
POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

Optimizing YOLO Inference for Hardware Constraints
Through Quantization Techniques

Supervisors

Prof. Luciano LAVAGNO

Phd. Teodoro URSO

Candidate

Niccolò CACIOLI

JULY 2024

Thesis Title

Thesis Author

Abstract

This thesis investigates the application of YOLO (You Only Look Once) models
for object detection tasks, with a particular focus on the quantization of such models
to enable efficient deployment on edge devices and resource-constrained hardware
platforms. Model quantization plays a critical role in reducing memory footprint
and computational cost while aiming to preserve the accuracy and robustness of the
original floating-point networks.

The work focuses on integrating a complete training and evaluation pipeline,
including data pre-processing compliant with widely adopted standards (e.g. YOLO)
and the integration of automated tools for ground truth visualization and validation.
Various training strategies were explored to enhance model performance, includ-
ing hyperparameter tuning, architectural modifications, and data augmentation
techniques.

A central contribution of the work is the design of a modular quantization
workflow, leveraging tools compatible with ONNX and tailored for deployment with
hardware-accelerated inference platforms. The methodology includes model export,
transformation, optimization, and performance validation of the quantized networks.

Experimental results, obtained from both standard benchmarks and domain-
specific datasets, demonstrate that the proposed approach achieves a favorable
trade-off between model compactness and detection accuracy. These findings support
the feasibility of adopting quantized YOLO architectures in real-world, real-time
applications across diverse environments.

The workflow proposed, along with the solid results obtained by this work, offers
a valid stepping stone for future improvements and optimizations.

ACKNOWLEDGMENTS

Alla mia famiglia.

Table of Contents

1 Introduction 1
1.1 Machine Learning . 1
1.2 Deep Learning . 2

1.2.1 Layers . 3
1.2.2 Activation functions . 4
1.2.3 Convolutional Neural Networks 4

1.3 Computer Vision and Object Detection 6

2 YOLO 7
2.1 Metrics . 7
2.2 Detection pipeline . 8

2.2.1 Anchor Boxes . 9
2.2.2 Non-maximum suppression 10
2.2.3 Loss function . 11
2.2.4 Different versions . 12

2.3 Quantization . 13
2.3.1 Data representation . 14
2.3.2 Quantization techniques . 14

2.3.2.1 PTQ and QAT algorithms 16
2.3.3 Scaling factor . 16

3 Processing the datasets 17
3.1 Photovoltaic thermal images dataset 17

3.1.1 Pre-processing script . 19
3.1.2 Ground Truth directory . 20

3.2 ASXL dataset . 21
3.3 COCO dataset . 23

4 First training with YOLOv3 25
4.1 Model structure and training components 25

4.1.1 Hyperparameters . 27
4.1.2 Optimizer . 29
4.1.3 Scheduler . 30

4.2 Training process . 32

III

TABLE OF CONTENTS

5 Vitis AI and Yolov5 36
5.1 Processing the output tensor . 36

5.1.1 Training the Yolov5 model . 38
5.1.2 Export and validation of the ONNX model 41

5.2 Quantizing the model . 41
5.2.1 QONNX and the final conversion 43

6 Validation and results 47
6.1 PV thermal images dataset results 47

6.1.1 Version 416X416 . 48
6.1.2 Version 512X512 . 49
6.1.3 Version 640X640 . 50
6.1.4 Comparison between ONNX FP32 and INT8 51

6.2 ASXL Dataset . 52
6.2.1 YOLOv5n version . 52
6.2.2 YOLOv5s version . 56
6.2.3 Comparison . 57

6.3 COCO dataset . 58
6.3.1 FP32 versions . 58
6.3.2 QDQ versions . 59
6.3.3 Uniform scaling factor versions 59

6.4 Results considerations . 60

7 Conclusions 61

A Appendix A 63

B Appendix B 71

Bibliography 79

IV

List of Figures

1.1 Popularity of ML algorithms up to 2020 [1]. 2
1.2 Difference between normal and deep learning neural networks [4]. . . 3
1.3 Graphical representation of a neuron [5]. 4
1.4 Pooling operation that reduces the spatial size of feature maps [6]. . 5
1.5 Structure of a convolutional neural network (CNN) [9]. 5
1.6 Difference between one stage and two stage object detection [11]. . . 6

2.1 YOLOv1 architecture [12]. 7
2.2 IoU formula, and examples with IoU values. 8
2.3 Detection pipeline [13]. 9
2.4 Anchor box example [14]. 9
2.5 Bounding box prediction based on anchor box [16]. 10
2.6 Anchor boxes are used on top of a feature map [14]. 10
2.7 NMS and its effect on the final result [18]. 11
2.8 Metrics of the different models [19]. 13
2.9 Basic example of quantization [20]. 13
2.10 Model size pre and post quantization [21]. 15
2.11 Performance metrics related to data representation [21]. 15

3.1 The three cases of the fault present in the photovoltaic dataset ex-
tracted from the numpy models. 21

3.2 Segmentation of the original image. 22
3.3 Processing pipeline: from the segment to the ground truth image. . . 22
3.4 Original image with every segment’s bounding box applied. 23
3.5 Coco batch example [23]. 24

4.1 Different learning rates and corresponding mAP0.5 for each epochs
for YoloV5 with the three optimizers [24]. 30

4.2 StepLR [25]. 31
4.3 Lambda and Cosine Annealing schedulers [25]. 32
4.4 Cosine Annealing with warm restarts [25]. 32
4.5 Graphs related to the Yolov3 train. 34
4.6 Detections with confidence value reported. 35

5.1 Vitis AI tools [26]. 36

V

LIST OF FIGURES

5.2 YOLOv5n structure [28]. 38
5.3 Comparison of labels and predictions for the validation batch. 39
5.4 Graphs related to the Yolov5 train. 40
5.5 Validation batch for ONNX model. 41
5.6 Tools for the quantization process [30]. 42
5.7 QDQ layers with power of two scaling factors. 42
5.8 ONNX to QDQ process. 43
5.9 Add and Concat different scaling factors. 44
5.10 Different scaling factor between input and output layers for the Leaky

ReLU. 44
5.11 Conversion of the QDQ layers to Quant. 45

6.1 Comparison between detections and ground truth of the Uniscaled
versions for the 640×640. 51

6.2 Comparison between detections and ground truth of the Uniform
scaling factor versions. 55

6.3 Comparison between Predictions and Ground truth for the coco model. 60

VI

List of Tables

2.1 Comparison of YOLOv5 variants on 640x640 images. 12

4.1 Final results for the last epoch of the Yolov3 FP32 model. 34

5.1 Best results for Yolov5n on the 640x640 fotovolt dataset. 39
5.2 Validation of the ONNX format. 41

6.1 Evaluation metrics for the 416×416 FP32 (ONNX version). 48
6.2 Evaluation metrics for the 416×416 QDQ post scaling factor uni-

formization. 48
6.3 Evaluation metrics for the 512×512 FP32 (ONNX version). 49
6.4 Evaluation metrics for the 512×512 QDQ post scaling factor uni-

formization. 49
6.5 Evaluation metrics for the 640×640 FP32 (ONNX version). 50
6.6 Evaluation metrics for the 640×640 QDQ post scaling factor uni-

formization. 50
6.7 Comparison of model sizes and performance (mAP@0.5:0.95) in FP32

and INT8 formats. 51
6.8 Evaluation metrics for the 1024×1024 FP32 .pt version of the YOLOv5n. 52
6.9 Evaluation metrics for the 640×640 FP32 .ONNX version of the YOLOv5n. 53
6.10 Evaluation metrics for the 640×640 QDQ version of the YOLOv5n. . 53
6.11 Evaluation metrics for the 640×640 QDQ with uniform scaling factor

version of the YOLOv5n. 54
6.12 Evaluation metrics for the 1024×1024 FP32 .pt version of the YOLOv5s. 56
6.13 Evaluation metrics for the 640×640 FP32 .ONNX version of the YOLOv5s. 56
6.14 Evaluation metrics for the 640×640 QDQ version of the YOLOv5s. . . 57
6.15 Evaluation metrics for the 640×640 QDQ with uniform scaling factor

version of the YOLOv5s. 57
6.16 Comparison of the model’s performance (mAP@0.5:0.95) after the

export as 640×640, both as FP32 and INT8 models. 57
6.17 Comparison of the model’s performance before and after the export

as 640×640, both as FP32 models. 58
6.18 Comparison of model sizes and performance with the 5n version. . . 58
6.19 Comparison of the models on the COCO dataset with different hyps

on 640×640. 59

VII

LIST OF TABLES

6.20 Comparison of the models on the COCO dataset post QDQ. 59
6.21 Comparison of the models on the COCO dataset with uniform scaling

factors. 59
6.22 Comparison of model sizes and performance with the COCO models. 60

VIII

Acronyms

AI Artificial Intelligence.

ML Machine Learning.

DL Deep Learning.

NN Neural Network.

CNN Convolutional Neural Network.

RNN Recurrent Neural Network.

NLP Natural Language Processing.

LSTM Long Short Term Memory.

ReLU Rectified Linear Unit.

CV Computer Vision.

IoU Intersection over Union.

CIoU Complete Intersection over Union.

mAP Mean Average Precision.

BCE Binary Cross Entropy.

INT8 8-bits integer data.

FP32 32-bits floating point data.

QAT Quantization Aware Training.

IX

Acronyms

PTQ Post Training Quantization.

LR Learning rate.

VAI Vitis AI.

X

Chapter 1

Introduction

1.1 Machine Learning

In the age of the Fourth Industrial Revolution (Industry 4.0), the digital world exists
with very diverse sources of data such as Internet of Things (IoT) data, cybersecurity
logs, mobile usage data, business intelligence, social media streams, and healthcare
records. Furthermore, the efficient investigation to design intelligent and automated
programs out of this complex and diverse data requires a solid AI foundation, and in
particular, a focus on machine learning (ML). ML is a computer science area that
powers machines to learn and improve on their own without being programmed. The
ML algorithms through data pattern analysis are able to predict, categorize, and
reveal useful information that would otherwise be difficult to extract using traditional
programming methods. These algorithms cover various learning paradigms such as
supervised, unsupervised, semi-supervised, and reinforcement learning. Moreover,
we have the concept of deep learning, which is a very advanced part of the field of
ML and which has turned into a great and efficient solution to get new insights and
make decisions based on enormous datasets [1, 2].

Following this general overview of machine learning, it is essential to understand
the major learning paradigms that define how models are trained and applied to real-
world scenarios. These paradigms form the theoretical basis for selecting appropriate
algorithms, depending on the problem domain and data availability.

As described by [1], machine learning techniques are typically classified into four
primary types: supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. Each of these approaches addresses specific categories of
problems and plays a vital role in the development of intelligent systems.

• Supervised learning is based on labeled datasets, the label helps the model
map an input to an output. It is used in tasks such as classification, image
recognition, or regression.

• Unsupervised learning does not need labels. The model has to find the
patterns on its own within the dataset. Common applications include clustering,
anomaly detection, and dimensionality reduction.

1

Introduction

• Semi-supervised learning mixes elements of supervised and unsupervised
learning. Usually a small amount of labeled data is mixed with a large amount
of unlabeled data. Applications include fraud detection, machine translation,
and medical diagnosis.

• Reinforcement learning exploits the benefits of the feedback mechanism
through rewards and penalties. The model develops a strategy thanks to
previous experience. This paradigm is well suited for decision-making scenarios
such as autonomous driving or real-time strategy games (such as chess).

Figure 1.1: Popularity of ML algorithms up to 2020 [1].

1.2 Deep Learning

Starting from the concept of machine learning, it is also worth analyzing the concept
of deep learning, a subset of ML that has revolutionized the world of AI compared
to the concept of shallow learning, often outperforming traditional approaches in
distinct domains [3]. DL is capable of a deeper feature extraction from the input
data, thanks to the inclusion of hidden layers between the input and output.

Deep learning has its roots in simple neural models such as perceptrons. However,
the field has grown sufficiently and become more complex, and we now have archi-
tectures such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and transformers at our disposal. These enabled the models to be not only
general-purpose but also capable of handling such tasks as image recognition, natural
language processing (NLP), and sequential data analysis. The depth of a network,
that is the number of hidden layers, the factor that determines its ability to learn
increasingly abstract concepts, hence the sophistication of the model by several orders
of magnitude as opposed to shallow networks [3, 2].

The history of Deep Learning is made up of several main events such as the
creation of CNNs, networks that have changed the whole game of computer vision
tasks, by detecting spatial hierarchies in the image data, and the implementation
of long short term memory (LSTM) networks, a type of recurrent neural network
that addresses the problem of the vanishing gradient, which is responsible for deep
learning of the sequence of data. Through this method, the new practice in the

2

Introduction

NLP area will impact not only parallelized processing of the sequences but also new
state-of-the-art performance on various benchmarks [3].

It speaks to the wide span of DL that has demonstrated the significant influence of
scientific and industrial sectors, from healthcare diagnostics and autonomous driving
to financial modeling and molecular chemistry. Furthermore, the introduction of
new practices in the training domain, such as self-supervised learning and federated
learning, is revolutionizing DL toward more efficient, scalable, and privacy-preserving
applications.

Another theorem that serves as an essential part of the theoretical grounding of
neural network applications is the universal approximation theorem, which states
that, indeed, if you have large enough neural networks, you are able to approximate
a continuous function, and this shows that the networks can handle any complexity
level and are quite effective in modeling highly complicated data patterns [3]. To
recap, deep learning is one of the most profound and fastest growing disciplines of
AI which is always renewing its scope and methodology by continually introducing
new architectures and training techniques.

Figure 1.2: Difference between normal and deep learning neural networks [4].

1.2.1 Layers

In a deep learning model, layers are the fundamental units that process data through
multiple stages. Common types of layers include:

• Fully connected layers, where each neuron connects to every neuron in the
previous layer.

• Pooling layers, which reduce spatial dimensions by summarizing features
(e.g., max or average pooling).

• Convolutional layers, a filtering operation that has the goal of extracting
feature from the input.

3

Introduction

Underpinning the numerous layers are artificial neurons, the basic unit of compu-
tation inspired by the biological neuron. With each neuron receiving one or many
inputs, weights are then applied, then a bias term, and then a non-linear activation
function to produce an output. Mathematically, the output y of a neuron can be
expressed as

y = g

A
nØ

i=1
wixi + b

B
,

where xi are the inputs, wi are the weights, b is the bias, and g(·) is the activation
function, such as ReLU, sigmoid, or tanh.

This mechanism allows neurons to learn complex patterns by adjusting the weights
and bias during training to minimize prediction errors.

Figure 1.3: Graphical representation of a neuron [5].

1.2.2 Activation functions

Activation functions are fundamental to a Deep Learning network because of the
non-linearity that are able to introduce to the model, allowing it to learn more
complex patterns and make better predictions. Without non-linearity, the model
would simply map intricate relationships between data. Popular activation functions
are the sigmoid and the Rectified Linear Unit (ReLU). The sigmoid function is more
useful for binary classification problems, since it maps the input values to the range
(0,1). However, this function suffers from the vanishing gradient problem. On the
other hand, ReLU directly outputs the input value if it is positive, 0 being returned
otherwise [3].

1.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are constructed around layers that are pur-
posefully produced to carry out the spatial structure of the given data, such as in
the case of images.

Convolutional layers use small local regions of the input to filter (kernels), where
they then produce feature maps that contain localized patterns.

4

Introduction

This local connectivity of the network changes the representation, but the number
of parameters is still less than in the case of fully connected layers, which makes it
easy to learn translation-invariant properties.

Let us assume that we have an input tensor x of size H ×W × C, the output of
a convolutional layer neuron that is mathematically computed is as follows:

zl
i,j,d =

k1Ø
m=0

k2Ø
n=0

wl
m,n,d xi·s+m,j·s+n,d, al

i,j,d = g(zl
i,j,d),

where wl
m,n,d are the filter weights, s is the stride, and g is the activation function.

After convolution, pooling layers are often applied to reduce the spatial dimensions,
summarized as:

al+1 = pool(al
i·s+m,j·s+n),

where pool is typically a max or average operation, as illustrated in Figure 1.4.

Figure 1.4: Pooling operation that reduces the spatial size of feature maps [6].

Stacking convolutional and pooling layers enables CNNs to learn hierarchical
features, from edges and textures to complex objects, forming the basis of many
state-of-the-art computer vision models such as YOLO [7, 8].

