
Politecnico di Torino
DATA SCIENCE AND ENGINEERING

A.a. 2024/2025
Graduation Session July 2025

Development and Orchestration of a
Scalable and Efficient Automated

Data Ingestion Workflows and
Pipelines for Multi-Domain at MSC

Technology Italia
Data Ingestion and Workflows Management

supervisor:

Paolo Garza

candidate:

Babelle Tchoumi Yomi

Ringraziamenti

I would like to express my deepest gratitude to Professor Paolo Garza, whose
guidance, expertise, and constant support have been instrumental throughout
the entire journey of my thesis. His constructive criticism, insightful advice, and
unwavering encouragement have profoundly shaped the quality and direction of my
research. Working under his supervision has been both an honor and a privilege.

I am also thankful to the Politecnico di Torino, and in particular the Department
of Computer Engineering, Film and Mechatronics, for providing a dynamic and
intellectually stimulating environment. The academic resources and high-quality
teaching offered by the institution have been essential to the development of my
skills and knowledge in the field of Data Science and Engineering.

My sincere thanks go to MSC Technology, and in particular to Mr. Roberto
Novaro, Business Intelligence Manager, and Ms. Valentina Mauro, Team Leader,
for their warm welcome and guidance throughout my thesis project. I am deeply
grateful for the opportunity to be part of their team and for the rich, professionally
rewarding experience I gained. The collaboration not only allowed me to apply
theoretical knowledge to real-world challenges but also offered valuable insights that
significantly enhanced the academic dimension of my work. I especially appreciate
the trust, support, and mentorship I received during my time at MSC Technology.

I would also like to extend my heartfelt appreciation to my family. To my
parents, for their unconditional love, patience, and sacrifices that have laid the
foundation for my academic path. To my brothers and sisters, whose encouragement
and presence have always given me strength and perspective, even in the most
challenging moments.

Completing this thesis has been a journey marked by learning, growth, and
perseverance, and I am truly grateful to all those who have contributed to it,
directly or indirectly.

ii

Indice

Elenco delle figure vii

1 Introduction 1
1.1 Goal . 1
1.2 Thesis structure . 2

2 Technologies 3
2.1 Goal . 3
2.2 Key Technologies Used . 3

2.2.1 Informatica PowerCenter . 3
2.2.2 Azure Synapse Analytics . 4
2.2.3 Microsoft Fabric . 5
2.2.4 Azure DevOps . 5
2.2.5 Automic Automation . 5
2.2.6 Power BI . 6
2.2.7 Dagster . 6

2.3 Integration Strategy . 6

3 Integrating Data with Informatica PowerCenter 8
3.1 Goal . 8
3.2 Understanding the Data and Architecture 8

3.2.1 Source and Target Overview 8
3.2.2 Loading Frequency and Volume Management 9

3.3 Setting Up Tables and Workflows 9
3.3.1 Getting Access and Preparing the Systems 9
3.3.2 Using CDC and Automating Workflow Creation 10
3.3.3 Initial Data Load . 11

3.4 Tracking Changes and Incremental Loading with PowerCenter . . . 12
3.4.1 Designing the Mappings . 12
3.4.2 Managing the Workflow . 13

iv

4 Ingesting Data Using Azure Synapse 16
4.1 Introduction . 16
4.2 How I Designed the Pipelines . 16
4.3 Step-by-Step Pipeline Logic . 17
4.4 Making Pipelines Reusable Across Environments 19
4.5 Benefits of this Pipeline Design . 19
4.6 Orchestration with the IBOX_TN Master Pipeline 20

5 Modern Ingestion with Microsoft Fabric 21
5.1 Goal . 21
5.2 Pipeline Overview . 21
5.3 Failure Notification Mechanism . 23

5.3.1 Notify Teams Channel Pipeline 23
5.3.2 Pipeline Structure and Logic 24
5.3.3 MasterPipeline . 25
5.3.4 Key Benefits . 25

6 Establishing the Real-Time Data Pipeline 27
6.1 Design and Role of Silver Tables . 28

6.1.1 Automated and Dynamic Update Policy 28
6.1.2 Technical Considerations and Logic 31
6.1.3 Benefits of This Approach 31
6.1.4 Limitations and Considerations 31
6.1.5 Data Recovery Process After Schema Change 32

7 Workflow Automation and Scheduling 34
7.1 Execution of the Workflow via Automic Software Pre-Process Stage 34

7.1.1 Initialization of Variables . 34
7.1.2 Retry Management . 35
7.1.3 Environment Initialization 35
7.1.4 Workflow List Retrieval . 35

7.2 Post-Process Execution . 36
7.2.1 Job Workflow Design in Automic Software 37
7.2.2 Integration into Finance Team Daily Schedule 39
7.2.3 Results Interpretation . 40

8 Versioning and Deployment Process 43
8.1 Goal . 43

8.1.1 Table Deployment . 43
8.1.2 Running Build and Validation (CI/CD Pipeline) 44

8.2 Automic Workflow Deployment Using Azure DevOps 45
8.2.1 Azure DevOps Pipeline Overview 45

v

8.3 Deployment Script Functionality . 46
8.3.1 Creating the Deployment Package 46
8.3.2 Deploying to the Target Environment 48
8.3.3 Deployment Validation and Results Interpretation 49

9 Monitoring and Reporting 51
9.1 Overview of Data Discrepancy Report 51

9.1.1 Purpose and Structure . 51
9.1.2 Key Metrics and Numerical Analysis 52
9.1.3 Visualization Components 53
9.1.4 Impact and Usage . 54

9.2 Log Analysis Report . 54
9.2.1 Purpose and Structure . 54
9.2.2 Key Metrics and Visualizations 55
9.2.3 Numerical Interpretation . 55
9.2.4 Impact and Usage . 56

10 Reconciliation and Discrepancy Fixing Using Dagster 57
10.1 Reconciliation Workflow Design . 57

10.1.1 High-Level Architecture . 58
10.2 The generic_reconciliation_fixer Job 59

10.2.1 Job Overview . 59
10.2.2 Graph Components . 59
10.2.3 Detailed Steps . 59
10.2.4 Execution Process . 60

10.3 Use Case: Interlink_LinkMSCNet Agency_User Table 61
10.4 Advantages of Using Dagster for Reconciliation 61

11 Possible Improvements and Future Developments 62
11.0.1 Integration of Microsoft Data Activator for proactive detection 63

11.1 Incorporating Machine Learning for Anomaly Detection 64

12 Conclusion 65

Bibliografia 67

vi

Elenco delle figure

3.1 Change Data Capture Generator Tool 10
3.2 SQL Server Import and Export Wizard 11
3.3 Change Data Capture Mechanism 12
3.4 CDC Mapping for BunkerManagementSystem Tables 13
3.5 BunkerManagementSystem Daily Workflow 14

4.1 IBOXT Npipeline . 17
4.2 Incremental load Pipeline . 18

5.1 Dynamic Ingestion Pipeline . 22
5.2 Teams Notification Pipeline . 24
5.3 Master Pipeline with Error Handling 25
5.4 Failure Notification in Microsoft Teams 26

6.1 Full Eventstream pipeline from ASBonOVAsource through transfor-
mation and routing into Eventhouse bronze tables. 27

7.1 Workflow Structure of the JOBP in Automic 37
7.2 Workflow execution . 38
7.3 Integration of BunkerManagementSystem JOBP into Finance Team

Daily Schedule . 39
7.4 Execution Results of Finance Team Daily Workflows 41

8.1 Validation Step: Checking for Duplicate Table Declarations in the
ODS Project . 44

8.2 Azure DevOps Pipeline Overview 45
8.3 Deployment Validation Across Preproduction (PRE) and Production

(PROD) Environments . 49

9.1 Power BI Report: Overview of Data Discrepancies 52
9.2 Power BI Report: Log Analysis of Workflow Executions 55

10.1 High-Level Workflow of Reconciliation and Discrepancy Fixing . . . 58

vii

11.1 Dynamic Ingestion Pipeline . 62

viii

Capitolo 1

Introduction

1.1 Goal
As part of my thesis at MSC Technology Italia, I had the opportunity to contribute
to a large-scale data integration initiative aimed at modernising and improving the
efficiency of data ingestion processes across multiple business domains (Finance,
Commercial,Logistics,Liners, CRM, Operation etc.).

