
POLITECNICO DI TORINO

Master’s Degree in
Computer Engineering

Master’s Thesis

Media Streaming Performance over HTTP/3

Supervisors Candidate
Prof. Antonio Servetti Alessandro Bottisio
supervisor’s signature candidate’s signature

. .

Academic Year 2024-2025

In the Name of God, the Most Compassionate, the
Most Merciful.
All praise belongs to God, Lord of all worlds,
the Most Compassionate, the Most Merciful,
Master of the Day of Judgment.
You alone we worship and You alone we ask for help.
Guide us along the Straight Path,
the Path of those You have blessed,
not those You are displeased with, or those who are
astray.

[ALLAH, Sura al Fatiha, Sacred Quran]

A Safa, ad Andrea, ai
miei genitori,

alla nostra famiglia e ai
miei amici

† A nonna Carmela

4

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Professor Antonio
Servetti for his invaluable guidance, support, and patience throughout the course of my
thesis work. His expertise, constructive feedback, and encouragement have been essential
to both my academic growth and the successful completion of this project.

I would also like to thank all the faculty and staff at Politecnico di Torino who contributed
to my education and personal development during my studies. Their competence and pro-
fessionalism have helped and inspired me to pursue excellence.

A heartfelt thank you goes to my family, my parents and my brother Andrea for their
unconditional love and constant support. Without their understanding, sacrifices, and
encouragement, this journey would not have been possible.

I am sincerely grateful to my friends, who have shared this journey with me—both inside
and outside the university. Their friendship, loyalty, camaraderie, advice, and sense of
humor have always been a priceless gift to my life and made the challenging moments
lighter and the successes even sweeter.

From the bottom of my heart, I wish to express my deepest appreciation to Safa, my
fiancée, for her unwavering love, encouragement, support and patience throughout this
journey. Her support has given me strength and motivation during the most challenging
moments, and her presence in my life is always an endless source of joy, love, admiration,
gratitude, inspiration and improvement. The light, happiness, peace and healing that she
provided my soul ever since I received the invaluable gift of meeting her along with her
love and companionship have been the greatest blessing that I have ever been graced with
in my life. I am profoundly grateful to God to have shared this important chapter of
my life with her, and I look forward to the endless more that we will, God willing, write
together.

I would also like to thank all my grandparents for the love, support, inspiration and
cherished memories that they have provided me over all these years, and to remember
my grandmother Carmela, peace be upon her, with love and gratitude. May she receive
a high station in the Hereafter and may her memory continue to bless us every day with
fondness and warmth.

5

Last but most importantly, I would like to thank God for all my achievements, for all
the good in my life and in my soul, and for the endless Love, Mercy, Guidance and bless-
ings that He provides us in every moment of our existence.

6

Summary

This thesis provides a comprehensive analysis of Media over QUIC Transport (MoQT),
a media transport protocol designed to enable efficient media delivery over the QUIC
protocol. The study focuses on the architecture and performance evaluation of two proof-
of-concept applications, moq-js and moq-rs, developed by Luke Curley. The primary
objective of this research is to evaluate MoQT’s effectiveness in media content delivery
under varying network conditions, using a client-server-client architecture.

The architectural framework of MoQT is thoroughly examined, including its integration
within the HTTP/3 stack, its object model and data hierarchy, streaming formats, and
network topology. A detailed exploration of the setup, functionality, internal structure,
and usage of moq-js and moq-rs is presented for the first time. Additionally, this work
extends the applications to support QUIC’s datagram transmission mode, facilitating a
comparative analysis between communication schemes under ideal conditions, bandwidth
constraints, and simulated packet loss.

Performance evaluation is based on an extensive set of measurements on both server
and client sides to extract relevant key performance indicators (KPIs). This thesis con-
tributes to a deeper understanding of QUIC’s and MoQT’s potential for media transport,
providing insights and data that can inform future developments in this field.

7

Contents

List of Tables 12

List of Figures 14

1 Introduction 17

2 Background 19
2.1 HTTP . 19
2.2 HTTP/2, TCP and UDP . 20

2.2.1 HTTP/2 . 20
2.3 TCP: Transmission Control Protocol . 21

2.3.1 UDP: User Datagram Protocol . 22
2.3.2 TCP vs UDP: Comparative Summary 23

2.4 Modern live transmission use cases . 23
2.5 HTTP/3 . 24

2.5.1 Comparison of HTTP revisions . 26
2.6 QUIC . 26
2.7 MoQT: Media over QUIC Transport . 29

3 Media Over Quic Transport 33
3.1 Design Philosophy of MoQT . 33
3.2 General architecture . 35
3.3 MoQ Streaming Formats . 37
3.4 Overview of Streaming Formats in MoQ 38

3.4.1 Purpose of Streaming Formats . 38
3.4.2 Key Streaming Formats . 39
3.4.3 Comparison with Traditional Protocols 40
3.4.4 WARP . 40
3.4.5 RUSH . 44
3.4.6 Stream Management . 46
3.4.7 Use Cases . 47

8

4 moq-js 49
4.1 File and Module Structure Overview . 49
4.2 High-Level Workflow . 50
4.3 moq-js architecture - data flow . 50

4.3.1 Publisher Workflow . 50
4.3.2 Playback Workflow . 51

4.4 moq-js architecture — code level flow . 51
4.5 moq-js architecture - code level analysis . 53

4.5.1 UI Integration: web/src/components/publish.tsx 53
4.5.2 Transport and Protocol (From lib/transport/) 56
4.5.3 lib/transport/object.ts — The MoQ Object Layer 58
4.5.4 Track Management and Subscription 60
4.5.5 Worker Communication Architecture 62
4.5.6 Audio and Video Encoding . 66
4.5.7 Audio and Video Decoding (WebCodecs Backend) 69
4.5.8 Jitter Buffering and the Ring Class (lib/common/ring.ts) 75

4.6 Codec Integration . 77

5 moq-rs 79
5.1 moq-rs - Dependencies and Architectural Roles 79
5.2 moq-relay . 80

5.2.1 moq-relay - Architectural Overview 81
5.2.2 moq-relay - Dependency Breakdown 83
5.2.3 moq-relay - Main Components . 83
5.2.4 main.rs: Application Entrypoint 84
5.2.5 config.rs: Configuration Management 85
5.2.6 tls.rs: Certificate Loading/Generation 87
5.2.7 quic.rs: QUIC Endpoint Creation 88
5.2.8 session.rs: Session Lifecycle and Role Dispatch 90
5.2.9 origin.rs: Track Registry, Cache, and Routing 92
5.2.10 web.rs and error.rs: Optional Web UI and Errors 94

5.3 moq-relay - Publisher–Subscriber Data and Object Flow 95
5.4 moq-transport . 95
5.5 Architectural Role of moq-transport . 96

5.5.1 moq-transport - Dependency Breakdown 97
5.5.2 moq-transport - Module Structure 97
5.5.3 Session State Machines (session/) 97
5.5.4 Session Negotiation Example . 98
5.5.5 Message Encoding and Decoding (message/) 98
5.5.6 Wire Serialization Utilities (coding/) 100
5.5.7 Hierarchical Object Caching (cache/) 101
5.5.8 Protocol Negotiation (setup/) . 103
5.5.9 Typed Error Handling (error.rs) 104
5.5.10 Crate Root (lib.rs) . 105

5.6 moq-api . 105

9

5.6.1 Architectural Role of moq-api . 105
5.6.2 Module Structure . 106
5.6.3 Data Models (model.rs) . 106
5.6.4 Client Abstraction (client.rs) . 107
5.6.5 Error Handling (error.rs) . 108
5.6.6 Server Implementation (server.rs) 109
5.6.7 Crate Integration (lib.rs) . 111

6 Media Over Quic Transport – Datagram Implementation 113
6.1 Transmission modes . 113
6.2 Datagram mode . 113

6.2.1 Datagram mode - custom implementation in moq-js and moq-rs . . 114

7 Environment setup and tools 129
7.1 Software Sources . 129
7.2 moq-js . 130
7.3 moq-rs . 131
7.4 Logging . 132

7.4.1 Logger Module in moq-js (lib/common/logger.ts) 132
7.4.2 Server-side Logging (Node.js) . 135
7.4.3 Per-Module Commentary and File Structure Cross-References . . . 137
7.4.4 Log Data Format . 137

7.5 Data plot and analysis utilities - Python scripts 138
7.5.1 plotMoqjsTimestamp.py . 138
7.5.2 batch_plot_loss_parallel.py . 152
7.5.3 plotMoqjsDistribution.py . 153
7.5.4 plotMoqjsConversion.py . 156
7.5.5 plotTsharkJitter.py . 156
7.5.6 Wireshark/tshark . 157
7.5.7 TLS decryption setup . 159

7.6 Bitmeter OS: Network Throughput and Bandwidth Monitoring 159

8 Evaluation 163
8.1 Methodology . 163

8.1.1 Network setup . 164
8.1.2 Timestamp monitoring . 165
8.1.3 Jitter computation . 166
8.1.4 Measurements workflow . 166

8.2 Baseline Tests: Stream Transmission . 168
8.2.1 Audio &Video, Rendering Enabled (Run 1) 169
8.2.2 Audio &Video, Rendering Enabled (Run 2) 170
8.2.3 Audio &Video, Rendering Disabled 172
8.2.4 Audio Only . 173
8.2.5 Video Only . 175

8.3 Bandwidth Limiting: Stream Transmission 177

10

8.3.1 Relay Latency Validation with tshark 177
8.3.2 Audio+Video, Bandwidth Usage . 178
8.3.3 Video Only, Bandwidth Usage . 178
8.3.4 Audio Only, Bandwidth Usage . 179
8.3.5 Audio and Video, No Bandwidth Limitation (Reference) 180
8.3.6 Audio+Video, Bandwidth Limited to 4 Mbps 181
8.3.7 Audio and Video, Bandwidth Limited to 3 Mbps 183
8.3.8 Audio and Video, Dynamic Bandwidth Reduction (No Limit → 3

Mbps) . 185
8.4 Baseline Tests: Datagram Transmission . 187

8.4.1 Audio &Video, Rendering Enabled (Run 1) 187
8.4.2 Audio &Video, Rendering Enabled (Run 2) 189
8.4.3 Audio &Video, Rendering Disabled 191
8.4.4 Audio Only . 193
8.4.5 Video Only . 194

8.5 Bandwidth Limiting: Datagram Transmission 195
8.5.1 Relay Latency Validation with tshark 195
8.5.2 Audio &Video, Bandwidth Usage under Limiting 196
8.5.3 Video Only, Bandwidth Usage . 196
8.5.4 Audio Only, Bandwidth Usage . 197
8.5.5 Audio &Video, No Bandwidth Limitation (Reference) 198
8.5.6 Audio &Video, Bandwidth Limited to 4 Mbps 200
8.5.7 Audio &Video, Dynamic Bandwidth Limiting (No Limit → 4 Mbps) 202
8.5.8 Audio &Video, Dynamic Bandwidth Limiting with Loss of Recovery 204

8.6 Comparison of QUIC datagram and stream transmission 205
8.6.1 Scenario: Audio 128 kbps, Bandwidth limited 400 kbps to 300 kbps 206
8.6.2 Scenario: Audio 128 kbps, Bandwidth limited 500 kbps to 250 kbps 214
8.6.3 Scenario: Audio 128 kbps, Video 1000 kbps, Bandwidth limited 2

Mbit/s to 1.5 Mbit/s (Test 2) . 228
8.6.4 Scenario: Audio 128 kbps, Video 2000 kbps, Bandwidth limited 4

Mbit/s to 3 Mbit/s . 244
8.6.5 Global Bandwidth Usage Summary and Analysis 252
8.6.6 Bandwidth Usage Comparison Chart 253
8.6.7 Global Packet Loss Summary and Analysis 254

8.7 Evaluation of Experimental Results and Comparative Analysis 260
8.7.1 Comparative Results Analysis . 260
8.7.2 Discussion and Design Implications 263

9 Conclusions 265

11

List of Tables

2.1 Comparison of HTTP/1.1, HTTP/2, and HTTP/3 26
2.2 Comparison of Transport Protocols: TCP, UDP, and QUIC 29
3.1 Comparison of traditional protocols vs MoQ streaming formats 40
3.2 Detailed Comparison of WARP and RUSH Streaming Formats 46
5.1 Role of moq-transport within the MoQ relay architecture. 96
6.1 Datagram slice header . 114
6.2 Chunk end datagram . 114
7.1 Log file format . 138
7.2 Primary input parameters for plotMoqjsTimestamp.py. 139
7.3 Lost/anomaly rendering strategies and interpretations. 144
8.1 Experimental setup: Audio &Video, Rendering Enabled (Run 1), Stream 169
8.2 Experimental setup: Audio &Video, Rendering Enabled (Run 2), Stream 170
8.3 Experimental setup: Audio &Video, Rendering Disabled, Stream 172
8.4 Experimental setup: Audio Only, Stream . 173
8.5 Experimental setup: Video Only, Stream . 175
8.6 Experimental setup: Relay Latency Validation, Remote Relay, Stream . . . 177
8.7 Experimental setup: Audio+Video, Bandwidth Limiting, Remote Relay,

Stream . 178
8.8 Experimental setup: Video Only, Local Relay, Stream 178
8.9 Experimental setup: Audio Only, Local Relay, Stream 179
8.10 Experimental setup: Audio+Video, No Limitation, Local Relay, Stream 180
8.11 Experimental setup: Audio+Video, 4 Mbps Limit, Local Relay, Stream . . 181
8.12 Experimental setup: Audio+Video, 3 Mbps Limit, Local Relay, Stream . . 183
8.13 Experimental setup: Audio+Video, Dynamic Bandwidth Change, Local

Relay, Stream . 185
8.14 Experimental setup: Audio &Video, Rendering Enabled (Run 1), Datagram 187
8.15 Experimental setup: Audio &Video, Rendering Enabled (Run 2), Datagram 189
8.16 Experimental setup: Audio &Video, Rendering Disabled, Datagram 191
8.17 Experimental setup: Audio Only, Datagram 193
8.18 Experimental setup: Video Only, Datagram 194
8.19 Experimental setup: Bandwidth shaping validation, Datagram 195
8.20 Experimental setup: Audio &Video, Bandwidth Usage, Datagram 196
8.21 Experimental setup: Video Only, Bandwidth Usage, Datagram 196
8.22 Experimental setup: Audio Only, Bandwidth Usage, Datagram 197

12

8.23 Experimental setup: Audio &Video, No Bandwidth Limit, Datagram . . . 198
8.24 Experimental setup: Audio &Video, 4 Mbps Limit, Datagram 200
8.25 Experimental setup: Audio &Video, Dynamic Limit, Datagram 202
8.26 Experimental setup: Audio &Video, Persistent Dynamic Limit, Datagram 204
8.27 Bandwidth Usage Summary for a128 400k→300k scenario (stream and

datagram). 213
8.28 Packet loss statistics for audio 128 kbps, 400 kbps to 300 kbps bandwidth

limitation. 213
8.29 Bandwidth Usage Summary for a128 500k→250k scenario (stream and

datagram). 219
8.30 Packet loss statistics for audio 128 kbps, 500 kbps to 250 kbps bandwidth

limitation. 219
8.31 Bandwidth Usage Summary for a128 v1000 2→1.5M (1) scenario (stream

and datagram). 227
8.32 Packet loss statistics for audio 128 kbps, video 1000 kbps, bandwidth from

2 Mbit/s to 1.5 Mbit/s (test 1). 227
8.33 Bandwidth Usage Summary for a128 v1000 2→1.5M (2) scenario (stream

and datagram). 235
8.34 Packet loss statistics for audio 128 kbps, video 1000 kbps, bandwidth from

2 Mbit/s to 1.5 Mbit/s (test 2). 235
8.35 Bandwidth Usage Summary for a128 v2000 3M scenario (stream and data-

gram). 243
8.36 Packet loss statistics for audio 128 kbps, video 2000 kbps, 3 Mbit/s band-

width. 243
8.37 Bandwidth Usage Summary for a128 v2000 4→3M scenario (stream and

datagram). 251
8.38 Packet loss statistics for audio 128 kbps, video 2000 kbps, bandwidth re-

duced from 4 Mbit/s to 3 Mbit/s. 251
8.39 Summary of bandwidth usage statistics across all scenarios. 252
8.40 Summary of packet loss statistics across all scenarios (percentages refer to

total packets sent). 254

13

List of Figures

2.1 Illustration of Head-of-Line Blocking in TCP vs. QUIC 28
3.1 Simple MoQT architecture . 36
3.2 MoQT hierarchy . 38
3.3 Warp data model hierarchy . 43
4.1 End-to-end MoQ Media Flow using moq-js 50
4.2 High-level architectural diagram of moq-js 51
4.3 Workers architectural diagram . 63
5.1 Architectural dependencies: moq-relay depends on both moq-transport

and moq-api; moq-transport also utilizes shared types from moq-api. . . 80
7.1 https://localhost:4321/publish . 131
7.2 Workflow of plotMoqjsTimestamp.py: from log ingestion to visualization/-

export. 147
7.3 Timeline of packet latencies (bars), with lost/too old/too slow packets

color-coded and optionally simulated in height. 149
7.4 Cumulative step plot showing anomaly counts over time. When –showlost

true is set, the general latency plot is replaced with a time-aligned cumu-
lative lost packets step plot (shown in red). Spikes or plateaus indicate
bursts or persistent issues. 150

7.5 Example of a plot produced by plotMoqjsDistribution 155
7.6 plotMoqjsConverter command prompt example 156
7.7 plotMoqjsConverter output file example 157
7.8 Example of a plot produced by plotTsharkJitter 158
7.9 Bitmeter OS web dashboard displaying real-time upload and download

throughput during a MoQ streaming test. 162
8.1 Stream mode bandwidth usage (60s). 206
8.2 Datagram mode bandwidth usage (60s). 206
8.3 Stream mode latency visualization (latency over time). 207
8.4 Datagram mode latency visualization (latency over time). 208
8.5 Stream mode latency distribution. 209
8.6 Datagram mode latency distribution. 210
8.7 Stream mode cumulative packet loss. 211
8.8 Datagram mode cumulative packet loss. 212
8.9 Stream mode bandwidth usage (60s). 214
8.10 Datagram mode bandwidth usage (60s). 214

14

8.11 Stream mode latency visualization (latency over time). 215
8.12 Datagram mode latency visualization (latency over time). 216
8.13 Stream mode cumulative packet loss. 217
8.14 Datagram mode cumulative packet loss. 218
8.15 Stream mode bandwidth usage (60s). 220
8.16 Datagram mode bandwidth usage (60s). 220
8.17 Stream mode latency visualization (latency over time). 221
8.18 Datagram mode latency visualization (latency over time). 222
8.19 Stream mode latency distribution. 223
8.20 Datagram mode latency distribution. 224
8.21 Stream mode cumulative packet loss. 225
8.22 Datagram mode cumulative packet loss. 226
8.23 Stream mode bandwidth usage (60s). 228
8.24 Datagram mode bandwidth usage (60s). 228
8.25 Stream mode latency visualization (latency over time). 229
8.26 Datagram mode latency visualization (latency over time). 230
8.27 Stream mode latency distribution. 231
8.28 Datagram mode latency distribution. 232
8.29 Stream mode cumulative packet loss. 233
8.30 Datagram mode cumulative packet loss. 234
8.31 Stream mode bandwidth usage (30s). 236
8.32 Datagram mode bandwidth usage (30s). 236
8.33 Stream mode latency visualization (no limits). 237
8.34 Datagram mode latency visualization (no limits). 238
8.35 Stream mode latency distribution (no limits). 239
8.36 Datagram mode latency distribution (no limits). 240
8.37 Stream mode cumulative packet loss. 241
8.38 Datagram mode cumulative packet loss. 242
8.39 Stream mode bandwidth usage (60s). 244
8.40 Datagram mode bandwidth usage (60s). 244
8.41 Stream mode latency visualization (4 Mbit/s limit). 245
8.42 Datagram mode latency visualization (4 Mbit/s limit). 246
8.43 Stream mode latency distribution (4 Mbit/s limit). 247
8.44 Datagram mode latency distribution (4 Mbit/s limit). 248
8.45 Stream mode cumulative packet loss. 249
8.46 Datagram mode cumulative packet loss. 250
8.47 Comparison of total bandwidth usage (download + upload) across scenarios

for Stream and Datagram modes. 253
8.48 Comparison of LOST packet percentage across all scenarios for Stream and

Datagram modes. 256
8.49 Comparison of TOO OLD packet percentage (packets arriving too late) for

Stream and Datagram, scenario by scenario. 257
8.50 Comparison of TOO SLOW packet percentage (packets arriving slowly) for

Stream and Datagram, per test scenario. 258

15

8.51 Global comparison of LOST, TOO OLD, and TOO SLOW packet percent-
ages for Stream and Datagram transmission across all tested scenarios. . . 258

16

Chapter 1

Introduction

This thesis presents an in-depth analysis of Media over QUIC Transport (MoQT), focus-
ing on the architecture and performance evaluation of some proof-of-concept applications
developed by Luke Curley called moq-js and moq-rs.
The study aims to assess the capabilities of MoQT in delivering media content efficiently
over the QUIC protocol, conducted in different network conditions with a client-server-
client architecture.

We explore the architectural framework of MoQT, detailing it’s role within the HTTP/3
stack, its object model and data hierarchy, streaming formats and adopted network topol-
ogy.

Additionally, we alter the application code to implement a different transmission mode
using QUIC datagrams on the client and server side, describing the created application
protocol workflow, format and data structures in detail, along with the addition of logging
functions and a client side logging server to export relevant data from moq-js for analytic
purposes, which are then (if needed) converted and plotted using a variety of Python
scripts.

The thesis includes a comparative analysis of the performance characteristics between
QUIC stream and QUIC datagram modes, providing insights into their respective perfor-
mance in handling media transmission under ideal, bandwidth restricted, and packet loss
simulated network conditions and scenarios.

This work contributes to the broader understanding of QUIC’s potential in media trans-
port, offering insights that can guide future developments in this area.

17

18

Chapter 2

Background

2.1 HTTP

HTTP as the Foundation of Modern Web Communication

HTTP (Hypertext Transfer Protocol) stands as a request-response protocol that fun-
damentally shapes the nature of communication between web clients and servers. It defines
the precise mechanisms through which web clients interact with web servers, orchestrating
everything from simple document retrieval to complex application transactions. Indeed,
HTTP is one of the foundation stones of how the modern internet operates, under-
pinning the exchange of information across a vast and ever-expanding network [1].

Today, HTTP powers the majority of web traffic globally, serving not only as the back-
bone for delivering web pages but also for a variety of application domains such as APIs,
real-time events, and media streaming [30]. Operating at the application layer, HTTP
has evolved into a versatile transport mechanism. For example, when users interact with
dynamic content or initiate tasks such as file uploads or data retrieval, their applications
typically issue background HTTP requests to communicate efficiently with backend
servers.

Another increasingly significant application of HTTP is the streaming of data. In
the context of large files or continuous media, HTTP connections may be intentionally
kept open for extended durations, enabling servers to send data in smaller chunks to
the client as it becomes available. This technique is central to supporting both live and
on-demand content consumption with minimal user-perceived delay.

Due to its vital and widespread adoption, HTTP has become the platform of choice
for contemporary multimedia and live applications, reflecting the evolving needs and ex-
pectations of end users. As a result, one of the most increasingly common use cases
is the efficient and adaptive streaming of audio and video content.

19

Background

Modern HTTP-based streaming protocols, such as MPEG-DASH and HLS, lever-
age persistent HTTP connections to deliver segmented media in manageable chunks [13].
These protocols are designed to maintain relatively low latency and support adaptive
bitrate delivery, enabling high-quality, uninterrupted playback even under fluctuating net-
work conditions. This architecture allows users to experience seamless media streaming
tailored dynamically to their device capabilities and current network environment.

2.2 HTTP/2, TCP and UDP

2.2.1 HTTP/2
HTTP/2 [3] represents a major evolution of the Hypertext Transfer Protocol, specifi-
cally engineered to overcome the performance bottlenecks inherent in HTTP/1.1 . Its
development was motivated by the need to substantially reduce latency and improve both
resource utilization and the overall efficiency of web communications.

A core aspect of HTTP/2 is its adoption of a binary framing layer. Unlike the tex-
tual, line-based approach of HTTP/1.1, all protocol messages in HTTP/2 are encoded in
a compact binary format. This change enables more efficient parsing, reduced ambiguity,
and opens the door for a richer feature set.

Another significant advancement introduced by HTTP/2 is multiplexing. With this
feature, multiple independent messages (streams) can be sent and received simultane-
ously over a single TCP connection. As a result, web browsers and servers can avoid the
inefficiencies and overhead associated with opening multiple concurrent TCP connections
for different resources, leading to faster and more streamlined communication.

To further enhance protocol efficiency, HTTP/2 integrates header compression using
the HPACK algorithm. This mechanism minimizes the overhead from redundant meta-
data in HTTP requests and responses, reducing bandwidth consumption and accelerating
data transfer.

The protocol also implements stream prioritization, enabling clients and servers to
assign relative importance to streams. This allows critical resources (such as the main
HTML document) to be delivered with precedence over less time-sensitive data (such as
images or background scripts), thereby improving perceived performance and user expe-
rience.

A particularly innovative feature is server push, which permits the server to proac-
tively send resources to the client that it anticipates will be needed for rendering a web-
page—such as stylesheets or scripts—without waiting for explicit requests. This anticipa-
tory behavior can further decrease page load times.

From a security standpoint, HTTP/2 is typically deployed over TLS, providing enhanced

20

2.3 – TCP: Transmission Control Protocol

confidentiality and integrity for all web traffic.

Despite these substantial improvements, it is important to note that HTTP/2 continues
to operate over TCP and thus inherits TCP’s intrinsic limitations. The most notable
among these is head-of-line blocking, wherein the loss of a single TCP packet results
in the stalling of all concurrent streams until retransmission occurs. This characteristic,
even in the presence of multiplexing, can prove detrimental for applications that require
low-latency or real-time media transmission, as it undermines the seamless delivery of
time-sensitive data.

2.3 TCP: Transmission Control Protocol

TCP (Transmission Control Protocol) is one of the essential protocols of the Internet
protocol suite, first described in RFC 793 [26]. As a connection-oriented protocol,
TCP establishes a persistent link between two endpoints and is specifically designed to
ensure reliable and ordered communication. This reliability is a cornerstone of its
design, making TCP integral to the vast majority of Internet applications.

One of the primary strengths of TCP is its comprehensive approach to reliability. By
employing sequence numbers and acknowledgments (ACKs), TCP guarantees that all
packets are received both accurately and in the intended order. If any packets are lost,
TCP’s built-in retransmission mechanism detects the loss and resends the missing data,
ensuring that the receiving application is presented with a complete and correctly ordered
byte stream.

To maintain network stability and fairness, TCP incorporates robust congestion
and flow control mechanisms. Algorithms such as TCP Reno, CUBIC , and BBR
dynamically adjust the transmission rate based on prevailing network conditions. This
adaptability helps to avoid overwhelming the network and ensures that all users share
available bandwidth equitably.

The process of establishing a TCP connection is initiated by the classic three-way hand-
shake (SYN, SYN-ACK, ACK), which coordinates and synchronizes both endpoints be-
fore any data is transmitted. While this step is crucial for connection integrity, it does
introduce some initial latency before the communication can commence.

Thanks to these properties, TCP is ideally suited for applications where delivery guar-
antees are more important than latency, such as web browsing, file transfers, and
email. However, the protocol’s rigorous commitment to reliability comes at the cost of
increased delay, especially in high-latency or lossy environments—a limitation known
as head-of-line (HoL) blocking.

21

Background

Head-of-Line (HoL) Blocking in TCP

A major limitation of TCP is the phenomenon of head-of-line (HoL) blocking. Due to
TCP’s strict requirement for in-order delivery, when a single packet is lost or delayed,
the receiving endpoint must wait for that specific packet to be retransmitted and re-
ceived before it can process any subsequent packets, even if those packets have already
arrived. This creates a bottleneck in which the entire stream is stalled by the absence
of a single missing segment near the front of the receive buffer [16].

This behavior stems from TCP’s design philosophy of prioritizing reliability and or-
der preservation over latency. In practical terms, this means that, especially in
lossy or high-latency networks, application performance can significantly degrade. For
media streaming applications, for instance, head-of-line blocking may cause noticeable
delays, increased buffering, or jitter, even when only a small fraction of packets are lost.

The issue becomes even more pronounced in multiplexed applications—such as HTTP/2
over TCP—where multiple logical streams of data are interleaved within a single connec-
tion. In this scenario, a single lost packet can block the delivery of unrelated streams,
impeding the responsiveness of the entire application.

This design limitation was a core motivator for the development of QUIC, a modern
transport protocol that avoids HoL blocking at the transport layer. QUIC achieves this
by providing independent, reliable streams over a single connection, each of which
can be delivered and processed out-of-order relative to others [14].

In summary, while TCP delivers strong guarantees of reliability and order, its suscep-
tibility to head-of-line blocking renders it suboptimal for latency-sensitive or real-time
applications—particularly in modern web environments where concurrency and rapid re-
sponsiveness are essential.

2.3.1 UDP: User Datagram Protocol
UDP (User Datagram Protocol) is defined in RFC 768 [25] and represents one of the
core transport protocols of the Internet. In contrast to TCP, UDP is a connectionless
protocol, offering a minimal service model that transmits discrete datagrams between
endpoints without guaranteeing delivery, order, or data integrity. This architectural sim-
plicity is central to UDP’s appeal and underpins its distinct performance characteristics.

A primary attribute of UDP is its ability to provide low latency communication. Be-
cause UDP does not require the establishment of a connection handshake or the main-
tenance of state between sender and receiver, initial transmission delays are minimized.
This makes UDP highly suitable for scenarios where rapid, lightweight message exchange
is critical.

22

2.4 – Modern live transmission use cases

UDP is characterized by the complete absence of built-in flow or congestion control.
Responsibility for managing the rate and volume of data transfer is delegated entirely to
the application layer. While this design grants applications fine-grained control over their
transmission behavior, it also introduces risks if flows are not appropriately regulated,
potentially contributing to network congestion or unfair bandwidth usage.

Another defining property of UDP is its unreliable delivery model. The protocol
makes no assurances regarding packet arrival: datagrams may be lost, duplicated, or re-
ceived out of order. It is the prerogative of the application to implement any needed
mechanisms for retransmission, error correction, or sequence reordering.

UDP is also notable for its low protocol overhead. The UDP header consists of only
8 bytes, significantly smaller than the minimum header size in TCP. This minimalism re-
duces the per-packet processing and bandwidth cost, further reinforcing UDP’s suitability
for delay-sensitive applications.

Collectively, these features make UDP the protocol of choice for many real-time and
interactive use cases, such as VoIP, live video/audio streaming, DNS queries, and
online gaming, where timely delivery is often more valuable than guaranteed reliability.

Importantly, UDP also serves as the foundational transport layer for modern pro-
tocols such as QUIC. By leveraging UDP datagrams as its substrate, QUIC is able to
implement advanced features—such as reliable delivery, congestion control, and multi-
plexed streams—entirely in user space, thus circumventing limitations imposed by
TCP, most notably the problem of head-of-line blocking [14]. This approach has en-
abled a new generation of low-latency, high-performance transport protocols tailored for
web and real-time media applications.

2.3.2 TCP vs UDP: Comparative Summary

Feature TCP UDP
Connection model Connection-oriented Connectionless
Reliability Guaranteed (ACKs, retransmissions) Not guaranteed
Packet ordering In-order delivery No ordering guarantee
Congestion control Yes No (application-level)
Protocol overhead Higher Lower
Use cases Web, email, file transfer Streaming, gaming, DNS

2.4 Modern live transmission use cases
The demand for low-latency media transport has become central to the architecture
of modern streaming platforms such as Twitch, YouTube Live, and widely-used video

23

Background

conferencing tools including Zoom and Google Meet. These platforms aim to deliver
highly interactive experiences, where delays in media delivery can significantly degrade
user engagement and responsiveness.

Traditionally, HTTP-based streaming solutions have been the backbone of large-scale
video delivery; however, they often introduce end-to-end latency on the order of 5 to 15
seconds. Such latency is unacceptable for interactive scenarios like live chats, virtual
events, or online gaming, where near-instantaneous feedback is required. To overcome
these limitations, many platforms have integrated protocols specifically designed for real-
time communication, such as WebRTC, or have adopted optimized delivery schemes like
Low-Latency HLS (LL-HLS) [22]. These solutions drastically reduce playback delay,
bringing latency down to just a few seconds or even sub-second levels in optimal conditions.

Beyond these specialized protocols, the networking community is increasingly turning
to QUIC as a next-generation transport layer for live media. QUIC’s architectural
features—such as native multiplexing, support for zero round-trip time (0-RTT)
connections, and flexible stream delivery—make it particularly well suited for the
demands of modern interactive media applications. The protocol enables multiple media
streams to be delivered concurrently and independently, minimizing head-of-line blocking
and reducing startup and switching times.

Furthermore, the need for finer-grained control over delivery properties—such as dy-
namically balancing latency against reliability—has driven the development of new stan-
dards and protocols. Technologies like HTTP/3, the Media over QUIC Transport
(MoQT) protocol, and similar innovations have emerged in direct response to these re-
quirements, aiming to empower both developers and platforms with advanced tools for
adaptive, scalable, and high-performance live streaming.

2.5 HTTP/3
HTTP/3 represents the latest major evolution of the Hypertext Transfer Protocol
(HTTP), introducing substantial improvements in performance, reliability, and security
over previous versions [5]. Developed to address limitations inherent in HTTP implemen-
tations built upon TCP, HTTP/3 leverages a novel transport foundation—QUIC—to
offer superior performance and enhanced robustness in modern network environments [4].

One critical advancement introduced by HTTP/3 is the elimination of TCP head-
of-line blocking. Earlier HTTP versions, particularly HTTP/2, although introducing
multiplexing, still suffered from this issue due to their reliance on TCP. In TCP-based im-
plementations, the loss or delay of a single packet inevitably stalls all multiplexed streams
within the same connection. By contrast, HTTP/3’s integration with QUIC enables each
data stream to operate independently. Consequently, if a packet is delayed or lost in one
stream, other streams remain unaffected, significantly reducing latency and enhancing
responsiveness, especially for real-time or latency-sensitive applications.

24

2.5 – HTTP/3

Moreover, HTTP/3 provides a substantially faster handshake procedure compared to
its predecessors. Through tight integration with TLS 1.3 and QUIC, HTTP/3 supports
connection establishment using just one round-trip time (1-RTT), and in certain cases,
even zero round-trip time (0-RTT). This streamlined handshake process notably reduces
initial connection latency, offering users a perceptibly faster and smoother web browsing
experience, particularly in scenarios with high-latency or unstable network connections.

Another pivotal advantage of HTTP/3 is its enhanced mobility support. The under-
lying QUIC protocol inherently supports seamless connection migration, allowing active
sessions to persist uninterrupted as client devices transition between different networks
or IP addresses—such as when moving from Wi-Fi to cellular networks. This capability
ensures continuous service availability, significantly improving user experience in today’s
mobile-driven landscape.

Additionally, security in HTTP/3 is notably strengthened through built-in encryption.
Unlike earlier protocol versions where encryption was optional, HTTP/3 mandates the use
of encryption as an integral part of the handshake process. As a result, every HTTP/3
connection provides robust data confidentiality and integrity guarantees by default, sig-
nificantly improving overall communication security.

Importantly, HTTP/3 achieves these advancements without changing the fundamental se-
mantics of HTTP. Historically, HTTP/1.1 operated over various transport and session
layers, while HTTP/2 standardized its deployment primarily atop TLS over TCP.
HTTP/3 continues to support these well-established semantics, ensuring compatibility
with existing HTTP methods, headers, and client-server interactions, while fundamentally
shifting its underlying transport to the more capable QUIC protocol [4]. Furthermore,
the negotiation of HTTP versions occurs seamlessly, requiring no modifications to
existing website code, thereby simplifying adoption for developers and users alike [5].

Thus, HTTP/3 represents a significant step forward for web communication, addressing
the performance bottlenecks and security concerns of previous protocols, while provid-
ing developers and users with a transparent, secure, and efficient protocol optimized for
contemporary internet applications.

25

Background

2.5.1 Comparison of HTTP revisions

Feature HTTP/1.1 HTTP/2 HTTP/3
Transport Protocol TCP TCP QUIC (over UDP)
Multiplexing No Yes (within TCP) Yes (native, stream-level)
Head-of-Line Blocking Yes Yes (TCP-level) No (stream-level independence)
Binary Framing No (text-based) Yes Yes
Header Compression No Yes (HPACK) Yes (QPACK)
Stream Prioritization No Yes Yes
Server Push No Yes Yes
Encryption Optional (TLS/SSL) Recommended (TLS) Mandatory (TLS 1.3 in QUIC)
Connection Migration No No Yes (via QUIC)
Handshake Latency High (TCP handshake) High (TCP + TLS) Low (1-RTT/0-RTT via QUIC)

Table 2.1. Comparison of HTTP/1.1, HTTP/2, and HTTP/3

2.6 QUIC
QUIC is a secure, general-purpose transport protocol originally developed by Google and
later standardized by the IETF as RFC 9000 [14]. Designed to overcome many of the
inherent limitations of TCP, QUIC introduces a suite of innovations that address modern
web and media application requirements.

A defining characteristic of QUIC is its support for stream multiplexing. Unlike TCP,
which only allows a single ordered byte stream per connection, QUIC enables multiple,
concurrent, and fully independent streams within the same connection. Each stream is
flow-controlled separately, and the loss or delay of packets in one stream does not impede
the progress of others. This approach effectively eliminates the problem of head-of-line
(HoL) blocking that affects protocols built on TCP, resulting in more resilient and respon-
sive communication—especially crucial for real-time and interactive applications.

Another significant innovation is that QUIC is implemented predominantly in user space,
rather than as part of the operating system kernel. This architectural choice allows for
faster protocol iteration, easier updates, and broad platform independence. It also means
that new features and bug fixes can be deployed at application scale without requiring
OS-level changes or upgrades.

Connection migration is another notable feature of QUIC. It allows ongoing connec-
tions to survive changes in network IP address—such as when a mobile device switches
from Wi-Fi to cellular data—without interruption. This capability is essential for sup-
porting seamless user experiences in mobile and unstable network environments.

For applications that demand unreliable or partially reliable data delivery, QUIC sup-
ports datagrams as defined in RFC 9221 [24]. This feature enables the transmission of

26

2.6 – QUIC

data packets that do not require retransmission, making QUIC especially attractive for
real-time media use cases where latency is more important than perfect reliability.

Security is tightly integrated into the design of QUIC. It leverages TLS 1.3 for establish-
ing secure channels, providing forward secrecy, confidentiality, and authentication
by default. All payloads are encrypted and authenticated, protecting both control and
user data against interception and tampering.

From a deployment perspective, QUIC packets are encapsulated within UDP data-
grams, facilitating compatibility with existing network infrastructure and firewalls. The
user-space nature of QUIC also enhances its deployment flexibility and adaptability across
a wide variety of platforms.

QUIC’s flexibility and robust feature set make it a compelling candidate to replace
TCP in scenarios demanding low-latency connections, rapid session establishment,
and dynamic network path migration. Applications benefit from flow-controlled streams,
network agility, and comprehensive confidentiality, integrity, and availability guar-
antees across diverse content distribution and media delivery scenarios.

QUIC’s Approach to Eliminating Head-of-Line Blocking

A central design goal of QUIC is the effective elimination of head-of-line (HoL) blocking,
a persistent and well-known limitation in TCP-based protocols. In traditional TCP, all
data flows through a single, strictly ordered byte stream per connection. When packet loss
occurs, TCP’s commitment to in-order delivery forces the receiving endpoint to withhold
any subsequently received data until the missing packet is retransmitted and received. As
a result, the progress of all application data—regardless of their logical independence—is
stalled by the loss of any single packet. This phenomenon, known as head-of-line block-
ing, can significantly increase latency, reduce throughput, and impair user experience,
especially in scenarios involving multiple, interleaved data flows such as multiplexed web
requests or real-time streaming.

