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Abstract

Brain metastases are a common and serious complication among cancer patients and are
often treated by stereotactic radiosurgery, such as Gamma Knife therapy.

While this treatment does an excellent job of controlling the local tumor, it is necessary
to discriminate between stable and recurrent disease.

Existing evaluation strategies are largely based on expert visual interpretation of serial
MRI and Radiotherapy-Planning Images; however, this approach requires intensive man-
ual handling of Radiotherapy Dose data and, as such, introduces variability across
operators and observers.

This thesis aims to evaluate the current literature on the topic and introduces an ef-
fective deep-learning architecture designed to classify brain lesions as stable or recurrent
after Gamma Knife radiosurgery.

The resulting model integrates multimodal information such as Magnetic Resonance Imag-
ing (MRI), Radiotherapy Dose distributions (RTDose), and highly structured clinical pa-
rameters into a single multi-input neural network architecture.

Particular consideration is given to handling the large class imbalance in recurrence pre-
diction through the application of selective augmentation and balanced sampling schemes
to enhance learning efficiency.

Extensive experimentation and validation demonstrate meaningful improvements over ex-
isting baselines, with greater robustness across patients and different data.

Compared to previously established metrics (10% recall, 18.2% F1 score), the model
achieved a significant improvement with a recall of 50% and an F1 score of 28.6%.

This sensitivity improvement is clinically significant and may help avoid critical interven-
tions for recurrent cases from being delayed.

The proposed framework contributes meaningfully to the evolving field of automated
neuro-oncology, laying the foundation for consistent, data-driven monitoring of patients
undergoing radiosurgical treatment for brain metastases.

Although the results and findings are encouraging, demonstrating the potential of com-
bining deep learning techniques, multimodal imaging data, and structured clinical infor-
mation, they also indicate that this fundamental and important topic requires further and
greater focus.
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The important thing is not to stop
questioning. Curiosity has its own reason
for existing. One cannot help but be in awe
when he contemplates the mysteries of
eternity, of life, of the marvelous structure
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comprehend a little of this mystery every
day. Never lose a holy curiosity.

[ALBERT EINSTEIN]
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Chapter 1

Introduction

1.1 Brain Metastases: Clinical Significance and Cur-
rent Challenges

Brain metastases represent the most common intracranial malignancies in adults, occur-
ring in approximately 20-40% of all cancer patients[5][6][7] and significantly surpassing
primary brain tumors in prevalence. This high incidence makes brain metastases a critical
challenge in modern oncology and neurology. Over the past twenty years, the reported
incidence of brain metastases has risen significantly. This increase is chiefly due to two
factors: more effective systemic cancer therapies that prolong patient survival thereby
allowing micrometastases to develop and widespread adoption of high-resolution neu-
roimaging techniques that detect asymptomatic lesions much earlier. Current estimates
suggest that the annual incidence of brain metastases in the United States ranges from
170,000 to 200,000 cases[6].

Brain metastases typically arise through hematogenous spread and are predominantly lo-
cated at the gray—white matter junction, with the cerebral hemispheres being the most fre-
quently affected areas[8]. The distribution and characteristics of these metastases largely
depend on the primary tumor type. Lung cancer accounts for 40-50% of all brain metas-
tases cases, particularly from small-cell and non-small-cell lung cancer[9]. Breast cancer
contributes 15-25% of cases, with higher incidence rates observed in HER2-positive and
triple-negative subtypes[9]. Melanoma, while representing 5-20% of cases, shows a strong
propensity for hemorrhagic metastases[9], adding complexity to both diagnosis and treat-
ment.

The clinical presentation of brain metastases varies significantly depending on lesion loca-
tion, size, and related edema. Patients may have headaches, cognitive changes, seizures,
focal neurological deficits, or remain asymptomatic until advanced stages. This differences
in presentation, together with the rapid progression of metastatic disease, necessitates
prompt and accurate diagnosis followed by appropriate therapeutic intervention.
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Primary Tumor | Incidence | Common Sites of | Imaging Characteris-
Type in Brain | Metastases tics

Metas-

tases (%)
Lung Cancer 40-50% Frontal, Temporal, Pari- | Multiple, Edematous

etal

Breast Cancer 15-25% Occipital, Cerebellum Ring-Enhancing Lesions
Melanoma 5-10% Hemorrhagic Sites Hyperintense, Bleeding

Table 1.1: Incidence of Brain Metastases by Primary Tumor Type

1.2 Stereotactic Radiosurgery and Gamma Knife Ther-
apy

Stereotactic Radiosurgery (SRS) has become as a key treatment modality for patients with
brain metastases, offering a highly targeted, non-invasive approach for delivering precise,
high-dose radiation to tumor lesions[10]. Unlike conventional radiation therapy, which
irradiates large areas of brain tissue over multiple sessions, SRS concentrates radiation
beams to a specific target area in a single or limited number of sessions. This targeted
approach minimizes damage to surrounding healthy brain tissue, making SRS particularly
suitable for treating small to medium-sized lesions typically measuring less than 3 cm in
diameter[11].

Gamma Knife surgery is one of the most advanced forms of SRS technology. The ap-
paratus comprises 200 individual cobalt-60 sources in a hemispheric configuration each
radiating the gamma rays converging at the desired lesion site[12]. The convergence
achieves a steep dose gradient such that the tumor is given an ablative dose of radia-
tion with sparing of the rest of the surrounding normal brain tissue. The precision of
Gamma Knife therapy is because of a complex multi-step workflow wherein stereotac-
tic frame placement is followed by the acquisition of high-resolution imaging along with
computerized treatment planning and precise dose administration

1.2.1 Clinical Applications and Indications
Gamma Knife therapy has proven particularly effective for several clinical scenarios:

o Oligometastatic Disease: Patients with a limited number of metastatic lesions
(<3-5) benefit significantly from SRS as it provides localized treatment with minimal
impact on overall brain function[13].

e Radioresistant Tumors: Tumors such as melanoma and renal cell carcinoma,
which are less responsive to conventional radiation, showes improved control rates
with SRS due to its ability to deliver ablative doses of radiation.
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¢ Lesions in Eloquent Brain Areas: For metastases located in regions critical
for neurological function (e.g., motor cortex, speech centers), SRS offers a safer
alternative to surgical resection, minimizing the risk of neurological deficits.

* Recurrent or Residual Lesions: Salvage therapy with SRS may be applied as a
non-surgical option for patients with poor performance status in cases of previously
treated lesions showing recurrence.

1.2.2 Technical Implementation

The high precision of Gamma Knife is achieved through a comprehensive workflow:

o Patient Positioning and Immobilization: A stereotactic frame is attached to
the patient’s skull to eliminate head movement and ensure accurate targeting.

o Imaging and Treatment Planning:

— High-resolution MRI or CT imaging is performed to delineate lesion boundaries,
enabling creation of three-dimensional treatment plans.

— RT'Struct data is used to outline tumor margins, while RTDose data quantifies
the planned radiation dose distribution.

» Radiation Delivery: Several beams of gamma radiation are focused at the lesion
site to provide high dose focal therapy with minimal exposure to surrounding tissues

o Post-Treatment Monitoring: Follow-up MRI scans are performed at regular in-
tervals to assess treatment response and detect potential complications such as ra-
diation necrosis.

1.3 Post-Treatment Monitoring: The Recurrence vs.
Stability Challenge

While Gamma Knife radiosurgery provides effective local tumor control, it is associated
with potential complications, most notably radiation necrosis. Radiation necrosis is a
delayed adverse effect characterized by cell death and inflammation within the irradiated
area. This complication can occur months to years post-treatment and may present clin-
ically with new or worsening neurological deficits including headache, cognitive decline,
seizures, or focal weakness.

On MRI, radiation necrosis typically presents as a contrast-enhancing lesion with sur-
rounding vasogenic edema, mimicking the appearance of recurrent tumor. Distinguishing
between tumor recurrence and radiation necrosis based solely on conventional imaging is
challenging due to overlapping radiological features[14][15].
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1.3.1 Diagnostic Complexity

The primary challenge in post-Gamma Knife monitoring lies in distinguishing between
tumor recurrence and radiation necrosis, as both conditions can present with remarkably
similar imaging characteristics on conventional MRI:

« Ring Enhancement: Both conditions may present as ring-enhancing lesions with
central necrosis.

e Edema and Mass Effect: Perilesional edema is often observed in both radiation
necrosis and recurrent tumor.

¢« Hemorrhage: Metastases from melanoma and renal cell carcinoma are especially
susceptible to hemorrhagic transformation, making interpretation of post-SRS imag-
ing difficult

Imaging Modality Recurrent Tumor Radiation Necrosis

T1-Weighted MRI Solid, Nodular Enhancement Ring Enhancement, Central Necrosis

DWI Restricted Diffusion Facilitated Diffusion
PWI Elevated CBV Decreased CBV
MRS Increased Choline Elevated Lactate and Lipid Peaks

Table 1.2: Imaging Features of Recurrent Tumor vs. Radiation Necrosis

1.3.2 Current Assessment Limitations

Current assessment protocols rely predominantly on expert interpretation of serial MRI
and radiotherapy planning images. This approach, while clinically established, is both
labor-intensive and subjective, leading to significant inter-observer variability. The sub-
jective nature of image interpretation can result in diagnostic uncertainty, particularly
in borderline cases where imaging features are ambiguous. This variability in assessment
underscores the need for more objective, reproducible, and automated approaches to post-
treatment lesion classification.

This diagnostic ambiguity has profound clinical implications. Misclassification of radiation
necrosis as recurrent tumor can lead to unnecessary interventions such as re-irradiation
or surgical resection, increasing the risk of adverse effects and patient morbidity. Con-
versely, mistaking viable tumor for necrosis may result in delayed treatment, allowing
tumor progression and potentially compromising patient outcomes.
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1.4 Advanced Imaging Techniques for Lesion Char-
acterization

1.4.1 Conventional MRI Techniques

Magnetic Resonance Imaging (MRI) serves as the gold standard for detecting and evaluat-
ing brain metastases due to its exceptional soft-tissue contrast and spatial resolution[16].
Several MRI sequences provide complementary information for lesion characterization:

« T1-Weighted Imaging (T1WI): Provides high-resolution anatomical detail and
is particularly useful for visualizing hemorrhagic lesions[17][18]. When combined
with contrast agents, post-contrast T1WI becomes essential for detecting contrast-
enhancing brain metastases, indicating blood-brain barrier disruption[19].

o T2-Weighted Imaging (T2WI): Valuable for detecting perilesional changes such
as vasogenic edema and cystic components around metastatic brain lesions. T2 hy-
perintense signals commonly reflect extracellular fluid accumulation, often indicating
vasogenic edema caused by tumor-related blood-brain barrier disruption[20].

« FLAIR (Fluid-Attenuated Inversion Recovery): Suppresses cerebrospinal fluid
(CSF) signals, enhancing visibility of lesions adjacent to ventricles and cortical sulci.
By nulling CSF, FLAIR improves detection of periventricular metastases, subtle
edema, and leptomeningeal involvement[21][22].

1.4.2 Advanced MRI Techniques

To improve differential diagnosis beyond conventional imaging, several advanced MRI
techniques have been developed:

 Diffusion-Weighted Imaging (DWI): Highly sensitive to water molecule move-
ment within tissue, making it valuable for characterizing brain metastases. Re-
stricted diffusion on DWI can help differentiate hypercellular tumors from abscesses
or cystic lesions. Most brain metastases show facilitated (non-restricted) diffu-
sion, while DWI helps detect acute ischemic changes, necrosis, or treatment-related
effects[23].

» Perfusion-Weighted Imaging (PWI): Measures cerebral blood volume and flow
and provides information on vascular properties of brain metastases. Metastatic
lesions have characteristic sharply outlined regions of increased perfusion due to
tumor angiogenesis. PWI helps in the distinction from high-grade gliomas and aids
in assessing response to therapy[24].

