
Politecnico di Torino

Master’s Degree in Data Science and Engineering
A.a. 2024/2025

Graduation Session July, 2025

Neuro-Symbolic Artificial for Visual
Reasoning via Dynamic Logic

Tensor Networks

Supervisor:
Lia Morra

Candidate:
Homayoun Afshari

Summary

Recent advancements in Large Language Models (LLMs) have demonstrated impres-
sive abilities in contextual understanding and chain-of-thought reasoning. However,
while these neural networks excel at inductive pattern recognition, they still struggle
with deductive rule chaining and abductive hypothesis generation. As a promising
solution, Neuro-Symbolic (NeSy) AI integrates this neural perception with symbolic
logic to equip AI with more reasoning capabilities. This thesis focuses on visual
reasoning through NeSy AI, a domain where perception and logic must jointly
operate to interpret partially observable visually encoded structures. Despite
progress in this field, current NeSy visual reasoning approaches often suffer from
three key limitations: task-specific rigidity (lack of flexibility), the generation of
non-interpretable rules (lack of explainability), and the production of informal
rules that are difficult to verify automatically (lack of formality). To address these
challenges, this work proposes a novel NeSy visual reasoning framework designed
to simultaneously achieve flexibility, explainability, and formality. The architecture
takes both textual and visual descriptions of a reasoning task and processes them
through a context generator. The resulting context is then used by a rule generator
to produce symbolic rules, while a visual processor independently converts the
visual input into symbolic visual atoms. Consequently, these rules and symbols are
evaluated by a rule verifier, which checks their coherence against visual facts. The
system uses this feedback to iteratively refine both context and rule generation,
enabling continuous improvement in a manner that is similar to reinforcement
learning. To evaluate this system, we use the ViSudo-PC benchmark, which is
a symbolic visual reasoning task that distinguishes valid from corrupted Sudoku
boards using digits drawn from various visual domains. Results show that the
system effectively induces symbolic rules from multi-modal inputs, verifies them
automatically, and improves its reasoning performance through iterative feedback.
Furthermore, when the rule generator is bypassed to retain only the visual encoder
and rule verifier and ensure compatibility with existing benchmark protocols, the
system achieves significant improvements over state-of-the-art methods. Accord-
ingly, the proposed approach not only satisfies all its predefined objectives, but
also surpasses existing methods in performance.

ii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Lia Morra,
for her continuous guidance, support, and encouragement throughout this research.
I am also thankful to the members of her team, particularly Ph.D candidate
Alessandro Russo, for his valuable feedback and insights. Special thanks to my
classmates and friends for the stimulating discussions and moral support during
the course of this thesis. Finally, I am deeply grateful to my family and my beloved
wife, Fatemeh, for their unwavering encouragement and patience.

iv

Table of Contents

List of Figures viii

1 Introduction 1
1.1 What is Reasoning? . 1
1.2 How can AI Reason? . 2
1.3 A Solution: NeSy AI . 2
1.4 NeSy AI Empowered by Fuzzy Logic 3
1.5 Visual Reasoning through NeSy AI 4
1.6 Issues of NeSy Visual Reasoning . 4
1.7 Novelties of the Thesis . 5
1.8 Structure of the Thesis . 7

2 Literature Review 8
2.1 Foundational Concepts . 8
2.2 Different Tasks and Benchmarks . 10
2.3 Basic Visual Reasoning Frameworks 12
2.4 Visual Reasoning with VSAs . 13
2.5 Visual Reasoning with LTNs . 14
2.6 Visual Reasoning with LLMs . 15

3 Methodology 17
3.1 Proposed Method . 17
3.2 Rule Generation . 18

3.2.1 Prompt Engineering . 18
3.2.2 Symbolic Rule Generation 21

3.3 Rule Verification . 21
3.3.1 Syntax Tree Generation . 22
3.3.2 LTN Implementation . 26

3.4 Visual Processing . 30
3.4.1 CNN Design . 31
3.4.2 Visual Symbol Definition . 32

vi

3.5 Feedback Handling . 32
3.5.1 LTN Development . 33
3.5.2 Loop Creation . 33

4 Experimental Environment 36
4.1 Setup . 36

4.1.1 Benchmark and Dataset . 36
4.1.2 Programming Tools . 38

4.2 Specifications . 39
4.2.1 VLM . 39
4.2.2 D-LTN . 41
4.2.3 CNN Block . 43

4.3 Development Strategy . 43
4.3.1 System Loops . 43
4.3.2 Data Usage . 44

4.4 Evaluation Metrics . 44
4.4.1 Loss Function . 44
4.4.2 Performance Metrics . 45

5 Results 46
5.1 Experiments . 46

5.1.1 Hyperparameter Tuning . 46
5.1.2 Rule Generation . 47
5.1.3 Experimental Tests . 49

5.2 Discussions . 50
5.2.1 Analyses . 50
5.2.2 Comparison with Prior Literature 51

6 Conclusion 52
6.1 Findings . 52
6.2 Future Directions . 53

Bibliography 55

vii

List of Figures

1.1 Conceptual diagram of the proposed NeSy system. 6

3.1 Functional diagram of the proposed NeSy system. 17
3.2 Reasoning with the help of VLM. 18
3.3 Automatic generation of LTN formulas. 22
3.4 Perception with the help of CNN. 31
3.5 Detailed functional diagram of the proposed NeSy system. 32

4.1 First pair of the training subset of the 11-split of the benchmark. . 37

viii

Chapter 1

Introduction

1.1 What is Reasoning?

Recently, there has been a critical shift in Artificial Intelligence (AI) research:
the pursuit of models that not only excel in Contextual Understanding, as
done by Large Language Models (LLMs), but also demonstrate powerful reasoning
capabilities, as if a human brain is pulling the strings behind the scene [1]. Not from
a long ago, we have observed how OpenAI’s ChatGPT or Anthropic’s Claude have
been equipped with the ability to generate Chains of Thought in order to resolve
analytical problems, along with their remarkable abilities in pattern recognition,
language generation, and zero-shot generalization [2]. These behaviors have sparked
numerous discussions in the AI community about how these Trainable Machines
are able to perform such tasks [3]. Are they truly capable of reasoning, or are
they merely simulating reasoning behaviors? This question, however, is a serious
dilemma that may never be answered, but it poses a fundamental question; What
Is Reasoning?

As defined by cognitive science, reasoning is the process of drawing conclusions
from available information using three primary modes: Induction, Deduction,
and Abduction [4]. Induction involves generalizing rules from specific observations
[5]. For instance, noticing that the sun rises every morning, one can infer that
it will do so again tomorrow. Deduction, on the other hand, uses established
rules to derive specific conclusions [6]. For example, if all humans are mortal
and Socrates is human, then one can deduce that Socrates must also be mortal.
Abduction, however, is more subtle and complex. It involves inferring the most
likely explanation from incomplete evidence, as if a detective is hypothesizing the
cause of a mysterious event [7]. For example, observing a wet floor under a cloudy
sky, one can believe that it must have been raining lately. Understanding these
distinct forms of reasoning is essential if we want to assess how far AI models have

1

Introduction

come and how far they still have to go in achieving or mimicking true reasoning.

1.2 How can AI Reason?
At the heart of AI, Neural Networks, including LLMs, have demonstrated
strong capabilities in induction, primarily due to their training on large datasets
and their proficiency in pattern extraction [8]. In other words, considering that
inductive reasoning involves generalizing from specific examples to broader patterns,
neural networks excel in this regard because they are optimized to minimize
prediction error over millions of instances, which stems from their ability to
implicitly encode associations within high-dimensional vector spaces and capturing
complex correlations without the need for explicit knowledge representations [5].
This property allows these models excel at generalizing from specific instances,
capturing statistical regularities, and producing coherent outputs across many tasks
such as language modeling, image captioning, and even basic question-answering
[9].

Nevertheless, when it comes to deduction, the reasoning performance of neural
networks is often contingent upon the presence of implicitly encoded logic within
the data distribution [10]. In other words, since these AI models rely heavily on
statistical associations rather than formal rule-following, they tend to lose strength
when reasoning requires precise logical consistency or the chaining of abstract
rules. More critically, abduction also remains a persistent reasoning challenge.
Effective abductive reasoning in AI requires integrating world knowledge, contextual
awareness, and causal inference to construct plausible but unobserved hypotheses
[7]. Neural networks, by design, lack explicit mechanisms to support this kind of
inferential leap, which makes them unreliable for tasks that require systematical
exploration of reasoning paths beyond what the data directly supports [5].

1.3 A Solution: NeSy AI
Early paradigms in AI, known as Good Old-Fashioned AI (GOFAI), focused
on symbolic reasoning, where knowledge was represented explicitly in logic-based
systems and manipulated through rule-based inference [11]. Unlike neural networks,
GOFAI systems were designed to perform all three major forms of reasoning by
leveraging structured representations, ontologies, and well-defined search procedures
[10]. However, while these symbolic systems offered explainability and formal
guarantees, but often lacked scalability and robustness in dealing with noisy
or unstructured data [5]. With the rise of neural networks, however, modern
AI systems began to prioritize statistical learning over symbolic manipulation,
achieving impressive results in perception and pattern recognition but sacrificing

2

Introduction

core reasoning capabilities in the process. This shift has created a discontinuity:
we now expect neural networks to handle reasoning tasks that were once explicitly
addressed by symbolic AI, but without equipping them with the tools to do so.

As a consequence, the so-called issues have prompted AI researchers to explore
hybrid approaches that combine the inductive strength of neural networks with
deductive and abductive potentials of GOFAI, aiming to develop systems that can
reason more robustly across all three reasoning modes [5]. One such promising
direction is Neuro-Symbolic (NeSy) AI, which seeks to integrate the sub-symbolic
power of neural networks with the explicit and structured reasoning capabilities
of symbolic systems [8]. This hybridization aims to leverage the scalability and
flexibility of neural models while incorporating the transparency, explainability,
and logical rigor of symbolic representations.

This architectural duality originates from two-system theory of reasoning in
cognitive science: System 1 and System 2 [3]. The first refers to fast, automatic,
and cognitive reasoning processes that are typically unconscious, effortless, and
operate in parallel, which is similar to the pattern-based memory-driven nature of
neural networks optimized for inductive reasoning [1]. On the other hand, system 2
represents slow, deliberate, and analytical thought through explicitly manipulating
structured representations like rules, logic, and symbols, which resembles deduction
and abduction in symbolic reasoning [3]. As in neural networks, system 1 enables
rapid recognition and generalization, but it often lacks precision [12]. System
2, by contrast, enables methodical and consistent reasoning, albeit at a higher
computational cost [5]. A successful NeSy system, therefore, aims to simulate the
complementary functions of both systems, enabling NeSy models to handle a broad
range of reasoning tasks with greater versatility and depth.

1.4 NeSy AI Empowered by Fuzzy Logic
In the context of NeSy AI, Symbols refer to abstract representations within a
specific domain that carry explicit meanings, such as constants, variables, numbers,
or fixed semantic labels [5]. These symbols can be combined and manipulated using
formal languages like First-Order Logic (FOL), allowing for the representation
of structured knowledge and reasoning over it [5]. For instance, a rule such as
∀x : isBrid(x) → canFly(x) encodes a general statement about birds’ ability to fly,
where each component, including quantifiers, predicates, and logical operators, is
a symbolic element. This structured framework enables symbolic components of
NeSy systems to draw logical conclusions and generate plausible hypotheses from
incomplete observations, i.e., deduction and abduction through symbolic reasoning,
thereby overcoming some of the fundamental reasoning limitations faced by neural
networks [3].

3

Introduction

Considering this importance of logical formalisms in NeSy AI, recent research
has explored moving toward Real Logic, which is a differentiable form of fuzzy
logic [5]. Unlike binary logic systems that treat statements as either entirely true
or false, fuzzy logic introduces degrees of truth, allowing the system to represent
and reason with uncertainty and vagueness that often characterize real-world
data. Real Logic enables soft constraints to be imposed over continuous values
and supports gradient-based optimization, which makes it compatible with neural
networks during training [5]. As a result, symbolic rules are no longer fixed or
hand-crafted, but can be learned or fine-tuned using stochastic gradient descent
based on observed data [13]. This ability to merge differentiability with symbolic
reasoning significantly enhances the adaptability of NeSy models in ambiguous
or noisy environments, where classical logic systems typically struggle to operate
effectively [8]. For instance, the rule isBird(x) → canFly(x) can be evaluated to a
degree, rather than as strictly true or false, allowing for exceptions (e.g., penguins)
to be incorporated naturally.

1.5 Visual Reasoning through NeSy AI
The soft interpretation of logic allows NeSy systems to achieve more robust gen-
eralization and contextual reasoning across a variety of domains, which sets the
stage for applications in dynamic and perceptually complex settings like Visual
Reasoning [14]. In such settings, NeSy systems must integrate perception from
partial information with reasoning about the relationships between different visual
objects, which often involves partial observations, occlusions, or ambiguous scenes
[12]; the conditions under which, pure neural networks may fail to generalize and
purely symbolic systems may lack flexibility [3]. Accordingly, in this thesis, we
will also focus on the class of NeSy systems that are built on top of fuzzy logic for
performing visual reasoning tasks.

1.6 Issues of NeSy Visual Reasoning
Regardless of all the opportunities NeSy AI provides for promising visual reasoning,
several limitations still persist across different methodological paradigms. These
limitations highlight ongoing trade-offs between flexibility, explainability, and
formality in current approaches [12, 15]. We will discuss these approaches in detail
in Section ??; here, we only focus on high-level descriptions of their shortcomings.
In this respect, we can categorize the issues into three groups: Flexible But Non-
Explainable (FBN), Explainable But Rigid (ENR), and Flexible But Verbose
(FBV) approaches.

FBN approaches emphasize learning symbolic reasoning patterns directly from

4

Introduction

visual data without hard-coded rules, often in flexible and open-ended environments.
These methods embed reasoning mechanisms within neural network weights or
architectures [3]. While this enables scalability and end-to-end training, it often
results in latent rules that are non-explainable [15]. In other words, the visual
reasoning processes become entangled with the model’s internal representations,
making it difficult to extract, verify, or validate the learned logic. As a result, despite
solving the task effectively, these models sacrifice transparency and explainability.