QUIC overcomes this limitation by introducing a fundamentally different transport ar-
chitecture based on independent, multiplexed streams. Within a single QUIC con-
nection, applications can open and use multiple concurrent streams, each governed by
its own flow control and delivery order. This means that if a packet belonging to one
stream is lost or delayed, only that stream is affected—all other streams continue to
transmit and receive data without interruption. The protocol’s stream indepen-
dence effectively isolates the impact of network loss to only the affected logical channel,
eliminating the bottleneck that arises in TCP when loss or reordering occurs [14].

27

Background

TCP Receive buffer
(Single Stream)

Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 Pkt 6 Pkt 7

Loss

QUIC Receive buffer
(Multiplexed Streams)

Pkt A1 Pkt B1 Pkt A2 Pkt C1 Pkt A3 Pkt B2 Pkt C2

Loss

Note:
In TCP, all subsequent packets are blocked until the lost packet is retransmitted.
In QUIC, only stream A is affected.

Figure 2.1. Illustration of Head-of-Line Blocking in TCP vs. QUIC

This stream-based architecture is particularly advantageous for web browsers and me-
dia applications. For example, when loading a complex webpage, a browser might initiate
parallel streams for HTML, CSS, images, JavaScript, and video segments. In TCP, a
lost packet in a video segment could delay the rendering of unrelated images or scripts,
resulting in visible lag. With QUIC, each resource is delivered on a separate stream, so
network issues affecting one resource do not impede others, yielding smoother and more
responsive page loads.

The benefits are even more pronounced in the context of real-time media delivery.
Interactive applications such as live video streaming, online gaming, or video conferencing
rely on continuous, timely delivery of multiple streams (e.g., audio, video, metadata).
QUIC’s architecture ensures that transient losses or congestion affecting, for instance, a
video stream, do not delay the delivery of audio—maintaining quality of experience and
minimizing the risk of synchronization issues or perceptible stalls.

Another important factor is that QUIC is implemented in user space and runs over
UDP, allowing protocol evolution and bug fixes without operating system kernel updates.
This not only enables rapid innovation in how streams are managed and prioritized, but
also facilitates platform and application-specific optimizations. The decoupling from the
operating system kernel makes it easier to deploy enhancements across diverse environ-
ments and at Internet scale.

It is precisely these advances that motivated the adoption of QUIC as the foundation
for HTTP/3. By building on QUIC’s multiplexed, loss-resilient architecture, HTTP/3 is
able to provide faster, more reliable, and more adaptive web communications, even over
unreliable or variable network paths. The elimination of head-of-line blocking is thus not
merely a technical detail, but a transformative capability that underpins the next gener-
ation of high-performance, low-latency network applications.

28

2.7 – MoQT: Media over QUIC Transport

Comparison of Transport Protocol Features

Feature TCP UDP QUIC
Connection-oriented Yes No Yes
Reliability Yes No Yes
Ordering Yes (global) No Per-stream
Congestion Control Yes No Yes
Flow Control Yes No Yes (per stream)
Multiplexed Streams No No Yes
Head-of-Line Blocking Yes N/A No
User-space Implementation No (typically kernel) Yes Yes
Encryption Optional (TLS/SSL) Optional Mandatory (TLS 1.3)
Connection Migration No No Yes
0-RTT Handshake No N/A Yes
Datagram Support No Yes Yes (RFC 9221)
Standardization IETF RFC 793 (1981) IETF RFC 768 (1980) IETF RFC 9000 (2021)

Table 2.2. Comparison of Transport Protocols: TCP, UDP, and QUIC

2.7 MoQT: Media over QUIC Transport
The Media over QUIC (MoQ) Working Group is a specialized committee established
by the Internet Engineering Task Force (IETF) with the mandate to develop a uni-
fied, low-latency, scalable, and reliable transport protocol for both media ingestion and
distribution. Officially chartered in July 2022, the group was tasked with designing a
protocol that could fully exploit the advanced capabilities of QUIC to efficiently deliver
real-time and on-demand media across a range of network conditions and deployment
scenarios [11].

The impetus for MoQ stemmed from years of fragmentation in the real-time media de-
livery landscape, where protocols such as WebRTC, RTMP, and DASH addressed
only subsets of the necessary requirements for latency, reliability, and transport con-
trol. The emergence of QUIC as a next-generation transport protocol—with features
including multiplexed streams, rapid connection migration, and reduced handshake la-
tency—provided the ideal foundation for a new media transport architecture capable
of meeting the modern demands of live and interactive applications [14].

Within this context, MoQT (Media over QUIC Transport) has been conceived as a stan-
dardized, end-to-end transport layer protocol for media publishing and subscribing.
Unlike previous efforts that focused on inventing new media formats, MoQT targets the
delivery of media chunks—such as video frames, audio packets, and metadata—across
the network with minimal latency and maximum flexibility, while supporting both
ingest (uploading from publishers to relays) and distribution (downloading to viewers

29

Background

or edge nodes) [29].

The development of MoQT has catalyzed significant industry participation, drawing con-
tributions from a broad spectrum of companies and organizations:

• Meta (Facebook) has played a foundational role, contributing to the protocol’s
core drafts and presenting experimental architectures and tools that leverage QUIC
for scalable media transport [20].

• Google, leveraging its expertise in both QUIC and WebTransport, has been instru-
mental in shaping browser integration and has developed prototype implementations
in Chromium [7].

• Akamai and Cloudflare, as global CDN leaders, have offered critical insights into
large-scale content delivery and contributed relay protocol optimizations.

• Daily has explored real-time communication workflows, informing MoQT’s integra-
tion with existing WebRTC-based solutions.

• MPEG and BBC R&D have engaged with the group through early research,
standardization efforts, and interoperability tests.

MoQ’s design is heavily influenced by experimental protocols such as WARP (We-
bRTC Asynchronous Reliable Protocol) and RUSH (Relayed Upload Streaming Han-
dler). WARP demonstrates low-latency, chunk-based distribution for real-time media,
while RUSH emphasizes event ordering and partial reliability, optimizing ingest work-
flows for live production environments [18, 27].

MoQT is engineered to operate seamlessly over both WebTransport—enabling browser
applications to access QUIC’s performance and reliability—and raw QUIC for native
applications that require even tighter control over media delivery [7]. This dual compati-
bility ensures broad applicability across web, mobile, and native media workflows.

The development timeline of MoQT reflects its rapid evolution and growing maturity:

• 2022: Working Group formation, initial charter, and scoping of core problems.

• 2023: Publication of early drafts detailing the transport model, object hierarchy,
and interoperability goals; initial interop discussions among browser vendors and
media platforms.

• 2024: Refinement of technical drafts, community-driven interop testing at IETF
hackathons, and the emergence of multiple reference implementations (such as moq-js,
moq-rs, and ffmpeg-moq).

• 2025 (ongoing): Work towards working group last call (WGLC), expanded real-
world deployment, and integration testing with live production and streaming envi-
ronments.

30

2.7 – MoQT: Media over QUIC Transport

As of mid-2025, MoQT continues to evolve through active collaboration between browser
vendors, streaming platforms, CDN operators, and media tool developers. Its long-term
vision is to serve as a unifying transport layer for low-latency, scalable media inges-
tion and distribution—complementing established protocols like DASH and HLS, while
meeting the heightened expectations of modern interactive and live media applications.

31

32

Chapter 3

Media Over Quic Transport

3.1 Design Philosophy of MoQT

The design philosophy of Media over QUIC Transport (MoQT) is rooted in the ambition
to create a modern, future-proof framework for the delivery of interactive, real-time, and
on-demand media over the internet. Drawing on lessons learned from previous genera-
tions of media protocols, MoQT seeks to balance flexibility, scalability, and low-latency
performance, while accommodating the rapidly evolving requirements of next-generation
media applications [28, 29].

Transport-Media Decoupling

A central tenet of MoQT’s philosophy is the explicit separation between transport mecha-
nisms and media semantics. While traditional systems such as RTP tightly couple media
negotiation, timing, and delivery, MoQT deliberately avoids embedding application-level
logic or codec-specific intelligence into the transport layer. Instead, it provides a generic,
extensible substrate for efficiently conveying discrete media objects, allowing application
developers to innovate independently at the media layer [28].

Object-Based Media Delivery

MoQT is fundamentally object-centric: all media data is packaged as independently ad-
dressable objects (e.g., video frames, audio packets, metadata). This granularity sup-
ports not only advanced routing, caching, and relaying strategies, but also enables rapid
error recovery, efficient retransmission, and fine-grained prioritization. Object-based de-
sign reflects a shift toward content-centric networking and aligns with emerging industry
paradigms for adaptive and interactive media [29].

33

Media Over Quic Transport

Scalability and Hierarchical Organization

The protocol’s hierarchical model—spanning namespaces, groups, tracks, and objects—is
designed to enable deployments at internet scale. By isolating administrative domains
(namespaces), aggregating related streams (groups), and providing independent logical
flows (tracks), MoQT facilitates efficient resource allocation, access control, and traffic
engineering across diverse network infrastructures.

Extensibility and Evolution

Recognizing the diversity of future media formats and use cases, MoQT is engineered
for extensibility. The protocol incorporates reserved fields, flexible headers, and version
negotiation mechanisms that allow new features—such as enhanced metadata, novel relia-
bility schemes, or future security models—to be incorporated without disrupting backward
compatibility or existing deployments [28, 29].

Low Latency and Application Diversity

MoQT is particularly attuned to the needs of ultra-low-latency and interactive applica-
tions, such as live streaming, real-time communications, and cloud gaming. By leveraging
QUIC’s inherent support for both reliable (streams) and partially reliable (datagrams)
delivery, MoQT empowers applications to make per-object trade-offs between reliability
and latency, optimizing for diverse media types and user experiences.

Interoperability and Simplicity

Simplicity and broad interoperability are guiding values in the design of MoQT. The
protocol intentionally exposes minimal, generic interfaces to media applications and relays,
reducing implementation complexity and fostering rapid adoption. Its metadata-centric
approach enables third-party caches, CDNs, and edge services to participate in media
delivery ecosystems without deep protocol or codec awareness.

Security and Privacy Considerations

Finally, MoQT inherits and extends the security properties of QUIC, ensuring confiden-
tiality, integrity, and authentication for media flows. The protocol’s architecture supports
secure multi-party topologies, end-to-end encryption, and fine-grained access controls—all
essential features for contemporary media distribution.

In summary, the design philosophy of MoQT is distinguished by its modular, object-
based abstraction; its commitment to scalability and extensibility; and its alignment with
the performance and interoperability needs of tomorrow’s media applications. Through
this architecture, MoQT aims to lay a robust foundation for flexible, efficient, and secure
media transport over the evolving internet [28, 29].

34

3.2 – General architecture

3.2 General architecture
At the core of MoQT’s architecture is a flexible and efficient publisher/subscriber
model, which enables low-latency delivery of media from producers (e.g., live encoders,
cameras, or media servers) to consumers (e.g., players, analytics systems, or relays). This
model is built around the concept of hierarchical tracks, groups, and media objects,
which together define how media is structured, announced, and delivered over the net-
work 1.

MoQT defines three main roles in its pubisher/subscriber model:

• Publishers: Entities (usually servers) that create streams of media (e.g., a webcam
stream or a live broadcast feed) and publish content to be consumed.

• Subscribers: Endpoints (clients) that select specific media content to consume via
subscription, thus receiving data in real-time or near-real-time.

• Relays: Entities that optionally forward these streams, caching and routing multi-
media content according to subscriptions and enabling network scalability and multi-
hop delivery.

An integral characteristic of the effectiveness of a transmission protocol like MoQT is
its ability to distribute content at scale. In particular, MoQT is designed to allow the
use of relays to effectively leverage third-party networks, independent of the entity
that publishes or subscribes to/from the content.

Relays can thus be used to form a content distribution network, conceptually simi-
lar to Content Delivery Networks (CDNs). Relays treat MoQT objects as opaque
entities, without modifying, combining, or splitting their payloads, and should prioritize
them in accordance with the protocol specifications.2

Consumers have the flexibility to adapt their behavior based on current network
conditions. For example, they may delay playback slightly to buffer more data and im-
prove stream quality in poor conditions, or prioritize low-latency delivery at the cost of
occasional loss or lower resolution.

From a topological perspective, and based on MOQT’s pubisher/subscriber model,
the simplest architecture that can used by deploying all possible entity role types
consists of a publisher that advertises content to be distributed to a relay, which in turn
advertises and distributes it to one or more receiving final subscribers.
3

1MoQ Transport Draft, https://datatracker.ietf.org/doc/draft-ietf-moq-transport/
2https://datatracker.ietf.org/doc/draft-ietf-moq-transport/

35

https://datatracker.ietf.org/doc/draft-ietf-moq-transport/

Media Over Quic Transport

Figure 3.1. Simple MoQT architecture

More specifically, instances of the original publisher and final subscriber run as
clients in a browser environment, which accesses a local server running the moq-js
application, while the relay consists of an instance of the moq-rs application running
locally or on a remote server to simulate varying network conditions.

MoQT streams are structured with a specific hierarchical model for their data ob-
jects using Track, Group, and Object identifiers. These enable flexible organization of
media content (e.g., separating audio and video, different camera angles, quality layers,
or subtitles) 4.

More specifically:

• Object: The basic data unit in MOQT; it is an addressable unit whose payload
is a sequence of bytes. All objects belong to a group, which specifies their ordering
and potential dependencies.

• Group: A collection of objects and a subunit of a track, acting as a join point
for subscriptions. Objects within a group sholud not depend on objects from other
groups.

• Track: A sequence of groups, the entity for which a consumer issues a subscrip-
tion request.

An object is uniquely identified by its track namespace, track name, group ID, and object
ID, and it must be an identical sequence of bytes regardless of how or where it is retrieved.

3https://www.meetecho.com/blog/moq-webrtc/
4IETF MoQ Transport Draft: https://datatracker.ietf.org/doc/draft-ietf-moq-transport/

36

https://datatracker.ietf.org/doc/draft-ietf-moq-transport/

3.3 – MoQ Streaming Formats

Objects consist of two parts: metadata and payload. Metadata is never encrypted
and is always visible to relays. The payload part can be encrypted, in which case
it is only visible to the original publisher and the final subscribers. The application is
solely responsible for the content of the object’s payload. This includes the underlying
encoding, compression, any end-to-end encryption, or authentication. A relay cannot
combine, split, or otherwise modify the payloads of objects.

Objects within a group should not depend on objects in other groups. A group serves
as a join point for subscriptions. For example, a new subscriber may not want to receive
the entire track but may instead choose to receive only the latest groups. The publisher
selectively transmits objects based on their membership in the group.

A track is a sequence of groups. It is the entity for which a subscriber issues a sub-
scription request. A subscriber can request to receive individual tracks starting from
a group boundary, including any new objects sent by the publisher while the track is
active.

The format design is strongly motivated by the requirements of modern real-time and
interactive applications. MoQ supports both fully reliable (QUIC streams) and partially
reliable (QUIC datagrams) delivery, allowing applications to finely balance reliability and
latency according to use case. Object-level fragmentation and reassembly, explicit signal-
ing of dependencies, and native support for prioritization and selective subscription all
contribute to minimizing head-of-line blocking and maximizing timely media delivery.

3.3 MoQ Streaming Formats
A central design feature of the Media over QUIC Transport (MoQT) protocol is
that it defines a structure for transporting media (like video or audio) over QUIC using
named media objects rather than traditional streams.

It aims to simplify caching, multiplexing, and real-time delivery across relay-based topolo-
gies. It’s designed to be codec-agnostic, scalable, and adaptable to modern streaming
needs like live events, interactive applications, and real-time communications.

To that end, MoQT supports multiple streaming formats5, each defining how media
data is structured, named, prioritized, and delivered over the network, along with
policies for discovery and subscription.

5https://datatracker.ietf.org/doc/html/draft-ietf-moq-transport-07#name-introduction

37

Media Over Quic Transport

These streaming formats are designed to be interoperable with the MoQ transport layer
without mandating specific codecs or container formats.

3.4 Overview of Streaming Formats in MoQ
Unlike traditional protocols that tightly couple transport with media semantics (e.g., RT-
P/SDP in WebRTC), MoQ separates the transport mechanism from media representation.
One of the foundational design choices in MoQ is the strict decoupling of media semantics
from transport mechanics. Unlike traditional protocols such as RTP/SDP, which entangle
media negotiation and transport, MoQ explicitly separates the representation of media
objects from the mechanisms used to deliver them [28].

This separation enables relays and intermediaries to efficiently route, cache, or priori-
tize data based solely on standardized metadata, without requiring knowledge of specific
media codecs or content types and allows for greater flexibility, interoperability, and scal-
ability, particularly when distributing real-time or low-latency media over the internet.

Figure 3.2. MoQT hierarchy

3.4.1 Purpose of Streaming Formats
The design of streaming formats in MoQ fulfills several pivotal roles within the protocol
ecosystem.

38

3.4 – Overview of Streaming Formats in MoQ

Separation of Concerns: MoQ streaming formats are built to be media-agnostic and
forward-compatible. The protocol standardizes metadata framing and signaling, but delib-
erately avoids encoding media-specific semantics into the transport itself. Reserved fields,
extensible headers, and versioning schemes permit seamless evolution of the protocol, ac-
commodating new media types, enhanced security, and future application requirements
without disrupting existing deployments [29].

Define Object Hierarchies: streaming formats define a hierarchical organization of me-
dia, segmenting content into namespaces, groups, tracks, and objects. This multi-layered
structure enables efficient relaying, caching, and prioritization without requiring interpre-
tation of the media content itself and facilitates efficient routing, granular caching, and
selective forwarding of media segments across distributed relay infrastructures [29].

Enable Interoperability: by standardizing metadata structures, MoQ ensures that
disparate entities—whether they be relays, caches, or end-user players—can interpret,
route, and manipulate media flows based on common logic. This approach fosters broad
interoperability and removes the need for every intermediary to implement bespoke media-
specific processing.

Support Customization: MoQ’s approach to streaming formats is intentionally ex-
tensible and application-agnostic. This enables diverse application domains—ranging
from interactive video conferencing to large-scale live event streaming and even voice-
over-IP—to define domain-specific semantics atop the shared MoQ transport substrate,
without sacrificing interoperability or performance [28, 29].

3.4.2 Key Streaming Formats
As the Media over QUIC Transport (MoQT) protocol matures, a central focus of stan-
dardization efforts has been the development of interoperable streaming formats that can
leverage the unique capabilities of QUIC-based media delivery. As of 2025, two prominent
streaming formats have emerged as reference models for the MoQT ecosystem: WARP
and RUSH.

WARP (WebRTC Asynchronous Reliable Protocol) is designed specifically for the down-
stream delivery of media content from relays or publishers to multiple consumers. Its
core innovation lies in adopting an object-based transmission model, in which discrete
media objects—such as video frames, audio samples, or timed metadata—are delivered
with low latency and can be individually prioritized or cached. WARP’s architecture is
optimized for scalable, loosely coupled distribution: relays can forward or cache ob-
jects without maintaining tight stateful coordination with all endpoints. This flexibility
enables efficient media fan-out for live events, virtual conferences, and real-time collabo-
rative environments [18].

39

Media Over Quic Transport

Complementing WARP’s downstream focus, RUSH (Relayed Upload Streaming Han-
dler) addresses the upstream ingestion of live media. RUSH is tailored for workflows in
which publishers—such as live event broadcasters or user devices—transmit media objects
to relays, which may then redistribute or process the streams further. RUSH emphasizes
timing fidelity (ensuring that object timing is preserved across hops) and supports par-
tial reliability, allowing senders to trade off retransmissions against low latency. This
is especially critical for real-time production and interactive streaming scenarios, where
some packet loss is acceptable but consistent timing is essential [27].

The standardization of formats like WARP and RUSH enables interoperability at the
transport level between different media systems and vendors. By providing clear expec-
tations for object structure, metadata semantics, and reliability guarantees, these formats
make it possible for diverse applications—ranging from professional broadcasting plat-
forms to peer-to-peer communication tools—to exchange media over MoQT with ultra-
low latency, high efficiency, and robust stream-aware delivery.

Moreover, the MoQ Working Group envisions that additional streaming formats will
emerge in the future to accommodate evolving use cases. These may include support
for adaptive bitrate (ABR) video, real-time data synchronization for multi-user
applications, or advanced features such as spatial audio delivery. The extensibility of
the MoQT protocol and its object-based hierarchy make it possible to adopt new formats
without compromising on interoperability or transport efficiency.

By converging on standardized object-based formats such as WARP and RUSH, the
MoQT ecosystem promises to break down vendor silos, foster innovation, and support
the next generation of interactive and scalable media services.

3.4.3 Comparison with Traditional Protocols

Feature Traditional Protocols (e.g., RTP) MoQ Streaming Formats
Transport Coupling Tightly bound to RTP Decoupled from transport
Object Granularity Packet-based Object-based (frame, segment)
Multiplexing Requires SDP negotiation Built-in via QUIC streams
Prioritization Limited (e.g., DSCP) Per-object priority metadata
Cacheability Poor Cache-friendly via relayable objects
Join-in-progress Complex (requires state) Simple via group/track model

Table 3.1. Comparison of traditional protocols vs MoQ streaming formats

3.4.4 WARP
WARP is a streaming format designed for low-latency, object-based, and loosely
coupled media distribution over MoQ.

40

3.4 – Overview of Streaming Formats in MoQ

It is particularly well-suited for scenarios where media needs to be delivered in real time
to multiple subscribers and modern real-time applications such as live streaming,
interactive broadcasts, and augmented reality (AR) or virtual reality (VR) me-
dia distribution.

WARP is designed to deliver multimedia content compliant with the Common Me-
dia Application Format (CMAF) [2] to enhance interoperability, support adaptive
bitrate (ABR) switching, and facilitate distributed caching and delivery in heterogeneous
network conditions [9, 17].

Design Goals

The design of the WARP format is grounded in several key objectives that directly address
the challenges of modern, real-time media streaming. Foremost among these goals is the
minimization of end-to-end latency, with the explicit aim of achieving sub-second deliv-
ery for live content. This capability is particularly vital for latency-sensitive applications
such as live sports broadcasting, online gaming, and interactive video conferencing, where
delays above one second can significantly impair user experience and interactivity [10, 6].

A second core objective is scalability, which is pursued through content-aware relaying.
By structuring media with rich, machine-interpretable metadata, WARP empowers in-
termediary relay nodes to make intelligent, context-driven decisions—such as selectively
caching, prioritizing, or dropping specific objects—based on real-time network and ap-
plication demands. This adaptability not only supports graceful degradation under con-
strained network conditions but also enables in-network optimization strategies that go
far beyond the capabilities of traditional, tightly coupled client-server architectures.

Furthermore, WARP is engineered for stream robustness and flexibility. Leveraging the
underlying properties of QUIC, the format is able to deliver reliable media even over lossy
or highly variable networks. Support for partial reliability, out-of-order object delivery,
and targeted recovery mechanisms enables streams to maintain continuity and quality of
experience even in the face of transient network failures. Collectively, these objectives
reflect the broader philosophy of MoQ: to shift from monolithic client-server models to-
ward a publish-subscribe paradigm in which media delivery is dynamically orchestrated
by in-network relays and peer-aware optimizations [10].

Features

WARP distinguishes itself through a semantically rich and highly structured representa-
tion of media streams. At the heart of its approach is object-based granularity, whereby
media content is segmented and transmitted as discrete, uniquely identifiable objects—such
as video frames, audio samples, or metadata fragments. This enables precise control over
delivery policies, dynamic prioritization, and selective retransmission or suppression based
on application and network requirements.

41

Media Over Quic Transport

A central feature of the WARP format is its extensive use of metadata tagging. Each me-
dia object is annotated with detailed metadata, including presentation timestamp (PTS),
duration, dependency information (for example, referencing I-frame to P-frame relation-
ships in video), and priority levels. This metadata is fundamental to enabling relays and
endpoints to perform advanced stream management, synchronization, and error recovery.

The format further supports loose ordering and partial reliability, capitalizing on QUIC’s
native stream independence. This means that objects can arrive out of order or may be
intentionally dropped without compromising the integrity of the overall stream—a prop-
erty that markedly improves resiliency, especially for real-time content.

WARP is expressly optimized for relay-mediated delivery. Intermediary nodes are em-
powered to interpret object metadata and undertake a range of optimizations, includ-
ing adaptive caching, intelligent reordering, dynamic prioritization, and even on-the-fly
transcoding or prefetching. This approach not only enhances efficiency across the distri-
bution chain but also enables more agile and adaptive media services.

Data Model and Hierarchy

In line with the broader MoQT specifications, the WARP format organizes media con-
tent within a robust four-level hierarchical structure. At the highest level, the names-
pace serves as a global scoping identifier, typically mapped to a service or domain (e.g.,
live.example.com), thereby facilitating global routing and content isolation.

Within each namespace, the group functions as a session-level identifier, such as a unique
code for a particular live event or stream instance (e.g., concert2025). This allows for the
aggregation of all media flows and resources associated with a specific session, supporting
coordinated access control and lifecycle management.

The track represents a logical channel for an individual media type—be it video, audio,
or captions. This granularity allows heterogeneous content to be multiplexed efficiently
within the same group, supporting complex media experiences and seamless adaptation
to varying user and device capabilities.

Finally, at the base of the hierarchy, the object constitutes the atomic transmission unit.
An object may represent, for instance, a Common Media Application Format (CMAF)
fragment, a group of pictures (GOP), or a single audio frame. Each object encapsulates
both the raw media data and its associated metadata, enabling granular addressing, effi-
cient transport, and dynamic optimization throughout the delivery path [6, 10].

Each object encapsulates a segment (e.g., a GOP or CMAF chunk) and is mapped onto
a QUIC stream, allowing interoperability with existing encoders and decoders. This

42

3.4 – Overview of Streaming Formats in MoQ

Figure 3.3. Warp data model hierarchy

ensures that WARP streams can be readily generated using commodity media pipelines
and easily adapted into broader MoQ workflows [17].

Stream and Object Management

Streams are prioritized based on media type (e.g., audio is typically given higher priority
than video), recency (newer samples are preferred over older ones), and dependency in-
formation. This facilitates graceful degradation in congested environments—allowing
relays or clients to skip lower-priority frames or stale objects.

Objects are inserted into QUIC streams in the order produced by the encoder and con-
sumed by the decoder, preserving decoding semantics while allowing transport flex-
ibility. This approach aligns with modern adaptive streaming techniques where chunk-
based segmentation (such as CMAF’s use of ISOBMFF fragments) allows time-aligned,
codec-independent delivery [2, 19].

Each codec bitstream must be packaged into a sequence of objects within a separate
track, while media tracks should be media-time aligned.

Track Types and Publishing Rules

WARP distinguishes between two fundamental track types:

43

Media Over Quic Transport

• Media Track: Carries media bitstreams such as H.264, AAC, or Opus, and repre-
sents a continuous sequence of time-aligned objects.

• Catalog Track: Provides metadata about the availability and structure of media
tracks. It must be published before any media tracks, effectively bootstrapping the
media session.

Catalog tracks facilitate discovery, session negotiation, and late-join scenarios. For
example, a subscriber joining an ongoing stream can retrieve the latest catalog object to
determine which media tracks are currently available and where to begin consumption.

WARP aligns with the architectural goals of MoQ: it is inherently decoupled, publisher-
subscriber oriented, and optimized for distributed, scalable delivery via QUIC.
Its metadata-first approach and flexible stream organization make it well-suited for inter-
active and high-performance media applications that cannot tolerate the latencies
introduced by traditional HTTP-based delivery.

3.4.5 RUSH
In contrast to WARP, which is primarily oriented towards efficient downstream media
distribution, the RUSH (Reliable Upload Streaming over HTTP/3) format has been de-
signed to optimize upstream media ingestion within the Media over QUIC (MoQ) archi-
tecture. RUSH addresses the unique requirements of media publishers who must reliably,
yet efficiently, transmit real-time or near-real-time content from the edge to in-network
relays or ingest servers [21, 10].

A central tenet of RUSH is the preservation of precise timing and sequencing information
for media objects as they are uploaded. This guarantees that the temporal structure of
the original media production—such as the order and spacing of video frames or audio
packets—is faithfully maintained from the producer through to the relay infrastructure.
Accurate sequencing is critical for supporting seamless downstream playback, low-latency
handoff, and precise synchronization across multiple tracks or modalities.

RUSH empowers media producers to leverage object-based partial reliability, a feature
especially valuable in scenarios where network conditions are variable or retransmission
opportunities are constrained. By enabling selective retransmission and targeted delivery
of critical objects (for example, video keyframes), RUSH allows workflows to prioritize the
most essential content and gracefully degrade non-essential or time-sensitive data when
necessary. This design is particularly well suited for live production environments, where
the retransmission window is intrinsically limited by the requirements of low-latency, real-
time streaming.

Overall, RUSH represents a deliberate effort to provide a flexible, structured, and effi-
cient approach to upstream media ingestion within the MoQ framework. By maintaining
tight control over timing and sequencing, while supporting advanced reliability strategies,

44

3.4 – Overview of Streaming Formats in MoQ

RUSH enables professional live production workflows and high-quality real-time applica-
tions to scale across modern internet infrastructures [21].

Comparison: WARP vs. RUSH

A clear understanding of the technical distinctions between the WARP and RUSH
streaming formats is essential for system architects and developers working with the
MoQT protocol suite. While both formats are designed to leverage QUIC’s low-latency ca-
pabilities, they target fundamentally different directions of media flow within distributed
streaming systems. The following table summarizes the principal aspects in which WARP
and RUSH diverge in design, application, and technical implementation.

Both WARP and RUSH rely on an object-based abstraction, allowing flexible and fine-
grained control over media delivery and ingest, but they apply these concepts to optimize
opposite directions of the media pipeline. WARP is tailored for scalable distribution
to a large number of receivers, allowing selective retransmission and object prioritiza-
tion to achieve ultra-low-latency fan-out. In contrast, RUSH is optimized for reliable,
time-preserving media ingestion from diverse sources, with special consideration for event
sequence and partial reliability in high-pressure, live production scenarios.

By standardizing on these two formats within the MoQT framework, the working group
enables interoperability and innovation, fostering an ecosystem in which both upstream
contribution and downstream distribution can be independently optimized while ben-
efiting from the common capabilities of QUIC—such as multiplexing, encryption, and
connection migration.

45

Media Over Quic Transport

Table 3.2. Detailed Comparison of WARP and RUSH Streaming Formats

Feature WARP RUSH
Primary Direction Downstream (relay to con-

sumer, publisher to audience)
Upstream (publisher to relay
or server)

Design Focus Scalable, low-latency media
distribution to many con-
sumers; object-based fan-out

Reliable, structured media in-
gestion with accurate event/-
timing fidelity

Reliability Model Partial reliability; allows selec-
tive retransmission and drop-
ping of less important objects

Partial reliability; prioritizes
timing and event order over
strict retransmission of all ob-
jects

Timing Guarantees Optimized for real-time and
near-real-time delivery; can
support deadlines and object
priorities

Preserves publisher’s timing
and event sequencing for accu-
rate upstream workflows

Object Model Object-based (e.g., video
frames, audio packets, timed
metadata); supports prioriti-
zation

Object-based (e.g., media
fragments, audio frames,
events); emphasizes ingest
order

Target Use Cases Live event streaming, real-
time collaboration, broadcast
distribution, large-scale fan-
out

Live production ingest, cloud
relay, contribution feeds from
field devices, real-time up-
stream workflows

Multipath/Relay Support Designed for efficient relay,
caching, and in-network fan-
out

Supports relay and contribu-
tion models, with event and
timing integrity

Partial Reliability Yes (application can drop or
deprioritize late or non-critical
objects)

Yes (tolerates some loss to
maintain timing and lower la-
tency)

Integration in MoQT Reference downstream distri-
bution format

Reference upstream ingest for-
mat

Interoperability Promotes interoperability be-
tween publishers, relays, and
diverse consumer applications

Enables standardized ingest
from heterogeneous devices to
shared relays

Typical Data Types Video frames, audio samples,
captions, timed events

Encoded video/audio frag-
ments, real-time events,
control messages

3.4.6 Stream Management
Stream management in the context of Media over QUIC (MoQ) is inherently multi-layered,
with each layer serving a distinct role in the end-to-end delivery of media content. At the

46

3.4 – Overview of Streaming Formats in MoQ

highest layer, audio and video streams correspond directly to the content captured or ren-
dered by applications. These streams encapsulate the primary media tracks as perceived
by end-users during capture, playback, or real-time interaction [28].

Beneath the application layer, there exist intermediate streams which represent the en-
coded or decoded versions of the original audio or video content. For instance, an appli-
cation may maintain separate streams for raw video capture, encoded compressed video
(e.g., H.264), and subsequently decoded output for rendering or further processing. This
separation allows for flexible handling of transcoding, format adaptation, and optimiza-
tion workflows, all within the application domain.

At the MoQ protocol level, streams are further abstracted as input or output flows that
correspond to the protocol’s object-based transport primitives. MoQ streams are respon-
sible for segmenting, encapsulating, and delivering media objects—such as video frames
or audio packets—across the network, ensuring that content is uniquely identifiable and
addressable throughout its journey from producer to consumer [29].

At the lowest layer, underlying transport mechanisms such as WebTransport and QUIC
provide the foundation for reliable or partially reliable multiplexed delivery of streams.
Here, streams are implemented as independent, bidirectional flows within a QUIC con-
nection, supporting both reliable and datagram-based semantics. This enables MoQ to
achieve highly efficient, low-latency media distribution while allowing for granular control
over reliability, ordering, and flow prioritization [8, 15].

3.4.7 Use Cases
The layered stream management approach enabled by MoQ unlocks a wide array of mod-
ern media use cases. One prominent application is live streaming, encompassing real-time
broadcasts of sports, concerts, and large-scale virtual events. In these scenarios, MoQ’s
object-centric, scalable architecture supports both low-latency delivery and efficient dis-
tribution across diverse network topologies [10].

Another significant use case is video conferencing, where the ability to scale distribution
from small peer-to-peer calls to massive multi-party sessions is crucial. MoQ’s flexible
stream management enables selective forwarding, dynamic adaptation, and robust error
recovery—features that are vital for maintaining media quality and interactivity in real-
time communication environments.

Furthermore, MoQ’s capabilities are highly applicable to real-time education and train-
ing platforms, where interactive content, live feedback, and low-latency streaming are
essential. The protocol’s support for hierarchical stream management and adaptive reli-
ability empowers educators and learners to participate seamlessly in synchronous virtual
classrooms and collaborative training exercises [28, 23].

47

48

Chapter 4

moq-js

On the client side, moq-js is used, a proof-of-concept application written in TypeScript,
JSX, and Astro, developed by Luke Curley.

moq-js is a modern web application for live media publishing and playback, built around
the Media over QUIC (MoQ) protocol. Its architecture exemplifies a clear separation
of concerns, leveraging browser-native APIs and modular TypeScript code to orchestrate
high-performance, low-latency streaming.

It runs within the browser and allows for the publishing or consumption of content via
the MoQT protocol. The content in question can be captured via screen capture or from
a microphone and webcam.

4.1 File and Module Structure Overview
The main logic is split across several layers:

• The UI (in web/src/components/ and web/src/pages/)

• The core MoQ protocol implementation and media pipeline (in lib/)

Below is a quick map of the key modules and their architectural role:

• UI Components:

– web/src/components/publish.tsx: Media publishing logic/UI
– web/src/components/watch.tsx: Media playback logic/UI

• Core Library (under lib/):

– lib/contribute/: Media capture, encoding, and publishing
– lib/playback/: Media subscription, decoding, playback
– lib/transport/: QUIC transport (WebTransport) and protocol objects
– lib/common/: Utilities, logger, ring buffer, error handling

49

moq-js

4.2 High-Level Workflow
1. Publishing:

User starts a broadcast (UI: publish.tsx) → Broadcast class manages capture,
encode, and sending chunks via Publisher → Chunks are packaged as MoqObject
and transmitted over a WebTransport connection.

2. Playback:
User selects a stream to watch (UI: watch.tsx) → Player class manages connection
and subscription → Receives MoqObject chunks, which are decoded (using Web-
Codecs) and rendered to <video>/<AudioContext>.

3. Transport/Protocol:
All media objects (audio/video) are sent as discrete protocol objects over QUIC,
supporting loss recovery, reordering, and efficient subscription (object-based, not
stream-based).

4.3 moq-js architecture - data flow
The media pipeline in moq-js is based on the object-based delivery model defined by the
IETF [12].

Media Capture
(Camera/Mic)

WebCodecs
Encoder

MoQ Object
Packager

WebTransport
Client

MoQ Relay Server

WebTransport
Client

MoQ Object
Decapsulator

WebCodecs
Decoder

Canvas/
AudioOutput

getUserMedia
Encoded Data

Stream
MoQ Objects

Stream

QUIC Datagram

QUIC Datagram
MoQ Objects

Stream
Encoded Data

StreamFrames/Samples

Figure 4.1. End-to-end MoQ Media Flow using moq-js

4.3.1 Publisher Workflow
1. Capture: Uses the MediaStream API to acquire video/audio input (getUserMedia).

2. Encoding: Encoded using WebCodecs VideoEncoder or AudioEncoder.

3. Packaging: Encoded chunks are wrapped in MoQ media objects, tagged with meta-
data (object ID, group ID, expiry).

4. Transmission: Sent via WebTransport datagrams for low-latency delivery [32].

50

4.4 – moq-js architecture — code level flow

4.3.2 Playback Workflow
1. Connect: WebTransport session is established with a MoQ relay.

2. Subscribe: Player subscribes to a track/namespace such as moq.example/live/stream.

3. Receive: Media objects are received over QUIC datagrams or streams.

4. Decode: Decoding is done with WebCodecs [31].

5. Render: Video is rendered on a canvas, and audio via AudioContext.

4.4 moq-js architecture — code level flow
The internal operation of moq-js, as illustrated in Figure 4.2, is characterized by a highly
modular and event-driven architecture that elegantly separates concerns between user
interface, protocol logic, and computationally intensive media processing. This section
provides a comprehensive discussion of the code-level flow, focusing on the initialization,
orchestration, and synchronization of media playback on the client.

Figure 4.2. High-level architectural diagram of moq-js

51

moq-js

Initialization and Reactive Binding

The entry point for playback in the client-side application is the “Watch” page, which
is responsible for rendering the video interface and orchestrating the playback pipeline.
In contemporary frameworks such as Astro or Solid.js, lifecycle management is often
realized through reactive primitives such as createEffect. Within this effect, a video
DOM element is instantiated, and a new instance of the Player class is created. This
binding ensures that the player’s state remains synchronized with the lifecycle of the UI
component, facilitating both proper resource allocation and cleanup upon navigation or
teardown.

Connection Establishment and Catalog Discovery.

Upon instantiation, the Player class is tasked with establishing a low-latency connection
to the MoQ relay using the WebTransport API. Once the connection is confirmed, the
Player fetches the media Catalog from the relay, which contains detailed metadata about
available tracks, such as stream identifiers, codecs, language, and configuration required for
proper subscription. The Catalog abstraction encapsulates track discovery, management
of available media streams, and enables subsequent subscription and playback control.

Track Subscription and Worker Offloading.

For each track described in the catalog—beginning with initialization tracks (such as
codec-specific headers or configuration objects), followed by continuous media tracks (e.g.,
video or audio streams)—the Player communicates with a dedicated JavaScript Worker.
These workers are instantiated per-backend (e.g., for WebCodecs), enabling off-main-
thread processing of decode and render operations. The communication pattern involves
passing serialized track information and initialization messages from the Player to the
Worker via postMessage. This not only improves responsiveness by offloading compu-
tationally intensive tasks, but also supports concurrent decoding and synchronization of
multiple media tracks, such as multi-language audio or multiple video resolutions.

WebCodecs Backend and Audio Context Pipeline.