Figure 1.5 shows the overall structure of a typical convolutional neural network,
illustrating how the convolutional layers, pooling layers, and the fully connected
layers are stacked to extract and classify characteristics.

Figure 1.5: Structure of a convolutional neural network (CNN) [9].

5

Introduction

1.3 Computer Vision and Object Detection

According to [8] Computer vision (CV) is all about training machines to be able to
process and work with images and videos. In this way, CV algorithms have the ability
to extract, recognize, and make decisions with minimal or no human intervention.
The final aim here is to learn to act as a human being using a combination of image
processing, pattern recognition, and machine learning tools. The main areas of
deep learning usage are tasks such as image classification, object detection, facial
recognition, the functioning of self-driving cars, and the study of images.

Object detection is a field of computer vision in the digital era that finds and
delineates individual objects, animals, cars, etc., in images. Modern approaches
to object detection predominantly employ deep learning and, in particular, CNNs,
to acquire and analyze data from images. In general, the approach here is to
identify a candidate object for classification after feature extraction. After the correct
classification (which is itself a branch of CV) the object has to be detected on the
image, and the correct bounding box has to be drawn around the object.

As written by [10] object detection nowadays is divided into two different types:
two-stage and one-stage object detection. Two-stage object detection is based on
the proposal of the region of interest (first stage), and the classification made by
a separate network analyzes these regions and the relative features. Then predicts
the class of each object and refines the coordinates of the corresponding bounding
box. Some relevant examples of this approach are R-CNN, Fast R-CNN and Faster
R-CNN. One-stage detection on the other applies a single neural network to the
image to directly predict objects. These types of algorithms divide the image into
a grid of cells, each responsible for detecting an object centered in it. A key role
is played by the anchor boxes which are generated by the network and are then
scored for objectness and after filtering the best ones are chosen, thus removing the
need for a second stage. Efficient one-stage detectors are RetinaNet and YOLO, the
latter of which was used for this project and will be analyzed in depth in the course
of the next chapter.

Figure 1.6: Difference between one stage and two stage object detection [11].

6

Chapter 2

YOLO

As described in the previous chapter, current detection systems like R-CNN use the
region proposal approach to first generate bounding boxes and then a repurposed
classifier to perform detection. This pipeline is slow and hard to optimize also because
implies the post-processing which serves as a "cleaning" of the result (elimination of
duplicates and rescoring of the boxes). YOLO proposes to use a single convolutional
network to simultaneously predict boxes and class probabilities. This allows the basic
YOLO version to process images in real time at 45 frames per second [12]. YOLO
is able to achieve more than twice the mean average precision of other real-time
systems.

Figure 2.1: YOLOv1 architecture [12].

2.1 Metrics

How do we tell if a model is performing well or not? We have some key statistics to
keep in mind: precision, recall and mean average precision.

Precision is defined as
Precision = TP

TP + FP
where TP stands as True Positive and FP as False Positive. Recall defines how many

7

YOLO

of the real positives can be spotted and is defined as

Recall = TP
TP + FN with FN as False Negatives

Lastly, we have mAP, defined as

mAP = 1
C

CØ
c=1

APc with C Classes and AP defined as AP =
Ú 1

0
p(r) dr

where p(r) is the precision depending on recall. mAP defines whether a prediction is
correct or not, based on the threshold set for the value.

2.2 Detection pipeline

Yolo divides the input image in a S X S grid. As said before, if the center of an object
falls into a grid cell, then that cell is responsible for the detection of that object.
Each cell predicts and scores B bounding boxes. The score is used to reflect how
confident the model is that the box contains an object. The definition of confidence
is as follows:

Pr(Object) · IoUpred
truth

If no object is present in a cell it should be zero, otherwise the score should be
equal to Intersection Over Union (IoU) [12], which is used as a threshold for a correct
prediction, between the prediction and the ground truth and is defined as:

(a) IoU values

Figure 2.2: IoU formula, and examples with IoU values.

Each bounding box consists of 5 predictions: x, y, w, h and confidence. (x,y)
coordinates represent the center of the box relative to the bounds of the grid
cell. Width and height, on the other hand, are related to the whole image. The
confidence represents the IOU said before. Each grid cell also predicts conditional
class probabilities as Pr(Classi | Object). Only one set of class probabilities per grid
cell is predicted [12].

8

YOLO

The prediction made by the model is encoded as S X S X (B * 5 + C) with S =
grid size, B = number of boxes, and C = number of classes.

Figure 2.3: Detection pipeline [13].

2.2.1 Anchor Boxes

Anchor boxes are used by YOLO to help the model predict objects. Anchor boxes
are predefined boxes, from which the model starts to resize and reshape the final
bounding box.

Figure 2.4: Anchor box example [14].

As described by [15], the YOLOv5 predicts the coordinates of the bounding box
as offsets relative to a predefined set of anchor box dimensions.

9

YOLO

Figure 2.5: Bounding box prediction based on anchor box [16].

What is important to keep in mind is that the anchor boxes are used on top
of the feature map and also that anchor boxes are not the bounding boxes but a
predetermined shape for a certain class.

Figure 2.6: Anchor boxes are used on top of a feature map [14].

2.2.2 Non-maximum suppression

Non-maximum suppression (NMS) is described by the same creators of the YOLO
repository in [17] as a key post-processing technique that is widely used in CV. More
specifically in object detection and by its pipeline. The main goal is to refine the
raw output of the model that usually identifies multiple overlapped bounding boxes
of the same object. In order to do this the main feature is the IoU that is used
as a threshold to delete the redundant boxes and keep the best one for the image,
this helps not only the mean average precision (mAP), a key metric in the object
detection, but also reduces false positives, resulting in a better all-around model.

10

YOLO

Figure 2.7: NMS and its effect on the final result [18].

2.2.3 Loss function

The loss function is a key component of a CNN, it is used to define how well the
model performs by comparing the prediction to the ground truth. An example can
be quadratic loss. The first version of YOLO optimizes during training this loss
function is

L = λcoord

S2Ø
i=0

BØ
j=0

⊮obj
ij

C
(xi − x̂i)2 + (yi − ŷi)2 +

1√
wi −

ð
ŵi

22
+
3ð

hi −
ñ

ĥi

42
D

+
S2Ø
i=0

BØ
j=0

è
⊮obj

ij (Ci − Ĉi)2 + λnoobj⊮noobj
ij (Ci − Ĉi)2

é

+
S2Ø
i=0

⊮obj
i

Ø
c∈classes

(pi(c)− p̂i(c))2

where ⊮obj
i denotes whether an object appears in cell i, and ⊮obj

ij indicates that
the j-th bounding box predictor in cell i is responsible for detecting the object [12].

[15] describes the loss function for YOLOv5 is a composite of Binary Cross-
Entropy (BCE) for class prediction and objectness, and Complete Intersection over
Union (CIoU) for localization. The function is a weighted sum of these losses.

Loss = λ1 · Lcls + λ2 · Lobj + λ3 · Lloc

It is important to notice that the BCE is relevant due to the nature of the binary
nature of the problem (object is present or not, if an object is present it is either
an element of a class or not) and the CIoU is also an improvement with respect to
standard IoU, it allows a better optimization and a quicker convergence. An efficient
training is also related to how well the λ1, λ2, λ3 are chosen.

This is an improvement compared to YOLOv1 and the loss function that it uses.

11

YOLO

2.2.4 Different versions

As stated before the YOLO algorithm is constantly developing and the latest version
(YOLO 11) got released just a few months ago. However for this thesis work the
versions that were used are YOLOv3 (for a first approach) and after a few changes
the final model was the YOLOv5. YOLOv5 has different versions that are used for
several needs. As stated by [15] the different versions are:

• YOLOv5n (Nano): designed for resource constrained projects. Its compact
and the FP32 version is around 4MB, useful for edge devices or IoT platforms.

• YOLOv5s (Small): standard and baseline model, this has 7.2 million param-
eters and is suitable for CPUs

• YOLOv5m (Medium): a compromise between speed and accuracy, this
version has 3 times the parameters of the s version

• YOLOv5l (Large): more than twice the parameters of the m model, more
suited for small objects detection.

• YOLOv5x (Extra Large): this version has the highest mAP and has twice
the number of parameters of the large version.

The table below shows metrics related to a 640x640 image, with accuracy, speed
and size.

Table 2.1: Comparison of YOLOv5 variants on 640x640 images.

Model mAP@50:95 mAP@50 CPU GPU1 GPU32 Params FLOPs
(%) (%) (ms) (ms) (ms) (M) (B)

v5n 28.0 45.7 45 6.3 0.6 1.9 4.5
v5s 37.4 56.8 98 6.4 0.9 7.2 16.5
v5m 45.4 64.1 224 8.2 1.7 21.2 49.0
v5l 49.0 67.3 430 10.1 2.7 46.5 109.1
v5x 50.7 68.9 766 12.1 4.8 86.7 205.7

The first two columns show the mAP with high confidence and with lower
confidence (with IoU between 50% and 95% and below 50%). CPU shows the
inference time of when is run on a CPU, then when is run on an AWS p3.2xlarge
V100 instance (which uses an NVIDIA Tesla V100) with a batch size of 1 image and
with a batch size of 32 images. Then the number of parameters that were previously
explained and finally the number of floating point operations required for a single
640x640 image [19, 15].

The graph 2.8 has different useful data for the purpose of this chapter. On the
y-axis, COCO AP val denotes the mean Average Precision (mAP) at Intersection
over Union (IoU) thresholds from 0.5 to 0.95, measured in the 5,000-image COCO
val2017 dataset at various inference sizes (256 to 1536 pixels). The x-axis shows the
GPU Speed of the average inference time per image on the COCO val2017 dataset
using the same AWS p3.2xlarge V100 instance as for the previous table, with a batch

12

YOLO

Figure 2.8: Metrics of the different models [19].

size of 32. EfficientDet data is sourced from the google/automl repository at batch
size 8 [19].

2.3 Quantization

As stated in the previous chapter, YOLO, in its standard version, uses floating point
precision to define weights and activations. In order to make the whole model lighter
and able to run on an FPGA, it is mandatory to compress the model without massive
losses on accuracy. To do this, it is useful to describe the quantization process.

Quantization compresses and reduces the computational and memory cost of the
model by changing the representation of data to INT8 instead of the standard FP32.

Figure 2.9: Basic example of quantization [20].

This raises two fundamental questions: What does this transformation bring and
how does it affect the model? It could be useful to take a step back in order to
understand this important part of the thesis work.

13

YOLO

2.3.1 Data representation

The data types relevant to this chapter are INT8 and FP32, which respectively mean
8-bit integer and 32-bit signed floating point. INT8 has two different usages:

• For weights, it uses a signed integer, where 1 bit (the most significant) is for
the sign, and the other 7 are used for the value in the range [−128, 127].

• For activation functions, it uses an unsigned integer, in the interval [0, 255].

Both are very light and fast in inference. FP32, on the other hand, uses 32 bits: 23
for the mantissa and 8 for the exponent, resulting in a more granular representation
at the expense of speed and memory usage.

This means, as seen in Figure 2.9, that instead of the wide range of FP32 values,
INT8 only has 256 values, introducing a challenge: how to round the weights and
activations to those values with minimal accuracy loss but significant gain in model
speed and size.

2.3.2 Quantization techniques

Let’s first introduce some theoretical concepts to better understand the techniques
described by [21].

The idea is to map a real-valued input to a discrete set Q of quantization levels:

Q : R→ Q with |Q| = 2b

For uniform quantization with step size ∆, the quantization error is bounded by:

|x−Q(x)| ≤ ∆
2

By controlling ∆, we can manage the trade-off between accuracy and resource
efficiency.

The formal definition of linear quantization is:

q = round
3

x

s

4
+ z

where the floating point value x is mapped to the integer q using the scaling factor s

and zero-point z, with s ∈ R+ and z ∈ Z.

The two main approaches are Quantization Aware Training (QAT) and Post-
Training Quantization (PTQ). The first one integrates the quantization in the training
phase; this helps the model tune the parameters for lower precision representations.
The idea is to simulate quantization during training, allowing the model to learn
parameters that are more robust when precision reduction is applied [21]. PTQ is
instead applied to a pre-trained model, first the range of the parameters is checked by
a calibration set. This approach is more suitable for simpler but efficient tasks [21],

14

YOLO

it can be either static or dynamic, the difference resides in the moment of application
(static is right after training, while dynamic is at run-time) and also the static applies
quantization to both weights and activations, while dynamic only on the activation
functions because the weights are already quantized. Another relevant aspect is that
dynamic quantization keeps some data in FP32, while static is fully converted to
INT8.

Figure 2.10: Model size pre and post quantization [21].

Figure 2.11: Performance metrics related to data representation [21].

As illustrated in Figures 2.11 and 2.10, reported by [21], the performance and
size of the model before and after quantization are shown.

15

YOLO

2.3.2.1 PTQ and QAT algorithms

Algorithm 1 Quantization-Aware Training (QAT) [21].
Require: Model parameters Θ, learning rate η, training data D
Ensure: Quantization-aware trained parameters Θ∗

1: while not converged do
2: B ← SampleBatch(D)
3: Θ̂← Quantize(Θ) ▷ Forward quantization
4: L← Loss(Θ̂, B)
5: g ← ∇ΘL ▷ Use Straight-Through Estimator
6: Θ← Θ− η · g
7: end while
8: return Θ∗

Algorithm 2 Post-Training Quantization (PTQ) [21].
Require: Pre-trained model parameters Θ, bit-width b, calibration dataset Dcal

Ensure: Quantized model parameters Θ̂
1: (xmin, xmax)← ComputeRange(Θ,Dcal)
2: s← xmax−xmin

2b−1
3: z ← round

!−xmin
s

"
4: for each tensor T in Θ do
5: qT ← round

1
T
s

2
+ z

6: T̂ ← (qT − z) · s
7: Θ̂[T]← T̂

8: end for
9: return Θ̂

2.3.3 Scaling factor

In the previous section, we introduced the concept of scaling factor. It is crucial for
quantization as it translates between floating-point and integer values, essentially it
defines how much a change of one unit in the integer domain corresponds to in the
floating-point domain.

A relevant hardware optimization is the power-of-two scaling factor. As explained
in [22], this enables bit-shifting rather than more complex operations, which is faster
and more hardware friendly.

For uniform quantization, the scaling factor is computed as

s = xmax − xmin
2b − 1

16

Chapter 3

Processing the datasets

After talking about all the knowledge needed, it is time to take the first steps toward
the implementation of the project. This chapter outlines the different datasets on
which the models have been trained, the preliminary pre-process phase and how it
was thought and developed. The pre-process step had to structure the data that
were supposed to be handled later in a defined format, the YOLO format, which will
be discussed in depth in the first section. Then these data were fed to the YOLOv3
model to obtain the first results.

3.1 Photovoltaic thermal images dataset

The first dataset is the Fotovolt dataset, for which the goal was to train a model
capable of recognizing faulty cells in a photovoltaic field. This dataset is made up
of 1008 images sized 512x640 pixels and corresponding labels, it is encoded in 3
numpy files imgs_temp.npy,imgs_check.npy and imgs_masks.npy. A numpy file is
a multidimensional tensor, which contains multiple data for each image and has to
be loaded correctly (functions contained in the numpy library are able to do this) by
the script in order to be translated and used.

imgs_temp.npy contains the thermal images. The second and third dimensions
of array respectively indicate the x and y coordinates of the image pixels, where the
values indicate the temperature in celsius degrees.

imgs_masks.npy contains the mask images. The second and third dimensions of
array respectively indicate the x and y coordinates of the image pixels, where the
values indicate the area of anomalous cells:

• Label 0: if there is no anomaly.

• Label 1: if there is an anomaly.

And the last one, imgs_check.npy contains a 3-value label for each image:

• Label 0: images with one anomalous cell.

• Label 1: images with more than one anomalous cell.

17

Processing the datasets

• Label 2: images with a contiguous series of anomalous cells.

It is important to keep in mind that all the pictures contained at least one defect,
there were no images without faults. The first task was to create the typical YOLO
structure, which is the following one:

1 / dataset
2 |-- images
3 | |-- train
4 | | |-- img1.jpg
5 | | |-- img2.jpg
6 | | ‘-- ...
7 | ‘-- val
8 | |-- img101 .jpg
9 | |-- img102 .jpg

10 | ‘-- ...
11 |-- labels
12 | |-- train
13 | | |-- img1.txt
14 | | |-- img2.txt
15 | | ‘-- ...
16 | ‘-- val
17 | |-- img101 .txt
18 | |-- img102 .txt
19 | ‘-- ...
20 |-- train.txt
21 ‘-- val.txt

Here each .txt file inside the labels directory contains the labels related to the
image with the same name, with this structure:

<class_id> <x_center> <y_center> <width> <height>

And each value is normalized to the range [0, 1] because normalization allows the
model to scale the boxes to different sizes. The train.txt and val.txt contain the
path to the images, these files will be used later for the training phase, but it was
useful to show them in the structure anyway.