In response to this, ENR methods address the explainability gap by explicitly
embedding symbolic rules into the system prior to training. Therefore, by inte-
grating known symbolic rules as inductive biases or constraints, these approaches
enforce explainability and logical consistency during both training and inference [9].
However, such methods often suffer from limited generalizability. Their performance
and applicability hinge on domain-specific rule sets that do not easily transfer to
new tasks, unseen visual domains, or more open-ended reasoning problems.

FBV methods, on the other hand, aim to overcome both limitations by generating
rules dynamically at runtime, often in the form of free-form text or structured
outputs [16]. For example, LLMs with proper prompting can produce reasoning
traces that explain their decisions [16]. While this introduces flexibility and
an element of explainability, the resulting explanations are typically verbose,
informal, or non-machine-readable [15]. This restricts their utility in downstream
symbolic processing and makes verification challenging. Additionally, such free-form
reasoning is highly dependent on prompt engineering and lacks the formal structure
needed for robust generalization.

Taken together, these limitations suggest that current NeSy visual reasoning
systems have not yet reached the peak of their promised potential. Therefore, fully
addressing these problems remains an open challenge, and future work will need
to investigate architectures that can learn modular, interpretable, and grounded
rules that generalize across tasks without requiring manual encoding or opaque
abstraction. That is what we also seek to explore in this thesis.

1.7 Novelties of the Thesis
Considering the challenges highlighted in previous sections, this thesis proposes a
novel NeSy visual reasoning framework grounded in the flexibility, explainability,
and formality principles. As shown in Figure 1.1, the system processes two modal-
ities: textual and visual. The Textual Input can contain optional contextual
information, while the Visual Input comprises images representing the reasoning
task. These inputs, along with an intermediate feedback, are integrated via an
Context Generator to produce a semantically enriched Context. This input
is then passed to a neural Rule Generator, which proposes symbolic rules in a

5

Introduction

Context
Generator
(Script)

Textual Input

Visual Input
Visual

Processor
(Neural)

Rule
Verifier

(Symbolic)
Final Output

Symbolic Rules
Rule

Generator
(Neural)

Context

Visual Symbols

Figure 1.1: Conceptual diagram of the proposed NeSy system.

formal language such as FOL. Concurrently, the visual input is also transformed
into Visual Symbols through a Visual Processor. After that, both the symbolic
rules and visual symbols are processed by a symbolic Rule Verifier, which assesses
their alignment and determines the Final Output.

On top of containing the results of the described experiment, both the generated
symbolic rules and the final output serve as the source of the so-called intermediate
feedback. This feedback is primarily designed to enhance the overall performance
of the system by informing the context generator about possible failures or incon-
sistencies in previous experiments. By incorporating this feedback, the system
can dynamically adjust the semantic context to better support rule generation.
Additionally, the feedback can also be directly passed to the rule generator, which
can enable it to immediately fine-tune its symbolic hypotheses based on empirical
evidence. This optional feedback also increases the robustness and expressive power
of the generated rules and promotes more efficient convergence accurate reasoning.

Consequently, the proposed system operates in an Iterative Loop that resembles
Reinforcement Learning (RL) dynamics, as it iteratively uses the intermediate
feedback to gradually refine its internal blocks. This process continues until a
predefined Termination Criterion is met, such as when the generated symbolic
rules adequately explain the majority of the images included in the visual input.
This iterative design not only enables Continuous Refinement of Symbolic
Hypotheses but also facilitates Feedback-Based Learning and Convergence.
Through this mechanism, the system addresses common NeSy limitations by:

• Providing Flexibility in visual reasoning tasks, imposing minimal constraints
on the types of problems it can handle.

• Ensuring Explainable both regarding its architectural design and the rules
it generates at the end.

• Upholding Formality in rule generation, enabling the output to be under-
stood and verified by both humans and machines.

6

Introduction

1.8 Structure of the Thesis
This thesis is organized into six main chapters, including the current one. Chap-
ter 2 presents a comprehensive literature review, covering foundational concepts,
relevant tasks and benchmarks, and various approaches to NeSy visual reasoning.
Chapter 3 outlines the proposed method and explains each component in details,
from symbolic rule generation and verification to visual processing and feedback
integration. Chapter 4 describes the experimental environment, including com-
ponent specifications, the development strategy, and the evaluation metrics used.
Chapter 5 reports the experimental results and provides a critical analysis of the
outcomes. Finally, Chapter 6 summarizes the key contributions of the thesis and
suggests potential directions for future research.

7

Chapter 2

Literature Review

In this chapter, we review foundational concepts, benchmarks, and architectural
paradigms within NeSy AI with a focus on visual reasoning tasks, where will cover
different approaches for integrating neural and symbolic methods.

2.1 Foundational Concepts
As discussed earlier, NeSy AI aims to synthesize the complementary capabilities of
neural networks and symbolic reasoning systems, moving beyond the traditional
dichotomy between connectionist and symbolic paradigms [3]. A growing body
of work now explores how these paradigms can be integrated to form hybrid
models that are both data-efficient and cognitively plausible [1]. Importantly, NeSy
systems are not monolithic, instead, they vary in architecture, areas of integration,
and the degree to which symbolic rules influence learning or inference [17]. This
diversity is not merely technical but reflects deeper assumptions about cognition
and representation, increasingly shaped by interdisciplinary insights from cognitive
science, linguistics, and formal logic [3].

To bring structure to this growing body of work, Professor Henry Kautz
proposed a detailed taxonomy that classifies NeSy systems based on the nature
and depth of interaction between neural and symbolic components. The taxonomy
includes six types [3, 9]:

1. symbolic Neuro symbolic: This category resembles the standard pipeline of
deep learning, where symbolic inputs (e.g., words) are transformed into vector
embeddings, processed through neural architectures, and then mapped back
into symbolic outputs. Most Natural Language Processing (NLP) systems
fall into this category.

2. Symbolic[Neuro]: In this configuration, a symbolic system governs the overall

8

Literature Review

logic and control, while neural networks are used internally as subroutines. A
well-known example is AlphaGo, which is an AI playing the game of GO
through symbolic Monte Carlo tree search enhanced by neural networks to
estimates game states.

3. Neuro;Symbolic: This architecture features a pipelined integration in which
neural and symbolic systems operate on distinct components of the task.
Therefore, these systems communicate in a loosely coupled manner, such as
passing information back and forth to enhance mutual performance.

4. Neuro:Symbolic → Neuro: Here, symbolic knowledge is embedded directly
into the structure of the neural network itself. In other words, rather than
merely using symbolic inputs, these systems compile symbolic rules into
architectural priors or weight initialization, influencing the neural learning
process in a deeper model-intrinsic way.

5. NeuroSymbolic: This category involves tensorizing symbolic structures (e.g.,
FOL representations) so that neural networks can perform reasoning tasks
over them. These approaches maintain an interplay between formal logic and
neural computation in a fully differentiable manner [5].

6. Neuro[Symbolic]: This is the transpose of the second category, where a neural
architecture performs symbolic reasoning by learning structural relations or
by attending to symbolic elements when required. As a prototypical example,
we can consider Graph Neural Networks (GNNs), where the neural model
effectively learns and reasons over symbolic graph structures.

The taxonomy provides a conceptual foundation for analyzing and comparing
the many flavors of NeSy architectures and reflects both practical implementation
concerns such as modularity, explainability, or scalability and theoretical insights
into how symbolic and sub-symbolic representations can co-evolve [5]. Building on
this framework, the survey Towards Cognitive AI Systems extends Kautz’s
taxonomy by introducing dimensions such as probabilistic integration, types of
intermediate representations, and degrees of explainability, which offer more com-
prehensive mapping of recent developments in NeSy AI [9]. In this survey, rather
than framing integration as a binary property, it is tried to treat NeSy AI as a
spectrum that ranges from loosely coupled ensembles to deeply fused models with
joint optimization. This perspective underscores how design decisions at the neural
or symbolic interface affect the cognitive fidelity and explanatory power of the
resulting systems [3]. Importantly, the survey highlights that these trade-offs are
particularly impactful in domains like visual reasoning, where perception and logic
must interact seamlessly to achieve meaningful interpretations.

9

Literature Review

As mentioned earlier, again, visual reasoning, in particular, serves as a compelling
testbed for NeSy architectures, which requires integrating bottom-up perception
with top-down logical inference to interpret scenes, detect causal relations, and
apply structured reasoning over visual inputs [18]. However, unlike conventional
visual recognition tasks, visual reasoning demands interpreting spatial and temporal
patterns, analogies, and counterfactuals [7]. We will cover the examples later, but
here, as an overview, we can consider tasks such as how VAR challenges models
to infer plausible causes for incomplete visual sequences or how RPM tests the
ability to detect and apply abstract visual rules [7, 18]. NeSy models address
these challenges by jointly learning from visual data and structured symbolic
domains, such as spatial logic, temporal constraints, or analogical schemes [8].
These capabilities not only benchmark NeSy systems but also drive innovation
in architectures that balance learned representations with interpretable symbolic
reasoning [1].

2.2 Different Tasks and Benchmarks
To evaluate NeSy visual reasoning systems, a range of tasks and benchmarks have
been proposed, each emphasizing different aspects of reasoning capabilities [19].
One notable task is Visual Abductive Reasoning (VAR), which, as mentioned
before, focuses on uncovering hidden causal relationships in visual narratives, even
when the connections between events appear non-obvious or disjoint [7]. This
task challenges AI systems to reason holistically over visual scenes and synthesize
contextual information to infer the most plausible underlying causes. Additionally,
as a task closely related to VAR, Dense Video Captioning (DVC) seeks to produce
rich, multi-sentence descriptions of untrimmed videos, which demands temporally
grounded, comprehensive narrative understanding [7]. Some approaches address
this task by first parsing events and then generating text, while others reverse the
process or unify both stages.

Building upon the VAR and DVC tasks, the VideoABC benchmark introduces
a challenging procedural visual reasoning task [20]. Designed to assess a model’s
ability to interpret and explain physical processes in instructional videos, VideoABC
emphasizes long-term dependencies and common-sense reasoning [20]. The primary
task involves selecting the most plausible action or step to complete a visual
procedure given an initial and final state. The secondary task, on the other hand,
is a more demanding task that asks the model to justify why alternative choices are
less plausible, thus discouraging superficial pattern matching. Notably, VideoABC
avoids reliance on natural language inputs to provide a purely visual benchmark
that requires genuine high-level reasoning over visual sequences [20].

Another foundational benchmark is Raven’s Progressive Matrices (RPM), along

10

Literature Review

with its variants Relational and Analogical Visual Reasoning (RAVEN) and
Impartial RAVEN (I-RAVEN), which are modeled after classic IQ tests [18]. As
mentioned before, these benchmarks assess abstract and analogical reasoning by
requiring the model to infer the missing piece in a visual grid based on underlying
rules of symmetry, transformation, or pattern continuation [21]. NeSy methods
have shown strong performance on RPM tasks by combining visual perception
with symbolic rule-based reasoning [18]. For instance, some approaches model the
task as a form of probabilistic abductive reasoning, where solutions are inferred
within a symbolically structured space constrained by prior background knowledge
[1]. While this approach offers explainability and generalizability, it often incurs a
high computational cost due to the complexity of the symbolic search space [21].

Beyond structured grid-based reasoning, Visual Question Answering (VQA)
represents a more open-ended and linguistically grounded task, which challenges
systems to answer natural language questions based on images through integrating
of visual scene understanding, semantic reasoning, and multi-modal inference [19].
Successful models in this task must handle relational reasoning across spatial
and semantic dimensions, combining features from both the visual input and
the textual query [6]. However, early VQA benchmarks suffered from dataset
biases and superficial shortcuts that allowed models to perform well without
truly understanding the visual input [20]. To overcome these limitations, the
Compositional Language and Elementary Visual Reasoning (CLEVR) dataset
was introduced, featuring images of 3D objects and explicitly relational questions,
where previous powerful models struggled with the relational aspects [6]. CLEVR
has become a key benchmark for evaluating whether systems genuinely perform
reasoning rather than exploit statistical patterns in language.

Finally, a benchmark tailored specifically for NeSy visual reasoning paradigms is
Visual Sudoku Puzzle Classification (ViSudo-PC), which blends visual perception
with symbolic relational constraints, requiring systems to determine whether a
visually rendered Sudoku grid is correctly solved [22]. Unlike traditional numeric
input, ViSudo-PC puzzles are built from images drawn from datasets such as
Modified National Institute of Standards and Technology (MNIST), Extended
MNIST (EMNIST), Kuzushiji MNIST (KMNIST), and Fashion MNIST FM-
NIST, which introduces visual variability and noise [10]. The benchmark supports
both 4 × 4 and 9 × 9 grid sizes to test the model’s ability to integrate low-level
visual recognition with high-level reasoning about Sudoku rules [22]. As such,
ViSudo-PC represents a holistic NeSy challenge that demands joint learning of
visual perception and reasoning.

11

Literature Review

2.3 Basic Visual Reasoning Frameworks
Building on the foundational concepts of NeSy AI and the tasks and benchmarks
introduced previously, this section discusses several core frameworks for NeSy visual
reasoning. Among these methods, one of the most influential neural components
tailored for reasoning tasks is the Relation Network (RN) [6]. These networks are
modular neural architectures designed explicitly for relational reasoning, which is
an essential skill for many visual reasoning tasks [6]. When applied to datasets
such as CLEVR, RNs significantly enhances performance by enabling models to
reason about object relations, an issue that convolutional architectures alone often
struggled to capture [6]. By augmenting perception pipelines with RNs, models can
gain the ability to implicitly learn logical structures such as comparison, counting,
and spatial relationships.

Moving from modular perception-enhancing components to integrated reasoning
architectures, the Deep Symbolic Learning (DSL) framework represents a crucial
step toward unifying perception and symbolic inference [13]. DSL enables end-to-
end learning of symbolic representations directly from raw perceptual inputs, and
simultaneously discovers the underlying symbolic rules [13]. By embedding discrete
symbolic choices within differentiable neural layers, DSL offers a compositional
approach to reasoning that supports generalization across tasks and domains [13].
This makes it particularly relevant in contexts where the structure of symbolic
reasoning must emerge from perception, such as visual classification with latent
symbolic structure [12]. However, while DSL integrates reasoning and perception
tightly, another key challenge for hybrid systems is efficient training, especially when
symbolic supervision is weak or indirect [12]. A practical and broadly applicable
strategy is the use of Transfer Learning (TL) for the neural perception modules
[12]. In this approach, the perception component of a NeSy system is pre-trained
on the downstream task using standard supervision, before being integrated with
the symbolic reasoning module [12]. This technique mitigates issues such as slow
convergence and local minima by ensuring that the perception model already maps
inputs to semantically informative representations [12]. It has shown consistent
improvements in both performance and training efficiency across various NeSy
setups and complex visual reasoning tasks [12].