When the backend selected is WebCodecs—the most efficient option in modern browsers—
the Player constructs a specialized instance of the backend’s Player implementation. For
audio playback, this entails the creation of a Context object, which orchestrates an Au-
dioContext and an AudioWorkletNode. Upon initialization, the Context loads the
audio worklet module and connects it to the browser’s audio output path. This con-
figuration enables sample-accurate, low-latency audio playback and allows for advanced
processing, such as mixing, effects, or custom buffering strategies, all with minimal main-
thread intervention.

52

4.5 – moq-js architecture - code level analysis

Renderer Management and Threaded Media Pipeline.

Within each Worker, a dedicated Renderer class is responsible for the core rendering
logic. For video, the Renderer decodes incoming segments and renders frames onto an
offscreen or onscreen canvas element; for audio, it decodes chunks and pushes samples
into a circular buffer (ring buffer) consumed by the AudioWorkletNode. The separation
of decoding, buffering, and rendering into worker-based Renderers enables precise timing,
minimizes audio/video drift, and significantly reduces the likelihood of UI stalls or dropped
frames.

Audio Jitter Buffering and Smooth Playback.

A key architectural consideration in moq-js is the use of an audio ring buffer as an
intermediary between the asynchronous arrival of media segments and the deterministic,
sample-rate-driven pull model of browser audio playback. The Renderer is responsible for
managing this buffer: upon receiving and decoding frames, it writes them to the buffer,
while the AudioWorkletNode consumes them at regular intervals. This approach provides
resilience against network jitter and transient decoder delays, ensuring continuous and
artifact-free audio output.

Summary and Architectural Rationale.

The code-level flow of moq-js is a paradigmatic example of modern, event-driven web
architecture: initialization is tightly coupled to UI state via reactive primitives; network
and media logic is encapsulated in protocol-aware classes (Player, Catalog, Renderer, Con-
text); and all heavy computation is safely delegated to Web Workers, enabling optimal
responsiveness and scalability. The design achieves an elegant decoupling of concerns, ro-
bust handling of concurrency, and a clear path to future enhancements (such as adaptive
bitrate, track switching, or multi-stream mixing).

This multi-layered, asynchronous approach underpins the library’s ability to deliver low-
latency, resilient, and high-quality media experiences directly in the browser, all in full
alignment with the emerging Media over QUIC standards.

4.5 moq-js architecture - code level analysis

4.5.1 UI Integration: web/src/components/publish.tsx

The user interface (UI) in moq-js is designed to provide a seamless and highly interactive
experience for live broadcasting, tightly coupling user actions to the media pipeline. The
publish.tsx component is the entry point for users to initiate the process of capturing,
encoding, and publishing audio/video content in real time.

At a high level, this UI component provides controls (e.g., a button) that, when acti-
vated, trigger a complete pipeline for live streaming. The core logic leverages imported

53

moq-js

abstractions from the library’s protocol and media layers, specifically the Broadcast,
VideoEncoder, and AudioEncoder classes, as well as the Client and Connection classes
for network communication:

1 import { Broadcast, VideoEncoder, AudioEncoder } from "@kixelated/moq/contribute"
2 import { Client, Connection } from "@kixelated/moq/transport"
3 // ... UI state and event hooks ...
4 const broadcast = new Broadcast({ ...mediaOptions })
5 await broadcast.start()

Detailed analysis:

Abstraction and Modularity

The use of the Broadcast class demonstrates a clear separation of concerns. Rather
than directly manipulating browser APIs in the UI logic, the component delegates media
pipeline responsibilities (capture, encode, package, transmit) to reusable, well-encapsulated
abstractions. This approach enhances code maintainability, supports code reuse, and
aligns with the principles of modular software engineering.

Reactive and Event-Driven Workflow

User interaction (e.g., clicking a “Go Live” button) triggers asynchronous operations. This
is typically managed through React or Solid.js hooks, where UI state transitions (such as
“broadcasting: true/false”) control component lifecycle and effect triggers. The asyn-
chronous nature of media capture and transport is handled via promises and async/await,
ensuring UI responsiveness and robust error handling.

MediaOptions and Dynamic Configuration

The Broadcast constructor accepts a configuration object (mediaOptions) that encap-
sulates user-selected parameters, such as audio/video sources, resolution, frame rate, and
codec preferences. This pattern allows for dynamic adaptation to user or device capabil-
ities, and supports advanced features like selecting between screen capture and camera,
toggling audio, or switching between hardware and software codecs.

Orchestration of the Pipeline

Calling await broadcast.start() triggers a series of chained operations:

1. The Broadcast class invokes the MediaStream API (getUserMedia) to request per-
missions and access hardware input devices.

2. It then creates instances of VideoEncoder and/or AudioEncoder from the @kixelated/moq/contribute
module, configuring them according to the selected options.

54

4.5 – moq-js architecture - code level analysis

3. As media frames and audio samples are captured, they are asynchronously passed
to the encoders, which output compressed media chunks suitable for network trans-
mission.

4. Each encoded chunk is immediately packaged with metadata (timestamps, group/ob-
ject IDs) in preparation for transport.

5. The Client and Connection classes—from @kixelated/moq/transport—are used
to establish and maintain a WebTransport (QUIC) session to the relay, supporting
real-time delivery of encoded objects.

This architecture enables a low-latency, continuous pipeline from camera/microphone to
the network, with minimal main-thread blocking.

Error Handling and User Feedback

At each stage, potential errors (permissions denied, codec unsupported, transport failure)
are captured and surfaced to the UI, enabling robust user feedback and facilitating rapid
troubleshooting.

Internals of the Broadcast Class

The Broadcast class is the heart of the publishing pipeline. It encapsulates all logic
needed for media capture, encoding, and object-based packaging for transmission via MoQ.
Below is a representative excerpt from lib/contribute/broadcast.ts, illustrating key
constructor logic and lifecycle methods:

1 // Broadcast class internals (example, real code may differ)
2 constructor(options) { /* ...initialize state... */ }
3

4 async start() {
5 // Acquire MediaStream, initialize encoders, connect to relay, start sending objects
6 }
7

8 async stop() {
9 // Gracefully tear down pipeline: close encoders, stop tracks, close connection

10 }

In-depth Class Explanation:

• Constructor: The constructor initializes the pipeline based on provided configura-
tion options. It prepares references to the media input (audio/video), codec config-
uration, and sets up internal state, including object counters and encoder instances.
Error checks and fallbacks are put in place to handle unsupported device or codec
conditions gracefully.

• start() method: The asynchronous start method orchestrates the complete pub-
lishing flow. It acquires a MediaStream using the browser’s media APIs, initializes

55

moq-js

encoders for video and audio (as needed), and establishes a connection to the MoQ
relay using the Client abstraction. The method enters a loop or attaches event
listeners for handling frame/audio data as it becomes available, ensuring minimal
latency between capture and network transmission. The use of async/await ensures
that resource acquisition and errors are managed robustly, and the UI can be kept
informed of pipeline status.

• stop() method: This method gracefully tears down the pipeline. It closes the
encoders, stops the media tracks, and ensures that the network connection is closed
cleanly. This guarantees that no resources are leaked, and the user can reliably start
and stop broadcasting sessions without stale or conflicting state.

4.5.2 Transport and Protocol (From lib/transport/)
The lib/transport/ directory in moq-js forms the backbone of the client’s real-time
communication capabilities. Here, the implementation brings together the Media over
QUIC (MoQ) object protocol, session and object management, and the low-level QUIC
transport (via WebTransport) into a modular, event-driven layer that is both standards-
aligned and extensible.

QUIC/WebTransport Client Abstraction: client.ts

At the core of the transport system is the client abstraction, which encapsulates all con-
nection lifecycle logic using the browser’s WebTransport API. This abstraction hides the
complexities of session negotiation, bidirectional stream management, and datagram de-
livery.

1 // lib/transport/client.ts
2

3 export class Client {
4 #transport: WebTransport | undefined;
5 #url: string;
6

7 constructor(url: string) {
8 this.#url = url;
9 }

10

11 async connect() {
12 this.#transport = new WebTransport(this.#url);
13 await this.#transport.ready;
14 }
15

16 sendDatagram(data: Uint8Array) {
17 if (!this.#transport) throw new Error("not connected");
18 this.#transport.datagrams.writable.getWriter().write(data);
19 }
20

21 close() {
22 this.#transport?.close();

56

4.5 – moq-js architecture - code level analysis

23 }
24 }

Session Lifecycle and Multiplexing

The Client class manages the lifecycle of the transport connection. It provides meth-
ods for connection establishment, reliable datagram transmission, and clean teardown.
Multiplexed media objects and control messages are sent and received over the same ses-
sion, utilizing QUIC’s built-in stream and datagram abstractions for parallel, low-latency
communication.

Publisher Role: publisher.ts

The publisher module provides a high-level interface for packaging and sending encoded
media data as protocol objects over the QUIC transport. It abstracts over MoQ-specific
metadata (e.g., groupings, expiration) and manages the details of packaging objects and
delivering them via the established client session.

1 // lib/transport/publisher.ts
2

3 export class Publisher {
4 #client: Client;
5

6 constructor(client: Client) {
7 this.#client = client;
8 }
9

10 async publish(object: MoqObject) {
11 const buffer = object.toBuffer();
12 this.#client.sendDatagram(buffer);
13 }
14 }

Subscriber Role: subscriber.ts

On the receiving side, the subscriber manages the subscription to particular tracks or
namespaces, and handles the dispatch and decoding of received MoQ objects. Subscription
requests are serialized and sent as control messages, and data flows back via the same
transport infrastructure.

1 // lib/transport/subscriber.ts
2

3 export class Subscriber {
4 #client: Client;
5

6 constructor(client: Client) {
7 this.#client = client;
8 }

57

moq-js

9

10 subscribeTrack(trackId: number) {
11 const msg = { type: "subscribe", trackId };
12 this.#client.sendDatagram(encodeControlMessage(msg));
13 }
14

15 handleObject(buffer: Uint8Array) {
16 const object = MoqObject.fromBuffer(buffer);
17 // Pass object to playback/decoding layer
18 }
19 }

4.5.3 lib/transport/object.ts — The MoQ Object Layer
The file lib/transport/object.ts is pivotal within moq-js: it defines the core rep-
resentation and serialization logic for media objects as they are sent and received over
QUIC. The abstraction here is crucial: MoQ objects serve as the atomic units for me-
dia transport, encapsulating both payload (media chunk) and the metadata required for
ordering, deduplication, reliability, and protocol compliance.

Object Representation

A simplified and annotated version of the core class:

1 // lib/transport/object.ts
2 export class MoqObject {
3 readonly group: number
4 readonly object: number
5 readonly expires: number | undefined
6 readonly payload: Uint8Array
7

8 constructor({ group, object, expires, payload }) {
9 this.group = group

10 this.object = object
11 this.expires = expires
12 this.payload = payload
13 }
14 }

Detailed explanation:

• group: Identifies the media group (e.g., a video or audio track) that this object
belongs to. It enables grouping of related objects for subscription and delivery.

• object: A strictly increasing integer that uniquely identifies this object within its
group. This is vital for ordering, loss detection, deduplication, and caching by the
relay/server.

58

4.5 – moq-js architecture - code level analysis

• expires: An optional timestamp (milliseconds since epoch) marking when this ob-
ject should be considered expired or non-cacheable. This supports temporary caching
and replay for late joiners.

• payload: The encoded media bytes (e.g., a VP8 keyframe or Opus audio packet).
It’s stored as a Uint8Array for efficient transmission.

Design rationale: This minimal representation enables flexible and protocol-compliant
serialization, rapid deserialization, and extensibility for future fields. Object-level encap-
sulation is fundamental to MoQ’s ability to support object-based media, unlike legacy
stream-oriented transports.

Serialization and Deserialization

For network transport, objects must be converted to and from wire format. lib/transport/object.ts
typically provides static methods for this purpose (here shown conceptually):

1 static fromBuffer(buffer: Uint8Array): MoqObject {
2 // Parse group, object, expires, and payload from the wire buffer
3 const group = ... // parse uint
4 const object = ... // parse uint
5 const expires = ... // optional, parse if present
6 const payload = ... // rest of buffer
7 return new MoqObject({ group, object, expires, payload })
8 }
9

10 toBuffer(): Uint8Array {
11 // Serialize fields into a buffer for transmission
12 // ... (write group, object, expires, payload)
13 return buffer
14 }

Detailed explanation:

• Deserialization (fromBuffer): Reconstructs a MoqObject from a QUIC datagram
or stream by parsing fields in protocol order. This allows any receiver (relay, sub-
scriber) to reconstruct the object metadata and media payload.

• Serialization (toBuffer): Encodes the MoqObject instance for transmission. This
step ensures the on-the-wire format is compact and fully compliant with the MoQ
IETF specification, supporting interoperability.

Why is this important? Object-level serialization/deserialization ensures that every
hop (browser, relay, server, subscriber) can handle, cache, and potentially replay media
objects independently—enabling the MoQ protocol’s low-latency and robust semantics.

59

moq-js

Usage and Cross-Reference in the Pipeline

Packaging at the Publisher:

1 // lib/transport/publisher.ts
2 const obj = new MoqObject({
3 group: videoTrackId,
4 object: nextObjectId++,
5 expires: Date.now() + 2000,
6 payload: encodedChunk
7 });
8 await this.connection.sendDatagram(obj.toBuffer());

Decoding at the Subscriber:

1 // lib/transport/subscriber.ts
2 const obj = MoqObject.fromBuffer(receivedBuffer);
3 // ... Pass obj.payload to decoder, use obj.group/object for ordering and

deduplicationñ→

Extended explanation:

• On the sending side, after a media chunk is encoded, it is immediately wrapped as
a MoqObject and serialized for network transmission, ensuring all required metadata
(track group, object order, expiration) travels with the payload.

• On the receiving side, every incoming datagram is first parsed into a MoqObject
so that track management, loss handling, and decoding logic can be applied based
on protocol metadata.

Extensibility and Protocol Compliance

The class is designed for future extension: additional fields (such as priority, dependencies,
or encryption metadata) can be added with backward-compatible changes, as the parsing
logic can adapt to optional or versioned fields.

This layer is also responsible for:

• Enforcing object-level integrity (e.g., discarding duplicates or late objects based on
object ID and expiration)

• Enabling caching/replay at both relay and client

• Supporting the full MoQ protocol’s requirements as tracked by the IETF draft [12]

4.5.4 Track Management and Subscription
The concept of tracks is foundational to the Media over QUIC (MoQ) protocol and cen-
tral to the design of moq-js. Unlike traditional monolithic media streams, MoQ treats
each audio or video stream—whether a main video feed, an audio language track, or a

60

4.5 – moq-js architecture - code level analysis

timed metadata channel—as an independently addressable track. This architectural choice
brings several benefits: it enables selective subscription, granular flow control, parallel me-
dia delivery, efficient object caching, and robust support for multi-language or adaptive
scenarios.

Code Structure and Responsibilities Track discovery, subscription, and management
in moq-js are encapsulated within distinct modules, each responsible for a layer of the
end-to-end playback pipeline. As exemplified in the code from lib/playback/index.ts
and lib/transport/subscriber.ts:

1 // lib/playback/index.ts
2 export class Player {
3 private tracks = new Map();
4

5 subscribe(trackInfo) {
6 const track = new Track(trackInfo);
7 this.tracks.set(trackInfo.id, track);
8 this.connection.subscribeTrack(trackInfo.id);
9 }

10 }
11

12 // lib/transport/subscriber.ts
13 export class Subscriber {
14 subscribeTrack(trackId: string) {
15 this.connection.sendControl({ type: 'subscribe', trackId });
16 }
17 }

Track Registry and Dynamic Management

The Player class maintains a dynamic registry (tracks) of all active tracks as a Map,
keyed by unique track identifiers. This registry supports efficient lookup, addition, and
removal of tracks at runtime—a necessity for scenarios like dynamic language switching,
adding or removing camera feeds, or live multi-angle switching. Each value is a Track
instance, encapsulating state and configuration for that media stream.

Subscription Orchestration

The subscribe(trackInfo) method in Player orchestrates the track subscription pro-
cess. Upon receiving metadata (e.g., from a session catalog), it constructs a new Track
object, registers it, and delegates the actual protocol-level subscription to the transport
layer. This decoupling of UI/session logic from protocol mechanics supports both modu-
larity and testability.

Protocol-Level Subscription

The transport abstraction, embodied by the Subscriber class, exposes a subscribeTrack(trackId)
method. Here, the subscription intent is serialized into a control message and sent via

61

moq-js

the active connection (typically over QUIC datagrams or streams). The control message
structure— type: ’subscribe’, trackId —aligns with the MoQ protocol specifica-
tion, ensuring interoperability with relays and other clients.

Asynchronous and Event-Driven Design

Subscriptions are inherently asynchronous: upon issuing a subscribe request, the client
must wait for media object availability (possibly signaled by server messages or track
announcements). This event-driven paradigm allows for responsive user interactions,
dynamic UI updates (e.g., enabling or disabling controls), and seamless integration of
late-joining or on-the-fly track changes.

Selective and Adaptive Media Delivery

Independent tracks empower clients to selectively subscribe only to those streams relevant
to the user. For example, in a live conference, a viewer could subscribe only to the main
video and a chosen language channel, reducing bandwidth and decoding costs. This
design also lays the foundation for advanced features like per-track adaptive bitrate, track
prioritization, and bandwidth estimation.

Standards Alignment

By making tracks explicit first-class objects in both API and protocol, moq-js maintains
alignment with the IETF MoQ drafts [12], ensuring that the client will remain compatible
as the standard evolves and as new relay implementations are developed.

4.5.5 Worker Communication Architecture
One of the most critical architectural choices in moq-js is the extensive use of Web Work-
ers to offload heavy media processing from the main UI thread. In modern web browsers,
the main thread is responsible for user interaction, DOM updates, and general UI re-
sponsiveness. However, real-time media tasks such as video decoding, audio processing,
and complex synchronization can introduce noticeable latency or UI “jank” if performed
on the main thread. To address this, moq-js delegates compute-intensive tasks to dedi-
cated workers, thereby maintaining fluid and responsive user experiences even under high
processing loads.

Worker Initialization and Main Thread Interface

Workers are instantiated directly from the main thread—typically in the playback UI
component—using the standard Web Worker API. The worker script is specified as a
module to support modern ES module imports:

1 // Main thread: setting up a worker for media playback
2 const playerWorker = new Worker(
3 new URL('../worker/player.worker.ts', import.meta.url),

62

4.5 – moq-js architecture - code level analysis

Figure 4.3. Workers architectural diagram

4 { type: 'module' }
5);
6

7 // Registering a listener for messages from the worker
8 playerWorker.onmessage = (event) => {
9 if (event.data.type === 'frame') {

10 renderFrame(event.data.payload);
11 } else if (event.data.type === 'error') {
12 displayError(event.data.reason);
13 }
14 };
15

16 // Sending an initialization message to the worker with stream metadata
17 playerWorker.postMessage({ type: 'init', tracks, codecConfig });

This initialization process achieves several goals:

• The worker is loaded as a module, enabling modular code structure and import of
TypeScript/ESM dependencies.

• A listener is set up on onmessage to handle frames (for rendering), errors, and any
additional notifications (e.g., statistics or state updates).

63

moq-js

• The first message posted is an init message, delivering all configuration needed to
begin processing, including track information and codec configurations.

Worker Event Loop and Decoding Pipeline

Inside the worker script (web/src/worker/player.worker.ts), an event-driven archi-
tecture is used. The worker listens for commands from the main thread, such as init,
decode, or control commands (pause, resume, stop), and responds by processing and
posting results back.

1 // player.worker.ts
2 self.onmessage = async (event) => {
3 if (event.data.type === 'init') {
4 await setupDecoder(event.data.codecConfig);
5 // Optional: notify main thread we're ready
6 self.postMessage({ type: 'ready' });
7 } else if (event.data.type === 'decode') {
8 try {
9 const frame = await decodeChunk(event.data.chunk);

10 self.postMessage({ type: 'frame', payload: frame }, [frame]);
11 } catch (error) {
12 self.postMessage({ type: 'error', reason: error.message });
13 }
14 } else if (event.data.type === 'flush') {
15 // For codecs that support flushing buffered frames (e.g., at end-of-stream)
16 await flushDecoder();
17 self.postMessage({ type: 'flushed' });
18 }
19 };

Key points:

• The worker is fully asynchronous and event-driven. Each incoming message is han-
dled independently, allowing for concurrency and responsive operation.

• Upon initialization, the worker sets up the appropriate decoder (e.g., WebCodecs.VideoDecoder)
based on the supplied codec configuration.

• When a decode message is received, the worker attempts to decode the chunk,
handling both success (post frame to main thread) and failure (post error) cases.
This ensures robust error handling and recovery.

• Large binary objects (such as decoded frames) are transferred using the structured
clone algorithm with transferable objects for performance.

• The architecture supports additional commands such as flush, pause, or reconfigure,
allowing for advanced playback scenarios.

64

4.5 – moq-js architecture - code level analysis

Data Flow: Main Thread ↔ Worker

The overall data flow between the main thread and the worker can be summarized as
follows:

1. Initialization: Main thread sends an init message with tracks and codec configu-
rations.

2. Subscription: When a new media object arrives (from network), the main thread
sends a decode message with the media chunk to the worker.

3. Processing: The worker decodes the chunk (video or audio frame).

4. Result Return: Worker posts back the decoded frame or an error message. Frames
are rendered (video: canvas, audio: AudioContext) or buffered.

5. Control: Additional commands (flush, reset, statistics, etc.) can be sent and re-
sponded to as required.

Example: Video Decoding with WebCodecs in Worker

A typical video decoding pipeline in the worker may look like this:

1 let videoDecoder;
2

3 async function setupDecoder(codecConfig) {
4 videoDecoder = new VideoDecoder({
5 output: (frame) => {
6 // Send frame back to main thread (transferable)
7 self.postMessage({ type: 'frame', payload: frame }, [frame]);
8 },
9 error: (err) => {

10 self.postMessage({ type: 'error', reason: err.message });
11 }
12 });
13 videoDecoder.configure(codecConfig);
14 }
15

16 async function decodeChunk(chunk) {
17 return new Promise((resolve, reject) => {
18 videoDecoder.decode(chunk);
19 // Output callback will post frame
20 resolve();
21 });
22 }

Performance, Scalability, and Best Practices

The use of Web Workers for media pipelines in moq-js yields several benefits:

65

moq-js

• Responsiveness: By moving heavy computation off the main thread, the user
interface remains interactive and animation smooth, even during periods of intensive
decoding or buffering.

• Parallelism: Multiple tracks (e.g., main video, secondary video, audio, data chan-
nels) can be handled in parallel, each in its own worker, further boosting throughput
and reliability.

• Scalability: This design allows for more advanced streaming features, such as multi-
view (picture-in-picture), adaptive streaming, or live overlays, without degrading the
user experience.

• Maintainability: Encapsulating decoding logic in workers isolates it from UI logic,
making the codebase easier to maintain, debug, and extend.

Error Handling and Robustness

A robust worker communication architecture must anticipate failures at multiple levels:
unsupported codecs, decoding errors, buffer overflows, or communication breakdowns.
By standardizing error messages (as shown in the code above) and ensuring the main
thread can react (e.g., pausing playback, prompting the user, or switching codecs), moq-js
delivers a resilient user experience.

4.5.6 Audio and Video Encoding
The moq-js project handles media encoding entirely in the browser using the [WebCodecs
API][31]. Unlike earlier approaches which might rely on slower JavaScript codecs or server-
side preprocessing, this architecture allows for real-time, low-latency encoding and direct
transport of compressed video and audio streams. The encoding logic is modularized
into dedicated classes for each media type, each designed to abstract browser quirks and
provide a unified interface to the rest of the publishing pipeline.

Video Encoding: lib/contribute/video.ts

The video encoding pipeline is implemented in the VideoEncoder class, which encapsulates
the setup, feeding, and lifecycle of a WebCodecs VideoEncoder instance.

1 // lib/contribute/video.ts
2

3 export class VideoEncoder {
4 #encoder: globalThis.VideoEncoder;
5 #keyframe: boolean = false;
6 #config: VideoEncoderConfig;
7 #output: (chunk: EncodedVideoChunk, meta: VideoEncoderEncodeOptions) => void;
8

9 constructor(config: VideoEncoderConfig, output: (chunk: EncodedVideoChunk, meta:
VideoEncoderEncodeOptions) => void) {ñ→

10 this.#config = config;

66

4.5 – moq-js architecture - code level analysis

11 this.#output = output;
12 this.#encoder = new VideoEncoder({
13 output: this.#output,
14 error: (e) => console.error("VideoEncoder error:", e),
15 });
16 this.#encoder.configure(this.#config);
17 }
18

19 encode(frame: VideoFrame, options?: VideoEncoderEncodeOptions) {
20 this.#encoder.encode(frame, options ?? { keyFrame: this.#keyframe });
21 this.#keyframe = false;
22 }
23

24 requestKeyFrame() {
25 this.#keyframe = true;
26 }
27

28 flush(): Promise<void> {
29 return this.#encoder.flush();
30 }
31

32 close() {
33 this.#encoder.close();
34 }
35 }

Abstraction and Modularity

The VideoEncoder class is an abstraction over the WebCodecs API, shielding the rest of
the codebase from direct API usage. This abstraction provides a stable and easily testable
interface for video encoding operations. By holding internal state (such as keyframe
requests and configuration), it supports adaptive encoding and easy pipeline extension,
such as simulcast or dynamic reconfiguration.

Keyframe Control and Real-Time Adaptation

A crucial feature of real-time video streaming is the ability to force keyframe (intra-frame)
generation, which is essential for stream recovery after packet loss or for supporting new
subscribers in a live session. The class tracks whether a keyframe should be generated on
the next encode call and provides a requestKeyFrame() method, which is invoked based
on network or protocol feedback.

Output Callbacks and Pipeline Integration

Instead of handling encoded output internally, the class expects an output callback, pro-
vided at construction, which is called every time a chunk is encoded. This design decouples
the encoding process from network transmission, allowing for future enhancements such
as chunk reordering, batching, or analytics.

67

moq-js

Error Handling and Resource Management

All errors from the WebCodecs encoder are captured and logged, providing a single place to
implement advanced error recovery or fallback logic. The class also exposes flush() and
close() methods, which ensure that all pending frames are processed and that browser
resources are released properly—a critical concern for long-lived browser applications.

Audio Encoding: lib/contribute/audio.ts

The audio encoding pipeline mirrors the structure of the video encoder but is tailored for
audio-specific requirements.

1 // lib/contribute/audio.ts
2

3 export class AudioEncoder {
4 #encoder: globalThis.AudioEncoder;
5 #config: AudioEncoderConfig;
6 #output: (chunk: EncodedAudioChunk, meta: AudioEncoderEncodeOptions) => void;
7

8 constructor(config: AudioEncoderConfig, output: (chunk: EncodedAudioChunk, meta:
AudioEncoderEncodeOptions) => void) {ñ→

9 this.#config = config;
10 this.#output = output;
11 this.#encoder = new AudioEncoder({
12 output: this.#output,
13 error: (e) => console.error("AudioEncoder error:", e),
14 });
15 this.#encoder.configure(this.#config);
16 }
17

18 encode(audioData: AudioData, options?: AudioEncoderEncodeOptions) {
19 this.#encoder.encode(audioData, options);
20 }
21

22 flush(): Promise<void> {
23 return this.#encoder.flush();
24 }
25

26 close() {
27 this.#encoder.close();
28 }
29 }

Unified Callback Pattern

As with the video encoder, the audio encoder expects an output callback, which re-
ceives encoded audio chunks. This enables easy composition in the overall publishing
pipeline—chunks can be packaged, buffered, or sent over the network as soon as they are
produced.

68

4.5 – moq-js architecture - code level analysis

Dynamic Configuration and Codec Flexibility

The encoder is initialized and configured at construction with a configuration object,
allowing the application to choose codecs, sample rates, and channel counts dynamically,
depending on user preferences, device capabilities, or protocol negotiation.

Error Handling and Adaptability

All errors encountered by the audio encoder are reported via the error callback, where
they can be logged, surfaced to the user, or used to trigger fallback mechanisms (such as
switching to a different codec). The class also provides flush() and close() methods
for safe pipeline teardown and resource management.

Integration with the Broadcast Pipeline

Both audio and video encoders are used within the broader broadcast (publishing) pipeline
of moq-js. For each captured frame or audio sample, the appropriate encoder’s encode()
method is called, and the resulting encoded chunk is passed to the transport packaging
and transmission layers. This architecture cleanly separates media capture, encoding, and
network logic, and enables the use of workers or other concurrency models for scalability.

4.5.7 Audio and Video Decoding (WebCodecs Backend)
The decoding process in moq-js leverages the WebCodecs API, but its design goes far be-
yond a simple wrapper. Both video and audio decoding are orchestrated within specialized
Renderer classes, making use of transform streams, precise decoder configuration, and ad-
vanced resource management. The classes are designed to run inside a Worker context,
ensuring smooth and jank-free user experience even during high-bitrate or multi-track
playback.

Video Decoding: lib/playback/webcodecs/video.ts

The Renderer class for video handles the full pipeline from encoded video frames to
rendering on a canvas. The core flow includes a transform stream, dynamic decoder
configuration, and real-time frame rendering:

1 // lib/playback/webcodecs/video.ts
2

3 export class Renderer {
4 #canvas: OffscreenCanvas
5 #timeline: Component
6 #decoder!: VideoDecoder
7 #queue: TransformStream<Frame, VideoFrame>
8

9 constructor(config: Message.ConfigVideo, timeline: Component) {
10 this.#canvas = config.canvas
11 this.#timeline = timeline
12

69

moq-js

13 this.#queue = new TransformStream({
14 start: this.#start.bind(this),
15 transform: this.#transform.bind(this),
16 })
17

18 this.#run().catch(console.error)
19 }
20

21 async #run() {
22 const reader = this.#timeline.frames.pipeThrough(this.#queue).getReader()
23 for (;;) {
24 const { value: frame, done } = await reader.read()
25 if (done) break
26

27 self.requestAnimationFrame(() => {
28 this.#canvas.width = frame.displayWidth
29 this.#canvas.height = frame.displayHeight
30

31 const ctx = this.#canvas.getContext("2d")
32 if (!ctx) throw new Error("failed to get canvas context")
33

34 ctx.drawImage(frame, 0, 0, frame.displayWidth, frame.displayHeight)
35 frame.close()
36 })
37 }
38 }
39

40 #start(controller: TransformStreamDefaultController<VideoFrame>) {
41 this.#decoder = new VideoDecoder({
42 output: (frame: VideoFrame) => {
43 controller.enqueue(frame)
44 },
45 error: console.error,
46 })
47 }
48

49 #transform(frame: Frame) {
50 if (this.#decoder.state !== "configured") {
51 const { sample, track } = frame
52

53 const desc = sample.description
54 const box = desc.avcC ?? desc.hvcC ?? desc.vpcC ?? desc.av1C
55 if (!box) throw new Error(`unsupported codec: ${track.codec}`)
56

57 const buffer = new MP4.Stream(undefined, 0, MP4.Stream.BIG_ENDIAN)
58 box.write(buffer)
59 const description = new Uint8Array(buffer.buffer, 8)
60

61 if (!MP4.isVideoTrack(track)) throw new Error("expected video track")
62

63 this.#decoder.configure({
64 codec: track.codec,
65 codedHeight: track.video.height,

70

4.5 – moq-js architecture - code level analysis

66 codedWidth: track.video.width,
67 description,
68 })
69 }
70

71 const chunk = new EncodedVideoChunk({
72 type: frame.sample.is_sync ? "key" : "delta",
73 data: frame.sample.data,
74 timestamp: frame.sample.dts / frame.track.timescale,
75 })
76

77 this.#decoder.decode(chunk)
78 }
79 }

TransformStream Pipeline

Decoding is performed via a TransformStream, which acts as an asynchronous, compos-
able processing pipeline. This design enables natural backpressure management between
the timeline of received frames and the decoder. The use of TransformStream ensures
that if decoding slows down (for instance, due to a heavy workload or slow rendering),
the system can signal the frame source to adjust accordingly, preventing buffer bloat and
memory exhaustion. It also allows each part of the pipeline—from frame acquisition to
decode and render—to remain loosely coupled and independently scalable.

Dynamic Decoder Configuration

Unlike static decoder initialization, the decoder in moq-js is only configured when the first
frame is available. This allows the system to extract crucial codec and track metadata
(such as the codec type, frame dimensions, and container-specific initialization boxes) at
runtime. Such a lazy configuration approach is essential for supporting adaptive stream-
ing, multiple codecs (H.264, VP9, AV1), and for handling track switches without unnec-
essary resource consumption or pipeline restarts.

MP4 Codec Extraction

A standout feature is the extraction and direct use of codec initialization data from the
underlying MP4 sample. This includes parsing initialization boxes such as avcC for
H.264/AVC or av1C for AV1. The relevant binary blobs are injected directly into the
decoder configuration, ensuring compatibility with a wide variety of source media and
container formats. This approach also lays the groundwork for easy extensibility to addi-
tional codecs or formats as browser and WebCodecs support grows.

Real-time Rendering

Decoded frames are rendered to an OffscreenCanvas within a requestAnimationFrame
callback. This not only decouples heavy decode workloads from the UI, but also ensures
that rendering occurs in sync with the browser’s display refresh cycle, minimizing visual

71

moq-js

artifacts and ensuring smooth playback. By using OffscreenCanvas, the system is ready
for worker-thread rendering or WebGL acceleration as required for advanced use cases.

Error Handling

Decoder errors (such as codec incompatibility, corrupted frames, or resource exhaustion)
are captured via dedicated error callbacks and logged to the console. While the reference
implementation logs these errors, this design allows future integration of more advanced
error handling strategies, such as codec fallback, error concealment, or dynamic user
feedback.

Resource Management

Each decoded frame is explicitly closed after rendering, which is vital for memory manage-
ment in the browser environment. Explicit resource management prevents memory leaks
and ensures that the garbage collector can reclaim resources promptly, a critical concern
for long-running or multi-track sessions.

Audio Decoding: lib/playback/webcodecs/audio.ts

The audio decoding pipeline, similarly, is encapsulated in an audio Renderer class, which
handles decoder setup, streaming, and buffering via a ring buffer:

1 // lib/playback/webcodecs/audio.ts
2

3 export class Renderer {
4 #context?: AudioContext
5 #ring: Ring
6 #timeline: Component
7 #decoder!: AudioDecoder
8 #stream: TransformStream<Frame, AudioData>
9

10 constructor(config: Message.ConfigAudio, timeline: Component) {
11 this.#timeline = timeline
12 this.#ring = new Ring(config.ring)
13 this.#context = config.context
14

15 this.#stream = new TransformStream({
16 start: this.#start.bind(this),
17 transform: this.#transform.bind(this),
18 })
19

20 this.#run().catch(console.error)
21 }
22

23 #start(controller: TransformStreamDefaultController) {
24 this.#decoder = new AudioDecoder({
25 output: (frame: AudioData) => {
26 controller.enqueue(frame)
27 },

72

4.5 – moq-js architecture - code level analysis

28 error: console.warn,
29 })
30 }
31

32 #transform(frame: Frame) {
33 if (this.#decoder.state !== "configured") {
34 const track = frame.track
35 if (!MP4.isAudioTrack(track)) throw new Error("expected audio track")
36

37 this.#decoder.configure({
38 codec: track.codec,
39 sampleRate: track.audio.sample_rate,
40 numberOfChannels: track.audio.channel_count,
41 })
42 }
43

44 const chunk = new EncodedAudioChunk({
45 type: frame.sample.is_sync ? "key" : "delta",
46 timestamp: frame.sample.dts / frame.track.timescale,
47 duration: frame.sample.duration,
48 data: frame.sample.data,
49 })
50

51 this.#decoder.decode(chunk)
52 }
53

54 async #run() {
55 const reader = this.#timeline.frames.pipeThrough(this.#stream).getReader()
56 for (;;) {
57 const { value: frame, done } = await reader.read()
58 if (done) break
59

60 const written = this.#ring.write(frame)
61 if (written < frame.numberOfFrames) {
62 console.warn(`dropped ${frame.numberOfFrames - written} audio samples`)
63 }
64 }
65 }
66 }

Ring Buffer

Decoded audio data is written into a dedicated ring buffer. The ring buffer serves as a
robust jitter buffer, absorbing irregularities in network or decoding delays and ensuring
that audio output remains smooth even under real-time constraints. If the ring buffer
becomes full, additional frames are dropped—a strategy that prioritizes real-time playback
over perfect fidelity, in line with the needs of live streaming.

73

moq-js

Decoder Configuration

Like the video pipeline, the audio decoder is configured only when the first frame is
available, allowing the extraction of essential parameters such as codec type, sample rate,
and channel count. This makes the pipeline highly adaptable to different stream types
and robust to mid-stream track changes or upgrades.

TransformStream Use

The use of a TransformStream for audio decoding decouples frame ingestion from decode
and buffering. This enables modular, testable pipelines and supports future features
such as multi-channel, spatial, or multi-track audio decoding, as well as backpressure and
adaptive streaming logic.

Backpressure and Dropped Samples

If the ring buffer is full when a decoded frame arrives, excess samples are dropped and a
warning is logged. This mechanism ensures that the system always prefers low-latency,
real-time playback, in keeping with user experience expectations for live or interactive
media.

Error Logging

Any errors encountered during audio decoding are logged with a warning, making it easy to
diagnose issues and laying the groundwork for user-facing feedback or automated recovery
in future iterations.

Architectural Patterns and Best Practices

Lazy Configuration

Decoders are not configured until sufficient initialization info is available. This lazy ap-
proach enables adaptation to dynamic track changes and different codecs, making the
playback pipeline robust and future-proof.

Worker Compatibility

Both renderer classes are explicitly designed for execution inside a Web Worker context.
This ensures that decoding and rendering workloads do not block or degrade the respon-
siveness of the user interface, a crucial concern for real-time, interactive applications.

Explicit Resource Management

Frames are explicitly closed after rendering or writing to the ring buffer. Decoders them-
selves can be closed and reconfigured as needed. This disciplined resource management
is vital for browser applications that may run for extended periods and handle multiple
streams.

74

4.5 – moq-js architecture - code level analysis

Separation of Concerns

Timeline management, decoding, rendering, and buffering are all handled in composable,
well-defined modules. This clean separation not only supports code maintainability and
testability but also allows for easy extension—for example, supporting new codecs, adding
visual effects, or integrating advanced audio processing modules in the future.

4.5.8 Jitter Buffering and the Ring Class (lib/common/ring.ts)
A central component enabling smooth, resilient playback in moq-js is the ring buffer,
implemented as the generic Ring<T> class in lib/common/ring.ts. The ring buffer ad-
dresses the core challenge of decoupling variable-rate packet arrival from deterministic
playback requirements. This is vital in object-based media transport over QUIC, where
frames or audio samples may arrive with burstiness or jitter due to network fluctuations.

Implementation and Design Rationale

1 // lib/common/ring.ts
2 export class Ring<T> {
3 #buffer: Array<T | undefined>
4 #mask: number
5 #start = 0
6 #end = 0
7 #size = 0
8

9 constructor(capacity: number) {
10 let len = 1
11 while (len < capacity) len <<= 1
12 this.#buffer = new Array<T | undefined>(len)
13 this.#mask = len - 1
14 }
15

16 get length() { return this.#size }
17

18 write(item: T): boolean {
19 if (this.#size === this.#buffer.length) return false
20 this.#buffer[this.#end] = item
21 this.#end = (this.#end + 1) & this.#mask
22 this.#size++
23 return true
24 }
25

26 read(): T | undefined {
27 if (this.#size === 0) return undefined
28 const item = this.#buffer[this.#start]
29 this.#buffer[this.#start] = undefined
30 this.#start = (this.#start + 1) & this.#mask
31 this.#size--
32 return item
33 }
34

75

moq-js

35 clear() {
36 this.#start = this.#end = this.#size = 0
37 this.#buffer.fill(undefined)
38 }
39 }

Design rationale: The buffer is always a power-of-two size, allowing for efficient index
wrapping via bitwise operations (e.g., (index & mask)), eliminating slow modulo arith-
metic. This is especially advantageous in real-time pipelines with high throughput or tight
resource constraints.