The main objective of this thesis is to develop and optimise automated data
flow mechanisms capable of handling large-scale multi-domain ingestion, including
domains such as finance, CRM, logistics, operations and cruise ships. These
pipelines must guarantee high performance, reliability and scalability. By leveraging
modern data ingestion tools, orchestration platforms and continuous deployment
practices, the project aims to reduce manual intervention, minimise operational
risk and increase confidence in data-driven reporting.

Specifically, the project focuses on:

• Establishing a seamless ingestion process using PowerCenter, Azure Synapse,
and Microsoft Fabric.

• Automating workflow orchestration via Automic for scheduling and execution
control.

• Implementing a discrepancy detection and reconciliation layer using Dagster
to ensure data consistency between source and target systems.

• Integrating CI/CD pipelines through Azure DevOps to streamline deployment
and maintain version control of data workflows.

• Providing visualizzation report using Power BI

1

Introduction

The ultimate goal is to deliver a scalable, maintainable, and production-ready
data framework that supports operational analytics and business intelligence at
MSC Technology Italia, with Power BI serving as the primary data visualization
layer.

1.2 Thesis structure
Initially, I worked on data ingestion using Informatica PowerCenter, which
is an ETL (Extract, Transform, Load) tool. This phase involved transferring
data from various source systems into a centralized Operational Data Store
(ODS) hosted on SQL Server. PowerCenter allows me to use Change Data Capture
(CDC) mechanisms and build robust workflows for tracking source changes and
ensuring up-to-date data synchronization across different environments, such as
Development, Test, Preproduction, and Production.

However, as data volumes grew and business requirements evolved, the need for
a more scalable and flexible solution became apparent. Therefore, I transitioned to
working with Azure Synapse Analytics. In this phase, I designed dynamic and
parameterized pipelines to ingest data incrementally from Oracle databases into the
ODS. I implemented a watermark-based incremental loading mechanism,
which enabled efficient identification and extraction of newly updated data only,
significantly reducing processing time and system load. Azure Synapse offered a
more cloud-native approach, providing better integration capabilities, improved
scalability, and easier management of complex data flows.

With the continuous evolution of cloud technologies and the increasing need
for unified data platforms, MSC Technology Italia started migrating towards
Microsoft Fabric. This platform allowed me to take a step further by leveraging
Lakehouse architecture and Delta tables. I implemented a watermark
approach combined with a CDC logic in Fabric pipelines, leveraging the
flexibility of notebooks and PySpark alongside structured copy activities and
scripts. The pipelines are fully parameterized to ensure reusability across multiple
databases and tables, providing a scalable, cost-efficient, and integrated solution
for data ingestion.

This thesis report details the methodologies, tools, and technologies I used to
achieve a robust, flexible, and scalable data integration ecosystem. It highlights the
evolution from traditional ETL approaches to cloud-native, unified data platforms,
illustrating how each technological shift contributed to improving data management
at MSC Technology Italia.

2

Capitolo 2

Technologies

This chapter introduces the main tools, platforms, and frameworks used to build a
fully automated data workflows at MSC Technology Italia. The goal is to explain
the roles and interactions of each component within the overall architecture and to
provide context for the implementation described in later chapters.

2.1 Overview of Data Engineering Concepts
At MSC, the Business Intelligence architecture team relies on data engineering to
collect, process, and deliver clean, usable data to multiple business domains. A
robust data pipeline must handle:

Data ingestion from heterogeneous sources (e.g., operational databases, APIs,
flat files)

Workflow orchestration to manage dependencies and execution order
Deployment automation to ensure reproducibility and scalability
Data reconciliation to ensure consistency and trustworthiness
Visualization and reporting to communicate insights
Automation, data quality, and DevOps practices are now integral to these

processes.

2.2 Key Technologies Used

2.2.1 Informatica PowerCenter
Informatica is a well-known software company. It offers many tools for enterprise-
level data management. These include data integration, data quality, and master
data management.

3

Technologies

In this case, we will focus on Informatica PowerCenter, which is Informatica’s
main product for ETL (Extract, Transform, Load) processes.

PowerCenter helps users:
Extract data from different sources,
Transform the data based on business needs,
Load the data into a target system like a data warehouse (DWH) or operational

data store (ODS).
PowerCenter is widely used for:
Data integration,
Data migration,
Data governance,
And managing data warehouses.

2.2.2 Azure Synapse Analytics
Azure Synapse Analytics is a data platform from Microsoft. It is used for data
warehousing, big data processing, and data integration. It also allows you to explore
logs and time series data using a tool called Azure Data Explorer.

You can bring data from many sources into a lakehouse (a mix of data lake and
data warehouse). Once the data is in the lakehouse, you can choose how to work
with it using SQL, Spark, or Data Explorer. You can do everything in one place
using Azure Synapse Studio.

With Synapse, you can manage data integration, monitor your system, and
apply security rules all in one platform.

Benefits of Azure Synapse Analytics

• Many powerful features with just a few clicks

• Flexible and works well with other tools

• One user interface to manage everything

Security, governance, and admin features are all in one place. They work
together smoothly. Synapse also works well with Power BI. You can use Microsoft
Information Protection labels to secure your data. These labels stay with the data
from Synapse to Power BI—even when exporting to Excel, which many users like.

Microsoft has been a trusted leader in this field for many years. That’s why
Synapse is a strong platform choice. It connects all the parts from the lakehouse to
data analytics and reporting, and even machine learning. It brings the full power
of Azure and Microsoft 365 into one powerful tool.

4

Technologies

2.2.3 Microsoft Fabric
Microsoft Fabric is a unified data analytics platform. It offers one product, one
user experience, one architecture, and one business model. All the data in your
organization is stored in one central place a SaaS data lake.

The data is saved in an open format. This means you can use the same data to
train machine learning models, build reports, run SQL queries, and use it in the
data warehouse.

Microsoft Fabric brings all the tools you need into one place. You can:
Create data pipelines to move data,
Train machine learning models,
Build semantic models to define key business metrics,
And much more.
For business users, Fabric connects data to Microsoft 365. This helps teams

work together and do quick data analysis easily.
Security, governance, and compliance are built into the platform. With Copilot,

the AI assistant, users can be more productive. It can help write SQL, build
reports, and create automated workflows based on events.

In short: all your data, all your teams, all in one place.
Microsoft Fabric covers many areas like data engineering, data science, and data

governance. It brings everything together in one platform.
Compared to Azure Synapse Analytics, Microsoft Fabric has many updates and

improvements. The design is cleaner, and the experience is much better overall.

2.2.4 Azure DevOps
Azure DevOps is a comprehensive suite of development tools and services from
Microsoft that enables teams to plan, develop, test, deliver, and monitor software
efficiently. It supports the full software development lifecycle and encourages
collaboration, automation, and continuous delivery.
empowers development teams to deliver high-quality software faster and more
reliably, through automation, collaboration, and efficient project tracking.

2.2.5 Automic Automation
Azure DevOps is a complete platform that helps turn an idea into a working
software product.

It provides all the tools you need for software development:
You can plan projects using agile tools,
Manage your source code with Git,
Create and run test plans from the web,
Deploy your apps using a powerful, cross-platform CI/CD system.

5

Technologies

Azure DevOps also gives full traceability and clear visibility across all develop-
ment steps. This helps teams stay organized and work better together.

2.2.6 Power BI
Power BI is a business intelligence tool used to create dashboards and reports. It is
tightly integrated with Microsoft Fabric and Azure Synapse. In this project, Power
BI is used to visualize the results of discrepancies checks.

2.2.7 Dagster
Dagster is a modern data orchestrator specifically designed for building data-aware
pipelines. It supports modular pipeline design, type-checking, observability, and
testability. In this thesis, Dagster is used for automating the data reconciliation
process: detecting and fixing discrepancies between source and target systems.

Dagster offers several advantages that made it an ideal choice for this project:

• Strong Typing and Validation: Dagster enforces type checking and sche-
ma validation at the operator level, ensuring higher reliability and better
debugging.

• Composable Workflows: Its graph-based pipeline design allows easy compo-
sition of modular workflows, facilitating the reuse and scaling of reconciliation
jobs across different datasets.

• Integrated Monitoring and Logging: Dagster’s native observability tools
(Dagit UI) provide fine-grained insights into each step of the process.

• Flexible Deployment: Dagster can be deployed on Kubernetes, Doc-
ker, or serverless environments, offering flexibility depending on operational
requirements.

2.3 Integration Strategy
The tools above are combined into a cohesive ecosystem:

• PowerCenter, Azure Synapse, and Fabric perform ingestion and transforma-
tion.