Among more formalized integrations of symbolic logic and neural perception,
Neural Probabilistic Soft Logic (NeuPSL) exemplifies a general-purpose NeSy
framework that employs neural capabilities to extend Probabilistic Soft Logic
(PSL), which is a statistical relational learning framework that, similarly to fuzzy
FOL, represents logical rules as soft constraints using continuous truth values [10].
NeuPSL inherits PSL’s flexible probabilistic reasoning framework but introduces
differentiable components that interface directly with raw data via deep neural
networks [10]. By supporting joint learning and inference over symbolic rules and

12

Literature Review

perceptual inputs, NeuPSL demonstrates the utility of energy-based modeling for
tasks like MNIST-Addition, where visual and symbolic aspects interact [10]. As part
of the broader family of Neuro-Symbolic Energy-Based Models (NeSy-EBMs),
NeuPSL contributes to a growing line of work seeking probabilistic formalism
within hybrid reasoning [10].

Lastly, the challenge of symbol grounding in generative tasks is addressed by
frameworks like Abductive Visual Generation (AbdGen), which combine neural
visual generation models with logical rule learning via abductive reasoning [23].This
generative visual reasoning requires the system to assign semantic symbols to latent
neural factors and to infer rules that guide the generation process [23]. AbdGen
achieves this purpose through a combination of quantized abduction and contrastive
meta-abduction, effectively grounding symbols in visual data while maintaining a
logic-based generative structure [23]. This approach enables it to learn from limited
data and supports precise and explainable generation based on symbolic conditions.
[23]

2.4 Visual Reasoning with VSAs
Vector-Symbolic Architectures (VSAs) are computational models that represent
both atomic and composite concepts using high-dimensional distributed vectors [18].
These representations are manipulated through a defined set of algebraic operations,
such as binding (e.g., Hadamard product), unbinding, bundling (additive superpo-
sition), permutation, and cleanup via associative memory, which together allow for
the combination of symbolic structure with distributed and connectionist processing
[1]. VSAs support key cognitive properties like compositionality, transparency, and
robustness, which makes them well-suited for tasks that require reasoning over
structured representations [24].

Early applications of VSAs to visual reasoning focused on analogical reasoning,
often assuming symbolic inputs without integrating visual perception [1]. These
limitations have led to the development of Neuro-Vector Symbolic Architectures
(NVSAs), which incorporate deep neural networks for visual input processing and
use VSA-based mechanisms for reasoning [1]. The NVSA framework transforms raw
images into fixed-width VSA vectors that preserve perceptual uncertainty, which
enables symbolic-like reasoning while retaining neural flexibility [1]. Then, the
vector-based backend enables efficient probabilistic reasoning, such as probabilistic
abduction, without resorting to exhaustive symbolic search [21]. In doing so, NVSA
models allow perceptual processes to be shaped by the demands of downstream
reasoning [1].

Building on the above ideas, the Relational Reasoning with Symbolic and Object-
Level Features Using VSA processing (RESOLVE) architecture enhances the

13

Literature Review

NVSA approach by introducing an attention mechanism in high-dimensional bipolar
vector spaces [24]. RESOLVE encodes both object-level features and inter-object
relations through VSA operations such as binding and bundling, while its attention
mechanism improves relational extraction efficiency, which is a notable challenge
for transformer-based models [24]. RESOLVE demonstrates strong generalization
in both fully relational and mixed-relational visual reasoning benchmarks [24].

Another notable approach is Probabilistic Abduction for Visual Abstract Rea-
soning via Learning Rules in VSAs (Learn-VRF), which uses VSAs to learn
rule-based formulations for solving abstract reasoning problems, specifically RPM
[18]. Unlike prior models that rely on hand-crafted rule representations, Learn-VRF
learns rule structures directly from data while maintaining symbolic explainability
[21]. It performs well on Out-of-Distribution (OOD) samples, demonstrating
generalization to unseen combinations of attributes and rules [21]. More recently,
the Abductive Rule Learner with Context-awareness (ARLC) has also extended
the Learn-VRF by introducing a new training objective specifically tailored for
abductive reasoning [18]. ARLC not only learns the rules underlying abstract
reasoning tasks but also allows for the incorporation of domain knowledge through
programmatic constraints [18]. It addresses prior limitations of Learn-VRF, such
as its limited rule expressiveness and sub-optimal selection mechanisms, offering a
more flexible and context-aware framework for rule induction [18].

Expanding further, the Abductive Visual Generation (AbdGen) framework also
integrates logic programming with neural generative models under an abductive
learning paradigm [23]. While primarily designed for visual generation tasks,
AbdGen employs symbolic inference techniques, such as quantized abduction,
which uses nearest-neighbor lookups in semantic code books to ground symbolic
hypotheses in perceptual data [23]. This demonstrates the potential of VSAs in
facilitating symbol grounding and abductive reasoning in visually rich contexts
[23].

2.5 Visual Reasoning with LTNs
Logic Tensor Networks (LTNs) are presented as a significant NeSy framework
designed to effectively integrate deep learning capabilities with symbolic reasoning,
particularly relevant for visual reasoning tasks that demand processing both rich
perceptual data and abstract knowledge [5]. The foundational element of LTNs is
Real Logic, which, as mentioned, facilitates learning, querying, and reasoning by
grounding the elements of a FOL signature onto data through neural computational
graphs [5]. This framework employs fuzzy FOL semantics to transform the typi-
cally binary constraints of classical logic into continuous, differentiable operations,
ultimately allowing logical knowledge to function as a differentiable regularizer

14

Literature Review

in the loss function [12]. Consequently, LTNs offer a unified language capable of
representing and computing a variety of AI tasks crucial for visual understanding
and reasoning, including multi-label classification, relational learning, embedding
learning, and query answering [5]. Notably, LTNs can perform reasoning on com-
binations of axioms not explicitly trained upon and provide high explainability,
which are valuable characteristics when tackling complex visual scenarios [3].

A compelling demonstration of LTNs applied to visual reasoning tasks is explored
in their application to the ViSudo-PC benchmark [8]. An LTN-based approach
addresses this by integrating Convolutional Neural Networks (CNNs), which act
as the perceptual module for tasks like digit recognition or whole-board classifi-
cation, with an LTN responsible for enforcing the logical constraints of Sudoku
[8]. Various methods for this integration and for formulating the logical constraints
are investigated, which include Indirect Solutions, where a non-trainable predi-
cate encodes the Sudoku rules to verify digits detected by a trainable predicate,
and Direct Solutions, where a predicate is involved that directly calculates the
validity of the entire board and, along with an auxiliary digit detection and rule
enforcement predicate, is grounded by CNNs (either separate or with a shared
backbone) [8]. This dual-level integration of perceptual recognition and logical
reasoning exemplifies how LTNs can effectively bridge sub-symbolic and symbolic
components in visual reasoning tasks [5].

2.6 Visual Reasoning with LLMs
As introduced in Section 1, LLMs have shown notable promise in performing
reasoning tasks across multiple domains [14]. Extending this ability into the
realm of visual reasoning, we can mention Vision-Language Models (VLMs), which
combine natural language understanding with visual perception [14]. These models
can be adapted for visual reasoning by encoding visual content into structured
symbolic or textual representations [21]. In many current approaches, the raw
visual data is preprocessed externally and transformed into a format that the LLM
can interpret, such as object attributes, spatial relationships, or transformation
rules [14]. Once this symbolic encoding is complete, the VLM is prompted to
reason over the visual structure. This setup has enabled zero-shot performance
on abstract reasoning benchmarks like RPMs, where VLMs can identify visual
patterns and analogies without task-specific fine-tuning [21]. While the model itself
does not directly interpret pixels, its general language-based reasoning abilities can
be leveraged through careful design of symbolic inputs and prompts [3]..

Recent research has further explored how post-training methods influence the
reasoning capabilities of LLMs and VLMs, particularly comparing Supervised Fine-
Tuning (SFT) and RL: while SFT encourages memorization of training examples,

15

Literature Review

RL fosters the emergence of generalized reasoning skills [14]. For instance, in visual
tasks like RPMs, SFT-tuned models often struggle with OOD examples, whereas
RL-trained models demonstrate improved adaptability and abstraction [14]. This
insight is central to the development of systems like DeepSeek-R1, which applies
RL to incentivize structured reasoning [2]. The DeepSeek-R1-Zero model, notably
trained without prior SFT, reveals that reasoning capabilities can emerge solely
from reinforcement signals [2]. Meanwhile, the full DeepSeek-R1 pipeline, which
combines SFT and RL, balances stability and performance, guiding LLMs toward
generating more accurate and interpretable Chain-of-Thought (CoT) reasoning [2].

Beyond DeepSeek, other works such as MathPrompter and Auto-CoT rep-
resent earlier or parallel efforts to enhance LLM reasoning through prompting
strategies [25]. MathPrompter augments reasoning by retrieving relevant equations
and concepts to scaffold mathematical problem solving, while Auto-CoT automates
the generation of reasoning chains to improve model performance across logical
tasks [16]. Though these methods primarily target textual reasoning, they share
conceptual ties with visual reasoning when symbolic representations of images are
treated analogously to structured text [21]. Together, these methods underscore
a broader trend: effective visual reasoning with LLMs often hinges on external
symbolic encoding and internal alignment via prompt engineering, fine-tuning,
or reinforcement [21, 19, 14]. The ongoing research reflects a shift from passive
language modeling to active reasoning architectures, where models are trained not
just to generate plausible text, but to follow reasoning trajectories across modalities
[25, 21].

16

Chapter 3

Methodology

In this chapter, we discuss our methodology through four main modules: rule
generation via prompt engineering and symbolic formulation, rule verification using
syntactic parsing and LTN implementation, visual processing using CNNs, and
feedback handling with the help of looped training mechanisms.

3.1 Proposed Method

Prompt
Engineer
(Script)

Textual Input

Visual Input CNN
(Neural)

D-LTN
(Symbolic) Final Output

Symbolic RulesVLM
(Neural)Prompt

Embeddings

Figure 3.1: Functional diagram of the proposed NeSy system.

As discussed in Section 1.7, our objective is to overcome the limitations of the
methods presented in the previous chapter by emphasizing flexibility, explainability,
and formality. To this end, we transition from the high-level conceptual design
shown in Figure 1.1 to a more concrete functional architecture illustrated in
Figure 3.1. This refined design introduces the following key components:

• A Prompt Engineer serves as the context generator, combining the textual
and visual inputs with intermediate feedback to construct a coherent Prompt.
This prompt is then fed to the next processing block as the required context.

• A VLM acts as the rule generator. The idea behind this choice is to leverage

17

Methodology

the advanced reasoning capabilities of these modern language models for gener-
ating symbolic rules. Additionally, to obtain formal rules, we prompt the VLM
to compose them in FOL and Python, which are necessary for constructing
the symbolic knowledge base and performing logic-based reasoning.

• A CNN functions as the visual processor by converting the visual input into
Embeddings, which are directly interpreted as visual symbols. By using
a CNN, we map the images from a two-dimensional complex space into a
simpler space of embedding vectors.

• An Dynamic LTN (D-LTN) performs rule verification. With the help of this
block, the generated symbolic rules are automatically converted into an LTN,
which is then tasked with applying the extracted rules to the embeddings.

In the following, we will explain the complexities and the detailed operations
performed by each block of the functional diagram.

3.2 Rule Generation

Prompt
Engineer
(Script)

Textual Input ResponseVLM
(Neural)Prompt RegEx

(Script) Symbolic Rules

Visual Input Pattern

Figure 3.2: Reasoning with the help of VLM.

This section outlines the complete flow from the system inputs to the prompt
engineering stage, through the VLM, and ultimately to the generation of symbolic
rules. As illustrated in Figure 3.2, the process involves three additional components,
the raw Response produced by the VLM, a Regular Expression (RegEx) used to
extract symbolic rules from the response, and a specific Pattern that guides the
extraction process.

3.2.1 Prompt Engineering
The following script presents our initial prompt engineering approach. For clarity,
the template follows the style recommended by OpenAI in their documentation for
using VLMs via Python, where the client object is used to access their Application
Programming Interface (API) [26].

18

Methodology

system_role = '''
You are a helpful assistant that can extract the First-OrderLogic
(FOL) from images. The grammar of the FOL is as follows:

1. Constants: <PLACE_HOLDER>.
2. Variable: <PLACE_HOLDER>.
3. Functions: <PLACE_HOLDER>.
4. Predicates: <PLACE_HOLDER>.
6. The symbols used for AND, OR, and NOT: `<PLACE_HOLDER>`,

`<PLACE_HOLDER>`, and `<PLACE_HOLDER>`, respectively.
7. The symbols used for implication and equivalence:

`<PLACE_HOLDER>`, and `<PLACE_HOLDER>`, respectively.
8. The symbols for universal and existential quantifiers:

`<PLACE_HOLDER>` and `<PLACE_HOLDER>`, respectively.
9. Use parentheses for preserving operation precedence.

Act based on the following:
1. Before FOL rule generation, deeply analyze the images.
2. Consider that all the images must follow the same FOL rule.
3. The FOL rule applies to the visual objects inside each image.
4. At the end of your chain of thought, use the following

template to present the extracted rules:
```JSON
{

"rule_1": "first possible rule",
"rule_2": "second possible rule",
...

}
```

5. Then, provide the groundings of constants, functions, and
predicates in the following template:
```Python
the groundings
```

'''

prompt = [{
'type': 'text',
'text': 'These are images you can use as reference:'

}]
for base64_image in base64_image_list:

prompt.append({
'type': 'image_url',
'image_url': {

'url': f'data:image/png;base64,{base64_image}'
}

})

19

Methodology

chat_completion = client.chat.completions.create(
messages=[

{'role': 'system', 'content': system_role},
{'role': 'user', 'content': prompt}

]
)

response = chat_completion.choices[0].message.content

In this template, the placeholder '<PLACE_HOLDER>' indicates where specific
information must be inserted into the system_role variable, which will be specified
in the following sections once the grammar for the FOL language has been defined.
Also, as shown in the template, the textual input of the system is provided via the
system_role variable, while the visual input is passed to the VLM as part of the
prompt, using images stored in the list base64_image_list. These images serve
as reference examples from the training data, guiding the VLM in generating the
corresponding symbolic rules. As previously mentioned, these rules are produced
in two forms:

• FOL. According to the prompt, the VLM is first instructed to generate a
JavaScript Object Notation (JSON) dictionary containing the possible FOL
rules that describe the underlying relationships among the visual objects. The
JSON format provides the flexibility for the VLM to extract and organize as
many relevant rules as it identifies.