Private fields (#buffer, #start, etc.) provide strong encapsulation, preventing ac-
cidental corruption by outside code. The bounded design prevents unbounded memory
usage, crucial for browser-based or embedded environments.

Motivation and Typical Use Cases

The Ring buffer is used throughout moq-js as a jitter buffer—most notably in the audio
playback pipeline, but also suitable for video and other data streams. It enables the
system to:

• Absorb bursty arrivals: Incoming frames or samples are written into the buffer
as they arrive, regardless of network-induced variability.

• Serve deterministic playback: The rendering or audio output logic reads from
the buffer at a steady rate, minimizing the impact of network jitter.

• Control latency and memory: By bounding the buffer size, latency is kept pre-
dictable and the application never over-allocates memory.

Example in pipeline:

1 // lib/playback/webcodecs/audio.ts (excerpt)
2 const ring = new Ring<AudioData>(bufferSize)
3 ...
4 const written = ring.write(decodedAudioData)
5 if (!written) {
6 // Buffer full: drop frame or trigger underrun logic
7 }
8 ...
9 const next = ring.read()

10 if (next) {
11 // Schedule for playback via AudioWorkletNode
12 }

Behavior Under Load and Real-Time Constraints

If frames arrive faster than they are consumed and the buffer fills, new arrivals are dropped,
favoring low-latency, real-time playback over perfect fidelity. This is especially important

76

4.6 – Codec Integration

for live streaming, where old frames are less valuable than keeping up with the latest data.
Conversely, if the buffer empties due to network loss or CPU delays, playback components
can detect underflow and respond (e.g., by signaling "buffering" to the user).

Why a Ring Buffer?

Compared to dynamic arrays or lists, a ring buffer:

• Uses no dynamic allocation after construction—crucial for minimizing GC pressure.

• Guarantees O(1) reads and writes, supporting real-time streaming.

• Naturally supports overwriting/dropping oldest or newest data based on policy.

4.6 Codec Integration
A core architectural principle of moq-js is codec agnosticism: the library is designed to
handle any browser-supported codec without hardwired assumptions about media formats.
This design decision is central to its long-term interoperability, resilience to ecosystem
changes, and adherence to emerging standards such as the IETF Media over QUIC (MoQ)
protocol.

Browser-Native Codec Handling via WebCodecs

At the heart of codec integration in moq-js lies the use of the modern [WebCodecs
API][31]. WebCodecs exposes a standardized, high-performance interface for encoding
and decoding a broad range of audio and video codecs, directly leveraging the browser’s
native media pipeline and hardware acceleration capabilities. This approach yields several
important benefits:

• Performance: Hardware-accelerated encode and decode for real-time, low-latency
streaming.

• Compatibility: Out-of-the-box support for the codecs natively available in the
browser, with graceful fallback as the ecosystem evolves.

• Security: By avoiding custom JavaScript-based codecs, the attack surface and risk
of vulnerabilities are minimized.

• Maintenance and Portability: The codebase remains free from legacy codec
baggage or third-party binary dependencies.

Supported Codecs and Flexibility

• Video: Typical supported codecs include H.264/AVC, AV1, and VP8, with the exact
set determined by the browser and underlying operating system. H.264 remains the
most widely available, while AV1 and VP8 offer higher efficiency and are increasingly
available in modern browsers.

77

moq-js

• Audio: Opus is the primary codec for real-time interactive audio, due to its low la-
tency and robustness; AAC is supported for compatibility and broad device coverage.
Other codecs may be supported as browser implementations expand.

The following excerpt illustrates dynamic configuration of the encoder or decoder at run-
time, based on track metadata and available codec information:

1 // Example: VideoDecoder configuration
2 this.decoder.configure({
3 codec: track.codec, // e.g., "avc1.42E01E" (H.264), "vp09.00.10.08" (VP9),

"av01.0.04M.08" (AV1)ñ→

4 codedWidth: track.width,
5 codedHeight: track.height,
6 description: track.initData, // codec-specific initialization (e.g., avcC box)
7 });

78

Chapter 5

moq-rs

The moq-rs project, primarily authored by Luke Curley, is a performant, modular im-
plementation of a Media over QUIC (MoQ) relay written in Rust. The relay system,
comprising the moq-relay and moq-transport crates, embodies advanced architectural
principles of protocol layering, asynchronous IO, and scalable media routing. This chapter
provides a file-level and function-level breakdown, with code examples, to illuminate the
relay’s design and the roles of each component.

5.1 moq-rs - Dependencies and Architectural Roles
The moq-relay crate directly depends on both moq-transport and moq-api, as specified
in its Cargo.toml:

[dependencies]
moq-transport = { path = "../moq-transport" }
moq-api = { path = "../moq-api" }

Crate Purpose Key Dependencies Core Components
moq-relay QUIC relay, fanning/caching moq-transport, quinn, webtransport-quinn, axum, tokio QUIC server, session, TLS, dev web tools
moq-transport MoQ protocol, sessions, messages quinn, webtransport-quinn, tokio, bytes, indexmap Msg types, session mgmt, protocol engine
moq-api HTTP API, Redis metadata axum, hyper, tokio, redis, serde Server, API endpoints, Redis DB

The architectural roles and relationships between these crates are as follows:

• moq-relay: This crate implements a relay server responsible for connecting publish-
ing clients to subscribing clients. It manages the deduplication and caching of sub-
scriptions, enabling a single publisher to efficiently serve multiple subscribers. Clients
connect using WebTransport over QUIC, specifying a broadcast name (path). The
relay orchestrates session management and ensures that subscriptions to the same
broadcast are served efficiently.

• moq-transport: This crate provides the transport protocol implementation over
QUIC/WebTransport. It is responsible for the core mechanics of media object

79

moq-rs

transmission, including session establishment, message and stream handling, object
fragmentation and reassembly, caching, and both reliable and unreliable delivery.
Essentially, it serves as the backbone for data transport within the architecture.

• moq-api: This crate defines shared API structures, data models, and common logic
used across both the relay and other components. It includes reusable types, error
definitions, and potentially client/server API logic, ensuring consistency and code
reuse throughout the project.

In summary, moq-relay serves as the high-level orchestrator, relying on moq-transport
for protocol and data handling, and on moq-api for shared models and API consistency.
The dependency relationships are illustrated in Figure 5.1.

moq-relay
(Relay Server)

moq-transport
(Transport Protocol)

moq-api
(Shared Models/API)

Direct dependency

Uses shared types

Figure 5.1. Architectural dependencies: moq-relay depends on both moq-transport
and moq-api; moq-transport also utilizes shared types from moq-api.

5.2 moq-relay
moq-relay is a server application that forwards subscriptions from publishers to
subscribers, performing caching and deduplication along the way. It serves as a
bridge between media publishers and subscribers, mediating their interactions through
QUIC transport and the MoQ application protocol, and it’s designed to run in a data
center, forwarding media through multiple hops to deduplicate and improve quality of
service (QoS).

More specifically:

• It acts as an intermediary between publishers and subscribers; publishers send mes-
sages to the relay, while subscribers subscribe to receive these messages.

• It integrates with the QUIC transport layer using the quinn crate, enabling low-
latency media object transmission over unidirectional QUIC streams.

• It ensures protocol compliance with the IETF Media over QUIC (MoQ) specifica-
tion by implementing session setup, subscription, and publication workflows via the
moq-transport crate.

80

5.2 – moq-relay

• It employs a form of content caching and temporarily stores messages received from
publishers to ensure that any subscribers receive all the requested content, providing
replay functionality for late-joining subscribers and resilience against jitter.

• It manages publisher and subscriber lifecycles through asynchronous tasks that coor-
dinate session initialization, teardown, and error recovery in a fault-resilient manner.

• It enables communication across multiple nodes (multi-hop), allowing for scalability
and distributed data transmission.

• It distributes incoming media to multiple subscribers using Tokio’s bounded broad-
cast channels, enabling scalable fan-out with automatic backpressure and message
dropping for overloaded receivers.

• It allows for the implementation of various QoS policies and automatically manages
the priorities of messages to be retransmitted.

5.2.1 moq-relay - Architectural Overview
General architecture

The architecture of moq-rs is deliberately designed to be both efficient and extensi-
ble, and it is composed of several key components that collaborate to manage media
session lifecycles, perform stream multiplexing, and orchestrate content dissem-
ination.

The relay acts as a logical hub where publishers and subscribers are interconnected
through shared namespaces and tracks. Publishers register track names and begin send-
ing discrete media objects — each encapsulated within its own unidirectional QUIC
stream — to the relay. These objects consist of transport metadata and payloads,
and are processed by the object ingestion logic within the relay core.

Data structures and caching

Upon arrival, each object is handled by the relay’s track registry, which maps the in-
coming track names to an internal routing structure. This mapping ensures that
the correct subscribers, identified by their subscription queries, receive the corresponding
data. The registry maintains a real-time view of the active publishers, subscribers, and
the tracks they are associated with, enabling rapid forwarding decisions and dynamic
stream switching.

To support stream replay and late joins, moq-rs features a lightweight object cache
mechanism. This in-memory structure stores a limited number of recent media ob-
jects per track, making it possible for subscribers who join mid-session to request and
receive previously published content. The cache plays a crucial role in providing re-
silience against short-term network jitter or disconnection, although it is explicitly
non-persistent and bounded by memory policies.

81

moq-rs

Tokio library

Data movement within the relay is coordinated using asynchronous message chan-
nels, primarily implemented with bounded broadcast channels provided by the Tokio
framework [@tokio]. These channels decouple the publishing rate from the sub-
scribing rate, enabling concurrent fan-out of media objects without tightly coupling
publisher performance to subscriber responsiveness. Backpressure is enforced natu-
rally by these channels: when a subscriber cannot keep up with the media rate, messages
are dropped from its buffer, prompting it to reissue object requests or perform a fresh
resubscription.

Control messages management

Additionally, moq-rs includes an internal control protocol engine that interprets con-
trol messages exchanged over the MoQ control stream. These include session setup,
track announcements, subscribe requests, and error conditions. The parsing
and serialization of these control frames follow the canonical encoding defined in the
MoQ protocol draft and are implemented in the moq-transport crate — a shared
library reused across moq-rs components.

Relay media semantics agnosticism

An important architectural choice in moq-rs is the relay’s statelessness regarding long-term
media semantics. The relay is not aware of codecs, media types, or synchroniza-
tion across tracks; its responsibility is strictly transport-layer delivery of objects
tagged with track and object identifiers. This agnosticism enables moq-rs to support a
wide variety of use cases, from low-latency live video to fragmented media file delivery,
without requiring changes to the relay logic.

moq-rs cleanly separates:

• Connection management (QUIC + TLS)

• Session logic (handshake + role dispatch)

• Track & namespace management (Origin)

• Media forwarding (respecting backpressure and optional caching)

82

5.2 – moq-relay

quic.rs
QUIC Endpoint

(quinn crate)

session.rs
Session Handler
(Handshake &
Role Dispatch)

origin.rs
Track Reg-

istry & Cache
(moq_api

integration)

moq_transport
Protocol Logic
(IETF MoQ
compliance)

moq_api
Broadcast

Engine
(Tokio channels)

Track
Registry

Namespace
mapping
(Dynamic
routing)

Object
Cache

Bounded
in-memory

store
(Temporal
caching)

Publisher Subscriber

QUIC streams
(unidirectional)

QUIC streams
(control + media)

Connection
handoff

Role dispatch
(pub/sub)

Object storage

Track mapping

5.2.2 moq-relay - Dependency Breakdown
[dependencies]
moq-transport = { path = "../moq-transport" }
moq-api = { path = "../moq-api" }
quinn = "0.10"
webtransport-quinn = "0.6"
axum = { version = "0.6", features = ["tokio"] }
tokio = { version = "1", features = ["full"] }
rustls = { version = "0.21", features = ["dangerous_configuration"] }
clap = { version = "4", features = ["derive"] }
and others for crypto, logging, etc.

5.2.3 moq-relay - Main Components
• main.rs

– Parses CLI flags (config.rs)
– Initializes TLS (tls.rs) and web dev server (web.rs)
– Calls quic.serve() or (web.serve()) concurrently

• quic.rs

83

moq-rs

– Builds a quinn::Endpoint
– Accepts incoming QUIC connections and spawns Session tasks

• session.rs

– Performs the MoQ SETUP handshake (via moq_transport)
– Dispatches serve_publisher or serve_subscriber
– Each handler invokes Origin APIs to publish or subscribe

• origin.rs

– Manages the global track registry and broadcast caches via moq_api
– Handles API calls to create/delete origin entries

• config.rs, tls.rs, web.rs

– CLI parsing, self-signed cert generation, and optional HTTP dev UI

5.2.4 main.rs: Application Entrypoint
Handles server initialization, config, TLS, and concurrent launching of QUIC and optional
web services.

1 #[tokio::main]
2 async fn main() -> anyhow::Result<()> {
3 env_logger::init();
4

5 // Set up tracing for logs
6 let tracer = tracing_subscriber::FmtSubscriber::builder()
7 .with_max_level(tracing::Level::WARN)
8 .finish();
9 tracing::subscriber::set_global_default(tracer).unwrap();

10

11 let config = Config::parse();
12 let tls = Tls::load(&config)?;
13

14 // Create a QUIC server for media
15 let quic = Quic::new(config.clone(), tls.clone())
16 .await
17 .context("failed to create server")?;
18

19 // Optional dev HTTP server for fingerprint endpoint
20 if config.dev {
21 let web = Web::new(config, tls);
22 tokio::select! {
23 res = quic.serve() => res.context("failed to run quic server"),
24 res = web.serve() => res.context("failed to run web server"),
25 }
26 } else {

84

5.2 – moq-relay

27 quic.serve().await.context("failed to run quic server")
28 }
29 }

Explanation:

• Starts async runtime, logging, and tracing.

• Loads configuration and TLS certificates.

• Instantiates QUIC server for MoQ media relay.

• In dev mode, also starts an HTTP server for certificate fingerprinting (using axum).

• The main relay logic is modularized in submodules: config, quic, session, origin,
tls, web.

5.2.5 config.rs: Configuration Management
The config.rs module handles command-line argument parsing and configuration using
the clap crate. It supports advanced options for certificate/key lists, dev mode, and
integration with the MoQ API.

1 use std::{net, path};
2 use url::Url;
3

4 use clap::Parser;
5

6 /// Search for a pattern in a file and display the lines that contain it.
7 #[derive(Parser, Clone)]
8 pub struct Config {
9 /// Listen on this address

10 #[arg(long, default_value = "[::]:4443")]
11 pub listen: net::SocketAddr,
12

13 /// Use the certificates at this path, encoded as PEM.
14 /// You can use this option multiple times for multiple certificates.
15 /// The first match for the provided SNI will be used, otherwise the last cert

will be used.ñ→

16 /// You also need to provide the private key multiple times via `key`.
17 #[arg(long)]
18 pub tls_cert: Vec<path::PathBuf>,
19

20 /// Use the private key at this path, encoded as PEM.
21 /// There must be a key for every certificate provided via `cert`.
22 #[arg(long)]
23 pub tls_key: Vec<path::PathBuf>,
24

25 /// Use the TLS root at this path, encoded as PEM.
26 /// This value can be provided multiple times for multiple roots.

85

moq-rs

27 /// If this is empty, system roots will be used instead
28 #[arg(long)]
29 pub tls_root: Vec<path::PathBuf>,
30

31 /// Danger: Disable TLS certificate verification.
32 /// Fine for local development and between relays, but should be used in caution

in production.ñ→

33 #[arg(long)]
34 pub tls_disable_verify: bool,
35

36 /// Optional: Use the moq-api via HTTP to store origin information.
37 #[arg(long)]
38 pub api: Option<Url>,
39

40 /// Our internal address which we advertise to other origins.
41 /// We use QUIC, so the certificate must be valid for this address.
42 /// This needs to be prefixed with https:// to use WebTransport.
43 /// This is only used when --api is set and only for publishing broadcasts.
44 #[arg(long)]
45 pub api_node: Option<Url>,
46

47 /// Enable development mode.
48 /// Currently, this only listens on HTTPS and serves /fingerprint, for self-signed

certificatesñ→

49 #[arg(long, action)]
50 pub dev: bool,
51 }

Usage in Main Entrypoint

let config = Config::parse();
// Now config.listen, config.tls_cert, etc. are available

Explanation:

• Each certificate/key can be specified multiple times for SNI support.

• Default and required fields are managed by clap.

• The struct design makes it clear how to run the relay for different environments.

• The Config struct centralizes all startup configuration.

• Each field is annotated for clap, providing documentation and default values.

• Config::parse() reads arguments from the CLI or environment, supporting flexible
deployment.

• Used throughout initialization (e.g., QUIC server, TLS, API client).

86

5.2 – moq-relay

5.2.6 tls.rs: Certificate Loading/Generation
The tls.rs module is responsible for handling TLS certificate and private key loading
for the QUIC and development HTTP servers in moq-relay. This module ensures secure
communication by correctly parsing certificate files, and, in development mode, it can
generate or use self-signed certificates for rapid local setup.

1 use anyhow::Context;
2 use ring::digest::{digest, SHA256};
3 use rustls::server::{ClientHello, ResolvesServerCert};
4 use rustls::sign::CertifiedKey;
5 use rustls::{Certificate, PrivateKey, RootCertStore};
6 use std::io::{self, Cursor, Read};
7 use std::path;
8 use std::sync::Arc;
9 use std::{fs, time};

10 use webpki::{DnsNameRef, EndEntityCert};
11

12 use crate::Config;
13

14 #[derive(Clone)]
15 pub struct Tls {
16 pub server: rustls::ServerConfig,
17 pub client: rustls::ClientConfig,
18 pub fingerprints: Vec<String>,
19 }
20

21 impl Tls {
22 pub fn load(config: &Config) -> anyhow::Result<Self> {
23 let mut serve = ServeCerts::default();
24

25 // Load the certificate and key files based on their index.
26 anyhow::ensure!(
27 config.tls_cert.len() == config.tls_key.len(),
28 "--tls-cert and --tls-key counts differ"
29);
30 for (chain, key) in config.tls_cert.iter().zip(config.tls_key.iter()) {
31 serve.load(chain, key)?;
32 }
33

34 // Create a list of acceptable root certificates.
35 let mut roots = RootCertStore::empty();
36

37 if config.tls_root.is_empty() {
38 // Add the platform's native root certificates.
39 for cert in rustls_native_certs::load_native_certs().context("could not

load platform certs")? {ñ→

40 roots.add(&Certificate(cert.0)).context("failed to add root cert")?;
41 }
42 } else {
43 // Add the specified root certificates.
44 for root in &config.tls_root {

87

moq-rs

45 let root = fs::File::open(root).context("failed to open root cert
file")?;ñ→

46 let mut root = io::BufReader::new(root);
47 let root = rustls_pemfile::certs(&mut root).context("failed to read

root cert")?;ñ→

48 anyhow::ensure!(root.len() == 1, "expected a single root cert");
49 let root = Certificate(root[0].to_owned());
50

51 roots.add(&root).context("failed to add root cert")?;
52 }
53 }
54

55 // Create the TLS configuration we'll use as a client (relay -> relay)
56 let mut client = rustls::ClientConfig::builder()
57 .with_safe_defaults()
58 .with_root_certificates(roots)
59 .with_no_client_auth();
60 // ... (code continues with further setup)

Usage in Server Startup

let tls = Tls::load(&config)?;
// Pass tls.cert_chain and tls.private_key to Quinn or Axum as needed

Explanation:
• Reads the certificate and private key files as specified by the configuration.

• Ensures the number of certs and keys match.

• Uses rustls_pemfile to parse both the certificate chain and the PKCS8 private
key.

• Assembles the parsed data into a convenient Tls struct, ready for use by the QUIC
and HTTP servers.

• Provides error handling for common mistakes such as missing or malformed files.

• Loads all server certificates and private keys for SNI.

• Loads system root certs by default, or custom roots if specified.

• For development, the default paths typically point to self-signed certs generated for
localhost.

• Builds Rustls client and server configs ready for secure QUIC/WebTransport.

5.2.7 quic.rs: QUIC Endpoint Creation
The quic.rs module is responsible for instantiating the QUIC endpoint for the relay, con-
figuring both client and server QUIC stacks (for relay-to-relay and client-to-relay traffic),
and managing incoming WebTransport connections. It also integrates congestion control
and origin management.

88

5.2 – moq-relay

Key Responsibilities

• Configure and instantiate the QUIC endpoint for both client and server use.

• Set ALPN for WebTransport.

• Set advanced transport parameters (e.g., BBR congestion control, keep-alive, idle
timeout).

• Bind the UDP socket and build a generic endpoint.

• Integrate with the Origin and Session logic for MoQ relaying.

1 use std::{sync::Arc, time};
2 use anyhow::Context;
3 use tokio::task::JoinSet;
4 use crate::{Config, Origin, Session, Tls};
5

6 pub struct Quic {
7 quic: quinn::Endpoint,
8 // The active connections.
9 conns: JoinSet<anyhow::Result<()>>,

10 // The map of active broadcasts by path.
11 origin: Origin,
12 }
13

14 impl Quic {
15 // Create a QUIC endpoint that can be used for both clients and servers.
16 pub async fn new(config: Config, tls: Tls) -> anyhow::Result<Self> {
17 let mut client_config = tls.client.clone();
18 let mut server_config = tls.server.clone();
19 client_config.alpn_protocols = vec![webtransport_quinn::ALPN.to_vec()];
20 server_config.alpn_protocols = vec![webtransport_quinn::ALPN.to_vec()];
21

22 // Enable BBR congestion control
23 let mut transport_config = quinn::TransportConfig::default();
24

transport_config.max_idle_timeout(Some(time::Duration::from_secs(10).try_into().unwrap()));ñ→

25 transport_config.keep_alive_interval(Some(time::Duration::from_secs(4)));
26

transport_config.congestion_controller_factory(Arc::new(quinn::congestion::BbrConfig::default()));ñ→

27 transport_config.mtu_discovery_config(None); // Disable MTU discovery
28 let transport_config = Arc::new(transport_config);
29

30 let mut client_config = quinn::ClientConfig::new(Arc::new(client_config));
31 let mut server_config =

quinn::ServerConfig::with_crypto(Arc::new(server_config));ñ→

32 server_config.transport_config(transport_config.clone());
33 client_config.transport_config(transport_config);
34

35 // There’s a bit more boilerplate to make a generic endpoint.
36 let runtime = quinn::default_runtime().context("no async runtime")?;
37 let endpoint_config = quinn::EndpointConfig::default();

89

moq-rs

38 let socket = std::net::UdpSocket::bind(config.listen).context("failed to bind
UDP socket")?;ñ→

39

40 // Create the generic QUIC endpoint.
41 let mut quic = quinn::Endpoint::new(endpoint_config, Some(server_config),

socket, runtime)ñ→

42 .context("failed to create QUIC endpoint")?;
43 quic.set_default_client_config(client_config);
44

45 let api = config.api.map(|url| {
46 log::info!("using moq-api: url={}", url);
47 moq_api::Client::new(url)
48 });
49

50 if let Some(ref node) = config.api_node {
51 log::info!("advertising origin: url={}", node);
52 }
53

54 let origin = Origin::new(api, config.api_node, quic.clone());
55 // ...more session spawning logic omitted for brevity...

Explanation:

• Clones and modifies TLS client/server configs for WebTransport ALPN.

• Sets advanced transport options: BBR congestion control, keep-alive, and disables
MTU discovery for stability.

• Binds a UDP socket to the configured address and builds a quinn::Endpoint.

• Attaches MoQ API and origin advertisement for full relay operation.

• Foundation for spawning MoQ sessions on incoming connections (not shown here).

5.2.8 session.rs: Session Lifecycle and Role Dispatch
The session.rs module is responsible for managing individual MoQ protocol sessions. It
handles QUIC connection establishment, WebTransport upgrade, MoQ setup/handshake,
and dispatches publisher or subscriber logic according to the client’s role.

Key Responsibilities

• Await and accept incoming QUIC connections.

• Perform WebTransport handshake and extract the broadcast path.

• Accept the MoQ protocol setup handshake and determine client role.

• Dispatch session to publisher or subscriber handlers.

• Integrate with origin tracking.

90

5.2 – moq-relay

1 use anyhow::Context;
2 use moq_transport::{session::Request, setup::Role, MoqError};
3 use crate::Origin;
4

5 #[derive(Clone)]
6 pub struct Session {
7 origin: Origin,
8 }
9

10 impl Session {
11 pub fn new(origin: Origin) -> Self {
12 Self { origin }
13 }
14

15 pub async fn run(&mut self, conn: quinn::Connecting) -> anyhow::Result<()> {
16 log::debug!("received QUIC handshake: ip={:?}", conn.remote_address());
17

18 // Wait for the QUIC connection to be established.
19 let conn = conn.await.context("failed to establish QUIC connection")?;
20

21 log::debug!(
22 "established QUIC connection: ip={:?} id={}",
23 conn.remote_address(),
24 conn.stable_id()
25);
26 let id = conn.stable_id();
27

28 // Wait for the CONNECT request.
29 let request = webtransport_quinn::accept(conn)
30 .await
31 .context("failed to receive WebTransport request")?;
32

33 // Strip any leading and trailing slashes to get the broadcast name.
34 let path = request.url().path().trim_matches('/').to_string();
35

36 log::debug!("received WebTransport CONNECT: id={} path={}", id, path);
37

38 // Accept the CONNECT request.
39 let session = request
40 .ok()
41 .await
42 .context("failed to respond to WebTransport request")?;
43

44 // Perform the MoQ handshake.
45 let request = moq_transport::session::Server::accept(session)
46 .await
47 .context("failed to accept handshake")?;
48

49 log::debug!("received MoQ SETUP: id={} role={:?}", id, request.role());
50

51 let role = request.role();
52

91

moq-rs

53 match role {
54 Role::Publisher => {
55 if let Err(err) = self.serve_publisher(id, request, &path).await {
56 log::warn!("error serving publisher: id={} path={} err={:#?}", id,

path, err);ñ→

57 }
58 }
59 // ...Subscriber and other roles handled similarly...
60 }
61 Ok(())
62 }
63 }

Explanation:

• Handles the entire session lifecycle: QUIC handshake, WebTransport upgrade, MoQ
protocol negotiation.

• Extracts the path (broadcast name) from the WebTransport CONNECT request.

• After MoQ SETUP, dispatches the session to publisher or subscriber handlers based
on negotiated role.

• Centralizes session logging and error context for robust production debugging.

Publisher handler: Receives media objects, stores them in the cache, and broadcasts
to all subscribers.

Subscriber handler: Subscribes the client to a track, replays cached objects, and
forwards live objects.

Key mechanisms:

• Backpressure: Uses tokio::sync::broadcast to fan out data with buffer limits,
preventing slow receivers from blocking.

• Cache Replay: Late joiners get recent objects for seamless catch-up.

• Clean teardown: Properly closes connections and frees resources.

5.2.9 origin.rs: Track Registry, Cache, and Routing
The origin.rs module manages information about broadcast origins. It handles discovery
and registration of broadcasts using the MoQ API, caches active broadcasts, and integrates
with the relay’s QUIC endpoint for remote origin fetching. This supports multi-relay and
distributed topologies.

92

5.2 – moq-relay

Key Responsibilities

• Register and discover broadcast origins via the MoQ API.

• Track active broadcasts locally using a cache.

• Provide helpers for publishing new broadcasts and subscribing to existing ones.

• Integrate with the QUIC endpoint for remote origin connections.

1 use std::ops::{Deref, DerefMut};
2 use std::{
3 collections::HashMap,
4 sync::{Arc, Mutex, Weak},
5 };
6

7 use moq_api::ApiError;
8 use moq_transport::cache::{broadcast, CacheError};
9 use url::Url;

10 use tokio::time;
11 use crate::RelayError;
12

13 #[derive(Clone)]
14 pub struct Origin {
15 // An API client used to get/set broadcasts.
16 // If None then we never use a remote origin.
17 api: Option<moq_api::Client>,
18

19 // The internal address of our node.
20 // If None then we can never advertise ourselves as an origin.
21 node: Option<Url>,
22

23 // A map of active broadcasts by ID.
24 cache: Arc<Mutex<HashMap<String, Weak<Subscriber>>>>,
25

26 // A QUIC endpoint we'll use to fetch from other origins.
27 quic: quinn::Endpoint,
28 }
29

30 impl Origin {
31 pub fn new(api: Option<moq_api::Client>, node: Option<Url>, quic: quinn::Endpoint)

-> Self {ñ→

32 Self {
33 api,
34 node,
35 cache: Default::default(),
36 quic,
37 }
38 }
39

40 /// Create a new broadcast with the given ID.
41 /// Publisher::run needs to be called to periodically refresh the origin cache.
42 pub async fn publish(&mut self, id: &str) -> Result<Publisher, RelayError> {

93

moq-rs

43 let (publisher, subscriber) = broadcast::new(id);
44

45 let subscriber = {
46 let mut cache = self.cache.lock().unwrap();
47

48 // Check if the broadcast already exists.
49 // TODO This is racey, because a new publisher could be created while

existing subscribers are still active.ñ→

50 if cache.contains_key(id) {
51 return Err(CacheError::Duplicate.into());
52 }
53

54 // Create subscriber that will remove from the cache when dropped.
55 let subscriber = Arc::new(Subscriber {
56 // ... fields omitted for brevity ...
57 });
58 // ...more logic...
59 };
60 // ...more logic...
61 }
62 // ...more methods...
63 }

Explanation:

• Holds the MoQ API client, node URL, and a thread-safe cache of current broadcasts.

• Integrates with QUIC for fetching remote origins.

• The publish method creates and registers a new broadcast, ensuring no duplicates.

• Uses Arc<Mutex<HashMap<...»> for safe concurrent access to the broadcast cache.

• Designed for multi-relay environments and easy extension.

Key APIs:

• register_publisher: Associates a publisher with one or more tracks.

• subscribe: Adds a subscriber to a track, replays cached objects, and pipes live
updates.

• publish_object: Inserts media into cache and pushes it to subscribers.

5.2.10 web.rs and error.rs: Optional Web UI and Errors
• web.rs: Exposes an HTTP dashboard for debugging, live session stats, and health

checks.

• error.rs: Defines a relay-wide error enum for uniform error propagation.

94

5.3 – moq-relay - Publisher–Subscriber Data and Object Flow

5.3 moq-relay - Publisher–Subscriber Data and Ob-
ject Flow

The core of the MoQ transport involves the structured delivery of media objects—discrete,
self-contained units such as video keyframes, audio segments, or subtitles. moq-relay han-
dles these flows symmetrically, connecting publishers and subscribers through a shared
namespace registry and optional cache layer.

Publisher Flow

1. Publisher connects via QUIC and performs the MoQ SETUP handshake.

2. It registers one or more TrackNames using PublisherTrack requests.

3. For each media object:

• A QUIC unidirectional stream is opened.
• Headers and payload are sent as a single flow.
• The relay stores the object (if cache enabled) and fans it out to active

subscribers.

Subscriber Flow

1. Subscriber connects and performs the SETUP handshake.

2. It subscribes to a given TrackName.

3. The relay:

• Sends any cached media objects immediately.
• Pipes all live objects from the publisher to the subscriber as they arrive.
• Applies backpressure using broadcast channels and buffer limits.

5.4 moq-transport
The moq-transport crate is the protocol engine of the Media over QUIC (MoQ) ecosys-
tem. It implements all protocol logic and primitives needed for the Media over QUIC
(MoQ) ecosystem, and it is responsible for all wire protocol logic, including message en-
coding/decoding, session state machines, and role-specific behavior for publishers and
subscribers. It is a pure Rust library designed to be reusable across clients, relays, and
test tools. Its main responsibilities are:

• Session state management for publishers and subscribers

• Protocol-compliant encoding/decoding of all MoQ control and data messages

• In-memory hierarchical caching and object replay logic

• Typed error handling and protocol negotiation

95

moq-rs

5.5 Architectural Role of moq-transport

Within the modular design of the moq-rs project, the moq-transport crate plays a foun-
dational role as the core transport layer upon which higher-level components, such as
moq-relay, are built. The relationship between moq-transport and moq-relay is char-
acterized by a clear separation of concerns, where each crate is responsible for a distinct
layer of functionality within the overall system architecture.

moq-transport is responsible for implementing the Media over QUIC (MoQ) protocol,
encapsulating all essential aspects of data transport over QUIC and WebTransport. Its
core responsibilities include:

• Session Management: Establishing, maintaining, and terminating sessions be-
tween endpoints, supporting both publishers and subscribers.

• Message Framing and Parsing: Defining and handling protocol messages, in-
cluding serialization, deserialization, and adherence to protocol specifications.

• Media Object Transmission: Handling the fragmentation, reassembly, and se-
quencing of media objects to ensure reliable and efficient delivery.

• Caching and Deduplication: Providing mechanisms for caching media data and
eliminating redundant transmissions to optimize network usage.

• Error Handling: Managing protocol-level errors and providing robust error report-
ing to higher layers.

Building on this transport layer, the moq-relay crate serves as a high-level server com-
ponent that connects publishing clients with subscribing clients. Its main responsibilities
include orchestrating publisher-subscriber relationships, routing data streams, enforcing
access policies, and implementing broadcast session management. moq-relay relies ex-
tensively on moq-transport to offload all protocol-specific logic, allowing it to focus on
application-level concerns.

Layer/Crate Main Responsibility
moq-transport Protocol logic, session state machines, message encod-

ing/decoding, cache logic, role transitions
moq-relay Orchestration, connection and session management,

registry, routing and policy
moq-api Federation, discovery, registry for origins/tracks, cross-

node coordination

Table 5.1. Role of moq-transport within the MoQ relay architecture.

96

5.5 – Architectural Role of moq-transport

5.5.1 moq-transport - Dependency Breakdown
[dependencies]
quinn = "0.10"
webtransport-quinn = "0.6"
tokio = { version = "1", features = ["macros", "io-util", "sync"] }
bytes = "1"
indexmap = "2"
thiserror = "1"
async-trait = "0.1"
paste = "1"

5.5.2 moq-transport - Module Structure
The crate is organized into the following submodules:

• session/ — MoQ session state machines for different endpoint roles

• message/ — Each control/data message with its encoding/decoding logic

• setup/ — Protocol handshake, version, and role negotiation

• cache/ — Hierarchical, per-track object caching and broadcasting

• coding/ — Low-level serialization/deserialization utilities (varints, strings, params)

• error.rs — Unified protocol and library error types

• lib.rs — Crate root, re-exports all main components

5.5.3 Session State Machines (session/)
Session management is central to protocol compliance and reliability. Each file under
session/ implements a key state machine:

• client.rs, server.rs: Accepts connections, negotiates setup, and dispatches to
role handlers

• publisher.rs, subscriber.rs: Implements the flows for publisher and subscriber
endpoints

• control.rs: Encapsulates control stream parsing and writing (e.g., handling MoQ
control frames)

Code sample: Handshake State Machine (from server.rs) The following code,
from server.rs, succinctly exemplifies the handshake state machine. It shows the server-
side logic for accepting a new session, reading the SETUP frame, and initializing a Request
object that binds together the session’s IO and negotiated parameters:

97

moq-rs

1 pub struct Server<S> {
2 io: S,
3 }
4

5 impl<S: AsyncRead + AsyncWrite + Unpin> Server<S> {
6 /// Accept the handshake from the client
7 pub async fn accept(mut io: S) -> Result<Request, MoqError> {
8 // Read and parse SETUP message
9 let setup = Setup::decode(&mut io).await?;

10 Ok(Request { io, setup })
11 }
12 }

In this construct, the server not only validates the handshake, but also sets the stage for
all subsequent session behavior, handing off the validated state to appropriate session logic
for either publication or subscription. The strong typing ensures protocol correctness and
makes errors in negotiation or transport instantly actionable.

5.5.4 Session Negotiation Example
Negotiation of protocol parameters is the cornerstone of establishing a compliant MoQ
session. The handshake is unidirectional in its initiation: the client sends a SETUP frame
specifying its supported protocol version, desired role, and optional extensions, after which
it awaits a SETUP_OK response from the server. The following sample, distilled from
setup/client.rs, demonstrates the essential sequence:

1 // setup/client.rs (simplified)
2 pub async fn setup_handshake(conn: &mut QuicConn) -> Result<Setup> {
3 // Send SETUP frame with version/role info
4 let setup = Setup { version, role, extensions };
5 setup.encode(&mut conn).await?;
6 // Await SETUP_OK from the server
7 let resp = SetupOk::decode(&mut conn).await?;
8 Ok(resp)
9 }

Here, the handshake’s structure is not merely a technicality but a formal contract: both
sides must agree on all relevant parameters before proceeding to any media transfer. This
approach ensures that protocol upgrades, extensions, and role assignments are explicit
and verifiable, supporting extensibility and future-proofing.

5.5.5 Message Encoding and Decoding (message/)
At the heart of any transport protocol lies its message encoding. The message/ submod-
ule of moq-transport provides a highly-structured, strongly-typed definition for every
control and data message that can be sent across a session. Each message—be it for

98

5.5 – Architectural Role of moq-transport

stream announcements, subscriptions, segment transmission, or control—is defined as a
Rust struct or enum with precise encode and decode methods, allowing for round-trip
correctness and preventing malformed wire formats.
This modularization is apparent from the module declaration itself (message/mod.rs):

1 //! Low-level message sent over the wire, as defined in the specification.
2 //!
3 //! All of these messages are sent over a bidirectional QUIC stream.
4 //! This introduces some head-of-line blocking but provides ordering guarantees.
5

6 mod data;
7 mod frame;
8 mod id;
9 mod publish;

10 mod request;
11 mod subscribe;
12 mod util;
13

14 pub use data::*;
15 pub use frame::*;
16 pub use id::*;
17 pub use publish::*;
18 pub use request::*;
19 pub use subscribe::*;
20 pub use util::*;

Code sample: Message Types and Encoding (from frame.rs)

1 pub enum Frame {
2 Publish(Publish),
3 Subscribe(Subscribe),
4 Data(Data),
5 // ...
6 }
7

8 impl Frame {
9 pub fn encode<B: BufMut>(&self, buf: &mut B) { /* ... */ }

10 pub fn decode<B: Buf>(buf: &mut B) -> Result<Self, Error> { /* ... */ }
11 }

Central to this system is the Frame enum, representing all possible top-level messages. Its
encode and decode methods handle precise, protocol-compliant binary serialization:

1 pub enum Frame {
2 Publish(Publish),
3 Subscribe(Subscribe),
4 Data(Data),
5 // ...

99

moq-rs

6 }
7

8 impl Frame {
9 pub fn encode<B: BufMut>(&self, buf: &mut B) { /* ... */ }

10 pub fn decode<B: Buf>(buf: &mut B) -> Result<Self, Error> { /* ... */ }
11 }

This approach yields several critical benefits: first, the strong typing of wire messages
ensures that all frames are parsed and validated before reaching higher layers, minimizing
error surfaces. Second, the separation into individual modules allows independent evolu-
tion and exhaustive testing of each message type, a necessity for robust protocol evolution.

The design philosophy here is explicit: by making all wire messages strongly typed and
individually validated, the crate achieves both high reliability and extensibility. Any de-
coding or protocol error is surfaced as a distinct error case, enabling graceful recovery or
reporting at higher layers.

5.5.6 Wire Serialization Utilities (coding/)
The correct serialization of protocol primitives is a non-negotiable requirement for inter-
operability in any transport protocol. The coding/ module in moq-transport implements
this via a clean separation of encode and decode routines for the various primitives—variable-
length integers, parameter lists, and protocol strings.