• Automic and Dagster orchestrate and automate workflows.

• Azure DevOps manages CI/CD and version control.

• Power BI delivers final insights and alerts to business users.

6

Technologies

Each tool plays a specific role in ensuring that the data pipeline is automated,
reliable, and maintainable. In the next chapter, we will explore the design and
implementation of the ingestion processes in more detail.

7

Capitolo 3

Integrating Data with
Informatica PowerCenter

3.1 Goal
In this chapter, I explain how I integrated a new data source called OVHBMS,
which runs on Microsoft SQL Server, into our target database: the Operational
Data Store (ODS).

My main goal was to design a reliable and scalable process for loading data from
several source tables into the ODS. To do that, I used a technique called Change
Data Capture (CDC), which helps track and load only new or modified records.
Although this started with tables from the BunkerManagementSystem database, I
made sure the approach could also support future ingestion projects within MSC.

I will walk through the tools and steps I used, explain the design decisions I
made, and share how I ensured that the data remained consistent and trustworthy
during the transfer.

3.2 Understanding the Data and Architecture

3.2.1 Source and Target Overview
The BunkerManagementSystem database contains important business data like
market indexes, product orders, and contract details. Each type of data is stored
in a specific schema. The tables requested for ingestion were:

• market.MarketIndex

• market.MarketIndexValue

8

Integrating Data with Informatica PowerCenter

• order.ProductOrder

• order.ProductOrderLine

• contract.PurchaseContract

• contract.PurchaseContractLocation

• contract.PurchaseContractIndex

This data needed to be moved to the ODS which is used by all MSC Business
Intelligence teams. The ODS is present in several environments: Development
(DEV), Testing (TEST), Preproduction (PRE), and Production (PROD) all running
on Microsoft SQL Server.

To keep things organized and aligned with the source structure, I created a
new schema named BunkerManagementSystem in the ODS. This mirrored schema
made it easier to trace data from source to destination and ensured consistent
integration.

3.2.2 Loading Frequency and Volume Management
Because the amount of data is not quite large, I decided to schedule data loads
once a day instead of every four hours or in real time. This frequency allowed us
to keep the data in the ODS up to date every day.

I applied a TOP clause to limit each load to 50,000 rows instead of 500,000
or many more. This helped prevent performance issues and avoid overwhelming
the network or database during the ETL process. It is a tradeoff between data
freshness and system stability.

3.3 Setting Up Tables and Workflows
3.3.1 Getting Access and Preparing the Systems
Before I could start building workflows, I submitted three important support tickets:

• I requested access to the OVHBMS source database across all environments
(DEV, TEST, PRE, PROD).

• I asked for CDC to be enabled on the source tables. This was essential for
tracking data changes.

• I also requested new relational connections in Informatica PowerCenter to
allow communication between the source and the ODS.

Taking care of these early helped avoid issues later in the project.

9

Integrating Data with Informatica PowerCenter

3.3.2 Using CDC and Automating Workflow Creation
Once CDC was up and running, I used the CDC Generator tool (see Figure 3.1) to
automatically create the ingestion workflows. I set the batch size to 50,000 rows
and scheduled the updates to happen daily.

Figura 3.1: Change Data Capture Generator Tool

The CDC Generator handled the following tasks:

• Dropping any existing target tables that had the same name.

• Recreating the target tables to match the source schema.

• Generating Informatica workflows to manage the ETL process.

This automation saved time and ensured that the integration process was
consistent and easy to maintain.

10

Integrating Data with Informatica PowerCenter

3.3.3 Initial Data Load
After setting up the workflows, I loaded historical data into the ODS using the
SQL Server Import and Export Wizard.

Figura 3.2: SQL Server Import and Export Wizard

I mapped each source table to its corresponding target table and launched the
data transfer. Here’s a summary of what was loaded:

• PurchaseContract: 578 rows

• PurchaseContractLocation: 578 rows

• PurchaseContractIndex: 904 rows

• MarketIndex: 5,578 rows

• MarketIndexHistory: 1,850,563 rows

11

Integrating Data with Informatica PowerCenter

• ProductOrder: 20,362 rows

• ProductOrderLine: 23,649 rows

This full load gave us a solid historical base to work from before switching to
daily incremental updates.

3.4 Tracking Changes and Incremental Loading
with PowerCenter

After the full load was complete, I needed a way to keep the target tables up to
date without reloading everything. That’s where CDC really proved useful. It
tracks every insert, update, or delete in the source database, and PowerCenter lets
me extract and apply these changes efficiently.

Figura 3.3: Change Data Capture Mechanism

3.4.1 Designing the Mappings
Each mapping pulls only changed records from the CDC tables. These records
include a special field called __ $operation that tells me what kind of change
happened:

12

Integrating Data with Informatica PowerCenter

• 1 = Delete

• 2 = Insert

• 3 = Before Update

• 4 = After Update

In the target tables, I added three technical fields:

• TEC_IsDeleted

• TEC_CreatedDate

• TEC_LastUpdatedDate

I filtered out unnecessary records (like operation 3), then applied the proper
action depending on the operation type, inserting new rows or updating existing
ones.

Figura 3.4: CDC Mapping for BunkerManagementSystem Tables

3.4.2 Managing the Workflow
The workflow, wf_ODS_CDC_Loading_BunkerManagementSystem_Daily_1, conso-
lidates all mappings pertinent to the BunkerManagementSystem tables. Given
the current scope, which encompasses fewer than 15 tables, a single workflow
is sufficient to manage the daily CDC-based data refresh operations. The data
ingestion pipeline is now fully configured to refresh data on a daily basis, thereby
ensuring that the ODS consistently reflects the latest information available from
the source OVHBMS.

13

Integrating Data with Informatica PowerCenter

Figura 3.5: BunkerManagementSystem Daily Workflow

14

Integrating Data with Informatica PowerCenter

The ingestion process implemented with Informatica PowerCenter provided a
strong foundation for integrating data from the OVHBMS source into the ODS.
However, as MSC technology needs expanded new source from another relational
database management systems as Oracle which needed to be ingested with more
flexibility and at scale, it became necessary to explore more modern, cloud-native
tools.

This led to the adoption of Azure Synapse Pipelines, a solution that supports
dynamic configurations, simplified maintenance, and seamless integration with the
broader Azure ecosystem. The next chapter presents in detail how I designed and
implemented these pipelines to meet the evolving requirements of the organization.

15

Capitolo 4

Ingesting Data Using Azure
Synapse

4.1 Introduction
In this chapter, I present the design and implementation of a custom ETL pipeline
that I developed using Azure Synapse to ingest critical business data from the
IBOX_TN Oracle database into a centralized SQL Server Operational Data
Store (ODS).

The solution I built is tailored to address essential requirements such as scala-
bility, reusability, and data integrity. I designed it to operate seamlessly across
different environments Development (DEV), Testing (TEST), Preproduction (PRE-
PROD), and Production (PROD) while processing key business tables such as
BL_Containers, BL_Details, Customers_Master, and Voyage.

By combining dynamic parameterization and an incremental loading mechanism
based on watermarking, I ensured that the pipeline delivers accurate, up-to-date
data while minimizing system load. In the following lines, I will outline the technical
architecture, design choices, and practical benefits of this cloud-native ingestion
process.

4.2 How I Designed the Pipelines
I built the pipelines with two key goals in mind:

• Load only new or updated data to save resources and improve performance.

• Make them reusable and adaptable across different tables and environ-
ments.

16

Ingesting Data Using Azure Synapse

Figura 4.1: IBOXT Npipeline

4.3 Step-by-Step Pipeline Logic
Here’s how the pipeline was designed and how it works step by step:

Step 1: extract the max Watermark date
To begin, I created a dedicated watermark table named WTMK_IBOX_TN in the ODS
environment across all stages DEV, TEST, PREPROD, and PROD. I initialized it
with a default date value of 1900-01-01 to ensure a controlled starting point for
the first execution.

For the development work, I created a dedicated branch in the Azure Synap-
se DEV workspace named IBOX_TN_ingestion. This branch was based on the
production workspace to maintain the production state while isolating my changes.

I then created a new pipeline named IBOX_TN_incremental_daily, which
begins with a Lookup activity. This activity queries the WTMK_IBOX_TN table to
retrieve the latest successful load date for a given table. This retrieved date serves
as the lower boundary for the incremental data extraction.

Step 2: Check for New Data
To avoid unnecessary processing, I used an If Condition activity that compares
the retrieved watermark date with the current date.