18

Processing the datasets

3.1.1 Pre-processing script

Here are the key parts of the script preproc.py

Listing 3.1: Image preprocessing.
1 def preprocess_image (image):
2 if len(image.shape) == 2:
3 image = cv2. cvtColor (image , cv2. COLOR_GRAY2BGR)
4 image = image / 255.0
5 return image

This simple function is the one that draws the image and converts the original
image which is a grayscale image to an RGB image (not because of the coloring, but
because the number of channels can help the training process). Furthermore, this
function normalizes the values of each pixel to uniform data.

Listing 3.2: Train/Validation split.
1 for i in range(total_number_of_images):
2 if i % 5 == 0:
3 save image and label in validation set
4 else:
5 save image and label in training set

This part is responsible for correctly splitting the 2 sets of images and labels
between train and validation, for the purpose of this part it is not useful to write the
code in its entirety but the idea was to divide the dataset into 80% of data for the
training and the remaining 20% for validation.

Listing 3.3: Single bounding box computation.
1 if check in [0, 2]:
2 indices = where(mask == 1)
3 min_x , max_x = min(indices [1]) , max(indices [1])
4 min_y , max_y = min(indices [0]) , max(indices [0])
5

6 center_x = (min_x + max_x) / 2 / img_width
7 center_y = (min_y + max_y) / 2 / img_height
8 width = (max_x - min_x) / img_width
9 height = (max_y - min_y) / img_height

10

11 write to label file: class_id center_x center_y width
ñ→ height

Here, the code takes the cases of single defects, whether it is a single cell or
multiple contiguous cells. The script takes the values from the numpy tensor and
normalizes such values, considering that the numpy files contain the coordinates
encoded as (min x, max x, min y, max y) and these have to be converted in center,
width, and height.

19

Processing the datasets

Listing 3.4: Multiple bounding boxes via connected components.
1 if check == 1:
2 labeled_array , num_features = label(mask)
3

4 for component_id in range (1, num_features + 1):
5 indices = where(labeled_array == component_id)
6 min_x , max_x = min(indices [1]) , max(indices [1])
7 min_y , max_y = min(indices [0]) , max(indices [0])
8

9 center_x = (min_x + max_x) / 2 / img_width
10 center_y = (min_y + max_y) / 2 / img_height
11 width = (max_x - min_x) / img_width
12 height = (max_y - min_y) / img_height
13

14 write to label file: class_id center_x center_y width
ñ→ height

This final piece of code does the same thing as the previous code segment, but
takes into account the case of multiple not contiguous cells (check==1), and correctly
saves multiple labels in the text file.

3.1.2 Ground Truth directory

After the pre-processing of the dataset, another script BB.py was created to correctly
create a directory named groundTruth which contained the images with the corre-
sponding boxes (the correct ones, which the YOLO model uses to calculate IoU)
calculated from the label .txt file paired with the image .jpg file.

The script is relevant for the part where it is key to de-normalize the labels as
shown in the following code snippet.

Listing 3.5: Main loop processing YOLO bounding boxes from label files.
1 with open(input_file , ’r’) as file:
2 lines = file. readlines ()
3 for line in lines:
4 center_x , center_y , width , height = map(float , line.

ñ→ strip ().split () [1:])
5 x1 = int ((center_x - width / 2) * og_width)
6 y1 = int ((center_y - height / 2) * og_height)
7 x2 = int ((center_x + width / 2) * og_width)
8 y2 = int ((center_y + height / 2) * og_height)
9 cv2. rectangle (img , (x1 , y1), (x2 , y2), (255 , 0, 0), 2)

The operation to derive the coordinates needed by the function of CV2, which
are the bottom left and top right coordinates, is done by denormalizing the values
with og_width and og_height, respectively 640 and 512, which is the size that was
used to normalize the label in preprocess.py.

20

Processing the datasets

The results of the three variants (single, contiguous and multiple non-contiguous)
are shown below.

(a) Single defect. (b) Multiple non-contiguous.

(c) Contiguous defects.

Figure 3.1: The three cases of the fault present in the photovoltaic dataset extracted
from the numpy models.

3.2 ASXL dataset

The ASXL dataset is a collection of images of bridges; these bridges are either safe
or cracked, the goal is to train a model capable of spotting such cracks. The dataset
contains 50 images of 6000x4000, which is a size that is not feasible for edge inference.
The pre-processing of this dataset had to be a little different due to the nature of
these images, which resulted in the segmentation of this dataset into 512x512 images.

21

Processing the datasets

Figure 3.2: Segmentation of the original image.

These segments have been pre-processed as in 3.1, which resulted in the creation
of 1210 training files (images and labels) and 347 validation data along with 172
test data.

In order to extrapolate the labels for each image, each segment has been masked
to obtain only the highlighted crack, then the label of the boxes have been applied.

(a) Segment of the image. (b) Mask of the segment.

(c) Ground Truth image with the correct
bounding box applied.

Figure 3.3: Processing pipeline: from the segment to the ground truth image.

22

Processing the datasets

Figure 3.3 shows the full processing of the images, this finally results, when the
final images are assembled back with each segmentation combined, into this image
processing:

Figure 3.4: Original image with every segment’s bounding box applied.

Due to the difference in size between the images on which the model is trained and
the full-scale images, which resulted in a great discrepancy between the dimensions
of the bounding box , this model has been difficult to train; however, the results will
be analyzed in-depth in 6.

3.3 COCO dataset

COCO (Common Objects in Context) is a popular benchmark dataset designed for
different tasks such as segmentation, captioning, or object detection. It contains
more than 330,000 images, including more than 200,000 labeled images with
1.5 million object instances across 80 object categories.

23

Processing the datasets

Figure 3.5: Coco batch example [23].

For the goal of this thesis, the training of a working model on the COCO dataset
has been used as a benchmark for further validation of the results obtained.

In other words, obtaining good results on COCO, with 80 classes, different
bounding box sizes, and real-world scenarios, is additional evidence of the correct
work done with this project.

This means that validation on this dataset is seen as a counter-proof of validity
of the workflow adopted and certificates the value of each tool used.

24

Chapter 4

First training with YOLOv3

This chapter will discuss the structure of the Yolov3 model, which has been tested for
the first approach and was the first step toward the exploration of different settings,
this model has been trained only on the Fotovolt dataset discussed and described in
3.1. After the introduction to the model structure this chapter will also describe the
training process with an in-depth analysis of the different parameters that are used
to configure the training itself. Also the results of the first training will be shown
and discussed.

4.1 Model structure and training components

The first approach was to use a YOLOv3-Tiny version with normal FP32 layers and
then change the model structure to a quantized version, the last two ingredients
needed for the training phase are the two .yaml files: one for the model structure
yolov3-foto.yaml and one that contains the classes and paths to the dataset
directory foto.yaml. The latter is reported in the following.

Listing 4.1: Dataset configuration file for YOLO training.
1 path: fotovolt_test / fotovoltaic_dataset
2 train: train.txt
3 val: val.txt
4 nc: 1
5 names: [’anomaly ’]

This file contains the path to the two files with the paths to the images needed for
the training, the path to the dataset directory, and the number of classes with the
name.

25

First training with YOLOv3

Listing 4.2: YOLOv3-Tiny quantized model configuration without comments.
1 backbone :
2 [
3 [-1, 1, Conv , [16, 3, 1]],
4 [-1, 1, nn.MaxPool2d , [2, 2, 0]],
5 [-1, 1, Conv , [32, 3, 1]],
6 [-1, 1, nn.MaxPool2d , [2, 2, 0]],
7 [-1, 1, Conv , [64, 3, 1]],
8 [-1, 1, nn.MaxPool2d , [2, 2, 0]],
9 [-1, 1, Conv , [128 , 3, 1]],

10 [-1, 1, nn.MaxPool2d , [2, 2, 0]],
11 [-1, 1, Conv , [256 , 3, 1]],
12 [-1, 1, nn.MaxPool2d , [2, 2, 0]],
13 [-1, 1, Conv , [512 , 3, 1]],
14]

The backbone of the model consists of alternating Convolutional and MaxPool2d
layers, where each layer takes the output from the previous one (-1, 1).

In the convolutional layers, the three parameters represent:

• the number of output channels (e.g., 16, 32, 64, . . .), which defines how many
filters extract features.

• the kernel size (e.g., 3, meaning a 3 × 3 filter), the size of the sliding window
applied to the input.

• the stride (e.g., 1, defining the step size of the kernel), how many pixels the
filter moves at each step.

For the MaxPool2d layers, the parameters are:

• the kernel size (e.g., 2, corresponding to a 2× 2 window), the area over which
the maximum value is taken.

• the stride (e.g., 2, meaning the pooling window shifts by 2 pixels), how far the
pooling window moves each time.

• the padding (e.g., 0, meaning no extra pixels are added to the input), pixels
added around the input edges to control output size.

The head of the model, which is in charge of taking the output of the backbone
and elaborating data in order to generate classes and objects predictions, is the
following one

26

First training with YOLOv3

Listing 4.3: YOLOv3-Tiny quantized model configuration without comments.
1 head:
2 [[-1, 1, Conv , [1024 , 3, 1]],
3 [-1, 1, Conv , [256 , 1, 1]],
4 [-1, 1, Conv , [512 , 3, 1]],
5 [-2, 1, Conv , [128 , 1, 1]],
6 [-1, 1, nn.Upsample , [None , 2, ’nearest ’]],
7 [[-1, 8], 1, Concat , [1]] ,
8 [-1, 1, Conv , [256 , 3, 1]],
9 [[17 , 13], 1, Detect , [nc , anchors]],

10]

What immediately catches the eye is the reduction of the output channels of each
layer; this is due to the high number of features extracted from the backbone, but
since not all those features are relevant for the predictions, the head has to shrink
the number of those features to use only the relevant ones. This speeds up the model
and also reduces the size of it.

Then the Upsample resizes height and width of the feature map in order to be
compliant with the previous one, the parameters are [None, 2, ’nearest’] which
refer to the fixed size of the output, None in this case, 2 is the scale factor, the input
size has to be doubled, ’nearest’ refers to the nearest neighbor interpolation, this
means that every pixel is simply copied in the nearest positions without complex
interpolations involved.

The Concat takes the layer before, the Upsample, and combines it with the
8th layer of the model, which is the [-1, 1, Conv, [256, 3, 1]] located in the
backbone, and this is done to improve predictions of small objects because is a merge
between the deep feature map of the Upsample (for example "this is a cat") with a
high resolution feature map ("there is a small object here").

The final layer, Detect, takes two different resolution layers (17th and 13th), the
17th for small objects and the 13th for large ones. This layer takes feature maps at
different resolutions, and for each cell and anchor box predicts:

• The coordinates of the bounding box (x, y, width, height), when present.

• The objectness (how likely is it that an object is present).

• The class score (which object it is, in our case this is trivial since the class is
only 1).

4.1.1 Hyperparameters

After explaining the backbone and the head of the model, it is time to focus on the
hyperparameters. The hyps are a set of configuration parameters used to control
the process, usually these parameters are set in a .yaml file, which is the case here,
and they are used to define the training process. The scope of each hyp will be
explained, but these will be divided into groups to better understand each. The first
group is related to training scheduling and optimization, which is the following.

27

First training with YOLOv3

• Initial learning rate: step size in each iteration to a minimum of a loss
function.

• Final learning rate: learning rate at the end of the training process.

• Momentum: momentum factor used in the optimizer, helps for faster conver-
gence by smooth.

• Weight decay: helps the model avoid overfitting (which is when the model
learns training data too well and performs poorly on unseen data) by penalizing
large weights.

• Warmup epochs: how many epochs are used for the warm-up phase, which
is a phase where the learning rate gradually increases from a small value to the
initial learning rate.

• Warmup momentum: momentum value used during the warm-up phase,
usually small to avoid large updates.

• Warmup bias lr: specific learning rate for bias terms during warm-up.

These hyps regulate the pace, the stability at the beginning, and the consistency
of the training process. Then there are all the loss function-related hyps which are
the following:

• Bounding box loss: a coefficient that multiplies the regression loss for the
bounding boxes (the error between the size and position of the correct and the
predicted box).

• Class loss: same "weight" but for the classification loss.

• Objectness loss: the objectness loss explained in the previous section.

• Objectness and class positive weight: these are additional weights that
help the model balance between positive and negative samples (helps with
unbalanced datasets).

• Focal loss gamma: reduces weight for easier examples (well classified) and
focuses on harder and misclassified examples.

• IoU threshold: which defines the minimum IoU value to consider a prediction
correct.

• Anchor matching threshold: defines the minimum IoU value to consider an
anchor box as a positive sample.

The final group is the augmentation related hyps, data augmentation is a technique
that is particularly useful for smaller dataset and is used to artificially increase the
number of training samples by applying random transformation defined by the
following parameters::

28

First training with YOLOv3

• HSV hue, saturation, value: these are the values used to randomly change
the hue, saturation, and value of images during the training process.

• Degrees: random rotation angle for the images (in degrees).

• Translate: vertical or horizontal translation (in pixels) for the images.

• Scale: scaling factor for images (zoom-in or zoom-out).

• Shear: angular deformation applied to the images.

• Perspective: perspective distortion (simulates tridimensional view) for the
images.

• Flip up, down, left, right: random flipping of the images.

• Mosaic: activates mosaic augmentation that combines multiple images into
one.

• Mixup activates mixup augmentation which merges two images and their
labels.

• Copy Paste: randomly pastes objects from one image to another to improve
randomness and, therefore, the robustness of the model.

4.1.2 Optimizer

The optimizer is the algorithm that updates the parameters during the training
process. The three different optimizers tested for this thesis work are SGD (Stochastic
Gradient Descent), Adam and AdamW, these last two are extensions of the SGD
algorithm. SGD is the default optimizer for Yolo architectures and, as cited by
[24] SGD calculates the gradients of the cost function with respect to the editable
parameters of the network, its goal is to minimize the objective function (error or
cost) that the model wants to reduce during training. These parameters are updated
in the opposite direction to the gradient of the function. As seen before, the learning
rate (LR) controls the step size taken towards a local minimum. In summary, SGD
seeks to find the value of the parameters that minimize the objective function. The
equations are reported below to determine how it works.

θ = θ − η · ∇θJ(θ) (4.1)

θ = θ − η · ∇θJ(θ; xi, yi) (4.2)

Where θ are the model parameters, η is the LR multiplied by the gradient ∇, xi is the
parameter update rule for each training example and yi is its corresponding label.
Adam and AdamW implement adaptive moment estimation, both are used to
adjust the weights like SGD but these extensions calculate the running average of the
gradients and the squared gradients, which represent the first and second moments

29

First training with YOLOv3

of the gradient and use a rule to update the parameters. AdamW introduces the
weight regularization through the previously cited weight decay which tends to a
faster convergence. The equations for these extensions are reported below.

mt = β1mt−1 + (1− β1)gt (4.3)

vt = β2vt−1 + (1− β2)g2
t (4.4)

θt = θt−1 −
η√

v̂t + ϵ
· m̂t (4.5)

Here, mt is the average of the gradients, and vt is the average of the squared
gradients. β1 and β2 control the decay rate of the first and second moment estimates
while gt is the gradient for the current batch, the latter equation is the Adam rule to
calculate the cost function.

Figure 4.1 shows how these different optimizers affect mAP with several learning
rates.

(a) SGD mAP/epochs. (b) Adam mAP/epochs.

(c) AdamW mAP/epochs.

Figure 4.1: Different learning rates and corresponding mAP0.5 for each epochs for
YoloV5 with the three optimizers [24].

4.1.3 Scheduler

The scheduler is a mechanism that changes the value of the LR during the training
process. It is a key component because it helps both during the initial phase (a
higher LR helps the model to explore different parameters with higher speed) and
during the final phase (scaling it down when the function is near the local minimum

30

First training with YOLOv3

and preventing the model from "skipping" that value). Fine-tuning the LR can help
the model converge faster and generalize better.

