy

kube-proxy maintains network rules and routes traffic destined for Services across
nodes. It leverages iptables, IPVS, or user-space proxying to facilitate Pod-to-Pod
and Pod-to-Service communication.

Container Runtime Interface (CRI)

The CRI allows Kubernetes to communicate with container runtimes such as
containerd and CRI-0. Through this interface, the kubelet can start, stop, monitor
containers, and retrieve logs and metrics.

2.3 Core Kubernetes Resources

Kubernetes defines several fundamental abstractions for managing workloads and
resources in a cluster.

2.3.1 Pods

A Pod is the smallest deployable object in Kubernetes. It encapsulates one or
more containers that share the same network namespace and volumes. Each Pod
receives a unique IP address, enabling intra-Pod communication via localhost.
Pods are designed to be ephemeral and disposable; if a Pod fails or is deleted, it
is not guaranteed to return in the same state. For this reason, Pods are typically
managed indirectly by higher-level resources such as ReplicaSets and Deployments,
which ensure availability and desired state.

2.3.2 ReplicaSets

A ReplicaSet ensures that a specified number of identical Pod replicas are running
at any given time. It monitors the actual cluster state and creates or deletes
Pods as necessary to maintain the desired replica count. ReplicaSets provide the
foundation for scaling and redundancy in Kubernetes workloads.

2.3.3 Deployments

A Deployment is a higher-level resource that declaratively manages ReplicaSets
to provide updates for Pods. It enables rollout strategies such as rolling updates
and supports rollbacks to previous versions in case of failures or misconfigurations.
Deployments maintain a revision history, allowing administrators to revert to earlier
states easily. They are the most common abstraction for managing the full lifecycle
of stateless applications in Kubernetes.

Background: Kubernetes

2.3.4 Services

A Service provides a stable abstraction over a dynamic group of Pods. It assigns a
consistent virtual IP and DNS name, allowing clients to connect without tracking
individual Pod IPs. Services decouple clients from the dynamic nature of Pod
scheduling and support load balancing across healthy endpoints. Kubernetes
supports multiple Service types, including;:

o ClusterIP: internal access within the cluster.
« NodePort: exposes the Service on each Node’s IP at a static port.
» LoadBalancer: provisions an external load balancer via a cloud provider.

o ExternalName: maps the Service to an external DNS name.

2.3.5 Namespaces

Namespaces provide a mechanism for isolating groups of resources within a single
cluster. Names of resources need to be unique within a namespace, but the same
name can be used in different namespaces. Namespaces are intended for use in
environments with many teams or projects, enabling scoped access control and
resource quotas.

Kubernetes clusters include four predefined namespaces:

e default: The default namespace for user-created resources when no other
namespace is specified.

o kube-system: Reserved for objects created by the Kubernetes system, includ-
ing control plane components and system add-ons.

o kube-public: Readable by all users (including unauthenticated), typically
used for cluster-wide public information.

o kube-node-lease: Contains lease objects used for efficient node heartbeat
tracking and status reporting.

2.3.6 Labels & Selectors

Labels are key/value pairs attached to objects (e.g., Pods, Services, Deployments)
to specify identifying attributes meaningful to users. Selectors allow clients (e.g., a
Service) to query and filter objects based on their labels. For example, a Service
can select all Pods with app=frontend to form its set of endpoints.

7

Background: Kubernetes

2.3.7 EndpointSlices

EndpointSlices are the scalable, extensible successor to the original Endpoints API.
For each Service with a selector, the control plane automatically creates one or more
EndpointSlice objects, each containing references to a subset of the Service’s Pods
(grouped by IP family, protocol, port, etc.). This design improves performance and
scalability when Services back large numbers of Pods.

2.3.8 ConfigMaps

A ConfigMap is designed to decouple non-confidential configuration data from
container images. It allows key—value pairs to be stored separately and consumed
by Pods as environment variables, command-line arguments, or mounted files.
ConfigMaps facilitate dynamic configuration updates without requiring image
rebuilds.

2.3.9 Secrets

A Secret is intended for storing sensitive information such as passwords, tokens, and
certificates. Secret data is represented in base64-encoded form and can be provided
to Pods through environment variables or volume mounts. Unlike ConfigMaps,
Secrets offer additional safeguards for sensitive data and support integration with
encryption mechanisms.

2.4 Networking in Kubernetes

Networking is a fundamental component of Kubernetes, enabling reliable commu-
nication between Pods, Services, and other resources both within the cluster and
with external clients. Kubernetes implements a flat Pod network model at its core,
with higher-level abstractions—Services, Ingress, and NetworkPolicies—built on
top to support modern, scalable application topologies.

2.4.1 Pod Networking

In Kubernetes, each Pod is assigned a unique IP address from a cluster-wide address
space. This flat network model ensures that any Pod can communicate directly
with any other Pod across nodes, without requiring network address translation
(NAT). This design simplifies service discovery and avoids port conflicts on the
host, as each Pod manages its own network namespace.

8

Background: Kubernetes

2.4.2 Service Networking

Pods are ephemeral: they can be created, destroyed, or rescheduled dynamically.
To provide a stable communication endpoint, Kubernetes introduces the Service
abstraction. A Service selects a set of Pods using label selectors and offers:

o A stable ClusterIP, acting as a virtual IP for the lifetime of the Service.

o Automatic DNS resolution within the cluster.

Traffic to a Service’s ClusterIP is automatically load-balanced across healthy
Pod IPs. Kubernetes achieves this using kube-proxy, which programs iptables or
IPVS rules, or via EndpointSlices—a scalable alternative that partitions large sets
of Pod endpoints for efficient lookups and updates.

2.4.3 Ingress and Egress Traffic

While Services handle internal communication, many applications need to expose
APIs or web front-ends to users outside the cluster. Kubernetes manages this
with the Ingress resource. An Ingress defines HTTP(S) routing rules, including
hostnames, paths, and TLS settings, mapping incoming traffic to internal Services.
Ingress Controllers implement these rules by configuring reverse proxies or load
balancers, enabling SSL termination and advanced routing capabilities.

Egress traffic represents outbound connections from Pods to other services—either
internal or external. By default, Pods may initiate outbound connections freely.
To restrict or control this, Kubernetes administrators can use:

» NetworkPolicies defining egress rules, specifying allowed destinations by IP,
namespace, or port.

o CNI plugins that support traffic shaping, such as the bandwidth plugin, to
enforce rate limits on outbound traffic.

2.4.4 Network Policies

NetworkPolicy objects enable declarative control over allowed traffic to and from
Pods within a namespace. Policies use podSelector and namespaceSelector to
identify affected Pods and define ingress and egress rules specifying allowed
sources, destinations, ports, and protocols. Enforcement is implemented by the
active CNI plugin (e.g., Calico, Cilium) using dataplane technologies like iptables
or eBPF, ensuring secure, least-privilege networking.

9

Background: Kubernetes

2.4.5 Container Network Interface (CNI)

Kubernetes delegates low-level Pod network configuration to Container Network
Interface (CNI) plugins. These plugins assign IP addresses to Pods, set up virtual
interfaces, and configure routing between nodes in the cluster. Popular CNI
implementations include Calico, Flannel, Weave, and Cilium, each offering different
approaches to routing and policy enforcement. While their internal designs vary,
all CNI plugins conform to the CNI specification to ensure consistent, interoperable
Pod networking across different environments.

2.4.6 Network Architecture Models

Kubernetes clusters can use different network architectures depending on the chosen
CNI plugin:

» Flat network: all Pods share a single routable address space, allowing direct
communication without encapsulation or NAT.

e Overlay network: Pods communicate over a virtual network built atop the
underlying infrastructure, using encapsulation (e.g., VXLAN) to isolate cluster
traffic and simplify compatibility across diverse networking environments.

These architectural choices involve trade-offs in simplicity, performance, and
integration with existing infrastructure.

Overall, Kubernetes networking—from Pod IP assignment to Service load bal-
ancing, Ingress routing, egress controls, and NetworkPolicy enforcement—ensures
secure, scalable, and efficient communication for containerized workloads at any
scale.

2.5 API Extensibility

The Kubernetes API is designed to be extensible via third-party mechanisms
without modifying the core source code. Three key tools support extensibility:
CRDs, Operators, and Admission Controllers.

2.5.1 Custom Resource Definitions (CRDs)

CRDs allow the creation of new resource types defined by OpenAPI schemas. Once
registered with the API server, these resources can be manipulated like native
Kubernetes objects using standard tools such as kubectl.

10

Background: Kubernetes

2.5.2 Operator Pattern

An Operator is a custom controller built to manage complex applications. It
combines a CRD that defines the desired state with a reconciliation loop that
ensures the actual cluster state matches the specification. Operators automate
tasks such as failover, backups, and upgrades, effectively encoding operational
knowledge into software.

2.5.3 Admission Controllers

Admission Controllers are API server plugins that validate or mutate incoming
requests before they are persisted. They enforce security policies, inject sidecars,
or apply organizational rules. Kubernetes supports both mutating and validating
admission webhooks.

2.6 Access Control: Role-Based Access Control
(RBAC)

Kubernetes uses Role-Based Access Control (RBAC) to manage access permissions
across users, service accounts, and controllers. RBAC policies determine which
subjects can perform which actions on which resources, using four main object

types:
» Role: Defines permissions within a single namespace.

o ClusterRole: Grants permissions at the cluster scope or for cluster-wide
resources.

» RoleBinding: Associates a Role with a user, group, or service account in a
namespace.

« ClusterRoleBinding: Binds a ClusterRole to a subject across the entire
cluster.

Each rule specifies a set of verbs (such as get, create, update, delete) and
resources it applies to. Controllers typically run under a dedicated service account,
and must be explicitly granted permissions via RBAC to read, modify, or reconcile
resources such as Custom Resources, Secrets, or ConfigMaps.

RBAC is a critical part of Kubernetes extensibility and security. It ensures
that custom controllers operate with the least privilege required, and prevents
unauthorized access to sensitive operations. Tools such as Kubebuilder facilitate
the definition of RBAC rules through annotations, which generate RBAC manifests
automatically as part of the controller scaffolding process.

11

Background: Kubernetes

2.7 Developer Tooling: Kubebuilder

Kubebuilder is a framework for developing Kubernetes APIs and operators. Built
on top of controller-runtime, it provides tools for scaffolding CRDs, RBAC rules,
webhooks, and controllers with minimal boilerplate [3].

2.7.1 Overview and Capabilities

Kubebuilder simplifies the creation of production-grade Operators by providing;:

Project scaffolding (directory structure, Go modules, Makefiles)

CRD type definitions with OpenAPI schema validation

RBAC and controller logic via code generation

Integration testing support using envtest

2.7.2 Scaffolding APIs and Controllers

Using the CLI, developers can initialize a project and scaffold APIs with commands
such as:

kubebuilder init --domain=example.com \
--repo=github.com/example/operator

kubebuilder create api --group=cache --version=vlalphal \
--kind=ExampleResource

This process generates Go structs for the custom resource, controller logic, CRD
YAMLs, and RBAC manifests.

2.7.3 Reconciliation Loop and Finalizers

Each controller implements a Reconcile() function that watches resource changes
and applies the necessary actions to reach the desired state. Finalizers are used to
define cleanup logic that runs before object deletion, ensuring proper teardown of
external resources.

12

Chapter 3

Background: Liqo

This chapter presents Liqo, an open-source framework that extends Kubernetes
to support seamless multi-cluster federation, following principles and workflows
outlined in its official documentation [4]. It begins with an overview of Liqo’s
objectives and feature set—dynamic peering, transparent workload offloading,
encrypted cross-cluster networking, and federated storage—demonstrating how it
unifies disparate clusters under a single, native Kubernetes API. The chapter then
examines the Peering subsystem, detailing both the imperative controller-driven
workflow and the declarative, GitOps-compatible Custom Resource approach by
which clusters establish trust, negotiate resource quotas, and configure secure
tunnels. Finally, the various Core Components are described in depth—node-level
agents, the controller manager, Virtual Kubelet integration, IPAM, network and
reflection managers, and the CRD replicator—illustrating how these elements
collaborate to automate federation, offloading, and state synchronization across
cluster boundaries.

3.1 Overview of Liqo

Liqo is an open-source project that enables dynamic, peer-to-peer Kubernetes
multi-cluster topologies across heterogeneous infrastructures, from on-premises to
cloud and edge. It delivers four main features:

o Peering. Automatic negotiation of resource and service consumption rela-
tionships between independent clusters, with no manual VPN or certificate
management.