• Python. The VLM is also asked to produce a Python script containing the
Groundings, which are the contextual meanings of the symbols appearing in
the FOL rules. A grounding can be value or tensor assigned to a constant or a
variable, a Python function or neural network represented by an FOL function
or predicate, or a tensor operation performing the abstract idea of a universal
quantifier. Even though every symbol of an FOL rule requires grounding in
practice, the VLM is prompted to specify the groundings only for constants,
functions, and predicates. We explain the details in subsequent sections.

The above approach assumes the VLM is already familiar with the concept of
FOL and is capable of performing analytical reasoning. In fact, in our proposed
architecture, the VLM effectively serves as the reasoning brain of the system,
which allows it to operate with minimal hard-coded logic or rule-based interven-
tion. Therefore, the reasoning process is delegated entirely to the VLM and the
sophistication of the its reasoning capabilities directly impacts the quality of the
results. In other words, the more advanced the model, the more reliable, nuanced,
and expressive the extracted rules will be.

20

Methodology

3.2.2 Symbolic Rule Generation
The raw response generated by the VLM is returned in plain text, which most
likely includes the CoT reasoning steps it followed before producing the symbolic
rules. This inclusion is typical behavior of modern language models, especially
when prompted to reason step-by-step or operate under system instructions that
prioritize transparency and explainability. Also, the CoT reasoning is inevitable,
as it provides insight into the intermediate steps the model uses to reach its
conclusions. However, from a system integration perspective, this verbose output
becomes noise. What we actually require for downstream processing are only the
two formal parts of the response, the JSON dictionary that holds the extracted
FOL rules, and the Python script that lists the groundings. To separate these
relevant segments from the surrounding explanatory text, we employ RegEx, which
is a robust pattern-matching tool widely used in text processing. RegEx allows us
to define flexible yet precise search patterns that can locate and extract the relevant
blocks within unstructured textual output. Therefore, to extract the symbolic rule
components effectively, we define two RegEx patterns, one for the FOL rules and
another for the groundings:

fol_pattern = r'```JSON\s*(\{[^\}]*)\}\s*```'
python_pattern = r'```Python\s*([^```]*)\s*```'

The first pattern, fol_pattern, searches for a block of text that begins with the
literal prefix '```JSON', followed by any amount of whitespace, and then captures a
JSON object enclosed in curly braces {...}. The pattern ensures that it terminates
at the matching closing brace before the final triple backticks '```'. Similarly,
the second pattern, python_pattern, captures the Python code block. It searches
for the prefix '```Python', then greedily captures all content until it encounters
the closing backticks '```'. These carefully crafted expressions ensure the correct
segments of the response are isolated from any explanatory text or CoT reasoning.

3.3 Rule Verification
With the VLM response decoded into an JSON dictionary with possible FOL rules
and a Python script defining the groundings, we are now able to convert those
symbolic rules into proper formats that finally lead to the implementation of a
D-LTN. In summary, as illustrated in Figure 3.3, we can use a Rule Parser to
convert the symbolic rules, stated in a pre-defined Grammar, into a Syntax Tree,
and use it to generate an LTN Formula with the help of an LTN Builder by
converting the raw nodes of the syntax tree into the customized Node Classes we
already defined. In this section, we discuss the details of this process.

21

Methodology

Prompt
Engineer
(Script)

Textual Input ResponseVLM
(Neural)Prompt RegEx

(Script) Symbolic Rules

Rule Parser
(Script)

LTN Builder
(Script) Syntax TreeLTN FormulaVisual Input

GrammarNode Classes

Figure 3.3: Automatic generation of LTN formulas.

3.3.1 Syntax Tree Generation
A syntax tree is a hierarchy of nodes that represents the abstract syntactic structure
of a set of instructions written in a formal language, in our case, FOL or Python.
Each node in the tree denotes a construct occurring in the logical expression or the
source code. Accordingly, in our methodology, a syntax tree serves two distinct
purposes:

• The syntax tree for the FOL rules represents their logical structure, with
nodes corresponding to predicates, constants, variables, functions, logical
connectives, and quantifiers. This tree provides a canonical and unambiguous
representation of the rule, abstracting away superficial details of the specific
textual syntax.

• Similarly, a syntax tree for the Python script represents its programmatic
structure, with nodes corresponding to expressions, statements, function
definitions, and variable assignments. This tree is crucial for programmatically
accessing and interpreting the groundings that the VLM provides.

With the use of these syntax trees, we can create well-defined formulas for
our D-LTN block, ensuring that the symbolic knowledge is precisely interpreted
and integrated. Accordingly, to convert the extracted FOL rules into a machine-
readable format suitable for our D-LTN implementation, we leverage Lark, which
is a powerful and flexible parsing toolkit for Python that allows for building custom
parsers [27]. For the Python grounding script, on the other hand, we simply make
use of Python’s built-in ast module, which provides tools for working with syntax
trees of Python source code directly. This simplifies the extraction of groundings
by allowing direct traversal and inspection of the script’s structure. For the FOL
rules, however, the parsing process is more intricate.

As mentioned, Lark is a powerful parser generator. It uses context-free gram-
mars to define the structure of a language and employs various parsing algorithms
(such as LALR, Earley, or CYK) to convert plain text into syntax trees [27].

22

Methodology

This process is similar to how development environments like Visual Studio Code
(VSCode) utilize internal syntax parsers or textual grammars (such as TextMate
grammars) to transform a plain Python script into a colored, syntactically high-
lighted visualization, regardless of its semantic meaning. In fact, a parser’s sole
responsibility is to construct a syntax tree based on the defined grammar. It does
not concern itself with the semantic correctness or logical validity of the content.
Therefore, just as VSCode does not inherently validate the runtime behavior or
logical soundness of a Python script, our FOL parser similarly focuses exclusively on
the grammatical correctness of the symbolic rules. The semantic validation, which
involves assessing whether a syntactically correct FOL rule accurately describes
the relationships within a specific domain, is a separate and crucial step that will
be investigated later.

To define a context-free grammar for the conversion of plain FOL expressions
into syntax trees using Lark, we primarily focus on balancing the generalizability
of the grammar and its inherent formality. In other words, we want to define a
grammar robust enough to encompass a broad spectrum of common FOL rules
while simultaneously enforcing a strict formal structure, ensuring that all generated
rules consistently adhere to the same syntactic conventions. Also, this allows the
parser to render the rules unambiguously machine-readable for seamless integration
into our D-LTN. According to Lark documentations, we need to define this grammar
in Extended Backus-Naur Form (EBNF) [27], which in our case, is as follows:

//// Explanations ////

// constant identifiers always start with "C"
// variable identifiers always start with "x"
// function identifiers always start with "f"
// predicate identifiers always start with "P"
// wrapper symbol is "(" and ")"
// negation symbol is "!"
// conjunction symbol is "&"
// disjunction symbol is "|"
// implication symbol is "implies"
// equivalence symbol is "iff"
// universal quantifier symbol is "forall"
// existential quantifier symbol is "exists"

//// Initialization ////

// imports
%import common.WS
%ignore WS

23

Methodology

// entry point
?start: expression

//// Term-Level Terminal Definitions ////

// Tree Structure:
// term
// atom
// constant, variable
// mapper
// function

// Abstract Terminal (no precedence)
?term: constant | variable | function

// Concrete Terminals (no precedence)
constant: /C[a-z0-9_]*/
variable: /x[a-z0-9_]*/
function: /f[a-z0-9_]*/ "(" term ("," term)* ")"

//// Expression-Level Terminal Definitions ////

// Tree Structure:
// expression
// evaluator
// predicate
// unary_connective
// wrapper, logical_not
// binary_connective
// logical_and, logical_or, iff, implies
// quantifier
// exists, forall

// Abstract Terminal (ascending precedence)
?expression: level_0
?level_0: level_1 | exists | forall
?level_1: level_2 | iff | implies
?level_2: level_3 | logical_or
?level_3: level_4 | logical_and
?level_4: level_5 | logical_not | wrapper
?level_5: predicate

// Concrete Terminals (ascending precedence)
exists: "exists" variable ("," variable)* expression
forall: "forall" variable ("," variable)* expression

24

Methodology

iff: level_1 "iff" level_2
implies: level_1 "implies" level_2
logical_or: level_2 "|" level_3
logical_and: level_4 "&" level_3
logical_not: "!" level_4
wrapper: "(" expression ")"
predicate: /P[a-z0-9_]*/ "(" term ("," term)* ")"

The provided grammar defines the formal syntax for the FOL language used
in the proposed system, along with a clear hierarchy of operator precedence. At
the base level, constants, variables, and functions are identified by the prefixes C,
x, and f, respectively. On top of them, predicates, marked by the prefix P, act as
the core evaluable units. Next, logical operators are applied in a strict order of
precedence: negation (!) binds most tightly, followed by conjunction (&), disjunction
(|), then implication (implies) and equivalence (iff), and finally universal (forall)
and existential (exists) quantifiers operating at the highest level and introducing
scoped variable bindings. To override this default precedence and enforce specific
groupings, the grammar also includes a wrapper using parentheses, which enables
unambiguous parsing of nested logical forms. According to this grammar, we can
now update the prompt used by the VLM:

system_role = '''
You are a helpful assistant that can extract the First-OrderLogic
(FOL) from images. The grammar of the FOL is as follows:

1. Constants: always starting with "C", e.g., "C", "C1" etc.
2. Variable: always starting with "x", e.g., "x", "x_2", etc.
3. Functions: always starting with "f", e.g., "f", "f_get", etc.
4. Predicates: always starting with "P", e.g., "P", "P_equal", etc.
6. The symbols used for AND, OR, and NOT: `&`, `|`, and `!`,

respectively.
7. The symbols used for implication and equivalence: `implies`

and `iff` respectively.
8. The symbols for universal and existential quantifiers: `forall`

and `exists`, respectively.
9. Use parentheses for preserving operation precedence.

Act based on the following:
1. Before FOL rule generation, deeply analyze the images.
2. Consider that all the images must follow the same FOL rule.
3. The FOL rule applies to the visual objects inside each image.
4. At the end of your chain of thought, use the following

template to present the extracted rules:
```JSON
{

"rule_1": "first possible rule",

25



Methodology

"rule_2": "second possible rule",
...

}
```

5. Then, provide the groundings of constants, functions, and
predicates in the following template:
```Python
the groundings
```

'''

prompt = [{
'type': 'text',
'text': 'These are images you can use as reference:'

}]
for base64_image in base64_image_list:

prompt.append({
'type': 'image_url',
'image_url': {

'url': f'data:image/png;base64,{base64_image}'
}

})

chat_completion = client.chat.completions.create(
messages=[

{'role': 'system', 'content': system_role},
{'role': 'user', 'content': prompt}

]
)

response = chat_completion.choices[0].message.content

3.3.2 LTN Implementation
Following the successful parsing of the symbolic rules, encompassing both the
FOL interaction descriptions and their corresponding Python groundings, we can
now proceed with their conversion into LTNs. To understand this process, it is
essential to delve deeper into the fundamental nature of an LTN. At its core, an
LTN represents a fuzzified grounding of an FOL rule, leveraging functions and
neural networks to enable differentiability and trainability [5]. Therefore, the
implementation of an LTN essentially involves translating this grounding process
into a computational framework. For instance, consider an FOL rule such as
∀x1∃x2 : Pred(func(x1), x2). The conversion starts by defining how the function
func and the predicate Pred behave within a fuzzy logical space, which is actually

26

Methodology

why we previously prompted the VLM to generate Python scripts containing these
concrete groundings for constants, functions, and predicates. Subsequently, we
must also define the fuzzy groundings for the logical quantifiers, ∃ (existential) and
∀ (universal). With these fuzzy groundings established for all components of the
rule, an LTN is effectively constructed.

Consequently, given the groundings of x1 and x2, which are the input embeddings
of the D-LTN block, we can then trigger this instantiated LTN, similar to evaluating
the truth value of the original FOL rule, but in a continuous and differentiable
manner. However, given our system’s automatic nature, this conversion process
simply cannot be manual. So, how do we transform the generated symbolic rules
into an executable LTN formula? The answer lies within the syntax trees we have
already discussed. In summary, we use Lark again to convert the FOL-based syntax
trees into LTN-based syntax trees. Next, these LTN-based trees are grounded with
the Python objects that we have prepared earlier.

The core idea behind the above approach is that traversing these newly formed
LTN-based trees is functionally equivalent to feeding inputs directly into the LTN.
In other words, the structure of the LTN-based syntax tree is the computational
graph of the LTN itself. Considering our example rule, ∀x1∃x2 : Pred(func(x1), x2),
once converted, this rule will be represented as a tree where the root node is ∀x1,
its child is ∃x2, whose child is Pred, and Pred then has func and x2 as its children,
with func in turn having x1 as its child. When we traverse this tree, we start
from the innermost node, which is x1. Then, the node representing func, which
is now a fuzzy, differentiable function defined in our Python groundings, receives
the embedding for x1 as input and computes its output. After that, the node
representing Pred, which is grounded by a fuzzy predicate, takes the computed
output from Pred(func(x1), x2) and the embedding for x2 as its inputs, computing
its fuzzy truth value. Next, the ∃x2 node, grounded as a fuzzy existential quantifier,
processes the truth value from Pred by considering all possible instantiations of
x2 in the domain to find the existentially-aggregated truth value. Finally, the
∀x1 node, grounded as a fuzzy universal quantifier, takes this result, considers all
possible instantiations of x1, and finds the universally-aggregated truth value.