1.4.3 Multimodal Advanced Techniques

Advanced MRI and nuclear medicine techniques provide additional information beyond
conventional contrast-enhanced imaging:
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Figure 1.1: "A 59-year-old smoker with headache and balance issues. (a) NECT shows a
right parietal mass at the gray—white junction with vasogenic edema. (b) Post-contrast
T1 MRI reveals ring enhancement. (¢) FLAIR confirms extensive edema. (d) DWI shows
no central diffusion restriction, excluding abscess.Lung biopsy confirmed non-small cell
lung cancer, and the brain lesion underwent stereotactic radiosurgery."[1]

» Magnetic Resonance Spectroscopy (MRS): Provides metabolic profiling by
detecting elevated choline, lactate, and lipid peaks associated with tumor recurrence.
High choline-to-creatine ratios suggest cellular proliferation, while increased lactate
indicates necrosis[25][26].

o Positron Emission Tomography (PET-CT): Detects metabolic activity via
FDG uptake, distinguishing viable tumor tissue from necrotic or fibrotic regions
through metabolic rather than anatomical criteria[27].

1.5 Problem Statement and Research Objectives

Despite notable progress in imaging technology and DL tools, some important gaps still
exist in automated assessment of lesions after Gamma Knife treatment. Present DL meth-
ods for brain metastasis classification often concentrate on one imaging type, not taking
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full advantage of the wealth of multimodal data in clinical settings. Existing models fre-
quently struggle with the severe class imbalance inherent in recurrence prediction, where
stable lesions vastly outnumber recurrent cases. Furthermore, most published studies re-
port limited sensitivity for detecting recurrent lesions, which is clinically the most critical
metric for patient management.

The Brain-TR-GammaKnife dataset[4] provides an opportunity to address these limi-
tations, containing comprehensive multimodal data including MRI scans, RTStruct files,
RTDose distributions, and detailed clinical information from 47 patients with 244 lesions.
However, this dataset exhibits severe class imbalance with only 23 recurrent lesions (9.4%)
compared to 221 stable lesions (90.6%).

1.5.1 Research Objectives

This thesis addresses these limitations by developing a robust deep learning framework
specifically designed to automatically classify brain lesions as stable or recurrent following
Gamma Knife radiosurgery. The primary objectives include:

1. Multimodal Integration: Develop a unified neural network architecture that ef-
fectively combines Magnetic Resonance Imagin (MRI), radiotherapy dose distribu-
tions (RTDose), and structured clinical variables to leverage all available diagnostic
information.

2. Class Imbalance Mitigation: Implement specialized techniques including focal
loss[28], selective data augmentation, and class-balanced sampling strategies to en-
hance the model’s ability to detect rare recurrent cases.

3. Clinical Validation: Demonstrate substantial improvements in sensitivity and F1-
score compared to existing baselines, with particular emphasis on recurrence detec-
tion performance that would have meaningful clinical impact.

4. Practical Implementation: Ensure the framework is compatible with standard
clinical data formats (DICOM) and can be integrated into existing radiological work-
flows

1.5.2 Expected Contributions

This research contributes to the growing field of automated neuro-oncology by providing a
data-driven, objective approach to post-treatment lesion assessment. The proposed frame-
work has the potential to reduce inter-observer variability, improve consistency in clinical
decision-making, and ultimately enhance patient care by enabling more timely and accu-
rate detection of lesion recurrence. By addressing the specific challenges of multimodal
data integration and class imbalance in recurrence prediction, this work establishes a
foundation for more sophisticated and clinically relevant automated diagnostic tools in
stereotactic radiosurgery follow-up care.
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Chapter 2

Related Work and
State-of-the-Art

2.1 Deep Learning in Medical Imaging: Foundations
and Evolution

Deep learning (DL) has fundamentally transformed medical imaging, enabling automated
feature extraction and pattern recognition from complex, high-dimensional datasets. Un-
like traditional machine learning methods that rely on handcrafted features engineered by
domain experts, DL models learn hierarchical representations directly from raw data, lead-
ing to unprecedented performance improvements across various imaging tasks[29]. This
paradigm shift has been particularly impactful in medical imaging, where the complexity
and variability of anatomical structures, pathological presentations, and imaging artifacts
present significant challenges for conventional image analysis approaches.

2.1.1 From 2D to 3D: Architectural Evolution

Medical imaging deep learning has undergone an evolutionary process from natural image
processing to the unique requirements of medical images. The first was the use of the 2D
Convolutional Neural Networks (CNNs) to process single volumetric medical image slices
as separate images. This approach failed essentially in preserving the extensive spatial
context inherent in three-dimensional medical images where slice-to-slice relations tend to
contain important diagnostically relevant information.

The introduction of 3D CNNs marked a pivotal advancement, allowing models to process
volumetric data holistically and capture spatial relationships across all three dimensions|[29].
This evolution has been particularly beneficial for tasks involving brain imaging, where
lesion characteristics, spatial relationships, and contextual information spanning multiple
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slices are crucial for accurate diagnosis and classification. The ability to process entire vol-
umes simultaneously has enabled deeper analysis of tumor morphology, growth patterns,
and spatial distribution.

2.1.2 Architectural Innovations in Medical Imaging

Some dedicated architectures have been developed specifically for medical imaging tasks
and deal with specific issues in the medical application space:

» Residual Networks (ResNet): The introduction of skip connections in ResNet
addressed the vanishing gradient problem, enabling the training of much deeper
networks[30]. In medical imaging, this has allowed for more sophisticated feature
extraction and better representation of complex pathological patterns. ResNet ar-
chitectures have been successfully adapted for various medical imaging tasks, from
lesion detection to disease classification.

¢ U-Net and Encoder-Decoder Networks: First proposed for biomedical image
segmentation, U-Net was the first to employ skip connections from encoder to de-
coder layers for the purpose of accurate localization with retention of contextual
information[31]. It has since become the de-facto standard architecture for medical
image segmentation tasks with several variants having been proposed for varying
imaging modalities and anatomical locations.

¢ Attention Mechanisms: Attention-based networks have emerged as dominant ar-
chitectures in medical imaging by allowing networks to selectively attend to clin-
ically significant regions and attenuate irrelevant background information. Self-
attention mechanisms enable the model to extract long-range dependencies in med-
ical images, and channel attention enables the model to focus on significant feature
maps[32][33][34]. These modules have been particularly useful in brain imaging cases
where the subtle abnormalities can be spread across various anatomical regions.

o Transformer-Based Architectures: Recent advances in transformer models, orig-
inally developed for natural language processing, have been successfully adapted
for medical imaging. Vision Transformers (ViTs) and hybrid CNN-Transformer ar-
chitectures offer new approaches to modeling spatial relationships and have shown
promising results in various medical imaging tasks[35].

2.1.3 Transfer Learning and Domain Adaptation

The scarcity of large, well-annotated medical datasets has made transfer learning a crit-
ical component of medical imaging applications. Pre-training on large-scale natural im-
age datasets (such as ImageNet) followed by fine-tuning on medical data has become a
standard practice, leveraging learned low-level features while adapting to domain-specific
characteristics.

However, the domain gap between natural images and medical data has led to the de-
velopment of specialized transfer learning strategies. Medical-specific pre-training, where
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Figure 2.1: U-Net framework for detecting and segmenting brain metastases (BM), where
BN means batch normalization and ReLU means rectified linear unit.[2].

models are first trained on large medical imaging datasets before fine-tuning on specific
tasks, has shown superior performance compared to natural image pre-training. Addi-
tionally, domain adaptation techniques help bridge the gap between different imaging
modalities, acquisition protocols, and institutional variations.

2.1.4 Data Augmentation in Medical Imaging

Data augmentation has really gained significance for enhancing model robustness and gen-
eralization in medical imaging, where the training datasets are typically limited. Medical-
oriented augmentation techniques need to strike an intricate balance between data diver-
sification and anatomical believability. Typical methods encompass geometric transfor-
mations (rotation, scaling, elastic deformation), intensity modifications (contrast shifting,
noise injection), and higher-order techniques such as Generative Adversarial Networks
(GANSs) for the creation of synthetic data.

However, medical data augmentation must be done with consideration of anatomical limits
and clinical utility. Certain transformations may violate anatomical rules or create unre-
alistic disease manifestations and thus adversely impact model performance and clinical
utility.
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2.2 Brain Metastases Detection and Classification:
Current Approaches

The application of deep learning to brain metastases detection and classification has
emerged as one of the most active areas of research in medical imaging AI[36][37]. The
complexity of brain anatomy, the variability of metastatic presentations, and the critical
importance of accurate diagnosis have driven substantial research efforts toward auto-
mated detection and classification systems.

2.2.1 Methods of Detection and Segmentation

Current approaches to brain metastases detection primarily rely on supervised learning
with manually annotated datasets. Convolutional Neural Networks form the backbone of
most detection systems, with architectures ranging from simple 2D CNNs applied slice-
by-slice to sophisticated 3D networks that process entire brain volumes.

Object Detection Methods

Some works applied object detection methodologies formulated on natural images to the
detection of brain metastases. R-CNN (Region-based CNN) variants, YOLO (You Only
Look Once) structures, and single-shot detection architectures have been used successfully
to detect and localize brain metastases. These methods usually attain detection sensitivity
from 85% to 95% depending on the lesion dimensions, image quality, and the nature of
the dataset[36].

Segmentation-Based Detection

The detection task receives an alternative treatment through segmentation techniques
that detect metastatic regions by outlining them at the pixel scale. The use of U-Net
and its derivatives has dominated this task and recent research demonstrates Dice scores
above 0.90 when dealing with well-defined lesions[38]. The implementation of 3D U-Net
models demonstrates strong potential for brain volume processing because these models
extract slice-based contextual data while preserving exact spatial placement.

Cascade and Multi-Stage Approaches

Researchers have developed multiple cascade methods because they want to detect small
metastases without increasing computational costs. The methods start with initial basic
detection and then perform detailed analysis on suspected regions. The approaches achieve
a balance between high detection accuracy and low false positive rates through effective
computational management[39].

2.2.2 Classification Challenges: Stable vs. Recurrent Lesions

The classification of brain lesions as stable or recurrent following treatment represents
one of the most challenging problems in neuro-oncology imaging. This task requires
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distinguishing between subtle changes that may indicate tumor progression and treatment-
related effects such as radiation necrosis[14][15].

Single-Modality Approaches

The initial automated classification systems used T1-weighted contrast-enhanced MRI
because it represents the standard clinical imaging sequence for brain metastases follow-
up. These early approaches focused on training CNN models through lesion patches
that were taken from follow-up scan images. The methods achieved reasonable overall
accuracy yet they demonstrated poor sensitivity to detect recurrent lesions that showed
subtle changes in imaging. changes.

Radiomics and Handcrafted Features

Medical images underwent feature extraction through radiomics methods during the pre-
deep learning era by calculating shape descriptors and texture measures and intensity
statistics[14][15]. Traditional machine learning classifiers processed these features after
their extraction. Radiomics approaches produced understandable results but their depen-
dence on feature engineering proved restrictive because they struggled to detect complex
patterns which deep learning methods easily recognized.

Longitudinal Analysis

Several approaches have attempted to leverage temporal information by comparing follow-
up scans with baseline post-treatment images. These methods aim to detect changes over
time rather than classifying individual time points. However, registration challenges,
variable scan timing, and differences in acquisition parameters have limited the success of
longitudinal approaches.

