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Summary

In recent years, with the advent of the Internet of Things (IoT) and the transition
from Industry 4.0 toward Industry 5.0, the amount of data generated by connected
devices has grown exponentially. Sensors, industrial machinery and smart devices
are continuously producing information that needs to be collected, processed and
interpreted in real time. This growth of data poses new challenges in terms of
scalability, interoperability and efficient information management. In the enter-
prise environment, especially in production lines and industrial automation the
need to collect data from sensors is critical to monitor and optimize as similar to
calibrate the machinery. However, many proprietary solutions create closed ecosys-
tems, making integration between devices from different manufacturers difficult.
For this reason, it is of significant importance the development of a standardized,
open-source infrastructure that enables the management of data from heteroge-
neous sensors while ensuring scalability, reliability and ease of integration. A
critical issue in today’s enterprises is the lack of effective solutions for monitoring
sensor status and calibration. Although many industries have implemented data
acquisition systems for production control, these systems often do not provide de-
tailed insight into the proper operation and reliability of the sensors themselves.
In many cases, calibration is performed manually or with instruments that are
not interconnected to the rest of the enterprise digital infrastructure, increasing
the risk of errors and inefficiencies. In other situations the absence of continuous
monitoring can lead to undetected failures and wasted resources. To solve these is-
sues, it becomes essential to develop a platform capable of not only collecting data
from sensors, but also monitoring their status and managing calibration processes
in an automated manner. In this context, the use of a microservices architecture
based on Kafka and Spring Boot represents an innovative and effective approach.
Kafka enables reliable and scalable management of data flows, while Spring Boot
facilitates the development and maintenance of modular and independent services.
Beside different IoT communications technologies, the usage of the LoRa (Long
Range) transceiver for sensor communication enables wide area coverage with low
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power consumption, making it ideal for industrial environments. The objective
of this work is therefore to design and develop a distributed and scalable system
for managing a network of IoT sensors, with a focus on its application in moni-
toring the relevant industrial processes and the remote calibration of the nodes of
the network. The platform aims to provide an open-source solution that can be
adopted and customized by companies with different needs, reducing integration
costs and improving the efficiency of production processes. To achieve the goal of
efficient management, the system is composed of two main parts: the Last Mile
Network (wireless sensor network) and the Core Network (microservices for data
processing). The sensors, organized into Nodes, communicate primarly via LoRa
with the Gateway, and The Core Server, based on a microservices architecture,
uses Kafka to ensure reliable and scalable communications between asynchronous
components, optimizing production efficiency and reducing integration costs. In
conclusion, this work aims to develop a scalable and open-source system for man-
aging IoT sensor networks in industrial environments, ensuring efficient monitoring
and automated calibration through a reliable microservices infrastructure.
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Chapter 1

Introduction

Context and Motivation

The ongoing evolution of industrial systems, marked by the advent of Industry
4.0 and the emerging paradigm of Industry 5.0, is reshaping the manufacturing
landscape. Companies are increasingly embracing digitalization, automation, and
interconnected smart devices to build resilient, sustainable, and human-centric pro-
duction ecosystems. Within this transformation, the management and certification
of sensor networks become critical components for ensuring process reliability and
quality control.

In this thesis, we focus on the design and implementation of an infrastructure
dedicated to managing a network of sensors. The objective is to develop a compre-
hensive system capable not only of collecting and visualizing sensor data but also of
guaranteeing its reliability through a certification process grounded in recognized
standards.

Sensors are organized into groups, referred to as nodes, which represent the
fundamental logical units of the network. Each node is visualized on a map, en-
abling centralized and interactive management of the distributed network. Users
can access measurements recorded by each node and verify their calibration sta-
tus by analyzing the associated calibration certificate. The calibration certificate
adopted in this project complies with a modern, open standard developed by the
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Physikalisch-Technische Bundesanstalt (PTB), Germany’s national metrology in-
stitute. This standard promotes interoperability and automation in the manage-
ment of metrological information.

Metrology and Calibration Process

Calibration is performed using a specialized node, called the reference node, char-
acterized by higher sensitivity and precision compared to other nodes. This node
serves as the benchmark for verifying the accuracy of measurements collected
across the network, thereby enabling the certification of data quality. A signif-
icant challenge addressed in this thesis concerns the current industrial practices
for sensor calibration management. Presently, calibration certificates are often
produced manually and stored in paper format. There is no universally adopted
standard for their structure, and certificates are generally not designed for digital
processing. This traditional approach results in operational inefficiencies. The
absence of digital management forces companies to manually monitor the validity
period of each certificate. Every certificate has an expiration date beyond which
the sensor cannot be considered metrologically reliable. Without an automated
system, some sensors risk being used beyond their calibration validity, potentially
compromising the integrity of the entire production process. Introducing a soft-
ware infrastructure capable of centralized and automated calibration certificate
management would constitute a significant advancement. Such a system can con-
tinuously monitor the calibration status of all sensors in the enterprise, issuing
timely alerts when certificates approach expiration or when potential metrological
drift is detected. This approach not only enhances operational efficiency but could
also encourage the adoption of a common standard for managing digital calibra-
tion certificates. The digitalization of calibration processes thus aligns perfectly
with the broader transition from Industry 4.0 to Industry 5.0, wherein automa-
tion and human centrality coexist within smarter, more resilient, and sustainable
production ecosystems.

12



Introduction

System Architecture and Approach

To meet the requirements of this transition, a comprehensive system is developed
based on a distributed infrastructure and a web application. Central to this archi-
tecture are devices called gateways, designed to connect and communicate directly
with the sensors, which are organized into logical units called nodes. Communica-
tion between nodes and gateways utilizes LoRa (Long Range), a wireless protocol
that supports long-distance data transmission with extremely low energy consump-
tion. This makes LoRa especially suitable for scenarios where sensors are dispersed
across wide areas and continuous power supply is impractical. Data collected from
nodes are forwarded by gateways to a central server hosting a web application
accessible to companies. Through this interface, operators can visualize real-time
measurements from various sensors and continuously monitor the calibration cer-
tificate status. The entire system aims to provide an effective, scalable, and au-
tomated solution for sensor metrology management, improving transparency and
control within organizations and actively contributing to industrial digitalization.

Architectural Evolution and Justification

Figure 1.1: Server Architecture
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Server architectures have evolved significantly over time, from monolithic de-
signs to more modular and scalable approaches. Monolithic architectures consist
of a single, indivisible application block with tightly coupled components. While
simpler to develop initially, this approach suffers from limitations in scalability,
maintainability, and deployment agility—any modification requires redeploying
the entire system. Conversely, microservices architectures decompose the system
into independent modules, each responsible for a specific functionality. This divi-
sion fosters flexibility by enabling autonomous design, testing, and deployment of
each microservice, facilitating issue isolation and parallel development by multiple
teams. A further advantage is the suitability for adopting Test Driven Devel-
opment (TDD), where tests are written before code implementation, enhancing
software reliability and goal-oriented design. In this thesis, the server is organized
into three primary macro-components: front-end, back-end, and gateway. The
back-end is further segmented into multiple microservices, including:

• IAM (Identity and Access Management): managing identities and permis-
sions.

• Gateway API: manage the API of the back-end.

• Sensor Manager (SM): organizing and controlling sensors.

• Measure Manager (MM): processing and storing measurements.

• Settings Manager : processing commands to nodes.

Each microservice follows the Clean Code Pattern, also known as Onion Architec-
ture, which structures code into concentric layers.1 The outermost layer consists
of controllers handling external communication, the intermediate layer comprises
application services, and the innermost core contains domain entities representing
the business logic. This design enables modularity, extensibility, maintainability,
clear separation of concerns, and well-defined logical flows.

1for more about Clean Code Pattern see Robert C. Martin (2012)
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Modern Web Application Development

All microservices are containerized using Docker, a platform that enables the de-
velopment, deployment, and execution of applications within lightweight, portable,
and self-sufficient environments known as containers. A container is a standard-
ized unit of software that packages code and all its dependencies—such as libraries,
configurations, and system tools—so that the application runs reliably and consis-
tently across different computing environments. Docker containers provide isolated
execution environments, ensuring that each microservice runs independently and
does not interfere with others, even if they require different software versions or
configurations. This isolation enhances reproducibility, scalability, and maintain-
ability of the system.

Figure 1.2: Docker vs VM infrastructure

Containers and virtual machines (VMs) are similar because thery are both tech-
nologies designed to provide isolated environments for running applications, yet
they differ significantly in their underlying architecture and resource consump-
tion. Virtual machines run full guest operating systems on top of a hypervisor,
which emulates hardware resources and is managed by the host system. This
allows for the simultaneous execution of multiple VMs with entirely different op-
erating systems on a single physical machine. Containers, on the other hand,
share the host operating system’s kernel and package only the application and
its dependencies, resulting in significantly lower overhead, faster startup times,
and more efficient resource utilization. However, this shared-kernel model requires
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that containers and host systems use the same base operating system (e.g., Linux).
Despite these differences, containers and VMs share common goals and function-
alities: both provide application isolation, enhance security, improve portability,
and support automation in deployment and orchestration. They enable consis-
tent and reproducible environments across development, testing, and production
stages, and are widely used in modern distributed systems and cloud-native ar-
chitectures. In essence, while containers are more lightweight and optimized for
microservice-based applications, VMs remain advantageous in scenarios that re-
quire full OS-level separation and greater flexibility.2

To orchestrate the deployment of these services, Docker Compose is employed.
It is a declarative, YAML-based tool that simplifies the management of multi-
container applications by defining service configurations, dependencies, volumes,
and exposed ports in a single file. This setup enables efficient and consistent initial-
ization of the entire infrastructure on the server with minimal manual intervention.

2Karl Matthias Sean Kane (2023)
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1

2 services :
3 sensor - manager :
4 image : ’docker .io/ christiand9699 /sensor - manager : latest ’
5 restart : unless - stopped
6 depends_on :
7 - postgres
8 expose :
9 - ’8080 ’

10 measure - manager :
11 image: ’docker .io/ christiand9699 / measure : latest ’
12 restart : unless - stopped
13 depends_on :
14 mongodb :
15 condition : service_healthy
16 expose :
17 - ’8080 ’
18 frontend :
19 image: ’docker .io/ christiand9699 /frontend -react: latest ’
20 restart : unless - stopped
21 ports:
22 - " 5173:80 "
23 volumes :
24 - ./ default .conf :/ etc/nginx/conf.d/ default .conf
25 gateway -iam:
26 image: ’docker .io/ christiand9699 /gateway -iam: latest ’
27 depends_on :
28 keycloak :
29 condition : service_healthy
30 restart : unless - stopped
31 ports:
32 - ’8080:8080 ’
33 settings :
34 image: ’docker .io/ christiand9699 / settings : latest ’
35 restart : unless - stopped
36 expose :
37 - 8080

Listing 1.1: Example of Docker Compose File
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Communication between Microservices

To enable efficient and scalable communication between microservices, Apache
Kafka is employed as a message broker facilitating publish-subscribe event streams.
Kafka is a distributed streaming platform designed for high-throughput, low-
latency, and fault-tolerant handling of real-time data feeds. It acts as an inter-
mediary that decouples producers (which generate data) from consumers (which
process data), enabling asynchronous and scalable message exchange between ser-
vices.