• If the watermark date is equal to today’s date, it means the data is already
up to date, and the pipeline terminates early.

• If the watermark date is earlier than today, it means new or updated data
exists, and the pipeline proceeds with the ingestion steps.

17

Ingesting Data Using Azure Synapse

When the condition is True, I proceed with the folowing steps

Figura 4.2: Incremental load Pipeline

Step 3: Load New or Updated Records
Inside the If True branch, I added a Copy activity to extract and load incre-
mental data from the Oracle source into the ODS. The logic includes:

• A dynamic SQL query that fetches only records modified between the last
watermark date and the current date.

• The addition of three technical columns to the target ODS tables, in order to
track changes and maintain historical data:

– TEC_IsDeleted: initialized to 0, indicating active records.
– TEC_CreatedDate: stores the date when the record was first loaded.
– TEC_LastUpdatedDate: records the most recent update timestamp based

on primary key changes.

Step 4: Load Deleted Records into a Working Table
In parallel, I implemented a second Copy activity to extract records marked as
deleted from the Oracle source. These records are loaded into a dedicated staging
table located in a separate database named WORKING. This staging area temporarily
stores deleted rows for post-processing.

Step 5: Apply Merge and Soft Delete Logic
Once both actual and deleted data are loaded, I used a Script activity to update
the corresponding records in the ODS.

For each primary key found in the delete staging table:

• I set the TEC_IsDeleted field to 1, marking the record as deleted.

• I also updated the TEC_LastUpdatedDate to reflect the deletion timestamp.

I uuse thus strategy in order to retain historical data instead of physically
removing rows, which is essential for auditability and data lineage tracking.

18

Ingesting Data Using Azure Synapse

Step 6: Update the Watermark
To complete the process, I executed another Script activity that inserts the
current timestamp into the WTMK_IBOX_TN watermark table. This ensures that the
next execution of the pipeline will only process changes that occurred after the
current run, maintaining consistency across all future loads.

4.4 Making Pipelines Reusable Across Environ-
ments

One of the strengths of Azure synapse pipeline is its high level of parameterization.
I used parameters for:

• Oracle and SQL Server connection details (host, port, service name, username)

• Secure credentials stored in Azure Key Vault

• Table names and dynamic queries

Thanks to this approach, I could easily deploy this pipeline in other environments
(TEST, Preprod and PROD) just by changing parameter values no need to modify
pipeline logic.

4.5 Benefits of this Pipeline Design
Here’s what I gained from this architecture:

• Performance: Incremental loads meant less data was transferred each time.

• Reliability: The watermark system made sure I didn’t miss or duplicate
data.

• Flexibility: I could reuse the same logic for multiple tables and projects.

• Cost-efficiency: I avoided running the pipeline unnecessarily, saving compute
time.

If a step fails, the orchestration stops. This prevents corrupt or partial data
from spreading downstream.

19

Ingesting Data Using Azure Synapse

4.6 Orchestration with the IBOX_TN Master
Pipeline

To coordinate the execution of all individual IBOX_TN table ingestion pipelines, I de-
signed a master orchestration pipeline named IBOX_TN_Overall_Orchestration.

Within this orchestration pipeline, I used multiple ExecutePipeline activities
to invoke each table-specific ingestion pipeline. For each call, I passed a set of
dynamic parameters, including:

• Oracle and SQL Server connection settings

• Secret names used for secure credential retrieval from Azure Key Vault

The execution flow is fully sequential: each sub-pipeline is triggered in the
correct order and only starts once the previous one has successfully completed.
This ensures data consistency across dependent tables and facilitates easier error
tracking and operational monitoring.

Why It’s Useful
• It gives me one central place to manage the ingestion process.

• It’s easy to add or remove tables as business needs change.

• It works across environments with no code duplication.

Overall, Synapse offered a more modern and flexible solution that aligned with
MSC Technology Italia’s move toward the cloud. It allowed me to build a robust,
scalable ingestion pipeline that is future-proof and well-integrated with the rest of
the company’s data platform.

20

Capitolo 5

Modern Ingestion with
Microsoft Fabric

5.1 Goal
In a constantly changing world, Microsoft keeps improving its products to meet
customer needs. That’s how Microsoft Fabric was created an all-in-one data
analytics platform. It helps bring together data collection, processing, storage,
and analysis in one place. It uses OneLake, a unified storage system designed to
gather data from different sources in the cloud.

Since MSC mainly works with Microsoft technologies, the company naturally
started moving gradually to the Microsoft Fabric ecosystem. This smart choice
offers many benefits: better scalability, built-in cloud management, advanced
analytics, and lower costs.

In this context, the goal was to design and build a more flexible, reusable, and
scalable data pipeline. This pipeline can handle large amounts of different types
of data. It collects data from many sources, using a method similar to the classic
Change Data Capture (CDC), but adapted for the cloud. It is based on modern
concepts such as watermarks to manage data flows, notebooks to run processing
tasks with PySpark, Delta tables to ensure data reliability and traceability, and
unified storage in OneLake. All of this is part of a Lakehouse architecture, which
combines the flexibility of a Data Lake with the structure of a data warehouse.

5.2 Pipeline Overview
The pipeline is fully parameterized, allowing dynamic adjustment for:

• Source Database Name

21

Modern Ingestion with Microsoft Fabric

• Source Schema Name

• Table Name

Figura 5.1: Dynamic Ingestion Pipeline

This design ensures high reusability, as the same pipeline can be invoked for
different datasets without requiring manual modifications.
This pipeline executes a series of operations to process daily data loads, aiming to
identify and apply changes from the source table to the target. To ensure conformity,
I utilized the Delta Lake format for efficient storage and change tracking.

The main steps include

• InsertTableIntoWTMK: A Notebook that manages and retrieves the latest
update timestamp (LastLSNDate) using a Delta Lake table as a watermark
store.

– If the watermark table exists, it loads and verifies whether an entry for
the specified TableName is present.

– If the watermark table exists but lacks the TableName, it appends an
initial record.

– If the table does not exist, it creates a new WatermarkTable in the Data
Lake.

This Notebook extracts the maximum LastLSNDate and returns it as an
output.

22

Modern Ingestion with Microsoft Fabric

• List_of_columns: An SQL script that dynamically conructs and retrieves
a list of columns from the specified source table, excluding system-generated
columns, in order to use it in the CDC query.

• getPrimaryKey: Another SQL Script that retrieves the primary key columns
of the specified table within the database schema.

• Copy data: A Copy Activity that transfers the changed data from SQL
Server to the Lakehouse in Parquet format. The SQL query is dynamically
generated to fetch only changes using CDC logic.

• Merge: A Notebook that performs the merge operation on the copied CDC
records, handling updates, deletions, and insertions into the Delta table.

• Updated_LastLSN: A Notebook that updates the Watermark_CDC Delta
table with the latest captured LastLSNDate, ensuring the incremental load
pipeline is ready for the next run.

5.3 Failure Notification Mechanism
As part of my efforts to improve the observability and reliability of our data
integration workflows, I designed and implemented a failure alert mechanism.
This system is based on two interconnected pipelines: a main pipeline, called
MasterPipeline, which runs the critical ingestion workflows, and a second pipeline,
NotifyTeamsChannelPipeline, which is triggered in case of failure.

The main goal of this alert system is to automatically notify the different BI
teams (Finance, Commercial, Liners, Operation, CRM, Architecture, etc.) via a
dedicatedMicrosoft Teams channel that I created whenever one or more pipelines
responsible for ingesting their respective databases fail. This helps reduce the time
between the appearance of the issue and its resolution. It eliminates the need for
manual checks of the workflow status and greatly improves data governance.

Throughout the design of these pipelines, I relied on the official Microsoft
documentation to implement this alert mechanism effectively.

5.3.1 Notify Teams Channel Pipeline
I used the NotifyTeamsChannelPipeline to structure the message sent to the
Teams channel, which I named Failure Notification. The goal is to automatically
alert the BI teams in case of a failure in a pipeline responsible for updating or
loading the data they manage.