The above sequential evaluation of an LTN-based syntax tree is the exact process
of feeding the embeddings directly into the LTN to compute its final truth value
for the rule. However, the fundamental question is how to we create an LTN-based
syntax tree. Along with the ability to create custom parsers, Lark also provides
transformers to convert raw syntax trees into customized ones, in our case, from
an FOL-based syntax tree into an LTN-based syntax tree. For this purpose, we
need to define custom node classes for the tree so that we achieve the functionality
described in the previous example. To begin, we define the Base class as the
superclass of all other nodes. Then, considering the grammar we defined previously,
we proceed to define the remaining node classes according the hierarchy provided

27

Methodology

in the grammar.
Below the Base class level, we also have other high-level superclasses, which

describe the fundamental roles of the nodes in the LTN-based syntax tree by
grouping them into abstract categories based on their functionality. These classes
are as follows:

• Term: extends Base. This abstract class serves as a superclass for all nodes
representing logical terms, such as variables, constants, and function applica-
tions. The instances of this class are tensors that are fed into predicates or
other expressions.

• Expression: extends Base. This abstract class serves as a superclass for all
nodes representing logical expressions, including predicates, connectives, and
quantified formulas. The instances of this class are responsible for computing
the truth values of the expressions they represents.

Also, below the above classes, we have middle-level superclasses, which provide
more specialized abstractions that further refine the structure and semantics of the
LTN-based syntax tree. Each class defines a logical category of behavior that will
be inherited by concrete node types. They are as follows:

• Atom: extends Term. This abstract class represents the basic terms, i.e.,
constants and variables.

• Mapper: extends Term. This abstract class represents functions that map one
or more terms to another term, including both built-in operations (e.g., vector
summation) and user-defined functions.

• Evaluator: extends Expression. This abstract class represents logical predi-
cates that evaluate terms to a truth value, including both built-in relations
(e.g., equality, inequality) and user-defined predicates.

• UnaryConnective: extends Expression. This abstract class represents logical
connectives that operate on a single expression, i.e., negations and groupings
with parentheses.

• BinaryConnective: extends Expression. This abstract class represents logical
connectives that operate on two expressions, i.e., conjunctions, disjunctions,
equivalences, and implications.

• Quantifier: extends Expression. This abstract class represents quantified
logical expressions that operate over domains of variables, i.e., universal or
existential quantifiers.

28

Methodology

Finally, the low-level concrete classes are the actual building blocks that instan-
tiate the nodes of the LTN-based syntax tree. These classes implement specific
logic or structure corresponding to the elements of FOL. They are as follows:

• Constant: extends Atom. It represents a constant term.

• Variable: extends Atom. It represents a variable term.

• Function: extends Mapper. It represents a user-defined function.

• Predicate: extends Evaluator. It represents a user-defined predicate.

• Wrapper: extends UnaryConnective. It represents a syntactic wrapper for
grouping expressions using parentheses.

• LogicalNot: extends UnaryConnective. It represents negation of a single
expression.

• LogicalAnd: extends BinaryConnective. It represents conjunction between
two expressions.

• LogicalOr: extends BinaryConnective. It represents disjunction between two
expressions.

• Implies: extends BinaryConnective. It represents implication between two
expressions.

• Iff: extends BinaryConnective. It represents equivalence between two expres-
sions.

• ForAll: extends Quantifier. It represents a universal quantifier.

• Exists: extends Quantifier. It represents an existential quantifier.

We designed the above classes as general as possible to enable Lark to convert any
FOL-based syntax tree into an LTN-based syntax tree. However, in the following,
we assume that every LTN formula is always derived from an FOL expression and
never a term. For example, a term like f(x) is not an expression and it cannot serve
as a valid LTN formula on its own. Therefore, the root of any LTN-based syntax
tree must always be an expression, which ensures that the output of the LTN
evaluation is always a truth value, and not a multi-dimensional tensor. Moreover, we
intentionally did not implement concrete classes for built-in functions or predicates.
If such functionality is required, it must be added explicitly by extending either
Mapper for functions or Evaluator for predicates. Alternatively, possible users of
these classes can define their own. For example, although the framework does not

29

Methodology

include a built-in predicate for comparing variables (e.g., greater-than), a user could
extend Evaluator to define a custom predicate class such as P_gt to implement
this logic.

To finalize the LTN formula, we need to equip the Base class with Groundability
and Callability capabilities. Groundability refers to the ability to assign specific
groundings to the nodes, while callability allows input values to be passed to
the formula for evaluation. By adding them to the base class, all subclasses
automatically inherit these features. To implement them, we define a ground
method that accepts grounding values as named arguments, and a call method
that also accepts inputs via named arguments. Since the resulting LTN formula
is structured as a tree, these methods are only invoked at the root node. In
other words, for any LTN formula, we only need to call the ground method once
to propagate groundings to all nodes, and similarly, we call the formula once to
provide input values to the entire structure.

It is worth noting that both methods described above serve the purpose of
grounding the LTN formula, but in different ways. The ground method is used to
ground all nodes that are static in nature, such as constants, functions, predicates,
and any other node that is not an instance of the Variable class. In contrast,
the call method is specifically used to ground variables. This separation is
deliberate, as it highlights the dynamic behavior of variables in contrast to the
fixed nature of other nodes. In other words, non-variable nodes are grounded once
and remain unchanged throughout the evaluation, while variables may be grounded
multiple times, reflecting their role as placeholders for changing input values. This
dynamic nature is also the reason we have referred to variable groundings as
inputs. Additionally, when defining the node classes, we can optionally assign
default groundings to connectives and quantifiers. These elements are formal and
domain-independent, so their semantics can be predefined. In contrast, constants,
functions, and predicates are user-defined and domain-specific. Therefore, they
must be explicitly grounded by the user or provided externally. This is the main
reason we prompt the VLM to supply them along with the FOL rules.

3.4 Visual Processing

The next major component in our functional diagram is where the visual input
is processed. As shown in Figure 3.4, we do not explicitly expand the diagram
with additional visual processing details, but this section will describe the internal
workings of the CNN block. Specifically, we explain how it processes raw visual
input into embeddings and how these embeddings are subsequently used as visual
symbols within our system.

30

Methodology

Prompt
Engineer
(Script)

Textual Input ResponseVLM
(Neural)Prompt RegEx

(Script) Symbolic Rules

Visual Input CNN
(Neural)

Embeddings

Rule Parser
(Script)

LTN Builder
(Script) Syntax TreeLTN Formula

Figure 3.4: Perception with the help of CNN.

3.4.1 CNN Design
The visual input consists of a batch of images, each containing multiple visual
objects. Assuming a batch size of B, a maximum of O objects per image, object
dimensions of W × H, and C color channels, the input tensor has the shape
B×O×C ×W ×H. The CNN processes this input through a series of convolutional
layers, followed by a linear projection that maps each object to an embedding of
dimension E, resulting in an output tensor of shape B × O × E. As previously
mentioned, one key benefit of this CNN block is that it transforms complex, high-
dimensional visual data into a compact and semantically meaningful embedding
space. Additionally, this visual encoder plays a foundational role in the system: it
is responsible for perceiving and abstracting visual information, while the rest of
the architecture focuses on symbolic reasoning over these representations. For this
reason, it is commonly referred to in the NeSy literature as Perceptor.

The perceptor can be integrated into the system in two principal ways, depending
on the desired trade-off between modularity and adaptability:

• Modular Setting (Frozen Perceptor): In this setup, the CNN is pre-
trained independently on a task related to the visual domain, such as object
classification or detection. Once trained, the perceptor is frozen and used
as a fixed feature extractor during the reasoning phase. This approach can
offer reduced training complexity and modularity, which allows researchers to
analyze the symbolic reasoning component in isolation.

• End-to-End Setting (Trainable Perceptor): Here, the perceptor is not pre-
trained but instead trained jointly with the reasoning module using supervision
from final reasoning outcomes (e.g., logical inference labels or task-specific
decisions). This setup allows the system to adapt visual representations to
better align with symbolic tasks, potentially improving performance.

Both settings are valid and useful. The modular setting is often favored when
pre-trained vision models are available. The end-to-end setting, on the other

31

Methodology

hand, is more suitable when domain-specific visual features are not easily captured
by existing models, or when tight coupling between perception and reasoning is
necessary for optimal performance.

3.4.2 Visual Symbol Definition
As discussed earlier, the embeddings produced by the CNN are used directly as
visual symbols. These embeddings encode contextual properties of each object, such
as shape, color, and texture, into a tensor of shape B ×O×E. However, in addition
to these semantic features, each visual object is also associated with positional
information, such as bounding boxes or spatial indices, which play a crucial role
in visual reasoning. To incorporate this information into the embeddings, we can
consider two approaches:

• Projection-Based Fusion: Apply a separate learnable projection layer to
the positional features to map them into the same embedding space, and then
add the result to the semantic embeddings.

• Concatenation-Based Fusion: Directly concatenate the positional features
to the semantic embeddings, resulting in an augmented embedding vector.

Both strategies aim to enrich the visual symbols with spatial context, enabling
the reasoning component to exploit both semantic and positional cues.

3.5 Feedback Handling

Prompt
Engineer
(Script)

Textual Input ResponseVLM
(Neural)Prompt RegEx

(Script) Symbolic Rules

Visual Input CNN
(Neural)

D-LTN
(Symbolic) Final OutputEmbeddings

Rule Parser
(Script)

LTN Builder
(Script) Syntax TreeLTN Formula

Figure 3.5: Detailed functional diagram of the proposed NeSy system.

Figure 3.5 contains the full functional diagram of the proposed system with its
final feedback loop. As discussed, this loop is to provide the prompt engineer with
the intermediate feedback both from generated symbolic rules and the final output
of the D-LTN. In this section, we will discuss how this feedback is prepared.

32

Methodology

3.5.1 LTN Development
Given our indirect approach to implementing LTNs (traversing the LTN-based
syntax trees via the ground and call methods), we define a D-LTN as trainable if
it contains at least one node that is grounded by a trainable object such as a neural
network. For example, consider the formula ∀x1∃x2 : Pred(func(x1), x2). If either
Pred or func is grounded by a neural model within the corresponding LTN-based
syntax tree, then the entire D-LTN becomes trainable. This capability allows us to
optimize the D-LTN and shape its behavior through learning.

Therefore, to train such a system, we require a dataset consisting of appropriate
textual inputs and corresponding labeled visual inputs. In addition, in order to
evaluate the model’s performance, we must also define a suitable metric that reflects
its symbolic reasoning capabilities grounded in visual perception. Since our system
is designed to extract and verify symbolic rules from images, we focus the evaluation
on binary decision-making, which is determining whether the given label for an
image is correct. This approach aligns with the semantics of fuzzified FOL rules,
which produce a truth value t ∈ [0,1]. By setting a decision threshold τ ∈ [0,1], we
can interpret the output as follows as if t ≥ τ , the system considers the rule to be
satisfied, otherwise, it does not.

3.5.2 Loop Creation
Once the final output of the system is produced, the learning loop can be completed.
At this stage, the system generates intermediate feedback consisting of the most
recently derived symbolic rules along with the corresponding performance evalua-
tion. This feedback is then incorporated into the next prompt, enabling the system
to iteratively refine its symbolic understanding and improve performance over
time. This prompt is what we have provided below, where '<PREVIOUS_FOL_RULE',
'<PREVIOUS_GROUNDINGS>', '<METRIC_NAME>', and '<METRIC_VALUE>' denote the
most recent FOL rule with the highest performance, the most recent groundings,
the evaluation metric used to evaluate the system, and the numerical performance
score associated with it.

system_role = '''
You are a helpful assistant that can extract the First-OrderLogic
(FOL) from images. The grammar of the FOL is as follows:

1. Constants: always starting with "C", e.g., "C", "C1" etc.
2. Variable: always starting with "x", e.g., "x", "x_2", etc.
3. Functions: always starting with "f", e.g., "f", "f_get", etc.
4. Predicates: always starting with "P", e.g., "P", "P_equal", etc.
6. The symbols used for AND, OR, and NOT: `&`, `|`, and `!`,

respectively.
7. The symbols used for implication and equivalence: `implies`

33

Methodology

and `iff` respectively.
8. The symbols for universal and existential quantifiers: `forall`

and `exists`, respectively.
9. Use parentheses for preserving operation precedence.

Act based on the following:
1. Before FOL rule generation, deeply analyze the images.
2. Consider that all the images must follow the same FOL rule.
3. The FOL rule applies to the visual objects inside each image.
4. You performed the same operation previously, where you extracted

<PREVIOUS_FOL_RULE>
and these groundings in Python
<PREVIOUS_GROUNDINGS>
where you achieved <METRIC_NAME> at <METRIC_VALUE>

5. At the end of your chain of thought, use the following
template to present the extracted rules:
```JSON
{

"rule_1": "first possible rule",
"rule_2": "second possible rule",
...

}
```

6. Then, provide the groundings of constants, functions, and
predicates in the following template:
```Python
the groundings
```

'''

prompt = [{
'type': 'text',
'text': 'These are images you can use as reference:'

}]
for base64_image in base64_image_list:

prompt.append({
'type': 'image_url',
'image_url': {

'url': f'data:image/png;base64,{base64_image}'
}

})

chat_completion = client.chat.completions.create(
messages=[

{'role': 'system', 'content': system_role},
{'role': 'user', 'content': prompt}

34

Methodology

]
)

response = chat_completion.choices[0].message.content

35

Chapter 4

Experimental Environment

In this chapter, we describe the experimental setup, including the evaluation bench-
mark, datasets, programming environment, system specifications, development
strategy, and evaluation metrics used to validate our proposed approach.

4.1 Setup
In this section, we detail the benchmark task and datasets used to evaluate our
model, along with the programming environment and software tools that supported
the development and experimentation process.

4.1.1 Benchmark and Dataset
To assess the performance of our system, we utilized the ViSudo-PC benchmark.
As described in Chapter 2, this benchmark evaluates a system’s ability to verify
the correctness of visually encoded Sudoku boards. The dataset comprises 11 splits:
the first 10 are used for scoring, while the 11-th is reserved for experimentation.
Each split can be configured to contain either 4 × 4 or 9 × 9 boards. Additionally,
each split includes its own training (100 pairs), validation (100 pairs), and test
(100 pairs) subsets. As illustrated in Figure 4.1, each pair consists of two visually
identical boards, except that the second board is deliberately corrupted to violate
the Sudoku rules. Consequently, each subset provides 200 instances: 100 labeled as
correct and 100 as incorrect [22]. Moreover, each cell in every board is represented
by a 28 × 28 grayscale image containing a handwritten digit (from MNIST), a
handwritten letter representing a digit (from EMNIST), a Japanese character
used as a digit (from KMNIST), or a fashion item standing in for a digit (from
FMNIST). As discussed, this diverse visual representation requires the system to
simultaneously address both perception and reasoning.