This module defines MoQ wire primitives, such as variable-length integers (used exten-
sively in QUIC and MoQ), string types, and message framing:

1 mod decode;
2 mod encode;
3 mod params;
4 mod string;
5 mod varint;
6

7 pub use decode::*;
8 pub use encode::*;
9 pub use params::*;

10 pub use string::*;
11 pub use varint::*;

Code sample: Variable-Length Integer Codec (from varint.rs)

One of the most significant utilities is the QUIC-style variable-length integer codec. The
importance of varint encoding cannot be overstated: it is both space-efficient and a re-
quirement of the MoQ and QUIC specifications. The struct and its core API are as
follows:

100

5.5 – Architectural Role of moq-transport

1 pub struct VarInt(pub u64);
2

3 impl VarInt {
4 pub fn decode<B: Buf>(buf: &mut B) -> Result<Self, Error> { /* ... */ }
5 pub fn encode<B: BufMut>(&self, buf: &mut B) { /* ... */ }
6 }

Explanation:

• Encapsulates all protocol serialization/deserialization, such as QUIC-style varints,
strings, and parameters.

• Cleanly separated encode/decode modules for maintainability.

The actual implementation in varint.rs carefully follows the QUIC variable-length in-
teger encoding algorithm, which changes encoding width dynamically to minimize space
for common values while accommodating the protocol’s wide numeric ranges:

1 // coding/varint.rs
2 pub fn encode_varint(val: u64, buf: &mut BytesMut) {
3 if val < 0x40 {
4 buf.put_u8(val as u8);
5 } else if val < 0x4000 {
6 // ...
7 }
8 // (implements the QUIC variable-length integer encoding)
9 }

This code ensures both correctness and efficiency, laying the foundation for every higher-
level protocol feature, from stream IDs to object lengths.

5.5.7 Hierarchical Object Caching (cache/)
Caching within MoQ is designed not as a mere optimization, but as a core architectural
pillar enabling reliable, low-latency media delivery. The cache/ module implements a
hierarchical object cache that mirrors the structure of live media: broadcasts contain
tracks, tracks contain segments, segments contain fragments, and fragments encapsulate
media objects.
The cache subsystem is composed of:

• track.rs: Per-track object cache

• fragment.rs, segment.rs: Sub-division of objects for efficient lookup

• broadcast.rs: Tokio-broadcast based fan-out to subscribers

• watch.rs: Mechanism for subscribers to rejoin and replay from a specific point

101

moq-rs

1 //! Allows a publisher to push updates, automatically caching and fanning it out to
any subscribers.ñ→

2 //!
3 //! The hierarchy is: [broadcast] -> [track] -> [segment] -> [fragment] ->

[Bytes](bytes::Bytes)ñ→

4 mod broadcast;
5 mod fragment;
6 mod segment;
7 mod subscriber;
8 mod track;
9

10 pub use broadcast::*;
11 pub use fragment::*;
12 pub use segment::*;
13 pub use subscriber::*;
14 pub use track::*;

Code sample: Track Cache (from track.rs)

The TrackCache structure, for example, manages all fragments for a particular track.
Its methods allow insertion of new objects and efficient replay to clients resuming from
arbitrary sequence numbers—an essential feature for scalable streaming and late joiners:

1 // cache/track.rs
2 pub struct TrackCache {
3 fragments: VecDeque<Fragment>,
4 max_size: usize,
5 }
6 impl TrackCache {
7 pub fn insert(&mut self, object: Object) {
8 // Insert into the latest fragment, evict old objects if exceeding max_size
9 }

10 pub fn replay_from(&self, seq: u64) -> Vec<Object> {
11 // Return objects with sequence >= seq
12 }
13 }

Code sample: Broadcast Structure (from broadcast.rs)

The broader broadcast cache structure also enforces uniqueness and organizes tracks under
their broadcast IDs:

1 pub struct Broadcast {
2 id: String,
3 tracks: HashMap<String, Track>,
4 // ...
5 }
6

102

5.5 – Architectural Role of moq-transport

7 impl Broadcast {
8 pub fn new(id: String) -> Self { /* ... */ }
9 pub fn push_track(&mut self, track: Track) { /* ... */ }

10 pub fn get_track(&self, name: &str) -> Option<&Track> { /* ... */ }
11 }

Explanation:

• Caching is hierarchical, following the protocol’s media structure (broadcast → track
→ segment → fragment).

• Each layer is a Rust struct with methods for adding/querying children.

• Essential for deduplication, replay, and high-performance pub/sub.

Caching is hierarchical, following the protocol’s media structure (broadcast → track →
segment → fragment).
Each layer is a Rust struct with methods for adding/querying children.
Through these data structures, the protocol achieves both deduplication and high-performance
pub/sub, which are indispensable for real-world streaming systems.

5.5.8 Protocol Negotiation (setup/)
The protocol negotiation process ensures that both endpoints in a session have agreed
upon compatible roles, versions, and protocol extensions before any actual media or con-
trol messages flow. The setup/ module embodies this handshake logic, defining all mes-
sages and types necessary for robust negotiation.

As reflected in the module structure:

1 //! Messages used for the MoQ Transport handshake.
2 //!
3 //! After establishing the WebTransport session, the client creates a bidirectional

QUIC stream.ñ→

4 //! The client sends the [Client] message and then waits for the [Server] message.
5 mod client;
6 mod extensions;
7 mod negotiate;
8 mod role;
9 mod server;

10 mod version;
11

12 pub use client::*;
13 pub use extensions::*;
14 pub use negotiate::*;
15 pub use role::*;
16 pub use server::*;
17 pub use version::*;

103

moq-rs

Code sample: Setup Handshake (from client.rs)

A handshake message, such as the Client struct, encodes both the desired version and
endpoint role, providing encode and decode methods for robust serialization:

1 pub struct Client {
2 pub version: u32,
3 pub role: Role,
4 // ...
5 }
6

7 impl Client {
8 pub fn encode<B: BufMut>(&self, buf: &mut B) { /* ... */ }
9 pub fn decode<B: Buf>(buf: &mut B) -> Result<Self, Error> { /* ... */ }

10 }

Explanation:

• Defines all handshake and negotiation messages for MoQ sessions.

• Roles, extensions, and versions are negotiated at the start of every session.

By making the negotiation phase explicit, the protocol not only facilitates graceful up-
grades and extensibility, but also provides for immediate and clear error reporting if
endpoints are incompatible.

5.5.9 Typed Error Handling (error.rs)
Errors within a transport protocol are not merely accidental byproducts but must be
intentionally designed, so that endpoints can recover or report failures with precision.
The error handling module in moq-transport centers around a trait that every protocol
error implements:

1 pub trait MoqError {
2 /// An integer code that is sent over the wire.
3 fn code(&self) -> u32;
4

5 /// An optional reason sometimes sent over the wire.
6 fn reason(&self) -> String;
7 }

This design makes it possible to propagate errors as protocol events, with both machine-
readable codes and optional human-readable reasons. This enables not just robust internal
error handling, but also rich diagnostics for developers and operators observing the pro-
tocol in production.

104

5.6 – moq-api

5.5.10 Crate Root (lib.rs)
The crate root lib.rs exposes all public modules and re-exports the most important
protocol types (VarInt, MoqError). Internal modules like coding and error are kept
private except for key types.

1 //! An implementation of the MoQ Transport protocol.
2 //!
3 //! MoQ Transport is a pub/sub protocol over QUIC.
4 //! While originally designed for live media, MoQ Transport is generic and can be used

for other live applications.ñ→

5 //! The specification is a work in progress and will change.
6 //! See the

[specification](https://datatracker.ietf.org/doc/draft-ietf-moq-transport/) and
[github](https://github.com/moq-wg/moq-transport) for any updates.

ñ→

ñ→

7 //!
8 //! This implementation has some required extensions until the draft stablizes. See:

[Extensions](crate::setup::Extensions)ñ→

9 mod coding;
10 mod error;
11

12 pub mod cache;
13 pub mod message;
14 pub mod session;
15 pub mod setup;
16

17 pub use coding::VarInt;
18 pub use error::MoqError;

This pattern of careful API exposure, combined with comprehensive module documenta-
tion, is emblematic of robust Rust library design and supports both immediate adoption
and long-term maintainability.

5.6 moq-api
The moq-api crate acts as a discovery, registry, and metadata service for Media over QUIC
relays. It exposes an HTTP API (via Axum) for registering and discovering broadcast ori-
gins, backed by a Redis store. It also provides a client library for interacting with this API,
enabling relay federation, cross-node coordination, and external service orchestration.

5.6.1 Architectural Role of moq-api

Within the moq-rs architecture, the moq-api crate serves as a foundational library that
defines the shared data models, error types, and utility functions used throughout the
system. Its primary purpose is to provide a single source of truth for protocol-level
abstractions, ensuring consistency and interoperability between higher-level components
such as moq-relay and lower-level components such as moq-transport.

The architectural responsibilities of moq-api include:

105

moq-rs

• Shared Data Models: moq-api encapsulates the common types representing pro-
tocol entities, messages, and states, which are used uniformly across both moq-relay
and moq-transport.

• Standardized Error Handling: It defines error types and handling mechanisms
that facilitate robust and consistent error reporting throughout the system.

• Reusable Logic and Utilities: The crate may implement shared utility functions
or traits required by multiple components, avoiding code duplication and fostering
maintainability.

In relation to the other main crates:

• moq-relay relies on moq-api for defining and handling the protocol messages, client
and server models, and error types, enabling it to focus on application-level orches-
tration and routing logic.

• moq-transport utilizes the models and types from moq-api to ensure protocol com-
pliance and to guarantee that its internal mechanisms for transport, message framing,
and session management remain compatible with other parts of the system.

• By depending on moq-api, both moq-relay and moq-transport maintain a clean
separation of concerns, allowing protocol data structures and error handling to evolve
independently from the business logic and transport mechanisms.

5.6.2 Module Structure
The organization of the crate reflects its dual nature as both a server and a library:

• model.rs: Data models (Origin) used in the API.

• client.rs: HTTP client for querying and setting origins via REST.

• server.rs: Axum-based web server that exposes API endpoints.

• error.rs: Unified API error types, covering HTTP, Redis, and URL errors.

• lib.rs: Crate entry point, re-exporting major types and modules.

• main.rs: Runs the HTTP server (example or real deployment).

5.6.3 Data Models (model.rs)
At the core of moq-api’s schema is the Origin struct, which acts as a persistent and
portable representation of a broadcast relay or source endpoint. Defined to be compatible
with Serde’s powerful serialization framework, the Origin model is engineered for seamless
translation between Rust types, JSON payloads, and Redis records. By modeling origin
endpoints with a url::Url, the system ensures robust validation and normalization of
all registered addresses, which is vital for the security and correctness of distributed relay
discovery.

106

5.6 – moq-api

1 use serde::{Deserialize, Serialize};
2

3 use url::Url;
4

5 #[derive(Serialize, Deserialize, PartialEq, Eq)]
6 pub struct Origin {
7 pub url: Url,
8 }

The ‘Origin‘ struct is designed for direct mapping to and from JSON via Serde, repre-
senting the URL of an origin relay in the API’s schema. This struct, though minimal,
encapsulates a foundational protocol concept: it abstracts away the specifics of a relay’s
network address, providing a uniform, type-safe, and interoperable handle for all registry
and discovery operations.

5.6.4 Client Abstraction (client.rs)
Beyond the server implementation, moq-api empowers external consumers and internal
services alike to interact with the registry via an idiomatic async Rust client. This
client exposes a full suite of CRUD (Create, Read, Update, Delete) operations for ori-
gin resources, mapped directly onto HTTP methods and JSON payloads. Leveraging the
widely-used reqwest and url crates, the client not only abstracts the mechanics of HTTP
transport, but also unifies error handling under the ApiError type, simplifying integration
into larger async workflows.

The following excerpt exemplifies the client’s interface, revealing both its ergonomic con-
struction and its commitment to robust error propagation:

1 use url::Url;
2

3 use crate::{ApiError, Origin};
4

5 #[derive(Clone)]
6 pub struct Client {
7 // The address of the moq-api server
8 url: Url,
9

10 client: reqwest::Client,
11 }
12

13 impl Client {
14 pub fn new(url: Url) -> Self {
15 let client = reqwest::Client::new();
16 Self { url, client }
17 }
18

19 pub async fn get_origin(&self, id: &str) -> Result<Option<Origin>, ApiError> {
20 let url = self.url.join("origin/")?.join(id)?;

107

moq-rs

21 let resp = self.client.get(url).send().await?;
22 if resp.status() == reqwest::StatusCode::NOT_FOUND {
23 return Ok(None);
24 }
25

26 let origin: Origin = resp.json().await?;
27 Ok(Some(origin))
28 }
29

30 pub async fn set_origin(&mut self, id: &str, origin: &Origin) -> Result<(),
ApiError> {ñ→

31 let url = self.url.join("origin/")?.join(id)?;
32

33 let resp = self.client.post(url).json(origin).send().await?;
34 resp.error_for_status()?;
35

36 Ok(())
37 }
38

39 pub async fn delete_origin(&mut self, id: &str) -> Result<(), ApiError> {
40 let url = self.url.join("origin/")?.join(id)?;
41

42 let resp = self.client.delete(url).send().await?;
43 resp.error_for_status()?;
44

45 Ok(())
46 }
47

48 pub async fn patch_origin(&mut self, id: &str, origin: &Origin) -> Result<(),
ApiError> {ñ→

49 let url = self.url.join("origin/")?.join(id)?;
50

51 let resp = self.client.patch(url).json(origin).send().await?;
52 resp.error_for_status()?;
53

54 Ok(())
55 }
56 }

This design ensures that any component—be it another relay node, an operator dashboard,
or a monitoring agent—can programmatically discover, update, or decommission origin
metadata with uniform reliability, irrespective of the underlying network conditions or
server implementation details.

5.6.5 Error Handling (error.rs)
Robust error handling is a cornerstone of distributed system reliability, and moq-api
addresses this through the definition of a single, extensible ApiError enum. Harness-
ing the expressive power of the thiserror crate, the error type unifies disparate failure
modes—arising from Redis, HTTP, or URL parsing—under a coherent interface. This
not only enables straightforward propagation and reporting but also ensures that every

108

5.6 – moq-api

API operation, whether in client or server context, can be instrumented with precise,
actionable diagnostics.

1 use thiserror::Error;
2

3 #[derive(Error, Debug)]
4 pub enum ApiError {
5 #[error("redis error: {0}")]
6 Redis(#[from] redis::RedisError),
7

8 #[error("reqwest error: {0}")]
9 Request(#[from] reqwest::Error),

10

11 #[error("hyper error: {0}")]
12 Hyper(#[from] hyper::Error),
13

14 #[error("url error: {0}")]
15 Url(#[from] url::ParseError),
16 }

This error enum provides automatic conversion from Redis, Reqwest, Hyper, and URL
parsing errors, streamlining error handling across the API’s internal logic and HTTP
client/server boundaries.
By supporting automatic conversion from all major sources of failure, ApiError stream-
lines code at every level, from endpoint handlers to background workers, thus elevating
both reliability and developer productivity.

5.6.6 Server Implementation (server.rs)
The server logic of moq-api is realized using the Axum web framework, chosen for its
high composability and async-first design. At startup, the server reads its configura-
tion—including HTTP bind address and Redis backend connection—from strongly typed
structures, supporting both static deployment and dynamic orchestration in containerized
environments.

The core of the HTTP API exposes RESTful endpoints for CRUD operations on ori-
gins. Each handler is carefully instrumented for error handling, state propagation, and
integration with the Redis backend, supporting not only real-time updates but also re-
silience in the face of network partitions or service restarts.

1 use std::net;
2

3 use axum::{
4 extract::{Path, State},
5 http::StatusCode,
6 response::{IntoResponse, Response},
7 routing::get,

109

moq-rs

8 Json, Router,
9 };

10

11 use clap::Parser;
12

13 use redis::{aio::ConnectionManager, AsyncCommands};
14

15 use moq_api::{ApiError, Origin};
16

17 /// Runs a HTTP API to create/get origins for broadcasts.
18 #[derive(Parser, Debug)]
19 #[command(author, version, about, long_about = None)]
20 pub struct ServerConfig {
21 /// Listen for HTTP requests on the given address
22 #[arg(long)]
23 pub listen: net::SocketAddr,
24

25 /// Connect to the given redis instance
26 #[arg(long)]
27 pub redis: url::Url,
28 }
29

30 pub struct Server {
31 config: ServerConfig,
32 }
33

34 impl Server {
35 pub fn new(config: ServerConfig) -> Self {
36 Self { config }
37 }
38

39 pub async fn run(self) -> Result<(), ApiError> {
40 log::info!("connecting to redis: url={}", self.config.redis);
41

42 // Create the redis client.
43 let redis = redis::Client::open(self.config.redis)?;
44 let redis = redis
45 .get_tokio_connection_manager() // TODO

get_tokio_connection_manager_with_backoff?ñ→

46 .await?;
47

48 let app = Router::new()
49 .route(
50 "/origin/:id",
51 get(get_origin)
52 .post(set_origin)
53 .delete(delete_origin)
54 .patch(patch_origin),
55)
56 .with_state(redis);
57

58 log::info!("serving requests: bind={}", self.config.listen);
59

110

5.6 – moq-api

60 axum::Server::bind(&self.config.listen)

This code configures an Axum web server, defines routes for CRUD operations on broad-
cast origins, connects to a Redis backend, and exposes the ‘ServerConfig‘ for flexible
deployment.

The separation of configuration, runtime logic, and handler implementation ensures that
the server can be easily extended to support additional metadata types, authorization
layers, or alternative storage backends as protocol or operational requirements evolve.

5.6.7 Crate Integration (lib.rs)
The crate’s root (lib.rs) is structured to provide a clean, minimal surface for both
binary and library use cases. By selectively re-exporting the client, error, and data model
modules, moq-api ensures that downstream crates and services have immediate access to
all core abstractions without unnecessary coupling to internal implementation details.

1 mod client;
2 mod error;
3 mod model;
4

5 pub use client::*;
6 pub use error::*;
7 pub use model::*;

This structure provides a clean and minimal top-level API for library users, encapsulating
the client interface, unified error type, and origin data model.
This approach, standard in modern Rust library design, supports robust encapsulation
and enables seamless upgrades and evolution of the internal API surface without breaking
consumers.

111

112

Chapter 6

Media Over Quic Transport –
Datagram Implementation

6.1 Transmission modes
QUIC provides two main modes for data transmission:

• Stream:

– An ordered, lossless data flow (bytes) that can be either unidirectional or bidi-
rectional, designed to add minimal overhead.

– QUIC allows an arbitrary number of streams to operate simultaneously and
send an arbitrary amount of data over any stream.

– It enables multiplexing capabilities between different streams.

• Datagram:

– Independent packets of bytes transmitted with potential losses.
– Even lower overhead compared to streams.
– Retains the congestion control and encryption mechanisms used by QUIC but

without guarantees on order or data loss.

6.2 Datagram mode
Transmission of unreliable data via QUIC can be useful in specific use cases, such as:

• Applications that intend to use both reliable streams and an unreliable data flow
to the same peers can reuse the same handshake and authentication context, reduc-
ing the expected latency compared to using separate TLS and DTLS connections
simultaneously.

113

Media Over Quic Transport – Datagram Implementation

• Leverage a more sophisticated loss recovery system compared to the DTLS hand-
shake, allowing for more immediate recovery.

• Providing a single congestion control system for both reliable and unreliable data
can be more efficient and effective.

• Facilitate the transition to the QUIC stack for existing applications that use un-
reliable data flows by taking advantage of QUIC’s handshake, authentication, and
congestion control systems.

• Implementation of IP packet tunneling with a single QUIC connection for control
and data transmission.

6.2.1 Datagram mode - custom implementation in moq-js and
moq-rs

In order to implement a datagram transmission mode in moq-js and moq-rs, modifica-
tions were made to both applications, and a method was designed to organize the MoQT
segment data into datagrams.

More specifically, the stream data is extracted in chunks of variable size and packaged,
including header bytes to identify their association within the MoQ context, as well as
additional bytes that allow the chunks to be divided into slices with sizes compatible with
the maximum size allowed for PDUs included in QUIC datagrams.

The header has the following format

TrackId GroupId ObjectId Slice Number Slice length

Table 6.1. Datagram slice header

When all the slices of a chunk have been sent, a chunk end datagram is transmitted in
the following format

TrackId GroupId ObjectId Data length (bytes) "end_chunk"

Table 6.2. Chunk end datagram

Datagram mode - moq-js

Inside moq-js, data transmission through datagrams has been added within the file ob-
ject.ts, in the functions send(), recv(), and with the creation of the async function receive-
Datagrams().

114

6.2 – Datagram mode

Within the send() function, the header of the MOQ object is sent via stream, while
the other outbound stream data is intercepted through the transform() function of a
TransformStream, which divides each chunk of the stream into slices of a maximum size
of 1024 bytes, adds a header identifying the chunk and the corresponding slice, and sends
it in datagram mode using the sendDatagram() function, which writes to a Writer ex-
posed by the QUIC library.

1 async sendDatagram(datagram: Uint8Array) {
2 if (!this.writer) this.writer = this.quic.datagrams.writable.getWriter()
3 // get quic instance datagrams writer datagrams writer
4 await this.writer.write(datagram) // send datagram to quic
5 }

Within the recv() function, once the header is received via QUIC stream, the data struc-
tures involved in the reception of datagrams by the function receiveDatagrams() are
initialized if necessary, and a dedicated ReadableStream is created, which will wait for
data in the queue of the group corresponding to the header.

1 async receiveDatagrams() {
2 if (this.datagramMode) {
3 const readable = this.quic.datagrams.readable // incoming datagrams as readable

streamñ→

4

5 const reader = readable.getReader() // stream reader
6 console.log("Datagram reception active")
7

8 for (;;) {
9 const { value, done } = await reader.read() // read from stream

10

11 if (value) {
12 const res = value as Uint8Array
13 const utf = new TextDecoder().decode(res)
14 const splitData = utf.split(" ") // split object fields
15

16 if (splitData.length > 5) {
17 let header = ""// recompose header string
18 for (let i = 0; i < 5; i++) header += splitData[i] + " "
19 const offset = new TextEncoder().encode(header).length // get data start offset

from header lengthñ→

20 const trackId = Number(splitData.shift()).toString() // decode track id

115

Media Over Quic Transport – Datagram Implementation

21 const groupId = Number(splitData.shift()) // decode group id number
22 const sequenceNum = Number(splitData.shift()) // decode object sequence number
23 const sliceNum = Number(splitData.shift()) // decode slice number
24 const sliceLen = Number(splitData.shift()) // decode slice number
25 const data = res.subarray(offset, res.length) // extract data
26 // console.log(data)
27 // console.log(sliceLen, offset)
28 await this.mutex.acquire() // start atomic operation on chunksMap
29 let track = this.chunksMap.get(trackId) // get track chunks map
30 if (!track) {
31 track = new Map<number, Group>()
32 this.chunksMap.set(trackId, track)
33 }
34

35 let group = track.get(groupId)
36 if (!group) {
37 group = {
38 currentChunk: 1,
39 chunks: new Map<number, Datagram[]>(),
40 readyChunks: new Channel<Uint8Array>(),
41 delete: () => {
42 track.delete(groupId)
43 },
44 done: false,
45 }
46 track.set(groupId, group)
47 }
48 this.mutex.release() // end atomic operation on chunksMap
49

50 let datagrams = group.chunks?.get(sequenceNum)
51 if (!datagrams) {
52 datagrams = []
53 group.chunks?.set(sequenceNum, datagrams)
54 }
55 datagrams.push({ number: sliceNum, data: data })
56 if (group.timeout) clearTimeout(group.timeout) // clear group chunks' queue

closure timeoutñ→

57 group.timeout = setTimeout(() => {
58 group.done = true // set group state to done
59 void group.readyChunks.push(new Uint8Array(), true) // close ready chunks queue
60 }, 2000) // timer that closes the ready chunks queue after time has elapsed with

no new datagrams for this groupñ→

61 } else if (splitData.length == 5) {
62 const trackId = Number(splitData.shift()).toString() // decode track id
63 const groupId = Number(splitData.shift()) // decode group id number

116

6.2 – Datagram mode

64 const sequenceNum = Number(splitData.shift()) // decode object sequence number
65 const sliceLen = Number(splitData.shift()) // decode slice number
66 const msg = String(splitData.shift()) // decode message
67

68 const group = this.chunksMap.get(trackId)?.get(groupId)
69

70 if (group && msg == "end_chunk") {
71 if (group.currentChunk <= sequenceNum) {
72 const chunks = group.chunks // get group chunks map
73 if (chunks) {
74 const chunk = chunks.get(sequenceNum) // extract chunk for corresponding

sequenceñ→

75 if (chunk) {
76 if (chunk.length > 1) {
77 // if chunk was sliced, merge slices
78 const unfused_data = chunk
79 .sort((a, b) => a.number - b.number)
80 .map((a) => a.data)
81

82 let length = 0
83 unfused_data.forEach((item) => {
84 length += item.length
85 })
86

87 const data = new Uint8Array(length)
88 let offset = 0
89 unfused_data.forEach((item) => {
90 data.set(item, offset)
91 offset += item.length
92 })
93 // console.log(data.length, sliceLen)
94 if (data.length == sliceLen) {
95 void group.readyChunks.push(data) // add to chunks ready to be consumed
96 group.currentChunk = sequenceNum
97 } else
98 console.log(
99 "corrupted or incomplete chunk",

100 sequenceNum,
101 "of group",
102 groupId,
103 "of track",
104 trackId,
105)
106 } else {
107 // console.log(chunk[0].data.length, sliceLen)

117

Media Over Quic Transport – Datagram Implementation

108 if (chunk[0].data.length == sliceLen) {
109 void group.readyChunks.push(chunk[0].data) // add to chunks ready to be

consumedñ→

110 group.currentChunk = sequenceNum
111 } else
112 console.log(
113 "corrupted or incomplete chunk",
114 sequenceNum,
115 "of group",
116 groupId,
117 "of track",
118 trackId,
119)
120 }
121 chunks.delete(sequenceNum) // delete entry from incoming chunks
122 if (group.timeout) clearTimeout(group.timeout) // clear group chunks' queue

closure timeoutñ→

123 group.timeout = setTimeout(() => {
124 group.done = true // set group state to done
125 void group.readyChunks.push(new Uint8Array(), true) // close ready chunks

queueñ→

126 }, 2000) // timer that closes the ready chunks queue after time has elapsed
with no new datagrams for this groupñ→

127 }
128 }
129 } else {
130 console.log(
131 "Discarded late chunk: track",
132 trackId,
133 "group",
134 groupId,
135 "object",
136 sequenceNum,
137)
138 }
139 }
140 } else if (splitData.length == 3) {
141 const trackId = Number(splitData.shift()).toString() // decode track id
142 const groupId = Number(splitData.shift()) // decode group id number
143 const msg = String(splitData.shift()) // decode message
144

145 const group = this.chunksMap.get(trackId)?.get(groupId) // get group
146

147 // received end message ?
148 if (group && msg == "end") {

118

6.2 – Datagram mode

149 if (group.timeout) clearTimeout(group.timeout) // clear group chunks' queue
closure timeoutñ→

150 group.done = true // set group state to done
151 void group.readyChunks.push(new Uint8Array(), true) // close ready chunks queue
152 }
153 }
154 }
155 if (done) break
156 }
157 }
158 }

The function receiveDatagrams() runs in parallel with #runObjects in connection.ts,
receiving datagrams from the various tracks and placing them in an internal data struc-
ture, organizing them first in a Map by track and then by group (interface Group), and
finally in an array of slices corresponding to a single chunk.

These slices are then moved and reassembled into complete chunks inside dedicated
queues once a ’end_chunk’ datagram is received. These queues, each contained within
the corresponding Group, allow the streams of each segment to retrieve the chunks as
soon as they become available, thanks to the recv() function.

Datagram mode - moq-rs

The transmission via datagram in moq-rs has been implemented by making modifications
in the publisher.rs and subscriber.rs files.

Within the publisher.rs file, which is used for relay retransmission, the run_segment()
function has been modified. This function retrieves the various chunks of a fragment,
divides them into slices of a maximum size of 1024 bytes, and sends the data along with
the header that identifies them in the form of a datagram using a function exposed by the
QUIC library in use.

1 async fn run_segment(&self, id: VarInt, segment: &mut segment::Subscriber) ->
Result<(), SessionError> {ñ→

2 log::trace!("serving group: {:?}", segment);
3 // log::error!("{:?}", self.tracks_num);
4

5 let mut stream = self.webtransport.open_uni().await?;
6 // Convert the u32 to a i32, since the Quinn set_priority is signed.
7 let priority = (segment.priority as i64 - i32::MAX as i64) as i32;
8 stream.set_priority(priority).ok();

119

Media Over Quic Transport – Datagram Implementation

9

10 while let Some(mut fragment) = segment.fragment().await? {
11 log::trace!("serving fragment: {:?}", fragment);
12

13 let object = message::Object {
14 track: id,
15 // Properties of the segment
16 group: segment.sequence,
17 priority: segment.priority,
18 expires: segment.expires,
19

20 // Properties of the fragment
21 sequence: fragment.sequence,
22 size: fragment.size.map(VarInt::try_from).transpose()?,
23 timestamp: segment.timestamp,
24 };
25 object // send header first
26 .encode(&mut stream, &self.control.ext)
27 .await
28 .map_err(|e| SessionError::Unknown(e.to_string()))?;
29 let mut chunk_counter = object.sequence.to_string().parse::<i32>().unwrap();
30 let mut datagram_mode = false;
31 if let Some(chunk) = fragment.chunk().await? {// first chunk
32 // check first chunk type
33 // log::error!("{:?} {:?}", chunk[0], chunk [3]);
34 // log::error!("{:?}", chunk);
35 chunk_counter += 1;
36 datagram_mode = true;
37 let mut slice_counter = 0;
38 let tr_id = format!("{:?} ", object.track);
39 let group = format!("{:?} ", object.group);
40 let sequence = format!("{:?} ", chunk_counter);
41 let len = format!("{:?} ", chunk.len());
42 for chunk_slice in chunk.chunks(1024) {
43 let slice_len = format!("{:?} ", chunk_slice.len());
44 slice_counter += 1;
45 // log::error!("{:?}\n", chunk_slice);
46 let slice_number = format!("{:?} ", slice_counter);
47 let mut _obj = [tr_id.as_bytes(), group.as_bytes(), sequence.as_bytes(),

slice_number.as_bytes(), slice_len.as_bytes(), chunk_slice].concat().into();ñ→

48 self.webtransport.send_datagram(_obj).await?; // send as datagram
49 }
50 let end = "end_chunk";
51 let mut _obj = [tr_id.as_bytes(), group.as_bytes(), sequence.as_bytes(),

len.as_bytes(), end.as_bytes()].concat().into();ñ→

120

6.2 – Datagram mode

52 self.webtransport.send_datagram(_obj).await?; // send as datagram
53 }
54 while let Some(chunk) = fragment.chunk().await? {
55 if datagram_mode { // when in datagram mode, send remaining chunks in datagrams
56 chunk_counter += 1;
57 let mut slice_counter = 0;
58 let tr_id = format!("{:?} ", object.track);
59 let group = format!("{:?} ", object.group);
60 let sequence = format!("{:?} ", chunk_counter);
61 let len = format!("{:?} ", chunk.len());
62 for chunk_slice in chunk.chunks(1024) {
63 let slice_len = format!("{:?} ", chunk_slice.len());
64 slice_counter += 1;
65 // log::error!("{:?}\n", chunk_slice);
66 let slice_number = format!("{:?} ", slice_counter);
67 let mut _obj = [tr_id.as_bytes(), group.as_bytes(), sequence.as_bytes(),

slice_number.as_bytes(), slice_len.as_bytes(), chunk_slice].concat().into();ñ→

68 self.webtransport.send_datagram(_obj).await?; // send as datagram
69 }
70 let end = "end_chunk";
71 let mut _obj = [tr_id.as_bytes(), group.as_bytes(), sequence.as_bytes(),

len.as_bytes(), end.as_bytes()].concat().into();ñ→

72 self.webtransport.send_datagram(_obj).await?; // send as datagram
73 }
74 else { // catalog and init data
75 stream.write_all(&chunk).await?; // send chunks in stream
76 }
77 }
78

79 if datagram_mode { // send end fragment inside a reliable stream when in datagram
modeñ→

80 let tr_id = format!("{:?} ", object.track);
81 let group = format!("{:?} ", object.group);
82 let end = "end";
83 let mut _obj = [tr_id.as_bytes(), group.as_bytes(),

end.as_bytes()].concat().into();ñ→

84 self.webtransport.send_datagram(_obj).await?; // send as datagram
85 }
86 }
87

88 Ok(())
89 }

121

Media Over Quic Transport – Datagram Implementation

Within the subscriber.rs file, which is used for receiving segments from other publishers
(in this case, the moq-js publisher instance), the run_stream() function has been altered
so that, instead of extracting chunks from the QUIC stream in which the group header is
received, the new fragments that make up an incoming MoQT segment are received via
the get_unreliable_fragment() function. This function:

• Initializes the necessary data structures, specifically a HashMap that maps each track
id, and thus each track, to another HashMap where the data of each MoQ group
are stored, associating them with the corresponding group id. The data of a group
id consists of a HashMap that maps the chunk data (array of chunk slices) to its
sequence number and a queue where reassembled chunk data are inserted by another
thread in sequence order.

• Waits for complete chunks in the corresponding group’s queue until it is closed and
emptied, while inserting the various chunks into the fragment in use.

1 async fn get_unreliable_fragment(&self , segment: &mut segment::Publisher, object: &
message::Object)ñ→

2 -> Result<(), SessionError> {
3 // Create the first fragment
4 let mut fragment = segment.push_fragment(object.sequence,

object.size.map(usize::from))?;ñ→

5 log::trace!("next fragment: {:?}", fragment);
6

7 let track_id = object.track.to_string().parse::<i32>().unwrap_or(-1);
8 let group_id = object.group.to_string().parse::<i32>().unwrap_or(-1);
9 let mut rcv: Option<Receiver::<Bytes>> = None;

10

11 if track_id != -1 && group_id != -1 { // received valid header data
12 let mut tracks = self.track_map.lock().await; // get shared tracks map
13

14 if !tracks.contains_key(&track_id) {
15 let value = HashMap::new();
16 tracks.insert(track_id.clone(), value); // add track if not already present
17 }
18 let track = tracks.get_mut(&track_id).unwrap(); // get track
19 if !track.contains_key(&group_id) {
20 let (s, r) = unbounded::<Bytes>();
21 rcv = Some(r.clone());
22 let value = Group {
23 chunks: HashMap::new(),
24 ready_chunks: Channel::<Bytes> { receiver: r, sender: s },
25 };
26 track.insert(group_id.clone(), value); // add group if not already present

122

6.2 – Datagram mode

27 }
28 else {
29 match tracks.get_mut(&track_id) {
30 Some(track) => { match track.get_mut(&group_id) { // track found
31 Some(group) => { // group found
32 rcv = Some(group.ready_chunks.receiver.clone());
33 } None => {log::error!("Requested group not found: {:?}\n", group_id);}
34 }} None => {log::error!("Requested track not found: {:?}\n", track_id);}
35 }
36 }
37

38 drop(tracks); // release mutex
39

40 match rcv {
41 Some(received) => {
42 loop {
43 // set a timeout to wait for segment chunks for a limited time
44 match timeout(Duration::from_millis(2000), received.recv()).await {
45 Ok(result) => { // future resolved before timout
46 match result {
47 Ok(chunk) => { // got a new chunk
48 log::trace!("next chunk: {:?}", chunk);
49 fragment.chunk(chunk)?; // add chunk to fragment
50 },
51 Err(err) => {
52 if received.is_closed() {
53 break;
54 }
55 log::error!("Error retrieving ready chunks, {:?}", err);
56 return Err(SessionError::Unknown(err.to_string()));
57 }
58 }
59 },
60 Err(..) => {
61 log::error!("Timout for group {:?} of track {:?}\n", group_id, track_id);
62 break;
63 }
64 }
65

66 }
67 let mut tracks = self.track_map.lock().await; // get shared tracks map
68 match tracks.get_mut(&track_id) { // get track
69 Some(track) => track.remove(&group_id), // remove group, not used anymore
70 None => {return Ok(())},
71 };

123

Media Over Quic Transport – Datagram Implementation

72

73

74 }
75 None => { return Err(SessionError::Unknown("Error obtaining channel

receiver".to_string())); }ñ→

76 }
77 } else { log::error!("Invalid header data for new object"); }
78

79 return Ok(());
80 }

Also, within the same file, the run_datagrams() function has been created, which runs
within a thread of the tokio library, created and started in the run() function.

This function:

• Receives the QUIC datagrams sent by the client-side transmitter and places them in
an internal data structure based on the track, the group, and other unique identifiers
such as the chunk id.

• When a chunk is complete, and a datagram with the message "end_chunk" is re-
ceived, it retrieves the received slices that make up the corresponding chunk from
the internal data structure and combines them into an output chunk, which is then
placed in a queue of chunks ready to be read for the corresponding group.

• When all the chunks of a group have been transmitted and a datagram with the mes-
sage "end" is received, it closes the group’s chunk queue, and the chunks within it re-
main available to be extracted until the queue is emptied by the get_unreliable_fragment()
function.

1 async fn run_datagrams(self) -> () { // function that receives quic datagrams and
extracts chunk data, placing them inside the allocated data structuresñ→

2 loop {
3 let read_data = self.webtransport.read_datagram().await; // wait for datagram
4 match read_data {
5 Ok(datagram) => { // received datagram
6 // log::error!("{:?} \n", datagram);
7

8 let val = unsafe { std::str::from_utf8_unchecked(datagram.as_ref()) }; // convert
datagram content to string to read header datañ→

9 let str_data = val.split(" ").collect::<Vec<&str>>(); // split datagram content
fieldsñ→

10

11 if str_data.len() > 5 { // audio or video data

124

6.2 – Datagram mode

12 let track_id = str_data[0].parse::<i32>().unwrap_or(-1);
13 let group_id = str_data[1].parse::<i32>().unwrap_or(-1);
14 let sequence_num = str_data[2].parse::<i32>().unwrap_or(-1);
15 let slice_num = str_data[3].parse::<i32>().unwrap_or(-1);
16 let slice_len = str_data[4].parse::<i32>().unwrap_or(-1);
17 // header fields
18

19 if track_id != -1 && group_id != -1 && sequence_num !=-1 && slice_num != -1 &&
slice_len != -1 { // received valid header datañ→

20 let head = format!("{:?} {:?} {:?} {:?} {:?} ", track_id, group_id,
sequence_num, slice_num, slice_len); // header data stringñ→

21

22 let offset = head.len(); // get header end offset
23 let data = datagram.slice(offset..); // slice data from datagram
24

25 let mut tracks = self.track_map.lock().await; // get shared tracks map
26

27 if !tracks.contains_key(&track_id) {
28 let value = HashMap::new(); // initiate track value
29 tracks.insert(track_id.clone(), value); // add track if not already present
30 }
31 let track = tracks.get_mut(&track_id).unwrap(); // get track
32

33 if !track.contains_key(&group_id) {
34 let (s, r) = unbounded::<Bytes>(); // initiate channel
35 let value = Group { // initiate group
36 chunks: HashMap::new(), // chunks map
37 ready_chunks: Channel::<Bytes> { receiver: r, sender: s }, // ready chunks

channelñ→

38 };
39 track.insert(group_id.clone(), value); // add group if not already present
40 }
41 let group = track.get_mut(&group_id).unwrap(); // get group
42

43 if !group.chunks.contains_key(&sequence_num) {
44 let value = Vec::new(); // initiate chunk
45 group.chunks.insert(sequence_num.clone(), value); // add chunk if not already

presentñ→

46 }
47 let datagrams = group.chunks.get_mut(&sequence_num).unwrap(); // get chunk

datagrams vectorñ→

48

49 datagrams.push(Datagram { number: slice_num, data: data.clone() }); // add
datagrams to chunk vectorñ→

50 drop(tracks);

125

Media Over Quic Transport – Datagram Implementation

51 }
52 }
53 else if str_data.len() == 5 { // end chunk message
54 let track_id = str_data[0].parse::<i32>().unwrap_or(-1);
55 let group_id = str_data[1].parse::<i32>().unwrap_or(-1);
56 let sequence_num = str_data[2].parse::<i32>().unwrap_or(-1);
57 let slice_num = str_data[3].parse::<i32>().unwrap_or(-1);
58 let msg = str_data[4].to_string();
59 // header fields
60

61 if track_id != -1 && group_id != -1 && sequence_num !=-1 && slice_num != -1 &&
msg == "end_chunk" { // received valid header datañ→

62 let mut tracks = self.track_map.lock().await; // get shared tracks map
63

64 match tracks.get_mut(&track_id) { // get track if present
65 Some(track) => { // track found
66 match track.get_mut(&group_id) { // get group if present
67 Some(group) => { // group found
68 match &mut group.chunks.get_mut(&sequence_num) { // get chunk if present
69 Some(chunk) => { // chunk datagrams found
70 let mut out_chunk: Vec<u8> = Vec::new(); // initiate output chunk
71 chunk.sort_by(|a, b| a.number.cmp(&b.number)); // sort slices by

datagram numberñ→

72 for slice in chunk.iter() { // iterate for each slice
73 out_chunk.extend(slice.data.to_vec()); // append slice data to output

chunkñ→

74 }
75 let ready_chunk: Bytes = Bytes::from(out_chunk); // convert output

vector to byte arrayñ→

76 let sent = group.ready_chunks.sender.try_send(ready_chunk);
77 match sent { // add chunk to queue of ready chunks
78 Ok(..) => { },
79 Err(error) => {log::error!("Error sending slice to group channel:

{:?}\n", error);}ñ→

80 }
81 } None => {log::error!("Requested chunk not found: {:?}\n",

sequence_num);}}ñ→

82 } None => {log::error!("Requested group not found: {:?}\n", group_id);}
83 }} None => {log::error!("Requested track not found: {:?}\n", track_id);}
84 }
85

86 drop(tracks); // release mutex
87

88 }
89 }

126

6.2 – Datagram mode

90 else if str_data.len() == 3 {
91 let track_id = str_data[0].parse::<i32>().unwrap_or(-1);
92 let group_id = str_data[1].parse::<i32>().unwrap_or(-1);
93 let msg = str_data[2].to_string();
94 if track_id != -1 && group_id != -1 && msg == "end" {
95 let mut tracks = self.track_map.lock().await; // get shared tracks map
96

97 match tracks.get_mut(&track_id) {
98 Some(track) => { match track.get_mut(&group_id) { // track found
99 Some(group) => { // group found

100 group.ready_chunks.sender.close(); // close channel on sender side
101 } None => {log::error!("Requested group not found: {:?}\n", group_id);}
102 }} None => {log::error!("Requested track not found: {:?}\n", track_id);}
103 }
104

105 drop(tracks); // release mutex
106

107 }
108 }
109 }
110 Err(..) => {log::error!("Error reading new datagrams"); break;}
111 }
112 }
113 }

127

128

Chapter 7

Environment setup and tools

This chapter describes the testing environment, tools, and setup used to evaluate the
performance of the MoQT (Media over QUIC Transport) implementation. The section
outlines both local and remote deployment procedures, elaborates on the logging infras-
tructure, and details the tools for data capture and analysis.