2.2.3 Baseline Models and Performance Benchmarks

The development of brain metastases detection and classification methods requires re-
searchers to build performance benchmarks as their primary foundation. Several baseline
architectures have emerged as standard comparison points:

« 3D CNN Baselines: Simple 3D CNN architectures with progressively increasing
filter sizes have served as foundational baselines. These models typically consist of 3-5
convolutional layers followed by global pooling and dense classification layers. While
computationally efficient, these basic architectures often lack the representational
power needed for complex classification tasks.

o« ResNet Adaptations: 3D ResNet architectures have been widely adopted as
stronger baselines, offering improved gradient flow and enabling deeper networks.
ResNet-18 and ResNet-50 variants adapted for 3D medical data have shown consis-
tent performance improvements over simpler CNN architectures.
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¢ Medical-Specific Architectures: Several architectures have been specifically de-
signed for medical imaging applications. Med3D, a 3D CNN pre-trained on med-
ical imaging data, has provided strong baseline performance across multiple medi-
cal imaging tasks. Similarly, architectures like DenseNet, adapted for 3D medical
data, have offered competitive baseline performance while maintaining parameter
efficiency.

2.3 Multimodal Deep Learning in Medical Imaging

The integration of multiple data modalities represents a significant trend in medical imag-
ing Al, driven by the recognition that different imaging sequences and data types provide
complementary diagnostic information[40]. In the context of brain metastases, the com-
bination of structural imaging, treatment planning data, and clinical information offers
the potential for more comprehensive and accurate assessment.

2.3.1 Multimodal Fusion Strategies
Early Fusion

The early fusion technique merges various imaging sequences during the initial input stage
through channel concatenation. This method requires minimal computation but fails to
leverage individual modality strengths effectively because dominant signal modalities tend
to control the process.

Late Fusion

Late fusion processes each modality independently through separate network branches
before combining the learned representations at the decision level. This approach allows
each modality-specific network to learn optimal representations while enabling flexible
combination strategies. Most successful multimodal medical imaging systems employ
variants of late fusion[40].

Intermediate Fusion

Intermediate fusion combines modalities at various levels within the network architec-
ture,allowing for both modality-specific and cross-modal feature learning. Attention mech-
anisms are often employed to weight the contribution of different modalities dynamically
based on input characteristics.

2.3.2 Imaging and Non-Imaging Modality Integration
Structural and Functional Imaging

The combination of structural MRI sequences (T1, T2, FLAIR) with functional informa-
tion (DWI, PWI, MRS) has shown significant promise for brain metastases characteriza-
tion. Each modality provides unique information: structural sequences reveal anatomical
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details, diffusion imaging provides cellular density information, perfusion imaging reveals
vascular characteristics, and spectroscopy offers metabolic insights[25][26].

Treatment Planning Integration

Post-treatment brain metastases analysis benefits from having treatment planning data
which includes RTDose and RTStruct files[4]. Post-treatment imaging combined with this
information allows researchers to analyze dose-response relationships and spatial correla-
tions which link treatment delivery to outcomes.

Clinical Data Integration

The incorporation of structured clinical variables (patient demographics, treatment pa-
rameters, temporal information) with imaging data has shown promise for improving
classification performance. However, the integration of heterogeneous data types requires
careful architectural design and often involves embedding layers for categorical variables
and normalization strategies for continuous variables.

2.3.3 Challenges in Multimodal Learning
Modality Imbalance

Different modalities may contribute unequally to the final decision, with some modalities
dominating the learning process. Balancing contributions requires careful architectural
design and often involves modality-specific loss functions or attention mechanisms.

Missing Modalities

Multiple clinical datasets include missing modalities because of acquisition failures to-
gether with protocol variations and temporal constraints during data collection. The
system needs to support incomplete data inputs by either utilizing imputation methods
or designing architectures that operate without full information.

Temporal Alignment

When combining data acquired at different time points or with different protocols, tempo-
ral and spatial alignment becomes critical. Registration errors and acquisition differences
can significantly impact multimodal fusion performance.

2.4 Datasets and Benchmarks for Brain Metastases
Research

The development of robust deep learning systems for brain metastases analysis has been

significantly facilitated by the availability of curated datasets with expert annotations.

These datasets serve not only as training resources but also as benchmarks for comparing
different algorithmic approaches.
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2.4.1 Public Datasets and Their Characteristics
Brain-TR-GammaKnife Dataset

The Cancer Imaging Archive (TCIA) stores a dataset with 47 patient records which
contain 244 lesions and their associated MRI images along with radiation therapy dose
plans (RTDose) and structure sets (RTStruct) and clinical data[4]. This dataset exists
to help predict tumor recurrence after Gamma Knife radiosurgery which connects it to
post-treatment observation needs.

UCSF-BMSR Dataset

The University of California San Francisco Brain Metastases Stereotactic Radiosurgery
dataset contains 560 multimodal brain MRI scans with expert annotations for 412 patients
who received Gamma Knife treatment[41]. This dataset contains more patient data than
others and it serves mostly for detection and segmentation analysis.

Comprehensive Annotated Brain Metastasis Dataset

The dataset published in Scientific Data that contains 637 high-resolution imaging stud-
ies from 75 patients includes 260 brain metastasis lesions with clinical data and semi-
automatic segmentations[42]. The dataset contains multiple imaging sequences along
with detailed clinical annotations.

2.4.2 Dataset Limitations and Challenges

Limited Size and Diversity

Most available datasets are relatively small by deep learning standards, often containing
fewer than 1000 lesions. This limitation is particularly challenging for training robust
deep learning models and may lead to overfitting and poor generalization.

Institutional Bias

Many datasets originate from single institutions, potentially limiting generalizability across
different imaging protocols, patient populations, and clinical practices. Multi-institutional
datasets are rare due to data sharing constraints and standardization challenges.

Annotation Quality and Consistency

Manual annotation of brain metastases requires significant expertise and is subject to
inter-observer variability. Different datasets may employ different annotation protocols,
making cross-dataset evaluation challenging.

Class Imbalance

Virtually all brain metastases datasets exhibit severe class imbalance, with recurrent le-
sions representing a small minority of cases[4]. This imbalance reflects the clinical reality
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but poses significant challenges for machine learning algorithms.

2.4.3 Preprocessing and Standardization Challenges
Image Acquisition Variability

The characteristics of images become different when MRI scanners use various field strengths
along with various acquisition protocols. The standardization process across datasets
needs advanced preprocessing pipelines which fail to completely remove systematic vari-
ations.

ROI Extraction Consistency

The method used to define and extract regions of interest around lesions has a substantial
effect on model performance. The results of studies show inconsistent outcomes because
different methods of ROI extraction (fixed vs. adaptive size, margin inclusion, background
handling) exist.

Normalization Strategies

The process of intensity normalization between different imaging sessions and scanners
proves to be difficult. Research employs various normalization approaches which range
from basic histogram matching to complex tissue-based normalization but results vary
depending on the method.

2.5 Current Limitations and Research Gaps

Despite significant advances in deep learning applications for brain metastases analysis,
several critical limitations and research gaps remain that limit the clinical translation and
widespread adoption of these technologies.

Limited Sensitivity for Recurrence Detection

Most published studies report suboptimal sensitivity for detecting recurrent lesions, which
is clinically the most critical metric[4]. The severe class imbalance and subtle imaging
changes associated with early recurrence contribute to this limitation.

Single-Modality Focus

Many approaches focus on single imaging modalities, failing to leverage the rich multi-
modal information routinely available in clinical practice. The integration of treatment
planning data, multiple imaging sequences, and clinical variables remains underexplored.
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Temporal Modeling Limitations

The majority of existing approaches process imaging time points as separate entities which
prevents them from using temporal data and change patterns that could help predict
recurrence.

Generalization Challenges

The models demonstrate strong performance on data from their origin institution yet they
struggle to generalize across different scanners and protocols and patient populations. The
limitation creates major obstacles to using these models in clinical settings.

Interpretability and Trust

Deep learning models often function as "black boxes," providing limited insight into
decision-making processes. The lack of interpretability poses significant barriers to clinical
acceptance and regulatory approval.

Integration with Clinical Workflows

Most research focuses on algorithmic performance while neglecting practical aspects of
clinical integration, including computational requirements, user interfaces, and workflow
compatibility.

Validation Standards

The medical imaging community lacks standardized evaluation protocols for comparing
different approaches, making it difficult to assess relative performance and clinical utility.

Regulatory Pathways

The path to regulatory approval for Al-based medical imaging tools remains complex and
uncertain, particularly for applications involving treatment decision support.

2.5.1 Methodological Gaps
Uncertainty Quantification

Most approaches provide point predictions without uncertainty estimates, limiting their
clinical utility where confidence assessments are crucial for decision-making.

Robustness Analysis

Limited attention has been paid to model robustness against acquisition variations, arti-
facts, and adversarial examples that may occur in clinical practice.
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Long-term Outcome Correlation

Most studies focus on short-term imaging endpoints rather than correlating predictions
with long-term clinical outcomes such as survival and quality of life.

Multi-institutional Validation

Large-scale, multi-institutional validation studies are lacking, which reduces trust in clin-
ical utility and generalizability in a variety of contexts.

There are a lot of areas for improvement, especially in multimodal integration, class
imbalance handling, and clinical translation, according to this thorough review of the
state-of-the-art. By creating a unique multimodal framework especially for post-Gamma
Knife recurrence prediction, the work presented in this thesis fills in a number of these

gaps.
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Chapter 3

Dataset and Preprocessing

3.1 Dataset Overview and Characteristics

The main source of data for this study is the Brain-TR-GammaKnife dataset, which is one
of the largest publicly accessible sets of multimodal brain metastases data created espe-
cially for recurrence prediction studies [4]. Together, the University of Mississippi Medical
Center (UMMC) and Mississippi State University (MSU) created this dataset. Strict in-
stitutional review board approval (IRB-2017-0266) and complete HIPAA compliance were
used to protect patient privacy during data collection.

The dataset includes complete follow-up imaging and clinical documentation for 47 pa-
tients who had Gamma Knife stereotactic radiosurgery for brain metastases. The dataset
is publicly available through The Cancer Imaging Archive (TCIA) under DOI: 10.7937/
xb6d-py67, and all patient identifiers have been fully anonymized to enable reproducible
research and algorithm comparison across the research community.

3.1.1 Patient Demographics and Clinical Characteristics

The dataset shows a balanced gender distribution with 26 female patients (55.3%) and
21 male patients (44.7%), reflecting the typical demographics of brain metastases popu-
lations where breast cancer metastases contribute significantly to the overall incidence[9)].
The patient class represents diverse primary cancer types, with lung cancer, breast can-
cer, and melanoma being the most common sources of brain metastases, consistent with
established epidemiological patterns[43].

Follow-up duration varies significantly across patients, with 30 patients (63.8%) having
single-visit data, 10 patients (21.3%) with two visits, 6 patients (12.8%) with three visits,
and one patient (2.1%) with eight documented visits. This distribution reflects real-world
clinical practice where follow-up intensity depends on patient prognosis, treatment re-
sponse, and clinical presentation.
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Visits per Patient Number of Patients | Percentage (%)
1 30 63.8%

2 10 21.3%

3 6 12.8%

4-7 0 0.0%

8 1 2.1%

Table 3.1: Distribution of Hospital Visits per Patient

3.1.2 Lesion-Level Characteristics and Distribution

The dataset contains 244 individual lesions across all patients, with the critical clinical
challenge being the severe class imbalance: only 23 lesions (9.4%) are classified as recur-
rent, while 221 lesions (90.6%) remain stable during the follow-up period. Although this
distribution presents major obstacles for the development of machine learning algorithms,
it accurately depicts the clinical reality of post-Gamma Knife treatment outcomes, where
the majority of lesions achieve durable local control.