Figure 1.3: Kafka Pub-Sub Architecture

Each event published to Kafka represents a specific occurrence—such as a new
sensor measurement or a change in sensor state. Events are organized into topics,
which are durable and partitioned logs of messages. Kafka ensures resilience and
message persistence by replicating data across multiple nodes in a cluster, making
it robust to failures.

Moreover, Kafka supports complex workflows through patterns such as the Saga
pattern, which is used to coordinate distributed transactions across independent
microservices. This pattern helps maintain system-wide consistency by allowing
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each local transaction to be executed independently, with compensating actions
triggered in the event of failures or rollbacks, rather than relying on traditional
two-phase commits.

Spring Boot

To develop each container in the back-end architecture, the Spring Boot framework
was employed. Spring Boot is a powerful framework built on top of the Spring
ecosystem that facilitates the rapid development of stand-alone, production-grade
applications. It inherently supports and promotes several fundamental program-
ming paradigms, among which Inversion of Control (IoC), Dependency Injection
(DI), and Aspect-Oriented Programming (AOP) are of central importance.3 In-
version of Control (IoC) is a design principle whereby the control over the creation
and lifecycle of objects is transferred from the application itself to a dedicated
container or framework. Instead of having application components instantiate and
manage their dependencies, developers define how objects should be constructed
and wired, and the framework orchestrates this process. This paradigm enables
a decoupled architecture, increasing modularity, testability, and ease of mainte-
nance. Dependency Injection (DI) is a specific and widely adopted form of IoC. It
refers to the process by which an object’s dependencies are provided to it by an
external entity—typically the IoC container—rather than the object creating them
internally. In Spring Boot, DI is implemented through annotations such as @Au-
towired, @Component, @Service, and @Configuration, allowing the framework to
resolve and inject dependencies automatically at runtime. This promotes a clear
separation of concerns and facilitates the reuse of components across the system.
Aspect-Oriented Programming (AOP) complements IoC and DI by providing a
mechanism to modularize cross-cutting concerns—such as logging, security, trans-
action management, or error handling—that tend to be scattered and tangled
across multiple components. AOP achieves this by allowing developers to define
"aspects" that encapsulate behaviors affecting multiple classes, which are then ap-
plied declaratively or programmatically without polluting the core business logic.
In Spring, AOP is implemented via proxies and annotations such as @Aspect and
@Around, enabling clean separation of concerns and improving code maintainabil-
ity and readability.

3Ryan Breidenbach Craig Walls (2005)
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Through the combined use of these paradigms, Spring Boot enables the design of
a highly modular, loosely coupled, and scalable back-end architecture. Each service
or container can be independently developed, tested, and deployed—characteristics
that are particularly advantageous in a microservices-oriented system, where co-
hesion and autonomy of components are critical for success.

Open Philosophy

An additional fundamental aspect of this thesis is its adherence to an open philos-
ophy. The system is designed with openness and interoperability in mind, leverag-
ing open standards such as the PTB calibration certificate format and open-source
technologies. This approach fosters transparency, encourages collaboration, and
ensures that the infrastructure can evolve and integrate with other systems without
vendor lock-in or proprietary limitations. It reflects a commitment to sustainable,
future-proof solutions aligned with the evolving needs of industrial digitalization.
To further embody this open philosophy, an organization named Measurestream
has been created on GitHub, hosting all repositories related to this work. Ev-
ery component is released as open-source under the GNU General Public License
v3 (GPL-3.0), reinforcing the commitment to free software principles. The GPL-
3.0 license ensures that anyone is free to use, study, modify, and distribute the
software, provided that any derivative works are also distributed under the same
license. This guarantees that the software and any improvements remain open and
accessible to the community, protecting user freedoms and promoting collaborative
development over time.
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Chapter 2

Back-end

2.1 Sensor Manager

The sensor manager is the element responsible for managing all the sensors.1 These
sensors can be created, read, updated and deleted: all CRUD methods are pro-
vided. The sensors are represented by nodes, defined as entities composed by the
union of multiple Control Units(CU) and Measurement Units(MU).
The definition of CU and MU is now offered for concision.

• The CU is the physical part of the sensor in charge of retrieving data from
the MU and it sends the data to the Gateway – which is the hardware part
that can make a "bridge" between sensors and server. The CU, in the present
solutions, communicates through a LoRa(Long Range) network and employs
a cryptography protocol to communicate with the server.

• On the other hand, the MU is the physical part of the sensor responsible for
measuring the physical quantity it was designed for. It is essential that the
MU is certified and calibrated.

Within the server, these two entities are designated as the Measurement Unit
and the Control Unit, collectively forming a node. In the context of Measure-
Stream, a node can contain multiple CUs and MUs. The presence of different

1About the division in microservices see 13
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MUs is attributed to the potential for diverse sensors and the objective to collect
data from varying physical quantities. Conversely, the possibility of a node be-
ing composed of multiple CUs has been permitted, which may facilitate multiple
connections with disparate technology networks (e.g., LoRa, Bluetooth).

The Sensor Manager(SM) is responsible for the management of all entities and
operations within the system. The SM is organised in a microservice structure,2
following the onion pattern or the Clean Code Pattern 3.
Consequently, it is divided into:

1. Controllers

2. Services

3. Repositories

The incoming and outgoing data are DTOs (Data Transfer Object), and it mirrors
the entities that are the business core of the service. The controller is responsible
for both the reception and transmission of DTOs, while the Service maps DTOs
into entities and vice versa, whereas repositories retrieve entities from a DB.
It is imperative to note that entities never leave the application for security reasons
– and also permit agile development.

REST controllers

There are five different REST controllers, which respond to:

1. /API/controlunits

2. /API/measurementunits

3. /API/nodes

4. /API/user

5. /API/dcc

All of them offer standard CRUD requests and also implement different services
to manage the requests for each entity. These are: node, CU, MU, User and DCC.
Each service has been designed to manage a specific entity: every service is an
interface. The implementation of the services varies. Each entity contains different
information and different properties:

2Further insights can be found on page 15
3Robert C. Martin (2012)
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1. Node:

• id: Long – Unique identifier of the node.
• name: String – Name of the node (mandatory field).
• standard: Boolean – Indicates whether the node is a standard or not.
• controlUnits: MutableSet<ControlUnit> – Set of control units as-

sociated with the node.
• measurementUnits: MutableSet<MeasurementUnit> – Set of measure-

ment units associated with the node.
• location: Point – Location of the node (geographical coordinates).

2. ControlUnit:

• id: Long – Unique identifier of the control unit.
• networkId: Long – Network identifier, must be unique.
• name: String – Name of the control unit (mandatory field).
• remainingBattery: Double – Percentage of remaining battery, with a

maximum value of 100.
• rssi: Double – Indicates the RSSI value, which must be negative or

zero.
• node: Node? – Node associated with the control unit.

3. MeasurementUnit:

• id: Long – Unique identifier of the measurement unit.
• type: String – Type of the measurement unit (mandatory field).
• measuresUnit: String – Unit of measurement (mandatory field).
• networkId: Long – Unique network identifier.
• dcc: DCC? – DCC associated with the measurement unit.
• node: Node? – Node associated with the measurement unit.
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4. User

• userId: String Unique identifier of the user. It is generated by the
IDP4 and it is retrived by the Identity Token.5

• name: String
• surname: String
• email: String
• role: String
• nodes: MutableSet<Node> set of nodes owned by user.
• mus: MutableSet<MeasurementUnit> set of MUs owned by user.
• cus: MutableSet<ControlUnit> set of Cus owned by user.

5. DCC

• id: Long Unique identifier of the DCC.
• expiration: LocalDate indicates the expiration of the calibration doc-

ument
• filename: String
• pdf: ByteArray
• mu: MeasurementUnit?

The entities in question are interconnected, and they all bear specific relation-
ships. For instance, a CU may be associated with a node, though this is not
mandatory. This is due to the necessity of designing the system in such a man-
ner that any replacing of a CU in some node can be performed without the node
being deleted. Furthermore, an MU may be associated with a node for the same
reason as for a CU. In addition, a node may contain multiple CUs and MUs. The
Node, MU, and CU are associated with a user to ensure secure access for each in-
dividual user of the application. Lastly, each DCC, which contains the calibration
information of a MU, is associated with a single MU via a one-to-one relationship.

4Identity Provider
5aggiungere citazione nota
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Database

Figure 2.1: ER Diagram of Sensor Manager’s Entities

The functionalities of SM are based on the usage of a DBMS (Database Manage-
ment System). The relational database PostgresSQL was selected for this purpose,
as it is ACID-compliant6, i.e. it respects certain properties:

1. Atomicity ensures that all transactions are executed as a single, non-interrupted
process. In the event of a failure in the DBMS or a transaction, the assurance
of non-interruption is guaranteed, as no intermediate states are stored.

2. Consistency denotes the property by means of which data remain in a stable
state. Consequently, in the event of an error, the consistency property ensures
a rollback to the previous stable state.

3. Isolation is defined as the property that ensures that only one process at a
time can modify the same data

4. Durability ensures that data can persist.

Moreover, PostgreSQL is characterised as an open-source software solution.
It facilitates replication and partitioning, thereby enhancing the scalability of the
database management system(DBMS) and the associated applications. In order to
retrieve data, the software utilises SQL. The connection between the entities within
the SM application and the underlying DBMS is managed through Spring Data
JPA, which leverages Object-Relational Mapping(ORM). ORM is a programming

6Francis Botto (1999), p. 18
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technique that automatically maps Java objects(entities) into relational database
tables, allowing developers to interact with the database by using object-oriented
paradigms. By this process, each entity class is mapped into a corresponding table,
and each instance of the class represents a row in that table. Spring Data JPA
abstracts much of the boilerplate code and ensures that all entity relationships
– such as one-to-many or many-to-many – are correctly mapped and enforced
according to the database schema.

Security

SM operates as a resource server within the OAuth2 security framework. It is se-
cured by means of Spring Security and enforces access control by requiring a valid
bearer token for all incoming requests. The token must be issued by a trusted au-
thorization server, thereby ensuring that only authenticated and authorised clients
may access protected endpoints. In the event of an unauthenticated or invalid to-
ken being supplied, the server responds with an HTTP status code, such as 401
Unauthorized. SM is packaged as a Docker container to ensure portability and
consistency across environments.7 This container is uploaded to Docker Hub –
making it easily accessible for deployment.8 It is included in a Docker Compose
Configuration, which orchestrates the launch of all microservices in the system,
thus enabling seamless integration, network configuration, and environment vari-
able management across services.

Messages

The SM publishes events to different Kafka topics to notify other components
of the application about modifications in the sensor infrastructure, such as the
creation or deletion of a Node, MU, or CU. These Kafka topics are named "cu-
creation", "mus", and "node-event", respectively. Each topic receives JSON objects
that follow a consistent schema composed of two fields: eventType and value.
The eventType is a string that indicates the type of event, such as "CREATE" or
"DELETE", while the value field contains the data related to the affected element.
Specifically, it holds a NodeDTO for node-related events, a MeasurementUnitDTO
for MU events, and a corresponding DTO for CU events.