At each epoch, the scheduler sets the LR value, and the choice is based on a
certain function of the scheduler. The value is then passed to the optimizer, which
uses the LR to update the weights. There are several different scheduling functions.
The ones that are mainly by Yolo architectures are StepLR, LambdaLR and
CosineAnnealingLR.

StepLR, according to [25], decays the learning rate of each parameter group by γ

every step_size epochs. It is possible for this decay to happen concurrently with
learning rate adjustments made independently of this scheduler. When last_epoch
= -1, the initial learning rate is set to lr.

lrepoch =

γ · lrepoch−1, if epoch mod step_size = 0

lrepoch−1, otherwise

Figure 4.2: StepLR [25].

This is the default LR scheduler, but for this thesis work the ones used are the
LambdaLR and CosineAnnealingLR

Lambda sets the learning rate of each parameter group to the initial learning rate
multiplied by a given function λ. When last_epoch = −1, sets the initial learning
rate at lr.

lrepoch = lrinitial · λ(epoch)

while Cosine Annealing instead sets the learning rate of each parameter group
using a cosine annealing schedule which follows a cosine wave. [25] points out that,
as stated for the previous scheduler, because the schedule is defined recursively,
the learning rate can be simultaneously modified outside of this scheduler by other
operators.

Also, if the learning rate is set solely by this scheduler, the learning rate at each
step becomes

31

First training with YOLOv3

ηt = ηmin + 1
2(ηmax − ηmin)

3
1 + cos

3
Tcur
Tmax

π

44

(a) Lambda LR. (b) Cosine Annealing LR.

Figure 4.3: Lambda and Cosine Annealing schedulers [25].

There is also a different version called Cosine Annealing with Warm Restarts
that differ because restarts after Ti epochs

ηt = ηmin + 1
2(ηmax − ηmin)

3
1 + cos

3
Tcur
Ti

π

44
With the corresponding graph:

Figure 4.4: Cosine Annealing with warm restarts [25].

For the scope of this thesis work other schedulers have not been taken into account
nor studied, these ones are the most relevant for the training of the models that were
the object of this project.

4.2 Training process

Now that the pre-process has been done and all the relevant actors have been
explained, it is time to consider the training process itself and how it happens. The
whole process revolves around three main scripts that will be described in depth

32

First training with YOLOv3

with coding segments in A but the pipeline and the main goal will be discussed and
explained.

These three scripts are:

• train.py which is the core of the training process.

• val.py at the end of each epoch this script is used to validate the weights and
report the metrics of the model at that stage.

• detect.py detects objects in the images, is used by val.py to predict the
bounding boxes.

The training file is divided into several phases. It accepts different arguments to
configure the training (the .yaml files that are used to load the dataset on which the
training must occur, the weights that have to be used to train the model, the batch
size of each training epoch and others) and first sets up the device that are going to
be used, the directory in which the results are going to be saved and then build the
model (either from zero or from a checkpoint if specified).

Then it sets up the optimizer (which is specified by the argparse argument) and
the scheduler (through pytorch library). After everything is set the training starts
and the loss, LR and metrics are updated after each epoch. At the end of each epoch
the val.py file is run for validation and saves the best model (.pt version) and the
last one (in case the training is stopped, so that it can be resumed with the last
weights of the training).

Here is when the metrics are calculated and a corresponding .csv file is updated
with losses for object, class and bounding box, also Precision, Recall, mAP0.5
and mAP0.5-95 are calculated and wrote in the report.

At the end of the training it is possible to see and analyze the graphs with
precision, recall and PR curve, also the F1 curve is plotted, which is defined as
the harmonic mean between precision and recall and how it varies with different
confidence values is calculated as F1 = 2 · precision·recall

precision+recall and can help determine the
best confidence value for the model.

For the training of the first model the script was executed with the following
arguments:

• Configuration of the yolo model explained in section 4.1.

• .yaml file that specified the path to the dataset.

• Hyps defined by the hyps.yaml file (the ones discussed in section 3.2.1, will
be discussed in A.

• Image size of 1024x1024 to help the first training (will be scaled afterwards)
since previous trainings highlighted the difficulty of this model to be trained
on 640x640.

• Batch size of 32 images per batch.

33

First training with YOLOv3

This training also used Lambda LR scheduler and SGD optimizer.
The results of this training are reported below with different graphs

(a) Precision curve. (b) Recall curve.

(c) Precision/Recall curve. (d) F1 curve.

(e) Results of loss and metrics.

Figure 4.5: Graphs related to the Yolov3 train.

As can be seen in 4.5, image e The model suffered a lot of setbacks during
training, several epochs resulted in very low results. Although these setbacks were
an indication of a difficult training, the results were good.

Precision Recall mAP_0.5 mAP_0.5:0.95 box_loss obj_loss
0.7784 0.71053 0.74411 0.38598 0.019679 0.0007277

Table 4.1: Final results for the last epoch of the Yolov3 FP32 model.

34

First training with YOLOv3

In table 4.1 the class loss has been omitted since the model has been trained
on a single class, resulting in a trivial value of 0 for the class loss. After training
this model the detect.py script has been run to see how well the model performed
(visually) on the validation set.

(a) Multiple detections. (b) Single detection.

Figure 4.6: Detections with confidence value reported.

The results are generally good, but the quantization process that was tried
(substitution of the Conv layers with QuantConv) was not successful and the approach
had to be changed.

35

Chapter 5

Vitis AI and Yolov5

The failed quantization attempts resulted in a deep search for other solutions and
therefore the use of a different framework (Vitis AI). This framework allowed the
training to be based on a more powerful model (Yolov5) more precisely the models
Yolov5n and Yolov5s.

Vitis AI (VAI) offers different tools for AI hardware acceleration, taking every
step of the pipeline into account and providing compilers, optimizers (quantization
tools, the main reason for the usage of this framework), profilers, and libraries for
the implementation of quantized models on hardware devices.

Figure 5.1: Vitis AI tools [26].

This chapter will discuss both the integration of VAI into this thesis and the
full quantization process, highlighting the differences between each format obtained
and the optimization techniques applied to the models. Theoretical concepts will be
introduced when necessary along with a real-world application of them.

5.1 Processing the output tensor

The first part (which will be skipped due to the trivial nature of the task) was building
the docker image of VAI in order to be ready for the usage of the framework. Then

36

Vitis AI and Yolov5

the most important part for successfully training our model was the post-processing
of the raw output, which had to be done for the sake of the predictions’ results.

The model generates predictions for each cell of the feature map at different
scales, using a set of pre-defined anchors. The post-processing process is used to
transform these normalized predictions into absolute bounding box coordinates in
the image domain.

The postprocessing implementation, for which the code is written in A, was done
following these steps:

• Tensor reshaping: the raw output tensor is reshaped and permuted to
separate anchors, spatial dimensions, and prediction components (x, y, w, h,
objectness, class scores).

• Reference grid construction: a grid of (x, y) coordinates is created for each
feature map cell and used to map relative predictions to the image space.

• Coordinate decoding: a sigmoid activation is applied to the xy offsets,
objectness, and class scores; then xy is scaled and shifted using the grid and
stride to obtain absolute positions.

• Anchor combination: anchor box dimensions are scaled by stride and com-
bined with the predicted width and height using a non-linear transformation
(σ(·) · 2)2.

• Final output: a bounding box tensor [x, y, w, h, confidence, class scores]
is produced where all components are concatenated into a final tensor and
flattened across all positions and anchors.

This is consistent with [12] where the predicted coordinates (x, y, w, h) are
decoded with respect to the cell and associated anchor, using sigmoid functions for
the offset (x, y) and exponentials for the dimensions (w, h).

Now the output is a tuple made by two elements, the first element is the flattened
output tensor, which has the shape (B, N, C) where

• B is the batch size.

• N is the total number of predictions (sum on all scales of number of anchors
× height × width).

• C is the number of channels, which is made of the number of classes plus 5
(the parameters the parameters x, y, w, h and objectness).

The second element is a list of three tensors, one for each resolution of the feature
map, each with shape (B, 3, H, W, nc + 5). The values are as before (B is the batch,
nc is the number of classes and H and W are the height and width) while 3 is the
number of anchors per spatial location. And for each feature map resolution (H ×
W), the sizes are:

37

Vitis AI and Yolov5

• 80× 80 for the highest resolution scale (stride 8).

• 40× 40 for the medium resolution scale (stride 16).

• 20× 20 for the lowest resolution scale (stride 32).

Another important step was to change the rectifier units for yolov5, which included
SiLU layers, and substitute them with LeakyReLU, because VAI does not support
SiLU and of all supported layers, [27] describes LeakyReLU (with a slope of 26/256)
as the activation function that gives the better result.

Leaky ReLU is lighter and is better suited for embedded applications. The
equation for the Leaky ReLU is the following one:

LeakyReLU(x) =

x, se x ≥ 0

αx, se x < 0

The last thing implemented in the post processing function was the cut of the
last layer in the detection head and the implementation of such layer in the post
processing function. After this step, everything was ready for the Yolov5n training.

5.1.1 Training the Yolov5 model

The training of the Yolov5n model on the fotovolt dataset used a different backbone
and head from the Yolov3 model used in the previous chapter. The Yolov3 used
Conv and MaxPool layers for the backbone while the Yolov5 implemented Conv and
C3 layers, with a final SPPF layer before the head.

The C3 layer is essentially three Conv layers with a Bottleneck and a Concat
layers, this layer helps the gradient propagation and reduces parameters.

The SPPF is a Conv layer with 3 MaxPool layers, all jointed by a Concat layer,
used to help receptive ability and thus allow recognition of objects of different sizes.

Figure 5.2: YOLOv5n structure [28].

38

Vitis AI and Yolov5

The image 5.2 also shows how the head (called neck in the image) is structured.
The training of this model gave far better results in the .pt format weights.

Precision Recall mAP_0.5 mAP_0.5:0.95 box_loss obj_loss
0.82126 0.80263 0.81621 0.47899 0.034487 0.0066194

Table 5.1: Best results for Yolov5n on the 640x640 fotovolt dataset.

These results can be compared with the 4.1 and a neat improvement can be seen.
Precision has a +5% improvement, recall and mAP0.5-95 have an astounding +9%
and mAP0.5 has a +7% boost as well. The validation batch is the following:

(a) Labels for the batch.

(b) Predictions for the batch.

Figure 5.3: Comparison of labels and predictions for the validation batch.

39

Vitis AI and Yolov5

Figure 5.3 shows that the predictions are mostly correct and the confidence score
is higher than the ones of 4.6. Figure 5.4 shows the results of the training.

(a) Precision curve. (b) Recall curve.

(c) Precision/Recall curve. (d) F1 curve.

(e) Results of loss and metrics.

Figure 5.4: Graphs related to the Yolov5 train.

Although the metrics show many epochs with low quality results, the overall
training was successful and the results excelled much more than expected, resulting
in a strong model for this step of the project.

40

Vitis AI and Yolov5

5.1.2 Export and validation of the ONNX model

The model performed well and the work now revolved around the export of the .pt
weights to the .onnx format, which is the target format for the quantization. VAI
offers a wide range of tools but the main tools adopted for this work (VAI Quantizer
mainly) is based on the ONNX format. This format (Open Neural Network Exchange)
offers way more portability possibilities and is well supported by many acceleration
tools. ONNX is also more reliable for quantization, pruning and optimization.

So after obtaining the version needed, another validation process was run for
completeness and safety.

Precision Recall mAP_0.5 mAP_0.5:0.95
0.825 0.785 0.809 0.479

Table 5.2: Validation of the ONNX format.

(a) Labels of the image. (b) Predictions of the ONNX model.

Figure 5.5: Validation batch for ONNX model.

Validation batch, for non-PyTorch models if forced to one, but running detections
on the dataset can show all the predictions made, this validation run was made with
the Confidence threshold not set on the optimal value proposed by the F1 curve,
by doing so the results of the validation see an improvement of +4% of mAP0.5-95.

5.2 Quantizing the model

Before talking about the quantization function and the way it is implemented by VAI,
it is better to define a key concept which is the differences between dynamic and
static quantization. As said in 2.3, the quantization goal is to compress the FP32
model to an INT8 model, to do so, the values have to be clipped, so the values of the
FP32 interval have to be mapped to INT8 range, leading to a problem where there is
to be a clipping range defined as the [min, max] interval where values less than min

41

Vitis AI and Yolov5

are set to min and values greater than max are set to max. This value is derived
from the formula expressed in 2.3.3. In [29], Dynamic quantization is described as
a technique that dynamically calculates this range for each activation map, and this
usually results in higher accuracy but also higher overhead. Static quantization
is done with the aid of a calibration dataset to define the typical clipping range of
the activation maps and keep that range fixed. This does not add computational
overhead but offers lower accuracy.

Figure 5.6: Tools for the quantization process [30].

VAI offers a static quantization function, so the script was divided in 2 steps:
The first is the loading of a Calibration Dataset which is best to be a subset of
the training or validation dataset (around 100-1000 images in order to successfully
calibrate the quantized model on the target dataset). The second step is the quantiza-
tion function itself. This quantization function is vai_q_onnx.quantize_static()
which takes different parameters, from the model input to the calibration data. The
main focus will be on the format, the calibration method, and the extra options.

The format is QDQ, which stands for Quantize/DeQuantize and is a technique
that simulates the quantization on the FP32 model by adding a QuantizeLinear
layer (where is needed) and simulates the weights and activations on INT8, the a
DeQuantizeLinear is added right after this layer and the weights and activations
are converted back to FP32 [31].

The calibration method is PowerOfTwoMethod.MinMSE which is a function of VAI
that imposes the power of two scaling factors for the model, these power of two scaling
factors are calculated with a Minimum Mean Squared Error. The extra options are
some optimizations set for the power of two restriction and will be discussed in B.
The idea is depicted in the 5.8 image.

Figure 5.7: QDQ layers with power of two scaling factors.

42

Vitis AI and Yolov5

Figure 5.8: ONNX to QDQ process.

5.2.1 QONNX and the final conversion

The result of the ONNX to QDQ process allowed us to have models that could
then be safely converted to the quantized version. This was possible with the aid
of QONNX, a library that has many different useful functions for the scope of this
thesis, but among all those the ones that have been more relevant are the cleaning
and the conversion of the model.

The clean is an important transformation that needs to be run before the
conversion since it helps with the following inefficiencies:

• Removes unused nodes: Eliminates operations or tensors that do not
contribute to the final output of the model (dead nodes).

• Deletes redundant QDQ pairs: If excessive or unnecessary quantization/d-
equantization nodes were introduced (e.g., duplicates or adjacent inverse pairs),
these are removed to streamline the model.

• Simplifies subgraphs: Optimizes sequences of operations that can be merged
or reordered for efficiency, such as consecutive dequantization followed by
quantization layers.

• Cleans graph metadata: Updates tensor names, graph links, and node
metadata to reflect the new structure and remove obsolete references.

After the cleaning transformation, the model is almost ready for the final conver-
sion, but some precautions have to be taken to convert the QDQ layers for future
hardware implementations.

43

Vitis AI and Yolov5

One key concept is the homogeneity of the scaling factors that are put in input
to the different layers and also between input and output layers. The first conversion
done did not take care of this step and generated this kind of layers.

(a) Different scaling factors between the Con-
cat layer’s inputs.

(b) Different scaling factors between the Add
layer’s inputs.

Figure 5.9: Add and Concat different scaling factors.

Figure 5.9 shows that the Add layer also has different scaling factors between the
input layers and the output layer, this is a problem that also occurs for the Leaky
ReLU as shows the example of 5.10

Figure 5.10: Different scaling factor between input and output layers for the Leaky
ReLU.

44

Vitis AI and Yolov5

The script written, which will be analyzed in B, made sure to standardize the
scaling factor between the input layers of every Add and Concat layer and also
between their input and output layers.

For this task, the script recursively travels the graph and searches for these layers,
when found walks back from the layer to its input layers and searches for QDQ chains
and remembers the scaling factor of these chains, then looks for the output of the
layer and checks whether the scaling factor is compliant with the input and changes
it, then goes on to the next layer, for this model, 5 cycles of iteration on the graph
were enough to standardize the scaling factor.

The model is now optimized and ready for conversion where the layers will not
just be INT8 simulation but will be treated as INT8, in 6 the results will be shown
to see how different scaling factors impact the model validation results.

The convert function of the QONNX library has the following features for the
conversion of the model:

• Removes QuantizeLinear and DequantizeLinear nodes where possible.

• Fuses quantized operations (e.g., convolution + bias + ReLU) into single,
more efficient nodes.