Lesion Classification Distribution

Recurrent Lesions

Stable Lesions

Figure 3.1: Class distribution showing severe imbalance between stable and recurrent
lesions in the Brain-TR-GammaKnife dataset

Each patient has a very different distribution of lesions; some have only one metastasis,
while others have several lesions that need to be treated at the same time. Of the 47
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patients, 32 had stable disease in all treated lesions, and 15 had at least one recurrent
lesion at follow-up. In order to ensure appropriate data splitting and stop information
leakage between training and testing sets, this patient-level information is essential.

3.2 Data Composition and Modalities

The Brain-TR-GammaKnife dataset distinguishes itself through comprehensive multi-
modal data collection, providing researchers with access to complementary information
sources that collectively enable sophisticated analysis of treatment outcomes and recur-
rence patterns.

MRI Volumes

16,792 DICOM files containing high-resolution structural brain MRI acquisitions are in-
cluded in the dataset. Standard clinical procedures that are optimized for the detection
of brain metastases and follow-up evaluation were used to obtain these images. Essential
anatomical context, lesion morphology details, and baseline structural references required
for treatment planning and outcome evaluation are provided by the MRI data.
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Figure 3.2: Representative MRI slice showing brain metastasis with surrounding anatom-
ical structures
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RTDose Data

Three dimensional dose distribution maps quantify the spatial radiation exposure deliv-
ered during Gamma Knife treatment. These volumetric datasets contain voxel-level dose
information in Gray (Gy) units, spatially registered to the corresponding MRI volumes.
RTDose data enables analysis of dose-response relationships and spatial correlations be-
tween radiation delivery patterns and treatment outcomes.
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Figure 3.3: RTDose visualization showing radiation dose distribution overlaid on anatom-
ical structures

RTStruct Data

During treatment planning, skilled radiation oncologists manually define the critical anatom-
ical structures and lesion boundaries using precise geometric definitions found in radiation
therapy structure sets. Multiple regions of interest (ROIs) with anatomically descriptive
names that correspond to lesion locations are included in each RTStruct file. These struc-
tures have two functions: they provide ground truth segmentation masks for machine
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learning applications and define treatment targets during Gamma Knife planning.

3.2.1 Clinical Data Structure

The clinical information is systematically organized in a structured Excel spreadsheet
(Brain-TR-GammakKnife-Clinical-Information.xlsx) containing three structure data sheets:

Patient-Level Data (pt__level)

Contains 47 records with unique patient identifiers enabling linkage across all data modal-
ities while maintaining anonymization protocols.

Course-Level Data (course__level)

Provides 76 records documenting treatment courses, including primary cancer diagnosis,
patient demographics (age at diagnosis, gender), and treatment-specific information. This
level captures the relationship between primary cancer characteristics and brain metas-
tases presentation.

unique__pt__id Course # Diagnosis Primary Diagnosis Age Gender
103 1 Mets Ovary Serous carcinoma 75 Female
114 1 Brain Mets-Breast Invasive ductal carcinoma 60 Female

Table 3.2: Example clinical records from the course-level data sheet

Lesion-Level Data (lesion__level)

The most granular level contains 244 records corresponding to individual lesions, in-
cluding anatomical location, recurrence status (mri_type), temporal information (dura-
tion_tx_to_imag), treatment fractionation details, and standardized lesion nomenclature
for cross-referencing with imaging data.

No. unique__pt__id Treatment Course Lesion# Lesion Location mri__type duration_tx_ to_ imag Fractions Lesion Name NRRD files

1 463 1 1 Lt Frontal recurrence 11 1 GK.463_1_ LLtFronta
2 463 2 2 R Motor Cortex stable 8 1 GK.463_2 LRTMotorCortex

3 463 2 3 Lt Post Temporal  stable 8 1 GK.463 2 LLtPostTemporal

Table 3.3: Example clinical records from the lesion-level data sheet

3.3 Architecture of the Preprocessing Pipeline

Raw multimodal clinical data is transformed into standardized, analysis ready inputs for
deep learning applications by the preprocessing pipeline. Basic issues in medical imaging
preprocessing are addressed by the pipeline design, including managing missing data,
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preserving clinical validity during the transformation process, handling heterogeneous
data formats, and guaranteeing spatial consistency across modalities.

The preprocessing architecture follows several key principles established for medical imag-
ing applications. Data integrity preservation ensures that all transformations maintain
clinical relevance and anatomical validity. Reproducibility is achieved through deter-
ministic processing steps and comprehensive logging of all transformations. Scalability
considerations enable efficient processing of the entire dataset while supporting future
expansion to larger cohorts.

Quality assurance mechanisms are integrated throughout the pipeline, including auto-
mated validation checks, error handling procedures, and comprehensive logging systems
that track processing success and failure rates. This systematic approach ensures reliable
data preparation for subsequent machine learning applications.

3.3.1 File Organization and Data Discovery

The dataset employs a hierarchical folder structure that separates data by patient and
clinical visit. Each patient folder (e.g., GK_103, GK_ 114) contains visit-specific subfold-
ers named with standardized patterns including visit date, imaging protocol, and internal
identifiers.

Brain-TR-GammaKnife/

F— GK_103/

| F— 04-18-2014-MR GAMMA KNIFE PLANNING BRAIN W IV CONTRAST-49648
| | — 1.000000-Course 1-21101
| | | b—1-1.dem

| | — 4.000000-t1mprtraiso-40897

| | | —1-001.dcm

| | | — 1-002.decm

]

| | — 28641.000000-Comp Dose-71122
| | | F—1-1.decm

|

I—‘l 2-18-2014-MR BRAIN W WO |V CONTRAST-94259

Figure 3.4: Hierarchical file structure organization of the Brain-TR-GammaKnife dataset
showing patient and visit-level organization

Within each visit folder, DICOM files are organized by acquisition type, though folder
names may not directly indicate content type, necessitating metadata-based file classi-
fication. Automated file discovery algorithms recursively scan the directory structure,
examining DICOM headers to classify files by modality type (MR, RTSTRUCT, RT-
DOSE). This approach ensures robust handling of varying folder organization patterns
while maintaining compatibility with standard DICOM data structures.
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3.4 Standardization and Image Processing

3.4.1 Reading and Validating DICOM Data

Comprehensive DICOM file reading using specialized medical imaging libraries (pydicom,
Simplel TK, nibabel) is the first step in the initial processing process. Essential metadata,
such as patient identifiers, acquisition parameters, spatial positioning data, and modality
classification, are extracted from each DICOM file through header validation. Files that
lack important metadata or have corrupted headers are marked for manual review or
removal.

MRI volume reconstruction uses spatial position information encoded in DICOM headers
to merge separate DICOM slices into cohesive 3D volumes. Through the analysis of Image
Position Patient and Image Orientation Patient tags, slice ordering algorithms guarantee
proper anatomical orientation. Quality control checks find possible gaps or overlapping
slices and confirm that the volume is complete.

3.4.2 Spatial Standardization and Resampling

Spatial standardization addresses variations in voxel spacing, image dimensions, and field
of view across different acquisition sessions. All MRI volumes are resampled to a uniform
voxel spacing and standardized dimensions (256x256x256) using trilinear interpolation
for continuous data and nearest-neighbor interpolation for label data.

The resampling process preserves anatomical relationships while enabling consistent pro-
cessing across all patients. Spatial transformation matrices are carefully maintained to
enable accurate alignment between different modalities and proper coordinate system
transformations during subsequent processing steps.

3.4.3 Intensity Normalization and Preprocessing

Variations in signal characteristics brought on by various scanner types, acquisition proto-
cols, and temporal factors are addressed by intensity normalization. Within brain tissue
regions, a robust normalization pipeline uses z-score standardization after histogram-based
normalization. In order to focus normalization on pertinent brain tissue and eliminate
non-brain structures that might skew intensity statistics, skull stripping is carried out
using algorithms that have been proven to work.

Automated normalization failure detection, the detection of anomalous intensity distribu-
tions that might point to acquisition artifacts, and the comparison of normalized intensity
ranges with physiologically expected values are examples of quality control procedures.
against expected physiological values.
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3.5 ROI Extraction and Lesion Localization

3.5.1 Metadata Matching and Validation

A crucial preprocessing challenge is ensuring accurate correspondence between imaging
data and clinical metadata. To create trustworthy relationships between RTStruct ROI
names and clinical lesion descriptions, the matching algorithm uses a complex two-stage
process that combines rule-based filtering with similarity-based scoring.

In order to ensure temporal and patient-specific consistency, rule-based filtering first re-
duces possible matches by patient identifier and treatment course. Similarity scoring
algorithms then use fuzzy string matching and normalized text processing to compare
ROI names with clinical lesion location descriptions.

A thorough mapping dictionary that covers common variances in clinical nomenclature is
used in the normalization process to standardize anatomical terminology. For instance,
"Left" variants such as "Lt," "L," and "left" are standardized to a single representation.
Likewise, anatomical region names like "Cerebellar" include variants like "Cereb," 'Cerebe,"
and "Cerebellum."

Standardized Term Accepted Variations

Left “Lt”, “L7, “left”, “Left”

Cerebellar “Cereb”, “Cerebe”, “Cerebellar”, “Cerebllar”,
“Cerbellar”, “cerebellum”

Occipital “Occip”, “Occi”, “Occipit”, “occipital”

Right “Rt”, “R”, “right”, “Right”

Table 3.4: Example anatomical terminology standardization mapping for ROI matching

3.5.2 Similarity Scoring Algorithm

The matching algorithm computes similarity scores using both location-based and name-
based comparisons. Location similarity employs set-based intersection analysis between
normalized ROI location terms and clinical lesion location descriptions, computing Jaccard-
like similarity coefficients:

|Locationgror N Location gyee|

Location Score = , :
|Locationgor U Location gyee|

Name-based similarity compares ROI identifiers with standardized lesion names from clin-
ical records using string similarity metrics. Combined scores integrate both similarity
measures using weighted averages (typically 60% location similarity, 40% name similar-

ity):
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Figure 3.5: Flowchart illustrating the ROI mask generation process from RTStruct data
to binary volumetric masks

Combined Score = 0.6 x Location Score + 0.4 x Name Score

Empirically determined thresholds (>0.2) are used for accepting matches. Low-confidence
matches (<0.4) are flagged for manual review, while matches below acceptance thresholds
are excluded from further processing.

3.5.3 ROI Mask Generation

Using the rt-utils library, validated ROI matches are converted from vector-based DICOM
RTStruct contours to volumetric binary masks. Lesion regions are designated as 1 and
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background regions as 0 in the binary volumes created by this conversion process, which
interpolates 2D contour data across 3D space.

Validation procedures are included in mask generation to guarantee anatomical complete-
ness and consistency. Masks that have unrealistic volumes or are empty are marked for
review. To maintain binary values, all produced masks are resampled to uniform dimen-
sions using nearest-neighbor interpolation after being spatially aligned with matching MRI
volumes.

3.6 Multimodal Data Alignment and Integration

3.6.1 Cross-Modal Spatial Registration

Spatial alignment between different imaging modalities requires careful handling of coor-
dinate systems, resolution differences, and acquisition timing variations. The alignment
process establishes MRI volumes as the spatial reference, with RTDose and RT'Struct data
transformed to match MRI coordinate systems.

RTDose volumes undergo trilinear interpolation during resampling to the MRI spatial grid,
preserving dose value relationships while achieving geometric consistency. Spatial trans-
formation matrices are computed using DICOM spatial metadata and validated through
anatomical landmark verification.

3.6.2 Lesion-Centered Patch Extraction

After spatial alignment, bounding box computation around binary mask regions is used
to extract lesion-specific regions. In order to incorporate pertinent anatomical context
while preserving computational efficiency, bounding boxes are enlarged with adjustable
margins (usually 5-10 voxels).

Patch extraction provides uniform input dimensions for deep learning models by gener-
ating standardized 64 x64x64 voxel regions centered on lesion locations. The extraction
algorithm centers the patch on the centroid of the lesion if the lesion is larger than the
patch size. Zero-filled arrays that match the dimensions of the MRI patch are used to fill
in the missing RTDose data.