7For background information, consult page 15.
8see https://hub.docker.com/u/christiand9699

26

https://hub.docker.com/u/christiand9699


Back-end

2.2 Measure Manager

The Measure Manager(MM) manages all the measures retrived from the sensors.
MM is organized according to a microservices structure which uses the Onion
Pattern. MM exposes different URLs to only read data; however, it doesn’t offer
any URL to update or to create any kind of measures. The only way to insert
measures in MM is by a Kafka connection between MM and the Gateway.9

Kafka is an open-source event streaming platform developed by the Apache
Software Foundation.10 It was designed for high-throughput, fault-tolerant, scal-
able handling of real-time data feeds. Kafka enables systems to publish, subscribe
to, store, and process streams of records in a distributed and durable way. In par-
ticular, Kafka is a particular message broker that handles events. The term ’event’
denotes an occurrence that has already transpired. Within the domain of infor-
mation technology, ’event’ is utilised to construct pipelines or to trigger sequences
of actions among disparate entities that function asynchronously. The concept of
event is predicated on the notion of occurrence and is in contrast with the idea
of command – which is used to describe an action to be performed. The ideas
of event and command can be used to orchestrate asynchronous actors that must
cooperate, but the event concept needs an easier implementation. The concept of
event fits perfectly within the requirements of collecting data from the sensors; for
this reason I have chosen a message broker to connect Gateway and Server.

A further rationale for the selection of Kafka is its approach to the pubblica-
tion of events. Within a Kafka communication, three actors are to be identified:
the publisher, the topic and the consumer. The producer is responsible for the
transcription of the events while the topic serves as the repository for all events
put in chronological order. In turn, the consumer has the capacity to retrieve
specific events – or the entirety of events – within a given topic, at a time of their
choosing. This mode of communication is particularly efficacious for asynchronous
communication, as it does not necessitate the synchronisation of the producer and
consumer. It can be regarded as a form of lazy communication in that the con-
sumer has the capacity to access data at a time of their choosing – in contrast
with other message broker like RabbitMQ, which it is not lazy.

9The Gatweay is the physical part that collects data from nodes and sends it to server, it
must not be confused with Cloud Gateway microservice.

10Apache Software Foundation (2025)
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REST controllers

MM serves different GET endpoints to retrive data and they are:

1. /API/measures/ retrives a list of all measures;

2. /API/measures/P gets a list of all measures in pagination mode;

3. /API/measures/nodeId responds with all the measures of a specific nodeId
and a specfic unit of the sensor’s measure11 – the nodeId and the unit are
specified with the usage of request parameters, which are the nodeId and the
variable measureUnit. For instance, in order to get all Celsius measures from
node 1 the correct endpoint is:
/API/measures/nodeId/?nodeId=1&measureUnit=Celsius

4. /API/measures/measureUnitOfNode accepts the request parameter nodeId
and provides information regarding the unit of measures employed in the
measures.

5. /API/measures/download this endpoint allows clients to retrieve sensor mea-
surement data in JSON format as a downloadable file. It accepts four query
parameters: start and end, which are optional timestamps used to filter
the data by a specific time interval, and nodeId and measureUnit, which
are required to identify the source node and the type of measurement to be
retrieved. When invoked, the endpoint queries the relevant measurements
based on the provided filters, serializes the data into JSON, and returns it
as a byte array within an HTTP response. The response includes headers
that prompt the browser or client to download the file with the name mea-
sures.json, and the content type is set to application/json. This mechanism is
useful for exporting data related to a specific node and measurement type, op-
tionally within a defined time range, in a format suitable for further analysis
or archiving.

The initial three endpoints also accept the start and end request parameters.
These are always registered in UTC time and they possess the capability to filter
data within a specified period.

11The term "unit of measure" must not be confused with Measurement Unit(abbreviated as
MU): the first stands for the designated magnitude of a quantity, such as Celsius, Kelvin and
the like; the latter denotes the physical part of a node which detects the measure. For more on
MU cfr. 21
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As previously outlined, MM adheres to the Clean Code Paradigm and, in re-
sponse to the aforementioned parameters, it returns MeasureDTO. The core busi-
ness of the microservice is Measure, a Kotlin object linked to a table or a collection
in some DB12, and it follows this schema:

Measure

• id: Unique identifier of the measurement, automatically generated by Database.

• value: Numerical value of the recorded measurement.

• measureUnit: Unit associated with the value (e.g., °C, ppm, %RH).

• time: Timestamp indicating when the measurement was taken. It must be
in the past or present and it is in UTC.

• nodeId: Numerical identifier of the sensor node that generated the measure-
ment. It must be zero or positive.

Database

It is evident that measures are stored within a database; conversely, the mapping
between the database and the entities is provided by Spring Data JPA, thereby fa-
cilitating ORM(Object Relationship Mapping) – as was also previously evident in
the SM. Whilst the most prominent types of NoSQL databases are Document, Key-
Value, Wide-Column and Graph, I opted for MongoDB, a NoSQL database.1314

MongoDB is an open-source database based on documents with the fundamental
premise of substituting the concept of a row with a more flexible model, the docu-
ment. This document-oriented approach facilitates the representation of complex
hierarchical relationships with a single record by allowing both embedded docu-
ments and arrays. MongoDB is also schema-free, meaning that a document’s keys
are not predefined or fixed in any way. This feature eliminates all requirements for
extensive data migrations, as the system can adapt to changes without the need
for significant alterations to its structure. New or missing keys can be addressed

12Additional information about Clean Code Pattern can be found on page 13.
13The term ’NoSQL’ is an acronym for ’Not Only SQL’, indicating that these databases do

not store information in a relational manner – as is typical of SQL databases – instead it utilises
different organisational methods for data storage

14For the official documentation on MongoDB, see MongoDB, Inc. (2025)
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at the application level, avoiding the need to impose a uniform data structure
on all data. This affords developers a considerable degree of flexibility in their
approach to working with evolving data models.15. Many documents are stored
in a collection, which is analogous to a table in a relational environment. In the
application under consideration, a collection has been created, named ’measures’,
for the storage of various measures. This collection is saved within a database
named ’SENSORS’. The decision to employ MongoDB as the main mechanism for
storing measures was guided by understanding that it offers superior scalability in
comparison to other databases, and its flexibility makes it particularly well-suited
to future development requirements.

Grafana

To enabled the visualisation of the charts of measures, the software Grafana has
been employed. A multi-platform, open-source analytics, Grafana is an interactive
visualisation web application capable of generating charts, graphs and alerts for
the web when connected to suitable supported data sources. Although there is a
Cloud version, this is not entirely free of charge; however, there is a self-hosted
version that comes in two variants: Grafana Self-Hosted OSS16 and Grafana Self-
Hosted Enterprise, the former of which is free. The self-hosted OSS version was
selected due to it being free of charge and its ability to generate an unlimited
number of visualisations and charts. The deployment of Grafana within a Docker
container facilitates connectivity to data sources – including MongoDB – without
the necessity for additional coding.

Figure 2.2: Grafana dashboard example

15Michael Dirolf Kristina Chodorow (2010), pp. 1–2
16Open Source Software
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Grafana has many functions, from the creation of dashboards for the monitoring
of sensors to the generation of time series charts and the incorporation of non-time
series charts. The system’s flexibility ensures seamless integration into a wide
range of front-end applications. The process of adding a data source to Grafana
necessitates the installation of a dedicated plugin. Despite there being a dedicated
plugin that facilitates direct connectivity to MongoDB which allows for a seamless
integration, it should be noted that such plugin is exclusively available within
the enterprise licence of Grafana – which is notably expensive. Nevertheless, a
complementary plugin exists that offers direct connectivity to the comparable but
distinct document-based database InfluxDB named InfluxDB plugin.17

Figure 2.3: Data flow from Grafana to MongoDB through the MM using the
Infinity plugin

17Obviously, an alternative approach would involve the utilization of InfluxDB instead of
MongoDB.
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Therefore, MongoDB has been connected to Grafana passing through the mi-
croservice MM by means of the plugin Infinity. The implementation of this process
is somewhat challenging, as Infinity facilitates connection between Grafana and a
general data source, thereby offering a structured method for data provision in
many formats, such as JSON, XML or CSV.18. A safe connection was first estab-
lished between the IAM(Identity Access Manager) – in this case Keycloak – and
Infinity. In order to do so, a new client ID and the secret were added to the IAM
and inserted into the OAuth2 Authentication part of the Infinity plugin configura-
tion. Lastly, Infinity was connected to the /API/measures/nodeId endpoint. Two
variables were used in the Grafana dashboard: nodeId and measureUnit. These
were respectively employed to specify the node and the unit of measurement, whose
information was retrieved using the UQL parser within the plugin.

Messages

The MM consumes events from two Kafka topics. The first one, named "measures",
contains all the measurements sent by the sensors and represents the only entry
point for inserting and creating measurement data within the application. The
second topic, "node-event", carries information sent by the SM regarding nodes
and the users who own them. This data is essential to ensure that any operation
related to a node is correctly associated with a specific user ID, maintaining the
integrity of user-linked operations in the system.

18For this purpose, inspiration was drawn from a guide Akshita Dixit (2024). Yet this guide
only provides information on connecting to an unprotected Infinity plugin
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2.3 API Gateway and IAM

Whilst designing a microservices architecture, I took the decision to introduce an
API Gateway as the central point for managing and routing requests to the various
back-end services. This component plays a pivotal role, acting as an intermediary
between the client – whether a web front-end or a mobile app – and the back-end
microservices. It functions as the sole entry point into the system, directing re-
quests into their appropriate microservice. The API Gateway performs a mapping
between URL endpoints and microservices.

The implementation of the API Gateway was achieved through the utilization
of a Spring Cloud Gateway MVC dependency, a contemporary solution offered
by Spring for the management of API traffic. Within this framework, a series
of routes has been defined, which in turn map incoming client requests to their
appropriate IPs of Docker containers that house the requisite services. In essence,
each request undergoes analysis and is then sent dynamically to the designated
microservice, ensuring seamless and transparent service delivery to the client. Im-
plementing these functionalities entailed the creation of a Docker network spanning
172.20.0.0/24, as well as allocating IP addresses to each container. Spring Cloud
Gateway, therefore, acts as the single access point for the back-end, meaning any
request from a client must first go through it. This approach simplifies centralized
control, security, and shared policy enforcement across all services.

The following example illustrates the configuration of a route to SM. It should
be noted that the routes are added inside the application.yaml file. The URI
indicates the destination of the endpoint whilst the TokenRelay is responsible for
the re-transmission of the authentication token to the destination microservice.19

19The authentication token will be explained in short down below.
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1 spring :
2 application :
3 name: iam_module
4 main:
5 web - application -type: servlet
6

7 cloud:
8 gateway :
9 mvc:

10 http - client :
11 type: AUTODETECT
12 routes :
13 - id: sensor -manager -nodes
14 uri: http ://172.20.0.10:8080
15 predicates :
16 - Path =/ API/nodes /**
17 filters :
18 - TokenRelay

In order to enhance security and manage access control, the integration of
Spring Cloud Security dependency was also implemented, with the result that an
Identity and Access Management system(IAM) was able to be set up. The IAM is
responsible for identifying, authenticating, and authorizing users interacting with
the services, ensuring secure and controlled access to resources.