• Transforms the model into a compact format, where the weights and activa-
tions are truly handled as INT8 values.

• Produces a deployable model, closer to the final inference representation
used on the target hardware.

Resulting in the following model structure (simplified):

Figure 5.11: Conversion of the QDQ layers to Quant.

When a quantized neural network model is transformed from the QDQ (Quantize-
DeQuantize) representation to the operator-level quantized form, the QuantizeLin-
ear and DeQuantizeLinear nodes are replaced with a single quantized operator.
This transformation brings several structural and computational benefits. The fused
quantized operator:

• Operates directly on integer tensors, usually in the int8 or uint8 format.

45

Vitis AI and Yolov5

• Includes scale and zero-point values as operator attributes, avoiding the need
for separate quantization nodes.

• Executes all computations entirely in the quantized domain, without con-
verting back to FP32 at run-time.

This approach enables more efficient inference by reducing graph complexity and
allowing hardware accelerators to leverage native support for integer arithmetic.

46

Chapter 6

Validation and results

This chapter will focus on the results obtained by the different versions of the Yolov5n
models while also considering the datasets described in 3.2 and 3.3 along with the
3.1 dataset which has been the target dataset for the first training discussed in 4
for completeness and a deeper analysis. On the ASXL dataset, in addition to the
v5n model, a v5s version has been trained to check the different results obtained.
In addition, a model trained on the larger and more varied COCO dataset has
been tested, creating 3 different models with different hyps values, optimizers and
scheduler. These models have been trained for 640×640, 512×512 and 416×416
scales, and the final results will be shown and discussed.

6.1 PV thermal images dataset results

The results on this dataset are reported below, considering the different image sizes
and confidence values for the detection, here are reported both the FP32 after the
conversion from .pt to .onnx and INT8 with uniformed scaling factors versions.
The proposed results first show how the models changed with quantization andand
then the results will be compared.

47

Validation and results

6.1.1 Version 416X416

Table 6.1: Evaluation metrics for the 416×416 FP32 (ONNX version).

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.828 0.781 0.784 0.449
0.001 0.6 0.828 0.781 0.782 0.448
0.1 0.5 0.828 0.781 0.817 0.497
0.1 0.6 0.828 0.781 0.817 0.497
0.2 0.5 0.828 0.781 0.818 0.502
0.2 0.6 0.828 0.781 0.818 0.502
0.3 0.5 0.860 0.753 0.809 0.498
0.3 0.6 0.860 0.753 0.809 0.498
0.4 0.5 0.880 0.706 0.790 0.491
0.4 0.6 0.880 0.706 0.790 0.491

The metrics show that this model performs really well despite the small dimensions
with a value of mAP around 50%, which is really good.

Table 6.2: Evaluation metrics for the 416×416 QDQ post scaling factor uniformiza-
tion.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.812 0.706 0.725 0.361
0.001 0.6 0.804 0.706 0.720 0.360
0.1 0.5 0.784 0.719 0.764 0.412
0.1 0.6 0.777 0.719 0.762 0.411
0.2 0.5 0.850 0.645 0.738 0.405
0.2 0.6 0.845 0.645 0.737 0.404
0.3 0.5 0.874 0.456 0.662 0.368
0.3 0.6 0.874 0.456 0.662 0.368
0.4 0.5 0.899 0.311 0.605 0.344
0.4 0.6 0.899 0.311 0.605 0.344

Quantization impacted the model but with the correct configuration the mAP
value is around 40%, which is still high. The model is balanced with all the other
metrics well above 70%.

48

Validation and results

6.1.2 Version 512X512

Table 6.3: Evaluation metrics for the 512×512 FP32 (ONNX version).

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.791 0.763 0.775 0.465
0.001 0.6 0.791 0.763 0.774 0.465
0.1 0.5 0.791 0.763 0.800 0.506
0.1 0.6 0.791 0.763 0.800 0.506
0.2 0.5 0.794 0.759 0.797 0.509
0.2 0.6 0.794 0.759 0.797 0.509
0.3 0.5 0.828 0.697 0.777 0.495
0.3 0.6 0.828 0.697 0.777 0.495
0.4 0.5 0.877 0.623 0.753 0.484
0.4 0.6 0.877 0.623 0.753 0.484

Table 6.4: Evaluation metrics for the 512×512 QDQ post scaling factor uniformiza-
tion.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.793 0.789 0.762 0.422
0.001 0.6 0.793 0.789 0.760 0.422
0.1 0.5 0.793 0.789 0.798 0.473
0.1 0.6 0.793 0.789 0.797 0.472
0.2 0.5 0.796 0.789 0.791 0.472
0.2 0.6 0.793 0.789 0.791 0.471
0.3 0.5 0.842 0.697 0.758 0.453
0.3 0.6 0.842 0.697 0.758 0.453
0.4 0.5 0.856 0.654 0.742 0.447
0.4 0.6 0.856 0.654 0.742 0.447

The impact of quantization on this model is less relevant, with all the metrics around
80% and the mAP of 47% with the best configurations (due to the correct F1-score
computed during training).

49

Validation and results

6.1.3 Version 640X640

Table 6.5: Evaluation metrics for the 640×640 FP32 (ONNX version).

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.825 0.785 0.810 0.477
0.001 0.6 0.825 0.785 0.809 0.479
0.1 0.5 0.825 0.785 0.822 0.512
0.1 0.6 0.825 0.785 0.822 0.512
0.2 0.5 0.825 0.785 0.816 0.516
0.2 0.6 0.825 0.785 0.816 0.516
0.3 0.5 0.825 0.785 0.803 0.511
0.3 0.6 0.825 0.785 0.803 0.511
0.4 0.5 0.829 0.785 0.802 0.513
0.4 0.6 0.829 0.785 0.802 0.513

This is the best model among the proposed ones. The mAP is 51% which is a solid
value.

Table 6.6: Evaluation metrics for the 640×640 QDQ post scaling factor uniformiza-
tion.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.801 0.758 0.775 0.452
0.001 0.6 0.801 0.758 0.774 0.453
0.1 0.5 0.801 0.758 0.787 0.488
0.1 0.6 0.801 0.758 0.787 0.488
0.2 0.5 0.801 0.758 0.783 0.491
0.2 0.6 0.801 0.758 0.783 0.491
0.3 0.5 0.816 0.737 0.771 0.487
0.3 0.6 0.816 0.737 0.771 0.487
0.4 0.5 0.838 0.702 0.759 0.481
0.4 0.6 0.838 0.702 0.759 0.481

Quantization impacted less than the other versions, with values around 50% for
mAP and the other metrics all above 75%, with precision still higher than 80%
and recall not going lower than 75% with the best configuration (Confidence set at
0.2).

Below are two reported examples for the model with uniform scaling factor.

50

Validation and results

(a) Detection sample 1. (b) Ground truth sample 1.

(c) Detection sample 2. (d) Ground truth sample 2.

Figure 6.1: Comparison between detections and ground truth of the Uniscaled
versions for the 640×640.

6.1.4 Comparison between ONNX FP32 and INT8

The following table will highlight the comparison between the best model for each
size, considering the FP32 ONNX version and the INT8 with uniform scaling
factor.

Table 6.7: Comparison of model sizes and performance (mAP@0.5:0.95) in FP32
and INT8 formats.

Size Conf-value FP32 INT8 ∆
416 0.1 0.502 0.412 -0.090
512 0.2 0.509 0.472 -0.037
640 0.2 0.516 0.491 -0.025

A key factor is how much the image size degrades the model between pre and post
QDQ process, the 640×640 shows an acceptable loss on the mAP, while the 416×416
loses almost 10% of mAP, staying well above the 30% threshold but lowering the
accuracy of the model much more. The loss of the 512×512 model is a good trade-off
if the model size is a key factor for the target implementation, with both a good

51

Validation and results

accuracy and a reduced size compared to the 640×640 version.

6.2 ASXL Dataset

This dataset had two main versions, both initially trained on 1024×1024, then
exported as 640×640 in the ONNX version and quantized, one with the YOLOv5n
and one with the YOLOv5s models. The results of the 1024×1024 version, 640×640
and quantized versions are reported and commented on below.

6.2.1 YOLOv5n version

The models trained with the v5n weights had the hyps as specified in A, and below
the different versions can be seen, the first is the FP32 1024×1024 model.

Table 6.8: Evaluation metrics for the 1024×1024 FP32 .pt version of the YOLOv5n.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.807 0.357 0.426 0.250
0.001 0.6 0.797 0.357 0.419 0.248
0.1 0.5 0.807 0.357 0.505 0.324
0.1 0.6 0.797 0.357 0.492 0.315
0.2 0.5 0.807 0.357 0.548 0.361
0.2 0.6 0.797 0.357 0.533 0.350
0.3 0.5 0.807 0.357 0.564 0.382
0.3 0.6 0.797 0.357 0.559 0.379
0.4 0.5 0.808 0.358 0.586 0.408
0.4 0.6 0.797 0.358 0.583 0.405

These results have to take into account that the low values for the recall are due
to the different size of the defects between the full-scale image and the segment, some
cracks were smaller than 3 pixels, and this affected the model because the model did
not find small defects.

52

Validation and results

Table 6.9: Evaluation metrics for the 640×640 FP32 .ONNX version of the YOLOv5n.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.677 0.335 0.360 0.198
0.001 0.6 0.667 0.341 0.356 0.198
0.1 0.5 0.677 0.335 0.447 0.259
0.1 0.6 0.667 0.341 0.430 0.252
0.2 0.5 0.677 0.335 0.482 0.291
0.2 0.6 0.667 0.341 0.470 0.282
0.3 0.5 0.677 0.335 0.495 0.308
0.3 0.6 0.667 0.341 0.487 0.300
0.4 0.5 0.667 0.341 0.523 0.327
0.4 0.6 0.646 0.347 0.516 0.320

The resize of the model affected the accuracy and in 6.2.3 the comparison between
the two different best models is shown. This is also caused by the very small defects
in the images.

Table 6.10: Evaluation metrics for the 640×640 QDQ version of the YOLOv5n.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.649 0.312 0.335 0.167
0.001 0.6 0.627 0.312 0.329 0.166
0.1 0.5 0.649 0.312 0.428 0.232
0.1 0.6 0.627 0.312 0.413 0.223
0.2 0.5 0.649 0.312 0.463 0.255
0.2 0.6 0.627 0.312 0.443 0.247
0.3 0.5 0.629 0.318 0.490 0.278
0.3 0.6 0.627 0.312 0.471 0.270
0.4 0.5 0.688 0.301 0.507 0.291
0.4 0.6 0.662 0.301 0.497 0.286

The QDQ step did not affect the model too much, but a loss of about 3% mAP
is evident.

53

Validation and results

Table 6.11: Evaluation metrics for the 640×640 QDQ with uniform scaling factor
version of the YOLOv5n.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.646 0.307 0.311 0.164
0.001 0.6 0.613 0.307 0.307 0.164
0.1 0.5 0.646 0.307 0.394 0.228
0.1 0.6 0.613 0.307 0.379 0.216
0.2 0.5 0.646 0.307 0.439 0.256
0.2 0.6 0.613 0.307 0.417 0.246
0.3 0.5 0.645 0.307 0.471 0.286
0.3 0.6 0.613 0.307 0.453 0.275
0.4 0.5 0.654 0.301 0.481 0.296
0.4 0.6 0.616 0.301 0.466 0.286

The uniform scaling factor improved the metrics by a small amount, keeping
the mAP around 30%, which is an acceptable amount, more so for this problematic
dataset.

54

Validation and results

(a) Detection sample 1. (b) Ground truth sample 1.

(c) Detection sample 2. (d) Ground truth sample 2.

Figure 6.2: Comparison between detections and ground truth of the Uniform scaling
factor versions.

The pictures show that the model is accurate, but has difficulties with small
defects as expected.

55

Validation and results

6.2.2 YOLOv5s version

Table 6.12: Evaluation metrics for the 1024×1024 FP32 .pt version of the YOLOv5s.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.810 0.358 0.453 0.277
0.001 0.6 0.810 0.358 0.448 0.276
0.1 0.5 0.810 0.358 0.512 0.346
0.1 0.6 0.810 0.358 0.509 0.338
0.2 0.5 0.810 0.358 0.537 0.372
0.2 0.6 0.810 0.358 0.533 0.367
0.3 0.5 0.810 0.358 0.554 0.393
0.3 0.6 0.810 0.358 0.549 0.389
0.4 0.5 0.810 0.358 0.569 0.406
0.4 0.6 0.810 0.358 0.567 0.404

The comparison at this stage between the two versions of v5n and v5s is almost
identical.

Table 6.13: Evaluation metrics for the 640×640 FP32 .ONNX version of the
YOLOv5s.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.619 0.323 0.356 0.208
0.001 0.6 0.600 0.324 0.354 0.210
0.1 0.5 0.619 0.323 0.421 0.267
0.1 0.6 0.600 0.324 0.413 0.258
0.2 0.5 0.619 0.323 0.448 0.290
0.2 0.6 0.600 0.324 0.436 0.281
0.3 0.5 0.619 0.323 0.473 0.307
0.3 0.6 0.600 0.324 0.463 0.303
0.4 0.5 0.619 0.323 0.483 0.318
0.4 0.6 0.600 0.324 0.480 0.317

Scaling down to 640×640 affected the v5s model more, all metrics are, by a small
amount, lower.

56

Validation and results

Table 6.14: Evaluation metrics for the 640×640 QDQ version of the YOLOv5s.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.646 0.307 0.339 0.189
0.001 0.6 0.616 0.307 0.334 0.187
0.1 0.5 0.646 0.307 0.404 0.243
0.1 0.6 0.616 0.307 0.386 0.230
0.2 0.5 0.646 0.307 0.428 0.263
0.2 0.6 0.616 0.307 0.410 0.249
0.3 0.5 0.646 0.307 0.454 0.287
0.3 0.6 0.616 0.307 0.437 0.276
0.4 0.5 0.646 0.307 0.465 0.297
0.4 0.6 0.616 0.307 0.455 0.291

The QDQ process affected the v5s model more, all metrics except for mAP@0.5-
0.95 are worse with this model.

Table 6.15: Evaluation metrics for the 640×640 QDQ with uniform scaling factor
version of the YOLOv5s.

Conf IoU Precision Recall mAP@0.5 mAP@0.5:0.95
0.001 0.5 0.707 0.273 0.328 0.188
0.001 0.6 0.708 0.273 0.326 0.188
0.1 0.5 0.707 0.273 0.397 0.241
0.1 0.6 0.708 0.273 0.383 0.232
0.2 0.5 0.707 0.273 0.424 0.264
0.2 0.6 0.708 0.273 0.405 0.252
0.3 0.5 0.707 0.273 0.434 0.280
0.3 0.6 0.708 0.273 0.420 0.271
0.4 0.5 0.707 0.273 0.457 0.299
0.4 0.6 0.708 0.273 0.447 0.293

Precision is a bit higher than the v5n version, but Recall and mAP@0.5 are worse,
with an equal value of mAP@0.5-0.95.

6.2.3 Comparison

The table reported below will highlight the best versions of v5n and v5s, before the
qdq process is applied and then after scaling factor optimization.

Table 6.16: Comparison of the model’s performance (mAP@0.5:0.95) after the
export as 640×640, both as FP32 and INT8 models.

Model Conf-value FP32 INT8 ∆
5n 0.4 0.327 0.296 -0.031
5s 0.4 0.317 0.299 -0.018

57

Validation and results

Considering the different number of parameters, we can compare the different
performance and see that the v5n version, although it has half the number of
parameters, behaves almost like the v5s version, with an mAP that is almost the
same.

What might also be useful is taking a look at how the rescaling changed the
model’s performance.

Table 6.17: Comparison of the model’s performance before and after the export as
640×640, both as FP32 models.

Model Conf-value 1024 640 ∆
5n 0.4 0.408 0.327 -0.081
5s 0.4 0.406 0.317 -0.089

This is the major drawback of this dataset; this model should be trained only on
the segmented images to probably obtain performances similar to those of the PV
datasets.

Before taking a look at the COCO models, the different performances among the
different sizes reported below.

Table 6.18: Comparison of model sizes and performance with the 5n version.

Size Conf-value IoU-value mAP@0.5 mAP@0.5:0.95
416 0.4 0.5 0.369 0.207
512 0.4 0.5 0.399 0.232
640 0.4 0.5 0.481 0.296

This table shows how much size impacts performance, resulting in defects that
are smaller than 3 pixels and compromise the results when going under the 640×640
size.