» Offloading. Native, transparent offloading of workloads onto remote clusters
by collapsing each into a wvirtual node visible to the standard Kubernetes
scheduler.

13

Background: Liqo

« Network Fabric. A secure, cross-cluster network layer (built on Wire-
Guard and Geneve) that provides pod-to-pod and pod-to-service connectivity
regardless of underlying CNIs.

o Storage Fabric. Seamless extension of Kubernetes storage to remote clusters,
enabling stateful workloads to follow a data-gravity approach.

3.2 Peering

Peering in Liqo is a unidirectional relationship by default: a consumer cluster
offloads and reflects resources onto a provider cluster, while the reverse direction is
configured separately if needed.

3.2.1 Peering Lifecycle

Establishing a peering involves four main steps:

1. Network fabric setup. Exchange of network configuration and creation of
WireGuard gateways (server on provider, client on consumer) to form a secure
VPN tunnel.

2. Authentication. The consumer obtains a limited kubeconfig identity from
the provider to perform Liqo-related API operations.

3. Resource negotiation. The consumer requests a ResourceSlice defining
CPU, memory, and other resources; the provider approves or rejects.

4. Virtual node setup. Upon approval, the consumer creates a VirtualNode
resource, making provider resources schedulable via the standard Kubernetes
scheduler.

Consumer Cluster Provider Cluster

NodePort ., Gateway

(or) LoadBalancer | Server

. Gat y Client

Ligo control plane Ligo control plane

pods pods
Kubernetes API { Kubernetes API

server server

Ligoctl/ Helm
s / Kubectl

Figure 3.1: Peering architecture between consumer and provider clusters. Source:

[5]

14

Background: Liqo

3.2.2 Declarative Peering

Peerings can also be managed declaratively via Custom Resources (CRs) applied
on both clusters. This approach uses:

Kubernetes Namespace labeled for tenancy,

Configuration, PublicKey, GatewayServer, and GatewayClient CRs for
networking,

Tenant and RoleBinding CRs for authentication,

ResourceSlice CRs for offloading.

By defining these resources declaratively, Liqo automatically negotiates and manages
peerings without requiring imperative commands.

3.3 Core Components

Liqo runs as a set of Kubernetes workloads in the 1iqo namespace. Each component
encapsulates a subsystem of the multi-cluster topology. These components work
collaboratively to manage peering, workload offloading, networking, and resource
synchronization.

3.3.1 Liqo Agent

The Ligo Agent comprises lightweight daemon processes running on each node to
handle local interactions:

e ligo-metric-agent: exposes Prometheus metrics for networking, offloading,
and reflection.

» ligo-proxy (API server proxy): optionally forwards API traffic when direct
access is not possible.

o liqgo-webhook: injects required tolerations and scheduling constraints into
offloaded Pods to ensure compatibility with remote clusters.

3.3.2 Network Manager

The Network Manager is the Liqo subsystem responsible for establishing and
maintaining the cross-cluster network fabric. It coordinates control-plane logic,
IP address management, and data-plane enforcement to provide secure, seamless
connectivity between clusters.

15

Background: Liqo

Controller Manager

The ligo-controller-manager defines the control-plane logic of the network
fabric. It sets up network Custom Resources (CRDs) during the peering process,
handles potential network conflicts by defining high-level NAT rules, and manages
the translation of Pod IPs during synchronization and EndpointSlice reflection.
These rules are enforced by the data-plane components.

IP Address Management (IPAM)

The 1iqo-ipam pod provides an IP address management interface to assign and
manage PodCIDRs for remote clusters. It ensures non-overlapping address al-
location and exposes an API consumed by the controller-manager to handle TP
acquisitions during peering negotiations.

Network Fabric

The liqgo-fabric pods implement the data-plane of the network fabric. They
establish cross-cluster VPN tunnels using WireGuard and configure Geneve overlays
on each node. These components enforce routing and nftables NAT rules as
defined by the controller-manager, ensuring seamless and secure cross-cluster
communication.

Local Cluster Remote Cluster

0 0 o110

' Overlay

Figure 3.2: High-level network fabric between two clusters. Source: [6]

WireGuard

WireGuard is a modern, open-source VPN protocol designed for simplicity, high
performance, and strong security. It employs a minimal codebase and state-of-
the-art cryptographic primitives—Curve25519 for key exchange, ChaCha20 for
symmetric encryption, and Poly1305 for message authentication—to establish IP
tunnels over UDP with low latency and minimal overhead. WireGuard’s design

16

Background: Liqo

emphasizes ease of deployment, automatic roaming, and a small attack surface,
making it well-suited for dynamic multi-cluster networking scenarios [7].

In Ligo, WireGuard underpins the tunnels created by the GatewayServer and
GatewayClient CRs, providing encrypted, authenticated links for all pod-to-pod
and pod-to-service traffic across cluster boundaries without requiring operators to
manage keys or connections manually.

Geneve

Geneve (Generic Network Virtualization Encapsulation, RFC 8926 [8]) is an IETEF-
standardized tunneling protocol that encapsulates L2 Ethernet frames in UDP pack-
ets and supports extensible metadata via optional TLV fields. In Liqo, 1iqo-fabric
pods configure a Geneve interface on each node to carry pod-to-pod and pod-to-
service traffic across clusters, decoupling the overlay topology from any specific
underlay CNI. This approach ensures interoperability with heterogeneous network
fabrics while preserving network isolation and enabling advanced features (e.g.
VXLAN compatibility, traffic steering) in a multi-cluster environment.

3.3.3 Virtual Kubelet

The Virtual Kubelet component in Liqo exposes remote clusters as virtual nodes
within the local Kubernetes cluster. This integration allows the standard scheduler
to see and consider resources from peered clusters seamlessly.

It runs as a dedicated pod for each peering, maintaining the VirtualNode
resource and handling secure, isolated communication with the remote cluster. By
doing so, it abstracts the complexity of managing external resources and integrates
them natively into the local cluster view.

3.3.4 Reflection Manager

The Reflection Manager ensures that selected Kubernetes resources are kept con-
sistent across clusters involved in a peering. It operates on namespaces marked for
offloading, maintaining synchronized copies of key resources in the remote clusters.

It includes the liqo-crd-replicator component, which is responsible for
ensuring that required Liqo Custom Resources are present and consistent across
both the local and remote clusters.

3.4 Custom Resources (CRDs)

Liqo extends the Kubernetes API with a set of Custom Resource Definitions (CRDs)
that represent the building blocks for multi-cluster orchestration. These CRDs

17

Background: Liqo

model remote clusters, resource allocations, networking endpoints, and offloading
policies.

3.4.1 ForeignCluster

The ForeignCluster CRD represents a peering relationship with a remote cluster.
Its spec includes the remote API server address, authentication credentials (a
ServiceAccount kubeconfig), and optional resource limits. The status subresource
reflects the peering phase (e.g. Bootstrap, Accepted, Ready) and conditions such as
connectivity health and certificate validity.

3.4.2 ResourceSlice

A ResourceSlice object declares the amount of CPU, memory, and other schedu-
lable resources that a provider cluster offers to its peers. It allows fine-grained
control over quotas per consumer cluster and is mutually created by both sides
during the peering negotiation.

3.4.3 VirtualNode

The VirtualNode CRD integrates with the Virtual Kubelet framework, making
remote cluster resources appear as a node in the consumer cluster. Its spec includes
the underlying ForeignCluster reference and the ResourceSlice to consume. In
its status, it reports capacity, allocatable resources, and node conditions for
scheduling decisions.

3.4.4 NamespaceOffloading

NamespaceOffloading enables transparent offloading of an entire namespace’s
workloads. By applying this CRD to a namespace, Pods are offloaded to the remote
cluster, while resources like Services, ConfigMaps, and Secrets are synchronized to
maintain consistent application behavior.

3.4.5 ShadowPod & ShadowEndpointSlice

The ShadowPod and ShadowEndpointSlice CRDs maintain mirrored representa-
tions of offloaded resources in the provider cluster. ShadowPod tracks the orig-
inal Pod’s specification and status, propagating lifecycle events (such as start,
stop, and restart) between clusters. ShadowEndpointSlice represents Kubernetes
EndpointSlice objects, maintaining service discovery data for reflected Services
in the remote cluster.

18

Background: Liqo

3.4.6 GatewayServer & GatewayClient

Liqo uses two Custom Resources—GatewayServer and GatewayClient—to ab-
stract the creation of encrypted, cross-cluster tunnels without exposing low-level
VPN configuration details.

o GatewayServer is applied in the provider cluster. It causes Liqo to deploy a
gateway pod that listens for incoming WireGuard connections and advertises
the provider’s Pod network to peers.

e GatewayClient is applied in the consumer cluster. It instructs Liqo to deploy
a gateway pod that dials the provider’s gateway and attaches the remote Pod
network as a local overlay interface.

These CRDs handle certificate management, port configuration, and network
advertisement automatically, so operators interact only with high-level Kubernetes
objects.

3.4.7 Connection

The Connection CR orchestrates the higher-level peering workflow, binding to-
gether the ForeignCluster, GatewayServer/Client, ResourceSlice, and VirtualNode
resources. It signals when all subcomponents are Healthy, and it drives cleanup

when the peering is terminated.

3.4.8 1P

The IP Custom Resource records individual IP allocations for cross-cluster net-
working. It tracks local and remapped IP addresses, ensuring conflict-free, routable
communication between clusters. It also supports optional associations with Ku-
bernetes Services and can enable masquerading on nodes when necessary.

3.4.9 Configuration

The Configuration Custom Resource defines the overall network mapping between
a pair of clusters. It describes both the Pod and External CIDRs for the local and
remote clusters, as well as their remapped counterparts. This ensures consistent
routing without address conflicts, even in heterogeneous networking environments.
The status subresource reflects how the declared CIDRs are actually translated
during peering.

19

Background: Liqo

3.5 OfHoading

Offloading in Liqo enables transparent scheduling of Kubernetes Pods onto re-
mote clusters to leverage spare capacity and improve resilience. By marking a
namespace for offloading, Liqo intercepts newly created Pods and schedules them
onto a VirtualNode representing the provider cluster, while maintaining “shadow”
instances in the consumer cluster to track their state.

The offloading workflow involves:

1. Annotating a namespace with the NamespaceOffloading CR to mark it for
offloading.

2. The controller watches for new Pods created in that namespace.

3. For each offloaded Pod, a corresponding ShadowPod is created in the consumer
cluster to mirror its state.

4. Liqo’s Virtual Kubelet schedules the offloaded Pod onto the provider’s worker
nodes via the VirtualNode.

5. Pod status and logs are reflected back to the consumer cluster for seamless
monitoring and debugging.

Local Cluster Remote Cluster

Figure 3.3: Namespace offloading workflow: consumer cluster Pods are mirrored
and run on provider resources. Source: [9]

Offloading supports all standard Kubernetes workload types—including Deploy-
ments, StatefulSets, and DaemonSets—and synchronizes associated data such as
ConfigMaps, Secrets, PersistentVolumeClaims, and volume mounts. Service-related
resources are kept in sync across clusters to maintain seamless service discovery
and connectivity between consumer and provider. When an offloaded namespace
is unmarked, Liqo gracefully cleans up the corresponding remote resources and
removes the virtual node binding.

20

Background: Liqo

3.6 Resource Reflection

Resource reflection in Liqo ensures that Kubernetes objects remain consistent
across clusters by continuously synchronizing their state. It is essential for main-
taining service discovery, configuration sharing, and seamless connectivity between
consumer and provider clusters during offloading.

Key aspects of reflection:

» Uses resource reflectors to synchronize objects such as Services, EndpointSlices,
ConfigMaps, Secrets, and Ingresses between consumer and provider clusters.

« Propagates changes in workload and networking resources from the consumer
cluster to the provider cluster to maintain connectivity and functionality for
offloaded workloads.

» Maintains consistent metadata and status to ensure seamless integration with
Kubernetes-native workflows and tools.

Reflection can be scoped per-namespace or cluster-wide, and supports cus-
tomization to include or exclude specific resources. This mechanism underpins
cross-cluster service discovery, federated configurations, and consistent workload
behavior across heterogeneous Kubernetes environments.

3.7 Security and Trust

Security and trust are foundational to Liqo’s multi-cluster operations. Liqo employs
multiple layers of authentication, authorization, and encryption to ensure secure
resource sharing and communication between clusters.