3.6.3 Clinical Data Integration

Clinical metadata undergoes preprocessing to create structured feature vectors suitable for
neural network integration. Categorical variables (lesion location, primary diagnosis) are
encoded using one-hot encoding schemes, while continuous variables (duration between
treatment and imaging, patient age) are normalized using robust scaling techniques.

The clinical feature encoding process includes handling of missing values through appro-
priate imputation strategies and validation of feature distributions to identify potential
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data quality issues. Encoded clinical features are stored alongside corresponding image
patches to enable multimodal model training.

One-Hot Encoding Implementation

One-hot encoding converts categorical variables into binary vector representations suitable
for neural network processing. Each possible category value is represented by a unique
position in the binary vector, with a value of 1 indicating the presence of that category
and 0 otherwise.

For lesion location encoding with 4 possible locations:
» “Frontal” — [1, 0, 0, 0]
o “Cerebellar” — [0, 0, 1, 0]

This encoding ensures that categorical variables are treated as distinct classes without
introducing artificial ordinal relationships that could bias model learning.

3.7 Data Quality Assurance and Validation

Comprehensive quality control mechanisms operate throughout the preprocessing pipeline
to identify and handle various data quality issues. Automated checks include validation of
DICOM file integrity, verification of spatial consistency between modalities, detection of
missing or corrupted data, and identification of outlier values that may indicate processing
errors.

Statistical validation procedures analyze lesion size distributions, intensity characteris-
tics, and spatial relationships to identify potential anomalies. Lesions with extremely
small or large volumes compared to population distributions are flagged for manual re-
view to ensure clinical validity.

Robust error handling ensures pipeline stability while maintaining data quality standards.
Modality availability checks verify the presence of required imaging data (MRI and RT-
Struct) for each patient visit, with optional RTDose data handled gracefully through
zero-substitution strategies.

File reading operations employ exception handling to manage corrupted DICOM files
without terminating the entire pipeline. All processing errors are logged with detailed
information including patient identifiers, error types, and contextual information to facil-
itate debugging and quality improvement.

Validation procedures verify the consistency and completeness of processed data before
machine learning applications. Cross-modal alignment is validated through anatomical
landmark verification and spatial overlap analysis. Lesion mask validity is confirmed
through volume analysis and boundary condition checks.
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Figure 3.6: Data cleaning and exception handling workflow showing decision points and
error recovery strategies

Processed data undergoes final validation including verification of feature vector com-
pleteness, confirmation of proper data type assignments, and validation of file naming
conventions that enable reliable data loading during model training.

3.8 Dataset Splitting and Experimental Setup

3.8.1 Patient-Level Stratified Splitting

To ensure fair evaluation and prevent data leakage, the dataset is partitioned at the
patient level using stratified sampling that preserves class distribution across training,
validation, and test sets. This approach prevents any patient’s lesions from appearing in
multiple splits while maintaining representative samples of recurrent and stable lesions in
each subset.

The splitting strategy allocates approximately 60% of patients to training, 20% to vali-
dation, and 20% to testing. Stratification ensures proportional representation of patients
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with recurrent lesions across all splits, maintaining the challenging class imbalance while
enabling fair model evaluation.

Dataset Splitting Strategy

Test (20%)

20.0%

60.0% 20.0%
Training (60%) Validation (20%)

Figure 3.7: Dataset splitting strategy showing patient-level partitioning with stratified
sampling to maintain class distribution

3.8.2 Cross-Validation Considerations

The severe class imbalance and small dataset size demand rigorous validation strategies
to ensure reliable performance estimates. Instead of lesion-level splitting, which can place
multiple lesions from the same patient in both training and test sets, leading to overly
optimistic results, we employ patient-level splitting so that data from each individual is
confined to a single partition. Within this framework, stratification by label preserves
class proportions across splits, and fixing a random seed guarantees reproducible splits
across experimental runs. We isolate the test set completely until the final evaluation,
reserving the validation set exclusively for early stopping and hyperparameter tuning.

To counteract the roughly 10: 90 imbalance between recurrent and stable lesions, we
apply data augmentation selectively during training: only recurrent lesions are augmented,
while the validation and test sets remain untouched to maintain an unbiased assessment.
Augmentation techniques include spatial transformations (random rotations between +10°
and +30°, flips), intensity adjustments (scaling, noise injection), and elastic deformations
that respect anatomical plausibility. By generating two to four augmented variants of
each recurrent lesion per epoch, we achieve a more balanced class representation in each
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training batch without compromising the integrity of the underlying dataset.

3.8.3 Output Data Structure

The preprocessing pipeline generates a standardized output structure that facilitates effi-
cient data loading and model training. Fach patient directory contains organized subdi-
rectories with processed data:

e Full Brain MRI Volumes: Resampled to 256x256x256 resolution and saved as
.npy files for each visit

e RTDose Volumes: Aligned to MRI space and saved in matching resolution
¢ Lesion Masks: Full-resolution binary masks for each identified lesion

¢ Cropped Lesion Patches: 64x64x64 patches centered on lesions for direct model
input

¢« Metadata Files: JSON format containing clinical information, processing param-
eters, and quality metrics

[ sa visit1_brain.npy

E full_brain .
|l visit_mask_lesionl.npy
D roi o
|l visit1_mask_lesion2.npy
E rtdose F
\‘\* |iwaf wisit2_brain.npy
>__\| metadata.json i
tesiont_visitt.npy ) visit2_mask_lesion.npy
\ [ I visit2_mask_lesions.npy

lesion2_visiti.npy

(| il . s [5] visit_mask_tesions.n
|| wisit1_dose.npy || lesion3_visit2.npy iaeef ¥ 2_mask_lesions.npy

| su| visit2_mask_lesione.npy

[ visit2_dosen i lesiond_visit2.n
| _ Py esions_visit2.npy

lesions_visit2.npy

lesions_visit2.npy

Figure 3.8: Example output directory structure showing organized processed data files for
a single patient

Effective data loading during model training is made possible by this standardized output
format, which also preserves complete traceability of preprocessing procedures and clini-
cal metadata. Reproducible experimental workflows and flexible model architectures are
supported by the modular structure.

The preprocessing pipeline effectively converts the unprocessed Brain-TR-GammaKnife
dataset into multimodal inputs that are ready for analysis and can be used in deep learning
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patient _id: “GK_183"
- visits:
-
date: “2014-084-18°
visit_number: 1
- lesions:
-6
roi_name: "R atrium”
Lesion_number: 1
Location: R atrium” Expanded JSON Data in Table Format:
type "stable”
duration: 13.572132763720013
— 1 patient_id date visit_number ridose_available roi_name lesion_number location  type  duration match_score
-1 0 GH_103 20140418 1 Tue: R atrium 1 Ratium stable 13572133 10
roi_name: L temporal® 1 GK103 2014.0418 1 True L temporal 2 LTemporal stable 13572133 10
? 2 GK_103 20141218 2 True At Frantal 3 Rt Frontal stable 5389418 10
';t:::o" 3 GK.103 20141218 2 True  Ri Sup Frontal 4 RiSupFromtal stable 538941 10
13.872130763720013 4 GK.103 20141218 2 Tue R Inf Cerebeliar 5 AW Cembelar stable 5389418 1
match_score 1 5 GK_103 20141248 2 True At Lat Cersbeliar 6 RilstCembellar staie 5389418 10
rtdose_available: true
-1
date: "2014-12-18"
visit_number: 2
metadata.json

Figure 3.9: Example JSON metadata file containing structured clinical information and
processing parameters

applications. This all encompassing strategy preserves data quality and clinical validity
throughout the transformation process while addressing the particular difficulties of med-
ical imaging preprocessing.
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Chapter 4

Methodology

After stereotactic radiosurgery, it is important to correctly and quickly detect the recur-
rence of brain lesions. One of the most critical challenges faced by neuro-oncology is, after
initial treatment, monitoring patients for signs of tumor progression or recurrence. This is
especially important for patients receiving Gamma Knife radiosurgery, a highly localized,
non-invasive radiation treatment frequently used to treat both primary and metastatic
brain tumors. Although Gamma Knife therapy helps many patients achieve local control,
some continue to experience lesion recurrence, usually months after treatment. Early
detection of these recurrences may allow the management of additional therapeutic inter-
ventions, which could enhance quality of life and survival.

4.1 Problem Definition

In this study, the recurrence prediction task is formulated as a binary classification prob-
lem, where each lesion is labeled as either recurrent or stable. The goal is to use deep
learning to automate this classification process using a combination of imaging and clinical
data. Every lesion in the dataset is identified as an independent sample based on follow-up
assessments recorded in the lesion-level clinical Excel sheet. The labels are determined
by radiological reports and post-treatment evaluations to find out whether the lesion has
remained stable or progressed.

The multimodal input for the model includes the following:
e Structural MRI volumes, which provide full brain structure.

o The radiotherapy dose distributions from RTDOSE DICOMs, which measure the
distribution of exposure to radiation that the lesion received.

o RTSTRUCT based segmentation masks that define the lesion area.

e Clinical characteristics include lesion location, treatment fractionation, and time
since treatment.
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The strong class imbalance makes this task even more challenging: out of the 244 lesions,
only 23 (or 9.4%) are recurrent, while the other 221 are stable. Because of such skewed
class distributions, a model may be biased to over-predict the majority class, resulting in
high accuracy but low sensitivity to recurrence cases. To counteract this, the methodology
uses techniques like balanced batch sampling, selective data augmentation, and focal loss,
all of which are meant to increase the model’s sensitivity without sacrificing specificity.

4.2 Input Design

In our approach, each lesion is treated as an individual data sample. The task is to
determine whether a lesion is stable or recurrent following Gamma Knife radiosurgery. To
build a rich and informative input representation for each lesion, we combined imaging
data with clinical context. Each sample consists of three components: a cropped MRI
volume, a corresponding RTDose, and a structured clinical feature vector.

« MRI Lesion Patch (3D Volume)

For each lesion, we extract a 3D MRI patch of size 64 x64x64 centered on the lesion
region. The lesion’s location is defined by the contours in the RTSTRUCT DICOM
file. We convert these contours into binary masks and compute a bounding box
around the lesion. To provide context, we expand the bounding box with additional
padding in each dimension. Before cropping, we resample the entire MRI volume to
a uniform voxel spacing and normalize the intensity values to the [0, 1] range. This
ensures consistent input dimensions and contrast across all patients.

« RTDose Patch (3D Volume)

If RTDose data is available, we extract a matching 64 x64x64 dose patch aligned to
the same coordinates as the MRI lesion patch. The RTDose files contain 3D grids
of radiation dose values, which we resample and align with the MRI space using the
metadata stored in the DICOM headers. For lesions without RTDose files, we insert
a zero-filled array to maintain a consistent input structure across all samples.

o Clinical Metadata (1D Feature Vector)

Each lesion also includes structured clinical data, which we extract from the Excel
sheet in the “lesion level” tab. we include features such as the number of months
between treatment and imaging (duration_tx_to_imag), the number of radiation
fractions, and the anatomical location of the lesion. We encode these variables into
a fixed-size vector, using one-hot encoding or numerical scaling as needed.

One-Hot Encoding

One-hot encoding is a method used to convert categorical variables, values like "Lt Frontal"
or "Rt Cerebellar', into a numerical format that can be understood by machine learning
models.