Overview
The system under test is composed of two primary components:

• moq-js: JavaScript-based publisher and subscriber client running in the Chrome
browser.

• moq-rs: Rust-based relay server implementing the MoQ relay logic.

The test environment supports local and remote deployments, with packet tracing, custom
logging, and data analysis tools developed to evaluate latency, jitter, and CPU usage
during content publication and consumption.

7.1 Software Sources
• moq-js: Available on GitHub at https://github.com/kixelated/moq-js. To in-

stall, clone the repository, run npm install, and launch with npm run start or
npm run dev for logging.

• moq-rs: Available at https://github.com/kixelated/moq-rs. Install Rust from
https://rustup.rs, clone the repository, and run the relay with Cargo or the pro-
vided script ./dev/pub.

• mkcert fork for TLS: Self-signed TLS certificates were generated using a modified
version of mkcert, available at https://github.com/kixelated/mkcert.git.

129

https://github.com/kixelated/moq-js
https://github.com/kixelated/moq-rs
https://rustup.rs
https://github.com/kixelated/mkcert.git

Environment setup and tools

7.2 moq-js
Overview and Installation

moq-js is a JavaScript-based implementation of a Media over QUIC (MoQ) publisher/-
subscriber client developed by Kixelated.
The version used for these experiments corresponds to the latest GitHub repository com-
mit of a fork of the original repository, available at:

https://github.com/s277945/moq-js.git

To install moq-js, the following steps are required:

1. Ensure Node.js (version v20.11.1 or higher) and npm are installed.

2. Clone the repository and install dependencies:

git clone https://github.com/s277945/moq-js.git
cd moq-js
npm install

Execution and Usage

The Node server can be started in one of two modes:

• npm run start – launches the server in standard mode.

• npm run dev – activates developer mode with additional telemetry logging capabil-
ities.

Once launched, the client can be accessed via a Chromium-based browser (preferably
Chrome) at:

https://localhost:4321

A new publisher session can be initialized from:

https://localhost:4321/publish

The source stream can be configured as a webcam/microphone feed or screen capture.

130

https://github.com/s277945/moq-js.git
https://localhost:4321
https://localhost:4321/publish

7.3 – moq-rs

Figure 7.1. https://localhost:4321/publish

7.3 moq-rs
Overview and Installation

moq-rs is a Rust-based relay server implementation of the MoQ protocol, also developed
by Kixelated.

Original repository

The version used for all tests on QUIC stream based relay transmission corresponds to
commit hash 159a175 of the following repository:

https://github.com/kixelated/moq-rs

Installation instructions:

1. Install Rust toolchain (rustc and cargo) via rustup.

2. Clone the repository:

git clone https://github.com/kixelated/moq-rs
cd moq-rs

3. Build and run the relay server with:

131

https://github.com/kixelated/moq-rs

Environment setup and tools

cargo run −−bin moq−r e l ay −−t l s −c e r t dev/ l o c a l h o s t . c r t
−−t l s −key dev/ l o c a l h o s t . key −−dev

Forked modified version

The version used for all test on QUIC datagram based relay transmission corresponds to
the latest commit of the following repository:

https://github.com/s277945/moq-rs.git

Installation instructions:

1. Install Rust toolchain (rustc and cargo) via rustup.

2. Clone the repository:

git clone https://github.com/s277945/moq-rs.git
cd moq-rs

3. Build and run the relay server with:

cargo run −−bin moq−r e l ay −−t l s −c e r t dev/ l o c a l h o s t . c r t
−−t l s −key dev/ l o c a l h o s t . key −−dev

Alternatively, for both versions a convenience script ./dev/relay is provided.

7.4 Logging
To enable robust telemetry, diagnostics, and performance evaluation for streaming ses-
sions, we implemented a custom logging subsystem that communicates with an external
Node.js log server. This architecture supports real-time, fine-grained, and extensible log-
ging of media protocol events, transport-level details, and application-specific metrics.

7.4.1 Logger Module in moq-js (lib/common/logger.ts)
Client-side logging is centralized in the module lib/common/logger.ts. This file defines
a suite of asynchronous functions, each designed to interface with the external logging
server through HTTP(S) requests. Below, we provide a detailed code analysis of its core
components.

132

https://github.com/s277945/moq-rs.git

7.4 – Logging

Logger Configuration and State

At the top of logger.ts, several configuration constants and variables define the logger’s
behavior:

1 const LOGGER_URL = "https://localhost:8443";
2 let loggerStatus: boolean | undefined;
3 let logFile: string | undefined;

This module statically configures the base URL for the log server, ensuring all HTTP
requests are routed consistently. The use of persistent module-level variables for logger
status and the active log file allows the logging system to efficiently cache state between
calls, avoiding redundant server probes and reducing overhead in high-frequency logging
scenarios. By gating all operations on these variables, the design ensures both robustness
(failing gracefully if the logger is unavailable) and performance (minimizing unnecessary
network chatter).

Retrieving Log Server Status: getLoggerStatus()

1 export async function getLoggerStatus(): Promise<boolean> {
2 try {
3 const res = await fetch(`${LOGGER_URL}/latency-data`);
4 loggerStatus = res.ok;
5 return loggerStatus;
6 } catch {
7 loggerStatus = false;
8 return false;
9 }

10 }

This function serves as a health-check for the logging subsystem. By probing a lightweight
endpoint (/latency-data), the system can quickly detect and cache the availability of
the logging backend. This mechanism is critical in production environments: it avoids
repeated failures and wasted resources by short-circuiting further logging attempts if the
server is down, thus protecting the main streaming pipeline from unnecessary slowdowns
or timeouts.

Log File Initialization: initLoggerFile()

1 export async function initLoggerFile(): Promise<string | undefined> {
2 if (loggerStatus === false) return undefined;
3 const now = new Date();

133

Environment setup and tools

4 const name = `${now.toISOString().replace(/:/g, '-')}.log`;
5

6 const res = await fetch(`${LOGGER_URL}/log-init?file=${name}`);
7 if (res.ok) {
8 logFile = name;
9 return name;

10 }
11 return undefined;
12 }

This function orchestrates the creation of a new log file on the server, ensuring that each
session’s logs are isolated and uniquely identified. The filename includes a timestamp to
prevent collisions in concurrent, multi-user deployments. Centralizing file creation here
ensures that all subsequent log operations can rely on a valid and accessible file handle,
while also simplifying cleanup and analysis on the backend.

Track Type Logging: logTrackTypes()

1 export async function logTrackTypes(types: { id: number, type: string }[]) {
2 if (!logFile) return;
3 await fetch(`${LOGGER_URL}/log-track-types?file=${logFile}`, {
4 method: "POST",
5 headers: { "Content-Type": "application/json" },
6 body: JSON.stringify(types)
7 });
8 }

In complex streaming applications, a single session may multiplex multiple logical tracks
(such as audio, video, or subtitles). This function allows the client to send a schema or
manifest of active tracks at startup, significantly improving the post-hoc interpretability
of log files and enabling correlation between protocol events and their corresponding media
streams. It provides a foundation for advanced analytics, including per-track QoS and
stream switching behavior.

Event Data Logging: postLogDataAndForget()

1 export async function postLogDataAndForget(data: LogData) {
2 if (!logFile) return;
3 fetch(`${LOGGER_URL}/log-data?file=${logFile}`, {
4 method: "POST",
5 headers: { "Content-Type": "application/json" },
6 body: JSON.stringify(data)

134

7.4 – Logging

7 }).catch(() => {});
8 }

This is the core method for telemetry. It is intentionally implemented in a fire-and-forget
manner: logs are transmitted asynchronously, and failures are silently ignored. This
design is essential for live media applications, where non-blocking operations and real-
time guarantees must take precedence over perfect telemetry. Even if some logs are lost
due to network issues, the media session remains unaffected, thus preserving end-user
experience.

Module Interactions and Usage Points

Logging is invoked throughout the codebase. For instance, in lib/transport/object.ts,
calls such as the following are used:

1 // When sending an object
2 postLogDataAndForget({
3 trackId,
4 objectId,
5 groupId,
6 status: "sent",
7 timestamp: Date.now()
8 });

Here, logging captures the essential protocol metadata for every transmitted or received
segment/object, including IDs and timestamps. Such fine-grained, event-level records are
invaluable for offline debugging, performance analysis, and reconstructing session histories.

7.4.2 Server-side Logging (Node.js)
The Node.js backend, located in logger/server.ts, exposes a REST API to receive,
persist, and organize logs from multiple concurrent clients.

Server Entrypoint: logger/server.ts

1 import express from "express";
2 import { logData, logTrackTypes, logInit, logEnd, logSkippedSegment } from

"./api/logger";ñ→

3 const app = express();
4 app.use(express.json());
5

6 app.get("/latency-data", (req, res) => res.sendStatus(200));
7 app.post("/log-init", logInit);

135

Environment setup and tools

8 app.post("/log-end", logEnd);
9 app.post("/log-data", logData);

10 app.post("/log-track-types", logTrackTypes);
11 app.post("/skipped-segment", logSkippedSegment);
12

13 app.listen(8443, () => console.log("Logger running on 8443"));

The server leverages Express.js to provide a RESTful interface, mapping each endpoint
to a specific logging action. Each log type (e.g., session start, object event, track meta-
data, skipped segments) is handled by a specialized route and handler. This modularity
promotes extensibility, allowing future protocol features or new telemetry types to be
integrated with minimal disruption.

API Submodules

File and Log Management: logger/api/file_status.ts Manages the list of open
log files, safely appending lines, and handling file creation as needed.

1 const files = new Map<string, fs.WriteStream>();
2

3 export function openLogFile(name: string) {
4 if (!files.has(name)) {
5 files.set(name, fs.createWriteStream(path.join(LOG_DIR, name), { flags: 'a' }));
6 }
7 return files.get(name)!;
8 }

This code efficiently manages log file handles using a Map, ensuring that each log file is
opened only once per process and all writes are correctly appended. Such a strategy is
essential in environments with many concurrent sessions, preventing file corruption and
supporting high-throughput log ingestion.

Latency Tracking: logger/api/latency.ts Tracks and aggregates latency data from
received logs, implementing functions to compute average, minimum, and maximum la-
tency, among others, which can be exposed in logs or summary endpoints. This module is
designed to collect and process latency metrics reported from clients. By holding transient
in-memory statistics, the system enables both live and batched reporting, facilitating the
analysis of end-to-end performance bottlenecks, jitter, and real-time responsiveness.

Logging Logic: logger/api/logger.ts Centralizes the parsing, validation, and for-
matting of incoming log events, calling file management functions to write logs atomically.

1 export function logData(req, res) {
2 const file = openLogFile(req.query.file);

136

7.4 – Logging

3 file.write(JSON.stringify(req.body) + "\n");
4 res.sendStatus(200);
5 }

This approach implements a robust, append-only log format by writing each JSON event
to its own line in the log file. Such a strategy is highly compatible with standard analytics
tools, allows for easy parsing, and is scalable across large data volumes. The atomic write
model ensures data consistency even under heavy concurrent logging loads.

7.4.3 Per-Module Commentary and File Structure Cross-References

• Client-side logging:

– lib/common/logger.ts: Central interface for all logging logic in the browser.
It is invoked by playback, transport, and protocol modules to record media and
protocol events.

– lib/transport/object.ts: Primary consumer of the logger, capturing each
sent or received object for protocol traceability.

• Server-side logging:

– logger/server.ts: Express application that defines the REST API surface for
all telemetry ingestion.

– logger/api/logger.ts: Main handler for request parsing, validation, and file
writes; encapsulates logic for each log type.

– logger/api/file_status.ts: Manages log file handles and ensures safe, con-
current access for log appends.

– logger/api/latency.ts: Aggregates and summarizes latency-related metrics
for quality analysis.

7.4.4 Log Data Format

The log data format is designed for extensibility and ease of analysis. Each log record
contains a set of standardized fields, as shown in Table 7.1, enabling structured, machine-
parsable logging. File headers and status lines are also inserted at key lifecycle events,
supporting robust log parsing and post-hoc analytics.

137

Environment setup and tools

Track ID Object ID Group ID Status Timestamp File header
- - - PUBLISHER START - Publisher log start
- - 1715085484507 CPU 0.68 CPU load log
3 - AUDIO - - Track log (audio)
4 - VIDEO - - Track log (video)
- - - SUBSCRIBER START - Subscriber log start
0 0 0 sent 01715085489677 Sent object log

Table 7.1. Log file format

7.5 Data plot and analysis utilities - Python scripts
In order to analyze the data, various Python scripts have been created to provide graphical
representations of different parameters from the collected data. The scripts use data
retrieved from moq-js log files, log files produced by tshark, and Wireshark output in
JSON format.

7.5.1 plotMoqjsTimestamp.py
The plotMoqjsTimestamp.py script constitutes a comprehensive and extensible utility
for the post-processing and visualization of networked media transmission data, built
specifically for logs generated by moq-js. It offers comprehensive support for plotting
fine-grained, timeline-aligned views of latency, jitter, retransmissions, and anomaly classi-
fication (“lost”, “too old”, “too slow”) at the packet and track level, with optional overlays
for retransmission events and CPU usage, thus delivering both granular and system-level
insights. This section describes not only its features, but also the rationale, inner workflow,
and key code patterns that enable its powerful analytics.

Input Parameters, File Formats, and Output Files

Input Files

• Main log file (-f, –file):
The main input is a text log file produced by the moq-js logger, containing a sequence
of events (one per line) related to each media packet or fragment. Each row consists
of semicolon-separated fields, for example:
0;1;23; sent ;1690034320000;5
0;1;23; received ;1690034320050;7
0;1;24; too slow ;1690034320123

(track_id; fragment_id; packet_id; event_type; timestamp; [jitter])
Where:

– track_id: Track identifier (e.g., for audio or video)
– fragment_id, packet_id: Packet or fragment indices

138

7.5 – Data plot and analysis utilities - Python scripts

– event_type: Type of event (sent, received, too slow, too old, AUDIO, VIDEO,
CPU)

– timestamp: Event timestamp in milliseconds
– jitter: (Optional) Jitter value in ms, if present

• Wireshark parsed retransmission file (-wpf, –wshparsedfile) (optional):
Optionally, a text file derived from Wireshark analysis that reports, for each packet,
the number of observed transport retransmissions.

Parameter Abbreviation Description
–file -f Main moq-js log file to analyze.
–wshparsedfile -wpf Wireshark retransmission file (optional).
–skipstart -sks Number of initial packets to skip.
–skipend -ske Number of trailing packets to skip.
–maxheight -mh Maximum Y-axis limit for latency/jitter (see be-

low).
–cpulog -cpu Overlay CPU usage subplot (true/false).
–sharex -shx Share X-axis among subplots (true/false).
–logslow -lsl Log “too slow” events (true/false).
–pheader -phd Header packet filtering mode (true/false/only).
–showlost -shl Plot cumulative anomaly counts (true/false).
–savefile -sf Save plots to disk instead of displaying

(true/false).
–min_tick_spacing -mts Minimum X-label spacing in pixels (default 80).
–lost_height -lsth Anomaly bar rendering mode (see Table ??).
–grid -g Show horizontal grid lines.
–nojitter -lsth Disable jitter plots.

Table 7.2. Primary input parameters for plotMoqjsTimestamp.py.

Main Input Options

Output Files Depending on options, the script generates one or more of the following
outputs:

• Interactive Plot Display: (Default) Plots are shown on-screen via matplotlib.
Plots support dynamic window resizing with automatic X-label adaptation.

• Plot files saved to disk: If –savefile true is specified, plots are saved in both
.png and .svg formats in the current directory. Filenames are derived from the

139

Environment setup and tools

input log by replacing .txt with _cumuloss.png and _cumuloss.svg. For example,
for log.txt:

– log_cumuloss.png
– log_cumuloss.svg

• Console output log: If both –savefile true and –file are specified, console out-
put (summary messages) is also saved to a text file named log_cumuloss.out.txt.

• Console messages: Progress and summary information (“Tracks found: ...”, “Total
packets: ...”, etc.) are printed to stdout and optionally logged as above.

File Format and Dependencies

• Input format: All log files must be plain text, with semicolon-separated fields as
illustrated above.

• Dependencies: The script requires Python 3.7+ and the modules matplotlib and
numpy.

pip install matplotlib numpy

Key features

Automatic Track Recognition

Upon execution, the script parses the input file and automatically detects all present
media tracks (e.g., Audio, Video), assigning them meaningful names. Each stream is then
analyzed and visualized independently, supporting simultaneous comparison of multiple
flows within the same session.

Detailed Workflow and Metric Extraction

Each entry in the moq-js log is parsed according to its event type (sent, received, too old,
too slow, etc.). The script:

• Distinguishes between sent and received packets, extracting relevant timestamps for
each;

• Computes one-way latency as the difference between send and receive times;

• Extracts and processes jitter values if available;

• Classifies and marks each packet for anomalies (lost, too slow, too old), organizing
all data per track for efficient downstream analysis.

140

7.5 – Data plot and analysis utilities - Python scripts

Advanced Visualization and Filtering

The script provides fine-grained, user-configurable control over content and layout:

• Skipping initial or terminal packets (–skipstart, –skipend), which is especially
useful for focusing analysis on steady-state transmission and excluding startup or
teardown effects;

• Selective inclusion or exclusion of packets based on header type (–pheader);

• Visualization of lost, too old, and too slow packets using a variety of simulated
latency models (–lost_height), ranging from minimal marking to statistically-
informed or contextually interpolated values, supporting both analytical (“worst-
case”) and realistic (“neighbor-based”) assessments.

Auxiliary Metrics and System-Level Correlation

When auxiliary data is provided, plotMoqjsTimestamp.py overlays synchronized sub-
plots for retransmissions and CPU utilization, enabling a holistic view of system and
network interactions. This supports root-cause analysis by correlating packet anomalies
with underlying system or transport conditions.

Extra Features and Analytical Capabilities

The script blends direct, statistical, and customizable visual analytics:

1. Per-track, Time-aligned Visualizations Each detected track (audio, video, etc.)
is visualized independently but aligned to a common time base, facilitating comparative
study (e.g., audio smoothness vs. video spikes).

2. Y-Axis Scaling: maxheight parameter (per-track) A key feature of the script
is its ability to dynamically or manually adjust the y-axis (vertical) range of both latency
and jitter plots for each individual track via the –maxheight (-mh) parameter. This en-
hancement ensures more accurate and readable visualizations—especially in multi-track
scenarios such as simultaneous audio and video streams, where each stream may have
distinct latency and jitter characteristics.

The maxheight parameter can be set either to a numeric value or to the special key-
word auto:

• If maxheight=auto: The upper limit (ylim) of each track’s latency plot is set to
three times the mean observed latency for that specific track (across all
received packets in the track). This provides a visually adaptive scale tailored to
the behavior of each stream, improving clarity in mixed or asymmetric scenarios.

141

Environment setup and tools

The y-limit for each jitter plot is set to one tenth of its corresponding latency
y-limit, with an absolute cap (e.g., 20 ms) to avoid excessive scaling.

• If maxheight=N (with N > 0): The latency y-axis for every track is capped to
N , and the corresponding jitter y-axis to N/10. This manual mode is useful for
direct comparison across runs or when a consistent range is required for publication
or regression analysis.

• If maxheight is omitted or invalid: The plot will auto-scale according to mat-
plotlib’s default behavior, which may result in the axes adapting freely to outlier
values.

Internally, after all bars are plotted, the script computes the mean latency for each track
and sets the y-axis upper limit for both latency and jitter subplots associated to that
track. This is done via direct mapping between axes and tracks (not by scanning labels),
guaranteeing correct and robust scaling even with multiple tracks or subplot permutations.

This approach brings several benefits:

• Visual comparability: Tracks with different latency regimes remain visually in-
terpretable and comparable, while keeping consistent scaling across the same type
of streams.

• Readability: Typical patterns for each track emerge clearly, without being masked
by the worst-case outliers of another stream.

• Adaptability: The auto mode adapts to the actual data of each track—making it
ideal for exploratory analysis—while the manual mode is perfect for formal reporting
or cross-experiment comparisons.

Example: Y-Axis Scaling command lines

Automatic y-axis scaling for each track
python3 plotMoqjsTimestamp.py -f mylog.txt --maxheight auto

Manual y-axis scaling: every latency plot up to 300ms, jitter up to 30ms
python3 plotMoqjsTimestamp.py -f mylog.txt --maxheight 300

Technical Note. This feature affects only the latency and jitter plots for each individual track.
Other subplots (e.g., cumulative lost packets, retransmissions, CPU usage) remain unaffected
and retain their default matplotlib auto-scaling.

3. Dynamic, Adaptive X-axis Labeling The script employs a window-aware adap-
tive X-label strategy. This ensures that—no matter how many packets or how much the
window is resized—tick density and alignment remain readable and informative. The fol-
lowing code governs this adaptive labeling:

Code sample: Adaptive X-label placement

142

7.5 – Data plot and analysis utilities - Python scripts

1 def set_all_xticks(axs, x_positions, x_labels, min_tick_spacing_px=80):
2 fig = axs[0].figure
3 width_px = fig.get_figwidth() * fig.dpi
4 show_every = max(1, int(np.ceil(len(x_labels) / max(2, width_px //

min_tick_spacing_px))))ñ→

5 indices = [i for i in range(len(x_labels)) if i % show_every == 0]
6 labels = [x_labels[i] for i in indices]
7 for ax in axs:
8 ax.set_xticks(indices)
9 ax.set_xticklabels(labels, rotation=45, ha='right')

10 ax.xaxis.set_tick_params(labelbottom=True)

4. Customizable Anomaly Rendering: Simulated Latency Bars A hallmark fea-
ture is the ability to render anomalies (lost, too old, too slow) with user-selectable seman-
tics, making the visualization either analytical (e.g., “worst-case” with infinite bars) or re-
alistic (neighbor/interpolated). This is achieved through the simulated_latency_for_track
function:

Code sample: Simulated Latency Computation

1 def simulated_latency_for_track(track, idx, all_indices, lost_height_mode):
2 latencies = [e.latency for e in track.values() if e.isReceived() and e.latency >

0]ñ→

3 jitters = [e.sender_jitter for e in track.values() if e.isReceived() and
e.sender_jitter is not None]ñ→

4 if lost_height_mode == 'max_plus_50':
5 return max(latencies) + 50 if latencies else 1000
6 elif lost_height_mode == 'mean_jitter_plus_2std':
7 mean_jitter = np.mean(jitters) if jitters else 0
8 std_latency = np.std(latencies) if latencies else 0
9 return mean_jitter + 2*std_latency

10 # ...other modes (avg_neighbor, last10_mean, etc.) as in the main script...
11 return 1000

Simulated Latency Computation Strategy Table:

143

Environment setup and tools

Strategy (–lost_height) Interpretation
1 Always height 1; useful for count-only anomaly mark-

ing.
infinite Fills Y axis; emphasizes outlier status visually and an-

alytically.
max_plus_50 Maximum observed latency + 50 ms; pessimistic upper

bound.
mean_jitter_plus_2std Mean jitter plus 2 std. devs of valid latencies; a robust

outlier threshold.
avg_neighbor Mean of previous and next received latencies; contex-

tually realistic.
last10_mean Mean of last 10 received latencies; robust to short

bursts/transients.
last5_mean Mean of last 5; ultra-local smoothing.
mean_x3 Mean of values x 3 with colored x on top.

Table 7.3. Lost/anomaly rendering strategies and interpretations.

labeltab:lostheight-modes

5. Cumulative Anomaly Curves With –showlost true, the script computes and
plots a cumulative, time-aligned step curve for all anomaly types. This immediately
reveals when and how anomalies cluster—crucial for diagnosing bursts, synchronization
lapses, or outage events.

Code sample: Cumulative Anomaly Computation

1 def build_cumulatives(tracks, startTS, data):
2 entries = []
3 for track in tracks.values():
4 for elem in track.values():
5 if elem.sender_ts is not None:
6 lost = not elem.isReceived() and not elem.isTooOld() and not

elem.isTooSlow()ñ→

7 tooold = elem.isTooOld()
8 tooslow = elem.isTooSlow()
9 entries.append((elem.sender_ts, lost, tooold, tooslow))

10 entries.sort()
11 # Walk timeline, accumulate counts
12 ...
13 return x, lost_y, tooold_y, tooslow_y

144

7.5 – Data plot and analysis utilities - Python scripts

Design Rationale and Data Architecture

At the heart of the tool is the rowData class, which provides a unified object model for
each media fragment (packet). A rowData instance encapsulates essential metrics and
metadata:

• Timestamps for sender/receiver events.

• Jitter values (sender and receiver, if present).

• Flags for anomalies (tooOld, tooSlow).

• Track/stream identifiers and plotting color.

• Retransmission counter (optional, via Wireshark).

• Calculated latency, inferred on construction if both timestamps are present.

Code sample: rowData class

1 class rowData:
2 def __init__(self, name, latency=None, color=None, sender_ts=None,

receiver_ts=None,ñ→

3 sender_jitter=None, receiver_jitter=None, value=None, tooOld=False,
tooSlow=False):ñ→

4 self.name = name
5 self.color = color
6 self.sender_ts = sender_ts
7 self.receiver_ts = receiver_ts
8 self.sender_jitter = sender_jitter
9 self.receiver_jitter = receiver_jitter

10 self.value = value
11 self.tooOld = tooOld
12 self.tooSlow = tooSlow
13 self.retransmissions = 0
14 if (sender_ts is not None and receiver_ts is not None and receiver_ts >

sender_ts):ñ→

15 self.latency = receiver_ts - sender_ts

145

Environment setup and tools

16 elif (latency is not None):
17 self.latency = latency
18 else:
19 self.latency = 0
20 def isReceived(self):
21 return self.receiver_ts is not None
22 def isTooOld(self):
23 return self.tooOld
24 def isTooSlow(self):
25 return self.tooSlow
26 # ...other accessors/mutators...

Each log row is mapped to a rowData instance, enabling efficient mapping from packet
sequence to timeline and rapid filtering or aggregation by track and anomaly status.
The script’s input workflow can be summarized as:

1. Parse each line from the main moq-js log into a rowData object, keyed by track and
fragment id.

2. Parse auxiliary files (Wireshark retransmissions, CPU usage logs) if supplied.

3. Compute all derived metrics (latency, jitter, anomaly state) and store in per-track
dictionaries for later plotting.

Workflow Summary

1. Input parsing: Load main log (moq-js) and any auxiliary data; instantiate rowData
objects.

2. Preprocessing: Compute derived metrics (latency, jitter, status), group by track,
build X-timeline.

3. Anomaly simulation: Compute simulated “latency” for lost/too old/too slow
packets, according to user-specified –lost_height.

4. Plotting: Assemble subplot grid, assign colors/status, adaptive X-ticks, overlay
auxiliary metrics.

5. Display/export: Show interactively, or save PNG/SVG (–savefile true).

146

7.5 – Data plot and analysis utilities - Python scripts

moq-js log.txt

Parse rows → rowData

Group by track

Compute latency, jitter, mark anomalies

Simulate lost/old/slow latency

Parse CPU/WSH (optional)
Plot all metrics

Show/Export

Figure 7.2. Workflow of plotMoqjsTimestamp.py: from log ingestion to visualization/export.

Visualization

Visualization in plotMoqjsTimestamp.py is designed to maximize clarity, analytical value,
and direct interpretability for packet-level diagnostics in networked media systems.

The script dynamically generates a set of timeline-aligned bar and step plots, with a focus
on modularity and per-track insight. Depending on the enabled features and number of
detected tracks, several subplots are arranged and labeled to support both comparative
and in-depth single-stream analysis.

Core Visual Elements

• Latency and Jitter Bar Plots: For each track (audio, video, etc.), packet latencies
and, when available, jitters are rendered as bar plots over time. Each bar’s height

147

Environment setup and tools

represents the one-way latency or jitter value for the packet or fragment, and its
color encodes the anomaly status—with standard mapping (e.g., red for lost, orange
for too old, blue for too slow).

• Cumulative Anomaly Step Curve: When –showlost true is set, the primary
subplot is replaced (or supplemented) by a cumulative, time-aligned step plot. This
visually aggregates the number of lost, too old, and too slow packets as transmission
progresses, revealing the temporal clustering and dynamics of anomalies.

• Auxiliary Subplots: If auxiliary data is supplied, additional subplots are included
for retransmissions (from Wireshark-processed files) and CPU usage (if CPU logs
are present and enabled). These share the X-axis with the media timeline, enabling
direct correlation between packet events and system/network status.

• Adaptive X-axis: All subplots share a synchronized, dynamically-labeled X-axis.
The label density is adapted to both the number of packets and the figure size, main-
taining legibility even for long or high-rate traces. Upon resizing the plot window,
X-ticks and labels are recalculated for optimal layout.

Anomaly Rendering Modes A unique aspect of the visualization is the user’s abil-
ity to specify how lost, too old, or too slow packets are drawn in latency plots. The
–lost_height argument determines whether anomalies are rendered with minimal mark-
ing, pessimistic “infinite” bars, or with statistically simulated latency based on the local
timeline context (neighbor/interpolation/mean-based). This enables both worst-case and
realistic visual analytics, matching a broad spectrum of diagnostic and research objectives.

Legend and Labeling Legends are automatically generated for all anomaly types,
track labels, and auxiliary metrics. Subplot titles are context-aware (e.g., “Audio latency”,
“CPU usage (%)”), and all axes are annotated for immediate understanding by the viewer.
This makes the figures suitable not only for internal analysis but also for inclusion in
presentations and publications.

148

7.5 – Data plot and analysis utilities - Python scripts

Fi
gu

re
7.

3.
T

im
el

in
e

of
pa

ck
et

la
te

nc
ie

s
(b

ar
s)

,w
ith

lo
st

/t
oo

ol
d/

to
o

slo
w

pa
ck

et
s

co
lo

r-
co

de
d

an
d

op
tio

na
lly

sim
ul

at
ed

in
he

ig
ht

.

149

Environment setup and tools

Fi
gu

re
7.

4.
C

um
ul

at
iv

e
st

ep
pl

ot
sh

ow
in

g
an

om
al

y
co

un
ts

ov
er

tim
e.

W
he

n
–s

ho
wl

os
t

tr
ue

is
se

t,
th

e
ge

ne
ra

l
la

te
nc

y
pl

ot
is

re
pl

ac
ed

w
ith

a
tim

e-
al

ig
ne

d
cu

m
ul

at
iv

e
lo

st
pa

ck
et

s
st

ep
pl

ot
(s

ho
w

n
in

re
d)

.
Sp

ik
es

or
pl

at
ea

us
in

di
ca

te
bu

rs
ts

or
pe

rs
ist

en
t

iss
ue

s.

150

7.5 – Data plot and analysis utilities - Python scripts

Use Case

This script is especially useful during debugging and performance profiling phases of me-
dia streaming applications using moq-js.

By providing insight into packet timing behavior and network-induced variability, it helps
identify latency spikes, out-of-order delivery, packet loss patterns, or processing bottle-
necks. The optional cumulative loss plot highlights precisely when and how many losses
occur, facilitating root cause analysis and transport layer tuning.

Its flexibility and granularity make it well-suited to a wide range of engineering and
research tasks.

Sample Code Snippets and Command Invocations

Parsing and grouping packets by track:

1 for row in f:
2 if is_packet_row(row):
3 event = rowData(...) # build from fields
4 track_id = row[0]
5 elem_id = row[1] + '-' + row[2]
6 if track_id not in tracks:
7 tracks[track_id] = {}
8 tracks[track_id][elem_id] = event

Rendering anomalies with simulated heights:

1 if not elem.isReceived():
2 height = simulated_latency_for_track(tracks[key], idx, all_indices,

lost_height_mode)ñ→

3 axs[plotIdx].bar(idx, height, color=bar_color)
4 else:
5 axs[plotIdx].bar(idx, elem.latency, color=bar_color)

Example command lines:

python3 plotMoqjsTimestamp .py -f log.txt --showlost true --lost_height avg_neighbor

python3 plotMoqjsTimestamp .py -f log.txt --cpu true --skipstart 20 --skipend 1000 --
lost_height max_plus_50

python3 plotMoqjsTimestamp .py -f experiment .log --wpf wsparse .txt --savefile true

151

Environment setup and tools

7.5.2 batch_plot_loss_parallel.py
The batch_plot_loss_parallel.py script is a utility designed to automate the mass
generation of packet loss and anomaly plots from a directory of experimental log files.

It provides a parallelized, high-throughput interface for post-processing large batches of
moq-js logs using the advanced visualization capabilities of plotMoqjsTimestamp.py.

This is especially useful for analyzing the results of large-scale experiments, parameter
sweeps, or continuous integration pipelines where many logs must be visualized and sum-
marized efficiently.

Purpose and Motivation Manual processing and visualization of each log file is im-
practical in large experiments, especially when hundreds or thousands of runs are per-
formed (e.g., for protocol benchmarking, A/B testing, or automated regression analysis).
batch_plot_loss_parallel.py streamlines this workflow by:

• Discovering all relevant log files in a specified directory.

• Running the plotting script (plotMoqjsTimestamp.py) on each log in parallel, using
a configurable thread pool for high efficiency.

• Organizing all resulting plots into a dedicated output directory for easy review and
further analysis.

Workflow and Implementation

1. Discovery: The script scans a predefined logs directory (logs_test) for all .txt
files, which are assumed to be moq-js log outputs from previous experiments.

2. Parallel Execution: Using Python’s ThreadPoolExecutor, it launches up to 16
parallel plotting tasks (the thread count can be adjusted via the THREADS variable).
Each worker executes the plotting script with a standard set of arguments optimized
for loss visualization.

3. Plot Generation: For each log file, the script runs plotMoqjsTimestamp.py in
batch mode, generating a cumulative anomaly plot (with –showlost true) and
using the “last5_mean” strategy for lost packet bar heights. Plots are automatically
saved as PNG images.

4. Collection and Organization: Each generated plot is moved to the output direc-
tory (output_plots), ensuring that results are cleanly organized and do not clutter
the working directory.

5. Completion Notification: Upon finishing all plotting tasks, the script prints a
summary and points the user to the output directory containing all generated visu-
alizations.

152

7.5 – Data plot and analysis utilities - Python scripts

Example Usage

Place all .txt log files to be processed in the 'logs_test' directory.
Run the script from the command line:
python batch_plot_loss_parallel.py

The resulting PNG plots will be available in the 'output_plots' directory.

Customization

• Parallelism: The degree of parallelism (number of threads) can be adjusted via the
THREADS variable at the top of the script, based on available CPU resources.

• Plotting Options: The arguments passed to plotMoqjsTimestamp.py (such as
skip parameters, max height, loss simulation mode) can be modified in the script to
suit different analysis goals.

• Input/Output Directories: The paths for input logs and output plots can be
configured via the LOGDIR and OUTDIR variables.

7.5.3 plotMoqjsDistribution.py
This script processes and visualizes latency, jitter, and CPU usage distributions derived
from a ‘moq-js‘ logger output file.

It enables selective plotting of audio and video fragment characteristics, including differen-
tiation for delayed or outdated packets, and optionally overlays CPU usage statistics, and
also provides flexible control over input parsing and visualization customization through
several command-line arguments.

The script generates histogram plots (with optional KDE overlays) for:

• Overall latency and jitter distributions

• Per-track latency and jitter distributions (audio/video)

• CPU usage over time (if enabled)

Input:

• A ‘moq-js‘ log file where each line records media events (sent/received) with times-
tamps and optional jitter/CPU data.

• Optional arguments to control skipping ranges, track selection, and plotting behav-
ior.

153

Environment setup and tools

Key Features:

• Extracts and computes latency as the delta between send and receive timestamps.

• Supports filtering of packet logs via ‘–skipstart‘ and ‘–skipend‘.

• Allows plotting of jitter values derived from sender logs.

• Marks packets flagged as “too slow” or “too old” in the dataset.

• Optional parsing and plotting of CPU usage values in the log.

• Automatic bin selection using the Freedman–Diaconis rule for better histogram res-
olution.

• Supports KDE overlays for visualizing the probability distribution.

Usage

python3 plotMoqjsDistribution.py [-f FILE] [-sks SKIPSTART] [-ske SKIPEND]
[-mh MAXHEIGHT] [-cpu CPULOG] [-psl PLOTSLOW]
[-pld PLOTOLD] [-phd PHEADER] [-tp TYPE]

Command-line Options:

• -f or --file: Path to the ‘moq-js‘ log file. Defaults to ‘log.txt‘.

• -sks or --skipstart: Number of initial packets to skip.

• -ske or --skipend: Last packet index to include in analysis.

• -mh or --maxheight: Max height of the plotted histogram; ‘"auto"‘ enables autoscal-
ing.

• -cpu or --cpulog: Enables CPU usage parsing (value ‘"true"‘).

• -psl or --plotslow: Highlights "too slow" packets (value ‘"true"‘).

• -pld or --plotold: Highlights "too old" packets (value ‘"true"‘).

• -phd or --pheader: Use of headers in log parsing; values: ‘"true"‘, ‘"false"‘, or ‘"only"‘.

• -tp or --type: Type of distribution to plot; options: ‘"latency"‘, ‘"jitter"‘, or ‘"all"‘.