3.7.1 Mutual TLS and WireGuard

All inter-cluster traffic—both API calls and pod-to-pod networking—is secured:

o API Channel: The consumer cluster authenticates to the provider using a
restricted ServiceAccount kubeconfig. Mutual TLS ensures that only autho-
rized control-plane components can create or modify Liqo resources on the
provider cluster.

e Data Channel: WireGuard tunnels, automatically configured via Liqo’s net-
working components, provide encrypted and authenticated VPN connections
for all pod-to-pod traffic across clusters.

21

Background: Liqo

3.7.2 Role-Based Access Control

Liqo’s control plane components run under dedicated ServiceAccounts with least-
privilege RBAC rules:

e Reconcilers for ForeignCluster resources can only create and update Liqo

CRDs.

o Namespace offloading logic is scoped to annotated namespaces and cannot
affect unrelated resources.

o Network and reflection components operate within the 1igo namespace, iso-
lating their permissions from application workloads.

These measures establish a zero-trust multi-cluster environment, ensuring only
authenticated and authorized peers can share resources and communicate.

22

Chapter 4

Design:
foreign_cluster_connector

Liqo enables a consumer Kubernetes cluster to ofload namespaces and workloads
onto geographically distributed provider clusters, forming a federated environment
where resources can be shared transparently. In this model, each provider cluster
retains its own Pod network, while Liqo’s networking layer ensures that Pods in
different clusters can communicate via remapped IP addresses advertised by the
consumer.

By default, all inter-provider traffic is routed through the consumer cluster,
which acts as a central hub. This design simplifies routing and service discovery
but introduces inefficiencies when direct paths between providers are available but
unused.

The goal of the foreign cluster_connector design is to address this limitation
by introducing a Kubernetes-native mechanism for declaring and managing direct
tunnels between provider clusters. This approach centralizes awareness and lifecycle
management in the consumer, while enabling optimized, direct provider-to-provider
connectivity without compromising Liqo’s existing architecture.

4.1 Baseline Topology and Routing Behavior

The setup comprises three clusters coordinated by Liqo:

» A Consumer cluster (consumer-cluster), which offloads namespaces to two
provider clusters.

« Two Provider clusters (provider-a and provider-b), each running a copy
of the offloaded workloads.

23

Design: foreign_cluster_connector

Within the ofloaded namespace, a Deployment can schedule Pods onto both
provider-a and provider-b. Liqo’s Virtual Kubelet on the consumer-cluster
ensures that Service discovery continues to work seamlessly across clusters by
injecting EndpointSlice objects into the providers. This lets each provider address
remote Pods using a single, advertised IP range. Liqo’s overlay network then routes
the packets through the consumer-cluster to the correct destination, making the
consumer-cluster the central hub for all cross-provider traffic.

Even if a direct WireGuard tunnel is manually established between the providers,
it is unused by default. Liqo’s standard configuration does not automatically
leverage such direct links, and all inter-provider Pod-to-Pod traffic remains routed
via the consumer cluster.

Gateway client/server

Virtual Kubelet
el
@ Offloaded Namespace

Offloaded Pod

=3 Packet Route

=3 Ligo Tunnel
Manually Created Direct Tunnel
CLUSTER CONSUMER
‘\\ _ PodCIDR: 10.200.0.0/16 4
CLUSTER PROVIDER (Provider-A) \ v y CLUSTER PROVIDER (Provider-B)
/ o S -
N\ PodCIDR:10.200.0.0/16 % L PodCIDR: 10.200.0.0/16 %

Figure 4.1: Topology with consumer-cluster as the hub. A manual direct tunnel
exists between providers, but cross-provider traffic is routed via the consumer.

4.2 Communication Path and Drawbacks

As shown in Figure 4.1, even if a direct tunnel exists between the provider clusters,
traffic still traverses the consumer-cluster.

24

Design: foreign_cluster_connector

The figure illustrates:
 Standard Liqo tunnels between consumer and providers (black lines).

o A manually configured direct tunnel between providers (orange line), which is
unused by default.

 Actual Pod-to-Pod traffic paths (red arrows) that flow via the consumer.

This happens because the consumer has no built-in awareness of manually
created inter-provider links. It does not advertise the direct-tunnel addresses in the
propagated EndpointSlices, which list the remapped Pod addresses for Services,
allowing providers to discover and route to offloaded workloads. Consequently,
providers only learn remapped addresses assigned by the consumer and cannot
automatically route Pod-to-Pod traffic directly over the manual tunnel.

This leads to several drawbacks:

1. Increased Latency: Traffic takes two hops—provider — consumer —
provider—instead of a single direct hop.

2. Higher Egress Usage: Traffic unnecessarily exits one provider and enters
another via the consumer, consuming bandwidth.

3. Single Point of Failure: If the consumer control plane is unavailable,
cross-provider traffic fails even if the direct tunnel itself remains functional.

Because routing decisions depend entirely on the addresses advertised by the
consumer, any manually established direct tunnel remains invisible to Liqo’s default
forwarding logic.

4.3 Proposed Solution: Consumer-Side Custom-
Resource and Controller

To address the inefficiencies described above, the consumer-cluster is extended
with a new Kubernetes CustomResource Definition (CRD) called ForeignCluster
Connection, together with a dedicated controller. The key idea is to let the
consumer cluster declaratively define and automatically manage direct tunnels
between its provider peers.

Instead of relying on manual configuration, the controller automates the en-
tire lifecycle of these provider-to-provider connections. When a ForeignCluster
Connection object is applied, the controller retrieves the necessary kubeconfigs
for both providers, applies the specified networking parameters to establish the
WireGuard tunnel, and finally discovers and stores the resulting remapped Pod

25

Design: foreign_cluster_connector

CIDRs in the CR’s status. This enables the consumer cluster to maintain author-
itative awareness of which provider networks can communicate directly, laying the
foundation for more efficient routing and simplified network management.

4.3.1 Lightweight Declarative API

@ Gateway client/server
Virtual Kubelet

kkkkkk

@ Offloaded Namespace

Offloaded Pod

=3 Packet Route
=3 Ligo Tunnel

Controller
CLUSTER CONSUMER

ForeignClusterCOnnection (CRD)

(
Controller Managed Direct Tunnel /-\

(> @
\\\ PodCIDR: 10.200.0.0/16 /
CLUSTER PROVIDER (Provider-A) \ ¥ , CLUSTER PROVIDER (Provider-B)
Ve i G; N\ Ve G; N
i L-—)
_ PodCIDR:10.200.0.0/16 J g PodCIDR: 10.200.0.0/16 %

Figure 4.2: Updated topology with the ForeignClusterConnection controller.
Green elements highlight the new CustomResource, the controller logic in the
consumer cluster, and the direct tunnel between providers now automatically
managed.

The figure illustrates how the consumer cluster gains centralized management
of direct connectivity between providers. The green elements represent the new
design features:

« A Kubernetes CustomResource (ForeignClusterConnection) in the con-
sumer cluster allows users to declaratively specify the intent to establish a
direct tunnel between any two provider clusters.

26

Design: foreign_cluster_connector

o A dedicated controller running in the consumer cluster watches for these
resources and automates the creation, management, and teardown of the
actual WireGuard tunnels.

e The inter-provider tunnel itself is highlighted in green to emphasize that it
is no longer manually configured out-of-band, but is now established and
maintained automatically by the controller.

This design solves the previous limitation where the consumer had no built-
in awareness of manually created tunnels between providers. By introducing a
declarative interface and embedding all tunnel lifecycle logic in the controller, the
consumer cluster gains authoritative knowledge of the inter-provider topology. Once
a tunnel is created, the controller records the discovered remapped Pod CIDRs in
the CR’s status field. These CIDRs represent the address ranges that provider-a
and provider-b will use to communicate directly over the established tunnel.

Declarative Specification of Parameters FEach ForeignClusterConnection
object includes the identifiers of the two provider clusters (e.g., provider-a and
provider-b) and a set of mandatory networking configuration parameters under
the spec.networking field. These fields define all required tunnel details—such as
MTU size, timeouts, gateway templates, and service exposure policies—so that the
controller can operate without requiring additional manual steps or prior knowledge
of the underlying networking.

No kubeconfig locations or Pod CIDRs need to be manually specified. Instead,
the controller automates the entire process:

o Fetches the required kubeconfigs for both provider clusters from Liqo-generated
Secrets in the consumer cluster.

 Establishes the WireGuard tunnel between the providers using all configuration
parameters defined in the CustomResource.

o Discovers the remapped Pod CIDRs for both providers and records them
in the CR’s status, ensuring the consumer cluster maintains authoritative
knowledge of direct routing possibilities.

Example ForeignClusterConnection CR

Below are two example YAML fragments that illustrate how the ForeignCluster
Connection resource is defined and populated.

27

16

18

19

20

Design: foreign_cluster_connector

Spec section (defined by the user) This snippet shows an example of the
spec section that an user would apply to request the creation of a direct tunnel.
It includes the IDs of the two provider clusters and networking parameters that
instruct the controller how to configure the WireGuard connection.

Listing 4.1: Example ForeignClusterConnection CR spec

apiVersion: networking.liqo.io/vlbetal
kind: ForeignClusterConnection
metadata:
name: provider—a—provider—b
namespace: default
spec:
foreignClusterA: provider—a
foreignClusterB: provider—b
networking:
mtu: 1450
timeoutSeconds: 120
wait: true
serverGatewayType: networking.liqo.io/vlbetal/
wggatewayservertemplates
serverTemplateName: wireguard—server
serverTemplateNamespace: liqo
serverServiceType: NodePort
serverServicePort: 51840
clientGatewayType: networking.liqo.io/vlbetal/
wggatewayclienttemplates
clientTemplateName: wireguard—client
clientTemplateNamespace: liqo

Status section (populated by the controller at runtime) After the controller
establishes the tunnel, it automatically fills in the status field of the resource.
This includes details about the connection state and the remapped Pod CIDRs
that the two providers will use to communicate directly over the tunnel. This is an
example of what the status section might look like after the tunnel is established.

Listing 4.2: Example ForeignClusterConnection CR status

status:

isConnected: true

phase: Connected

lastUpdated: "2025—06—18T12:34:567Z"

foreignClusterANetworking:

podCIDR : "10.200.0.0/16" # provider—a’s local range
remappedPodCIDR: "10.61.0.0/16" # provider—a’s range over the
direct tunnel

foreignClusterBNetworking:

podCIDR : "10.200.0.0/16" # provider—b’s local range

28

Design: foreign_cluster_connector

remappedPodCIDR: "10.63.0.0/16" # provider—b’s range over the
direct tunnel

Controller-Driven Lifecycle

e On create: The controller establishes a Liqo-based WireGuard tunnel between
the two specified providers and writes the resulting remapped Pod CIDRs into
the CR’s status.

o On delete: The controller tears down that specific provider-to-provider tunnel
and clears the associated CIDRs, restoring the system to its original state.

By embedding these actions in the reconcile loop, direct links become fully declar-
ative: applying or deleting a ForeignClusterConnection object is sufficient to
create or remove the tunnel.

Consumer-Centric Awareness Storing the remapped Pod CIDRs in the CR’s
status ensures that the consumer cluster maintains authoritative, persistent knowl-
edge of which provider networks can communicate directly. This centralized
awareness enables consistent management of inter-provider shortcuts and provides
the foundation for future enhancements such as dynamic route advertisement or
policy-driven optimizations.

4.3.2 Key Advantages

e Declarative and GitOps-Friendly Automation: Users define direct
tunnels simply by applying a ForeignClusterConnection resource, without
needing manual commands or custom scripts. The controller automates
the entire lifecycle—retrieving kubeconfigs, applying all network settings,
and creating or tearing down tunnels. This declarative model aligns with
Kubernetes best practices and GitOps workflows, ensuring that connectivity
remains reproducible, auditable, and consistent across different environments.

o Centralized, Authoritative Awareness: By storing remapped Pod CIDRs
in each ForeignClusterConnection’s status, the consumer cluster maintains
authoritative knowledge of which provider networks can communicate directly.
This centralized approach avoids fragmentation of configuration and enables
the consumer to act as the single source of truth for inter-provider connectivity.
It lays the groundwork for the consumer to potentially inform providers about
direct paths in the future, improving service discovery and routing consistency.

29

Design: foreign_cluster_connector

e Uniform and Scalable Management Across Providers: Managing
tunnels declaratively through Kubernetes manifests ensures consistent behavior
even as the federation grows. Adding new connections between any pair of
providers becomes as simple as applying a new CR, making the system
inherently scalable and reducing the risk of human error when managing
multiple connections in complex topologies.