In the capacity of IAM identity provider, the decision was taken to utilize
Keycloak, an open-source platform for identity and access management. Keycloak
supports standard protocols such as OpenID Connect(OIDC) and SAML 2.0, mak-
ing it highly compatible with contemporary applications. Make note that OIDC
is based on the OAuth 2.0 protocol, which securely and efficiently manages user
authentication – which is why the OIDC protocol has been implemented within
Keycloak.20

20For more about OAuth 2.0 see IETF RFC 6749 and 6750
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OIDC simplifies the way identification method of users based on the authentica-
tion performed by an Authorization Server and to obtain user profile information
in an interoperable and REST-like manner. Thanks to OIDC I thus implemented
secure sign-in flows for web, mobile, and JavaScript clients, so to receive verifiable
identity information about users. The protocol is also extensible, supporting op-
tional features such as encrypted identity data, OpenID Provider discovery and
session logout, since OIDC offers a secure and trustworthy method to know the
identity of the user that is intereacting with the app. Most importantly, OIDC
eliminates the need for applications to manage passwords, reducing the risk of data
breaches caused by stolen or mismanaged credentials.21

Authentication

During the Authentication process some actors take part to the action. These
actors are:

• IAM, the entity that has implemented the OpenID Connect and OAuth 2.0
protocols; sometimes it also known as IDP(Identity Provider), security token
service, OpenId Provider(OP) or Authorization Server.

• OAuth 2 Client, an application that outsources its user authentication func-
tion to an OP. It is also known as Relying Party(RP).

• User, the authenticating person.

• User Agent; it could be a mobile application or a browser, as it is in our case.

21For all information about OIDC, please consult OpenID Foundation (2025)
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Figure 2.4: OpenID Fundation Authentication

The Authentication protocol observes the following steps:

1. The User clicks on sign-in ;

2. Then, the same is redirected to the login page of the IAM;

3. Afterwards, the User type username and password on the website;

4. After that, the IAM assigns an authentication code to the browser session;

5. Subsequently, the browser is redirected to the OAuth2 Client with the au-
thentication code;

6. The Oauth2 Client exchanges the authentication code for the Identity Token;

7. Then, the Identity Token is associated to a cookie;

8. The cookie is sent to the browser;

9. Lastly, the browser is redirect with the cookie to a user private screen;
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The outcome of the authentication process is the Identity Token, which contains
an identifier of the user and other information. An ID token is encoded as a JSON
Web Token(JWT), a standard format that allows your application to easily inspect
its content and make sure it comes from the expected issuer and that no one else
has changed it.22 The JWT is composed of three fields: the header, the payload
and the signature. Each field is separated by a dot and it is not encrypted but it
is encoded in base64.23 The following is an example of a JWT structure:

[Base64(HEADER)].[Base64(PAYLOAD)].[Base64(SIGNATURE)]

The header is composed of the algorithm employed to sign the JWT. The al-
gorithm I used is HMAC with SHA-256 – in brief, HS256. The following is the
pseudo-code representing the signature of the JWT:

HS256( base64UrlEncode(header) + "." + base64UrlEncode(payload), KEY)

Here, KEY is the IAM private key made out of 256 bit. The signature’s au-
thenticity is validated by IAM, which recalculates the signature. When the two
signatures are found to be identical, the verification is succesfull.

It is best now to delve deeper into what HMAC actually is, and how is functions.
HMAC is a function used by the message sender to produce a value formed by
condensing the secret key and the message input. Such formed value is called
MAC(message authentication code). The HMAC function used is based on the
usage of a hash function:24

HMACSHA256(K, m) = H ((K0 ⊕ opad) ∥ H ((K0 ⊕ ipad) ∥ m))

In this formula:

• H is the generic hash function, in our case it is SHA-256. The hash function
splits the message in blocks of size B;

22For the definition of the Identity Token see Auth0 (n.d.)
23This encoding does not provide any kind of additional security and the content can be read

with a simple base64 conversion.
24A specific hash function is not provided in the definition of the HMAC algorithm because

any hash function can be used. For the definition of HMAC, cfr. National Institute of Standards
and Technology (2008)
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• K is the original secret key;

• B is the block size in bytes;

• K0 is the key after either padding has been added or after undergoing trun-
cation, whose length is in B-sized bytes (B = 64 bytes for SHA-256);

• m is the message to authenticate;

• opad is the byte 0x5C repeated B times;

• ipad is the byte 0x36 repeated B times;

• ⊕ denotes bitwise XOR;

• ∥ denotes concatenation.

Step Description of HMAC Algorithm

1 If the length of K = B: set K0 = K. Proceed to Step 4.

2 If the length of K > B: compute H(K) to obtain an L-byte
string, then pad it with (B − L) zero bytes to form K0 (i.e.,
K0 = H(K)∥00 . . . 00). Proceed to Step 4.

3 If the length of K < B: pad K with zeros to form a B-byte string
K0 (e.g., if K is 20 bytes and B = 64, pad with 44 bytes of 0x00).

4 XOR K0 with ipad (0x36 repeated B times): K0 ⊕ ipad.

5 Append the message text to the result of Step 4: (K0 ⊕ ipad)∥text.

6 Apply the hash function H to the result of Step 5: H((K0 ⊕
ipad)∥text).

7 XOR K0 with opad (0x5C repeated B times): K0 ⊕ opad.

8 Append the result of Step 6 to the result of Step 7: (K0 ⊕
opad)∥H((K0 ⊕ ipad)∥text).

9 Apply the hash function H to the result of Step 8:

H((K0 ⊕ opad)∥H((K0 ⊕ ipad)∥text)).

10 Take the leftmost t bytes of the result from Step 9 as the final MAC.

38



Back-end

The payload of the Identity Token is the core of the logged user information,
which contains:

• iss, from the word issuer, a case-sensitive string or URI that uniquely identifies
the party that issued the JWT. Its interpretation is application specific (there
is no central authority managing issuers).

• sub, from the word subject, a case-sensitive string or URI that uniquely iden-
tifies the party that this JWT carries information about. In other words, the
claims contained in this JWT are statements about this party. The JWT
spec specifies that this claim must be unique in the context of the issuer or,
in cases where that is not possible, globally unique. Handling of this claim is
application specific. This field is used by the SM to create an User entity in
the DB.

• aud, from the word audience. This is either a single case-sensitive string or
URI or an array of such values that uniquely identifies the intended recipi-
ents of this JWT. When this claim is present, the party reading the data in
this JWT must confront its name with the aud claim or disregard the data
contained in the JWT.

• exp, from the word expiration (time), a number representing a specific date
and time in the format “seconds since epoch”, as defined by POSIX6. This
claim sets the exact moment from which this JWT is considered invalid. Some
implementations may allow for a certain skew between clocks – by considering
this JWT to be valid for a few minutes after the expiration date.

• iat, from issued at (time). Such number represents the specific date and time
(in the same format as exp ) at which this JWT was issued.

Although the Identity Token constitutes the heart of the authentication pro-
tocol, this is not stored in the browser; rather, the OAuth2 Client associates a
cookie with each Identity Token and transmits said cookie to the browser, which
then stores it. Upon acquiring a specific website’s cookie, the browser incorporates
it into the header of all the subsequent requests directed to that website. In this
way, the user session is maintained. Information of various types may be contained
within a cookie, including: JSESSIONID; OAuthSTATE; XSRF-TOKEN, etc...

There is a link between the JSESSIONID and the Identity Token in the OAuth
2 client. If an individual were to steal the JSESSIONID, they could imperson-
ate the user, which is why the JSESSIONID is a large number used to prevent a
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brute force attack, generated using a random number generator that cannot be
predicted. The OAuthSTATE and XSRF-TOKEN are used to prevent the Cross-
Site Request Forgery(CSRF) attack, an attack that forces the end user to execute
unwanted actions onto a web application they’re currently authenticated in. With
the aid of social engineering – such as sending a malicious link through email or
chat – an attacker may deceive web application users into performing actions on
the attacker’s behalf without them knowing it. If the targeted user has a regular
account, a successful CSRF attack can trigger unintended state-changing opera-
tions, such as transferring money or updating account settings. However, if the
victim holds administrative privileges, such an attack could lead to a complete
compromise of the web application.25 The CSRF attack can be prevented through
the implementation of OAuthState and XSRF-TOKEN. These tokens are gener-
ated at the beginning of the user session and then stored within the cookie. It
is imperative that these tokens be incorporated into all operations that result in
a state-change on the back-end. Afterwards, the back-end performs a verification
process in which it asserts whether the tokens added in the header of the opera-
tion correspond to the tokens stored in the cookie. However, in the event that an
individual were to surreptitiously appropriate the cookie, they would possess the
capability to impersonate the logged-in user. Consequently, the vulnerability to
this specific attack persists.26

Regarding the authorization – a similar but different operation from authenti-
cation – the IAM can also send an Access Token that is very simliar to the Identity
Token and commonly provided in a JWT format. Nonetheless, it also has the scope
field where is found the list of actions the user has the authorization to perform.27

25See KirstenS et al. (n.d.)
26For this kind of vulnerability, cfr. OWASP Foundation (n.d.)
27For a discussion on Access tokens, I recommend Sebastian E. Peyrott (2024)
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In order to support OIDC, the authentication and authorization code flow,
it was implemented Keycloak – an open source IAM– by creating a Keycloak
realm named MeasureStreams, which represents the application’s security domain.
Within this realm, it was configured a client with support for the Authorization
Code Flow, and then copied the corresponding client-id and client-secret into my
Spring Cloud Gateway configuration to establish the connection between the IAM
and the Gateway.

Finally, it was defined several user roles in both Keycloak and Spring Cloud
Gateway to differentiate access levels and permissions based on user type. Specif-
ically, it was designed three types of end users:

• APP_Admin, who have full access to all features, including advanced statis-
tics and server performance analytics;

• Customers, who can only view measurement data from their own LoRa nodes
installed within their facilities, as well as the status of their DCCs;

This architecture results in a system that is scalable, secure, and flexible, with
centralized and consistent management of API routing, authentication, and au-
thorization.
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DCC

Figure 2.5: Data flow of DCC

The API Gateway is responsible not only for ensuring security and managing
APIs within the application but also plays a vital role in supporting the Sen-
sor Manager (SM). In particular, the API Gateway manages the uploading of
PDFs—which represent the Digital Calibration Certificates (DCC) in this con-
text—and subsequently forwards them to the SM, which associates each certificate
with the corresponding Measurement Unit (MU). This design is necessary because,
in Spring Cloud Gateway, it is not possible to directly forward a multipart file up-
load (such as a PDF) to a downstream API without first storing or buffering the
file. This limitation arises from the gateway’s reactive, non-blocking architecture,
which streams requests and responses. Without buffering, the multipart data
stream cannot be reliably forwarded downstream.
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To address this, an HTTP POST method at /API/pdf/, accepting the following
parameters:

• authorizedClient: An OAuth2 authorized client instance, automatically in-
jected to support secure token relay.

• file: The PDF file to be uploaded, received as a multipart HTTP request
parameter.

• muId: The identifier of the Measurement Unit to which the uploaded certifi-
cate should be linked.

• expiration: The expiration date of the certificate.