23

Modern Ingestion with Microsoft Fabric

Figura 5.2: Teams Notification Pipeline

5.3.2 Pipeline Structure and Logic
The core logic of the NotifyTeamsChannelPipeline is composed of two main
steps:

• MessageCard JSON Schema: I first initialize a pipeline variable named
messageCard containing a structured JSON schema that conforms to the
Microsoft MessageCard schema, ensuring compatibility with Teams channels.
The message card includes the following execution details:

– Pipeline Run ID: A unique identifier for the pipeline execution.
– Pipeline Name: The name of the pipeline that encountered the failure.
– Status: Execution status of the pipeline (e.g., Failed).
– Start and End Time (UTC): Timestamps marking the beginning and

end of the execution.
– Execution Duration: Total time taken by the pipeline before the failure.
– Error Message: The error message that helps to understand why the

pipeline failed.
– Workspace Name: The environment or project within which the pipeline

was executed.
– Notification Timestamp (UTC): The exact time when the notification

is sent.

• Invoke Teams Webhook: Once the message card is constructed, the pipeline
calls a Microsoft Teams webhook URL (Failure Notification) that I pre-
configured before using a Web Activity. The webhook sends the structured
message, which results in an immediate notification being posted into the
designated Teams channel.

In the next section, I will describe how the MasterPipeline orchestrates data
ingestion flows and integrates failure detection logic to seamlessly trigger the
NotifyTeamsChannelPipeline when necessary.

24

Modern Ingestion with Microsoft Fabric

5.3.3 MasterPipeline
I created a pipeline called MasterPipeline. In this pipeline, I use two Invo-
ke Pipeline activities. The first one is used to call any pipeline for which we
want to receive a failure notification. In this specific case, I invoke the Incre-
mental_watermark_BunkerManagementSystem_pipeline. I connected
the second Invoke activity in case of the failure of the first one; it calls the
NotifyTeamsChannelPipeline, which is responsible for sending the notification.

I constructed the Teams MessageCard dynamically in order to capture the
execution details of the previous pipeline.

Figura 5.3: Master Pipeline with Error Handling

This pipeline is responsible for executing key data workflows and invoking the
Teams notification pipeline if an error is detected. The structure consists of:

• Primary Workflow Execution: Runs the BunkerManagementSystem
Pipeline data integration pipeline under controlled execution.

• Conditional Failure Handling: In the case of failure, the pipeline proceeds
to trigger the NotifyTeamsChannelPipeline, passing necessary metadata
for the alerting process.

This orchestrated approach ensures high reliability, improved observability, and
timely notifications in case of critical failures during data processing.

5.3.4 Key Benefits
Through this modular and robust setup, I achieved several operational advantages:

• Immediate Visibility into Failures: guarantees that MSC BI teams are
notified without delay when a critical data processing job fails, effectively
reducing downtime and accelerating incident response.

• Automated Alerting: Eliminates manual intervention for monitoring and
error notifications.

25

Modern Ingestion with Microsoft Fabric

Figura 5.4: Failure Notification in Microsoft Teams

• Reusable Pipeline Logic: The structure is generic and can be reused across
various data flows by simply modifying pipeline references and parameters.

• Structured and Actionable Alerts: Alerts are formatted for readability
and include all relevant execution metadata, making them actionable for
operational teams.

26

Capitolo 6

Establishing the Real-Time
Data Pipeline

To begin, I created a dedicated Lakehouse environment named EH_ASBonOVA
in Microsoft Fabric. Within this lakehouse, I defined the following:

• KQL Database: EH_ASBonOVA used to store structured and semi-
structured data.

• KQL Queryset: EH_ASBonOVA_queryset used to define and execute
KQL queries, including transformation logic and update policies.

A Lakehouse is a modern data architecture that merges the scalability of data
lakes with the performance and schema governance of data warehouses, making it
ideal for managing semi-structured formats such as XML.

Kusto Query Language (KQL) is a read-optimized language developed by
Microsoft for querying large datasets in real time. Its analytical capabilities make
it particularly well-suited for event-based and structured data processing.

Figura 6.1: Full Eventstream pipeline from ASBonOVAsource through transfor-
mation and routing into Eventhouse bronze tables.

27

Establishing the Real-Time Data Pipeline

Data Source Integration

The ingestion pipeline begins with ASBonOVAsource, a simulated Azure Service
Bus source configured to emit real-time messages. Each message contains a payload
structured in XML, encapsulating various types of business events such as charges,
equipment statuses, local BI updates etc... By activating this source, I ensured that
Eventstream began receiving these messages in real time, forming the ingestion
point of the pipeline.

Eventstream Processing

The centerpiece of the pipeline is the Eventstream named ES_ASBonOVA. which
functions as the ingestion and transformation engine. It receives the raw XML
payloads and applies logic to make the data suitable for downstream consumption.

I used an Expand transformation which targets the XmlRecords field, which
contains a list of embedded XML fragments within each message. The Expand
operation flattens this list into individual records, transforming the nested structure
into a stream of XML events.

I created a destination table named LandingTable in the Eventhouse which
act as a Bronze layer. In the following section, I describe how I implemented update
policies to parse and promote this data into silver tables.

6.1 Design and Role of Silver Tables
Silver tables act as the intermediate layer in the medallion architecture. While
bronze tables store raw and semi-structured XML data, silver tables are responsible
for parsing and structuring it into query-ready formats. This step is crucial for
Structuring unstructured XML.

I implemented this using KQL update policies, which automate the transfor-
mation of bronze data as it arrives.

6.1.1 Automated and Dynamic Update Policy
I implemented an automated and dynamic update policy for charge table. It is
important to note that this code is designed to be generic and adaptable to any
target table, provided that the source structure and column patterns are similar.

This flexibility is enabled by the use of dynamic schema extraction tech-
niques, particularly through the use of functions such asbag_unpack() and
bag_remove_keys(), which allow me to handle both known and unknown
attributes. Specifically, the transformation logic does not depend on a fixed sche-
ma. Instead, it dynamically interprets the contents of XML records, extracts

28

Establishing the Real-Time Data Pipeline

attribute-value pairs, and constructs a flexible structure where known fields are
explicitly projected and unknown fields are safely isolated into a dynamic Additio-
nal_columns object. This ensures that any evolution in source data such as the
addition of new attributes does not break the transformation process or require
major code changes.

The use of this dynamic design allows me to reapply the same update policy logic
to any other table in the data platform, simply by modifying the filter condition
for XML tags and adjusting the list of known columns. As a case study, I filtered
the charge data because it contains well-structured financial attributes that are
relevant for billing and cost analysis. However, I could have just as easily applied
this logic to other XML-driven datasets such as invoice, payment, or shipment, by
changing the tag filter (e.g., <BILocalData instead of <charge) and adapting the
column projection accordingly.

The underlying function, ExtractFromLandingTable_charge(), begins by
expanding the array of XML records from the LandingTable, converting XML
elements to strings, and filtering only those that match a specific pattern in this
case, those beginning with <charge . After cleaning and reformatting the XML
content into comma-separated key-value strings, I extract each attribute and pack
them into a key-value bag. This bag is then unpacked into columns, grouped by
entity, and deduplicated using arg_max() on the LM_DT timestamp to keep
only the latest version of each record.

The solution remains highly scalable, with low-latency updates and built-in
deduplication logic. One of the most valuable aspects of this solution is its
adaptability. The logic for cleaning, parsing, and typing the data remains stable
across different tables; only a few parameters like the tag name and the expected
output columns need to be adapted. This modular design significantly reduces the
effort required to onboard new data sources and supports future scalability as the
data environment grows.
while I chose the charge table for demonstration purposes, this policy architecture
is not limited to it. The methodology I used enables broad adaptability and
consistent data quality enforcement across multiple tables in the silver layer, all
while maintaining resilience to schema drift and unknown attributes.