36

Experimental Environment

(a) Correct MNIST (b) Wrong MNIST

(c) Correct EMNIST (d) Wrong EMNIST

(e) Correct KMNIST (f) Wrong KMNIST

(g) Correct FMNIST (h) Wrong FMNIST

Figure 4.1: First pair of the training subset of the 11-split of the benchmark.

37

Experimental Environment

It is worth noting that our method to access the dataset was guided by the official
repository of the benchmark [28]. Specifically, we used the following command:

python <ROOT>/generate-split.py
--dataset <DATASET>
--split <SPLIT>
--out-dir <OUT_DIR>

where the capitalized placeholders, respectively, denote the directory containing
the script, the data source to be accessed (mnist, emnist, kmnist, and fmnist), the
split index (from 1 to 11), and the destination path for the generated data. The
arguments mentioned in this commands, however, are the ones we explicitly set
to access the dataset. The other arguments were left at their default settings. All
other available arguments were left at their default values, which are listed below:

• corrupt-chance: The probability of applying an additional corruption after
one has already been made, with 0.5.

• dimension: The size of the square puzzle grid, with 4 as the default value.

• force: If set to 1, allows overwriting of existing output directories, with 0 as
the default value.

• num-train: The number of correct training puzzles to generate, with an equal
number of incorrect puzzles also created, with 100 as the default value.

• num-valid: Similar to the previous argument but for validation.

• num-test: Similar to the previous argument but for test.

• overlap-percent: The fraction of additional puzzles generated by overlapping
with the base dataset, with 0.0 as the default value.

• seed: A random seed to ensure reproducibility, with None as the default value.

• strategy: The strategy of puzzle generation, with simple as the default value.

4.1.2 Programming Tools
The experiments were conducted using the computational resources provided by
Google Colaboratory, which is a cloud-based Jupyter notebook environment
offering access to Graphical Processing Units (GPUs) such as NVIDIA T4 and
storage space for efficient model training and inference [29]. The implementation
was developed in Python 3.11.13 with the use of PyTorch 2.6.0 for tensor oper-
ations and neural network computations due to its flexibility and support for GPU

38

Experimental Environment

acceleration [30]. For the VLM, we utilized llama-4-maverick-17b-128e-instruct,
which is a multi-modal language model that is composed of 17 billion activated
parameters and supports a 128K token context window. This VLM has demon-
strated robust performance in text and image reasoning tasks and aligns well with
the system’s requirements for scalable and responsive rule generation [31]. We
accessed it via an API key provided by Groq, which is a high-throughput inference
engine running on cloud [32].

4.2 Specifications
Here, we describe the technical specifications and architectures of our key system
components, including the VLM, the D-LTN, and the CNN block responsible for
visual feature extraction.

4.2.1 VLM
During preliminary experiments, we identified the need to impose certain constraints
on the prompt design. Initially, we allowed the VLM to generate Python-based
groundings directly, as described in Section 3.2. However, we observed that
without guidance, the VLM struggled to infer the correct FOL rules, even after
multiple iterations. To address this, we restructured the prompt to present a
predefined set of grounding alternatives, from which the VLM could choose. This
modification improved rule accuracy and convergence. Consequently, the symbolic
rules generated by the VLM were restricted to expressing only the relations between
visual objects in FOL, with all groundings (except for variables) predefined in
advance. We also instructed the VLM to generate only a single FOL rule per
iteration, thereby reducing the complexity of the rule verification process and
enhancing system stability. Accordingly, we used the following prompt:

system_role = '''
You are a helpful assistant that can extract the First-Order
Logic (FOL) rule from images.
THE GRAMMAR OF FOL:
- Constants: Not allowed in the rule.
- Variables: Your options are `x1`, `x2`, ..., which

represent visual objects.
- Functions: Not allowed in the rule.
- Predicates: Your options are `P_same_row`, `P_same_col`,

`P_same_block`, `P_same_loc`, and `P_same_value`.
- To compare variables, only use predicates.
- The symbols used for logical AND, OR, and NOT are

respectively `&`, `|`, and `!`.

39

Experimental Environment

- The symbols used for implication and equivalence are
respectively `implies` and `iff`.

- The symbols used for universal and existential quantifiers
are respectively `forall` and `exists`.

- Use parentheses for preserving operation precedence.
WHAT YOU MUST CONSIDER:
- Use your own knowledge to analyze and deeply think about the

images provided as your reference.
- All the images must follow the same rule that you extract.
- The rule applies to the visual objects within each image.
- The visual objects may represent numbers rather than what

they really are.
- At the end of your chain of thought, put the extracted rule

in the following template:
EXTRACTED_RULE: "the rule you extracted"

'''
if len(history_list) > 0:

n_extracted_rules = 0
system_role += 'HISTORY OF PREVIOUS TRIALS:'
for trial, incident in enumerate(history_list):

error_message, extracted_fol_rule, ratio = incident
system_role += (

f'- Trial {trial+1} -> '
)
if error_message != '':

system_role += (
f'error: "{error_message}"'

)
else:

n_extracted_rules += 1
system_role += (

f'extracted rule: "{extracted_fol_rule}", '
f'conforming images: {100 * ratio:.2f}%'

)
if ratio < termination_threshold:

system_role += 'IMPORTANT LESSON FROM HISTORY:'
if n_extracted_rules == 0:

system_role += (
'- Pay attention to the the instructions!'

)
else:

system_role += (
'- The next FOL rule must be an improved version'
' of the above!'

)

40

Experimental Environment

prompt = [{
'type': 'text',
'text': 'These are the reference images:'

}]
for base64_image in base64_image_list:

prompt.append({
'type': 'image_url',
'image_url': {

'url': f'data:image/png;base64,{base64_image}'
}

})

chat_completion = client.chat.completions.create(
messages=[

{'role': 'system', 'content': system_role},
{'role': 'user', 'content': prompt}

]
)

response = chat_completion.choices[0].message.content

In the above prompt, while the VLM is asked to abstractly define the predicates in
FOL, they are grounded in executable Python functions tailored to our benchmark.
Each predicate captures a specific type of relationship between visual objects and is
implemented using either exact or approximate similarity. Specifically, P_same_row,
P_same_col, and P_same_block evaluate whether two objects belong to the same
row, column, or a block respectively, P_same_loc verifies whether two objects
occupy the same grid position, and P_same_value checks whether two visual objects
represent the same semantic concept (e.g., digit or letter). This design ensures that
semantic relationships are modeled flexibly, while the VLM decides how to insert
them into the FOL rule that it extracts.

4.2.2 D-LTN
Since the prompt used for the VLM eliminated the need for a Python script to
define groundings, we instead needed to define them manually. For this reason and
to ensure fair comparison against state-of-the-art methods, we adopted the same
set of groundings as in [8]. These groundings are detailed as follows:

• P_same_row: grounded via binary similarity, this predicate checks whether two
visual objects share the same row attribute:

Psame_row (x1, x2) := 1xrow
1 =xrow

2
(4.1)

41

Experimental Environment

• P_same_col: grounded via binary similarity, this predicate evaluates whether
two visual objects share the same column attribute:

Psame_col (x1, x2) := 1xcol
1 =xcol

2
(4.2)

• P_same_block: grounded via binary similarity, this predicate assesses whether
two visual objects belong to the same block:

Psame_block (x1, x2) := 1xblock
1 =xblock

2
(4.3)

• P_same_loc: grounded via binary similarity, this predicate checks whether two
visual objects share the same location:

Psame_loc (x1, x2) := 1xloc
1 =xloc

2
(4.4)

• P_same_value: grounded via exponential similarity, this predicate measures
the similarity of the contents of two visual objects:

Psame_value (x1, x2) := exp
1
−relu

1
∥xvalue

1 − xvalue
2 ∥p

22
(4.5)

• Wrapper: grounded by the identity function, i.e,
gwrapper (b) := b (4.6)

• LogicalNot: grounded by the complement function, i.e,
gnot (b) := 1 − b (4.7)

• LogicalAnd: grounded using Goguen’s product t-norm:
gand (b1, b2) := b1b2 (4.8)

• LogicalOr: grounded using Goguen’s t-conorm:
gor (b1, b2) := 1 − (1 − b1)(1 − b2) = b1 + b2 − b1b2 (4.9)

• Implies: grounded using Reichenbach’s implication:
gimplies (b1, b2) := 1 − b1 + b1b2 (4.10)

• Iff: grounded using linear similarity:
giff (b1, b2) := 1 − |b1 − b2| (4.11)

• ForAll: grounded via the power mean of the complements:

giff (b1, b2, · · · , bk) := 1 − p

öõõô1
k

kØ
i=1

(1 − bi)p (4.12)

• Exists: grounded using the power mean:

gexists (b1, b2, · · · , bk) := p

öõõô1
k

kØ
i=1

bp
i (4.13)

42

Experimental Environment

4.2.3 CNN Block
Regarding our CNN block, we employed a neural network composed of a stack
of Convolutional layers followed by a stack of Fully Connected layers. Each
stage of the convolutional stack begins with a 2D convolutional layer, where the
number of output channels and the kernel size are respectively determined by the
cnn_dims and kernel_dims hyperparameters. This convolutional layer is followed
by a ReLU activation to introduce non-linearity, a Group Normalization layer
with 2 groups to promote stable training, and a 2D max pooling operation with a
kernel size of 2 for spatial downsampling. To improve generalization, a 2D dropout
layer is also applied at the end of the stack, with dropout probability specified by
the drop_prob parameter.

The resulting feature maps are then flattened and passed to the fully connected
stack. Each stage of this second stack consists of a linear projection layer configured
according to the embed_dims hyperparameter. With the exception of the final layer,
each projection is followed by a ReLU activation and a dropout layer with the same
dropout probability as that of the previous stack. In addition, depending on the
use_softmax flag, the final stage may optionally include a softmax activation. This
pipeline transforms each visual symbol into a compact embedding that captures
both local visual features and high-level semantic abstractions.

To preserve spatial information, we also generate positional indices for each
board cell using the Cartesian product of row and column coordinates. While
these positional coordinates remain separate from the visual embeddings within
the CNN block, we later integrate them using the concatenation-based fusion
strategy described in Section 3.4. Specifically, the visual embedding for each object
is concatenated with its corresponding positional coordinates to form the final
representation.

4.3 Development Strategy
This section explains our development approach, focusing on the design of system
loops for iterative training and feedback, as well as the strategies employed for
effective data utilization during the learning process.

4.3.1 System Loops
The primary process driving our system is the Generation Loop, which is a term
we introduce here to refer to the overall iterative cycle described in the previous
chapters and illustrated in Figure 3.5. As discussed before, in each iteration of
this loop, the prompt engineer combines the textual and visual inputs with the
intermediate feedback and feeds the result into the VLM, which generates candidate

43

Experimental Environment

FOL rules. These rules are then used to configure the D-LTN, which attempts to
verify them against the visual embeddings produced by the CNN block. For each
iteration of this loop, we randomly sampled a small portion of the training subset
from a given split of the ViSudo-PC dataset to serve as a reference for the VLM.
The full training and validation subsets of the split were then used to develop the
CNN block and D-LTN, and the test subset was reserved for the final performance
evaluation and early stopping the generation loop in case no further improvement
was observed.

As we can see, nested within the generation loop is the Development Loop,
which handles the training and validation of the CNN block and D-LTN. Similar
to the generation loop, we also implemented early stopping for this loop, but with
the help the validation subset, as done typically in ML workflows. Accordingly, the
development loop can be be executed independently of the VLM to evaluate the
CNN block and D-LTN independently. In such cases, FOL rules must be supplied
to the D-LTN, either created manually or taken from previous VLM outputs, using
the grammar we defined in the previous chapter. This setup allows for repeated
and controlled testing of the system components without re-engaging the VLM.

4.3.2 Data Usage
To ensure compliance with the ViSudo-PC benchmark and maintain the integrity
of our evaluation, we restricted the generation loop to operate exclusively on the
11-th data split. However, as this loop is centered on generating FOL rules, it was
necessary to first tune the hyperparameters of the CNN block and D-LTN prior to
rule generation, for which we also used the 11-th split. All other dataset splits were
reserved for our experimental tests to enable a fair and standardized comparison of
our CNN block and D-LTN against state-of-the-art methods evaluated within the
ViSudo-PC benchmark. It is worth noting that this benchmark is designed not to
assess rule generation but rather to evaluate the ability of NeSy systems to verify
the correctness of synthesized Sudoku boards.

4.4 Evaluation Metrics
In this section, we present the loss function employed to guide training and the
performance metrics used to quantitatively assess the reasoning capabilities and
overall effectiveness of our model.

4.4.1 Loss Function
Since the CNN block is a neural network, the development loop requires a loss
function to guide training. However, given that the primary focus of this thesis is

44

Experimental Environment

not visual perception and that the ViSudo-PC benchmark only permits supervision
based on the final truth value produced by the D-LTN, we adopted an end-
to-end evaluation strategy, as outlined in Section 3.4. In this strategy, rather
than developing and evaluating the CNN block independently, we measure its
effectiveness indirectly by observing how it contributes to the overall system
performance. Accordingly, instead of designing complex loss functions, we opted
for the simplest viable alternative, which was using the D-LTN’s truth value as the
loss we want to reduce. Specifically, if we denote a single Sudoku board as x, its
label as y ∈ {0,1}, and the composed function of the CNN block followed by the
D-LTN as f , the loss function l can be defined as:

l (x, y) = y + (1 − 2y)f (x) =
f (x) if y = 0,

1 − f (x) if y = 1
(4.14)

4.4.2 Performance Metrics
The loss function described in (4.14) penalizes the system proportionally to how far
its output is from the correct truth value, and is minimized when the system assigns
high confidence to correct evaluations. However, while this function is effective for
supervising the system from the perspective of D-LTN rule verification, it does not
fully capture the individual contributions of the VLM or CNN block. Therefore,
to account for varying levels of perceptual fidelity and reasoning capability, we
introduce the following set of complementary evaluation metrics:

• VLM Load: The number of training instances provided to the VLM dur-
ing the generation loop. A lower value indicates better data efficiency and
generalization capability of the VLM.

• Total Iterations: The total number of iterations required by the generation
loop before convergence. Fewer iterations suggest quicker convergence and
more effective rule generation.