Internally, the method constructs a URL targeting the DCC microservice, em-
bedding the muId and expiration as query parameters. It prepares HTTP head-
ers specifying the content type as multipart/form-data and attaches the OAuth2
bearer token to ensure authenticated communication. The file is wrapped into a
suitable resource (MultipartInputStreamFileResource) to be sent as part of the
request body. A new HTTP entity is created encapsulating the body and headers,
and a POST request is issued to the DCC microservice using a RestTemplate. Fi-
nally, the method returns the HTTP response status and body received from the
microservice, thereby enabling the API Gateway to act as a secure proxy for file
uploads, delegating storage and association responsibilities to the Sensor Manager
via the DCC service.
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2.4 Settings Manager

The Settings Manager constitutes the core component responsible for managing
connectivity between the server and the underlying hardware gateways. Its pri-
mary role is to dispatch commands to the hardware infrastructure, particularly
to Control Units (CUs) and Measurement Units (MUs). The architecture of the
Settings Manager adheres to the principles of Clean Code, mirroring the design
of other components such as the Sensor Manager (SM) and the Measure Manager
(MM). Accordingly, it is structured into three main layers: controllers, services,
and repositories. Communication with hardware gateways is established through
MQTT messaging, utilizing a Mosquitto broker instance deployed within the sys-
tem.

The Settings Manager is responsible for handling the following core entities:

• CuSetting: represents the configuration parameters for a Control Unit, such
as bandwidth, coding rate, spreading factor, and update interval. Each CU
configuration is associated with a User, and optionally with a Gateway, es-
tablishing a many-to-one relationship.

• MuSetting: encapsulates the settings associated with a Measurement Unit,
primarily characterized by its sampling frequency. Each MU is associated with
a User, and optionally linked to a CuSetting, reflecting its logical connection
to a control unit.

• Gateway: models the physical device responsible for interfacing the CUs
with the serverand maintains a one-to-many relationship with the associated
CuSetting entities. This enables centralized management of all CU configu-
rations connected to a specific hardware gateway.

Additionally, a User entity is maintained for security and authorization pur-
poses, although it is not directly involved in configuration management.
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Rest Controllers

The Setting Manager serves different endpoints to retrive and update data and
they are:

1. GET /API/command/start/{muid} initiates the acquisition process on the
MU identified by the specified {muid} .28

2. GET /API/command/stop/{muid} stops the acquisition process on the MU
identified by the specified {muid}.

3. GET POST PUT /API/cu-setting/ these HTTP methods are used to manage
CuSetting entities. The POST method allows the creation of a new CuSetting,
the PUT method enables updating an existing configuration, and the GET
method retrieves all available CuSetting instances from the system.

4. GET /API/cu-setting/{cusettingid} retrives a specific CuSetting identified
by the specified {cusettingid}.29

5. DELETE /API/cu-setting/{cusettingid} deletes a specific CuSetting.

6. GET /API/cu-setting/{cusettingid}/isalive this endpoint is used to verify the
availability of a specific CU identified by cusettingid. If the CU is active,
the response contains the networkId of the associated Gateway; otherwise,
it returns null.

7. POST /API/cu-setting/arealive is used to verify the availability of multiple
CUs. The request body must contain a list of CU identifiers. For each CU,
the response returns the networkId of the associated Gateway if the unit is
reachable; otherwise, it returns null.

8. GET POST PUT /API/mu-setting/These HTTP methods are used to man-
age MuSetting entities. The POST method allows the creation of a new
MuSetting, the PUT method enables updating an existing configuration, and
the GET method retrieves all available MuSetting instances from the system.

28The term "muid" refers to the unique network identifier networkId assigned to a MU. It is of
type Long, as defined in the MU entity structure cfr. Sensor Manager section for further details

29The term "cusettingid" refers to the unique network identifier networkId assigned to a CU.
It is of type Long, as defined in the MU entity structure cfr. Sensor Manager section for further
details
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9. GET /API/mu-setting/{musettingid} retrives a specific MuSetting identified
by the specified {musettingid}30

10. DELETE /API/mu-setting/{musettingid} it is used to delete a specified MuSet-
ting.

Database

In order to persist and manage all relevant information, a PostgreSQL database
named "SETTINGS" is used as the underlying data storage system. Although the
data maintained by the Settings Manager are conceptually related to entities man-
aged by the Sensor Manager (SM), a deliberate architectural decision was made to
separate them. This separation arises from the responsibility of the Settings Man-
ager to communicate directly with hardware gateways. As such, it was deemed
appropriate to decouple the two functionalities—sensor event management and
hardware configuration.

However, for correct operation, the Settings Manager must remain informed
about lifecycle events occurring in the Sensor Manager. This is because a CuSet-
ting is logically associated with a specific instance of a Control Unit (CU), and
similarly, a MuSetting is linked to a Measurement Unit (MU). Therefore, the life-
cycle of these settings must be consistent with the lifecycle of their corresponding
hardware units.

Two primary architectural solutions were considered to achieve this synchro-
nization. The first involved using a shared database between the Sensor Manager
and the Settings Manager, enabling the latter to validate the existence of each
CU or MU before performing operations on their respective settings. However,
this approach was ultimately rejected due to the strong coupling it introduces,
violating the principle of separation of concerns and reducing the flexibility and
scalability of the system.

Instead, the chosen solution was to implement event-based communication us-
ing Kafka topics. This approach allows the Sensor Manager to publish events
describing state changes or lifecycle operations, which are then consumed by the

30The term "musettingid" refers to the unique network identifier networkId assigned to a MU.
It is of type Long, as defined in the MU entity structure cfr. Sensor Manager section for further
details
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Figure 2.6: UML schema of Kafka internal architecture

Settings Manager. Through this mechanism, the two services remain fully decou-
pled at the database level, allowing independent deployment—even on separate
physical machines—while still maintaining logical consistency across the system.
In particular there are 3 kafka topics:

• mus

• cu-create

• node-event

A single producer, referred to as the Setting Manager (SM), is responsible for
publishing events to these topics. Each event is composed of two fields: an event-
Type, which is a string indicating the operation type and can be either "CREATE"
or "DELETE", and a value, which varies depending on the topic. In particular,
the mus topic carries a value of type MuCreateDTO, which includes both a net-
workId and a userId. The node-event topic transmits a NodeCreateDTO, while
the cu-create topic uses a CuCreateDTO, whose structure is analogous to that of
the MuCreateDTO.
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There are two categories of consumers deployed within the Setting Manager
and within the Link component. These consumers are responsible for linking the
lifecycle of the MU and CU entities managed by the SM with their respective coun-
terparts, MuSetting and CuSetting, in the Setting Manager. When a consumer
receives an event with eventType equal to "CREATE", it persists a correspond-
ing entity in the database. Conversely, when the eventType is "DELETE", the
consumer deletes the associated entity from the database.

In addition to enabling lifecycle synchronization across services, the Kafka top-
ics also support user-specific access control by associating entities in the Setting
Manager with defined users. This mechanism ensures that CRUD operations are
restricted to the users to whom the entities belong, thereby reinforcing access
control and data integrity.

Security

Access control within the Setting Manager is enforced using Spring Security. Each
incoming request is authenticated via a JWT (JSON Web Token), which contains
claims such as the userId and application-specific roles. The service validates access
by comparing the userId extracted from the token with the userId associated with
the target resource. These ownership associations—linking users to specific CuSet-
ting and MuSetting entities—are established dynamically by the Kafka consumers,
as described earlier. Specifically, upon receiving "CREATE" events from the rele-
vant Kafka topics, the consumers persist the configuration entities along with the
corresponding userId, which is extracted from the event payload. If the userId
from the JWT matches the one stored with the resource, the requested operation
is authorized. Alternatively, if the token includes the Realm Role App_Admin,
indicating administrative privileges, the service allows all operations regardless of
ownership. This hybrid approach combines event-driven ownership registration
with role-based access control, ensuring that configuration changes can only be
performed by authorized users or administrators.
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Messages

To enable the transmission of commands to the gateway and to configure pa-
rameters on the CU and MU, a service based on the MQTT protocol has been
implemented. For the underlying communication infrastructure, the open-source
MQTT broker Mosquitto was adopted, providing a lightweight and reliable mes-
saging solution suitable for constrained environments.

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish/sub-
scribe messaging protocol specifically designed for resource-constrained devices
and low-bandwidth, high-latency, or unreliable networks. Its decoupled archi-
tecture—based on the concepts of publishers, subscribers, and a central bro-
ker—makes it particularly suitable for scenarios involving distributed sensing and
control, such as in IoT and sensor networks.

To establish the MQTT-based communication infrastructure, the Eclipse Mosquitto
broker was adopted. Mosquitto is an open-source MQTT message broker that
implements version 5.0 of the MQTT protocol. It is well-regarded for its small
footprint, ease of deployment, and support for standard authentication and autho-
rization mechanisms. In this architecture, Mosquitto acts as the central messaging
hub, receiving messages from publishers (e.g., sensor devices or service controllers)
and distributing them to subscribers (e.g., configuration services or gateways)
based on topic-based filtering.

This MQTT-based communication layer enables efficient and scalable interac-
tion among services, facilitating both the dissemination of configuration commands
and the coordination of distributed components in the networked sensing system.
It is important to highlight that MQTT and Kafka serve different purposes and of-
fer complementary characteristics. Kafka is a distributed event streaming platform
designed for high-throughput, persistent, and fault-tolerant data pipelines. It is
particularly suited for handling large volumes of data across microservices and for
guaranteeing message durability and ordering. Conversely, MQTT is optimized for
real-time, low-latency message delivery in constrained environments, with limited
support for persistent storage and historical replay. In this architecture, Kafka is
employed to manage the lifecycle synchronization and event distribution between
services, while MQTT is used to handle real-time control and configuration tasks,
ensuring a clear separation between event logging and command dissemination
functionalities.
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MQTT configuration

The MQTT communication infrastructure was organized into six distinct topics,
categorized into two groups: downlink and uplink topics.

The downlink topics comprise the following:

• downlink/gateway

• downlink/cu

• downlink/mu

These topics contain all messages transmitted by the server and directed towards
the corresponding recipients. Specifically, messages published on the downlink/-
gateway topic are intended for the gateway, whereas messages published on down-
link/cu and downlink/mu are directed to the Control Units (CU) and Measurement
Units (MU), respectively.

The uplink topics include:

• uplink/gateway

• uplink/cu

• uplink/mu

These topics are designated for messages received from the gateway. Messages
originating from a CU device are published to the uplink/cu topic, and similarly,
messages originating from an MU device are published to the uplink/mu topic.
The uplink/gateway topic carries messages sent by the gateway itself.

This topic organization enables a clear and structured bidirectional communi-
cation flow between the server and network devices, facilitating effective message
routing and processing based on the message origin and destination.
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Each gateway periodically transmits a message—once every minute—on the
uplink/gateway MQTT topic. The message is represented by the following data
structure:

1 data class GatewayDTO (val id: Long , val cus: Set <Long >)

Listing 2.1: Structure of the GatewayDTO used for receive the online gateways
and the corresponding CUs

This message includes the identifier of the gateway (id) and the set of identifiers
corresponding to the Control Units (CUs) that the gateway is currently able to
reach. By collecting and analyzing these periodic updates, the system is able to
dynamically determine the communication paths required to reach a specific CU
or, indirectly, a Measurement Unit (MU) associated with it.