29

Establishing the Real-Time Data Pipeline

1 .alter table Silver_charge policy update ‘‘‘[{" IsEnabled ": true ,"
Source ": " LandingTable ","Query": "
ExtractFromLandingTable_charge ()"," IsTransactional ": true ,"
PropagateIngestionProperties ": false }]‘‘‘

2
3 .create -or -alter function with (folder = " Policies ")

ExtractFromLandingTable_charge ()
4 {
5 LandingTable
6 | mv - expand record = ArrayValue_XmlRecords
7 | extend XML = tostring (record . XMLData)
8 | where XML startswith "<charge "
9 | extend XML_Clean = replace_string (replace_string (XML , "<charge

", "")," />","")
10 | extend XML_Clean = replace_string (XML_Clean , "\" ", "\",")
11 | extend kv_pairs = split(XML_Clean , ",")
12 | mv - expand kv = kv_pairs
13 | extend kv_split = split(kv , "=")
14 | extend key = tostring (kv_split [0]) , raw_value = tostring (

kv_split [1])
15 | extend value = trim(’"’, raw_value)
16 | summarize kv_bag = make_bag (pack(key , value)) by XML , Agency_Id
17 | evaluate bag_unpack (kv_bag)
18 | extend Additional_columns = bag_remove_keys (parse_json (tostring (

kv_bag)), KnownColumns)
19 | summarize arg_max (LM_DT , *) by Primary_Key_Id , Agency_Id
20 | project -away XML
21 | project tolong (Primary_Key_Id) ,
22 todatetime (LM_DT) ,
23 tolong (Cargo_Shipment_id),
24 tolong (Cargo_Shipment_Container_id),
25 tolong (Cargo_id),
26 tolong (Bill_Of_Lading_id),
27 tolong (Auto_Chg_For_Charge_id),
28 tostring (Charge_Definition),
29 toint(Adjust_Curency_GB_DBID_PK),
30 toint(Paid_At_Location_GB_DBId_PK),
31 todecimal (Adjust_Param_Std),
32 toreal (Adjust_Percentage),
33 toint(Adjust_Number_of_Units),
34 todynamic (Additional_colums)
35 }

Listing 6.1: KQL Update Policy for Silver_charge Table

30

Establishing the Real-Time Data Pipeline

6.1.2 Technical Considerations and Logic
• mv-expand: This command expands the array of XML records so that each

fragment is processed individually.

• Upsert strategy: By using Primary_Key_Id and LM_DT, the silver table
ensures that newer records overwrite older versions for the same ID, preserving
only the most up-to-date view.

• IsTransactional: IsTransactional is set to true, ensuring atomic updates that
maintain data integrity.

6.1.3 Benefits of This Approach
By leveraging KQL update policies:

• I eliminated the need for scheduled batch transformations.

• Real-time XML parsing occurs as soon as data lands in bronze.

• Silver tables provide clean, typed data that is immediately usable for BI
dashboards and analytics.

6.1.4 Limitations and Considerations
Despite the strengths of using KQL update policies and Microsoft Fabric’s Real-
Time Intelligence tools for XML data processing, several limitations have emerged
during implementation. These are important to acknowledge for future scalability
and maintainability of the solution:

Lack of Function Parameterization and Reusability

The function is statically defined and tightly coupled to a specific XML schema
and target table. It does not support the use of dynamic parameters, which limits
its adaptability. As a result, the function cannot be reused across different silver
tables or XML types without duplicating and manually modifying the logic. This
lack of flexibility hinders generalization and increases maintenance overhead in
environments dealing with multiple, heterogeneous data formats.

Schema Rigidity and Evolution

The current approach assumes a stable and predefined XML schema. If new
fields are introduced or the structure changes, the update policy and extraction
logic must be manually revised. There is no built-in schema discovery or dynamic
field mapping, which limits the pipeline’s ability to adapt to evolving business
requirements.

31

Establishing the Real-Time Data Pipeline

6.1.5 Data Recovery Process After Schema Change
One critical limitation in working with static schemas and update policies in
KQL is that newly added columns are not retroactively populated for historical
records. Once a column such as Result_Std for example is introduced in the
Silver_charge table, existing rows that were ingested prior to this schema change
will have null values for that column. This can result in incomplete or misleading
data when performing analytics.

To address this, I implemented a manual backfill and recovery process using
KQL. The process consists of two key steps: deleting the incomplete records, and
re-appending them with the newly added column properly extracted and populated.

1 . delete table Silver_charge records <|
2 Silver_charge
3 | where isnull (Result_Std)

Listing 6.2: KQL Update Policy for Silver_charge Table

In this step, I first identify and delete all records in the Silver_charge table where
the Result_Std column is null. This ensures that only outdated, incomplete
records are removed and that no duplicate primary keys will exist after re-insertion.

1 . append Silver_charge <|
2 Silver_charge
3 | where isnull (Result_Std)
4 | join kind=inner (
5 LandingTable
6 ...
7) on Primary_Key_Id , LM_DT

Listing 6.3: KQL Update Policy for SilverchargeTable

The second part re-ingests the relevant records by joining them with the raw
data available in the LandingTable. The logic includes:

XML parsing: The raw XML string is cleaned using replace_string() and
then exploded using string splitting logic to extract key-value pairs dynamically.

Bag unpacking: I use make_bag() and bag_unpack() to convert the
extracted key-value pairs into a tabular format.

Aggregation: The arg_max() function ensures that only the most recent
version of each record (based on LM_DT) is retained during the join.

Join operation: The re-parsed data is joined back with the incomplete records
using Primary_Key_Id and LM_DT to maintain alignment.

Projection: Finally, I re-select all relevant columns—including the newly added
column and append the corrected data back into the Silver_charge table.

This method not only restores missing values for new columns but also ensures
data consistency and continuity without disrupting the existing pipeline logic.

32

Establishing the Real-Time Data Pipeline

In this chapter, I detailed the strategies and mechanisms I implemented to
handle real-time ingestion, transformation, and schema evolution challenges within
Microsoft Fabric. By leveraging KQL update policies, I was able to automate the
structuring and upserting of XML data into silver tables, ensuring high data quality
and near real-time visibility.

Additionally, I established a recovery process to retroactively populate new fields
in existing records, maintaining data integrity without disrupting the operational
flow. These practices not only strengthened the robustness of the pipeline but also
laid a scalable foundation for future enhancements.

In the following chapter, I will extend this work by focusing on the implementa-
tion of analytical queries and real-time dashboards built on top of the silver layer,
providing actionable insights into the ingested business events.

33

Capitolo 7

Workflow Automation and
Scheduling

7.1 Execution of the Workflow via Automic Soft-
ware Pre-Process Stage

To automate the execution of Informatica PowerCenter workflows (figure 3.5)
and and Azure Synapse pipelines (figure 4.1), I configured a JOBS object inside
Automic Software. The automation process starts with the Pre-Process tab,
where I set up all the necessary information that the job will use before running
the workflow itself.

7.1.1 Initialization of Variables
First, I initialized a set of important variables that will guide the execution:

• I set the &parentnr variable, which keeps track of the parent task number.
This helps in organizing and tracing the job’s execution.

• I used the GET_PUBLISHED_VALUE function to dynamically retrieve values such
as:

– &DATABASE_NAME: the name of the database where the workflows will run,
– &DATABASE_VARA_COLUMN_NUMBER: a reference to the column in the varia-

ble object,
– &FOLDER_NAME: the folder where the workflows are stored,
– &user_INFA: the Informatica user running the workflows,
– &WAIT: a setting for controlling wait times,

34

Workflow Automation and Scheduling

– &LOOPING: which indicates whether the execution should loop or not.

By setting these variables dynamically, I made the job flexible and adaptable to
different environments or databases without needing manual changes.

7.1.2 Retry Management
To prepare for possible errors during workflow execution, I initialized retry-related
variables:

• &HASFAILED starts empty; it will later store any failure messages.

• &number_of_failures is set to 0 by default, tracking how many times the
job might fail.

• &MESSAGE is prepared to capture any error messages if something goes wrong.

This way, I ensured that if something fails, the job can react appropriately and
retry if needed.

7.1.3 Environment Initialization
Then, I set up the environment variables:

• If the integration service (&IS) is not forced, I set the variable &VARA_NAME to
the environment-specific variable object OVBINT.BI.CDC_ENVIRONMENT.VARA.

• I retrieved the environment name using the get_var function, ensuring that
the job is aware of whether it is running in DEV, TEST, PREPROD, or
PROD.

This step made sure the job would adjust its behavior according to the environ-
ment, reducing the risk of misconfiguration.

7.1.4 Workflow List Retrieval
Finally, I prepared the list of workflows that needed to be executed:

• I assigned &VARA_NAME with the appropriate workflow variable object, either
the normal daily workflow list or a looping list, depending on whether looping
was enabled.

• I read the actual list of workflows using the get_var function and split them
based on a separator (;).

35

Workflow Automation and Scheduling

With this setup, the job can process multiple workflows in one go, looping if
necessary, or running just once if that’s what’s needed.

In this Pre-Process step, I focused on creating a flexible, environment-aware, and
robust setup. By initializing everything properly at the start, I ensured the workflow
execution would be smooth, with minimal risk of failure or manual intervention.

7.2 Post-Process Execution
After the main execution of the workflow, the job transitions into the Post-Process
phase. In this stage, I implemented several important steps to ensure that the
execution is properly validated and logged.