6.3 COCO dataset

The COCO dataset has been trained with 3 different hyps at 100, 300 and 500 epochs
and both with standard LR and Cosine LR, then the standard version (100 epochs)
has been trained also with sizes of 416 and 512.

6.3.1 FP32 versions

For these models only the best versions of each model are going to be reported, The
F1 score highlighted the best confidence values at 0.4 and the results from the initial
.pt version got better with the conversion to the ONNX FP32 version, reported below
are the 3 models.

58

Validation and results

Table 6.19: Comparison of the models on the COCO dataset with different hyps on
640×640.

Epochs Precision Recall mAP@0.5 mAP@0.5:0.95
Bench 0.558 0.407 0.427 0.252

100 0.738 0.300 0.526 0.362
300 0.734 0.322 0.536 0.367
500 0.731 0.322 0.534 0.367

The models perform well, the mAP is higher, and considering the starting point
(benchmark for yolov5n on COCO), the values are useful when compared with the
other INT8 versions.

6.3.2 QDQ versions

Table 6.20: Comparison of the models on the COCO dataset post QDQ.

Epochs Precision Recall mAP@0.5 mAP@0.5:0.95
Bench 0.572 0.383 0.410 0.226

100 0.785 0.237 0.515 0.345
300 0.767 0.206 0.488 0.333
500 0.738 0.286 0.517 0.330

In this table, it is shown that the impact of the quantization simulation is evident
but the mAP is still above the target 30%.

6.3.3 Uniform scaling factor versions

Table 6.21: Comparison of the models on the COCO dataset with uniform scaling
factors.

Epochs Precision Recall mAP@0.5 mAP@0.5:0.95
Bench 0.566 0.385 0.409 0.224

100 0.774 0.245 0.513 0.341
300 0.785 0.216 0.502 0.339
500 0.777 0.227 0.503 0.327

The following table shows that all the models are well above the threshold of 30%
and that the quantization, with the loss it brings, did not affect the COCO models
too much.

59

Validation and results

Here are reported the detection and labels of some examples:

(a) Detection sample. (b) Ground truth sample.

Figure 6.3: Comparison between Predictions and Ground truth for the coco model.

The final table that we are going to see is related to the differences among different
scaled COCO models:

Table 6.22: Comparison of model sizes and performance with the COCO models.

Size Conf-value IoU-value mAP@0.5 mAP@0.5:0.95
416 0.4 0.5 0.491 0.328
512 0.4 0.5 0.471 0.313
640 0.4 0.5 0.513 0.341

These results show that the models still perform pretty well even with smaller
sizes, the 416×416 performs even better than the 512×512, staying well above the
30% threshold.

6.4 Results considerations

These different models confirm that the applied workflow did result in an acceptable
loss for each model, keeping every model to a mAP@0.5:0.95 at least at 30%, which
is the key factor for the object detection tasks which have been taken into account.
The only model that went just below this threshold (by around 0.4%)is the ASXL
model, which is penalized by the different scales of the images used to train the
model, if properly trained the results could have much better results.

60

Chapter 7

Conclusions

In the context of modern machine learning, the demand for deploying high-performance
deep learning models in resource-constrained environments, such as embedded sys-
tems and edge devices, has driven significant interest in model compression and
optimization techniques. Among these, quantization has emerged as a key enabler for
reducing the memory footprint, computational complexity, and power consumption
of neural networks, making them suitable for real-time inference on non-specialized
hardware. However, ensuring that such optimizations do not compromise the accuracy
and reliability of the models remains a crucial challenge.

This thesis demonstrates the successful implementation of a complete quantization
pipeline for object detection models, showing that it is possible to achieve efficient
deployable models without incurring significant accuracy loss. Although hardware
deployment remains a natural continuation, the findings and solutions explored in
this study provide a solid foundation for future work in this direction.

The project highlights the robustness of the YOLO architecture as a reliable object
detection solution, validated both on a large-scale benchmark dataset (COCO) and
on two real-world application scenarios. These evaluations confirm the effectiveness
of the model in terms of both theoretical design and practical performance.

In addition to engineering and implementation aspects, this work includes an ex-
ploratory component focused on evaluating multiple tools, frameworks, and workflows
for quantization and model conversion. Comparative analysis of different approaches,
including PyTorch-native quantization, ONNX export, QDQ pattern application,
and optimization with QONNX and Vitis AI, provided valuable insight into the
capabilities, limitations, and integration strategies of each technology. This investiga-
tive process helped identify the most effective pipeline in terms of the compatibility,
automation, and accuracy of the final model.

In particular, the quantization of the YOLOv5n model presents promising oppor-
tunities for deployment on edge devices, where computational efficiency is crucial.
This study also serves as a practical guide for applying post-training quantization

61

Conclusions

(QDQ) and model conversion using the Vitis AI toolchain, showing that such tools
are effective for producing optimized models ready for hardware acceleration.

The results obtained provide valuable benchmarks for future research involving
similar datasets or objectives. The comparative analysis between model scales,
especially the v5n version, demonstrates the trade-offs between performance and
complexity, offering a useful reference for further developments in the field of quantized
deep learning models and their integration into hardware-based systems.

62

Appendix A

Appendix A

This appendix will feature the training configurations and the corrections made to
the training scripts due to the post-process that had to be applied to the output
tensors.

The .yaml file that contains the optimizations (along with the hyps) is the
following for the Photovoltaic Thermal dataset.

Listing A.1: Hyps and main settings for the PV dataset.
1 hyp:
2 lr0: 0.01
3 lrf: 0.01
4 momentum : 0.937
5 weight_decay : 0.0005
6 warmup_epochs : 3.0
7 warmup_momentum : 0.8
8 warmup_bias_lr : 0.1
9 box: 0.05

10 cls: 0.5
11 cls_pw : 1.0
12 obj: 1.0
13 obj_pw : 1.0
14 iou_t: 0.2
15 anchor_t : 4.0
16 fl_gamma : 0.0
17 hsv_h: 0.015
18 hsv_s: 0.7
19 hsv_v: 0.4
20 degrees : 0.0
21 translate : 0.1
22 scale: 0.5
23 shear: 0.0
24 perspective : 0.0
25 flipud : 0.0
26 fliplr : 0.5
27 mosaic : 1.0
28 mixup: 0.0

63

Appendix A

29 copy_paste : 0.0
30 epochs : 100
31 batch_size : 16
32 imgsz: 640
33 single_cls : true
34 optimizer : SGD

For the ASXL dataset the settings were

Listing A.2: Hyps and main settings for the ASXL dataset.
1 hyp:
2 lr0: 0.001
3 lrf: 0.1
4 momentum : 0.937
5 weight_decay : 0.0005
6 warmup_epochs : 3.0
7 warmup_momentum : 0.8
8 warmup_bias_lr : 0.1
9 box: 0.05

10 cls: 0.3
11 cls_pw : 1.0
12 obj: 1.7
13 obj_pw : 2.0
14 iou_t: 0.3
15 anchor_t : 4.0
16 fl_gamma : 0.0
17 hsv_h: 0.015
18 hsv_s: 0.7
19 hsv_v: 0.4
20 degrees : 0.0
21 translate : 0.1
22 scale: 0.9
23 shear: 0.0
24 perspective : 0.0
25 flipud : 0.0
26 fliplr : 0.5
27 mosaic : 1.0
28 mixup: 0.1
29 copy_paste : 0.0
30 epochs : 2000
31 batch_size : 48
32 imgsz: 1024
33 single_cls : true
34 optimizer : AdamW

This model has been trained first on a 1024×1024 because of the small size defects
in the full scale images.

For the yolov5s version the hyps are:

64

Appendix A

Listing A.3: Hyps and main settings for the v5s ASXL dataset model.
1 hyp:
2 lr0: 0.00025
3 lrf: 0.01
4 momentum : 0.937
5 weight_decay : 0.0005
6 warmup_epochs : 3.0
7 warmup_momentum : 0.8
8 warmup_bias_lr : 0.1
9 box: 0.05

10 cls: 0.3
11 cls_pw : 1.0
12 obj: 1.7
13 obj_pw : 2.0
14 iou_t: 0.3
15 anchor_t : 4.0
16 fl_gamma : 0.0
17 hsv_h: 0.015
18 hsv_s: 0.7
19 hsv_v: 0.4
20 degrees : 0.0
21 translate : 0.1
22 scale: 0.9
23 shear: 0.0
24 perspective : 0.0
25 flipud : 0.0
26 fliplr : 0.5
27 mosaic : 1.0
28 mixup: 0.1
29 copy_paste : 0.0

COCO has been trained with the same hyps of the PV dataset. Also other versions
have been tested (with 300 and 500 epochs and CosineAnnealing as Scheduler).
The training script had to be modified in order to post-process the results correctly,
and the following code segment contains the fixtures applied in which the output
of the model consists of a list of tensors, one with the full grid and one with the 3
multi scale tensors.

Listing A.4: Post processing of the tensors and grid.
1

2 def postprocessing (x):
3 grid = [torch.empty (0) for _ in range(len(x))]
4 z = []
5 anchor_grid = [torch.empty (0) for _ in range(len(x))]
6 stride = torch. tensor ([8. , 16., 32.][: len(x)], device =’cuda

ñ→ :0’) # Adatta il numero di stride
7 anchors = torch. tensor ([[1.25 , 1.625 , 2.0, 3.75 , 4.125 ,

ñ→ 2.875] ,

65

Appendix A

8 [1.875 , 3.8125 , 3.875 , 2.8125 ,
ñ→ 3.6875 , 7.4375] ,

9 [3.625 , 2.8125 , 4.875 , 6.1875 ,
ñ→ 11.65625 , 10.1875]] , device =’cuda :0’)

10 anchors = anchors [: len(x)]. float ().view(len(x), -1, 2) #
ñ→ Adatta il numero di ancore

11

12 for i in range(len(x)):
13 bs , _, ny , nx = x[i]. shape # Assumi che x[i] abbia una

ñ→ forma valida
14 x[i] = x[i]. view(bs , 3, 6, ny , nx). permute (0, 1, 3, 4,

ñ→ 2). contiguous ()
15

16 if grid[i]. shape [2:4] != x[i]. shape [2:4]:
17 grid[i], anchor_grid [i] = make_grid (nx , ny , i,

ñ→ anchors , stride)
18

19 xy , wh , conf = x[i]. sigmoid ().split ((2, 2, 1 + 1), 4)
20 xy = (xy * 2 + grid[i]) * stride [i] # xy
21 wh = (wh * 2) ** 2 * anchor_grid [i] # wh
22 y = torch.cat ((xy , wh , conf), 4)
23 z. append (y.view(bs , 3 * nx * ny , 6))
24

25 return torch.cat(z, 1), x
26

27 def make_grid (nx=20, ny=20, i=0, anchors = None , stride = None ,
ñ→ torch_1_10 = check_version (torch. __version__ , ’1.10.0 ’)):

28 d = anchors [i]. device
29 t = anchors [i]. dtype
30

31 shape = 1, 3, ny , nx , 2 # grid shape
32 y, x = torch. arange (ny , device =d, dtype=t), torch. arange (nx

ñ→ , device =d, dtype=t)
33 yv , xv = torch. meshgrid (y, x, indexing =’ij’) if torch_1_10

ñ→ else torch. meshgrid (y, x) # torch >=0.7 compatibility
34 grid = torch.stack ((xv , yv), 2). expand (shape) - 0.5 # add

ñ→ grid offset , i.e. y = 2.0 * x - 0.5
35 anchor_grid = (anchors [i] * stride [i]).view ((1, 3, 1, 1, 2)

ñ→). expand (shape)
36 return grid , anchor_grid

The following code excerpt illustrates the core of the training loop inside train.py,
which is responsible for handling mini-batch iterations over the dataset. It integrates
automatic mixed precision (AMP) to reduce memory consumption and improve
performance, adapts learning rates during the warm-up phase, and applies data
augmentation through multi-scale training. Each batch is passed through the model,
the loss is computed using ground truth labels, and backpropagation is performed
using scaled gradients. This snippet exemplifies a typical iteration during model

66

Appendix A

optimization in YOLOv5 training.

Listing A.5: Training loop with AMP and loss computation.
1 for i, (imgs , targets , paths , _) in pbar:
2 ni = i + nb * epoch
3 imgs = imgs.to(device , non_blocking =True).float () / 255
4

5 if ni <= nw:
6 xi = [0, nw]
7 accumulate = max (1, np. interp (ni , xi , [1, nbs /

ñ→ batch_size]).round ())
8 for j, x in enumerate (optimizer . param_groups):
9 x[’lr’] = np. interp (ni , xi , [hyp[’warmup_bias_lr ’]

ñ→ if j == 0 else 0.0, x[’initial_lr ’] * lf(epoch)])
10 if ’momentum ’ in x:
11 x[’momentum ’] = np. interp (ni , xi , [hyp[’

ñ→ warmup_momentum ’], hyp[’momentum ’]])
12

13 if opt. multi_scale :
14 sz = random . randrange (int(imgsz * 0.5) , int(imgsz *

ñ→ 1.5) + gs) // gs * gs
15 sf = sz / max(imgs.shape [2:])
16 if sf != 1:
17 ns = [math.ceil(x * sf / gs) * gs for x in imgs.

ñ→ shape [2:]]
18 imgs = nn. functional . interpolate (imgs , size=ns ,

ñ→ mode=’bilinear ’, align_corners =False)
19

20 with torch.cuda.amp. autocast (amp):
21 predi = model(imgs)
22 pred = postprocessing (predi)
23 loss , loss_items = compute_loss (pred , targets .to(device

ñ→))
24 if RANK != -1:
25 loss *= WORLD_SIZE
26 if opt.quad:
27 loss *= 4.
28

29 scaler .scale(loss). backward ()

In the val.py script, which is run at the end of every training epoch, the core
segment is the following one which processes each batch from the validation set,
applies model inference and postprocessing,and collects statistics for precision, recall,
and mAP computation. The loop also handles saving visualizations and label files, if
enabled.

Listing A.6: Validation loop processing each image batch.
1 for batch_i , (im , targets , paths , shapes) in enumerate (pbar):
2 callbacks .run(’on_val_batch_start ’)

67

Appendix A

3 with dt [0]:
4 if cuda:
5 im = im.to(device , non_blocking =True)
6 targets = targets .to(device)
7 im = im.half () if half else im.float ()
8 im /= 255
9 nb , _, height , width = im.shape

10

11 with dt [1]:
12 pred = model(im)
13 alt = model(im , augment = augment)
14 predi = postprocessing (pred)
15 altpredi = postprocessing (alt)
16 if compute_loss :
17 preds = predi
18 train_out = predi
19 else:
20 preds = altpredi
21 train_out = None
22

23 if compute_loss :
24 loss += compute_loss (train_out , targets)[1]
25

26 targets [:, 2:] *= torch. tensor ((width , height , width ,
ñ→ height), device = device)

27 lb = [targets [targets [:, 0] == i, 1:] for i in range(nb)]
ñ→ if save_hybrid else []

28 with dt [2]:
29 preds = non_max_suppression (preds , conf_thres ,

ñ→ iou_thres ,
30 labels =lb , multi_label =True

ñ→ ,
31 agnostic =single_cls ,

ñ→ max_det = max_det)

At the end of each validation the metrics are computed, and this is the snippet
of code responsible for this task.

Listing A.7: Computing evaluation metrics from validation statistics.
1 stats = [torch.cat(x, 0).cpu ().numpy () for x in zip (* stats)]
2 if len(stats) and stats [0]. any ():
3 tp , fp , p, r, f1 , ap , ap_class = ap_per_class (* stats , plot=

ñ→ plots , save_dir =save_dir , names=names)
4 ap50 , ap = ap[:, 0], ap.mean (1)
5 mp , mr , map50 , map = p.mean (), r.mean (), ap50.mean (), ap.

ñ→ mean ()
6 nt = np. bincount (stats [3]. astype (int), minlength =nc)
7

8 pf = ’%22s’ + ’%11i’ * 2 + ’%11.3g’ * 4

68

Appendix A

9 LOGGER .info(pf % (’all ’, seen , nt.sum (), mp , mr , map50 , map))
10

11 if (verbose or (nc < 50 and not training)) and nc > 1 and len(
ñ→ stats):

12 for i, c in enumerate (ap_class):
13 LOGGER .info(pf % (names[c], seen , nt[c], p[i], r[i],

ñ→ ap50[i], ap[i]))

The next snippet, taken from detect.py, shows how YOLOv5 inference pre-
dictions are handled and saved. After rescaling the predicted bounding boxes to
the original image resolution, the script allows to save the predictions in TXT and
CSV formats. This code is critical for logging detection outputs, enabling both
quantitative evaluation and visualization.