• Area Under the Curve (AUC): The area under the Receiver Operating
Characteristic (ROC) curve computed over D-LTN’s truth values. A higher
AUC indicates better discriminative performance across different decision
thresholds.

• Accuracy: The proportion of Sudoku boards for which the D-LTN correctly
predicts the label, using a decision threshold of 0.5 on the produced truth
value. This metric captures the overall effectiveness of the system in verifying
board correctness based on the learned rules.

45

Chapter 5

Results

In this chapter, we present experimental outcomes from hyperparameter tuning,
rule generation, and performance tests, followed by analyses and comparisons with
state-of-the-art methods.

5.1 Experiments
This section covers the results of our experiments. First, we provide the details of
our hyperparameter tuning process. Next, we present the rules obtained by the
system. In the final part, we outline the results obtained in testing the generated
rules on the CNN block and D-LTN assuming the VLM is bypassed.

5.1.1 Hyperparameter Tuning
As discussed earlier, the rule generation loop depends on having both the CNN
block and the D-LTN tuned in advance. To this end, we constructed the hyper-
parameter grid shown in Table 5.1, which outlines 192 different configurations
tested for the CNN block’s hyperparameters introduced in the previous chapter.
Regarding the D-LTN, while it is not a neural module, we needed to consider its
interaction with varying datasets. For this reason, we evaluated each combination
of hyperparameters through four separate runs of the development loop using the
11-th split of the Visudo-PC dataset with digits sourced from MNIST, EMNIST,
KMNIST, and FMNIST, increasing the total number of separate runs to 768. The
average test performance across these four sources was then used to identify the
optimal configuration. Additionally, as previously discussed, the D-LTN in this
experiment must be initialized with a manually crafted FOL rule that encodes the
core semantic constraint of a valid Sudoku board. To this end, we focused on the
fundamental principle that no two identical digits may appear in the same row,

46

Results

column, or block, unless they refer to the same physical cell. To formally express
this constraint, we designed a rule stating that if any two cells share the same
value, then they must either correspond to the same location or not belong to the
same row, column, or block. In other words, identical values are only permitted
when referring to the same position; otherwise, their coexistence would violate
Sudoku consistency. We believe this rule effectively enforces the uniqueness of
values across structural dimensions and captures the logical essence of Sudoku
validity. Considering the FOL grammar defined in Chapter 3, the rule we chose to
initialize the D-LTN is as follows:

forall x1, x2
P_same_value(x1, x2) implies
P_same_loc(x1, x2) | (!P_same_row(x1, x2) &

!P_same_col(x1, x2) &
!P_same_block(x1, x2))

Hyperparameter Alternatives

cnn_dims (8, 16), (16, 32), (32, 64)
kernel_dims (4, 4), (2, 2)
embed_dims (4,), (16,), (64, 4), (64, 16)
drop_prob 0.1, 0.2, 0.3
use_softmax False, True

Table 5.1: Hyperparameters and possible alternatives for each one.

The hyperparameter search strategy defined for the CNN block and D-LTN
provides a solid and exhaustive exploration of the relevant configuration space, as it
spans diverse datasets, architectural setups, embedding sizes, regularization levels,
and output activation strategies. This comprehensive setup enhances the chances
of identifying a robust and generalizable model. Based on this strategy, Table 5.2
presents the results of our grid search, showing the top five configurations. While
both the average test AUC and accuracy are reported by table, the rows are sorted
by the first metric, as it is generally favored in the literature [8]. Consequently, we
selected the configuration with the highest average test AUC, where the values
for cnn_dims, kernel_dims, embed_dims, drop_prob, and use_softmax are (32, 64),
(4, 4), (64,), 0.2, and True, respectively.

5.1.2 Rule Generation
With the CNN block and D-LTN tuned, we proceeded to the rule generation
experiment. The results are presented in Table 5.3. For this experiment, as in
the previous hyperparameter tuning experiment, we used the 11-th split of the

47

Results

ID Hyperparameters Average Test
cnn_dims kernel_dims embed_dims drop_prob use_softmax AUC Accuracy

1 (32, 64) (4, 4) (64,) 0.2 True 0.9560 85.50%
2 (32, 64) (4, 4) (64, 4) 0.2 True 0.9528 86.25%
3 (32, 64) (4, 4) (64,) 0.1 True 0.9523 86.12%
4 (16, 32) (4, 4) (64,) 0.2 True 0.9477 84.87%
5 (16, 32) (4, 4) (4,) 0.2 True 0.9458 82.50%

Table 5.2: Top five combinations of the hyperparameters.

Visudo-PC dataset and ran the generation loop separately on MNIST, EMNIST,
KMNIST, and FMNIST. As shown, the loop successfully concluded with a rule
for the first three sources, while it terminated with an error for FMNIST. We
will analyze this issue in the next section, but it is worth noting here that the
failure occurred due to the computational cost associated with the VLM, as we
limited the loop to a maximum of 20 iterations. While it is possible that the loop
could have succeeded on FMNIST with more iterations, we consider this limit
acceptable, as the results already demonstrate the system’s ability to generate valid
and semantically meaningful rules, which are detailed in the following.

1. Rule 1:

forall x1, x2
!P_same_loc(x1, x2) & (P_same_row(x1, x2) |

P_same_col(x1, x2) |
P_same_block(x1, x2))

implies !P_same_value(x1, x2)

2. Rule 2:

forall x1 forall x2
(P_same_row(x1, x2) |
P_same_col(x1, x2) |
P_same_block(x1, x2)) & !P_same_loc(x1, x2)

implies !P_same_value(x1, x2)

3. Rule 3:

forall x1, x2
!P_same_loc(x1, x2) & P_same_value(x1, x2) implies (

!P_same_row(x1, x2) &
!P_same_col(x1, x2) &
!P_same_block(x1, x2))

48

Results

Data Source VLM Generated Total Test
Load Rule Iterations AUC Accuracy

MNIST-11 (4 × 4) 3 Rule 1 19 0.9974 00.99%
EMNIST-11 (4 × 4) 3 Rule 2 13 0.9012 00.99%
KMNIST-11 (4 × 4) 3 Rule 3 9 0.9517 00.99%
FMNIST-11 (4 × 4) 3 Error 20 - -

Table 5.3: Outcomes of running the rule generation loop.

5.1.3 Experimental Tests

Considering the hyperparameters and FOL rules obtained from our previous exper-
iments, we initialized the D-LTN and ran the development loop across additional
splits of the Visudo-PC dataset to evaluate our approach against other benchmark
methods. Specifically, we conducted a comprehensive experiment using all three
extracted rules, all ten dataset splits, and all four data sources (MNIST, EMNIST,
KMNIST, and FMNIST), resulting in a total of 120 separate runs of the develop-
ment loop. In the following section, we will aggregate the outcomes in accordance
with standard practices in the literature and use them to compare the performance
of our proposed method against state-of-the-art alternatives. For reference in this
section, however, the seven best and seven worst non-aggregated outcomes based
on the test AUC are also reported in Table 5.4.

Data Source Utilized Training Validation Test
Rule AUC Accuracy AUC Accuracy AUC Accuracy

MNIST-3 (4 × 4) Rule 1 0.9988 99.50% 0.9699 90.50% 0.9949 91.00%
MNIST-7 (4 × 4) Rule 2 0.9988 99.00% 0.9665 90.00% 0.9917 93.50%
MNIST-6 (4 × 4) Rule 2 1.0000 100.00% 0.9856 94.00% 0.9892 97.00%
MNIST-3 (4 × 4) Rule 2 0.9988 98.50% 0.9668 92.00% 0.9862 92.50%
MNIST-4 (4 × 4) Rule 3 0.9975 99.50% 0.9800 94.00% 0.9849 94.50%
MNIST-3 (4 × 4) Rule 3 0.9975 99.50% 0.9752 92.50% 0.9846 92.50%
MNIST-7 (4 × 4) Rule 1 0.9988 99.50% 0.9791 91.00% 0.9845 94.00%

FMNIST-9 (4 × 4) Rule 2 0.9713 93.50% 0.8625 70.50% 0.8637 66.50%
FMNIST-8 (4 × 4) Rule 2 1.0000 99.50% 0.8725 77.00% 0.8571 74.00%
EMNIST-4 (4 × 4) Rule 3 0.5000 50.00% 0.5000 50.00% 0.5000 50.00%
EMNIST-6 (4 × 4) Rule 2 0.5000 50.00% 0.5000 50.00% 0.5000 50.00%
EMNIST-10 (4 × 4) Rule 2 0.5000 50.00% 0.5000 50.00% 0.5000 50.00%
EMNIST-10 (4 × 4) Rule 1 0.5000 50.00% 0.5000 50.00% 0.5000 50.00%
FMNIST-3 (4 × 4) Rule 3 0.5000 50.00% 0.5000 50.00% 0.5000 50.00%

Table 5.4: The seven best and worst outcomes of running the development loop.

49

Results

5.2 Discussions
In our final section in this chapter, we will analyze the results of our experiments
and compare our system against the state-of-the-art.

5.2.1 Analyses
Regarding hyperparameter tuning, Table 5.2 indicate that the convolutional stack
performs best with larger layers, which is likely because larger kernels and more
filters enable the model to capture more complex spatial patterns. Additionally,
the optimal dropout probability in this layer is minimal, suggesting that the
model does not require strong regularization at this point, possibly due to the
structured nature of the visual data and the relatively low risk of overfitting early
on. In contrast, the linear stack performs best with a single high-dimensional
embedding layer. This suggests that deeper transformations beyond this point
do not significantly improve performance and may even degrade it, likely because
the essential visual features have already been extracted. It also implies that
additional ReLU activations and dropout layers offer limited benefit at this stage,
as introducing further non-linearity or regularization may disrupt rather than
enhance the learned representation. Lastly, using a softmax activation at the
output of the CNN block proved effective, likely because it stabilizes the feature
distribution and emphasizes the most informative components, thereby facilitating
downstream symbolic reasoning.

Turning to the rule generation experiment, Table 5.3 validates the effectiveness
of our NeSy system in learning formal rules from textual and visual inputs. As
established in Chapter 1, our goals were flexibility, explainability, and formality.
The generated rules, which are expressed in FOL, directly address the latter
two, providing interpretable outcome for the visual reasoning process in a formal
structure. Regarding flexibility, although this chapter focused on the Sudoku
consistency task, the functional architecture described in Figure 3.1 imposes no
restrictions on other visual reasoning problems, provided they can be framed within
the same formal framework. That said, the system is not without limitations. As
shown in Table 5.3, while rule generation succeeded for MNIST, EMNIST, and
KMNIST, it failed for FMNIST. This discrepancy likely stems from the nature
of the visual data. The first three data sources contain digits and letters, which
provide semantically meaningful patterns that the VLM can leverage to infer logical
rules. In contrast, FMNIST consists of clothing items, whose visual features lack
inherent symbolic meaning in the context of Sudoku, making it significantly more
challenging for the system to extract consistent logical patterns.

Regarding the experimental tests on the development loop, the results in Ta-
ble 5.4 generally demonstrate strong and consistent performance. Out of the 120

50

Results

runs, which cover all combinations of data sources, benchmark splits, and extracted
rules, only 5 outcomes (4.17%) exhibit noticeably low AUC or accuracy values in
the test subset. While these under-performing cases indicate that the system is not
flawless, they are not concentrated in any particular configuration. Instead, the
failures are scattered across different data sources, splits, and rules, suggesting that
the system’s performance is not overly sensitive to specific experimental conditions,
which highlights the system’s robustness and generalizability. In other words,
despite occasional deviations, the system consistently converges toward high-quality
outcomes, demonstrating its ability to extract meaningful patterns and apply them
effectively across diverse settings.

5.2.2 Comparison with Prior Literature
As previously discussed, benchmarking our proposed method requires aggregating
the results from our experimental tests. Following the literature, we begin this
process by grouping the results according to the data sources and computing the
average system performance over the first ten splits of the Visudo-PC dataset [8].
However, since we evaluated three distinct rules for each data source and each split,
a customized aggregation strategy was necessary. Specifically, for each data source,
we computed the average performance across splits after selecting the average
performance across the rules. This approach remains consistent with benchmarking
conventions and allows us to showcase the best-performing configuration of our
system when compared to state-of-the-art methods. The aggregated results are
summarized in Table 5.5, which compares our method against the NeuPSL [10]
and LTN-IND [8], with the latter tested under three variations A, B, and C. Each
cell in the table shows the aggregated test AUC along with its standard deviation.
As the results clearly indicate, the proposed method outperforms all baselines by a
significant margin across all four data sources (MNIST, EMNIST, KMNIST, and
FMNIST) with almost the lowest possible standard deviation. This consistent
performance highlights both the effectiveness and robustness of our approach in
handling the Visudo-PC task under varying input distributions.

Data Source NeuPSL [10] LTN-IND [8] Proposed
A B C Method

MNIST (4 × 4) 0.88 ± 0.02 0.83 ± 0.18 0.84 ± 0.14 0.94 ± 0.10 0.97 ± 0.01
EMNIST (4 × 4) 0.79 ± 0.09 0.58 ± 0.04 0.58 ± 0.06 0.65 ± 0.14 0.91 ± 0.10
KMNIST (4 × 4) 0.65 ± 0.12 0.83 ± 0.09 0.85 ± 0.11 0.87 ± 0.09 0.93 ± 0.01
FMNIST (4 × 4) 0.74 ± 0.04 0.67 ± 0.11 0.76 ± 0.15 0.83 ± 0.11 0.89 ± 0.04

Table 5.5: Comparison of the proposed method to state-of-the-art.

51

Chapter 6

Conclusion

In this chapter, we summarize the key findings and contributions of the thesis and
outline future research directions to improve and extend the proposed method.

6.1 Findings
During the course of this thesis, we proposed and developed a novel NeSy visual
reasoning system. We began by investigating the limitations of existing methods
through categorizing them into FBN, ENR, and FBV approaches in Chapter 1.
Using this categorization, we demonstrated that none of the existing approaches
simultaneously satisfy the three key goals of flexibility in addressing diverse visual
reasoning tasks, explainability in articulating the reasoning process, and formality in
expressing rules through a well-defined logical language. To address this challenge,
we defined these principles as the core goals of our system in Chapter 3 and
designed an iterative RL-inspired architecture by integrating a rule-generating
VLM, a rule-verifying D-LTN, and a visual encoding CNN block. Next, focusing
on the Visudo-PC benchmark, we conducted various experiments on our proposed
method in Chapter 5 and proved its success in achieving all three goals by flexibly
generating explainable and formal FOL rules.