Failure Detection and Status Handling

The first task in the Post-Process script is to check if the workflow execution has
encountered any failures:

• I retrieved the RUN_ID of the job and used it to get the current status.

• If the number of failures (&number_of_failures#) is greater than zero, I
marked the process as failed by setting the return code to 1000.

• I also retrieved and printed the failure messages for logging purposes to
facilitate troubleshooting.

Updating Execution Dates

If no failures are detected, I updated the variable object that keeps track of the
last successful execution date:

• I loaded existing values from the variable object related to the workflows.

• I updated the execution date to the current date (SYS_DATE(ŸYYYMMDD)̈),
ensuring that the job history remains accurate and traceable.

Exporting Execution Logs

For executions where the job status is different from 1900 (success), I added a block
to export detailed log information into a text file:

• I collected the start date and time, job name, and other important metadata.

• I constructed a file path dynamically based on the environment and job details.

36

Workflow Automation and Scheduling

• I then wrote the logs to a designated location using the WRITE_PROCESS
function.

This automated log generation helps me maintain a robust audit trail for each
workflow execution, making future analysis and troubleshooting much more efficient.

Publishing Variables for Restart

At the end of the Post-Process, I published several important variables:

• These include failure flags, database names, folder names, and user credentials.

Publishing these variables allows the job to be restarted easily if a failure occurs,
without needing to reinitialize all the parameters manually.

Through these Post-Process steps, I ensured that each workflow execution is
not only completed but also validated, recorded, and made ready for easy recovery
in case of failure. This automation enhances reliability and operational efficiency
significantly.

7.2.1 Job Workflow Design in Automic Software
In addition to configuring the individual JOBS object for workflow execution, I
designed a higher-level container to manage and orchestrate the process: the JOBP
object.

The figure below shows the structure of the JOBP object, named OVBINT.BI.CDC_WF_TEMPLATE.JOBP.

Figura 7.1: Workflow Structure of the JOBP in Automic

JOBP Structure and Flow

The JOBP object serves as a container that organizes and controls the sequence
of executions:

• It begins with a Start node, initializing the workflow execution.

37

Workflow Automation and Scheduling

• The first task is a JOBS object, labeled &ALIAS_START, which executes
the main PowerCenter workflow using the process logic I described previously
in the Pre-Process and Post-Process sections.

• If necessary, a second JOBS object, labeled &ALIAS_RESTART, is
configured to handle retries or re-executions in case of failure. This ensures
that if the first attempt fails, the system can automatically try again without
manual intervention. The failure can be due to connection Error for others
reasons. If the second attempt fails, I need to investigate.

• Finally, the workflow reaches the End node, marking the completion of the
process.

Figura 7.2: Workflow execution

Advantages of Using JOBP

By using a JOBP container, I am able to manage the execution flow more efficiently:

• I can control dependencies between different executions.

• I can implement automatic retry mechanisms.

• I can maintain a cleaner and more organized job structure within Automic.

This setup also provides flexibility for future enhancements, such as adding
notification steps, conditional branches based on execution status, or integrating
with other workflows.

Through this structured use of JOBS and JOBP objects, I established a
robust and scalable automation framework for the daily execution of Informatica
workflows, reducing operational risks and ensuring high reliability in the data
ingestion pipeline.

38

Workflow Automation and Scheduling

7.2.2 Integration into Finance Team Daily Schedule
After successfully configuring the BunkerManagementSystem JOBP for work-
flow execution, I proceeded to integrate it into the broader Finance team’s daily
scheduling framework.

Figura 7.3: Integration of BunkerManagementSystem JOBP into Finance Team
Daily Schedule

Daily Finance Workflow Structure

The figure above illustrates the structure of the OVBINT.BI.02.MAIN_TEAM_FINANCE_DAILY.JOBP
object, which consolidates all critical workflows managed by the Finance team:

• MAIN_DAILY_PRICING

• MAIN_DAILY_QUOTATION

• MAIN_DAILY_COSTCONTROL

• MAIN_DAILY_BUNKERMANAGEMENTSYSTEM

Each of these components represents a distinct JOBP object responsible for
running the daily workflows of different Finance databases.

39

Workflow Automation and Scheduling

Justification for Integration

Since the BunkerManagementSystem database is owned by the Finance team,
it was logical and necessary to schedule its workflow execution alongside other
Finance-related workflows. This ensures:

• A centralized and synchronized execution of all Finance data processes.

• Simplified monitoring and troubleshooting, as all workflows are grouped under
the same daily batch.

• Streamlined reporting and auditability, as execution logs and results are
aggregated for the entire Finance team’s operations.

Benefits of Centralized Scheduling

By including the BunkerManagementSystem in the Finance team’s daily job
plan, I achieved better operational coherence and enhanced efficiency:

• All Finance team workflows are triggered together, reducing dependency
conflicts.

• Maintenance and support processes are easier to manage with a single, unified
schedule.

• Future enhancements and scaling of Finance data operations can be imple-
mented without disrupting the existing framework.

Through this careful scheduling and integration, I ensured that the BunkerMa-
nagementSystem workflows align perfectly with the Finance team’s operational
requirements, contributing to the overall stability and robustness of the data
ingestion architecture.

7.2.3 Results Interpretation

After configuring and scheduling the BunkerManagementSystem workflows
alongside other Finance team databases, I monitored the execution results in the
Automic Software interface. The figure below shows an overview of the execution
status for the daily Finance workflows.

40

Workflow Automation and Scheduling

Figura 7.4: Execution Results of Finance Team Daily Workflows

Execution Status Analysis

From the execution monitoring panel, I observed the following:

• All JOBP and JOBS objects, including MAIN_DAILY_BUNKERMANAGEMENTSYSTEM,
completed with the status ENDED_OK - ended normally, indicating
that workflow and all mappings were executed successfully without errors.

• The sub-workflows DAILY_BUNKERMANAGEMENTSYSTEM_START
and DAILY_BUNKERMANAGEMENTSYSTEM_RESTART also ended
successfully, confirming that both initial runs and possible retry mechanisms
functioned as expected.

• One JOBS task showed a status of ENDED_SKIPPED - Skipped because
of WHEN clause. This result is normal and expected, as the restart process
is conditional and only triggers if the initial workflow fails. Since the initial
workflow succeeded, the restart was logically skipped.

Performance and Stability

The runtime statistics showed that the workflows executed efficiently, with reasona-
ble execution times:

• The DAILY_TEAM_FINANCE workflow completed in approximately 3 minutes
and 46 seconds.

• The MAIN_DAILY_BUNKERMANAGEMENTSYSTEM completed in under 1 minute and
3 seconds.

This performance is satisfactory and indicates that the daily data ingestion for
the BunkerManagementSystem is stable and efficient, even when integrated into a
larger scheduling system with other Finance team workflows.

Based on the observed results, I can conclude that the workflows for the Bun-
kerManagementSystem have been successfully automated and integrated into the

41

Workflow Automation and Scheduling

BI Finance team’s daily data operations. The execution was smooth, the retry
mechanisms worked correctly, and no manual interventions were required.

Through this careful monitoring and interpretation, I validated the robustness
and efficiency of the entire data ingestion and automation setup, ensuring reliable
daily updates to the Operational Data Store (ODS).

42

Capitolo 8

Versioning and Deployment
Process

8.1 Goal
The objective of this chapter is to present the approach adopted to ensure the
versioning and deployment of changes made to one or more databases, as well
as the deployment of implemented pipelines, from the development environment
to production. After automating the execution of workflows and validating data
ingestion into the Operational Data Store (ODS) in the development environment,
it was essential to address this key stage in the data pipeline lifecycle. This chapter
outlines the tools used, the steps followed to detect and apply the changes made,
and the best practices put in place to ensure consistency, traceability and quality
of deployments between different environments.

8.1.1 Table Deployment
After successfully creating tables in the ODS database within the development
environment, I ensured their deployment to other environments by updating the
repository. This process guarantees that all schema modifications are properly
tracked and versioned.

I used Visual Studio 2019 in combination with SQLSchemaCompare to detect
differences between the development and production environments. Before making
any changes, I updated my local repository by pulling the latest version of the
master branch. This step prevents conflicts and ensures that recent changes by
other MSC BI team members are incorporated.

To follow Git best practices, I created a dedicated feature branch. Using
SqlSchemaCompare.scmp, I analyzed the schema differences between the ODS

43

Versioning and Deployment Process

development environment and the master environment. Once the discrepancies
were identified, I updated the repository, committed the changes, and pushed them
to the feature branch. This ensures proper versioning and aligns development with
production schemas.