* Resilience and Improved Network Performance: Tunnels created
through ForeignClusterConnection persist independently of the consumer’s
control plane availability. Even if the consumer cluster experiences downtime,
existing direct tunnels between providers continue to operate until the CR is
explicitly removed. This ensures higher availability for inter-provider traffic.
Moreover, by enabling direct paths, the system reduces latency and avoids
unnecessary egress through the consumer cluster, improving both performance
and bandwidth efficiency.

o Foundation for Future Enhancements: By capturing remapped Pod
CIDRs and connection state in the CR’s status, the design is prepared for
future capabilities. This includes the potential for automatic EndpointSlice
rewriting to advertise direct addresses to providers, policy-driven routing
decisions based on SLA requirements or bandwidth constraints, and integration
with observability or auditing dashboards that visualize all active inter-provider
tunnels.

4.4 Architectural Impact

This design represents a clear architectural shift for Liqo-based federations: moving
from a strictly consumer-mediated routing model to one where the consumer
cluster coordinates and manages direct provider-to-provider connectivity in a fully
declarative way.

Rather than introducing separate tooling or manual processes, the solution
integrates natively with Kubernetes, using Custom Resources and controllers to
unify configuration and lifecycle management. This approach ensures consistency
across clusters, simplifies operations, and maintains compatibility with GitOps
workflows.

By centralizing tunnel awareness and management in the consumer, the ar-
chitecture improves resilience, reduces unnecessary traffic through the hub, and
prepares the ground for future enhancements such as dynamic routing policies or
EndpointSlice optimization.

This concludes the design overview, providing the context and motivation for
the implementation details described in the next chapter.

30

Chapter 5

Implementation of the
foreign_cluster_connector
Controller

This chapter provides a technical breakdown of the foreign cluster_connector
Operator implementation. It begins by outlining the CustomResourceDefinition
schema and its role in driving controller logic, and then describes the project
scaffolding created via Kubebuilder along with the resulting file structure. It also
details the controller code itself, covering the phases of the Reconcile loop, routines
for establishing and tearing down tunnels, helpers for status updates, and functions
for CIDR discovery. An end-to-end example is included to demonstrate the entire
reconciliation workflow in practice.
The complete source code is publicly available in the official repository [10].

5.1 Core Components

The implementation relies on two fundamental elements: the Operator, responsible
for automating the lifecycle of cross-cluster tunnels by reacting to Kubernetes
events and using Liqo networking libraries, and the CustomResourceDefinition,
which defines the schema through which connections are declared (via spec fields)
and status is reported (via status fields) for visibility into network state and errors.

5.1.1 Operator Overview

An Operator in Kubernetes is a specialized controller that extends the API with
custom logic. The foreign cluster_connector Operator registers a Reconciler

31

Implementation of the foreign_cluster_connector Controller

for the ForeignClusterConnection CRD and runs a continuous loop (Reconcile)
whenever a CR instance changes. In practice, it performs these steps:

1. Watch the CRD: Uses controller-runtime to subscribe to events on Foreign
ClusterConnection objects.

2. Fetch Kubeconfigs: Reads Liqo-generated Secrets (ligo-tenant-<clustery
/kubeconfig-controlplane-<cluster>) and writes temporary kubeconfig

files.

3. Use Liqo Networking Libraries: Initializes two factory.Factory clients
(local and remote), populates a network.Options struct from the CR’s
spec.networking, and calls RunConnect or RunReset.

4. Patch Status: Updates status.phase, status.isConnected, and network
CIDRs in status.foreignCluster?Networking.

5. Handle Deletion: Detects DeletionTimestamp, runs teardown logic, re-
moves the finalizer, and lets Kubernetes garbage-collect the CR.

The Operator retrieves Liqo-generated kubeconfig secrets, uses the controller-
runtime client to manage CustomResources, initializes networking factories with
the CR’s networking parameters, runs the connection or teardown routines, and
patches the CR status with phase, connectivity flag, and CIDR details—resulting
in deterministic, programmatic tunnel provisioning and cleanup.

5.1.2 Custom Resource Definition

The CustomResourceDefinition (CRD) defines the Kubernetes API schema for the
new resource type ForeignClusterConnection. It specifies the spec fields where
users declare which clusters to connect and how, and the status fields where the
Operator records progress, errors, and networking details.

CRD Manifest (YAML)

The full CRD YAML foreignclusterconnections.yaml is maintained in the
project repository at config/crd/bases/. Below is an excerpt highlighting the
key spec and status schema fields that users and the Operator interact with:

Listing 5.1: Excerpt of the ForeignClusterConnection CRD schema

1| spec:

2 type: object

3 required: [foreignClusterA , foreignClusterB |
x properties:

32

NN N NN
S kR W N = O

WO N NN
o3

Implementation of the foreign_cluster_connector Controller

foreignClusterA :
type: string
foreignClusterB :
type: string
networking :
type: object
properties:
mtu: integer
serverGatewayType: string
clientGatewayType: string
serverTemplateName: string
clientTemplateName: string
serverServiceType: string
serverServicePort: integer
timeoutSeconds: integer
wait: boolean

status:
type: object
properties:
isConnected: boolean
phase: string
errorMessage: string
foreignClusterANetworking:
type: object
properties:
podCIDR: string
remappedPodCIDR: string
foreignClusterBNetworking:
type: object
properties:
podCIDR: string
remappedPodCIDR: string
lastUpdated: string

Note: This excerpt omits standard metadata, versioning, subresources, and printer
column definitions for clarity. The complete CRD manifest, including full OpenAPI
validation details, is available in the project repository.

Spec & Status Fields

Users declare the desired connection in the spec block, while the Operator records
its observed state in the status block. Key fields include:

o spec.foreignClusterA / spec.foreignClusterB Identifiers of the provider
clusters to connect. These specify which Liqo-generated kubeconfig Secrets
the Operator retrieves to establish the connection.

33

Implementation of the foreign_cluster_connector Controller

o spec.networking Defines the complete set of tunnel configuration options:

— mtu: sets the WireGuard interface MTU.

— serverGatewayType / clientGatewayType: specify the transport mech-
anism (typically wireguard).

— serverTemplateName / clientTemplateName: optionally reference cus-
tom Gateway CR templates for advanced setups.

— serverServiceType / serverServicePort: define how the server ex-
poses its service (e.g., ClusterIP, LoadBalancer, NodePort).

— timeoutSeconds: maximum duration before connect or disconnect opera-
tions time out.

— wait: if true, instructs the Operator to wait until the tunnel is fully

established before completing.

o status.isConnected A boolean flag indicating whether the GatewayServer
and GatewayClient resources were successfully created and reconciled.

» status.phase Represents the connection’s lifecycle state as managed by
the Operator, with values such as Pending, Connecting, Connected, or
Failed—making reconciliation progress easy to track.

o status.errorMessage Records any error encountered during connection or
teardown, making failures immediately visible via kubectl describe.

o status.foreignClusterA(B)Networking Populated after tunnel creation
by reading Liqo’s Network CRs in the tenant namespaces. Each contains:

— podCIDR: the original Pod network range on that cluster.

— remappedPodCIDR: the translated CIDR range used over the overlay tun-
nel.

o status.lastUpdated An RFC3339 timestamp marking when the Operator
last updated the status—useful for auditing and troubleshooting.

5.2 Project Generation with Kubebuilder

Scaffolding the foreign cluster_connector starts with Kubebuilder. A few CLI

commands and Go-level annotations set up module metadata, API types, controller
stubs, CRD schemas, RBAC rules, and optional webhook or metrics plumbing.

34

N

Implementation of the foreign_cluster_connector Controller

5.2.1 Initializing the Module

The kubebuilder init command lays the foundation:

kubebuilder init \
—domain networking.liqo.io \
—repo github.com/youruser/foreign_cluster_ connector

Behind the scenes, this command:

o Creates go.mod and go.sum for dependency management.

« Emits a PROJECT file defining the API domain (networking.liqo.io) and
module path.

» Bootstraps folders: api/, internal/controller/, config/, along with stubs
for webhooks and metrics servers.

o Pulls in controller-runtime and client-go dependencies, enabling controller
development without manual imports.

5.2.2 Creating the API

Next, the create api command scaffolds both the type definitions and a reconciler
skeleton:

kubebuilder create api \
——group networking \
—version vlbetal \
—%kind ForeignClusterConnection

This generates:

e api/vibetal/foreignclusterconnection_types.go, pre-populated with emptyi
Spec and Status structs plus markers for root object and status subresource.

o internal/controller/foreignclusterconnection_controller.go, with a
stubbed Reconcile method and RBAC markers commented in.

« A CRD template under config/crd/bases/, ready to be completed by
controller-gen.

o Updates to main.go registering the new API scheme and wiring up the
reconciler with the manager.

35

B W N e

-~

10

11

12

13

Implementation of the foreign_cluster_connector Controller

5.2.3 Generating Code and Manifests

Kubebuilder uses structured Go annotations to automate both code and manifest
generation. Two standard Make targets help keep the Go code and manifest
definitions consistent:

« make generate regenerates Go code derived from the markers in the API
types, including deepcopy methods and interface implementations. Typically
used whenever the CRD Go structs are modified.

» make manifests invokes controller-gen to produce the CRD YAML (in-
cluding OpenAPI validation, printer columns, and subresources) as well as
the RBAC Role and RoleBinding manifests. This ensures Kubernetes has the
correct resource definitions and permissions.

A typical sequence during development:

make generate
make manifests

Example Kubebuilder Annotations:

//
//

//

In api/vlbetal/foreignclusterconnection_ types.go

+kubebuilder:object : root=true

+kubebuilder :subresource:status

+kubebuilder:resource:singular=foreignclusterconnection ,categories
=liqo ,shortName=fcc ; fcconnection

+kubebuilder : printcolumn :name="ClusterA " type=string ,JSONPath=".
spec . foreignClusterA °

+kubebuilder : printcolumn :name="ClusterB" type=string ,JSONPath=".
spec . foreignClusterB *

+kubebuilder: printcolumn :name="Connected " , type=boolean ,JSONPath=".
status .isConnected *

+kubebuilder: printcolumn :name="Phase" ,type=string ,JSONPath=".
status.phase

+kubebuilder : printcolumn :name="A—CIDR" | type=string ,JSONPath=".
status.foreignClusterANetworking .remappedPodCIDR *

+kubebuilder : printcolumn :name="B-CIDR" | type=string ,JSONPath=".
status . foreignClusterBNetworking .remappedPodCIDR ¢

In internal/controller/foreignclusterconnection controller.go
+kubebuilder:rbac: groups=networking.liqo.io ,resources=
foreignclusterconnections ,verbs=get;list ;watch;create;update;patch
;delete

+kubebuilder:rbac:groups=networking.liqo .io ,resources=
foreignclusterconnections/status ,verbs=get;update;patch

36

Implementation of the foreign_cluster_connector Controller

15| // +kubebuilder :rbac: groups=networking.liqo .io,resources=
foreignclusterconnections/finalizers ,verbs=update
16| // +kubebuilder:rbac:groups="",resources=secrets , verbs=get; list ;watch

nn

These annotations are processed by controller-gen during the Make targets to
keep Go types, generated code, CRD schemas, and RBAC roles synchronized and
up to date.

5.2.4 Project Structure

After running the Kubebuilder commands along with make generate and make
manifests, the directory layout typically appears as follows:
foreign cluster_connector/
| Makefile
| PROJECT
| go.mod
| _go.sum
| cmd/
lg,manager/
main.go
| _api/
| vibetal/
L,foreignclusterconnection_types.go
| _internal/
| controller/
L,foreignclusterconnection_controller.go
| _config/
crd/
| bases/
rbac/
ig,role*.yaml
manager/
manager.yaml
Directory responsibilities:

o Makefile, go.mod, go.sum, PROJECT: define build targets, module
dependencies, and Kubebuilder configuration.

« cmd/manager/main.go: initializes the controller manager, sets up leader
election and metrics endpoints, and registers the foreign_cluster_connectox
reconciler.

» api/vlbetal /foreignclusterconnection__types.go: declares the Foreign

37

Implementation of the foreign_cluster_connector Controller

ClusterConnection CRD Go type, including validation tags, default values,
and printer-column definitions used in the generated CRD YAML.

« internal/controller/foreignclusterconnection__controller.go: imple-
ments the Reconcile loop and supporting logic for kubeconfig retrieval, net-
working setup with Liqo libraries, CIDR discovery, and status management.