Beyond this, we showed that, by bypassing the VLM, we could independently
evaluate the combination of the CNN block and the D-LTN against state-of-the-
art methods in the benchmark, achieving superior performance. To explain this
improvement, we need to refer to the method proposed in [8], which forms the core
inspiration behind our system. As discussed in Chapter 2, this method is also an
LTN-based NeSy visual reasoning approach specifically designed for the Visudo-PC
benchmark. However, while it also couples a CNN and an LTN similar to our
system’s coupling of the CNN block and D-LTN, the roles of these components differ
significantly. In this method, the CNN is used primarily for visual classification,

52

Conclusion

and the LTN is implemented manually using the LTNTorch framework [33]. These
two differences help explain why our proposed method offers better performance:

• Classification vs. Embedding: While the original CNN performs clas-
sification, our CNN block produces embeddings. For a 4 × 4 Sudoku, this
means that the original method outputs a single scalar per visual object,
whereas our embeddings are high-dimensional vectors. Consequently, our
system captures more nuanced visual features, which are richer and more
informative for downstream reasoning.

• LTNTorch vs. FOL Grammar: The LTNTorch framework supports the
conversion of a wide range of arbitrary FOL rules into LTN implementations.
While this generality is advantageous in principle, it can reduce practical
effectiveness due to increased complexity and weaker optimization structure.
In contrast, our D-LTN is automatically built from FOL rules that conform
to a predefined grammar. Aside from automating the implementation of
LTN formulas, this simplification enables more efficient learning and a tighter
alignment between the logical rules and the network architecture. As a result,
our method achieves more reliable rule verification and better integration with
the learned visual features.

6.2 Future Directions
Despite the promising results and strengths of our proposed method, several
opportunities remain for further improvement and expansion. Referring back to
the conceptual design of our system in Figure 1.1, we outlined a blueprint for a
flexible and modular platform, which has been shown to be effective based on
the criteria introduced in Chapter 1. In this framework, we instantiated the rule
generator as a VLM, the rule verifier as a D-LTN, and the visual encoder as a
CNN block. However, each of these components can be independently studied
and potentially replaced with alternative subsystems, as long as the overarching
RL-inspired structure is preserved. Therefore, our final implementation, illustrated
in Figure 3.1, represents just one of many possible realizations. However, even
within this practical design, several promising directions merit further investigation:

• VLM Improvement: The VLM used in our system was not necessarily
state-of-the-art; rather, it was the best option available to us for experimental
purposes. By integrating a more powerful and context-aware VLM, we can
increase the level of abstraction in prompts and broaden the range of visual
reasoning tasks supported by our framework. Practically, this enhancement
may allow us to progressively lift some of the constraints we applied to the

53

Conclusion

prompt engineer in Chapter 4, bringing us closer to realizing the complete
FOL grammar and rule generation capabilities described in Chapter 3.

• Fine-Tuned VLM: In our current setup, the FOL grammar is enforced
through in-context learning, where constraints are embedded within the prompt
itself [14]. A natural progression would be to fine-tune the VLM directly on
this grammar. With the right dataset, the VLM can be optimized to generate
outputs strictly within the specified FOL syntax. This fine-tuning process
means that even a relatively small VLM could be sufficient, since it would no
longer need to support free-form text generation. Instead, its capacity could
be focused entirely on formal logical reasoning. Techniques such as SFT and
RL offer practical approaches for this direction [14].

• True RL Loop: Our system currently mimics RL through its iterative struc-
ture, but a future version could incorporate a genuine RL loop by introducing
an explicit reward function. Instead of routing intermediate feedback solely
to the prompt engineer, it could also be directed back to the VLM, enabling
it to learn how to refine its rule generation autonomously. One practical
implementation would be to define a reward based on the accuracy of rule
verification over a validation subset and apply policy optimization techniques
such as Proximal Policy Optimization (PPO), which would enable a full
RL-based adaptation using machine feedback.

54

Bibliography

[1] Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas
Rahimi. «A neuro-vector-symbolic architecture for solving Raven’s progressive
matrices». In: Nature Machine Intelligence 5.4 (2023), pp. 363–375 (cit. on
pp. 1, 3, 8, 10, 11, 13).

[2] Daya Guo et al. «Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning». In: arXiv preprint arXiv:2501.12948 (2025) (cit. on
pp. 1, 16).

[3] Kyle Hamilton, Aparna Nayak, Bojan Božić, and Luca Longo. «Is neuro-
symbolic AI meeting its promises in natural language processing? A structured
review». In: Semantic Web 15.4 (2024), pp. 1265–1306 (cit. on pp. 1, 3–5, 8,
9, 15).

[4] ’Deduction’ vs. ’Induction’ vs. ’Abduction’ — merriam-webster.com. https:
//www.merriam-webster.com/grammar/deduction-vs-induction-vs-
abduction. (Visited on 12/12/2024) (cit. on p. 1).

[5] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael
Spranger. «Logic tensor networks». In: Artificial Intelligence 303 (2022),
p. 103649 (cit. on pp. 1–4, 9, 14, 15, 26).

[6] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. «A simple neural network
module for relational reasoning». In: Advances in neural information process-
ing systems 30 (2017) (cit. on pp. 1, 11, 12).

[7] Chen Liang, Wenguan Wang, Tianfei Zhou, and Yi Yang. «Visual abductive
reasoning». In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2022, pp. 15565–15575 (cit. on pp. 1, 2, 10).

[8] Lia Morra et al. «Designing Logic Tensor Networks for Visual Sudoku Puzzle
Classification.» In: NeSy. 2023, pp. 223–232 (cit. on pp. 2–4, 10, 15, 41, 47,
51, 52).

55

https://www.merriam-webster.com/grammar/deduction-vs-induction-vs-abduction
https://www.merriam-webster.com/grammar/deduction-vs-induction-vs-abduction
https://www.merriam-webster.com/grammar/deduction-vs-induction-vs-abduction

BIBLIOGRAPHY

[9] Zishen Wan et al. «Towards cognitive ai systems: a survey and prospective
on neuro-symbolic ai». In: arXiv preprint arXiv:2401.01040 (2024) (cit. on
pp. 2, 5, 8, 9).

[10] Connor Pryor, Charles Dickens, Eriq Augustine, Alon Albalak, William Wang,
and Lise Getoor. «Neupsl: Neural probabilistic soft logic». In: arXiv preprint
arXiv:2205.14268 (2022) (cit. on pp. 2, 11–13, 51).

[11] Laura Von Rueden et al. «Informed machine learning–a taxonomy and survey
of integrating prior knowledge into learning systems». In: IEEE Transactions
on Knowledge and Data Engineering 35.1 (2021), pp. 614–633 (cit. on p. 2).

[12] Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini.
«Simple and Effective Transfer Learning for Neuro-Symbolic Integration».
In: International Conference on Neural-Symbolic Learning and Reasoning.
Springer. 2024, pp. 166–179 (cit. on pp. 3, 4, 12, 15).

[13] Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini.
«Deep symbolic learning: Discovering symbols and rules from perceptions».
In: arXiv preprint arXiv:2208.11561 (2022) (cit. on pp. 4, 12).

[14] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie,
Dale Schuurmans, Quoc V Le, Sergey Levine, and Yi Ma. «Sft memorizes,
rl generalizes: A comparative study of foundation model post-training». In:
arXiv preprint arXiv:2501.17161 (2025) (cit. on pp. 4, 15, 16, 54).

[15] Xin Zhang and Victor S Sheng. «Neuro-Symbolic AI: Explainability, Chal-
lenges, and Future Trends». In: arXiv preprint arXiv:2411.04383 (2024) (cit.
on pp. 4, 5).

[16] Shima Imani, Liang Du, and Harsh Shrivastava. «Mathprompter: Mathemati-
cal reasoning using large language models». In: arXiv preprint arXiv:2303.05398
(2023) (cit. on pp. 5, 16).

[17] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan
Pascanu, and Andrea Tacchetti. «Visual interaction networks: Learning a
physics simulator from video». In: Advances in neural information processing
systems 30 (2017) (cit. on p. 8).

[18] Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wat-
tenhofer, Abu Sebastian, and Abbas Rahimi. «Towards learning abductive
reasoning using vsa distributed representations». In: International Conference
on Neural-Symbolic Learning and Reasoning. Springer. 2024, pp. 370–385
(cit. on pp. 10, 11, 13, 14).

56

BIBLIOGRAPHY

[19] Yeongbin Kim, Gautam Singh, Junyeong Park, Caglar Gulcehre, and Sungjin
Ahn. «Imagine the unseen world: a benchmark for systematic generalization in
visual world models». In: Advances in Neural Information Processing Systems
36 (2023), pp. 27880–27896 (cit. on pp. 10, 11, 16).

[20] Wenliang Zhao, Yongming Rao, Yansong Tang, Jie Zhou, and Jiwen Lu.
«Videoabc: A real-world video dataset for abductive visual reasoning». In:
IEEE Transactions on Image Processing 31 (2022), pp. 6048–6061 (cit. on
pp. 10, 11).

[21] Michael Hersche, Francesco Di Stefano, Thomas Hofmann, Abu Sebastian,
and Abbas Rahimi. «Probabilistic abduction for visual abstract reason-
ing via learning rules in vector-symbolic architectures». In: arXiv preprint
arXiv:2401.16024 (2024) (cit. on pp. 11, 13–16).

[22] Eriq Augustine, Connor Pryor, Charles Dickens, Jay Pujara, William Wang,
and Lise Getoor. «Visual sudoku puzzle classification: A suite of collective
neuro-symbolic tasks». In: International Workshop on Neural-Symbolic Learn-
ing and Reasoning (NeSy). 2022 (cit. on pp. 11, 36).

[23] Yifei Peng, Yu Jin, Zhexu Luo, Yao-Xiang Ding, Wang-Zhou Dai, Zhong Ren,
and Kun Zhou. «Generating by Understanding: Neural Visual Generation
with Logical Symbol Groundings». In: arXiv preprint arXiv:2310.17451 (2023)
(cit. on pp. 13, 14).

[24] Mohamed Mejri, Chandramouli Amarnath, and Abhijit Chatterjee. «RE-
SOLVE: Relational Reasoning with Symbolic and Object-Level Features
Using Vector Symbolic Processing». In: arXiv preprint arXiv:2411.08290
(2024) (cit. on pp. 13, 14).

[25] Paul Tarau. «On LLM-generated Logic Programs and their Inference Execu-
tion Methods». In: arXiv preprint arXiv:2502.09209 (2025) (cit. on p. 16).

[26] OpenAI. Images and vision: Learn how to understand or generate images.
publisher: OpenAI. url: https://platform.openai.com/docs/guides/
images- vision?api- mode=responses (visited on 06/09/2025) (cit. on
p. 18).

[27] Erez Shinan. Lark - a parsing toolkit for Python. url: https://github.com/
lark-parser/lark (cit. on pp. 22, 23).

[28] Eriq Augustine. Visual Sudoku Puzzle Classification. Version 1.0.0. May
2022. doi: https://github.com/linqs/visual-sudoku-puzzle-class
ification. url: https://github.com/linqs/visual-sudoku-puzzle-
classification (cit. on p. 38).

57

https://platform.openai.com/docs/guides/images-vision?api-mode=responses
https://platform.openai.com/docs/guides/images-vision?api-mode=responses
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://doi.org/https://github.com/linqs/visual-sudoku-puzzle-classification
https://doi.org/https://github.com/linqs/visual-sudoku-puzzle-classification
https://github.com/linqs/visual-sudoku-puzzle-classification
https://github.com/linqs/visual-sudoku-puzzle-classification

BIBLIOGRAPHY

[29] Google Research. Google Colaboratory: A Hosted Jupyter Notebook Service for
Machine Learning and Data Science. https://colab.research.google.com.
Accessed: 2025-06-17. 2025 (cit. on p. 38).

[30] PyTorch Contributors. PyTorch: An Open Source Machine Learning Frame-
work. https://pytorch.org. Version 2.5.1, Accessed: 2025-06-17. 2025 (cit.
on p. 39).

[31] Meta AI. Llama-4-Maverick-17B-128E-Instruct: A Multimodal Mixture-of-
Experts Model. https://huggingface.co/meta-llama/Llama-4-Maverick-
17B-128E-Instruct. Accessed: 2025-06-17. 2025 (cit. on p. 39).

[32] Groq, Inc. Groq: Fast Inference for Large Language Models. https://groq.
com. Accessed: 2025-06-17. 2025 (cit. on p. 39).

[33] Tommaso Carraro. LTNtorch: PyTorch implementation of Logic Tensor Net-
works. Version 1.0.0. Mar. 2022. doi: 10.5281/zenodo.6394282. url: https:
//doi.org/10.5281/zenodo.6394282 (cit. on p. 53).

58

https://colab.research.google.com
https://pytorch.org
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://groq.com
https://groq.com
https://doi.org/10.5281/zenodo.6394282
https://doi.org/10.5281/zenodo.6394282
https://doi.org/10.5281/zenodo.6394282

	List of Figures
	Introduction
	What is Reasoning?
	How can AI Reason?
	A Solution: NeSy AI
	NeSy AI Empowered by Fuzzy Logic
	Visual Reasoning through NeSy AI
	Issues of NeSy Visual Reasoning
	Novelties of the Thesis
	Structure of the Thesis

	Literature Review
	Foundational Concepts
	Different Tasks and Benchmarks
	Basic Visual Reasoning Frameworks
	Visual Reasoning with VSAs
	Visual Reasoning with LTNs
	Visual Reasoning with LLMs

	Methodology
	Proposed Method
	Rule Generation
	Prompt Engineering
	Symbolic Rule Generation

	Rule Verification
	Syntax Tree Generation
	LTN Implementation

	Visual Processing
	CNN Design
	Visual Symbol Definition

	Feedback Handling
	LTN Development
	Loop Creation

	Experimental Environment
	Setup
	Benchmark and Dataset
	Programming Tools

	Specifications
	VLM
	D-LTN
	CNN Block

	Development Strategy
	System Loops
	Data Usage

	Evaluation Metrics
	Loss Function
	Performance Metrics

	Results
	Experiments
	Hyperparameter Tuning
	Rule Generation
	Experimental Tests

	Discussions
	Analyses
	Comparison with Prior Literature

	Conclusion
	Findings
	Future Directions

	Bibliography