Unlike numbers, categorical values do not have mathematical meaning or order. For
example, "Frontal" is not greater or smaller than "Parietal", they are just different. But
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machine learning models need numerical input, so we convert each possible category into
a binary vector, where:

o Each position in the vector represents one possible category.
e A 1is placed at the position corresponding to the current value.
o All other positions are filled with 0.
Example:
4 possible lesion locations:
o Frontal
o Parietal
o Cerebellar
e Occipital
Then:
o "Frontal" — [1, 0, 0, 0]
o "Cerebellar" — [0, 0, 1, 0]

In the dataset, we extracted lesion location information from the clinical Excel file under
the column "Lesion Location". These values were written in text and often had inconsistent
abbreviations (e.g., "Lt Cerebellar" or "Left Cereb"). First, we normalized these names
using a location mapping dictionary.

Once we had a consistent set of standardized lesion locations (like "Frontal", "Cerebellar",
"Parietal"), we applied one-hot encoding to convert these labels into binary vectors.

This allowed each lesion’s location to be represented numerically as part of the clinical
metadata input to the model. The resulting vector was then concatenated with other clin-
ical features (like duration_tx_to_imag and fractions) and passed through the metadata
branch of the model.

By using one-hot encoding, we ensured that:
e The model treated each lesion location as a unique class.
o There was no unintended mathematical relationship between categories.

This encoding step was essential to allow categorical clinical data to be integrated into
the neural network alongside 3D imaging features.

Therefore, for each lesion, we construct a sample with the following input format:
« A 3D MRI patch: (64x64x64)
« A 3D RTDose patch: (64x64x64)
o A 1D metadata vector: (fixed length)
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To enable effective loading during model training, we save all data in the NumPy.npy
format. To ensure that the model learns meaningful lesion-specific patterns rather than
patient identity cues, each patient’s data is stored independently to avoid patient mixing.

4.3 Model Architecture

To classify each brain lesion as either stable or recurrent, we implemented and evaluated
three different 3D convolutional neural network (CNN) architectures. These models were
designed to progressively increase the complexity and incorporate more types of informa-
tion, including imaging, dosimetric, and clinical metadata. Each model builds upon the
previous, allowing a comparative analysis of how multimodal integration affects perfor-
mance.

4.3.1 First Model — Basic MRI-Only CNN

The first model, which we refer to as the Basic MRI-Only CNN, forms the basis of this
study. Its primary purpose is to establish a minimal threshold for classifying recurrences at
the lesion level just on anatomical details extracted from structural MRI data. This design
intentionally removes other information sources, such as RTDose or clinical metadata, in
order to isolate the performance contribution of volumetric imaging alone. The first model
trained here:

e Act as a baseline for measuring the effect of increasing model complexity
o Focus exclusively on what can be learned from MRI structure alone

o Serve as a computationally efficient option, especially for ablation studies or when
full multimodal data is not available

A 64x64x64x1 single-channel, 3D volumetric MRI patch centered on the lesion serves as
the model’s input. Lesion masks, that are standardized across patients to a fixed spatial
resolution and intensity scale and defined in the RTSTRUCT files, are used to extract
these patches. The lesion itself and a margin of surrounding brain tissue help the model
to learn contextual cues.

This model uses a compact 3D CNN architecture composed of three convolutional blocks,
progressively extracting increasingly abstract spatial features.

The use of Global Average Pooling instead of flattening ensures a compact representation
and reduces the number of trainable parameters. This is followed by a dense layer to
learn final nonlinear mappings and a dropout layer for regularization. The final neuron
produces a scalar output for binary classification.

Architectural Rationale

This model is intentionally kept simple by avoiding deeper convolutional stacks, batch
normalization, residual connections, or attention mechanisms, thereby reducing computa-
tional cost while providing a benchmark.
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Figure 4.1: Basic MRI-Only CNN

Training Observations

During training, this model converged rapidly and demonstrated modest accuracy on the
validation set. However, its sensitivity to recurrent lesions was limited. The absence
of RTDose and clinical context restricted its capacity to capture treatment-related or
patient-specific factors contributing to recurrence. Nonetheless, it learned general struc-
tural characteristics of stable vs. recurrent lesions reasonably well.

Limitations and Role in the Study

The Basic MRI-Only CNN is crucial because it illustrates the lower performance bound
when depending solely on imaging, even though it lacks the representational depth of the
later models. It offers a clear, comprehensible starting point for measuring the impact of
more complex model elements in later designs.

Though its standalone performance is limited in complex cases involving post-treatment
recurrence, this first model confirms that even a compact architecture using only lesion
centered MRI patches can extract clinically relevant patterns.

4.3.2 Second Model — Deeper MRI CNN with Expanded Dense
Layers

The second model builds upon the first by deepening the convolutional architecture and
expanding the fully connected layers. Like the first model, it uses only MRI data, but it
is designed to better capture complex spatial features by increasing the number of filters
in each convolutional layer and introducing additional dense layers for richer decision
boundaries.

The input remains a 3D MRI patch of size 64x64x64x1, centered on the lesion and
standardized in size and intensity. The extraction process is the same as described for the
first model.

This model deepens the network and includes more trainable parameters.

The deeper convolution stack allows the model to extract more sophisticated hierarchical
features. The two fully connected layers and added dropout help improve generalization
and allow the network to learn more abstract relationships.
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Figure 4.2: Deeper MRI CNN with Expanded Dense Layers

Architectural Rationale

This architecture reflects a common strategy in deep learning: increase model capacity
and regularization simultaneously. The three convolutional layers with increasing filters
allow deeper spatial representation. The larger dense layer (256 units) offers a wider space
for decision logic, while dropout helps preventing overfitting.

Training Observations

This model demonstrated improved learning over the first model, with better validation
performance and increased sensitivity to recurrent lesions. However, the lack of RTDose
or clinical metadata means it still has a limited view of treatment context. It benefits
from its depth and more sophisticated structure, but remains restricted by its unimodal
design.

Limitations and Role in the Study

Although this model offers higher performance than the first, it still lacks the multi-
dimensional context of later models. It serves as a midpoint in architectural complexity
and is useful for assessing the impact of additional depth and larger dense layers in uni-
modal (MRI-only) classification.

In conclusion, by increasing feature extraction depth and decision-layer capacity, the
Deeper MRI CNN surpasses the baseline and becomes a more powerful model for learning
recurrence-related imaging features from MRI alone.

4.3.3 Third Model — 3D Multi-Input Network

The third and final model, referred to as the Multi-Input Fusion Network, is the most ad-
vanced architecture in this study. It is designed to fully exploit the richness of the dataset
by combining structural imaging (MRI), treatment data (RTDose), and clinical features.
The goal of this architecture is to replicate how clinicians make informed decisions based
on multiple complementary sources of data.

Three parallel processing branches are used in this model to separately extract high-level
features from each input modality. To generate a final prediction, these features are then
combined and run through a number of fully connected layers. In the final classification
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step, this structure permits cross-modal interactions while allowing the model to learn
and retain modality-specific information.

Lesion Input [64,64,64,1] Dose Input [64,64,64,1] Clinical Input [6,]

Dense(64
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Figure 4.3: Deeper MRI CNN with Expanded Dense Layers

The model accepts three distinct inputs, each corresponding to a different data modality:

« MRI Lesion Patch: A 3D volume of shape 64x64x64x1 representing the lesion-
centered MRI scan. This volume contains the lesion and surrounding tissue and
provides anatomical context.

o RTDose Patch: A 3D volume of the same shape (64x64x64x1) representing the
spatial radiation dose distribution aligned with the MRI volume. In cases where the
RTDose is not available, a zero-filled volume is substituted to maintain consistency
in input shape.

« Clinical Metadata Vector: A 6-dimensional feature vector that includes categori-
cal and numerical data, including the number of dose fractions, the one-hot encoded
lesion location, and the time between treatment and follow-up.

Each input is processed through a specialized sub-network tailored to its data type and
then followed by a late fusion mechanism and a deep classifier head.
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Going into details of each branches, there are:
1. MRI and RTDose Branches with SE-Attention

Both the MRI lesion patch and the aligned RTDose patch are processed by separate but ar-
chitecturally identical 3D convolutional subnetworks. Each branch consists of four stacked
Conv3D—BatchNorm—PReLU blocks, interleaved with MaxPooling3D layers to progres-
sively reduce spatial dimensions and increase representational capacity. After the final
256-channel convolutional block (Conv3D(256,3)—=BN—PReLU), we insert a Squeeze-
and-Excitation (SE) attention[44] module to enable channel-wise feature reweighting:

» Squeeze

— A GlobalAveragePooling3D operation collapses each of the 256 feature-maps to
a single scalar, yielding a 256-dimensional descriptor that summarizes the global
response of each channel.

« Excitation

— This descriptor passes through a two-layer fully connected “bottleneck” MLP
(first to 256/4 units with ReLU, then back to 256 units with a sigmoid activa-
tion), producing one weight per channel in the range (0,1).

» Reweight

— The 256-vector of weights is reshaped to (1x1x1x256) and multiplied element-
wise into the original 3D feature-maps. Channels deemed more informative for
distinguishing stable vs. recurrent lesions are thus amplified, while less useful
channels are suppressed.

After reweighting, we apply dual global pooling (GlobalAveragePooling3D + Global-
MaxPooling3D) to produce a compact 512-dimensional vector for each branch. These
attention-augmented branch features, one from MRI, one from RTDose are then concate-
nated (along with the clinical branch) and passed to the fusion classifier head.

2. Clinical Metadata Branch

The clinical vector, representing structured patient and treatment data, is passed through
a fully connected subnetwork designed to project low-dimensional metadata into a higher-
level embedding space.

This pathway Dense, BatchNormalization, Dropout helps the model encode non-imaging
data and capture patient-level risk factors that are not visually observable in the scans.

3. Feature Fusion and Classifier Head

The outputs of the three branches (MRI, RTDose, Clinical Metadata) are concatenated
to form a unified feature vector. This vector is then passed through a deep classifier.

This structure enables the model to learn complex interdependencies between image fea-
tures, dose patterns, and clinical characteristics. The PReLU activations improve learning
flexibility over standard ReLU, especially in deep networks.
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Architectural Rationale
Several important principles guided the design of this model:

o Multimodal Fusion: Gathers supplementary data from RTDose (effect of treat-
ment), MRI (anatomical context), and metadata (specific context for a patient).

o Independent Subnetworks: To avoid cross-modal interference and to enable spe-
cialization, each modality is handled by a separate subnetwork.

e Hierarchical Feature Learning: Every branch can identify both local and global
patterns in the input volumes thanks to the deep convolutional stacks.

« Robust Aggregation: Dual global pooling (avg + max) enhances feature robust-
ness and generalizability.

o Dense Classifier: Following combination, the fully connected layers allow the
model to identify high-level patterns for ultimate classification.

Training Observations

This model demonstrated the highest classification performance across all metrics, par-
ticularly in correctly identifying recurrent lesions, which are often underrepresented in
the dataset. It benefited from having access to multiple modalities and showed better
generalization on the test set.

o The fusion of RTDose improved sensitivity to recurrence.

e Clinical features helped the model capture individual treatment histories and bio-
logical variations.

Limitations and Role in the Study

While this model achieved the best results, it is also the most computationally expensive
and depends on the availability of all three input modalities. In clinical scenarios where
RTDose or metadata are missing, its full potential may not be realized.

Nonetheless, this architecture best reflects real-world decision-making, where radiologists
and oncologists consider imaging, treatment, and patient-specific context simultaneously.

4.3.4 Focal Loss

To handle the pronounced class imbalance present in the dataset, we adopted the Focal
Loss function, originally introduced by Lin et al. in their work on dense object detection
(RetinaNet) [28]. While their approach was developed for object detection in computer
vision, the underlying motivation applies directly to medical classification tasks: when
one class is overwhelmingly more frequent than the other, standard loss functions (such
as binary cross-entropy) tend to bias model optimization toward the majority class. This
bias results in poor sensitivity for the minority class in this case, recurrent brain lesions
which are precisely the instances of greatest clinical interest.
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Focal Loss modifies the standard cross entropy by introducing a modulating factor that
down weights the loss contribution from well classified examples and focuses learning on
hard, misclassified examples. The mathematical formulation is:

FL(pt) = —au(1 — pi)" log(pe)
Where:
o p; is the predicted probability of the true class label,
o oy is a weighting factor that adjusts for class imbalance,

e 7 is a focusing parameter that adjusts the rate at which easy examples are down-
weighted[45].