« config/crd/bases: contains the generated CRD YAML manifest, kept syn-
chronized via controller-gen.

« config/rbac: includes Role and RoleBinding manifests granting the permis-
sions derived from RBAC markers in the Go code.

« config/manager: defines the Kubernetes Deployment manifest for the op-
erator, specifying container image, resource requirements, and environment
configuration.

5.3 Controller Implementation

This section dives into the core of the controller code. It explains what happens
inside the Reconcile loop (fetching resources, handling deletions, finalizers, idem-
potence checks, status initialization, and the connection flow), and then describes
the helper methods for connecting, disconnecting, updating status, and retrieving
CIDR information.

5.3.1 Reconcile Loop

The heart of the controller is the Reconcile method, where all decision logic resides.
The method declaration and initial resource fetch logic are shown below:

Listing 5.2: Reconcile signature and initial fetch

func (r *ForeignClusterConnectionReconciler) Reconcile (ctx context.
Context, req ctrl.Request) (ctrl.Result, error) {

logger := log.FromContext(ctx)

logger . Info("Reconciling ForeignClusterConnection", "namespace"
S -))

req.Namespace, "name"', req.Name)

// 1. Fetch the ForeignClusterConnection instance
var connection networkingvlbetal.ForeignClusterConnection
if err := r.Get(ctx, req.NamespacedName, &connection); err != nil
{
// Ignore not—found errors (resource deleted)
return ctrl.Result{}, client.IgnoreNotFound (err)

38

11

12

Implementation of the foreign_cluster_connector Controller

// ... proceed with reconcile steps

}

The reconcile loop is structured into several distinct phases:

Deletion Handling

After retrieving the ForeignClusterConnection resource (stored in connection),
the controller first checks whether the resource has a non-zero DeletionTimestamp.
This indicates that the user has requested deletion of the resource, requiring
appropriate cleanup:

Listing 5.3: Deletion and teardown logic

N

if !connection.ObjectMeta.DeletionTimestamp.IsZero () {
logger . Info ("ForeignClusterConnection is being deleted , starting

disconnection", "name', req.Name)
if err := r.disconnectLiqoctl(ctx, &connection); err != nil {
logger . Error (err, "Error during disconnection")

return ctrl.Result{}, err

// Remove finalizer so Kubernetes can garbage—collect
controllerutil.RemoveFinalizer(&connection, finalizerName)
if err := r.Update(ctx, &connection); err != nil {

return ctrl.Result{}, err

logger . Info (" Finalizer removed, ForeignClusterConnection can be
deleted", "name", req.Name)
return ctrl.Result{}, nil

Key points:

e A non-zero DeletionTimestamp indicates a delete event.
o disconnectLiqoctl performs the tunnel teardown.

e RemoveFinalizer ensures Kubernetes can remove the CR after cleanup is
completed.

Finalizer Management

If the CR is not being deleted, the next step is to ensure that a finalizer is present
so that future deletions will trigger the controller’s cleanup routine:

39

Implementation of the foreign_cluster_connector Controller

Listing 5.4: Adding a finalizer if it doesn’t exist

i|if !controllerutil.ContainsFinalizer(&connection, finalizerName) {

2 logger . Info ("Adding finalizer "', "name", req.Name)
controllerutil. AddFinalizer(&connection, finalizerName)

| if err := r.Update(ctx, &connection); err != nil {

5 return ctrl.Result{}, err

6 }

7|}

Key points:

o If the list of finalizers on the CR does not include finalizerName, it is
appended.

e The CR is then updated to persist the finalizer.
o The presence of the finalizer guarantees that Reconcile will be invoked on

deletion to perform cleanup.

Idempotence Check

To avoid re-creating a tunnel if it is already active, the controller checks the
Status.IsConnected flag:

Listing 5.5: Skip if already connected

if connection.Status.IsConnected {
logger .Info (" Clusters already connected"', "clusterA", connection.
Spec. ForeignClusterA , "clusterB", connection.Spec.ForeignClusterB)
return ctrl.Result{}, nil

If Status.IsConnected is true, the Reconcile invocation terminates immedi-
ately, as the desired state is already achieved.
Status Initialization

When a CR is first created, Status.Phase is typically empty. It is initialized to
Pending:

Listing 5.6: Initialize status on first reconcile

1| if connection.Status.Phase =— "" {
2 connection.Status = networkingvlbetal.
ForeignClusterConnectionStatus{
Phase: "Pending" ,
| IsConnected: false ,
5 LastUpdated: time.Now().Format (time.RFC3339),

40

Implementation of the foreign_cluster_connector Controller

ErrorMessage: "',

}

if err := r.Status().Update(ctx, &connection); err != nil {
logger.Error(err, "Error initializing status")

return ctrl.Result{}, err

After this update, connection.Status.Phase is set to Pending and Status.
IsConnected to false.
Connection Flow

Once the CR’s status is initialized and no finalizer is blocking deletion, the controller
sets the phase to Connecting and invokes executeLiqoctlConnect to establish
the tunnel:

Listing 5.7: Connection flow in Reconcile

logger . Info ("Starting connection", "clusterA", connection.Spec.
ForeignClusterA , "clusterB", connection.Spec.ForeignClusterB)

// 1. Update status to "Connecting'

if err := r.updateStatus(ctx, &connection, "Connecting", ""); err !=
nil {
return ctrl.Result{}, err

}

// 2. Run the connect routine

output, err := r.executeLiqoctlConnect(ctx, &connection)

if err != nil {
// 2a. On error, log and mark status "Failed"
logger . Error (err, "Error during liqoctl connect", "output",
output)
_ = r.updateStatus(ctx, &connection, "Failed",

fmt. Sprintf (" Error: %v, Output: %s", err, output))
return ctrl.Result{}, err

}

// 3. On success, patch status to "Connected'

logger . Info (" Connection succeeded", "clusterA", connection.Spec.
ForeignClusterA , "clusterB", connection.Spec.ForeignClusterB)

if err := r.updateStatus(ctx, &connection, "Connected", ""); err !=
nil {
return ctrl.Result{}, err

}

// 4. Requeue after 30s to catch any health regressions
return ctrl.Result{RequeueAfter: 30 % time.Second}, nil

41

w N

Implementation of the foreign_cluster_connector Controller

In more detail:

1. Set Phase to Connecting. The updateStatus method patches status.
phase = "Connecting" and records the current timestamp, indicating that
the operator is preparing to establish the tunnel.

2. Invoke executeLiqoctlConnect. This function performs all necessary steps
to create the network tunnel between clusters. It handles credential retrieval,
parameter configuration, and the execution of the connection operation.

3. Handle Errors. If executeLiqoctlConnect fails, the controller logs the error
and updates the CR status to phase = "Failed", including diagnostic details
in errorMessage. This ensures failures are easily visible for troubleshooting
via kubectl describe.

4. Mark as Connected. If the connection is successful, updateStatus is called
with "Connected", also setting status.isConnected = true. This indicates
that the overlay tunnel is active and ready for use.

5. Requeue for Health Checks. Returning ctrl.Result{RequeueAfter:
30s} schedules another reconciliation in 30 seconds. This periodic check helps
detect and address connectivity regressions or stale status information.

5.3.2 Connection Logic

The executeLiqoctlConnect method implements the full sequence required to
establish the network tunnel between clusters. Its implementation is shown below:

Listing 5.8: executelLiqoctlConnect implementation

func (r *ForeignClusterConnectionReconciler) executeLiqoctlConnect (
ctx context.Context,
connection xnetworkingvlbetal.ForeignClusterConnection ,

) (string, error) {
// 1. Load kubeconfigs

kubeconfigA , err := r.getKubeconfigFromLiqo (ctx, connection.Spec.
ForeignClusterA)
if err != nil {

return "", fmt.Errorf("error retrieving kubeconfig for
ForeignClusterA: %v", err)
}
defer os.Remove(kubeconfigA)
kubeconfigB, err := r.getKubeconfigFromLiqo (ctx, connection.Spec.
ForeignClusterB)
if err != nil {

42

Implementation of the foreign_cluster_connector Controller

return "', fmt.Errorf("error retrieving kubeconfig for
ForeignClusterB: %v", err)

}

defer os.Remove(kubeconfigB)

// 2. Set timeout

timeout := 120 * time.Second
if connection.Spec.Networking. TimeoutSeconds > 0 {
timeout = time.Duration(connection.Spec.Networking.

TimeoutSeconds) * time.Second

}

ctx, cancel := context.WithTimeout(ctx, timeout)
defer cancel ()

// 3. Imnitialize factories
os.Setenv ("KUBECONFIG" , kubeconfigA)

localFactory := factory.NewForLocal()
if err := localFactory.Initialize (); err != nil {

return "', fmt.Errorf("localFactory initialization error: %v'
, err)

}

os.Setenv ("KUBECONFIG" , kubeconfigB)

remoteFactory := factory.NewForRemote ()
if err := remoteFactory.Initialize (); err != nil {

return "", fmt.Errorf("remoteFactory initialization error: %v
", err)

}

// Reset KUBECONFIG back to cluster A for operations
os.Setenv ("KUBECONFIG" , kubeconfigA)

localFactory .Namespace = "'

remoteFactory . Namespace =

non

// 4. Populate network.Options from the CR spec

netCfg := connection.Spec.Networking
opts := network.NewOptions(localFactory)
opts.RemoteFactory = remoteFactory

opts .MIU = int (netCfg .MTU)

opts.ServerGatewayType = netCfg.ServerGatewayType

opts. ClientGatewayType = netCfg.ClientGatewayType
opts.ServerTemplateName = netCfg.ServerTemplateName
opts.ServerTemplateNamespace = netCfg.ServerTemplateNamespace
opts.ClientTemplateName = netCfg.ClientTemplateName
opts.ClientTemplateNamespace = netCfg.ClientTemplateNamespace
opts.ServerServiceType.Set (netCfg.ServerServiceType)

opts. ServerServicePort = netCfg.ServerServicePort
opts.Timeout = timeout

43

Implementation of the foreign_cluster_connector Controller

}

opts.Wait = netCfg.Walit
// 5. Configure output printers
localFactory . Printer = output.NewLocalPrinter (true, true)

remoteFactory.Printer = output.NewRemotePrinter (true, true)

// 6. Execute connection

fmt . Println ("Executing ’network connect ’...")
if err := opts.RunConnect(ctx); err != nil {
return "', fmt.Errorf("error during ’‘network connect’: %v",
err)
// 7. After connect, fetch and patch CIDRs into status
if err := r.populateCIDRsFromNetworkConfig(ctx, connection, x*
localFactory , xremoteFactory); err != nil {
return "', fmt.Errorf("unable to load CIDRs: %v"', err)
return "Operation ’'network connect’ completed successfully.", nil

Breaking down the main steps:

1.

Kubeconfig Extraction: Loads the kubeconfig Secrets for both clusters by
calling getKubeconfigFromLiqo, which writes each config to a temporary file
with any namespace binding removed. These files are then used to authenticate
with the respective clusters.

Timeout Setup: Configures a context.Context with a deadline derived from
spec.networking.timeoutSeconds to ensure the operation has a bounded
duration.

Factory Initialization: Sets the KUBECONFIG environment variable to the
extracted paths and initializes one factory per cluster. The Namespace field in
each factory is explicitly cleared to allow Liqo to automatically determine or
create the tenant namespace following its standard naming convention (e.g.,
ligo-tenant-<foreign-cluster>).

Options Assembly: Populates a network.Options structure with all fields
from connection.spec.networking, including MTU, gateway types, tem-
plate names, service exposure settings, timeout, and wait flag.

Connection Execution: Invokes RunConnect, which creates or updates
the required CustomResources: a GatewayServer in ForeignClusterB and a
GatewayClient in ForeignClusterA. Controllers in each cluster then reconcile
these resources to establish the encrypted tunnel.

44

N}

o

Implementation of the foreign_cluster_connector Controller

6. CIDR Population: Calls populateCIDRsFromNetworkConfig to retrieve
the Pod CIDR and remapped CIDR from the newly created Network resources
in each tenant namespace, updating them in connection.status.