Listing A.8: Detection results post-processing and saving.
1 for i, det in enumerate (pred): # per image
2 seen += 1
3 if webcam :
4 p, im0 , frame = path[i], im0s[i]. copy (), dataset .count
5 else:
6 p, im0 , frame = path , im0s.copy (), getattr (dataset , ’

ñ→ frame ’, 0)
7

8 p = Path(p)
9 save_path = str(save_dir / p.name)

10 txt_path = str(save_dir / ’labels ’ / p.stem) + (’’ if
ñ→ dataset .mode == ’image ’ else f’_{frame}’)

11 s += ’%gx%g ’ % im.shape [2:]
12 gn = torch. tensor (im0.shape)[[1, 0, 1, 0]]
13 imc = im0.copy () if save_crop else im0
14 annotator = Annotator (im0 , line_width = line_thickness ,

ñ→ example =str(names))
15

16 if len(det):
17 det [:, :4] = scale_boxes (im.shape [2:] , det [:, :4], im0.

ñ→ shape).round ()
18 for *xyxy , conf , cls in reversed (det):
19 c = int(cls)
20 label = names[c] if hide_conf else f’{names[c]}’
21 confidence = float(conf)
22 confidence_str = f’{ confidence :.2f}’
23

24 if save_csv :
25 write_to_csv (p.name , label , confidence_str)
26

27 if save_txt :
28 xywh = (xyxy2xywh (torch. tensor (xyxy).view (1, 4)

ñ→) / gn).view (-1). tolist ()

69

Appendix A

29 line = (cls , *xywh , conf) if save_conf else (
ñ→ cls , *xywh)

30 with open(f’{ txt_path }. txt ’, ’a’) as f:
31 f.write ((’%g ’ * len(line)). rstrip () % line

ñ→ + ’\n’)
32

33 if save_img or save_crop or view_img :
34 label = None if hide_labels else (names[c] if

ñ→ hide_conf else f’{names[c]} {conf :.2f}’)
35 annotator . box_label (xyxy , label , color= colors (c

ñ→ , True))
36 if save_crop :
37 save_one_box (xyxy , imc , file= save_dir / ’crops ’

ñ→ / names[c] / f’{p.stem }. jpg ’, BGR=True)

70

Appendix B

Appendix B

This appendix will treat all the scripts related to the quantization process of the
models. The first script that is important to describe is the quantOnnx.py which
treats the .onnx versions of the models and applies the QDQ through the VAI
functions.

Listing B.1: Data reader and iterator on the images.
1 class CustomCalibrationDataReader (CalibrationDataReader):
2 def __init__ (self , data_dir , img_size):
3 self. data_dir = data_dir
4 self. img_size = img_size
5 self.data = []
6 self. iterator = None
7 self. load_data ()
8

9 def load_data (self):
10 # images_dir = os.path.join(self.data_dir , " images ", "

ñ→ train2017 ")
11 max_num_img = 200
12 images_dir = os.path.join(self.data_dir , " images ", "

ñ→ train2017 ")
13 images = sorted (os. listdir (images_dir)) # Ensure

ñ→ sorted order
14 num_img = 0
15 for img in images :
16 num_img = num_img + 1
17 img_path = os.path.join(images_dir , img)
18 self.data. append (img_path)
19 if num_img == max_num_img :
20 break
21 self. iterator = iter(self.data)
22

23 def get_next (self) -> dict:
24 try:
25 img_path = next(self. iterator)
26 img = self. preprocess_image (img_path)

71

Appendix B

27 return {" images ": img} # Match key with ‘
ñ→ input_nodes ‘

28 except StopIteration :
29 return None
30

31 def preprocess_image (self , img_path):
32 img = cv2. imread (img_path)
33 img = cv2. resize (img , (self.img_size , self. img_size))

ñ→ # Usa la dimensione dinamica
34 img = np. transpose (img , (2, 0, 1)) # HWC to CHW
35 # convert to float32
36 img = img. astype (np. float32)
37 img = img / 255.0
38 img = np. expand_dims (img , axis =0). astype (np. float32) #

ñ→ Add batch dimension
39 return img
40

41 def reset(self):
42 self. iterator = iter(self.data) # Reset iterator
43

44 def get_size (self):
45 return len(self.data)

These functions setup the calibration dataset for the static quantization, pre-
process the images to be compliant with the model structure and define get and reset.
The calibration set has 200 images on which the model will calibrate since a good
value is between 100 and 1000 in order to successfully calibrate the quantized version
of the model.

Listing B.2: Argparse and setup before effective quantization function.
1

2 def main ():
3 parser = argparse . ArgumentParser (description ="

ñ→ Quantizzazione di un modello ONNX con Vitis -AI")
4 parser . add_argument (’-- model_input ’, type=str , required =

ñ→ True , help =" Percorso del file ONNX di input ")
5 parser . add_argument (’-- model_output ’, type=str , default =’

ñ→ quantModels ’, help =" Percorso del file ONNX quantizzato di
ñ→ output ")

6 parser . add_argument (’-- calibration_data ’, type=str , default
ñ→ =’/ workspace /Vitis -AI -Reference - Tutorials /Quantizing -
ñ→ Compiling -Yolov5 -Hackster - Tutorial / cracks_dataset ’, help
ñ→ =" Percorso del dataset di calibrazione (file o directory)
ñ→ ")

7 parser . add_argument (’-- output_name ’, type=str , default =’
ñ→ exp1 ’, help =" Nome del file ONNX quantizzato di output (
ñ→ senza estensione)")

8 parser . add_argument (’--img_size ’, type=int , default =640 ,

72

Appendix B

ñ→ help =" Dimensione dell ’ immagine per la calibrazione (
ñ→ default : 640) ")

9 args = parser . parse_args ()
10

11 model = onnx.load(args. model_input)
12 input_name = model.graph.input [0]. name # Prendi il primo

ñ→ input del modello
13 print(f"Nome dell ’input del modello : { input_name }")
14

15 model_input = args. model_input
16 output_name = args. output_name
17 calibration_data_path = args. calibration_data
18 img_size = args. img_size
19 output_dir = " quantModels "
20 os. makedirs (output_dir , exist_ok =True)
21

22 model_output = os.path.join(output_dir , f"{ output_name }.
ñ→ onnx ")

This segment is responsible for the parsing of the quantization parameters, model
input, output, calibration dataset, output model name and size of the model.

Listing B.3: Quantization function.
1

2

3 vai_q_onnx . quantize_static (
4 model_input = model_input ,
5 model_output = model_output ,
6 calibration_data_reader = CustomCalibrationDataReader (

ñ→ calibration_data_path , img_size),
7 quant_format = QuantFormat .QDQ ,
8 calibrate_method = vai_q_onnx . PowerOfTwoMethod .MinMSE ,
9 extra_options ={" ActivationSymmetric ": True , "

ñ→ WeightSymmetric ": True , " AddQDQPairToWeight ": True , "
ñ→ ForceQuantizeNoInputCheck ": True},

10)
11

12 print (" Modello quantizzato salvato in:", model_output)

This is the core of the script; this function takes the model input and output,
the calibration data on which the quantized model is going to iterate and the for-
mat that will be applied, which is QDQ in this case. Then the calibrate method
is set as PowerOfTwoMethod, which has 2 versions: MinMSE or NonOverflow, but
for this thesis the first one is a good fit since usually has better accuracy. The
extra_options field has the first two parameters that, as is said by the name, sym-
metrize the calibration values for weights and activations. The third parameter,
AddQDQPairToWeight, if True, ensures that both QuantizeLinear and DeQuantize-
Linear nodes are inserted for weight, maintaining its floating point format, and in

73

Appendix B

our case, with the PowerOfTwoMethod calibration method, this setting will also be
effective for the bias. The final one is a parameter that the VAI guide suggests to
set as true in case of PowerOfTwoMethod, and if set as True, latent operators such
as maxpool and transpose will always quantize their inputs, generating quantized
outputs even if their inputs have not been quantized.

After successful quantization it was time to walk through the model’s graph and
set the scaling factors to coherent values.

The idea was to search for the QDQ chains before each target layer (in this case
LeakyReLU, Add and Concat, and uniform the scaling factors. The script is
divided into three main parts:

• Model Cleanup: It first runs a structural cleanup on the input ONNX model
to remove redundant nodes or artifacts, producing a cleaner version suitable
for processing.

• Scale Unification for QDQ Chains: If the scales are not uniform across
inputs, the script updates the upstream QDQ chains to enforce a single, common
scale—usually the one of the output.

• Model Conversion: Once scales are unified, the script invokes the qonnx.convert
function to finalize and serialize the quantized model, making it compatible for
deployment on hardware accelerators.

Listing B.4: ONNX QDQ Scale Unification Script.
1 def get_scale_from_node (node , graph):
2 if node. op_type not in [" QuantizeLinear ", " DequantizeLinear

ñ→ "]:
3 return None
4 scale_name = node.input [1]
5 scale_init = next ((init for init in graph. initializer if

ñ→ init.name == scale_name), None)
6 if scale_init is None:
7 return None
8 scale = numpy_helper . to_array (scale_init)
9 if scale.size == 1:

10 return float(scale.item ())
11 return None

This function retrieves the quantization scale (if scalar) from ‘QuantizeLinear‘ or
‘DequantizeLinear‘ nodes in an ONNX graph.

Listing B.5: Function to set the scaling factor.
1 def set_scale_for_node (node , graph , new_scale , used_inits):
2 scale_name = node.input [1]
3 scale_init = next ((init for init in graph. initializer if

ñ→ init.name == scale_name), None)
4

74

Appendix B

5 if scale_init is None:
6 new_init_name = scale_name + " _forced "
7 count = 1
8 while new_init_name in used_inits :
9 new_init_name = f"{ scale_name } _forced_ {count}"

10 count += 1
11

12 new_scale_scalar = np. float32 (new_scale)
13 new_init = numpy_helper . from_array (new_scale_scalar ,

ñ→ new_init_name)
14 graph. initializer . append (new_init)
15 used_inits .add(new_init_name)
16 node.input [1] = new_init_name
17 return
18 old_scale_array = numpy_helper . to_array (scale_init)
19 if old_scale_array .size != 1:
20 new_init_name = scale_name + " _forced "
21 count = 1
22 while new_init_name in used_inits :
23 new_init_name = f"{ scale_name } _forced_ {count}"
24 count += 1
25 new_scale_scalar = np. float32 (new_scale)
26 new_init = numpy_helper . from_array (new_scale_scalar ,

ñ→ new_init_name)
27 graph. initializer . append (new_init)
28 used_inits .add(new_init_name)
29 node.input [1] = new_init_name
30 return
31 old_scale_val = float(old_scale_array .item ())
32 if not np. isclose (old_scale_val , new_scale):
33 new_scale_scalar = np. float32 (new_scale)
34 new_init = numpy_helper . from_array (new_scale_scalar ,

ñ→ scale_init .name)
35 graph. initializer . remove (scale_init)
36 graph. initializer . append (new_init)

This function enforces a new scale for a node. It handles missing, non-scalar, or
mismatched scales by creating or updating initializers as needed.

Listing B.6: Iteration to check QDQ chains.
1 def find_qdq_chain_starting_from_dq (graph , dq_node):
2 chain = []
3 current_dq = dq_node
4 while True:
5 chain. insert (0, current_dq)
6 q_node = next ((n for n in graph.node if n. op_type == "

ñ→ QuantizeLinear " and n. output [0] == current_dq .input [0]) ,
ñ→ None)

7 if q_node is None:

75

Appendix B

8 break
9 chain. insert (0, q_node)

10 prev_dq = next ((n for n in graph.node if n. op_type == "
ñ→ DequantizeLinear " and n. output [0] == q_node .input [0]) ,
ñ→ None)

11 if prev_dq is None or prev_dq == current_dq :
12 break
13 current_dq = prev_dq
14 return chain

This function reconstructs the entire QDQ (Quantize-Dequantize) chain backwards
starting from a ‘DequantizeLinear‘ node.

1 def find_next_quantize_linear (graph , start_output , max_hops =2):
2 to_visit = [start_output]
3 visited = set ()
4 hops = 0
5

6 while to_visit and hops < max_hops :
7 next_to_visit = []
8 for tensor in to_visit :
9 for node in graph.node:

10 if tensor in node.input:
11 if node. op_type == " QuantizeLinear ":
12 return node
13 next_to_visit . extend (node. output)
14 visited . update (to_visit)
15 to_visit = [t for t in next_to_visit if t not in

ñ→ visited]
16 hops += 1
17 return None

Performs a limited breadth-first search from a tensor to find the next ‘Quantize-
Linear‘ node downstream.

Listing B.7: Unify function for add, concat and Leaky ReLU.
1 def unify_scales_for_add_concat (model , output_path , max_iters

ñ→ =10):
2 graph = model.graph
3 used_inits = set(init.name for init in graph. initializer)
4 iteration = 0
5 changed = True
6 while changed and iteration < max_iters :
7 iteration += 1
8 print(f"\n=== Iterazione { iteration } per uniformare

ñ→ scale Add/ Concat ===")
9 changed = False

10 for node in graph.node:

76

Appendix B

11 if node. op_type not in ["Add", " Concat ", " LeakyRelu
ñ→ "]:

12 continue
13 input_chains = []
14 input_scales = []
15 for inp in node.input:
16 dq_node = next ((n for n in graph.node if n.

ñ→ op_type == " DequantizeLinear " and inp == n. output [0]) ,
ñ→ None)

17 if dq_node is None:
18 input_chains . append (None)
19 input_scales . append (None)
20 continue
21 qdq_chain = find_qdq_chain_starting_from_dq (

ñ→ graph , dq_node)
22 input_chains . append (qdq_chain)
23 scales = [get_scale_from_node (n, graph) for n

ñ→ in qdq_chain if get_scale_from_node (n, graph) is not None
ñ→]

24 input_scales . append (min(scales) if scales else
ñ→ None)

25 output_tensor = node. output [0]
26 next_q_node = find_next_quantize_linear (graph ,

ñ→ output_tensor)
27 if next_q_node is None:
28 continue
29 output_scale = get_scale_from_node (next_q_node ,

ñ→ graph)
30 if output_scale is None:
31 continue
32 for chain , scale in zip(input_chains , input_scales)

ñ→ :
33 if chain is None or scale is None:
34 continue
35 if not np. isclose (scale , output_scale):
36 for n in chain:
37 set_scale_for_node (n, graph ,

ñ→ output_scale , used_inits)
38 changed = True
39 print(f" Salvataggio modello risultante in: { output_path }")
40 onnx.save(model , output_path)

Unifies the input scales for nodes like ‘Add‘, ‘Concat‘, and ‘LeakyRelu‘ by
adjusting upstream QDQ chains so that all inputs and outputs use the same scale.

77

Appendix B

Listing B.8: Main function, which applies the different functions.
1 def main ():
2 parser = argparse . ArgumentParser ()
3 parser . add_argument (’--model_input ’, type=str , required =

ñ→ True , help=" Percorso modello ONNX (post -QDQ)")
4 parser . add_argument (’--output_style ’, type=str , default ="

ñ→ quant", help="Stile output conversione ")
5 args = parser . parse_args ()
6 model_input = args. model_input
7 base , ext = os.path. splitext (model_input)
8 cleaned_model_file = base + " _clean " + ext
9 unified_add_concat_file = base + " _uniScaleLR_out " + ext

10 if base. endswith ("_qdq"):
11 final_base = base [: -4]
12 else:
13 final_base = base
14 converted_model_file = final_base + " _final_scaleoutLR_q " +

ñ→ ext
15 print(" Pulizia modello (cleanup)...")
16 cleanup (model_input)
17 if not os.path. exists (cleaned_model_file):
18 print(f" Errore : file pulito { cleaned_model_file } non

ñ→ trovato !")
19 return
20 print(" Caricamento modello pulito in memoria ...")
21 cleaned_model = onnx.load(cleaned_model_file)
22 print(" Uniformo scale input di Add/ Concat su tutta la

ñ→ catena QDQ ...")
23 unify_scales_for_add_concat (cleaned_model ,

ñ→ unified_add_concat_file)
24 print(" Conversione modello con QONNX ...")
25 convert (unified_add_concat_file , output_style =args.