In contrast to the periodic messages published on the uplink/gateway topic,
messages on other topics are structured according to a unified command format,
represented by the following data structure:

1 data class CommandDTO (
2 val commandId : Long ,
3 val gateway : Long ,
4 val cu: Long ,
5 val mu: Long ,
6 val type: String ,
7 val cuSettingDTO : CuSettingDTO ?,
8 val muSettingDTO : MuSettingDTO ?
9 )

Listing 2.2: Structure of the CommandDTO used for sending configuration
commands
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Transmission Flow Commands to Downlink

Figure 2.7: UML schema of an example of update delivered by MQTT

When a user initiates a configuration request—either for a Control Unit (CU)
or a Measurement Unit (MU)—by sending a POST request to the corresponding
REST endpoint, the Setting Manager does not immediately persist the configu-
ration in the database. Instead, it constructs a CommandDTO, populating the
cuSettingDTO or muSettingDTO fields as appropriate, and sets the type field to
"UPDATE". This command is then published on the MQTT topics downlink/cu
or downlink/mu, depending on the target unit.

Upon receiving the command, the gateway forwards the specified configura-
tion to the designated CU or MU. If the update operation succeeds, the gateway
republishes the same CommandDTO message to the corresponding uplink topic
(i.e., uplink/cu or uplink/mu). Once the Setting Manager receives this confirma-
tion message through the uplink channel, it finalizes the process by persisting the
received configuration in the database.
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Front-end

3.1 SPA: Single Page Application

The back-end constitutes the core of the application; however, as previously delin-
eated in the introduction, the development and architecture of MeasureStream are
layered. On top of these layers is the front-end. The front end is the part of a web-
site that is designed to an User Interface(UI) to the user. There are two primary
methods for developing a UI. The first method is the traditional approach, which
involves a multi-page application. This approach has the potential to compromise
the user experience by introducing a constant delay upon each modification to the
user interface. This is due to the loading of a new page, regardless of the extent
of the change.This methodology for developing front-end applications stands in
opposition to the notion of a Single-Page Application (SPA). A Single-Page Ap-
plication(SPA) is a web application that loads a single web document and then
updates its body content using JavaScript APIs, such as Fetch, whenever different
content needs to be displayed.1

Speed is a primary benefit of SPAs when compared to traditional web pages.
The reason for this is that SPAs are fully loaded at the outset. Thereafter, only the
content of the page is updated, not the entirety of the application. Furthermore,
all logic is handled on the client-side. This means that the server does not need
to render a new page for each request. The aforementioned process has been

1MDN Web Docs (2025)
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demonstrated to reduce the number of requests and responses sent to the server,
thereby improving performance. Furthermore, SPAs have the capacity to cache
data (e.g., via service workers or client-side storage), thus enabling the application
to load more expeditiously upon a user’s subsequent visit or navigation to a specific
section.

The MeasuresStream user interface (UI) has been developed using the single-
page application (SPA) approach, as previously outlined. The most effective ap-
proach to developing a SPA is to utilize a JavaScript framework. For this reason,
the React framework has been selected. React is not the sole option for developing
a SPA. Other frameworks, such as Angular, Svelte, and Vue, are equally valuable.
However, the decision to utilize React was influenced by its widespread use and
its capacity for rapid development and response.

3.2 React and Typescript

React is a widely-used JavaScript library designed for building UIs. It was devel-
oped by Facebook to solve the challenges posed by large, data-intensive websites.
First released in 2013, React has since become a go-to tool for creating dynamic
web applications. In React, UI is built from small units like buttons, text, and
images. React lets you combine them into reusable, nestable react components.
From web sites to phone apps, everything on the screen can be broken down into
components. in detail, a React component is a JavaScript function that you can
sprinkle with markup. Components can be as small as a button, or as large as
an entire page. React components use a syntax extension called JSX to represent
that markup. JSX looks a lot like HTML, but it is a bit stricter and can display
dynamic information.2

It must be noted that a SPA does not request a new page each time there is
a change in the UI. The following question must therefore be posed: how is this
possible? In order to answer this question, the concept of the Document Object
Model (DOM) must first be introduced. The DOM is an interface that browsers
provide for web pages to interact with HTML or XML documents. It’s essentially
a tree structure that represents the content of a webpage, where each part of
the page (elements like paragraphs, headings, images, and links) is a node in the
tree. When a browser loads a webpage, it parses the HTML, turning it into a

2React Team (2025)
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Figure 3.1: Example of React component

hierarchical structure (the DOM). Each HTML element is a node in the tree. The
DOM is crucial because it enables developers to programmatically interact with
a webpage. Without the DOM, there would be no way to modify the content
or structure of a webpage after it has been loaded. It is possible for a developer
to utilize solely JavaScript for the purpose of modifying the DOM. However, the
employment of React has been demonstrated to expedite the development process.
React permits developers to modify the DOM without the need for manual access,
furthermore React uses a virtual DOM to efficiently manage updates to the real
DOM, it collects all the updates to the virtual DOM and than it updates the DOM
accordingly. Instead of directly modifying the real DOM every time a change is
made, React updates the virtual DOM first then React compares the current state
of the virtual DOM to a previous version using an algorithm called Reconciliation
and react updates only the necessary parts of the real DOM by applying the
changes that it finds between the virtual DOM and the real DOM. This is more
efficient because React minimizes the number of direct interactions with the real
DOM, which can be slow and expensive.3

JavaScript is not the only language available to develop SPA using React, also
TypeScript(TS) is a good choice, and for some project it is a better choice than
JavaScript. TS is a high-level open-source programming language that adds static
typing with optional type annotations to JavaScript. It is designed for the devel-
opment of large applications. JavaScript is a versatile programming language, it

3MDN Web Docs (2025)
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does not detect errors at compile time, it attempts to manage data, even if it is
erroneous. This quality is advantageous when developing conceptual applications
or when errors are infrequent, indeed JS does not provide a mechanism to verify
whether the code is accessing properties that are not present or accessing variables
that have not been declared.

1 const obj = { width: 10, height : 15 };
2 // Why is this NaN? Spelling is hard! height -> heigth
3 const area = obj.width * obj. heigth ;

Misspelling errors like this above are very dangerous, in a large JS project,
because they are silent and the code still works, the app continues to work, and
they are difficult to identify. To improve upon JS, TS was created. TS introduces
a static type checker, which analyzes the code at compile time to detect errors.
For this reason, TS provides more robust and resilient code compared to JS. For
this reason TS was used to develop the SPA.

In a SPA, it’s important to define how to implement and manage the back but-
ton and page navigation, because even though there is technically only one page,
users still expect a multi-page experience. A common solution to this challenge is
to use a library that handles both navigation and back button functionality, such
as React Router DOM. React Router DOM is a standard library for routing in
React applications. It enables developers to define multiple routes, each associated
with a specific component, and it updates the browser’s URL without reloading
the page. This way, navigation feels seamless and natural to the user. It also
manages the browser history, allowing features like the back and forward buttons
to work correctly. With tools like BrowserRouter, Routes, and Link, React Router
DOM simplifies the process of building complex, multi-view applications while
maintaining the fast and smooth experience typical of SPAs.

Figure 3.2: Example of React Router Routes
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When there is information that needs to be shared across multiple components
in a React application, integrating React Context can be very helpful. It provides
a convenient way to share data across components without having to pass props
explicitly through each level of the component tree. React Context is particularly
useful for sharing information about the logged-in user, allowing you to provide
different visualizations or content based on whether a user is logged in or not.
To manage this user-related information, it has been introduced the MeInterface,
which contains the following properties, saved inside the application context:

• name: The name of the logged-in user.

• loginUrl: The URL used for logging in the user.

• principal: The main user object, which can be any type or null if no user is
logged in.

• xsrfToken: The XSRF token used for securing requests.

• logoutUrl: The URL used for logging out the user.

This interface helps to structure the data related to the logged-in user, ensuring
that the information is easily accessible throughout the application.

3.3 UI Implementation

Now it will be provided some example of the implementation of the UI. When a
user visits the Base URL of MeasureStream ("/"), it is redirected to "/ui". If the
user is not logged in, it will be shown a general landing page that explains the
core functionalities of MeasureStream.4 For the design of this landing page, it has
been utilized Bootstrap, a popular CSS framework that simplifies web development
by providing pre-designed components, a responsive grid system, and utilities to
help create visually appealing and consistent layouts. Bootstrap ensures the page
adapts smoothly to different screen sizes, making it responsive across all devices.

On the landing page, it has been implemented several information cards that
provide quick insights into the various features and functionalities available in

4for more about how redirection are implemented see the Chapter 1 section API Gateway
and IAM
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MeasureStream. Additionally, it has been included a hamburger button for bet-
ter navigation on mobile devices. The hamburger menu contains a Login button,
which, when clicked, redirects the user to the Keycloak login page for authentica-
tion.

Figure 3.3: MeasureStream landing page

After the user clicks the login button, it will be redirected to the Keycloak login
page, where it will authenticate himself. it has only been created a single user in
Keycloak for testing purposes. 5

5for more about the login process see the Chapter 1 section API Gateway and IAM
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Figure 3.4: Keycloak Login page
After a successful login, the user will be redirected to the main page for logged-in

users. On this page, it can view a map powered by the React Leaflet library, which
allows for seamless integration of interactive maps into React applications. The
map displays blue markers to indicate the positions of all nodes, while a red marker
highlights the position of a selected node. When the user clicks on a marker, it
turns red, and additional information about the node is shown. On the left side,
there is a list of all nodes. By clicking the info icon next to a node, the user can
navigate to a page that provides detailed information about the selected node.
The React Leaflet library makes the map interactive and responsive, enhancing
the user experience with smooth navigation and marker interactions. Additionally,
even when the user is logged in, the hamburger menu includes a logout button.
By clicking this button, the user can log out and will be redirected to the landing
page, ensuring a smooth session management process.

Figure 3.5: MeasureStream logged-in page
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The node information page presents comprehensive details about the node, in-
cluding its constituent Control Units (CUs) and Measurement Units (MUs). It also
provides real-time data on the operational status of the CUs, such as remaining
battery life and the Received Signal Strength Indicator (RSSI), which reflects the
signal power. Additionally, this page enables management of all Device Configu-
ration Containers (DCCs) associated with the MUs present in the node, allowing
users to download, upload, or delete these configurations. The status of each
component is visually indicated by a green light if the component is online and
available, or a red circle if it is offline. Furthermore, expanding the accordion sec-
tions for each CU or MU permits the execution of start and stop commands, as
well as the adjustment of specific settings managed via the Settings Manager6.

Figure 3.6: Node information page

6For comprehensive details on the settings, see Section 44.
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At the top of the page, there’s a small card that contains a map showing the
current location of the node. On the left side, buttons to delete the node or modify
its fields are present. Additionally, there is a list of buttons that allow users to
view charts of sensor data, powered by Grafana. These charts display real-time
values of the sensors, providing valuable insights into the node’s performance.

Figure 3.7: Graphic showing real-time measurements.