Kubeconfig Extraction

The helper getKubeconfigFromLiqo is responsible for the following steps:

Listing 5.9: getKubeconfigFromLiqo extracts and writes a temp kubeconfig

func (r *ForeignClusterConnectionReconciler) getKubeconfigFromLiqo (
ctx context.Context ,
clusterName string ,

) (string, error) {
namespace := fmt.Sprintf("liqo—tenant—%s", clusterName)
secretName := fmt.Sprintf("kubeconfig—controlplane—%s",
clusterName)

var secret corevl.Secret

if err := r.Get(ctx, client.ObjectKey{Namespace: namespace, Name:
secretName}, &secret); err != nil {

return "', fmt.Errorf("Error retrieving Secret %s in
namespace %s: %v", secretName, namespace, err)
¥
data, exists := secret.Data["kubeconfig"]
if lexists {

return "', fmt.Errorf("Secret %s missing ’'kubeconfig’ key",

secretName)

}

config, err := clientcmd.Load(data)
if err != nil {

return "', fmt.Errorf("Error parsing kubeconfig: %v', err)
if config.CurrentContext =— "" {

return "', fmt.Errorf('Kubeconfig has no current context")

}

config.Contexts[config.CurrentContext |. Namespace =

modified , err := clientcmd.Write(*config)
if err := os.WriteFile(kubeconfigPath, modified, 0600); err !=
nil {

return "', fmt.Errorf("Error writing kubeconfig file: %v",
err)
}

return kubeconfigPath , nil

Core details:

45

Implementation of the foreign_cluster_connector Controller

o Fetches the Secret named kubeconfig-controlplane-<cluster> from the
ligo-tenant-<cluster> namespace.

» Extracts and parses the kubeconfig data from the Secret.

« Removes any namespace binding from the current context to allow Liqo to
set or create the tenant namespace following its standard naming convention
(e.g., ligo-tenant-<foreign-cluster>).

o Writes the modified configuration to a temporary file and returns its path.

5.3.3 Status Management

Patching the status subresource is essential to maintain an up-to-date view of the
connection’s state. The updateStatus helper method centralizes this responsibility:

Listing 5.10: updateStatus helper

func (r *ForeignClusterConnectionReconciler) updateStatus (
ctx context.Context,
connection snetworkingvlbetal.ForeignClusterConnection
phase, errorMsg string ,

) error {
patch := client.MergeFrom (connection .DeepCopy ())

connection.Status.Phase = phase
connection. Status.LastUpdated = time.Now() .Format (time.RFC3339)

connection.Status. ErrorMessage = errorMsg

connection.Status.IsConnected = (phase = "Connected")

if err := r.Status().Patch(ctx, connection, patch); err != nil {
log . FromContext(ctx).Error(err, "Error updating status")

return err

}

return nil

}

Whenever the phase transitions (Pending, Connecting, Connected, Failed) or an
error needs to be recorded, this method ensures that only the status subresource
is updated to reflect the current state of the connection.

5.3.4 CIDR Retrieval

Once the tunnel has been established, it is important to collect and record the
remapped Pod CIDRs for both clusters. Storing this information in the central
resource ensures that the system has an accurate view of the address mappings
used over the direct connection, which can be leveraged for more advanced traffic

46

-

10

11

12

13

14

18

NN NN
A W N

o

NN N NN
o3} ~ C

Implementation of the foreign_cluster_connector Controller

management or monitoring in the future. This step is implemented through
two helper functions: populateCIDRsFromNetworkConfig, which coordinates the
status update, and retrieveCIDRInfoFromFactory, which retrieves the necessary
network configuration from each cluster.

Listing 5.11: populateCIDRsFromNetworkConfig and CIDR helper

func (r *ForeignClusterConnectionReconciler)
populateCIDRsFromNetworkConfig (
ctx context.Context ,
connection xnetworkingvlbetal.ForeignClusterConnection ,
localFactory factory.Factory,
remoteFactory factory.Factory,

) error {

update := connection.DeepCopy ()
cidrA, err := r.retrieveCIDRInfoFromFactory(ctx, localFactory ,
connection . Spec.ForeignClusterB)
if err != nil {

return fmt.Errorf("error retrieving CIDR from cluster A: %w",
err)
}
cidrB, err := r.retrieveCIDRInfoFromFactory (ctx, remoteFactory ,
connection.Spec.ForeignClusterA)
if err != nil {

return fmt. Errorf("error retrieving CIDR from cluster B: %w",
err)

}

update . Status. ForeignClusterANetworking = cidrA
update . Status.ForeignClusterBNetworking = cidrB

patch := client .MergeFrom(connection)
if err := r.Status().Patch(ctx, update, patch); err != nil {

)

return fmt.Errorf("error updating status with CIDRs: %w", err
¥

return nil

}

func (r *ForeignClusterConnectionReconciler)
retrieveCIDRInfoFromFactory (
ctx context.Context,
factory factory.Factory,
remoteClusterName string

) (networkingvlbetal.ClusterNetworkingStatus, error) {
var result networkingvlbetal.ClusterNetworkingStatus

47

46

Implementation of the foreign_cluster_connector Controller

tenantNs := fmt.Sprintf("liqo—tenant—%s", remoteClusterName)
name := fmt.Sprintf('%s—pod", remoteClusterName)
¢, err := client .New(factory.RESTConfig, client.Options{Scheme: r
.Scheme})
if err != nil {

return result, fmt.Errorf("error creating client from factory
: Y%w", err)
¥
var netCfg ipamvlalphal.Network
if err := c.Get(ctx, client.ObjectKey{Namespace: tenantNs, Name:
name}, &netCfg); err != nil {

return result , fmt.Errorf("error retrieving Network CR in
namespace %q: %w"', tenantNs, err)

}

result .PodCIDR = string (netCfg.Spec.CIDR)
result . RemappedPodCIDR = string (netCfg. Status.CIDR)
return result , nil

Explanation:

» populateCIDRsFromNetworkConfig coordinates the retrieval of CIDR infor-
mation from both clusters and patches it into the ForeignClusterConnection
resource’s status.

o retrieveCIDRInfoFromFactory creates a Kubernetes client using the fac-
tory’s configuration and reads the Network CustomResource in the corre-
sponding tenant namespace.

o From the Network resource, it extracts both the original Pod CIDR and the
remapped CIDR assigned for communication over the tunnel.

o These values are stored in the status fields ForeignClusterANetworking and
ForeignClusterBNetworking, making them visible via standard commands
like kubectl get fcc -o yaml.

Overall, recording these CIDR values completes the connection setup phase by
ensuring that the status subresource consistently reflects the actual Pod network
mappings between clusters. This supports effective monitoring and facilitates
troubleshooting through standard Kubernetes tooling.

48

I I
N R O © ™

AR W

WowWw NN NN N NN
H O © 0 N O U C

¥

33

34

35

Implementation of the foreign_cluster_connector Controller

5.3.5 Disconnection Logic

When a ForeignClusterConnection is deleted (or a new connection attempt fails
partway through), the operator must ensure that any established tunnel is correctly
torn down. This is handled by the disconnectLiqoctl method:

Listing 5.12: disconnectLiqoctl implementation

func (r *ForeignClusterConnectionReconciler) disconnectLiqoctl(
ctx context.Context,
connection snetworkingvlbetal.ForeignClusterConnection ,

) error {

logger := log.FromContext(ctx)

logger.Info("Starting disconnection", "name", connection .Name)
kubeconfigA , err := r.getKubeconfigFromLiqo (ctx, connection.Spec.
ForeignClusterA)

if err != nil {

return err

}

defer os.Remove(kubeconfigA)
kubeconfigB, err := r.getKubeconfigFromLiqo(ctx, connection.Spec.
ForeignClusterB)
if err != nil {
return err
¥

defer os.Remove(kubeconfigB)

ctx, cancel := context.WithTimeout(ctx, 30xtime.Second)
defer cancel()

os.Setenv ("KUBECONFIG" , kubeconfigA)

localFactory := factory.NewForLocal()
if err := localFactory.Initialize (); err != nil {
return fmt.Errorf("error initializing localFactory: %v", err)

}

os.Setenv ("KUBECONFIG" , kubeconfigB)

remoteFactory := factory.NewForRemote ()
if err := remoteFactory.Initialize (); err != nil {
return fmt. Errorf("error initializing remoteFactory: %v", err

)
}

localFactory . Namespace = fmt. Sprintf("liqo—tenant—%s", connection
.Spec.ForeignClusterB)
remoteFactory . Namespace = fmt. Sprintf("liqo—tenant—%s",

connection.Spec.ForeignClusterA)

49

Implementation of the foreign_cluster_connector Controller

}

opts := network.NewOptions(localFactory)
opts.RemoteFactory = remoteFactory
opts.Timeout = 120 % time.Second
opts.Wait = true

localFactory.Printer = output.NewLocalPrinter (true, true)
remoteFactory.Printer = output.NewRemotePrinter (true, true)
fmt. Println ("Executing ’'network reset '...")
if err := opts.RunReset(ctx); err != nil {

return fmt.Errorf("error during ’network reset ’: %v', err)
}

fmt. Println ("Operation ’'network reset’ completed successfully.")
return nil

Explanation:

o The method reuses getKubeconfigFromLiqo to obtain the kubeconfigs for

both clusters, ensuring authenticated access to their API servers.

o The Namespace fields on the factories are explicitly set to the tenant namespace

of the *opposite* cluster. This ensures that RunReset operates within the
correct scope and targets only the resources associated with this specific
connection.

Invoking RunReset triggers the deletion of all CustomResources related to
the established tunnel (such as GatewayServer, GatewayClient, and other
supporting objects). Liqo’s controllers then reconcile these deletions by tearing
down the WireGuard tunnel and cleaning up any associated configuration
automatically.

This disconnection flow guarantees that resources created for the tunnel are fully
removed when the connection is no longer needed, preventing stale state and
maintaining the integrity of the system.

5.4 Build & Deployment

This section describes how to build, package, deploy, and operate the controller to
manage cross-cluster connections using the ForeignClusterConnection resource.

5.4.1 Build Process

The provided Makefile defines standard targets to support development and
deployment workflows:

50

Implementation of the foreign_cluster_connector Controller

o make build: Compiles the operator into a local binary for testing.

o make docker-build: Builds a Docker image containing the compiled operator.
o make docker-push: Uploads the built image to a container registry.

o make install: Installs the CRDs and RBAC resources into the cluster.

« make run: Runs the operator locally for development.

5.4.2 Deployment

After installing the CRDs and RBAC rules, the operator can be deployed in-cluster
using the provided manifests:

o Update the image reference in config/manager/manager.yaml if needed.

e Deploy the controller with:

kubectl apply —f config/manager/manager.yaml

N

This creates a Deployment in the chosen namespace. The operator Pod will run
with the necessary permissions to watch and reconcile ForeignClusterConnection
resources.

5.4.3 Applying a Sample Resource

Below is an example ForeignClusterConnection manifest to connect two Liqo-
enabled clusters named europe-rome-edge and europe-milan-edge:

Listing 5.13: Sample ForeignClusterConnection Resource

i|apiVersion: networking.liqo.io/vlbetal
>l kind: ForeignClusterConnection

sl metadata:

/| mname: europe—rome—edge—europe—milan—edge
namespace: default

Gl Spec:

7 foreignCluster A : europe—rome—edge

8 foreignClusterB: europe—milan—edge

9 networking:

10 mtu: 1450

11 timeoutSeconds: 120

12 wait: true

51

Implementation of the foreign_cluster_connector Controller

serverGatewayType: networking.liqo.io/vlbetal/
wggatewayservertemplates

serverTemplateName: wireguard—server
serverTemplateNamespace: liqo
serverServiceType: NodePort

serverServicePort: 51840

clientGatewayType: networking.liqo.io/vlbetal/
wggatewayclienttemplates

clientTemplateName: wireguard—client
clientTemplateNamespace: liqo

Key fields:

« foreignClusterA and foreignClusterB specify the clusters to connect.

o The networking section configures tunnel parameters, including gateway
templates, service type, and MTU.

The resource can be applied with:

kubectl apply —f sample—fcc.yaml

Controller reaction to creation Upon creation of a ForeignClusterConnection)|
the controller executes the following steps:

Adds a finalizer to ensure proper cleanup on deletion.