ñ→ output_style , output_file = converted_model_file)
26 print(f"\n Modello convertito salvato in: {

ñ→ converted_model_file }")
27 os. remove (cleaned_model_file)
28

29 if __name__ == " __main__ ":
30 main ()

This is the main execution script. It handles argument parsing, cleans the model,
normalizes the QDQ scales, and converts the model using QONNX. It also removes
temporary artifacts.

78

Bibliography

[1] Iqbal H. Sarker. “Machine Learning: Algorithms, Real-World Applications
and Research Directions”. In: SN Computer Science 2.3 (2021), p. 160. doi:
10.1007/s42979-021-00592-x. url: https://doi.org/10.1007/s42979-
021-00592-x (cit. on pp. 1, 2).

[2] Yuxi Li. “Deep Reinforcement Learning: An Overview”. In: arXiv preprint
arXiv:1701.07274 (2017). url: https://arxiv.org/abs/1701.07274 (cit. on
pp. 1, 2).

[3] Ibomoiye Domor Mienye and Theo G. Swart. “A Comprehensive Review of Deep
Learning: Architectures, Recent Advances, and Applications”. In: Information
15.12 (2024). issn: 2078-2489. doi: 10 . 3390 / info15120755. url: https :
//www.mdpi.com/2078-2489/15/12/755 (cit. on pp. 2–4).

[4] Dalila Durães, Pedro Miguel Freitas, and Paulo Novais. “The relevance of
Deepfakes in the Administration of Criminal Justice”. In: Multidisciplinary
Perspectives on Artificial Intelligence and the Law. Ed. by H. S. Antunes, P. M.
Freitas, A. L. Oliveira, C. M. Pereira, E. V. D. Sequeira, and L. B. Xavier. Law,
Governance and Technology Series. Open Access. Cham, Switzerland: Springer,
2024, pp. 364–366. url: https://www.researchgate.net/publication/
376852834_The_Relevance_of_Deepfakes_in_the_Administration_of_
Criminal_Justice (visited on 06/14/2025) (cit. on p. 3).

[5] freeCodeCamp. Deep Learning Neural Networks Explained in Plain English.
Accessed: 2025-06-14. Jan. 2022. url: https://www.freecodecamp.org/
news/deep-learning-neural-networks-explained-in-plain-english/
(cit. on p. 4).

[6] EpyNN Documentation. Pooling (CNN) — EpyNN 1.0 documentation. Consul-
tazione: 2025-06-14. 2025. url: https://epynn.net/Pooling.html (cit. on
p. 5).

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444 (cit. on p. 5).

[8] Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. A Survey on State-of-
the-art Deep Learning Applications and Challenges. Accepted for publication
in Engineering Applications of Artificial Intelligence (Elsevier). 2024. url:
https://arxiv.org/abs/2403.17561 (cit. on pp. 5, 6).

79

https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://arxiv.org/abs/1701.07274
https://doi.org/10.3390/info15120755
https://www.mdpi.com/2078-2489/15/12/755
https://www.mdpi.com/2078-2489/15/12/755
https://www.researchgate.net/publication/376852834_The_Relevance_of_Deepfakes_in_the_Administration_of_Criminal_Justice
https://www.researchgate.net/publication/376852834_The_Relevance_of_Deepfakes_in_the_Administration_of_Criminal_Justice
https://www.researchgate.net/publication/376852834_The_Relevance_of_Deepfakes_in_the_Administration_of_Criminal_Justice
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://epynn.net/Pooling.html
https://arxiv.org/abs/2403.17561

BIBLIOGRAPHY

[9] Nafiz Shahriar. What Is Convolutional Neural Network –CNN & Deep Learning.
Accessed: 2025-06-14. Apr. 2023. url: https : / / nafizshahriar . medium .
com / what - is - convolutional - neural - network - cnn - deep - learning -
b3921bdd82d5 (cit. on p. 5).

[10] Bsher Karbouj, Garabet A. Topalian-Rivas, and Jörg Krüger. “Comparative
Performance Evaluation of One-Stage and Two-Stage Object Detectors for
Screw Head Detection and Classification in Disassembly Processes”. In: Procedia
CIRP 122 (2024). 31st CIRP Conference on Life Cycle Engineering, pp. 527–
532. issn: 2212-8271. doi: 10.1016/j.procir.2024.01.077. url: https:
//www.sciencedirect.com/science/article/pii/S2212827124001021 (cit.
on p. 6).

[11] Junhyung Kang, Shahroz Tariq, Han Oh, and Simon S. Woo. “A Survey of
Deep Learning-Based Object Detection Methods and Datasets for Overhead
Imagery”. In: IEEE Access 10 (2022). Accessed: 2025-06-14, pp. 1–1. doi:
10.1109/ACCESS.2022.3149052. url: https://www.researchgate.net/
publication/358362847_A_Survey_of_Deep_Learning- Based_Object_
Detection_Methods_and_Datasets_for_Overhead_Imagery (cit. on p. 6).

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs.CV]. 2016.
arXiv: 1506.02640 [cs.CV]. url: https://arxiv.org/abs/1506.02640 (cit.
on pp. 7, 8, 11, 37).

[13] Shao-Yu Yang, Hsu-Yung Cheng, and Chih-Chang Yu. “Real-Time Object
Detection and Tracking for Unmanned Aerial Vehicles Based on Convolutional
Neural Networks”. In: Electronics. Vol. 12. 24. Accessed: 2025-06-14. 2023,
p. 4928. doi: 10.3390/electronics12244928. url: https://www.research
gate.net/publication/337535309_Real-Time_Object_Detection_Based_
on_Unmanned_Aerial_Vehicle (cit. on p. 9).

[14] Ayush Yajnik. Computer Vision: YOLO: Grid Cells and Anchor boxes. Accessed:
2025-06-14. Sept. 2023. url: https://medium.com/@ayushyajnik2/comput
er-vision-yolo-grid-cells-and-anchor-boxes-57b8a33cb25b (cit. on
pp. 9, 10).

[15] Rahima Khanam and Muhammad Hussain. What is YOLOv5: A deep look
into the internal features of the popular object detector. arXiv:2407.20892v1
[cs.CV]. 2024. arXiv: 2407.20892 [cs.CV]. url: https://arxiv.org/abs/
2407.20892 (cit. on pp. 9, 11, 12).

[16] Jacob Solawetz. What are Anchor Boxes in Object Detection? Accessed: 2025-06-
14. July 2020. url: https://blog.roboflow.com/what-is-an-anchor-box/
(cit. on p. 10).

[17] Ultralytics. Non-Maximum Suppression (NMS). https://www.ultralytics.
com/it/glossary/non-maximum-suppression-nms. Accessed: 2025-06-01.
2024 (cit. on p. 10).

80

https://nafizshahriar.medium.com/what-is-convolutional-neural-network-cnn-deep-learning-b3921bdd82d5
https://nafizshahriar.medium.com/what-is-convolutional-neural-network-cnn-deep-learning-b3921bdd82d5
https://nafizshahriar.medium.com/what-is-convolutional-neural-network-cnn-deep-learning-b3921bdd82d5
https://doi.org/10.1016/j.procir.2024.01.077
https://www.sciencedirect.com/science/article/pii/S2212827124001021
https://www.sciencedirect.com/science/article/pii/S2212827124001021
https://doi.org/10.1109/ACCESS.2022.3149052
https://www.researchgate.net/publication/358362847_A_Survey_of_Deep_Learning-Based_Object_Detection_Methods_and_Datasets_for_Overhead_Imagery
https://www.researchgate.net/publication/358362847_A_Survey_of_Deep_Learning-Based_Object_Detection_Methods_and_Datasets_for_Overhead_Imagery
https://www.researchgate.net/publication/358362847_A_Survey_of_Deep_Learning-Based_Object_Detection_Methods_and_Datasets_for_Overhead_Imagery
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.3390/electronics12244928
https://www.researchgate.net/publication/337535309_Real-Time_Object_Detection_Based_on_Unmanned_Aerial_Vehicle
https://www.researchgate.net/publication/337535309_Real-Time_Object_Detection_Based_on_Unmanned_Aerial_Vehicle
https://www.researchgate.net/publication/337535309_Real-Time_Object_Detection_Based_on_Unmanned_Aerial_Vehicle
https://medium.com/@ayushyajnik2/computer-vision-yolo-grid-cells-and-anchor-boxes-57b8a33cb25b
https://medium.com/@ayushyajnik2/computer-vision-yolo-grid-cells-and-anchor-boxes-57b8a33cb25b
https://arxiv.org/abs/2407.20892
https://arxiv.org/abs/2407.20892
https://arxiv.org/abs/2407.20892
https://blog.roboflow.com/what-is-an-anchor-box/
https://www.ultralytics.com/it/glossary/non-maximum-suppression-nms
https://www.ultralytics.com/it/glossary/non-maximum-suppression-nms

BIBLIOGRAPHY

[18] Vineeth S. Subramanyam. Non Max Suppression (NMS). What is Non Max
Suppression, and why is it used? Accessed: 2025-06-14. Jan. 2021. url: https://
medium.com/analytics-vidhya/non-max-suppression-nms-6623e6572536
(cit. on p. 11).

[19] Ultralytics. YOLOv5 by Ultralytics. https://github.com/ultralytics/
yolov5?tab=readme-ov-file. Accessed: 2025-06-01. 2024 (cit. on pp. 12, 13).

[20] Florian June. Model Quantization 1: Basic Concepts. Accessed: 2025-06-14. Oct.
2023. url: https://medium.com/@florian_algo/model-quantization-1-
basic-concepts-860547ec6aa9 (cit. on p. 13).

[21] Jahid Hasan. Optimizing Large Language Models through Quantization: A
Comparative Analysis of PTQ and QAT Techniques. 2024. arXiv: 2411.06084
[cs.LG]. url: https://arxiv.org/abs/2411.06084 (cit. on pp. 14–16).

[22] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A White Paper on Neural Network
Quantization. 2021. arXiv: 2106.08295 [cs.LG]. url: https://arxiv.org/
abs/2106.08295 (cit. on p. 16).

[23] Qi-Chao Mao, Hong-Mei Sun, Yan-Bo Liu, and Rui-Sheng Jia. “Mini-YOLOv3:
Real-Time Object Detector for Embedded Applications”. In: IEEE Access 7
(2019). Evaluated on COCO dataset; model size ≈23% of YOLOv3, mAP-
50 of 52.1 @ 67 fps; accessed via ResearchGate, pp. 133529–133538. doi:
10.1109/ACCESS.2019.2941547 (cit. on p. 24).

[24] André Magalhães Moraes, Luiz Felipe Pugliese, Rafael Francisco dos Santos,
Giovani Bernardes Vitor, Rodrigo Aparecido da Silva Braga, and Fernanda
Rodrigues da Silva. Effectiveness of YOLO Architectures in Tree Detection:
Impact of Hyperparameter Tuning and SGD, Adam, and AdamW Optimizers.
2023. doi: 10.3390/safety5010009. url: https://www.mdpi.com/2305-
6703/5/1/9 (cit. on pp. 29, 30).

[25] Xipeng Wang. Learning Rate Scheduling. Online post. https://xipengwang.
github.io/machine- learning- learning- rate- scheduling/. June 2021
(cit. on pp. 31, 32).

[26] AMD/Xilinx. DPU IP Details and System Integration. https : / / xilinx .
github.io/Vitis- AI/3.0/html/docs/workflow- system- integration.
html. Versione 3.0. July 2023. (Visited on 06/15/2025) (cit. on p. 36).

[27] LogicTronix. YOLOv5 Quantization & Compilation with Vitis AI 3.0 for
Kria. https://www.hackster.io/LogicTronix/yolov5- quantization-
compilation-with-vitis-ai-3-0-for-kria-7b005d. Accessed: 2025-06-16.
2023 (cit. on p. 38).

[28] Mohammad Jani, Jamil Fayyad, Younes Al-Younes, and Homayoun Najjaran.
Model Compression Methods for YOLOv5: A Review. Submitted on 21 Jul
2023, accessed 16 Jun 2025. 2023. doi: 10.48550/ARXIV.2307.11904 (cit. on
p. 38).

81

https://medium.com/analytics-vidhya/non-max-suppression-nms-6623e6572536
https://medium.com/analytics-vidhya/non-max-suppression-nms-6623e6572536
https://github.com/ultralytics/yolov5?tab=readme-ov-file
https://github.com/ultralytics/yolov5?tab=readme-ov-file
https://medium.com/@florian_algo/model-quantization-1-basic-concepts-860547ec6aa9
https://medium.com/@florian_algo/model-quantization-1-basic-concepts-860547ec6aa9
https://arxiv.org/abs/2411.06084
https://arxiv.org/abs/2411.06084
https://arxiv.org/abs/2411.06084
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://doi.org/10.1109/ACCESS.2019.2941547
https://doi.org/10.3390/safety5010009
https://www.mdpi.com/2305-6703/5/1/9
https://www.mdpi.com/2305-6703/5/1/9
https://xipengwang.github.io/machine-learning-learning-rate-scheduling/
https://xipengwang.github.io/machine-learning-learning-rate-scheduling/
https://xilinx.github.io/Vitis-AI/3.0/html/docs/workflow-system-integration.html
https://xilinx.github.io/Vitis-AI/3.0/html/docs/workflow-system-integration.html
https://xilinx.github.io/Vitis-AI/3.0/html/docs/workflow-system-integration.html
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d
https://www.hackster.io/LogicTronix/yolov5-quantization-compilation-with-vitis-ai-3-0-for-kria-7b005d
https://doi.org/10.48550/ARXIV.2307.11904

BIBLIOGRAPHY

[29] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. A Survey of Quantization Methods for Efficient Neural
Network Inference. Submitted 25 Mar 2021, revised 21 Jun 2021, accessed 16
Jun 2025. 2021. doi: 10.48550/ARXIV.2103.13630 (cit. on p. 42).

[30] AMD Vitis AI Documentation. (Optional) Dumping the Simulation Results.
https://docs.amd.com/r/en-US/ug1414-vitis-ai/Optional-Dumping-
the-Simulation-Results?tocId=XZ5iftWIC~VwulZZExtHFQ. Accessed: 2025-
06-16. 2023 (cit. on p. 42).

[31] Chongyu Qu, Ritchie Zhao, Ye Yu, Bin Liu, Tianyuan Yao, Junchao Zhu,
Bennett A. Landman, Yucheng Tang, and Yuankai Huo. “Post-Training Quanti-
zation for 3D Medical Image Segmentation: A Practical Study on Real Inference
Engines”. In: arXiv preprint arXiv:2501.17343 (2025). Submitted on 28 Jan
2025; accessed 16 Jun 25. doi: 10.48550/ARXIV.2501.17343 (cit. on p. 42).

82

https://doi.org/10.48550/ARXIV.2103.13630
https://docs.amd.com/r/en-US/ug1414-vitis-ai/Optional-Dumping-the-Simulation-Results?tocId=XZ5iftWIC~VwulZZExtHFQ
https://docs.amd.com/r/en-US/ug1414-vitis-ai/Optional-Dumping-the-Simulation-Results?tocId=XZ5iftWIC~VwulZZExtHFQ
https://doi.org/10.48550/ARXIV.2501.17343

	Introduction
	Machine Learning
	Deep Learning
	Layers
	Activation functions
	Convolutional Neural Networks

	Computer Vision and Object Detection

	YOLO
	Metrics
	Detection pipeline
	Anchor Boxes
	Non-maximum suppression
	Loss function
	Different versions

	Quantization
	Data representation
	Quantization techniques
	PTQ and QAT algorithms

	Scaling factor

	Processing the datasets
	Photovoltaic thermal images dataset
	Pre-processing script
	Ground Truth directory

	ASXL dataset
	COCO dataset

	First training with YOLOv3
	Model structure and training components
	Hyperparameters
	Optimizer
	Scheduler

	Training process

	Vitis AI and Yolov5
	Processing the output tensor
	Training the Yolov5 model
	Export and validation of the ONNX model

	Quantizing the model
	QONNX and the final conversion

	Validation and results
	PV thermal images dataset results
	Version 416X416
	Version 512X512
	Version 640X640
	Comparison between ONNX FP32 and INT8

	ASXL Dataset
	YOLOv5n version
	YOLOv5s version
	Comparison

	COCO dataset
	FP32 versions
	QDQ versions
	Uniform scaling factor versions

	Results considerations

	Conclusions
	Appendix A
	Appendix B
	Bibliography