Output:

• One or more matplotlib/seaborn histogram plots showing the distributions.

• If CPU usage is enabled, an additional distribution plot is included.

• Log to stdout detailing tracks processed and any missing or excluded data.

154

7.5 – Data plot and analysis utilities - Python scripts

Fi
gu

re
7.

5.
Ex

am
pl

e
of

a
pl

ot
pr

od
uc

ed
by

pl
ot

M
oq

js
D

ist
rib

ut
io

n

155

Environment setup and tools

7.5.4 plotMoqjsConversion.py
This script allows to convert the log files produced by the moq-js log server, adding
timestamp values to entries of type "too old" or "too slow", and enabling the separation
of tracks into different output files.
The script has the following list of parameters:

Figure 7.6. plotMoqjsConverter command prompt example

• -f or –file allows you to specify the name of the log file you want to read (if no
name is specified, any file named log.txt in the script’s folder will be read).

• -sks or –skipstart allows you to specify the starting packet number to display in
the plots (in relation to the audio track if both audio and video tracks are present).

• -ske or –skipend allows you to specify the ending packet number to display in the
plots (in relation to the audio track if both audio and video tracks are present).

• -cpu or –cpulog can be set to true or false to display CPU usage data from the log
file on the screen.

• -st or –separatetracks can be set to true or false to write log data for different
tracks to separate files.

• -phd or –pheader can be set to true or false to decide whether to show log data
related to the MoQ group headers, or to "only" to display only the data related to
them.

• -lsl or –logslow can be set to true or false to decide whether to include log data
related to the "too slow" entries in the output files.

7.5.5 plotTsharkJitter.py
Script that allows plotting data produced by the command sudo tshark -T fields -e
frame.number -e frame.time_delta -i enp0s31f6 "(dst host 101.58.196.59) and (src port
4443 or dst port 4443) and udp and len>=300" > test.txt or other similar commands that
output a new line for each intercepted packet, containing the packet number and its time
delta.

The script has the following list of parameters:

156

7.5 – Data plot and analysis utilities - Python scripts

Figure 7.7. plotMoqjsConverter output file example

• -f or —file allows you to specify the name of the log file you want to read (if no
name is specified, any file named log.txt in the script’s folder will be read).

• -sks or —skipstart allows you to specify the starting packet number to display in
the plots (in relation to the audio track if both audio and video tracks are present).

• -mh or —maxheight allows you to specify the maximum height to display for
latency ("auto" automatically adjusts the latency plot height based on the average
value, while the jitter value is always automatically scaled based on the detected
input value, with different multipliers depending on the latency values).

7.5.6 Wireshark/tshark
To capture and analyze network packets, the newtork analysis tool Wireshark was used.

Tshark is the command-line version of Wireshark, and it offers similar functionality,
proving to be particularly useful in a server operated environment (in this case, the server
corresponds to the MoQ relay).

Packet capture setup

To analyze inbound or outbound packets from the relay running remotely, different com-
mands are executed using tshark.

For some simpler analyses, the command
"sudo tshark -i enp0s31f6 "(dst host 101.58.192.159 or src host 101.58.192.59)""

157

Environment setup and tools

Figure 7.8. Example of a plot produced by plotTsharkJitter

allows to print to the console output some details related exclusively to packets transmit-
ted to and from the local machine running moq-js.

The command "sudo tshark -T fields -e frame.number -e frame.time_delta -i enp0s31f6
"(dst host 101.58.196.59) and (src port 4443 or dst port 4443) and udp and len>=300"
> jitter_log.txt" exports to a log file a list of lines that include a sequential (increasing)
packet number and a time delta in seconds between packets, enabling immediate verifica-
tion of the jitter detected on the relay by plotting the collected data using Python scripts.
In this case, the data can simply be exported to the local machine for further use.

For capturing outbound QUIC packets from the relay, the command
"tshark -w /capture.pcapng -i enp0s31f6 "
is used, which captures outgoing packets on the main network interface and exports them
to a pcapng file. This file can then be copied to the local machine and imported directly
into Wireshark for necessary analyses via the graphical interface. However, a specific local
configuration is required for the decryption of QUIC data.

158

7.6 – Bitmeter OS: Network Throughput and Bandwidth Monitoring

7.5.7 TLS decryption setup
To decrypt QUIC packets, two configurations are needed: one for the local machine and
one for the relay server.

To import the TLS secrets to be used within Wireshark on the local machine, it is neces-
sary to create the environment variable "SSLKEYLOGFILE" for the operating system in
use, setting its value to the path of the file to be used. This file will then be imported by
Wireshark from the Tools -> TLS Keylog Exporter window. Any cryptographic secrets
are then automatically written to the file specified by the instance of Chrome running
moq-js.

To allow tshark to decrypt packets on the remote machine, some modifications were
necessary in the moq-relay crate of moq-rs and in the relay execution script:

• The file ./moq-relay/src/tls.rs was modified by adding the lines
"client.key_log = Arc::new(rustls::KeyLogFile::new());" and
"server.key_log = rc::new(rustls::KeyLogFile::new());" to instruct moq-relay to log
the cryptographic secrets to the file specified by the "SSLKEYLOGFILE" environ-
ment variable.

• The script ./dev/relay was modified by adding the line ’export SSLKEYLOGFILE="/home/bottisio/sslkeyfile"’
to set the required environment variable.

• Before running tshark, it is necessary to ensure that the "SSLKEYLOGFILE" en-
vironment variable is set in the running bash instance with the command ’export
SSLKEYLOGFILE="/home/bottisio/sslkeyfile"’.

7.6 Bitmeter OS: Network Throughput and Band-
width Monitoring

Overview
Bitmeter OS is a lightweight, open-source network bandwidth monitoring tool
designed to record, display, and analyze network traffic in real time and over extended
periods.

Originally developed for home and small-office users, it offers a platform-agnostic solu-
tion for measuring upload and download throughput on any machine where it is installed.

In the context of MoQ (Media over QUIC) experiments, Bitmeter OS plays a significant
role in providing independent, user-space metrics for aggregate network utilization
during media streaming sessions. Its graphical dashboard and log export capabili-
ties make it well-suited for capturing evidence of link saturation, diagnosing bottlenecks,
and validating the impact of protocol- or implementation-level changes.

159

Environment setup and tools

Installation and Deployment
For the purpose of this evaluation, Bitmeter OS was deployed on local test workstations.
Once installed, Bitmeter OS is launched as a background service. The built-in web inter-
face is then accessible at http://localhost:2605, providing real-time graphical repre-
sentations of both instantaneous and historical bandwidth consumption. Here, users can
view live and historical bandwidth usage, configure monitoring options, and export usage
logs in CSV or plain-text formats.

Bitmeter OS for Linux
The tool can be installed on Linux by downloading the appropriate package from the
project’s official repository (https://codebox.net/pages/bitmeteros) and following
standard installation procedures. On Ubuntu-based systems, for example, the installation
is typically accomplished with:

sudo dpkg -i bitmeteros.deb
sudo apt-get install -f

Bitmeter OS for Windows
Bitmeter OS is available for Windows platforms and provides an intuitive, graphical in-
terface for monitoring network throughput in real time. The Windows version is fully
self-contained, requiring no external dependencies, and is compatible with all major ver-
sions of Windows, including Windows 10 and Windows 11.

Official Download:

Bitmeter OS for Windows can be downloaded from the project’s official website at:

https://codebox.net/pages/bitmeteros

Installation and Execution

Installation is straightforward and involves the following steps:

1. Download the latest Bitmeter OS Windows installer (typically an .msi or .exe file)
from the official download page.

2. Run the installer and follow the on-screen prompts to complete the installation
process.

3. Once installation is complete, Bitmeter OS will launch automatically or can be
started from the Start Menu.

160

http://localhost:2605
https://codebox.net/pages/bitmeteros
https://codebox.net/pages/bitmeteros

7.6 – Bitmeter OS: Network Throughput and Bandwidth Monitoring

By default, Bitmeter OS runs as a background application and is accessible through the
system tray icon. Users can open the Bitmeter OS dashboard by right-clicking the tray
icon and selecting “Show Bitmeter OS,” which opens the web-based UI in the default
browser at http://localhost:2605.

Integration with Experimental Workflow
Bitmeter OS was employed to continuously monitor the network interfaces involved in all
client activity (via moq-js) and media traffic. Its ability to produce high-resolution band-
width graphs, as well as export raw data logs, enabled correlation between observed media
performance (e.g., latency spikes or frame drops) and underlying network load conditions.
This monitoring was especially important in distinguishing between protocol-induced in-
efficiencies and external factors such as physical link saturation or host OS scheduling.

During each test run, Bitmeter OS was started prior to session initialization and left
running throughout the publication and subscription process. Bandwidth trends were vi-
sually inspected during live tests to detect anomalies in real time, while exported logs were
later analyzed alongside MoQ protocol logs and Wireshark packet captures. The tool’s
historical graph view allowed the researchers to identify periods of steady state versus
sudden changes in throughput, which could be cross-referenced with protocol-level events
(such as client joins, reconnects, or congestion feedback).

Metrics and Data Export
Bitmeter OS provides detailed metrics including:

• Real-time bandwidth: Current upload and download rates, updated at one-second
intervals.

• Cumulative data transfer: Aggregated byte counts for defined time windows
(hourly, daily, or weekly).

• Peak and average throughput: Maximum and mean rates recorded during each
interval.

• Exportable logs: CSV and plain-text exports of raw per-second bandwidth data,
suitable for further offline analysis or visualization in external tools (e.g., Python,
Excel, or Matlab).

These measurements complement the protocol-specific logs captured by moq-js and moq-rs,
furnishing a ground-truth record of the physical layer bandwidth available and consumed
during every experimental session.

161

http://localhost:2605

Environment setup and tools

Figure 7.9. Bitmeter OS web dashboard displaying real-time upload and download
throughput during a MoQ streaming test.

162

Chapter 8

Evaluation

8.1 Methodology

In our testing scenario, the client application (moq-js) is executed on a local devel-
opment machine, while the relay server (moq-rs) runs remotely on a dedicated
server located at Politecnico di Torino, accessible via the domain polito.caimano.it.

The moq-relay instance is run with the script ./dev/relay on the remote server
and listens for connection requests from compatible QUIC clients, followed by any
publishing or subscription requests for content.

The local machine’s operating system is Windows 11, and it executes the moq-js local
server instance and logger server instance, while the publisher/subscriber pages are
accessed using Chrome web browser.

The moq-js server runs on the local machine with the command "npm run dev", which
simultaneously executes a local instance of the logging server, with the internal envi-
ronment variable "PUBLIC_RELAY_HOST " set to the value "relay_ip_address:4443 ",
which instructs the client instances to rely on the specified server address for the relay
instance to use.

163

Evaluation

Local Machine
Remote Server

polito.caimano.it

moq-js Client

Network
Interface

Chrome Browser
(Publishing/
Consuming)

Log Server
(Telemetry/Logging)

Wireshark/tshark
(Network
Analysis)

moq-rs Relay

Network
Interface

Wondershaper/tc
(Traffic Control)

Wireshark/tshark
(Network
Analysis)

1 Gbps Fiber

UDP/IP UDP/IP

QUIC/WebTransport
QUIC/WebTransport

Secrets

Secrets

Media Streams

Log Data

Network
Data

NetworkData

System
kernel

MoQ Testing Architecture
1 Gbps fiber connection

10-20 ms RTT

8.1.1 Network setup

The local development machine is connected through a 1Gbps symmetric fiber-optic
internet connection, offering low latency and high bandwidth suitable for real-time
media transmission.

This separation simulates a realistic client-relay deployment over a wide-area net-
work (WAN), enabling meaningful observations of end-to-end latency, jitter, and packet
loss in a transmitter (client) - relay (server) - receiver (client) setup.

To simulate network bottlenecks, the adopted solution is to use a traffic control utility on
the relay server, since:

• it is not possible to use the Chrome network bandwidth throttling client side since
it does not affect moq-js traffic

• the client machines uses Windows 11 as operating system, which makes traffic control
at the operating system level more complicated than linux counterparts

• on the server side, which is a Linux virtual machine, it is possible to use tc, which
is a versatile user-space administration utility program that allows to configure the
Linux packet scheduler behaviour on demand

• another possible alternative is to use Wondershaper on the server machine, which
is a scripting utility that allows to limit the bandwidth on one or more network
adapters by using iproute’s tc command, but greatly simplifies its operation.

164

8.1 – Methodology

8.1.2 Timestamp monitoring
All client instances are executed in the same machine and environment, thus allowing to
have a common local time reference when writing timestamp data.

Timestamps are computed with the logging apis added to moq-js in the logger.ts file,
by invoking the function postLogDataAndForget(data LogData), which receives a
LogData type object, containing the object number, group id, track id, a timestamp, a
object status string and an optional jitter parameter to enable jitter computation by the
logging api.

There are two different logging scenarios for timestamps that are handled in moq-js,
always within the object.ts file:

• Stream transmission: inside both the send() and recv() functions timestamps
are logged right after the stream header is written to the output stream, and thus
passed to the QUIC libraries for dispatch. The function call looks like:

postLogDataAndForget({
object: header.object,
group: header.group,
track: BigInt(header.track).toString(),
status: "sent/received",
sender_ts: header.timestamp,
jitter: 0,

})

with the "status" field set to "sent" for the send() function and "received" for the
recv() function.

• Datagram transmission: inside both the send() and recv() functions timestamps
are logged when the stream header is sent as in the case of stream transmission, but
there is an additional logging point in both cases.

This logging point is placed inside the egress/ingress TansformStream that send-
s/receives the individual stream chunks via datagram, right before calling the send-
Datagram() function that transfers the intended datagram data to the QUIC library
for dispatch. The function call looks like:

postLogDataAndForget({
object: object_chunk_count,
group: header.group,

165

Evaluation

track: BigInt(header.track).toString(),
receiver_ts: Date.now(),
status: "sent/received",
jitter: 0,

})}

with the "status" field set to "sent" for the send() function and "received" for the
recv() function.

8.1.3 Jitter computation
When dealing with transmission of media content, another relevant performance param-
eter is jitter. In our case, there are two jitter measurements that are evaluated:

• Source jitter: by using the timestamp data received from the postLogDataAndFor-
get() function, source jitter is automatically computed using the formula

|last_sender_timestamp−previous_timestamp−last_computed_timestamp_delta|

when the "jitter" parameter inside the LogData argument is set to any valid number
value

• Relay jitter: using tshark, with the command

"sudo tshark -T fields -e frame.number -e frame.time_delta -i enp0s31f6 "(dst host
101.58.196.59) and (src port 4443 or dst port 4443) and udp and len>=300" > out-
put.txt"

or similar substitutes it is possible to output on a selected file the time delta of
the egress QUIC data packets employed by moq-js.

In this case the delta is computed for audio transmission, by filtering the minimum
length and transmitting only an audio track to the relay, although it is possible to
customize the tshark command for evaluating different scenarios as well.

8.1.4 Measurements workflow
For the measurements, the following steps are taken for each consecutive series of tests:

1. On the local machine, the moq-js server is started with the command "npm run dev"
while on the remote server the script ./dev/relay is executed

2. On a relay server prompt, the command "sudo tshark -T fields -e frame.number -e
frame.time_delta -i enp0s31f6 "(dst host 101.58.196.59) and (src port 4443 or dst
port 4443) and udp and len>=300" > jitter_log.txt" is executed

166

8.1 – Methodology

3. A new publisher instance is initiated on the page https://localhost:4321/publish
and a new broadcast is initiated using microphone input and audio only

4. A new client instance is initiated, by browsing the link created by the publisher
page to watch the published broadcast

5. The broadcast starts when the first subscription request is received by the pub-
lisher, and all relevant tshark log data is written to the corresponding console
log file

6. The broadcast is stopped by closing the publisher page; the client page is closed

7. The log file is transfered to the local machine using the command scp -i ./.ssh/id_ecdsa
bottisio@caimano.polito.it: /jitter_log.txt [filepath]\jitter_log.txt. This file can be
later plotted with the script plotTsharkJitter.py

8. The tshark command execution on the relay server is stopped

9. A new publisher instance is initiated on the page https://localhost:4321/publish
and a new broadcast is initiated using webcam/microphone input

10. A new client instance is initiated, by browsing the link created by the publisher
page to watch the published broadcast

11. tc or Wondershaper network restrictions can be applied on the relay server
egress interface to simulate the desired network conditions from the beginning
of the test

12. The broadcast starts when the first subscription request is received by the pub-
lisher, and all relevant log data is written by the local logging server to a corre-
sponding log file

13. tc or Wondershaper network restrictions can be applied or altered on the
relay server egress interface to simulate the desired network conditions during
the test

14. The broadcast is stopped by closing the publisher page

15. tc or Wondershaper network restrictions are removed

16. The output log data produced by the logging server can be used to extrapolate rel-
evant performance statistics and create desired plots using the array of Python
scripts previously described

17. Steps 9 to 16 are repeated as many times as desired.

167

Evaluation

8.2 Baseline Tests: Stream Transmission
Before exploring the effects of adverse network conditions and alternative transport modes,
it is essential to establish a comprehensive baseline for media delivery using QUIC stream
transmission. These baseline tests serve as a foundational reference point, illustrating the
performance characteristics of stream mode under stable and controlled network environ-
ments, both for audio-only and audio-video workloads.

The stream mode in QUIC, characterized by reliable, in-order delivery and automatic
retransmission of lost data, represents the conventional approach for delivering real-time
media over modern transport protocols. By measuring key metrics such as end-to-end
latency, packet loss rates, jitter, and bandwidth utilization in scenarios with minimal or
no network impairments, we can quantify the inherent strengths and operational efficiency
of stream-based delivery.

These initial tests are conducted under favorable conditions—typically with no artificial
bandwidth caps, negligible background loss, and minimal delay variation—to reveal the
best-case performance envelope of QUIC streams. For each scenario, we report detailed
time-series measurements and statistical distributions, as well as empirical observations
regarding playback quality, responsiveness, and any transient effects during media startup
or steady-state operation.

Importantly, the baseline results documented here provide the necessary context for in-
terpreting the behavior of the same media workloads when subjected to bandwidth con-
straints, increased loss, and, later, when transmitted using QUIC datagram mode. By
establishing how reliably and efficiently stream mode delivers media in optimal circum-
stances, we can meaningfully assess the extent to which its performance is challenged—or
remains resilient—under stress. This comparison also helps to clarify which aspects of
user experience are directly attributable to transport-layer guarantees, and which may be
influenced by higher-level application or codec choices.

The following sections present detailed results for all baseline tests performed with stream
transmission, including bandwidth usage graphs, latency visualizations, and packet loss
statistics. These findings serve as both a methodological anchor and a benchmark for all
subsequent comparative analyses in this work.

168

8.2 – Baseline Tests: Stream Transmission

8.2.1 Audio & Video, Rendering Enabled (Run 1)

Table 8.1. Experimental setup: Audio & Video, Rendering Enabled (Run 1), Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

169

Evaluation

Empirical Observations:

End-to-end latency remained low and stable, typically within 20–30 ms, with
negligible jitter. There were no observed packet losses or out-of-order deliv-
eries. Audio-video synchronization was perfect, and playback was smooth for
the entire duration of the test. CPU and memory usage on both sender and
receiver were modest, and rendering had no visible effect on media pipeline
performance. This scenario establishes the upper bound for protocol efficiency
and confirms that under ideal conditions, stream mode ensures flawless delivery
and presentation.

8.2.2 Audio & Video, Rendering Enabled (Run 2)

Table 8.2. Experimental setup: Audio & Video, Rendering Enabled (Run 2), Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

170

8.2 – Baseline Tests: Stream Transmission

Empirical Observations:

The results were fully consistent with the previous run. Repeated trials con-
firmed the absence of loss or delay spikes, and the stability of media delivery.
Minor run-to-run variation was within measurement noise (<1 ms jitter devia-
tion). This reaffirms the protocol’s stability and provides a strong ground truth
for comparison.

171

Evaluation

8.2.3 Audio & Video, Rendering Disabled

Table 8.3. Experimental setup: Audio & Video, Rendering Disabled, Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Disabled

172

8.2 – Baseline Tests: Stream Transmission

Empirical Observations:

With rendering disabled, resource usage on the receiver dropped further. No
changes were observed in packet statistics, latency, or loss, indicating that
rendering is not a bottleneck under optimal transport conditions. This isolates
network protocol performance from application processing load.

8.2.4 Audio Only

Table 8.4. Experimental setup: Audio Only, Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps
Rendering: -

173

Evaluation

Empirical Observations:

Audio-only transmission produced the lowest observed end-to-end latency (as
low as 8 ms median), with zero loss or stalling. This confirms that stream mode
is highly efficient for audio, making it suitable for real-time communications
where low latency and high reliability are paramount.

174

8.2 – Baseline Tests: Stream Transmission

8.2.5 Video Only

Table 8.5. Experimental setup: Video Only, Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: VP8 video 2000 kbps
Rendering: Enabled

175

Evaluation

Empirical Observations:

Even at sustained high video rates, delivery was perfect with zero observable
artifacts or skipped frames. The results validate the network and transport
layer’s ability to accommodate high-bitrate media without degradation, as long
as the underlying network is unconstrained.

176

8.3 – Bandwidth Limiting: Stream Transmission

8.3 Bandwidth Limiting: Stream Transmission
Section Introduction
This section investigates the impact of various static and dynamic bandwidth restrictions
on media delivery using stream mode. The objective is to characterize resilience and
adaptability, as well as playback quality under network stress. Each test applies bandwidth
constraints at the relay and examines both publisher and receiver behavior.

8.3.1 Relay Latency Validation with tshark

To ensure the validity of subsequent bandwidth experiments, an initial validation is per-
formed to check if the relay network and measurement instrumentation (e.g., tshark)
are capturing and transmitting network traffic correctly. This baseline provides reference
latency and throughput values.

Relay: Remote
Bandwidth limitation: None
Measurement: tshark, application logs
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

Table 8.6. Experimental setup: Relay Latency Validation, Remote Relay, Stream

177

Evaluation

8.3.2 Audio+Video, Bandwidth Usage

This test explores bandwidth usage of the baseline scenario with audio and video trans-
mission both enabled.

Table 8.7. Experimental setup: Audio+Video, Bandwidth Limiting, Remote Relay, Stream

Relay: Remote
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

8.3.3 Video Only, Bandwidth Usage

This scenario focuses on the video stream in isolation to examine its bandwidth usage.

Table 8.8. Experimental setup: Video Only, Local Relay, Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: VP8 video 2000 kbps
Rendering: Enabled

178

8.3 – Bandwidth Limiting: Stream Transmission

8.3.4 Audio Only, Bandwidth Usage
Audio performance is isolated here, providing a “minimal load” case.

Table 8.9. Experimental setup: Audio Only, Local Relay, Stream

Relay: Local
Bandwidth limitation: None
Measurement: Application logs, receiver-side statistics
Transmission mode: Stream
Media: Opus audio 128 kbps
Rendering: -

179

Evaluation

8.3.5 Audio and Video, No Bandwidth Limitation (Reference)
This is the control test with no limitation, used as reference for all other conditions.

Table 8.10. Experimental setup: Audio+Video, No Limitation, Local Relay, Stream

Relay: Local
Bandwidth limitation: None
Measurement: End-to-end application logs
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

180

8.3 – Bandwidth Limiting: Stream Transmission

Empirical Observations:

Playback was flawless, both audio and video were fully synchronized, and no
stalls or artifacts were observed. This test provides the “zero loss, zero jitter”
reference for bandwidth-limited comparisons.

8.3.6 Audio+Video, Bandwidth Limited to 4 Mbps

Simulates a moderate “bottleneck” network.

Table 8.11. Experimental setup: Audio+Video, 4 Mbps Limit, Local Relay, Stream

Relay: Local
Bandwidth limitation: 4 Mbps up/down
Measurement: Application logs, bandwidth/time series
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

181

Evaluation

Empirical Observations:

Both streams fit within the 4 Mbps limit. Only a short-lived adaptation phase
was observed as the limit was enforced. No packet loss or quality degradation

182

8.3 – Bandwidth Limiting: Stream Transmission

appeared, indicating ample headroom for media flow at this cap.

8.3.7 Audio and Video, Bandwidth Limited to 3 Mbps

Pushes the system closer to congestion, especially for video.

Table 8.12. Experimental setup: Audio+Video, 3 Mbps Limit, Local Relay, Stream

Relay: Local
Bandwidth limitation: 3 Mbps up/down
Measurement: Application logs, bandwidth/time series
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

183

Evaluation

Empirical Observations:

184

8.3 – Bandwidth Limiting: Stream Transmission

Minor frame skipping was noted in the video stream during periods of band-
width convergence, but audio quality and continuity remained unaffected. Over-
all, the playback remained synchronized and smooth, confirming stream mode’s
resilience near capacity limits.

8.3.8 Audio and Video, Dynamic Bandwidth Reduction (No
Limit → 3 Mbps)

Tests sudden changes in available bandwidth and recovery behavior.

Table 8.13. Experimental setup: Audio+Video, Dynamic Bandwidth Change,
Local Relay, Stream

Relay: Local
Bandwidth limitation: Dynamic; unlimited 20s, then 3 Mbps for 20s
Measurement: Application logs
Transmission mode: Stream
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

185

Evaluation

Empirical Observations:

Sudden bandwidth reduction produced a brief rise in latency and jitter, some-
times leading to a single frame drop or audio “hiccup.” However, both streams

186

8.4 – Baseline Tests: Datagram Transmission

quickly stabilized, with playback recovering in under 2 seconds. The protocol’s
ability to recover gracefully from sharp drops in capacity is evident.

8.4 Baseline Tests: Datagram Transmission

This section provides a baseline characterization of Datagram mode under optimal local
conditions, i.e., unconstrained LAN environments with no artificial network impairment.
The aim is to reveal the intrinsic characteristics, overheads, and behavior of datagram-
based media delivery in the absence of loss, reordering, or bandwidth constraints. Results
are compared to analogous Stream mode tests to isolate protocol-specific effects.

8.4.1 Audio & Video, Rendering Enabled (Run 1)

This test observes typical media delivery when both audio and video are sent over data-
gram, with playback and rendering enabled.

Table 8.14. Experimental setup: Audio & Video, Rendering Enabled (Run 1), Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

187

Evaluation

Empirical Observations:

Media delivery was smooth, with only a minor increase in mean end-to-end la-
tency (2–4 ms higher than stream mode) and modestly higher jitter. Occasional

188

8.4 – Baseline Tests: Datagram Transmission

out-of-order arrivals were detected by logs but fully masked by application
reassembly logic—resulting in seamless playback, no stalls, and undetectable
artifacts to the end user.

8.4.2 Audio & Video, Rendering Enabled (Run 2)

A repeat of the previous test for statistical confirmation.

Table 8.15. Experimental setup: Audio & Video, Rendering Enabled (Run 2), Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Enabled

189

Evaluation

Empirical Observations:

Results mirrored the first run, confirming the reliability of datagram deliv-
ery in local, lossless conditions. Observed metrics (latency, jitter, out-of-order

190

8.4 – Baseline Tests: Datagram Transmission

rate) were statistically indistinguishable from the previous run, establishing a
repeatable reference point.

8.4.3 Audio & Video, Rendering Disabled

This test isolates the protocol by removing playback/rendering load from the endpoint.

Table 8.16. Experimental setup: Audio & Video, Rendering Disabled, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Rendering: Disabled

191

Evaluation

Empirical Observations:

Protocol-level metrics and user-visible performance remained unchanged rel-
ative to the rendering-enabled runs. Application-layer reassembly and jitter

192

8.4 – Baseline Tests: Datagram Transmission

buffering continued to conceal all packet reordering or microbursts. CPU us-
age dropped slightly, but had no impact on delivery statistics.

8.4.4 Audio Only
This scenario investigates audio-only datagram performance in the absence of bandwidth
or rendering constraints.

Table 8.17. Experimental setup: Audio Only, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps
Rendering: -

Empirical Observations:

193

Evaluation

Audio-only delivery via datagram mode was extremely robust: all packets ar-
rived in time for playback, with negligible jitter and only a single reordering
event (again, invisible to the user). The low bit rate and small packet size
contributed to near-ideal behavior.

8.4.5 Video Only

Examines high-rate video performance over datagram in optimal conditions.

Table 8.18. Experimental setup: Video Only, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: VP8 video 2000 kbps
Rendering: Enabled

194

8.5 – Bandwidth Limiting: Datagram Transmission

Empirical Observations:

Even at high packet rates, datagram mode managed to deliver all video frames
in order with only rare use of jitter buffer reassembly. A minor median latency
increase (∼2 ms) was measured compared to stream mode, but this had no
visible impact. No dropped or frozen frames were observed under these ideal
conditions.

8.5 Bandwidth Limiting: Datagram Transmission
This section systematically investigates the performance of Datagram mode under various
static and dynamic bandwidth constraints. Scenarios are designed to probe the protocol’s
limits—assessing both the immediate impact of bandwidth shaping on traffic and the
protocol’s resilience in terms of loss, latency, and playback continuity. Comparative notes
to Stream mode are included throughout, highlighting key protocol-level tradeoffs under
stress.

8.5.1 Relay Latency Validation with tshark

Table 8.19. Experimental setup: Bandwidth shaping validation, Datagram

Relay: Remote
Bandwidth limitation: None
Measurement: tshark, application logs
Transmission mode: Datagram
Media: n/a (validation only)

195

Evaluation

8.5.2 Audio & Video, Bandwidth Usage under Limiting

Table 8.20. Experimental setup: Audio & Video, Bandwidth Usage, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Bandwidth usage at publisher/client
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps

8.5.3 Video Only, Bandwidth Usage

Table 8.21. Experimental setup: Video Only, Bandwidth Usage, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Bandwidth usage at publisher/client
Transmission mode: Datagram
Media: VP8 video 2000 kbps

196

8.5 – Bandwidth Limiting: Datagram Transmission

8.5.4 Audio Only, Bandwidth Usage

Table 8.22. Experimental setup: Audio Only, Bandwidth Usage, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Bandwidth usage at publisher/client
Transmission mode: Datagram
Media: Opus audio 128 kbps

197

Evaluation

8.5.5 Audio & Video, No Bandwidth Limitation (Reference)

Table 8.23. Experimental setup: Audio & Video, No Bandwidth Limit, Datagram

Relay: Local
Bandwidth limitation: None
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps

198

8.5 – Bandwidth Limiting: Datagram Transmission

Empirical Observations:

As a reference, unconstrained datagram transmission returned to the baseline:
low, stable jitter and negligible packet loss, confirming that all degradations

199

Evaluation

under bandwidth restriction were due to protocol and application behavior
under stress, not inherent instability.

8.5.6 Audio & Video, Bandwidth Limited to 4 Mbps

Table 8.24. Experimental setup: Audio & Video, 4 Mbps Limit, Datagram

Relay: Local
Bandwidth limitation: 4 Mbps up/down
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps

200

8.5 – Bandwidth Limiting: Datagram Transmission

Empirical Observations:

With a 4 Mbps cap, media quality remained generally high, but bandwidth
spikes occasionally triggered microbursts of loss and higher jitter. Users might

201

Evaluation

notice brief reductions in video quality, but audio streams continued unaf-
fected—a clear contrast to heavier restrictions.

8.5.7 Audio & Video, Dynamic Bandwidth Limiting (No Limit
→ 4 Mbps)

Table 8.25. Experimental setup: Audio & Video, Dynamic Limit, Datagram

Relay: Local
Bandwidth limitation: None → 4 Mbps (dynamic)
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Other: Video/audio artifacts noted

202

8.5 – Bandwidth Limiting: Datagram Transmission

Empirical Observations:

Imposing a sudden 4 Mbps cap resulted in visible video freezing and transient
artifacts, as well as short-lived audio dropouts. Recovery was quick after lifting
the cap, but the sensitivity of datagram mode to abrupt bandwidth changes was
clear—mirroring the less smooth congestion control and reassembly behavior.

203

Evaluation

8.5.8 Audio & Video, Dynamic Bandwidth Limiting with Loss
of Recovery

Table 8.26. Experimental setup: Audio & Video, Persistent Dynamic Limit, Datagram

Relay: Local
Bandwidth limitation: None → 4 Mbps (not reverted)
Measurement: Application logs
Transmission mode: Datagram
Media: Opus audio 128 kbps, VP8 video 2000 kbps
Other: Video/audio artifacts, playback interruption

Empirical Observations:

When the imposed bandwidth reduction persisted, datagram mode proved un-
able to recover fully: video playback was interrupted almost immediately and
did not resume; audio quality degraded, with silence periods emerging. This
highlights a structural vulnerability of datagram transmission to sustained ca-
pacity loss.

204

8.6 – Comparison of QUIC datagram and stream transmission

8.6 Comparison of QUIC datagram and stream trans-
mission

While QUIC streams provide reliable, in-order delivery analogous to TCP, QUIC data-
grams enable unreliable, message-oriented delivery similar to UDP, but multiplexed within
the same secure connection.

This section provides a technical comparison of these two paradigms under a variety
of realistic media workloads and controlled network impairments (e.g., bandwidth throt-
tling, loss, and delay).

By analyzing quantitative metrics (bandwidth usage, latency, packet loss) and correlating
them with empirical user experience, we aim to highlight the practical trade-offs between
reliability, latency, and efficiency in real-world streaming scenarios.

Each scenario is presented with a concise summary table of its parameters, followed by
visualizations and interpretation of results.

Whenever relevant, practical notes on playback quality, stalling, and recovery are high-
lighted to link measured performance with actual end-user experience.

205

Evaluation

8.6.1 Scenario: Audio 128 kbps, Bandwidth limited 400 kbps to
300 kbps

Media Opus audio (128 kbps)
Video —
Total duration 60 s
Bandwidth pattern 10 s unlimited → 15 s @400 kbps → 10 s unlimited → 15 s @300 kbps
Other impairments None

Figure 8.1. Stream mode bandwidth usage (60s).

Figure 8.2. Datagram mode bandwidth usage (60s).

206

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.3. Stream mode latency visualization (latency over time).

207

Evaluation

Figure 8.4. Datagram mode latency visualization (latency over time).

208

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.5. Stream mode latency distribution.

209

Evaluation

Figure 8.6. Datagram mode latency distribution.

210

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.7. Stream mode cumulative packet loss.

211

Evaluation

Figure 8.8. Datagram mode cumulative packet loss.

212

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.27. Bandwidth Usage Summary for a128 400k→300k scenario
(stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 400k→300k

Stream Download 2.36 40.91 86.46
Stream Upload 3.98 69.04 149.35

Datagram Download 2.89 50.17 173.07
Datagram Upload 4.22 73.26 166.11

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 400k→300k Stream 0 0.00 42 1.31 16 0.50 58 1.81 3200
Datagram 204 6.04 292 8.64 111 3.28 607 17.96 3380

Table 8.28. Packet loss statistics for audio 128 kbps, 400 kbps to 300 kbps
bandwidth limitation.

Empirical observations:

During periods of stricter bandwidth limitation (especially 300 kbps), datagram mode
playback is more affected by skips and latency spikes, whereas stream mode maintains
a more stable audio experience, with only minor delays. As bandwidth drops from 400

kbps to 300 kbps, stream mode delivers nearly all packets with only minor lateness, result-
ing in stable playback. Datagram mode, in contrast, experiences significant packet loss
and late arrivals, leading to more frequent audio skips and a marked decrease in quality
during constrained periods. This illustrates the superior robustness of stream delivery in

constrained bandwidth scenarios.

213

Evaluation

8.6.2 Scenario: Audio 128 kbps, Bandwidth limited 500 kbps to
250 kbps

Media Opus audio (128 kbps)
Video —
Total duration 60 s
Bandwidth pattern 10 s unlimited → 15 s @500 kbps → 10 s unlimited → 15 s @250 kbps
Other impairments None

Figure 8.9. Stream mode bandwidth usage (60s).

Figure 8.10. Datagram mode bandwidth usage (60s).

214

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.11. Stream mode latency visualization (latency over time).

215

Evaluation

Figure 8.12. Datagram mode latency visualization (latency over time).

216

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.13. Stream mode cumulative packet loss.

217

Evaluation

Figure 8.14. Datagram mode cumulative packet loss.

218

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.29. Bandwidth Usage Summary for a128 500k→250k scenario
(stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 500k→250k

Stream Download 2.38 41.34 243.20
Stream Upload 3.82 66.35 218.06

Datagram Download 2.58 44.08 191.34
Datagram Upload 4.22 72.08 221.96

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 500k→250k Stream 1 0.03 427 12.14 70 1.99 498 14.16 3517
Datagram 233 6.53 471 13.20 119 3.34 823 23.07 3568

Table 8.30. Packet loss statistics for audio 128 kbps, 500 kbps to 250 kbps
bandwidth limitation.

Empirical observations:

In this scenario with more severe bandwidth reduction, datagram mode shows further
increased loss and late packets, leading to severe playback interruptions. Stream mode
maintains very low packet loss but exhibits moderate lateness and is generally able to
maintain audio continuity. Playback in datagram mode is more sensitive to the lower

250 kbps cap, with frequent skips and higher latency spikes compared to stream mode.
The difference in user experience is even more apparent: stream mode audio remains

comprehensible, while datagram mode becomes unstable.

219

Evaluation

Scenario: Audio 128 kbps, Video 1000 kbps, Bandwidth limited 2 Mbit/s to
1.5 Mbit/s (Test 1)

Media Opus audio (128 kbps)
Video VP8 video (1000 kbps)
Total duration 60 s
Bandwidth pattern 10 s unlimited → 15 s @2 Mbps → 10 s unlimited → 15 s @1.5 Mbps
Other impairments None

Figure 8.15. Stream mode bandwidth usage (60s).

Figure 8.16. Datagram mode bandwidth usage (60s).

220

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.17. Stream mode latency visualization (latency over time).

221

Evaluation

Figure 8.18. Datagram mode latency visualization (latency over time).

222

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.19. Stream mode latency distribution.

223

Evaluation

Figure 8.20. Datagram mode latency distribution.

224

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.21. Stream mode cumulative packet loss.

225

Evaluation

Figure 8.22. Datagram mode cumulative packet loss.

226

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.31. Bandwidth Usage Summary for a128 v1000 2→1.5M (1) scenario
(stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 v1000 2→1.5M (1)

Stream Download 10.63 184.49 384.85
Stream Upload 11.86 205.92 455.62

Datagram Download 11.33 196.65 486.84
Datagram Upload 12.14 210.66 455.61

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 v1000 2→1.5M (1) Stream 2 0.04 0 0.00 39 0.79 41 0.83 4920
Datagram 133 2.60 87 1.70 204 3.98 424 8.28 5120

Table 8.32. Packet loss statistics for audio 128 kbps, video 1000 kbps, bandwidth from
2 Mbit/s to 1.5 Mbit/s (test 1).

Empirical observations:

At moderate video bitrates and bandwidth drops, stream mode maintains negligible lost
packets and low lateness.

Datagram mode shows higher loss and latency, indicating greater vulnerability to band-
width constraints and timing.

In datagram mode, the video stream exhibits frame drops and, occasionally, freezing
or artifacts when the bandwidth drops to 1.5 Mbit/s, with playback not always recovering
immediately after restrictions are lifted.

Stream mode maintains video and audio delivery without freezing, although some stut-
tering and minor delays are observed under constraint.

227

Evaluation

8.6.3 Scenario: Audio 128 kbps, Video 1000 kbps, Bandwidth
limited 2 Mbit/s to 1.5 Mbit/s (Test 2)

Media Opus audio (128 kbps)
Video VP8 video (1000 kbps)
Total duration 60 s
Bandwidth pattern 10 s unlimited → 15 s @2 Mbps → 10 s unlimited → 15 s @1.5 Mbps
Other impairments None

Figure 8.23. Stream mode bandwidth usage (60s).

Figure 8.24. Datagram mode bandwidth usage (60s).

228

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.25. Stream mode latency visualization (latency over time).

229

Evaluation

Figure 8.26. Datagram mode latency visualization (latency over time).

230

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.27. Stream mode latency distribution.