« Initializes the status phase to Pending, then transitions it to Connecting.
o Retrieves kubeconfigs for both clusters from Secrets.

o Initializes factory clients to interact with each cluster.

o Assembles network options from the CR spec.

o Invokes RunConnect, creating the GatewayServer and GatewayClient re-
sources in the respective tenant namespaces.

e Retrieves Pod CIDR and remapped CIDR information from the Network
resources.

o Updates the CR status to Connected with isConnected=true.
52

Implementation of the foreign_cluster_connector Controller

Example: resulting CR with status After successful reconciliation, the
ForeignClusterConnection resource will have a populated status block, such
as:

Listing 5.14: Sample ForeignClusterConnection with status

apiVersion: networking.liqo.io/vlbetal
kind: ForeignClusterConnection

3| metadata :

name: europe—rome—edge—europe—milan—edge
namespace: default

spec:
foreignClusterA: europe—rome—edge
foreignClusterB: europe—milan—edge

networking:
mtu: 1450
status:

phase: Connected
isConnected: true
errorMessage: ""
lastUpdated: "2025—06—24T15:12:057Z"
foreignClusterANetworking:
podCIDR: 10.200.0.0/16
remappedPodCIDR: 10.61.0.0/16
foreignClusterBNetworking:
podCIDR: 10.200.0.0/16
remappedPodCIDR: 10.63.0.0/16

This status provides:

The current connection phase and health (Connected, isConnected=true).

Any error messages (empty in a healthy state).

The last update timestamp.

The original and remapped Pod CIDRs for both clusters.

This allows the connection state to be inspected at any time using standard kubectl
commands.

Controller reaction to deletion When a ForeignClusterConnection is no
longer needed, it can be deleted with:

kubectl delete fcc europe—rome—edge—europe—milan—edge

53

Implementation of the foreign_cluster_connector Controller

Upon deletion:

o The finalizer prevents immediate garbage collection, ensuring that cleanup
completes safely.

e The controller invokes RunReset, which removes all associated custom re-
sources (including GatewayServer, GatewayClient, and other related objects)
in both clusters.

o After successful cleanup, the finalizer is removed, allowing Kubernetes to fully
delete the resource.

This lifecycle ensures that cross-cluster connections are declaratively created, mon-

itored, and fully cleaned up, with the status subresource reflecting the state
throughout their lifecycle.

o4

Chapter 6

Command-Line Utility for
Managing the Controller
and Shortcuts

Managing Kubernetes-native resources such as the ForeignClusterConnection
Custom Resource directly via kubectl is often verbose and error-prone, partic-
ularly when applied across multiple clusters. To streamline day-to-day opera-
tions and accelerate developer workflows, the cli-liqo-shortcut utility intro-
duces a dedicated command-line interface for managing both the lifecycle of the
foreign cluster_connector controller and the setup of direct inter-cluster tun-
nels.

Rather than relying on lengthy kubectl apply commands and hand-written
YAML, the CLI encapsulates common patterns into composable subcommands
with clear syntax, validation, and feedback. This abstraction improves consistency
across environments while maintaining compatibility with Kubernetes primitives
under the hood.

All commands are intended to be executed from the consumer cluster, which
acts as the coordination point for controller deployment and shortcut management.

The full source code is available at the official repository [11].

6.1 Command Structure and Design Goals

The CLI is organized into two primary command groups:

» manager — Deploys and removes the controller from a cluster.

59

Command-Line Utility for Managing the Controller and Shortcuts

o shortcuts — Creates, deletes, and inspects ForeignClusterConnection
resources.

This separation adheres to the principle of separation of concerns: the controller
logic remains decoupled from the shortcut orchestration.
Internally, each command is designed to adhere to the following principles:

o Simplicity: All commands are single-purpose and explicitly named (e.g.,
create, list).

o Idempotence: Repeated invocations are safe and converge to the same state.
o Validation: Parameters such as cluster identifiers are checked client-side.

o Extensibility: Default values can be overridden via flags, enabling script
integration.

6.2 Controller Lifecycle Commands

The manager group exposes two commands to install or remove the controller in
the target cluster.

e liqoshortcut manager install

— Installs the foreign cluster_connector controller and associated CRDs,
RoleBindings, and Deployments.

e liqoshortcut manager uninstall

— Cleans up all installed components, including CRDs and RBAC resources.

— Ensures that existing CRs are deleted gracefully to avoid orphaned final-
izers.

Example

$ liqoshortcut manager install
2|$ liqoshortcut manager uninstall

N

56

N

-~

0

Command-Line Utility for Managing the Controller and Shortcuts

6.3 Shortcut Management Commands

The shortcuts command group enables creation, listing, and deletion of Foreign
ClusterConnection CRs, referred to as "shortcuts'. These are used to establish
peer-to-peer tunnels between provider clusters.

Each shortcut is uniquely parameterized by a pair of provider identifiers, specified
using the -a and -b flags.

e liqoshortcut shortcuts create -a <foreignClusterA> -b <foreignClusterB>

— Creates a new ForeignClusterConnection CR in the consumer cluster.

— Automatically sets the required fields based on internal templates and
naming rules.

e liqoshortcut shortcuts delete -a <foreignClusterA> -b <foreignClusterB%*

— Removes the corresponding CR and triggers teardown of the tunnel.
e liqoshortcut shortcuts list
— Displays all shortcuts currently present in the cluster, along with their

phase, status, and remapped CIDRs.

Example Workflow

Establish a direct tunnel between Rome and Milan clusters
$ liqoshortcut shortcuts create —a europe—-rome—edge —b europe—milan—
edge

Inspect active connections

5/$ liqoshortcut shortcuts list

Remove the shortcut
$ liqoshortcut shortcuts delete —a europe—rome—edge —b europe—milan—
edge

6.4 Auxiliary Logic and Operational Guarantees

Although the CLI interacts exclusively with Kubernetes-native APIs, it bundles
several internal helpers to enhance robustness:

« Waits for controller resources to reach Ready before returning success.

57

Command-Line Utility for Managing the Controller and Shortcuts

o Patches required RBAC permissions into the controller’s service account at
install time.

« Validates the shortcut structure to prevent malformed CRs.

o Normalizes cluster naming to ensure consistency across commands.

Each command reuses type definitions from the controller project to guaran-
tee schema compatibility and forward-compatibility. This encapsulation ensures
predictable behavior and aligns operational safety with Kubernetes best practices.

6.5 Practical Benefits and Recommended Usage

o Lower Entry Barrier: Users without prior experience with Kubernetes
CRDs or YAML can establish tunnels through a concise CLI interface.

 Reduces Errors: Eliminates the need to manually construct YAML mani-
fests.

e Encourages GitOps: CLI invocations can be wrapped in scripts or Makefiles
to support repeatable deployments.

o Integrates with Liqo: The tool assumes Liqo’s naming conventions and
Secret placement, making it a natural fit for existing deployments.

58

Chapter 7

Evaluation

This chapter presents a comparative analysis of indirect (consumer-mediated) and
direct (provider-to-provider) overlay tunnels, under both zero-latency and emulated
WAN conditions. Metrics include ICMP round-trip time (RTT), HTTP GET
latency, TCP throughput and congestion-window behavior, and tunnel provisioning
time. Each subsection groups related charts with detailed captions to guide the
reader through the results.

7.1 Testbed Description

All clusters are instantiated as Docker containers on a single physical host. This
local setup ensures reproducibility and full control over the environment, but lacks
intrinsic network delay or packet loss. Consequently, explicit emulation is required
to simulate realistic WAN conditions and assess the impact of routing strategies
under stress. In this context, the “zero-latency” configuration serves as a reference
point representing the ideal, interference-free baseline.

A central cluster (europe-cloud) peers with two edge clusters (europe-rome
and europe-milan). In each edge cluster, a single-replica nginx Deployment runs
in a dedicated namespace offloaded via Liqo. All tests originate from a client nginx
pod on europe-rome, which issues HT'TP requests targeting the server nginx pod
on europe-milan. Two routing modes are compared:

e Indirect mode: traffic traverses the consumer cluster.
o Direct mode: WireGuard tunnel connects providers end-to-end.
Each routing mode is evaluated under two network scenarios:

o Zero-latency: a reference configuration where the testbed operates without
any injected delay or packet loss, serving as an ideal baseline for comparison.

59

FEvaluation

o Emulated WAN conditions: a delay of 30 ms with a 5ms variance and 0.01 %
packet loss uniformly applied to the WireGuard (1iqo-tunnel) interfaces of
all gateway pods.

WAN conditions are emulated using the Linux tc utility, which applies delay
and loss to each gateway pod’s 1igo-tunnel interface. The following command
configures the desired parameters:

1| tc qdisc add dev liqo—tunnel root netem delay 30ms 5ms loss 0.01%

Here, 1iqo-tunnel refers to the virtual WireGuard interface used for inter-
cluster communication. The netem queuing discipline provides reproducible WAN-
like behavior by introducing latency and controlled packet loss into the overlay
path. This setup enables controlled stress testing in an otherwise delay-free local
environment, consistent with established practices in Kubernetes-based network
experimentation.

7.1.1 ICMP Round-Trip Time

Under the zero-latency configuration, direct provider-to-provider tunneling already
delivers substantial latency improvements over the default consumer-mediated path.
By eliminating the extra forwarding hop through the consumer cluster, the direct
tunnel shortens the data path and reduces processing overhead at each relay.

RTT (zero-latency)

7 6,438
6
5
S 4,082
S 4
2 3,252
2
= 3
s 1,974
2 1,355
l g .

RTT_min RTT_max RTT_avg

m Indirect m Direct

Figure 7.1: Comparison of 100-probe RTT under zero-latency conditions (indirect
vs direct).

Figure 7.1 highlights three key benefits of the direct mode:
60

FEvaluation

» Lower base latency: Removing the intermediary cuts the minimum RTT
by more than 50 %, accelerating the initial packet exchange and improving
responsiveness for control-plane traffic.

+ Reduced average latency: The mean RTT falls by nearly 40 %, which
translates directly into faster round-trip interactions for TCP handshakes,
DNS lookups, and short-lived HT'TP requests.

« Tighter latency distribution: Jitter (max-min RTT) shrinks by roughly
one-third, yielding a more predictable timing envelope that benefits real-time
and streaming applications.

These latency gains under ideal conditions underline the efficiency of a provider-

to-provider overlay, setting a performance baseline that is further amplified when
network delays or losses are introduced.

7.1.2 HTTP GET Latency

Under zero-latency conditions, the elimination of the intermediary hop yields lower
application-layer delays.

HTTP GET Mean Latency (zero-latency)

5,23

Milliseconds
[¥¥]

HTTP Mean Latency

N Indirect M Direct

Figure 7.2: Mean HTTP GET latency under zero-latency conditions, comparing
indirect (5.23 ms) and direct (3.98 ms) routing.

Figure 7.2 shows:

e Mean latency reduction: direct mode decreases average GET time by 24 %,
from 5.23 ms to 3.98 ms.

61

FEvaluation

* Reduced variability: the direct tunnel exhibits a more compact range of
response times, indicating fewer high-latency samples.

o Enhanced consistency: lower and more uniform request durations support
improved performance for time-sensitive applications.

7.1.3 TCP Throughput

The comparison of sustained TCP transfer rates under zero-latency conditions
reveals a clear advantage for direct provider-to-provider tunnels.

TCP Throughput (zero-latency)

405

400

400
395
350
385

Mbit/s

380 378

375
370
365

TCP Throughput

M Indirect M Direct

Figure 7.3: Average TCP throughput under zero-latency conditions: Indirect
mode: 378 Mbits™!; Direct mode: 400 Mbits™ (6 % improvement).

As shown in Figure 7.3, direct routing increases average throughput from
378 Mbit s~! to 400 Mbits~, yielding an improvement of approximately 6 %. This
uplift is achieved by removing the intermediary forwarding hop in the consumer
cluster, thereby eliminating per-packet processing delays and local queue buildup.
The resulting path reduction enables TCP to attain a higher steady-state sending
rate, improving bulk transfer efficiency and optimizing utilization of the available
network capacity.

7.2 Results under Emulated WAN Conditions

Under emulated WAN conditions (with 30 ms delay, 5ms variance, and 0.01 %
packet loss per gateway), the direct provider-to-provider tunnel consistently outper-
forms the indirect mode across all measured metrics. RTT minimum, average, and

62

FEvaluation

maximum values are roughly halved, demonstrating consistently lower end-to-end
delays and moderately reduced jitter. HT'TP GET latency is similarly reduced by
nearly 50 %, enabling more efficient and predictable request handling. Despite
increased delay and loss, TCP throughput remains substantially higher and more
stable, highlighting the robustness of direct tunneling under adverse conditions.

7.2.1 ICMP Round-Trip Time under WAN-like Delay

Figure 7.4 presents the distribution of 100 ICMP probes in both routing modes.
In indirect mode, the minimum, average and maximum RTTs are 113.005ms,
124.719ms and 139.888ms , respectively. Direct mode lowers these values to
54.876 ms, 63.098 ms and 71.984 ms.