As v increases, the loss focuses more on misclassified examples. Lin et al.[28] demonstrated
that this modification significantly improves detection performance in scenarios with high
imbalance, and their results strongly motivated its use in this project.

According to lesion classification, 221 of the 244 lesions in the dataset are classified as
stable, and only 23 are classified as recurrent. Because of this huge imbalance, focus loss
was used to direct the model away from the obvious solution of consistently predicting
the majority class.

In my training pipeline, we implemented Focal Loss as a custom Keras-compatible loss
class. we used the following parameters:

e v = 2.0: to focus the model more heavily on misclassified or ambiguous examples
o o = 0.5: to increase the weight of the minority (recurrent) class

This focal loss replaced binary cross-entropy and was applied consistently across all mod-
els. It helped improve the model’s ability to detect recurrence, leading to significantly
higher recall and F1-scores on recurrent cases. This was especially important for the third
model, where focal loss worked in synergy with the multi-input architecture to boost
sensitivity.

4.4 Training Setup

To train and evaluate the proposed models for lesion-level recurrence classification, we
implemented a carefully designed training pipeline with specific strategies to handle class
imbalance, improve generalization, and ensure reproducibility. This section outlines the
key components of the training procedure, including optimizer settings, data balancing
strategy, and regularization methods.

4.4.1 Optimizer and Learning Strategy

All three models were trained using the AdamW optimizer, a variant of the standard Adam
optimizer that incorporates decoupled weight decay for better regularization. AdamW
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has been shown to improve generalization in deep networks, especially when training with
limited data.

The specific hyperparameters used were:
o Learning rate: 1 x 107*
o Weight decay: 0.01

¢ Gradient clipping: applied with a maximum norm of 1.0 to prevent gradient explosion
in deep layers.

To help the model settle into a good minimum, we watch the validation loss during training
and cut the learning rate in half whenever it hasn’t improved for seven straight epochs.
Once it drops below 1 x 107% we hold it there so gradients don’t vanish. Although we
allow up to 100 epochs, we also use early stopping: if validation performance stalls for a
predefined stretch, training halts and the best weights are restored.

Early Stopping

we employed early stopping during training to avoid overfitting and pointless computation.
When the model no longer improves, this method stops training and tracks the validation
loss over epochs. In particular, if the validation loss did not decrease for 15 consecutive
epochs, training was terminated. In order to guarantee that the final model reflected the
best-performing state on the validation set, the model weights were additionally restored
to the epoch with the lowest recorded validation loss.

This strategy helped prevent overtraining, especially on deeper architectures or when
using augmented recurrent lesions, where the risk of memorizing patterns is higher. By
preserving the best model checkpoint and avoiding wasted epochs, early stopping also
contributed to more efficient and stable training.

4.4.2 Balanced Sampling

Due to the highly imbalanced nature of the dataset where only 9% of lesions are recurrent,
we implemented a balanced sampling strategy to ensure that each training batch included
a representative mix of classes.

Specifically:
o Each batch was constructed to include 50% stable and 50% recurrent lesions.
o Since stable lesions greatly outnumber recurrent ones, this was achieved by:
— Using each stable lesion at most once per epoch.

— Generating multiple augmented variants of recurrent lesions to match the batch
quota.

This approach allowed the model to see both classes equally often during training, avoiding
bias toward the dominant class and improving sensitivity to recurrence.
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4.4.3 Regularization and Logging

To improve generalization and prevent overfitting, particularly given the limited sample
size and high class imbalance, we applied a set of regularization techniques across all
models. These include Dropout, Batch Normalization, Gradient Clipping, and Early
Stopping. We also used Weights & Biases (WandB) for logging and model checkpointing
to retain the best-performing weights during training.

Dropout

Dropout is a regularization technique where, during training, a randomly selected fraction
of neurons is temporarily deactivated or “dropped” from the network. This forces the
model to not rely too heavily on any particular neuron and encourages the development
of more robust, distributed feature representations.

we applied dropout in the fully connected layers of each model. The dropout rate varied
between 0.3 and 0.5, depending on the size and depth of the layer:

o For smaller dense layers, we used 0.3.
o For larger ones, such as the 512 unit dense layer in the third model, we used 0.5.

This helped prevent the model from overfitting to specific patterns in the training data,
particularly important given the small number of recurrence samples.

Batch Normalization

The technique known as batch normalization (BN) normalizes the inputs to a layer so
that, over each mini-batch, their mean is zero and their standard deviation is one. This
lessens internal covariate shift, which can lead to instability and slow learning by altering
layer input distributions during training.

we positioned BN before the activation function and after each Conv3D and Dense layer
in my models. This was beneficial:

o Stabilize training, allowing for faster convergence.
e Reduce dependence on careful weight initialization.

o Serve as a form of regularization, because the use of batch statistics introduces slight
noise that prevents overfitting.

Gradient Clipping

Exploding gradients, where large updates destabilize learning, can affect deep learning
models with a lot of parameters, particularly 3D CNNs. we used gradient clipping, which
restricts the gradients’ magnitude during backpropagation, to fix this.

In order to prevent excessive shifts in weight values from any one gradient update, we
clipped the gradient norm to a maximum of 1.0. Training became more stable as a result,
particularly in deeper networks’ later phases.
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Logging with Weights & Biases (WandB)

Weights & Biases (WandB) served as our experiment tracking and logging platform for the
duration of this project in order to track model performance, visualize training dynamics,
and make debugging easier. An interactive tool called WandB was created to oversee
machine learning research. Its smooth integration with TensorFlow and Keras enables
the visualization of important metrics in real time and offers a centralized dashboard for
comparing various training runs.

For each training session, we configured WandB to automatically log and visualize a wide
range of relevant information, including:

o Training and validation loss curves
logged the model’s training and validation loss at the end of every epoch. This
allowed us to observe how well the model was fitting the data and whether overfitting
was occurring. For example, a consistent decrease in training loss but a plateau or
increase in validation loss is a strong indicator of overfitting, something we could
catch and act on quickly.

¢ Classification metrics
At each training epoch, we tracked key metrics: accuracy, precision, recall, F1-
score and AUC, to see not only how the model performed overall but also how well
it detected the rare yet clinically crucial recurrent lesions. Because the data were
imbalanced, we paid special attention to recall and F1-score for those recurrent cases;
accuracy by itself really didn’t capture the model’s true effectiveness.

o Learning rate behavior
As we used a dynamic learning rate schedule (ReduceLROnPlateau), WandB allowed
us to track how the learning rate evolved over time. This was especially helpful to
confirm that the scheduler was triggering as expected when validation loss plateaued,
and to evaluate how learning rate reductions impacted convergence.

« Hardware usage and system metrics
WandB also tracked GPU memory consumption, CPU usage, and epoch runtime
duration. This was helpful for identifying performance bottlenecks, optimizing batch
sizes, and determining which models were more computationally efficient, important
considerations when working with 3D volumetric data, which is memory intensive.

WandB made it simple for us to share training results, examine hyperparameter selections,
and compare various model architectures side by side. we could precisely monitor the
effects of modifications, like deleting metadata or switching to a different loss function,
on performance, which was helpful during ablation studies.

WandB ensured complete reproducibility by acting as a versioned experiment history in
addition to visualization. A fixed code snapshot, model configuration, and dataset version
were linked to each training run. This made it possible for me to go back to any earlier
run, replicate the outcomes precisely, and improve upon them.

In conclusion, WandB was a crucial component of my entire deep learning workflow since
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it was necessary for robust experiment tracking, debugging, and model interpretability in
addition to real-time monitoring.

In addition to tracking training metrics, we kept an eye on GPU resource usage, such as
memory and temperature, to make sure training held steady over time. It is computation-
ally demanding to train 3D convolutional neural networks on volumetric medical data, and
if extended training sessions are not closely monitored, they may cause hardware strain
and throttling or performance degradation.

we recorded the GPU temperature during several training runs of the third model to
ensure that hardware performance stayed constant. All of the experiments’ temperature
variations fell within the typical operating range, which is 45°C to 60°C.

Monitoring GPU temperature helped us ensure that:

o All training runs were executed under stable thermal conditions, without throttling
or GPU, induced slowdowns.

e Hardware performance was not a confounding variable in comparing results across
models and runs.

This level of resource monitoring supports the reproducibility and reliability of the training
process and confirms that performance differences were due to model behavior rather than
hardware inconsistency.

To evaluate how well the model balanced sensitivity and precision, particularly for detect-
ing recurrent lesions. we tracked the F1l-score during training. Fl-score is the harmonic
mean of precision and recall, and is especially important in settings where both false
positives and false negatives carry clinical significance.

4.5 Evaluation Metrics

To evaluate the performance of the trained models, we used a set of classification metrics
that provide insight into both overall accuracy and class specific behavior. Given the
dataset’s severe class imbalance and the clinical we importance of correctly identifying
recurrent lesions, we focused on metrics that go beyond simple accuracy. This section
explains the core metrics we used: accuracy, sensitivity (recall), specificity, and F1-score

4.5.1 Accuracy

Accuracy is the proportion of total correct predictions made by the model. It is calculated
by summing all correctly classified samples (true positives and true negatives) and dividing
by the total number of predictions.

TP+TN
TP+TN+FP+ FN

Accuracy = (4.1)

Where:
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Positive Negative
Positive True Positive False Positive
Negative False Negative True Negative

Figure 4.4: Confusion Matrix|[3]

o TP (True Positive): Model correctly predicts recurrence.

o TN (True Negative): Model correctly predicts stability.

o FP (False Positive): Model wrongly predicts recurrence.

o FN (False Negative): Model wrongly predicts stability.
Accuracy gives a general sense of overall performance.

In imbalanced datasets like ours (with 90% stable lesions), a model could predict “sta-
ble” for all cases and still achieve high accuracy, despite completely failing to detect any
recurrence.

4.5.2 Sensitivity (Recall)

Also known as recall, sensitivity measures how well the model identifies actual positive
cases(recurrent lesions).

TP

It can be clinically frustrating to miss a recurrence in a medical diagnosis (a false negative),
which delays treatment or follow up. A high recall guarantees that the majority of real
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recurrences are reported.

we used balanced batch sampling and focal loss to give sensitivity top priority. When
compared to the other two, my best model (the third architecture) had the highest recall.

4.5.3 Specificity

Specificity evaluates how well the model avoids false alarms, it measures how accurately
stable (non-recurrent) lesions are identified.

TN

—_— 4.
TN+ FP (43)

Specificity =

Many stable lesions will be incorrectly classified as recurrent by a model with low speci-
ficity, resulting in needless scans, worry, and follow-up procedures. On the other hand,
recurrence alerts with high specificity are guaranteed to be significant and clinically ac-
tionable.

we were able to determine whether my model was calling recurrence too aggressively
thanks to specificity, particularly when optimizing for higher recall.

4.5.4 F1-Score

The F1-score balances precision and recall. It’s especially useful when both false positives
and false negatives are harmful, and the dataset is imbalanced.

Precision * Recall
F1-S =2 4.4
core * Precision + Recall (4.4)

Where:
TP
Precision = ————— 4.
recision TPLFP (4.5)
TP
Recall = TP+ FN (4.6)

The trade-off between completely missing recurrence (low recall) and overpredicting it
(low precision) is captured by the Fl-score. Models that excel at one but not the other
are penalized.