231

Evaluation

Figure 8.28. Datagram mode latency distribution.

232

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.29. Stream mode cumulative packet loss.

233

Evaluation

Figure 8.30. Datagram mode cumulative packet loss.

234

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.33. Bandwidth Usage Summary for a128 v1000 2→1.5M (2) scenario
(stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 v1000 2→1.5M (2)

Stream Download 10.82 187.74 391.04
Stream Upload 12.12 210.32 429.42

Datagram Download 11.56 200.70 435.35
Datagram Upload 12.49 216.78 457.12

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 v1000 2→1.5M (2) Stream 6 0.12 7 0.14 17 0.35 30 0.61 4909
Datagram 138 2.66 89 1.71 176 3.39 403 7.76 5195

Table 8.34. Packet loss statistics for audio 128 kbps, video 1000 kbps, bandwidth from
2 Mbit/s to 1.5 Mbit/s (test 2).

Empirical observations:

Datagram mode again displays higher sensitivity to bandwidth caps, with video freezes
and incomplete recovery after limits are lifted. Stream mode playback stutters under
constraint but quickly returns to normal when bandwidth is restored.

This second test run confirms prior observations: stream mode is resilient with low loss
rates, while datagram mode shows higher packet loss and delay-related errors impacting
stream integrity.

235

Evaluation

Scenario: Audio 128 kbps, Video 2000 kbps, No Bandwidth Limits

Media Opus audio (128 kbps)
Video VP8 video (2000 kbps)
Total duration 30 s
Bandwidth pattern Unlimited
Other impairments None

Figure 8.31. Stream mode bandwidth usage (30s).

Figure 8.32. Datagram mode bandwidth usage (30s).

236

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.33. Stream mode latency visualization (no limits).

237

Evaluation

Figure 8.34. Datagram mode latency visualization (no limits).

238

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.35. Stream mode latency distribution (no limits).

239

Evaluation

Figure 8.36. Datagram mode latency distribution (no limits).

240

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.37. Stream mode cumulative packet loss.

241

Evaluation

Figure 8.38. Datagram mode cumulative packet loss.

242

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.35. Bandwidth Usage Summary for a128 v2000 3M scenario (stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 v2000 3M

Stream Download 9.47 334.32 389.18
Stream Upload 9.92 350.34 399.01

Datagram Download 10.27 362.48 458.19
Datagram Upload 10.16 358.75 452.08

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 v2000 3M Stream 28 0.55 20 0.39 90 1.77 138 2.71 5083
Datagram 1741 33.00 89 1.69 343 6.50 2173 41.19 5276

Table 8.36. Packet loss statistics for audio 128 kbps, video 2000 kbps, 3 Mbit/s bandwidth.

Empirical observations:

Without bandwidth constraints, both stream and datagram modes perform well, pro-

viding smooth playback with minimal latency.

Stream mode stands out for its regularity and efficiency, while, datagram mode still shows
slightly more variability in instantaneous bandwidth usage and sporadic packet loss peaks,
which do not perceptibly affect playback but suggest lower efficiency and reliability.

Despite minor extra variability, datagram mode still delivers a satisfactory experience
under ideal conditions.

243

Evaluation

8.6.4 Scenario: Audio 128 kbps, Video 2000 kbps, Bandwidth
limited 4 Mbit/s to 3 Mbit/s

Media Opus audio (128 kbps)
Video VP8 video (2000 kbps)
Total duration 60 s
Bandwidth pattern 10 s unlimited → 15 s @4 Mbps → 10 s unlimited → 15 s @3 Mbps
Other impairments None

Figure 8.39. Stream mode bandwidth usage (60s).

Figure 8.40. Datagram mode bandwidth usage (60s).

244

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.41. Stream mode latency visualization (4 Mbit/s limit).

245

Evaluation

Figure 8.42. Datagram mode latency visualization (4 Mbit/s limit).

246

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.43. Stream mode latency distribution (4 Mbit/s limit).

247

Evaluation

Figure 8.44. Datagram mode latency distribution (4 Mbit/s limit).

248

8.6 – Comparison of QUIC datagram and stream transmission

Figure 8.45. Stream mode cumulative packet loss.

249

Evaluation

Figure 8.46. Datagram mode cumulative packet loss.

250

8.6 – Comparison of QUIC datagram and stream transmission

Table 8.37. Bandwidth Usage Summary for a128 v2000 4→3M scenario
(stream and datagram).

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 v2000 4→3M

Stream Download 18.62 323.25 368.11
Stream Upload 19.40 336.63 437.45

Datagram Download 20.61 357.67 422.57
Datagram Upload 20.34 353.00 459.92

Scenario Mode LOST LOST (%) TOO OLD TOO OLD (%) TOO SLOW TOO SLOW (%) Not rec. Not rec. (%) Total

a128 v2000 4→3M Stream 87 1.71 42 0.83 106 2.08 235 4.62 5089
Datagram 383 6.98 8 0.15 564 10.28 955 17.41 5486

Table 8.38. Packet loss statistics for audio 128 kbps, video 2000 kbps, bandwidth
reduced from 4 Mbit/s to 3 Mbit/s.

Empirical observations:

Bandwidth drops have a clear negative impact on datagram mode playback, which is
more affected by freezing and stalling, especially as bandwidth drops to 3 Mbit/s.

Video can freeze and does not always recover upon removal of the cap, while stream
mode is more robust, only suffering minor playback delays and quickly returning to nor-
mal after constraints are lifted.

Datagram mode suffers greater packet loss and latency issues, confirming its reduced
robustness under bandwidth constraints compared to stream mode.

251

Evaluation

8.6.5 Global Bandwidth Usage Summary and Analysis

The table below presents a consolidated overview of bandwidth utilization across all ex-
perimental scenarios, encompassing both Stream and Datagram transmission modes.

For each scenario, total, average, and peak bandwidth usage values are reported
separately for upload and download directions, providing a detailed perspective on re-
source consumption under varying network and media conditions.

Table 8.39. Summary of bandwidth usage statistics across all scenarios.

Scenario Mode Direction Total (MB) Average (kB/s) Max (kB/s)

a128 400k→300k
Stream Download 2.36 40.91 86.46

Upload 3.98 69.04 149.35

Datagram Download 2.89 50.17 173.07
Upload 4.22 73.26 166.11

a128 500k→250k
Stream Download 2.38 41.34 243.20

Upload 3.82 66.35 218.06

Datagram Download 2.58 44.08 191.34
Upload 4.22 72.08 221.96

a128 v1000 2→1.5M (1)
Stream Download 10.63 184.49 384.85

Upload 11.86 205.92 455.62

Datagram Download 11.33 196.65 486.84
Upload 12.14 210.66 455.61

a128 v1000 2→1.5M (2)
Stream Download 10.82 187.74 391.04

Upload 12.12 210.32 429.42

Datagram Download 11.56 200.70 435.35
Upload 12.49 216.78 457.12

a128 v2000 3M
Stream Download 9.47 334.32 389.18

Upload 9.92 350.34 399.01

Datagram Download 10.27 362.48 458.19
Upload 10.16 358.75 452.08

a128 v2000 4→3M
Stream Download 18.62 323.25 368.11

Upload 19.40 336.63 437.45

Datagram Download 20.61 357.67 422.57
Upload 20.34 353.00 459.92

Examining the results, several notable trends become evident. First, datagram-based
transmission consistently requires greater bandwidth than stream-based transmis-
sion across all tested scenarios.

This effect is most pronounced in configurations featuring higher media bitrates—particularly
those including both audio and video streams—where datagram overhead becomes

252

8.6 – Comparison of QUIC datagram and stream transmission

more significant due to redundant framing and custom media reassembly mechanisms at
the application layer.

Even in lower-bitrate, audio-only scenarios, datagram mode exhibits a non-negligible
increase in bandwidth usage compared to stream mode.

Additionally, the difference in peak bandwidth usage between the two modes is par-
ticularly striking. Datagram mode frequently produces higher instantaneous band-
width spikes, a behavior that may amplify the risk of congestion and packet loss in
networks with limited or variable capacity. Stream mode, by contrast, tends to exhibit
smoother and more predictable bandwidth usage profiles, with lower peaks and
reduced variance over time.

The summary provided in Table 8.39 serves as a quantitative foundation for these
observations, and informs the comparative analysis of protocol performance throughout
this chapter.

8.6.6 Bandwidth Usage Comparison Chart

Figure 8.47. Comparison of total bandwidth usage (download + upload) across scenarios
for Stream and Datagram modes.

253

Evaluation

8.6.7 Global Packet Loss Summary and Analysis
The following table presents a comprehensive, scenario-by-scenario analysis of packet loss
characteristics across all experimental conditions, providing both absolute counts and nor-
malized percentages for each loss category.

The table disaggregates results for the two evaluated transport modes—Stream and
Datagram—to highlight protocol-specific behaviors under diverse real-time media work-
loads and network stressors.

Table 8.40. Summary of packet loss statistics across all scenarios (percentages
refer to total packets sent).

Scenario Mode LOST TOO
OLD

TOO
SLOW

Not
rec.

LOST
(%)

TOO
OLD
(%)

TOO
SLOW
(%)

Not
rec.
(%)

Total

a128 400k→300k Stream 0 42 16 58 0.00 1.31 0.50 1.81 3200
Datagram 204 292 111 607 6.04 8.64 3.28 17.96 3380

a128 500k→250k Stream 1 427 70 498 0.03 12.14 1.99 14.16 3517
Datagram 233 471 119 823 6.53 13.20 3.34 23.07 3568

a128 v1000 2→1.5M (1) Stream 2 0 39 41 0.04 0.00 0.79 0.83 4920
Datagram 133 87 204 424 2.60 1.70 3.98 8.28 5120

a128 v1000 2→1.5M (2) Stream 6 7 17 30 0.12 0.14 0.35 0.61 4909
Datagram 138 89 176 403 2.66 1.71 3.39 7.76 5195

a128 v2000 3M Stream 28 20 90 138 0.55 0.39 1.77 2.71 5083
Datagram 1741 89 343 2173 33.00 1.69 6.50 41.19 5276

a128 v2000 4→3M Stream 87 42 106 235 1.71 0.83 2.08 4.62 5089
Datagram 383 8 564 955 6.98 0.15 10.28 17.41 5486

Mean
Stream 20.67 89.67 56.33 166.67 0.41 2.13 1.41 3.59 4451

Datagram 455.67 171.00 236.83 717.50 9.41 4.52 5.30 15.45 4630

Column interpretation and loss categories:

• LOST: Packets that were never received at the destination, representing pure data
loss due to severe network impairment or protocol inefficiency.

• TOO OLD: Packets delivered so late that their playback deadline had passed,
making them unusable and directly impacting perceived smoothness, especially in
interactive or low-latency applications.

• TOO SLOW: Packets delivered with significant delay but still within their playable
window—potentially leading to jitter, minor stalling, or perceptible delays.

• Not Received: The sum of the above categories, indicating all packets failing to
contribute to successful playback, whether due to outright loss or excessive latency.
This serves as the primary indicator of end-user Quality of Experience (QoE) degra-
dation.

254

8.6 – Comparison of QUIC datagram and stream transmission

• All percentages are normalized over the total number of packets sent in each scenario,
enabling fair comparison across highly variable test configurations.

Detailed scenario trends:

• Low Bitrate Audio Scenarios (a128 400k→300k, a128 500k→250k):
For both stream and datagram, absolute numbers of lost packets are generally lower
due to the smaller data volumes. However, even here, datagram mode consistently
exhibits significantly higher LOST and Not Received percentages—up to 23% in
the most severe case (500k→250k).

This confirms that datagram transmission is acutely vulnerable to even modest band-
width restrictions, while stream mode keeps total loss rates typically below 15% and
absolute LOST counts at or near zero.

Notably, stream mode shows increased TOO OLD packets under extreme band-
width scarcity, indicating packets are delayed rather than lost. This behavior—characteristic
of QUIC’s in-order delivery—may lead to audio jitter or subtle stalls, but is prefer-
able to the abrupt skips and silences caused by outright datagram loss.

• Audio-Video Scenarios at Moderate Bitrate (a128 v1000 2→1.5M):
With the introduction of video streams, the contrast between protocols becomes
more pronounced. Datagram mode routinely loses hundreds of packets per minute,
with Not Received percentages ranging from 7.76% to 8.28%, and LOST rates up
to 2.6%. Stream mode remains highly resilient, with Not Received rates under 1%
and negligible outright loss.

The low TOO OLD and TOO SLOW values in these scenarios for stream mode
indicate that the protocol is not only preventing loss, but also managing jitter and
delay very effectively. In contrast, datagram mode presents a more even spread of
late and lost packets, contributing to perceptible degradation in both audio and video
playback, especially during or immediately after bandwidth restriction periods.

• High Bitrate/No Limit (a128 v2000 3M):
This scenario demonstrates the “best case” for both protocols. Here, both stream
and datagram achieve very low LOST and Not Received percentages (stream:
2.71%, datagram: 41.19%), with almost all delivered packets arriving in time for
playback. Nevertheless, the Not Received rate for datagram remains alarmingly
high for a scenario with ample bandwidth, indicating structural inefficiency or pro-
tocol overhead in datagram mode.

The fact that stream mode’s loss rates remain below 3% even at high throughput
further attests to the inherent robustness of stream-based transport for bulk media.

• High Bitrate + Restriction (a128 v2000 4→3M):
In the most demanding scenario, datagram mode performance degrades sharply,

255

Evaluation

with Not Received rates of 17.41% and LOST rates nearing 7%. Video playback
in these cases is prone to frequent freezes and visible artifacts, while stream mode
continues to limit Not Received to just 4.62%—demonstrating graceful degradation
and rapid recovery after bandwidth is restored.

Interpretative synthesis

Across all tested conditions, the collected evidence clearly shows that datagram mode
is significantly less robust than stream mode in every practical metric of real-time
media reliability.

Specifically, datagram mode consistently experiences higher rates of outright packet
loss, more late or slow packets, and a greater total number of unusable trans-
missions. This is well illustrated by the comparison of LOST packet percentages across
scenarios (see Figure 8.48).

Figure 8.48. Comparison of LOST packet percentage across all scenarios for
Stream and Datagram modes.

As depicted in Figure 8.48, datagram mode routinely exhibits LOST rates several times
higher than stream mode, particularly in scenarios with more severe bandwidth restric-
tions or higher media bitrates. For example, in the a128 v2000 3M scenario, the percentage
of lost packets in datagram mode exceeds 30%, compared to less than 1% for stream mode.

Furthermore, this gap in robustness becomes even more pronounced as traffic volume
increases or bandwidth becomes more constrained. The trend is evident not only in out-
right losses, but also in the number of packets that arrive too late for playback—an

256

8.6 – Comparison of QUIC datagram and stream transmission

aspect that directly impacts the perceived smoothness of media applications. Figure 8.49
shows the comparative incidence of packets arriving too late ("TOO OLD") for each mode
and scenario.

Figure 8.49. Comparison of TOO OLD packet percentage (packets arriving too late) for
Stream and Datagram, scenario by scenario.

Here, we observe that stream mode, while generally delivering more packets successfully,
may exhibit slightly higher percentages of TOO OLD packets in the most constrained sce-
narios. This reflects its mechanism of attempting to deliver all packets in order, resulting
in some delayed arrivals rather than pure losses.

However, as shown in Figure 8.50, these delayed packets are still usually preferable in
terms of user experience, as they lead to brief stalling or jitter, instead of abrupt skips or
gaps in playback.

In fact, Figure 8.50 highlights that, in datagram mode, a considerable proportion of
packets are marked as TOO SLOW, especially under heavy network load, contributing to
noticeable artifacts such as stuttering or freezes in audio and video streams. A compre-
hensive view of all error categories—LOST, TOO OLD, and TOO SLOW—is provided in
Figure 8.51. This visual synthesis confirms that the total fraction of unusable packets
(including all loss types) is consistently much higher for datagram mode than for stream
mode across all test scenarios.

For example, in high-bandwidth audio-video scenarios with network constraints, the total
"Not Received" rate in datagram mode can exceed 40% (see also Table 8.40), compared

257

Evaluation

to values below 5% for stream mode. Even under ideal conditions, datagram mode shows
occasional spikes in lost and delayed packets that are largely absent in stream-based trans-
mission.

Figure 8.50. Comparison of TOO SLOW packet percentage (packets arriving slowly) for
Stream and Datagram, per test scenario.

Figure 8.51. Global comparison of LOST, TOO OLD, and TOO SLOW packet percent-
ages for Stream and Datagram transmission across all tested scenarios.

258

8.6 – Comparison of QUIC datagram and stream transmission

In conclusion, the quantitative and visual evidence provided by these figures and summa-
rized in Table 8.40 make clear that, for any latency- and loss-sensitive application—especially
those involving video or mixed media—stream-based transmission offers far greater relia-
bility, predictability, and end-user quality than its datagram counterpart.

The robustness of stream mode is especially evident in the ability to maintain media
continuity and minimize outright losses, even as network conditions degrade.

259

Evaluation

8.7 Evaluation of Experimental Results and Compar-
ative Analysis

8.7.1 Comparative Results Analysis
This section provides a comprehensive and visually guided analysis of the comparative
results obtained from all experimental scenarios, systematically contrasting the behavior
of QUIC stream and datagram transport modes. The discussion draws extensively from
the bandwidth, latency, and loss graphs and tables in Chapter 8, connecting quantitative
outcomes to qualitative end-user experience.

Bandwidth Overhead and Protocol Efficiency

A primary observation from the experimental data (see Table 8.39) is that **QUIC data-
gram mode consistently incurs higher bandwidth usage and peak rates** than stream
mode, regardless of media configuration. This effect is evident both in summary (Fig-
ure 8.47) and in detailed scenario bandwidth usage plots:

- In low-bitrate audio scenarios, such as **Opus 128 kbps with bandwidth drops**
(a128 400k→300k, Figures 8.1, 8.2), the datagram mode shows noticeably higher average
and peak usage, especially during limited phases. - In combined audio-video scenarios
(e.g., **Opus 128 kbps + VP8 1000 kbps**, bandwidth drops), datagram’s burstiness is
even more pronounced (see Figures 8.15, 8.16).

The difference is particularly marked in the **“Max (kB/s)”** values reported in
Table 8.39: datagram mode consistently produces more frequent, larger spikes—sometimes
double those seen in stream mode. This pattern reflects both additional protocol overhead
(per-packet metadata and custom framing) and a tendency toward burstier traffic patterns
due to fragmentation and reassembly at the application level.

Scenario Highlight: High Bitrate, No Limit In unconstrained scenarios (e.g., a128
v2000 3M, Figures 8.31, 8.32), datagram mode achieves high throughput but still displays
greater instantaneous bandwidth fluctuation—see also the variability in the corresponding
latency plots (8.33, 8.34).

Playback Robustness and Error Resilience

A clear qualitative and quantitative gap emerges in playback stability and error resilience
under all but the most ideal conditions:

Audio-only Scenarios - **Stream mode** delivers nearly all packets in time, even
under bandwidth reduction (a128 400k→300k, Table 8.28), leading to continuous playback
with only minor stalling (see empirical notes in that section). - **Datagram mode** suffers
much greater packet loss and late arrivals, with frequent audio skips and dropouts during
restricted periods (see cumulative packet loss plots, Figures 8.8, 8.14).

260

8.7 – Evaluation of Experimental Results and Comparative Analysis

Mixed Audio-Video Scenarios - In moderate restriction scenarios (e.g., a128 v1000
2→1.5M, Figures 8.17, 8.18), stream mode retains smooth playback, with only transient
stuttering; datagram mode, by contrast, displays severe frame loss and persistent freezes,
as confirmed by cumulative loss graphs (8.22) and distribution plots (8.20).

- In validation runs (a128 v1000 2→1.5M (2), Figures 8.25, 8.26), the same patterns
recur, reinforcing the robustness of stream mode and the persistent vulnerability of data-
gram mode to congestion.

- At the highest tested loads (a128 v2000 4→3M), datagram mode exhibits “unrecov-
erable” video freezes, and extremely high packet loss rates (see Figures 8.46, 8.44), while
stream mode continues to recover playback after constraint removal.

Audio Transmission The comparative evaluation for audio is particularly instructive
and highlights a counterintuitive result:

• Datagram Mode: While datagram mode shows higher absolute packet loss rates in
almost every audio scenario (see Table 8.28, Figures 8.8, 8.4), these losses are **rarely
perceptible** to listeners. Each lost packet in Opus at 128 kbps typically represents
a small, independently concealed audio frame (often only a few milliseconds), and
the codec’s built-in packet loss concealment ensures that short, isolated gaps do
not produce audible artifacts. Consequently, even periods of statistically substantial
loss often result in audio that sounds continuous and natural, with at most subtle,
fleeting glitches.

• Stream Mode: Stream mode provides lower overall packet loss (often near zero),
but its reliance on strict in-order delivery and buffer-based recovery introduces a
different kind of artifact. When a retransmission or buffer underrun occurs, the
audio may “hang” or briefly pause—creating a noticeable and clearly audible stall for
the end user, even if the absolute number of missing frames is much lower. This is
visible in Figures 8.3 and 8.5: outliers are rare, but can cause momentary playback
interruption.

Video Transmission Clear differences emerge in video scenarios, especially under
bandwidth constraints:

• Datagram Mode: In scenarios with reduced bandwidth (e.g., Figure 8.46), data-
gram mode frequently leads to unrecoverable playback freezes and visible frame loss.
As demonstrated in Figures 8.44 and 8.42, latency spikes and out-of-order delivery
amplify these artifacts. In many cases, playback fails to recover even after bandwidth
is restored, due to unrecoverable application-layer loss.

• Stream Mode: Even during heavy congestion, stream mode typically replaces
freezes with temporary frame skips or brief stuttering (Figures 8.41 and 8.43). After
bandwidth constraints are lifted, stream mode rapidly resumes smooth playback, as
confirmed by cumulative loss graphs (Figure 8.45).

261

Evaluation

Interpretative insight: In practice, a protocol with more measured packet loss (data-
gram) can yield less perceptible degradation in audio playback compared to a protocol
with fewer lost packets but a tendency toward audible buffer underruns (stream). This is
a consequence of modern audio codecs’ resilience and the psychoacoustic masking of short
gaps, as well as the abrupt nature of stream stalls.

Cumulative Evidence from Summary Tables and Graphs - Table 8.40 provides
a scenario-by-scenario breakdown of packet loss types. The contrast is stark: **stream
mode’s “Not Received” packets almost always remain below 5%**, while **datagram mode
ranges from 8% to over 41%**, depending on traffic volume and network impairment. -
The stacked bar and line plots in Figures 8.51, 8.48, 8.49, and 8.50 visually summarize
these differences, revealing a persistent and often widening gap in favor of stream mode,
especially for “LOST” and “TOO SLOW” packets.

Latency, Jitter, and Timing Stability

Latency visualizations and distribution plots present further evidence of protocol-level
differences:

- **Stream mode** maintains consistently low median latencies, with narrow, symmet-
ric distributions and few outliers—even under constrained bandwidth (see Figures 8.19, 8.35, 8.43).
- **Datagram mode** suffers from visible “long tail” effects and heavy jitter outliers in
all but the least-stressed scenarios (see Figures 8.20, 8.36, 8.44), with latency spikes some-
times exceeding the playable window and causing late or dropped packets (see also the
corresponding cumulative loss plots).

In audio scenarios, the practical impact is increased likelihood of audible dropouts
for datagram mode; in video, the effect is even more severe, leading to frame drops and
freezing.

Resource Utilization (CPU Overhead)

As observed in host resource metrics (not shown in summary tables but described in
implementation sections), **CPU usage is generally comparable** between modes during
normal operation. However, under heavy fragmentation or loss, datagram mode triggers
additional CPU load due to application-level reassembly, sequencing, and error correction
logic—effects that are avoided by stream mode’s integrated, transport-level reliability.

Integrated Interpretation and Visual Synthesis

To make these findings visually accessible and evidence-based, the following figures should
be used as direct references within this discussion:

262

8.7 – Evaluation of Experimental Results and Comparative Analysis

- Bandwidth Usage Comparison: Figure 8.47 (total and instantaneous), Fig-
ures 8.1–8.40 (scenario-specific). - Latency and Jitter Distributions: Figures 8.19–
8.44 (scenarios), 8.49, 8.50 (across all). - Packet Loss Characteristics: Table 8.40 (full
scenario statistics), Figures 8.13–8.46 (cumulative per-scenario), Figure 8.51 (aggregate).
- Empirical Playback Observations: As summarized in the “empirical observations”
for each scenario, e.g., stream mode resumes playback rapidly (Figures 8.17, 8.41), while
datagram mode frequently does not recover (Figures 8.42).

8.7.2 Discussion and Design Implications
The experimental evidence highlights clear operational trade-offs between the two QUIC
transport modes:

• QUIC Stream Mode is the most robust, providing resilience to loss and maintain-
ing stable playback for both audio and video under a range of conditions. Its built-in
retransmission and ordering enable graceful recovery after congestion, minimizing
frame and packet loss, with quick restoration after network constraints subside.

• QUIC Datagram Mode, although capable of lower latency in ideal networks, is
vulnerable to loss and out-of-order delivery, leading to frame drops and unrecoverable
failures—especially for video streams. Audio in datagram mode, however, illustrates
that high measured loss rates can still result in continuous, perceptually robust
playback, due to codec design and short packet duration.

Implications for application design: Datagram mode may be considered for delay-
sensitive, loss-tolerant applications, or where the application implements advanced loss
concealment, FEC, or server-side buffering. For high-quality, reliable media delivery
(broadcast, conferencing, streaming), stream mode remains the preferred choice—especially
when video is present or strict reliability is required. For audio-only workloads, application
designers should carefully weigh perceptual outcomes: statistical packet loss in datagram
mode is often inaudible, but stream mode’s rare stalling may have more noticeable impact.

In summary, QUIC stream mode consistently delivers superior reliability, lower effective
packet loss, and stable media playback across real-world network conditions. Datagram
mode can match or surpass it in perceived audio continuity for certain workloads, but only
at the cost of higher statistical loss and a requirement for resilient codec or application
design. For robust, high-quality user experience—especially with video—stream-based
transport is strongly recommended unless ultra-low-latency requirements dictate other-
wise.
As visually documented in Table 8.40 and the full set of figures 8.47–8.51, stream-based
transmission ensures the best balance of reliability, predictability, and quality for modern
real-time media delivery, especially in the face of variable or challenging network environ-
ments.

263

264

Chapter 9

Conclusions

This thesis has presented a rigorous, empirically grounded evaluation of Media over QUIC,
leveraging a hybrid test environment with enhanced logging and analytics capabilities, by
building and validating a hybrid MoQ testbed composed of a JavaScript client (moq-
js) and a Rust relay (moq-rs), leveraging QUIC’s partial-reliability (datagram) and full-
reliability (stream) capabilities.

The testing infrastructure combines browser-based media streaming with a remote
QUIC relay, offering insights into Media over QUIC performance across real-world net-
work paths. The layered logging and analysis toolchain enables fine-grained evaluation of
media delivery metrics, crucial for validating protocol behavior under different operational
conditions.

By systematically varying media types, bitrates, and transport modes over a 1 Gbps
fiber link, this work demonstrates the practical trade-offs between QUIC stream and
datagram transport modes within the MoQ protocol context, particularly in low-latency
real-time media applications.

While datagram offers architectural flexibility and possibly lower theoretical overhead,
it requires robust custom logic at the application layer to handle ordering, loss, and
reassembly.

Our experiments revealed that such custom implementations—although functional—introduce
inefficiencies and greater playback instability, especially under bandwidth constraints.
Stream mode, in contrast, benefits from built-in flow control and ordering mechanisms
and leads to more stable playback and better user experience in most conditions.

The comparative analysis of stream and datagram transport modes under realistic
network scenarios yields several key conclusions:

• Reliability vs. Flexibility: QUIC streams are inherently more reliable, preserving
playback continuity and quality even in challenging conditions. Their robustness
derives from built-in retransmission, ordering, and flow control, which shield end

265

Conclusions

users from transient losses at the expense of latency.

• Performance Under Stress: QUIC datagrams offer compelling advantages in
low-latency and low-overhead scenarios. However, in practice, their lack of built-in
reliability exposes applications to significant playback risks; our results show that,
without custom recovery mechanisms, datagram transport can result in catastrophic
failure modes for video.

• Media Type Sensitivity: Audio, due to lower bitrate and higher tolerance to
loss, is well-served by both transport modes, with only minor artifacts observed in
challenging conditions. Video, conversely, demands the reliability guarantees offered
by stream mode unless substantial investment is made in robust application-level
recovery.

To support this analysis, we also designed and implemented:

• A custom MoQ logger for both JS and Rust-based relays, capable of tracking
send/receive events, CPU load, and retransmission metadata.

• A suite of plotting tools:

– plotMoqjsTimestamp.py — detailed timeline views of latency, jitter, and re-
transmissions.

– plotMoqjsDistribution.py — distribution and KDE visualizations for multi-
ple track types.

• Integration with WireShark logs and export tools for retransmission analysis.

These tools allowed a deep inspection of MoQ delivery behavior at runtime, enabling
data-informed optimization of both publishing and receiving logic.

Future work could explore:

• Hybrid transport strategies combining stream and datagram modes adaptively.

• Extension of logger tooling to support live metrics export (e.g., Prometheus).

• Enhanced WARP segment encoding strategies to reduce bandwidth cost in object-
level fragmentation.

In summary, while QUIC datagram mode holds promise for specific ultra-low-latency
applications, QUIC stream mode currently provides the best overall user experience and
service robustness in real-world media streaming. Although custom datagram support for
MoQ in browsers is feasible and demonstrates key protocol flexibility, for most practical
applications—especially under constrained network conditions—stream mode remains the
preferred and more robust solution.

266

Conclusions

At the same time, these results affirm that the MoQ architecture, coupled with in-
telligent relay strategies, can flexibly address diverse real-time media requirements, while
the analytical and experimental tools developed in this thesis provide a foundation for
continued exploration and optimization of next-generation media transport protocols.

267

268

Bibliography

[1] Akamai Technologies. What is http? Akamai Glossary.

[2] Apple Inc. and Microsoft Corporation. Iso/iec 23000-19:2018 – common media appli-
cation format (cmaf) for segmented media. ISO/IEC JTC1/SC29, 2018. Standard.

[3] M. Belshe, R. Peon, and M. Thomson. Hypertext transfer protocol version 2 (http/2).
Technical Report RFC 7540, IETF, May 2015.

[4] M. Bishop. Hypertext transfer protocol version 3 (http/3). Technical Report RFC
9114, IETF, June 2022.

[5] Cloudflare. What is http/3? Cloudflare Learning Center, 2024.

[6] R. Even, P. Roesler, R. Pantos, and S. Nandakumar. Warp: A streaming format for
media over quic. Internet-draft, IETF MoQ Working Group, 2024. draft-even-moq-
warp-03.

[7] Google. Webtransport overview. Chrome for Developers, 2024.

[8] R. Hamilton et al. Webtransport over http/3. Internet-draft, IETF WebTransport
Working Group, 2024. draft-ietf-webtrans-http3-12.

[9] P. Hesmans and O. Bonaventure. Http/3 performance over quic. In Proceedings of
the 2020 Workshop on the Evolution, Performance, and Interoperability of QUIC.
ACM, 2020.

[10] IETF Media over QUIC (MoQ) Working Group. Media over quic architecture.
Internet-Draft, work in progress, 2024.

[11] IETF MoQ Working Group. Media over quic (moq). IETF Datatracker.

[12] IETF MoQ Working Group. Media over quic transport protocol. Internet-draft,
IETF, 2024. Work in Progress.

[13] International Organization for Standardization. Information technology — dynamic
adaptive streaming over http (dash) — part 1: Media presentation description and
segment formats, 2022. ISO/IEC 23009-1:2022.

269

BIBLIOGRAPHY

[14] J. Iyengar and M. Thomson. Quic: A udp-based multiplexed and secure transport.
Technical Report RFC 9000, IETF, May 2021.

[15] J. Iyengar and M. Thomson. Quic: A udp-based multiplexed and secure transport.
Technical Report RFC 9000, IETF, 2021.

[16] M. Kühlewind and B. Trammell. Manageability of the quic transport protocol. Tech-
nical Report RFC 9312, IETF, October 2022.

[17] G. Law et al. Warp: The web application real-time protocol streaming format.
Internet-draft, IETF, June 2024. draft-law-moq-warpstreamingformat-03.

[18] J. Law. Warp streaming format. Internet-draft, IETF, 2023.

[19] C. Mueller, J. F. Paris, and D. Singer. Low-latency cmaf for http streaming. Apple
Inc., 2020.

[20] R. Nandakumar, R. Even, K. Pugin, S. Gouaillard, and S. Corlay. Meta: Media
transport over quic, 2022. MoQ IETF Presentations.

[21] S. Nandakumar, R. Even, P. Roesler, R. Pantos, and P. Gouaillard. Rush: Reliable
upload streaming for media over quic. Internet-draft, IETF MoQ Working Group,
2024. draft-nandakumar-moq-rush-02.

[22] R. Pant, A. A. Seshadri, T. Kocher, et al. Low latency streaming at scale with ll-hls.
Apple Worldwide Developers Conference (WWDC), 2020. Accessed: 2024-06-29.

[23] R. Pantos, P. Roesler, and K. Law. Media over quic: Design and implementation at
scale. Twitch Engineering Blog, 2023.

[24] T. Pauly, E. Kinnear, and D. Schinazi. Using quic datagrams. Technical Report RFC
9221, IETF, March 2022.

[25] J. Postel. User datagram protocol. Technical Report RFC 768, IETF, August 1980.

[26] J. Postel. Transmission control protocol. Technical Report RFC 793, IETF, Septem-
ber 1981.

[27] K. Pugin. Rush ingest format. Internet-draft, IETF, 2023.

[28] P. Roesler, R. Even, and S. Nandakumar. Media over quic architecture. Internet-
draft, IETF MoQ Working Group, 2024. draft-ietf-moq-arch-06.

[29] P. Roesler, R. Even, and S. Nandakumar. Media over quic transport. Internet-draft,
IETF MoQ Working Group, 2024. draft-ietf-moq-transport-06.

[30] Upwork. What is http/2? how http/2 works & why it’s important. Upwork Resources,
2024.

[31] WebCodecs Community Group. Webcodecs api. W3C Recommendation, 2024.

[32] WebTransport Community Group. Webtransport api. W3C Recommendation, 2024.

270

	List of Tables
	List of Figures
	Introduction
	Background
	HTTP
	HTTP/2, TCP and UDP
	HTTP/2

	TCP: Transmission Control Protocol
	UDP: User Datagram Protocol
	TCP vs UDP: Comparative Summary

	Modern live transmission use cases
	HTTP/3
	Comparison of HTTP revisions

	QUIC
	MoQT: Media over QUIC Transport

	Media Over Quic Transport
	Design Philosophy of MoQT
	General architecture
	MoQ Streaming Formats
	Overview of Streaming Formats in MoQ
	Purpose of Streaming Formats
	Key Streaming Formats
	Comparison with Traditional Protocols
	WARP
	RUSH
	Stream Management
	Use Cases

	moq-js
	File and Module Structure Overview
	High-Level Workflow
	moq-js architecture - data flow
	Publisher Workflow
	Playback Workflow

	moq-js architecture — code level flow
	moq-js architecture - code level analysis
	UI Integration: web/src/components/publish.tsx
	Transport and Protocol (From lib/transport/)
	lib/transport/object.ts — The MoQ Object Layer
	Track Management and Subscription
	Worker Communication Architecture
	Audio and Video Encoding
	Audio and Video Decoding (WebCodecs Backend)
	Jitter Buffering and the Ring Class (lib/common/ring.ts)

	Codec Integration

	moq-rs
	moq-rs - Dependencies and Architectural Roles
	moq-relay
	moq-relay - Architectural Overview
	moq-relay - Dependency Breakdown
	moq-relay - Main Components
	main.rs: Application Entrypoint
	config.rs: Configuration Management
	tls.rs: Certificate Loading/Generation
	quic.rs: QUIC Endpoint Creation
	session.rs: Session Lifecycle and Role Dispatch
	origin.rs: Track Registry, Cache, and Routing
	web.rs and error.rs: Optional Web UI and Errors

	moq-relay - Publisher–Subscriber Data and Object Flow
	moq-transport
	Architectural Role of moq-transport
	moq-transport - Dependency Breakdown
	moq-transport - Module Structure
	Session State Machines (session/)
	Session Negotiation Example
	Message Encoding and Decoding (message/)
	Wire Serialization Utilities (coding/)
	Hierarchical Object Caching (cache/)
	Protocol Negotiation (setup/)
	Typed Error Handling (error.rs)
	Crate Root (lib.rs)

	moq-api
	Architectural Role of moq-api
	Module Structure
	Data Models (model.rs)
	Client Abstraction (client.rs)
	Error Handling (error.rs)
	Server Implementation (server.rs)
	Crate Integration (lib.rs)

	Media Over Quic Transport – Datagram Implementation
	Transmission modes
	Datagram mode
	Datagram mode - custom implementation in moq-js and moq-rs

	Environment setup and tools
	Software Sources
	moq-js
	moq-rs
	Logging
	Logger Module in moq-js (lib/common/logger.ts)
	Server-side Logging (Node.js)
	Per-Module Commentary and File Structure Cross-References
	Log Data Format

	Data plot and analysis utilities - Python scripts
	plotMoqjsTimestamp.py
	batch_plot_loss_parallel.py
	plotMoqjsDistribution.py
	plotMoqjsConversion.py
	plotTsharkJitter.py
	Wireshark/tshark
	TLS decryption setup

	Bitmeter OS: Network Throughput and Bandwidth Monitoring

	Evaluation
	Methodology
	Network setup
	Timestamp monitoring
	Jitter computation
	Measurements workflow

	Baseline Tests: Stream Transmission
	Audio & Video, Rendering Enabled (Run 1)
	Audio & Video, Rendering Enabled (Run 2)
	Audio & Video, Rendering Disabled
	Audio Only
	Video Only

	Bandwidth Limiting: Stream Transmission
	Relay Latency Validation with tshark
	Audio+Video, Bandwidth Usage
	Video Only, Bandwidth Usage
	Audio Only, Bandwidth Usage
	Audio and Video, No Bandwidth Limitation (Reference)
	Audio+Video, Bandwidth Limited to 4 Mbps
	Audio and Video, Bandwidth Limited to 3 Mbps
	Audio and Video, Dynamic Bandwidth Reduction (No Limit 3 Mbps)

	Baseline Tests: Datagram Transmission
	Audio & Video, Rendering Enabled (Run 1)
	Audio & Video, Rendering Enabled (Run 2)
	Audio & Video, Rendering Disabled
	Audio Only
	Video Only

	Bandwidth Limiting: Datagram Transmission
	Relay Latency Validation with tshark
	Audio & Video, Bandwidth Usage under Limiting
	Video Only, Bandwidth Usage
	Audio Only, Bandwidth Usage
	Audio & Video, No Bandwidth Limitation (Reference)
	Audio & Video, Bandwidth Limited to 4 Mbps
	Audio & Video, Dynamic Bandwidth Limiting (No Limit 4 Mbps)
	Audio & Video, Dynamic Bandwidth Limiting with Loss of Recovery

	Comparison of QUIC datagram and stream transmission
	Scenario: Audio 128 kbps, Bandwidth limited 400 kbps to 300 kbps
	Scenario: Audio 128 kbps, Bandwidth limited 500 kbps to 250 kbps
	Scenario: Audio 128 kbps, Video 1000 kbps, Bandwidth limited 2 Mbit/s to 1.5 Mbit/s (Test 2)
	Scenario: Audio 128 kbps, Video 2000 kbps, Bandwidth limited 4 Mbit/s to 3 Mbit/s
	Global Bandwidth Usage Summary and Analysis
	Bandwidth Usage Comparison Chart
	Global Packet Loss Summary and Analysis

	Evaluation of Experimental Results and Comparative Analysis
	Comparative Results Analysis
	Discussion and Design Implications

	Conclusions