RTT (WAN-Emulated)

160

139,888
140 124,719
555 113,005
v
'g 100
= 71,984
g ® 54,876 e
‘5 60
40
20
0
RTT_min RTT max RTT avg

m Indirect m Direct

Figure 7.4: Comparison of 100-probe RTT under emulated WAN conditions
(indirect vs direct).

The direct tunnel halves the base latency (—51 %) and reduces the peak RTT by
over 67ms (—48 %). Notably, the slowest direct-mode probe (71.984 ms) completes
faster than the fastest indirect-mode probe (113.005 ms), removing the intermediary
hop’s impact on worst-case latency and delivering a consistently lower and tighter
latency envelope.

7.2.2 HTTP GET Latency under WAN-like Delay

Application-level request times exhibit even greater divergence when per-hop delay
and loss are introduced. The inherent efficiency of a direct provider-to-provider
tunnel minimizes round-trip handshake overhead and reduces the probability of
retransmission at the HTTP layer.

63

FEvaluation

HTTP GET Mean Latency (WAN-Emulated)

8

253,1

N
93]
(=]

8

127,5

Milliseconds
= =
8 u

o

o
o

(=]

HTTP Mean Latency

B Indirect ® Direct

Figure 7.5: Mean HTTP GET latency under emulated WAN conditions (indirect
vs direct).

Under the indirect routing path, the average HT'TP GET completes in approx-
imately 252ms. By contrast, direct tunneling achieves a mean of 127ms a 50 %
reduction. This halving of latency not only accelerates page load and API responses
but also constricts the tail of the latency distribution, yielding a more determin-
istic user-perceived performance. Such predictability is critical for time-sensitive
applications and high-frequency request patterns.

7.2.3 TCP Throughput under Emulated WAN Conditions

As expected, TCP performance degrades markedly in WAN-like conditions due
to added per-hop delay and loss. The indirect mode achieves approximately
50 Mbit s~!, whereas the direct tunnel maintains 243 Mbit s, demonstrating sub-
stantially improved utilization of the available path.

Under the indirect routing path, TCP throughput falls below 50 Mbits™!, re-
flecting repeated retransmissions and restricted congestion-avoidance growth. In
contrast, the direct tunnel preserves a high, stable rate of 243 Mbits~!—an approx-
imate 380 % increase—indicating more efficient loss recovery and sustained window
expansion despite added per-packet latency and minor loss. Such throughput

resilience is critical for bulk data transfers over multi-region overlays.

64

FEvaluation

TCP Throughput (WAN-Emulated)

243

49,9
i [
0

TCP Throughput

M Indirect M Direct

Figure 7.6: Average TCP throughput under emulated WAN conditions (indirect
vs direct).

7.3 Tunnel Provisioning Time

Provisioning duration for a direct provider-to-provider tunnel was evaluated under
two workflows: manual configuration and controller-driven automation. Manual
setup requires explicit delivery of each provider’s kubeconfig and endpoint details.
In contrast, the automated approach leverages the ForeignClusterConnection
controller: only the identifiers of the two foreign clusters are specified, the necessary
kubeconfig credentials are fetched programmatically, and the central control plane
is informed of the new direct tunnel.

Connection setup time

50 45

Setup Time

mManual ™ Automatic

Figure 7.7: Comparison of direct-tunnel provisioning times: manual setup (29s)
vs. controller-driven setup (455s).

65

Evaluation

Automated provisioning exhibits a 55 % increase in elapsed time (from 29s
to 45s), equivalent to a 16s overhead. This modest penalty is offset by the
elimination of manual credential management, the enforcement of declarative and
repeatable deployment, and the central cluster’s real-time awareness of the direct
connectivity—capabilities not achievable with purely manual configuration.

7.4 Evaluation Summary

Direct provider-to-provider tunnels deliver clear operational and performance
advantages:

o Elimination of the intermediate hop: traffic follows a single WireGuard
path without relaying through the consumer cluster, reducing queuing and
simplifying routing.

o Consistent latency improvements: tighter RTT distributions ensure
predictable response times in both ideal and WAN-like scenarios.

« Better application responsiveness: HTTP request latency drops signifi-
cantly under all conditions, benefiting user-facing services.

e Superior bulk-transfer performance: more stable TCP windows and
reduced retransmissions enable much higher throughput in adverse networks.

o Streamlined, automated provisioning: controller-based setup eliminates
manual credential exchange, offering repeatability and central oversight despite
a slight increase in setup time.

These results demonstrate that controller-managed direct tunnels are an effective
approach for multi-site Kubernetes deployments requiring reliable performance and
simplified operations. Future work will extend this analysis to dynamic network
configurations, larger topologies, and encryption overhead.

66

Chapter 8

Conclusions and Future
Work

This thesis examined a key limitation in current Liqo-based multi-cluster deploy-
ments: the lack of direct, optimized communication paths between provider clusters
in peer-to-peer topologies. By default, Liqo routes all inter-cluster traffic through
the consumer cluster, introducing higher latency, increased egress traffic, and a
potential single point of failure.

To address these challenges, a new approach was designed and implemented based
on a new Kubernetes resource: the ForeignClusterConnection custom resource
definition (CRD). This resource enables declarative management of provider-to-
provider tunnels, with full lifecycle automation handled by a dedicated Kubernetes
Operator. The solution integrates with Liqo’s architecture and leverages its dynamic
discovery and remapping mechanisms, enabling clusters to advertise direct-tunnel
CIDRs while maintaining consistency within the federated control model.

The controller, built using the Kubebuilder framework, demonstrates the feasi-
bility and scalability of this approach. It eliminates the need for manual network
configuration, supports automated status reporting through CRD status fields, and
provides a foundation for centrally managed, policy-driven tunnel optimization in
the future.

Experimental evaluation confirms significant benefits in latency reduction and
resilience under WAN-like conditions. By removing dependence on the consumer
cluster for inter-provider traffic, the solution reduces unnecessary network hops
and improves robustness against consumer cluster failures.

8.1 Future Work

Several promising directions can extend this work:

67

Conclusions and Future Work

o EndpointSlice Rewriting: Develop a dedicated controller to automatically
rewrite EndpointSlices in provider clusters, advertising direct-tunnel CIDRs
when a valid ForeignClusterConnection exists. This would enable optimal
routing without manual annotations or auxiliary configurations.

« Policy-Driven Routing Logic: Integrate SLA-aware policies—such as
latency thresholds, bandwidth quotas, or availability metrics—into the con-
troller to support intelligent routing decisions when multiple paths are available.
Policies could dynamically activate or deactivate tunnels based on real-time
performance data.

o Support for Mesh Topologies: Extend the current design, focused on
pairwise links, to support full mesh topologies. Automatic management
of transit routes (e.g., Rome — Milan — Berlin) could further improve
performance in geographically distributed deployments.

e Security and Trust Expansion: Enhance the existing model, which relies
on Liqo’s built-in authentication and encryption, by integrating with external
certificate authorities or service meshes to enable advanced trust models,
observability, and auditability.

e GitOps and UI Integration: Leverage the declarative nature of the solution
to integrate it into GitOps workflows. Future enhancements could include
dashboards or visual tools for tunnel monitoring and management, providing
metrics, health status, and topology visualization.

o Compatibility with Non-Liqo Clusters: Investigate adaptation for non-
Ligo Kubernetes clusters through an adapter or network gateway, broadening
applicability to hybrid and heterogeneous environments.

Overall, this work lays the foundation for a more efficient, resilient, and extensible
model of multi-cluster communication in Kubernetes environments. By moving
from a consumer-centric routing paradigm to a declarative, peer-aware tunnel
orchestration model, it enhances both the scalability and reliability of Liqo-based
infrastructures.

68

Bibliography

Kubernetes Authors. Kubernetes Documentation. Accessed May 2025. 2025.
URL: https://kubernetes.io/docs/home/ (cit. on p. 3).

Kubernetes Authors. Kubernetes Concepts: Cluster Architecture. Accessed May
2025. 2025. URL: https://kubernetes.io/docs/concepts/architecture/
(cit. on p. 4).

Kubernetes SIG API Machinery. Kubebuilder Book. Accessed May 2025.
Kubernetes Project, 2025. URL: https://book.kubebuilder.io/ (cit. on
p. 12).

Liqo Authors. What is Liqo? Accessed May 2025. 2025. URL: https://docs.
ligo.io/en/stable/ (cit. on p. 13).

Liqo Authors. Peering. Accessed May 2025. 2025. URL: https://docs.liqo.
io/en/stable/features/peering.html (cit. on p. 14).

Liqo Authors. Network Fabric. Accessed May 2025. 2025. URL: https://docs.
liqgo.io/en/stable/features/network-fabric.html (cit. on p. 16).

Jason A. Donenfeld. WireGuard: fast, modern, secure VPN tunnel. Accessed
May 2025. 2022. URL: https://www.wireguard.com/ (cit. on p. 17).

Internet Engineering Task Force. Generic Network Virtualization Encap-
sulation (Geneve), RFC8926. Accessed May 2025. 2020. URL: https: //
datatracker.ietf.org/doc/html/rfc8926 (cit. on p. 17).

Liqo Authors. Offloading. Accessed May 2025. 2025. URL: https://docs.
liqo.io/en/stable/features/offloading.html (cit. on p. 20).

Santo Calderone. foreign_ cluster connector. Accessed June 2025. 2025. URL:
https://github.com/scall110/foreign_cluster_connector.git (cit. on

p. 31).
Santo Calderone. CLI-liqo-shortcut. Accessed June 2025. 2025. URL: https:
//github.com/scall10/cli-liqo-shortcut.git (cit. on p. 55).

69

	List of Figures
	Acronyms
	Introduction
	Goal of the Thesis
	Structure of the Thesis

	Background: Kubernetes
	Introduction to Kubernetes
	Kubernetes Architecture
	Control Plane Components
	Data Plane Components (Worker Nodes)

	Core Kubernetes Resources
	Pods
	ReplicaSets
	Deployments
	Services
	Namespaces
	Labels & Selectors
	EndpointSlices
	ConfigMaps
	Secrets

	Networking in Kubernetes
	Pod Networking
	Service Networking
	Ingress and Egress Traffic
	Network Policies
	Container Network Interface (CNI)
	Network Architecture Models

	API Extensibility
	Custom Resource Definitions (CRDs)
	Operator Pattern
	Admission Controllers

	Access Control: Role-Based Access Control (RBAC)
	Developer Tooling: Kubebuilder
	Overview and Capabilities
	Scaffolding APIs and Controllers
	Reconciliation Loop and Finalizers

	Background: Liqo
	Overview of Liqo
	Peering
	Peering Lifecycle
	Declarative Peering

	Core Components
	Liqo Agent
	Network Manager
	Virtual Kubelet
	Reflection Manager

	Custom Resources (CRDs)
	ForeignCluster
	ResourceSlice
	VirtualNode
	NamespaceOffloading
	ShadowPod & ShadowEndpointSlice
	GatewayServer & GatewayClient
	Connection
	IP
	Configuration

	Offloading
	Resource Reflection
	Security and Trust
	Mutual TLS and WireGuard
	Role-Based Access Control

	Design: foreign_cluster_connector
	Baseline Topology and Routing Behavior
	Communication Path and Drawbacks
	Proposed Solution: Consumer‐Side CustomResource and Controller
	Lightweight Declarative API
	Key Advantages

	Architectural Impact
	Implementation of the foreign_cluster_connector Controller
	Core Components
	Operator Overview
	Custom Resource Definition

	Project Generation with Kubebuilder
	Initializing the Module
	Creating the API
	Generating Code and Manifests
	Project Structure

	Controller Implementation
	Reconcile Loop
	Connection Logic
	Status Management
	CIDR Retrieval
	Disconnection Logic

	Build & Deployment
	Build Process
	Deployment
	Applying a Sample Resource

	Command-Line Utility for Managing the Controller and Shortcuts
	Command Structure and Design Goals
	Controller Lifecycle Commands
	Shortcut Management Commands
	Auxiliary Logic and Operational Guarantees
	Practical Benefits and Recommended Usage

	Evaluation
	Testbed Description
	ICMP Round-Trip Time
	HTTP GET Latency
	TCP Throughput

	Results under Emulated WAN Conditions
	ICMP Round‐Trip Time under WAN‐like Delay
	HTTP GET Latency under WAN‐like Delay
	TCP Throughput under Emulated WAN Conditions

	Tunnel Provisioning Time
	Evaluation Summary
	Conclusions and Future Work
	Future Work

	Bibliography