Particularly during validation and model selection, the F1-score served as the main eval-
uation metric. Compared to accuracy alone, it provided a more significant performance
metric.

In the context of this project, classifying brain lesions as stable or recurrent, these evalu-
ation metrics were selected to reflect the clinical relevance and practical challenges of the
task. While accuracy provides a general measure of correctness, it is insufficient on its own
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due to the severe class imbalance in the dataset. Therefore, we placed greater emphasis on
sensitivity, specificity, and F1-score, which offer a more nuanced view of model behavior.

Sensitivity (recall) is especially critical, as missing a recurrent lesion (false negative) could
delay necessary treatment and compromise patient outcomes. At the same time, speci-
ficity is important to avoid falsely labeling stable lesions as recurrent, which could lead to
unnecessary anxiety, follow-up imaging, and intervention. The F1-score captures the bal-
ance between these two concerns, providing a single, interpretable metric that reflects the
model’s ability to detect recurrence without overwhelming the system with false alarms.

By combining these metrics, we were able to evaluate each model not only by its raw
performance but by how well it would function in a real clinical scenario, where both
correct detection and false alarms carry meaningful consequences.
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Chapter 5

Results and Conclusion

5.1 Experimental Setup

This section outlines the computational environment used to develop, train, and evaluate
the deep learning models presented in this study. Given the volumetric nature of the input
data (3D MRI patches) and the complexity of the model architectures, particularly the
multi-input model integrating imaging, dose distribution, and clinical metadata, it was
essential to conduct experiments on a system capable of handling high memory demands
and prolonged training sessions. Below, we describe the hardware configuration, software
environment, training settings, and reproducibility strategy.

5.1.1 Hardware Configuration

All experiments were conducted on a high-performance local workstation optimized for
deep learning workloads. The hardware setup included:

o Primary GPU: NVIDIA GeForce RTX 5090 with 32 GB of dedicated VRAM. This
GPU was used to perform all training and inference tasks, particularly for the third
model which required extensive memory due to multiple input branches and large
kernel stacks.

e Secondary GPU: NVIDIA GeForce RTX 3060 with 12 GB VRAM. This GPU was
used for auxiliary tasks such as preprocessing, data loading, and parallel evaluation.

« CPU: AMD Ryzen 9 5950X (16 cores / 32 threads). This processor provided sub-
stantial parallel processing power, facilitating fast data preprocessing and multi-
threaded execution for batch preparation.

« RAM: 128 GB of DDR4 memory. we were able to load and process several 3D
volumes in memory without running into paging delays or I/O bottlenecks thanks
to the large memory capacity.
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e Storage: 2 TB NVMe SSD. High-speed solid-state storage significantly reduced
data loading times for volumetric MRI and RTDose files, which are large and I/O-
intensive.

o Operating System: All experiments were run inside GPU, passthrough contain-
ers managed by Proxmox (64-bit). The use of virtualized containers allowed clean
environment isolation, system monitoring, and reproducibility.

With this setup, we could run multimodal deep learning models, manage massive amounts
of 3D data, and keep an eye on performance even during lengthy training sessions.

5.1.2 Software Environment and Training Configuration

All deep learning models were implemented in Python 3.10 using the TensorFlow 2.13
framework with GPU support via CUDA 11.8 and cuDNN 8.6. The environment was
managed using conda, ensuring package consistency and isolated dependencies across
experiments.

The primary libraries and tools used include:
o TensorFlow: for model building, training, and inference.
e NumPy and pandas: for data processing and handling clinical tabular data.
e Scikit-learn: for evaluation metrics, confusion matrices, and statistical tools.

¢ SimplelTK, pydicom, and nibabel: for reading and preprocessing DICOM and
NRRD files.

« Matplotlib and seaborn: for generating plots and visual summaries.

« Weights & Biases (wandb): for experiment tracking, metric logging, and model
checkpointing.

5.2 Performance Evaluation

In this section, we present the quantitative evaluation of my final deep learning model,
a multi-input 3D convolutional neural network (CNN) that incorporates imaging (MRI),
dosimetric (RTDOSE), and clinical information to classify brain lesions as either stable or
recurrent. The primary aim of this evaluation is not only to demonstrate the predictive
capacity of the model but also to analyze its behavior under the constraints of significant
class imbalance.

Out of 244 lesions, only 23 (9.4%) were labeled as recurrent, whereas 221 were labeled as
stable. This skew introduces a strong bias toward the majority class in typical learning
algorithms, which, if not explicitly addressed, can lead to misleadingly high accuracy but
poor clinical utility.

Overview of Test Results
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On the test set, the final model yielded the following results:
e Accuracy: 75.6%
« Sensitivity (Recall) — Recurrent: 50.0%
« Specificity — Stable: 78.4%
o Fl-score — Recurrent: 28.6%
Metric Interpretations

o Despite its apparent strength, accuracy is insufficient on its own because of the
imbalance in class labels. By consistently predicting "stable," a naive model could
attain over 90% accuracy, but this performance would have no clinical significance.

o In this situation, sensitivity (recall) is especially crucial. A 50% recall for the re-
current class indicates that half of the recurrence cases were detected by the model,
which is a notable improvement over majority class prediction or random guessing.

o For recurrence, the Fl-score, which balances recall and precision, is 28.6%. The
impact of false positives and the small number of recurrence cases account for this
comparatively low value. It is noticeably higher than the benchmark model’s F1-
score, though.

« Specificity of 78.4% shows that the model was also reasonably good at correctly iden-
tifying stable lesions, which adds confidence in its reliability for negative predictions.

These findings point to a model that, even in the presence of highly skewed data, actually
learns to differentiate between stable and recurrent lesions rather than just falling back
to the majority class.

Comparison with Published Benchmark

To contextualize the performance of my model, I compared it with the benchmark pro-
posed by Wang et al. (2023), who first published the Brain-TR-GammaKnife dataset.
Their final model was a multi-input 3D convolutional neural network that incorporated
three data streams: MRI volumes, RTDOSE maps, and a small set of clinical metadata (di-
agnosis, age, gender). All three inputs were processed through independent branches and
then concatenated before prediction, as illustrated in their published architecture(Figure

5.2).

Although they used data augmentation during training and testing, their pipeline lacked
a dedicated validation set. This meant that important hyperparameters, including the
decision threshold, were not optimized with respect to generalization, and early stopping
or calibration techniques were not applied. This potentially contributed to their model’s
overfitting on the training distribution, and underperformance on rare recurrence cases.

Their reported test performance was:
e Accuracy: 90.1%
« Sensitivity (Recall) — Recurrent: 10.0%
67



Results and Conclusion

'/MRI N
Preprocess Conv Conv Conv Ty
E— o — . Fully-
\ MP+BN MP+BN MP+BN
X connected
rl')nse
Preprocess Conv Conv Cony Concat .
— . . — \ —+  |— Prediction
MP+BN MP+BN MP+BN
. e il .
( Clinical
Record Dense Dense e

Figure 5.1: model[4]

« Specificity — Stable: 89.0%

e F1-score — Recurrent: 18.2%
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Figure 5.2: Performance Comparison on Test Set

While these numbers indicate strong performance on stable cases, their model failed to
generalize to recurrence, correctly identifying only 1 in 10 recurrence lesions. This is a clear
symptom of class imbalance, which was not explicitly addressed through loss functions or
batch balancing.
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As a result,shown in Figure 5.2, our model achieved a fivefold improvement in re-
currence recall (50% vs. 10%) and a substantially better F1-score (28.6% vs. 18.2%),
while maintaining clinically acceptable accuracy (75.6%) and specificity (78.4%).

5.3 Conclusion

This section reviews how the model performed and provides a deeper look into the results
beyond just the numbers. It explores what the model did well, where it faced difficulties,
and how those outcomes relate to the challenges of applying deep learning in real clinical
situations. Predicting whether a brain lesion is stable or recurrent after treatment is a
complex task, not only because of the limited number of recurrence cases in the dataset,
but also because of the clinical uncertainty that often surrounds recurrence itself. For
this reason, the discussion doesn’t only focus on metrics like accuracy or recall, but also
considers how the model’s behavior might support or complicate clinical decisions. In
addition to evaluating performance, this section discusses the clinical relevance of the
model’s predictions, highlights technical limitations, and suggests directions for future
improvement.

5.3.1 Model Strengths

The proposed model demonstrated several significant benefits, especially in addressing the
common class imbalance problem that has historically hindered recurrenc detection. The
model achieved 50% recall for recurrent lesions, compared to 10% for the baseline model,
by using batch-level balancing, selective data augmentation, and focal loss. This fivefold
improvement is particularly significant given that recurrent lesions account for less than
10% of the entire dataset.

Furthermore, the model used a multi-input architecture to concurrently integrate struc-
tured clinical features, RTDOSE, and MRI. Because of this design, each modality was
able to be processed separately and benefit from its distinct contributions: clinical meta-
data provided patient-level prognostic information, RITDOSE added treatment distribu-
tion context, and MRI provided structural insight.

Moreover, by increasing the spatial input resolution to 64x64x64, the model preserved
more lesion detail, which may have contributed to better learning of recurrence patterns
, particularly subtle ones that could be lost at lower resolutions (40x40x40, as used in
Wang et al.).

5.3.2 Model Challenges and Weaknesses

Despite these advancements, the model still faced important limitations. While recall
improved, the precision for recurrence remained low, suggesting that the model also flagged
a notable number of stable lesions as potentially recurrent (false positives). This result
reflects a common trade-off: in optimizing for sensitivity, specificity and precision may
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be sacrificed. In the clinical setting, this could lead to unnecessary concern or follow-up
testing, especially if used as a stand-alone diagnostic tool.

The inconsistent lesion labeling across various data sources presented another difficulty.
Mismatches between RTSTRUCT ROI names and clinical annotations remained even
after a location mapping scheme was used to standardize terminology. These discrepancies
might have affected the accuracy of training and evaluation by adding noise to the label
generation process.

Furthermore, while the multi-input architecture was effective, the clinical branch used
relatively simple dense layers, which may not have fully captured complex interactions
between clinical features. A more advanced representation (e.g., using attention or learned
embeddings) might further boost performance, especially when clinical data is sparse or
heterogeneous.

5.4 Future Work

While the model developed in this thesis achieved meaningful results, particularly in
detecting recurrent brain lesions, several areas remain open for further improvement and
exploration.

One key direction is the integration of temporal information. Currently, each lesion is
treated as an independent static sample, even when the patient has multiple follow-up
visits. Incorporating temporal context, such as changes in size, shape, dose overlap,
or imaging intensity across time, could help distinguish between stable post-treatment
changes and early signs of recurrence. Time-aware architectures, such as recurrent neural
networks or attention-based models, could be explored for this purpose.

Another opportunity lies in enhancing the clinical metadata pathway. In the current
implementation, clinical variables are processed through basic dense layers. This ap-
proach may not capture more nuanced relationships between features such as treatment
course, diagnosis timing, or patient demographics. Future versions of the model could
apply graph-based representations, embeddings, or attention mechanisms to learn deeper
patterns from clinical context.

Additionally, the model’s interpretability remains an essential area for development. While
the model demonstrates useful performance, it operates as a black box. Implementing visu-
alization techniques such as Grad-CAM, SHAP, or saliency maps would allow researchers
and clinicians to see which regions or features contributed most to a prediction, enhancing
both scientific understanding and clinical trust.

A further extension would be to perform external validation on independent datasets.
While this thesis focused exclusively on the Brain-TR-GammakKnife dataset, testing the
model on additional patients or multi-center data would be necessary to assess gener-
alizability and robustness. Furthermore, clinical deployment would require regulatory
validation, usability studies, and integration with hospital systems.

Finally, exploring multi-task learning, for example, jointly predicting recurrence status and
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lesion growth, could strengthen the model’s feature representations and improve overall
performance.
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