Grafana has been integrated into the interface using an embedded iframe, a
standard HTML element that allows the display of external web content within
a web page. In this case, the iframe loads specific Grafana dashboards directly
into the application’s UI, enabling users to view real-time sensor charts without
leaving the platform. To facilitate this, the front-end communicates with Grafana
directly, bypassing the API Gateway. This approach was chosen for its simplicity,
as it avoids the need to proxy or reconfigure Grafana behind the gateway. However,
it also means that not all application traffic is routed through the API Gateway,
which may reduce the consistency of centralized monitoring and access control.
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1 grafana:
2 image: grafana /grafana - enterprise
3 restart : always
4 volumes :
5 - grafana_data :/ var/lib/ grafana
6 - /var/lib/ grafana / plugins
7 ports:
8 - 3000:3000
9 environment :

10 - GF_SERVER_ROOT_URL =https :// grafana . christiandellisanti .uk
11 - GF_SERVER_DOMAIN = grafana . christiandellisanti .uk
12 - GF_SECURITY_ADMIN_USER =${ GF_SECURITY_ADMIN_USER }
13 - GF_SECURITY_ADMIN_PASSWORD =${ GF_SECURITY_ADMIN_PASSWORD }
14 - GF_INSTALL_PLUGINS = yesoreyeram -infinity - datasource
15 - GF_SECURITY_ALLOW_EMBEDDING =true
16 - GF_AUTH_GENERIC_OAUTH_ENABLED =true
17 - GF_AUTH_GENERIC_OAUTH_NAME = Keycloak
18 - GF_AUTH_GENERIC_OAUTH_CLIENT_ID = grafana
19 - GF_AUTH_GENERIC_OAUTH_CLIENT_SECRET =${

GF_AUTH_GENERIC_OAUTH_CLIENT_SECRET }
20 - GF_AUTH_GENERIC_OAUTH_SCOPES = openid profile email
21 - GF_AUTH_GENERIC_OAUTH_AUTH_URL =https :// auth.

christiandellisanti .uk/ realms / measurestream / protocol /
openid - connect /auth

22 - GF_AUTH_GENERIC_OAUTH_TOKEN_URL =https :// auth.
christiandellisanti .uk/ realms / measurestream / protocol /
openid - connect /token

23 - GF_AUTH_GENERIC_OAUTH_API_URL =https :// auth.
christiandellisanti .uk/ realms / measurestream / protocol /
openid - connect / userinfo

24 - GF_AUTH_GENERIC_OAUTH_LOGOUT_URL =https :// auth.
christiandellisanti .uk/ realms / measurestream / protocol /
openid - connect / logout ? redirect_uri =https :// grafana .
christiandellisanti .uk

25 - GF_AUTH_OAUTH_AUTO_LOGIN =true
26 - GF_AUTH_GENERIC_OAUTH_USE_PKCE =true
27 - GF_AUTH_GENERIC_OAUTH_USERNAME_PATH = preferred_username #

or ’sub ’
28 - GF_AUTH_GENERIC_OAUTH_EMAIL_PATH =email
29 - GF_AUTH_GENERIC_OAUTH_NAME_PATH =name
30 networks :
31 app_network :
32 ipv4_address : 172.20.0.30

Listing 3.1: Docker Compose configuration for Grafana integration
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To enable seamless integration of Grafana dashboards into the front-end inter-
face, Grafana is deployed as a Docker service using the official grafana-enterprise
image. The container exposes port 3000 to allow external access and mounts per-
sistent volumes for storing Grafana data, custom plugins, and configuration files.
Authentication and user management are delegated to Keycloak, which serves as
the OAuth2 identity provider. The OAuth2 integration is enabled and configured
by specifying the necessary client credentials and endpoints. The environment vari-
ables define the client ID and secret, the URLs for authorization, token exchange,
user information retrieval, and logout redirection. This setup enables single sign-on
capabilities and allows the platform to leverage identity federation across multiple
services. Finally, GF_SECURITY_ALLOW_EMBEDDING=true is essential to
permit Grafana dashboards to be embedded within iframes – without this, modern
browsers would block such embedding due to security policies. This setup simpli-
fies the user experience, allowing the UI to load Grafana content directly without
routing through the API Gateway or requiring user authentication.

1 # Stage 1: build React app
2 FROM node :20- alpine AS builder
3 WORKDIR /app
4 COPY package .json ./
5 COPY package -lock.json ./
6 RUN npm ci
7 COPY . .
8 RUN npm run build
9

10 # Stage 2: serve with nginx
11 FROM nginx: alpine
12 COPY --from= builder /app/dist /usr/share/nginx/html/ui
13 EXPOSE 80

Listing 3.2: Dockerfile for building and serving the React front-end

Finally, regarding application deployment, the front-end is fully containerized
using Docker. The image is built through a GitHub Action, which automates the
build process. The Dockerfile defines two main stages: in the first stage, the React
application is built using a lightweight base image (such as Alpine Linux), installing
dependencies via package.json and package-lock.json, and compiling the project
with npm run build. In the second stage, the generated static files are served
using Nginx, ensuring fast and efficient deployment. Thanks to this architecture,
the user interface can be easily deployed across different environments, offering a
high degree of scalability and maintainability.
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Hardware

4.1 Hardware Description

Figure 4.1: MeasureStream Architecture
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The hardware system architecture is composed by three component: the nodes,
the gateway(GW) and the server. Each play key roles in the network of sensors,
ensuring the communication, processing and distribution of data between nodes
and the software platform. The system follows a star architecture, where multiple
nodes are connected to a single gateway, and the gateways are, in turn, connected
to a central server.

The gateway serves as the link between the sensor nodes deployed in the field
and the central server. Its main function is to collect the measurements gathered
by the nodes and transmit them over the network to the server, as well as to
forward any control messages to the nodes. For the gateway, it has been chosen the
Raspberry Pi Zero W due to its ability to run a lightweight operating system, which
is essential for deploying Kafka and MQTT, as well as enabling the communication
with the central server. The Raspberry Pi Zero W features a 1GHz single-core
ARM11 CPU, 512MB of RAM, and built-in 2.4GHz 802.11n Wi-Fi, providing
sufficient resources and wireless connectivity for basic data processing and message
brokering. For communication with the sensor nodes, the gateway uses LoRa
technology, which integrates seamlessly with the Raspberry Pi Zero W through its
GPIO interface. Additionally, its low power consumption—typically around 100
mA at 5V—makes it an ideal choice for field deployments where energy efficiency
and compact form factor are critical.

Figure 4.2: Raspberry Pi Zero
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The Raspberry Pi Zero W runs Raspberry Pi OS Bookworm Lite, a minimal
version of the operating system without a graphical user interface. This choice
was made to reduce resource usage and improve system performance, as a desktop
environment is unnecessary for our use case. The headless setup allows the device
to operate efficiently in the field, dedicating its limited hardware resources entirely
to essential tasks such as running Kafka, managing LoRa communication, and
handling network operations. Moreover, the lightweight OS simplifies maintenance
and enhances system stability in long-term deployments.

For testing purposes, the Raspberry Pi Zero W was connected to the Politecnico
di Torino’s Wi-Fi network. Although the initial setup presented some challenges
due to network restrictions and configuration complexity, we successfully estab-
lished internet connectivity, which was essential for running Kafka and enabling
remote access via SSH. The connection was configured using the NetworkManager
CLI tool with the following command:

1 nmcli connection add type wifi ifname wlan0 con -name Polito
ssid Polito \

2 wifi -sec.key -mgmt wpa -eap 802 -1x.eap peap \
3 802 -1x. identity " username@studenti . polito .it" \
4 802 -1x. password " password " \
5 802 -1x.system -ca -certs no \
6 802 -1x.phase2 -auth mschapv2

Listing 4.1: Command used to connect the Raspberry Pi Zero W to the Polito
Wi-Fi network using WPA-Enterprise (802.1X) authentication

This allowed secure access to the university network using WPA-Enterprise
(802.1X) authentication. Additionally, a dedicated user named gateway was cre-
ated with the password gateway to simplify device access and management during
development.

For the central server, it has been selected a Raspberry Pi 4 Model B with 8GB
of RAM and a 128GB SD card, providing ample resources for running containerized
services and managing sensor data. The Raspberry Pi 4 features a quad-core ARM
Cortex-A72 processor clocked at 1.5GHz, dual-band 802.11ac Wi-Fi, Bluetooth 5.0,
and Gigabit Ethernet, making it a highly capable and compact solution for edge
computing applications. The device is connected to the network via Ethernet and
configured with a public IP address, although only port 22 has been opened to allow
secure remote management via SSH. As with the gateway, we installed Raspberry
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Pi OS Bookworm Lite without a graphical user interface to optimize performance
and reduce unnecessary overhead. A dedicated user named measurestream was
created with the password measurestream. To enhance security, SSH access was
configured to use RSA key-based authentication, and password-based login was
subsequently disabled. Finally, Docker was installed on the system to enable the
deployment and orchestration of various services, such as Kafka, within isolated
containers. To ensure proper thermal management and physical protection, a
custom 3D-printed case for the Raspberry Pi was realized and a heatsink was
added in order to improve heat dissipation during continuous operation.

Figure 4.3: Raspberry Pi 4 Model B
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4.2 Development

As part of the deployment pipeline for the Spring Boot application on a Raspberry
Pi 4, a continuous integration and continuous deployment (CI/CD) strategy was
adopted using GitHub Actions. CI/CD is a modern practice within the broader
DevOps paradigm, which promotes a set of cultural philosophies, tools, and prac-
tices aimed at unifying software development (Dev) and IT operations (Ops). The
primary objective of DevOps is to shorten the software development lifecycle while
ensuring high-quality and reliable delivery of software. Within this framework,
CI/CD automates the process of building, testing, and deploying code, enabling
more frequent and consistent releases.

In this project, GitHub Actions was configured to automatically execute a work-
flow upon each push to the main branch, ensuring that every committed change
is promptly integrated and made available for deployment. The workflow begins
by checking out the source code and setting up the Java 17 environment using the
Temurin distribution. It then compiles the Spring Boot application using Gradle’s
bootJar task. A critical component of the pipeline is the use of Docker Buildx,
which facilitates the cross-compilation of Docker images for multiple target ar-
chitectures. This step is essential because the development and CI environments
typically run on an x86_64 architecture, while the Raspberry Pi 4 operates on
ARM64. To address this architectural difference, the workflow builds a multi-arch
Docker image for both linux/amd64 and linux/arm64 and pushes it to Docker Hub
under the tag latest.

On the Raspberry Pi, deployment is handled through Docker Compose, which
is configured to pull the latest version of the image from Docker Hub. This setup
ensures that the most recent build is always deployed on the device without requir-
ing manual updates or interventions. Overall, this automated workflow exemplifies
an effective DevOps-oriented CI/CD pipeline, providing a reliable, architecture-
aware, and fully automated approach to building and deploying the application
across heterogeneous environments.

68



Hardware

To ensure proper version tracking and release management, the workflow also in-
tegrates versioning based on the Semantic Versioning (SemVer) standardṠemantic
Versioning is a widely adopted versioning convention that uses a three-part version
number format: MAJOR.MINOR.PATCH. According to the SemVer specification:

• The MAJOR version is incremented when incompatible API changes are in-
troduced.

• The MINOR version is incremented when new, backward-compatible func-
tionality is added.

• The PATCH version is incremented when backward-compatible bug fixes are
made.

This versioning scheme was incorporated into the CI pipeline using Git tags, al-
lowing each Docker image to be tagged with its corresponding version number
(e.g., v1.2.0) in addition to the latest tag. This practice not only improves trace-
ability and rollback capabilities but also supports better coordination in multi-
environment deployments and collaborative development scenarios. Finally, the
development phase itself is conducted by connecting directly to the Raspberry Pi
via SSH (Secure Shell). For secure and password-less access, SSH is configured
to use public key authentication. In this method, the developer generates a pair
of cryptographic keys on their local machine: a private key, which remains secret
and secure on the client, and a public key, which is copied to the Raspberry Pi
and stored in the /.ssh/authorized_keys file of the target user. When an SSH
connection is initiated, the Raspberry Pi uses the stored public key to verify a
cryptographic challenge signed by the client’s private key. If the verification is
successful, access is granted without requiring a password. This approach en-
hances security by eliminating the need to transmit passwords over the network
and also facilitates automation and scripting by allowing secure, non-interactive
logins.
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4.3 Communication

The gateway serves as a crucial communication bridge between the physical sen-
sor network and the central server, utilizing two main communication protocols
to fulfill its functions. First, it handles the ingestion of sensor measurements col-
lected via LoRa, a long-range, low-power wireless protocol designed for Internet
of Things (IoT) applications. All data received through LoRa are published by
the gateway into a Kafka topic named "measures", using the JSON format and
adhering to the schema defined by the MeasureDTO data class, which includes
fields such as the measurement value, unit of measurement, timestamp, and the
node identifier. This asynchronous and scalable architecture enables the decou-
pling of data producers and consumers and facilitates reliable high-throughput
ingestion into the back-end system. In addition to data transmission, the gate-
way is responsible for bidirectional communication concerning sensor configuration
and control. This is achieved through MQTT protocol managed via Mosquitto,
an open-source MQTT broker. The gateway subscribes to and publishes messages
on a series of predefined topics.All MQTT messages follow a well-defined schema,
particularly the CommandDTO data class, which includes information such as
the command ID, the IDs of the target gateway, CU, or MU, the operation type
(e.g., "CREATE", "UPDATE", "DELETE"), and optional configuration payloads
(CuSettingDTO and MuSettingDTO).

Both Mosquitto, which is based on the MQTT protocol, and Kafka, which uses
its own custom binary protocol over TCP, require open ports for communication.
By default, Mosquitto operates on port 1883, while Kafka brokers communicate
over port 9092. In their standard configurations, both services transmit data
over unencrypted channels, which exposes the system to a range of cybersecurity
threats, including Man-in-the-Middle (MITM) attacks, spoofing, and distributed
denial-of-service (DDoS) attacks. To address these vulnerabilities, two primary
approaches can be considered:

• Enabling secure communication through the configuration of TLS/SSL en-
cryption for both Mosquitto and Kafka.

• Establishing a private network using a VPN (Virtual Private Network), which
ensures the confidentiality and integrity of messages by encapsulating traffic
within a secure tunnel.
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While the first solution—configuring encryption directly on each service—is
a valid and commonly recommended practice, it presents significant deployment
challenges in certain environments. Specifically, within the infrastructure of the
Politecnico di Torino, strict firewall policies and the absence of static public IP
addresses complicate the setup of TLS-secured endpoints and the necessary port
forwarding. As a result, the adopted solution was to configure a VPN connection
between all participating devices. Among the various available VPN solutions, the
focus was placed on free and open-source technologies. In particular, WireGuard
and Tailscale were evaluated due to their performance, ease of configuration, and
strong security guarantees. These tools provided a robust and practical founda-
tion for securing inter-device communication within the system. WireGuard is
a modern and high-performance Virtual Private Network (VPN) protocol that
leverages state-of-the-art cryptographic primitives, such as Curve25519 for key ex-
change and ChaCha20 for symmetric encryption. It operates directly over the
UDP protocol, which enables it to deliver superior performance and lower latency
compared to traditional VPN protocols like IPsec and OpenVPN. To establish
a WireGuard-based VPN, at least one node within the network must act as a
listening peer, often referred to as the server. This peer must have a publicly
reachable UDP port—typically port 51820—to accept inbound connections from
other peers. However, this requirement presents a limitation in specific network
environments. In particular, within the infrastructure of the Politecnico di Torino,
opening external UDP ports is not feasible due to institutional firewall restric-
tions. A potential workaround involves renting a Virtual Private Server (VPS)
and configuring it as the WireGuard listening peer. While technically effective,
this approach incurs additional monthly costs and is therefore not considered ideal
for the development phase of a prototype. To address this limitation, the proposed
system adopts Tailscale, a VPN service built on top of WireGuard. Tailscale pro-
vides a simplified deployment model by managing peer discovery, NAT traversal,
and key exchange, without requiring manual configuration of public IPs or port
forwarding. Furthermore, Tailscale offers a free license tier for networks comprising
fewer than 100 devices, making it a highly practical and cost-effective solution for
prototyping. Nonetheless, for production deployments, where scalability, control,
and long-term reliability are crucial, a migration to a self-managed WireGuard
infrastructure is recommended.
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Internet Exposure Architecture

To expose the application to the public internet, several solutions were evaluated.
However, considering time constraints and the firewall restrictions imposed by
the University’s network, the most suitable approach was the implementation of
a Cloudflare Tunnel. A domain name — christiandellisanti.uk — was registered
through Cloudflare, and various subdomains were configured to map to specific
services running on a Raspberry Pi 4B server. These mappings are as follows:

• www.christiandellisanti.uk maps to the main web application running on lo-
calhost:8080

• auth.christiandellisanti.uk maps to the Keycloak authentication server.

• grafana.christiandellisanti.uk maps to the Grafana monitoring dashboard.

• portainer.christiandellisanti.uk maps to the Portainer container management
interface.

This configuration allows the services to be accessed externally without requir-
ing port forwarding or changes to the University’s firewall. A Cloudflare Tunnel is
a secure method of exposing services hosted on private networks to the internet.
Instead of requiring open inbound ports, the tunnel establishes an encrypted out-
bound connection from the internal server to Cloudflare’s global network. Cloud-
flare then acts as a reverse proxy, securely routing incoming requests to the internal
services. This solution offers three key advantages:

• Firewall and NAT Bypass: No inbound connections are required, making it
ideal in restricted environments such as academic institutions.

• Enhanced Security: Traffic is encrypted and protected by Cloudflare’s security
infrastructure, including DDoS protection and automatic HTTPS.

• No Public IP Required: The server can operate behind dynamic IPs or NAT
without the need for a static IP or dynamic DNS.

In summary, the use of a Cloudflare Tunnel provided a robust, secure, and
firewall-friendly method for exposing internal services to the internet, significantly
simplifying deployment and access management.
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Conclusion

This work presents the design and implementation of a distributed and scalable
infrastructure for the management of LoRa sensor networks, specifically targeting
industrial contexts where sensor monitoring and calibration are essential. The
proposed system integrates a microservices architecture built with Spring Boot
and Kafka, enabling asynchronous communication between independent services
and ensuring high modularity, scalability, and resilience. To achieve a fully func-
tional and maintainable system, the back-end services were containerized using
Docker and orchestrated via Docker Compose. Sensor data, including calibra-
tion certificates, are securely stored and accessed through dedicated APIs, while
user authentication and authorization are handled through an Identity and Access
Management (IAM) system based on Keycloak and OpenID Connect protocols.

On the front-end side, a single-page application (SPA) was developed using
React and TypeScript to offer a responsive, modern, and interactive interface
for visualizing measurements and managing device status. Data visualization is
further enhanced through the integration of Grafana dashboards.

To automate the software lifecycle, a CI/CD pipeline was implemented using
GitHub Actions. This pipeline ensures that each code update pushed to the main
branch is automatically built, tested, and packaged as a multi-architecture Docker
image using Docker Buildx. The image is published to Docker Hub and pulled
by the Raspberry Pi 4 device, which serves as the deployment target. This setup
guarantees a seamless and architecture-aware delivery process, supporting both
amd64 and ARM64 platforms.
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Development and debugging were performed via SSH access to the Raspberry
Pi. SSH authentication was configured using public key cryptography, where a
public key is stored on the device and a corresponding private key is securely held
by the developer. During authentication, the client proves possession of the private
key by responding to a cryptographic challenge, ensuring a secure, password-less
connection.

Furthermore, the project adopts Semantic Versioning (SemVer) for tagging re-
leases, following the standard MAJOR.MINOR.PATCH format. This versioning
scheme provides a clear and structured way to communicate changes, ensuring
compatibility and traceability across builds.

In addition to the architectural and technical contributions, this work offers
tangible benefits for companies that rely on sensor-based monitoring systems. By
introducing a digital and automated management system for sensor calibration cer-
tificates, organizations can significantly reduce operational inefficiencies, eliminate
manual tracking processes, and ensure ongoing compliance with metrological stan-
dards. The centralized dashboard and alerting mechanisms improve the visibility
over sensor health and status, while the integration of open-source technologies
enables adaptability and cost-effectiveness.

Thanks to its modularity, the proposed system can be easily extended or in-
tegrated into existing industrial infrastructures, regardless of the manufacturer or
technology of the sensors involved. This opens the way for broader adoption of
standardized sensor networks and supports the transition to Industry 5.0, where
human-centric and intelligent production systems require high levels of data reli-
ability and process automation.

Overall, this thesis demonstrates a comprehensive and modern approach to the
development of an open, flexible, and secure IoT infrastructure aligned with the
principles of Industry 5.0 and DevOps best practices, providing companies with a
powerful tool to enhance sensor network management, improve decision-making,
and optimize industrial performance.
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Appendix: Automatic
Backup with Duplicati

Duplicati is a free, open-source backup software that enables secure, encrypted,
and incremental backups to a variety of remote storage providers, including cloud
services like Dropbox, Google Drive, Amazon S3, and many others. It is designed
for both personal and server environments, and supports compression, strong AES-
256 encryption, and scheduling.

In this project, Duplicati has been configured to automatically back up the Post-
greSQL database used by Keycloak, which serves as the identity and access man-
agement solution of the system. The backup is uploaded to Dropbox to ensure off-
site availability and recovery in case of failure. The backup job is scheduled to run
daily at 13:00, ensuring that a recent copy of the Keycloak database is always avail-
able. This configuration leverages Duplicati’s built-in scheduler and command-line
or web-based interface to define and monitor backup tasks. Maintaining automated
backups of critical components—such as the Keycloak database—is fundamental
for any reliable and secure system. In the event of:

1. Data corruption

2. Hardware or disk failures

3. Security incidents (e.g., ransomware attacks)

having a recent backup allows for a fast recovery, minimizing downtime, data
loss, and service disruption. Given that Keycloak manages authentication, user
roles, and permissions, a loss of this database would compromise the security model
of the entire system. Automating backups ensures that administrative oversight
or forgetfulness doesn’t jeopardize recovery capabilities.
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Appendix: Container
Management with Portainer

Portainer is an open-source container management tool that provides a user-
friendly web interface for managing Docker environments. It abstracts the com-
plexity of container orchestration and allows developers and system administra-
tors to interact with their containers, images, volumes, networks, and even stacks
through an intuitive graphical dashboard.

In this project, Portainer has been used to manage the entire Docker-based mi-
croservices infrastructure, which includes services such as Keycloak, PostgreSQL,
Duplicati, and others. It simplifies operations such as:

• Starting, stopping, or restarting containers

• Inspecting logs and container metrics

• Monitoring resource usage (CPU, memory, etc.)

• Updating container configurations

• Managing Docker volumes and networks

The use of Portainer is particularly beneficial in development and testing en-
vironments where rapid deployment, debugging, and resource management are
required. It also helps ensure the reliability and maintainability of the system
by making the state of the container ecosystem transparent and manageable even
for those who are less familiar with Docker’s command-line interface. By enabling
visual control over the deployed services, Portainer enhances the operational work-
flow, reduces the chance of configuration errors, and provides a centralized place
to monitor the health of the entire containerized infrastructure.
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