8.1.2 Running Build and Validation (CI/CD Pipeline)
Once the changes were pushed, I created a Pull Request (PR) in Azure DevOps to
initiate integration into the target environment. Typically, Azure DevOps triggers
a Continuous Integration (CI) build upon PR creation. However, to maintain
clean and traceable database artifacts, I introduced an additional validation step.

This step, implemented as a task group called "Checking for duplicate tables
in ODS.sqlproj", scans the project to prevent redundant table declarations. The
logic is implemented using PowerShell in the YAML pipeline. If any duplicates are
found, the build is blocked, and the names and occurrence counts of duplicated
tables are printed, along with a clear error message requesting removal before
retrying the build.

Figura 8.1: Validation Step: Checking for Duplicate Table Declarations in the
ODS Project

Once this validation passes, a success message is printed, and the user can
manually trigger the build. The release can then be approved by a senior developer

44

Versioning and Deployment Process

or database administrator. Upon approval, Azure DevOps triggers the Continuous
Deployment (CD) pipeline to deploy schema changes to the Dev repository using
database migration scripts. This process ensures schema readiness for testing and
further development.

8.2 Automic Workflow Deployment Using Azure
DevOps

8.2.1 Azure DevOps Pipeline Overview
An Azure DevOps pipeline is a structured sequence of automated steps designed
to build, test, and deploy applications. The pipeline typically consists of two main
components:

• Build Pipeline: Responsible for compiling the application, executing unit
tests, and generating artifacts necessary for deployment.

• Release Pipeline: Retrieves artifacts from the build pipeline, deploys them to
different environments (such as development, preproduction, and production),
and conducts integration and acceptance tests to validate deployment quality.

Figura 8.2: Azure DevOps Pipeline Overview

To ensure a consistent and reliable promotion of Automic workflows from
the test environment to preproduction and production environments, I developed

45

Versioning and Deployment Process

an automation solution using Visual Studio Code. I created two Python-based
scripts, CreatePackage.py and deployTeam.py, and integrated them into an
Azure DevOps CI/CD pipeline.

These scripts automate the processes required for the management and deploy-
ment of artifacts within the Automic platform. They facilitate the extraction,
packaging, export, and import of Automic objects, ensuring that all nested com-
ponents including folders, workflows (JOBP), and jobs (JOBS) are accurately
deployed.

8.3 Deployment Script Functionality
The deployment script performs a comprehensive set of operations, systematically
managing Automic objects based on a detailed comparison between the source
and destination environments. The core functionalities include:

• Create: Introduce new objects found in the source environment but missing
in the destination environment.

• Delete: Remove objects that have been deleted from the source environment,
ensuring consistency.

• Update/Replace: Update existing objects that have been modified, guaran-
teeing that the latest versions are deployed.

• Preserve Hierarchy and Dependencies: Maintain the original structure
and relationships between objects through recursive folder traversal.

By automating these steps, I reduced manual intervention, minimized errors,
and ensured that deployments are repeatable, traceable, and aligned with best
practices in continuous integration and continuous deployment.

8.3.1 Creating the Deployment Package
The first crucial step in the deployment process is the creation of a deployment
package. This package is responsible for generating an export of the selected
Automic objects or folders from a specified team directory within the source
environment. The extracted data is then stored in a structured manner, making it
ready for transfer and import into the target environment.

Key functionalities include:
To implement this, I utilized the Click library in Python, which allowed me to

set command-line arguments and manage execution parameters efficiently.

46

Versioning and Deployment Process

Environment Detection: The script accepts the source environment (e.g., CI,
PRE, PROD) through command-line arguments and reads additional environment
variables such as SYSTEM_DEBUG and MODE_SIMU to control debug and simulation
modes.

The script is executed with the following options:

• –envsrc: Specifies the source environment (mandatory).

• –teamfolder: Defines the path to the folder or team objects to deploy
(mandatory).

• –apipassword: Provides the password for authenticating the Automic API
user.

• –objectname: Identifies a specific object to deploy (optional but critical when
targeting individual objects).

I ensured secure management of credentials and endpoints by reading them from
a configuration file, data.json, located within the utils directory. Before procee-
ding with object extraction, I used the script getUrl_and_testConnection.py to
establish and verify a connection to the Automic environment, ensuring that the
API endpoints were responsive and accessible.

During execution, the script generated several metadata files, such as env.txt,
objectName.txt, and pathFolder.txt, which were stored in the working directory
for reference in subsequent pipeline steps.

Once the initial setup was complete, the script:

• Identified all objects within the selected folder or targeted the single specified
object.

• Wrote the object list to listObjectPackage.json.

• Exported the actual object files into the artifacts/object directory using
the function Export_Objects_toDirObjects.

Additionally, a dedicated log file was created for each execution, timestamped,
and stored within the artifacts/workingDir directory. This practice not only
guaranteed traceability but also simplified debugging during both interactive use
and automated runs.

This script forms the foundation of the deployment pipeline by isolating only the
relevant objects and ensuring their integrity before any import or synchronization
activities. It is typically invoked before executing subsequent scripts responsible
for importing or synchronizing objects into the Pre-production or Production
environments.

47

Versioning and Deployment Process

By carefully isolating deployable objects and preparing them for import, I ensured
a clean, consistent, and reliable deployment process across environments, supporting
operational stability and compliance with release management standards.

8.3.2 Deploying to the Target Environment
The script deployTeam.py serves as the counterpart to createPackage.py, comple-
ting the deployment cycle by taking the previously exported package and deploying
it to the desired target environment, either Preproduction (PRE) or Production
(PROD).

Core Responsibilities:

• Reads Deployment Metadata: It retrieves object-level or folder-level
metadata (such as objectName.txt or pathFolder.txt) created during the
package creation phase, determining the scope and boundaries of the deploy-
ment.

• Target Environment Configuration: The script dynamically adapts its
behavior based on the selected target environment (CI, PRE, or PROD) by
reading configurations from data.json, including the appropriate credentials
and API URLs.

• Validates Connection to Destination: Before initiating the deployment,
it performs a connection test using testconnection to ensure that the
deployment can proceed safely and that the destination is reachable.

• BackUp Existing Destination Objects: To safeguard the existing state of
the target environment, the script performs a comprehensive backup:

– Retrieves existing objects using get_AWA_Objects.
– Exports and stores these objects in JSON format for auditability.
– Saves the backup in a time-stamped directory, enabling potential rollback

or historical comparison.

• Reads Source Objects: The source objects, previously exported during
package creation, are read from the artifacts/workingDir directory using
read_Awa_Src_Objects.

• Imports and Syncs Objects: The core function import_Objects manages
the synchronization process:

– Creation of missing objects in the destination.
– Update of existing objects that have been modified.

48

Versioning and Deployment Process

– Deletion of obsolete objects, if allowed by business rules. The synchroni-
zation process is based on object existence, differences in object definitions,
and the presence of objects in the exported package.

• Logging: For each deployment, a uniquely named log file is generated and
stored in the workingDir folder, tagged with the environment and a timestamp.
This facilitates detailed traceability of every action performed.

The deployTeam.py script ensures a consistent, traceable, and robust deploy-
ment process for Automic automation objects across different environments. By
performing automated backups, verifying connectivity, and executing intelligent
object synchronization, the script aligns with MSC release practices and minimizes
operational risk.

This architecture guarantees traceable, consistent, and auditable deployments.
Thanks to its modular design, the deployment system can easily be extended to
support other MSC teams and applications. Each deployment step is meticulously
logged, and only modified or relevant objects are deployed, thereby improving
efficiency and reducing deployment risks.

8.3.3 Deployment Validation and Results Interpretation
After running the deployment scripts and triggering the pipeline, I carefully moni-
tored the execution status through the Azure DevOps interface. The Figure 8.3
presents the result of a typical deployment.

Figura 8.3: Deployment Validation Across Preproduction (PRE) and Production
(PROD) Environments

49

Versioning and Deployment Process

Results Analysis

As shown in Figure 8.3, the deployment process followed a two-stage promotion:

• The deployment started with the Preproduction (PRE) environment, where
the deployment was manually triggered. The process completed successfully,
indicating that all exported Automic objects were accurately synchronized
and validated in the PRE environment without errors.

• Following the successful deployment to PRE, the pipeline automatically moved
to the Production (PROD) environment. The deployment to PROD
also succeeded, confirming the stability and readiness of the objects for live
operational use.

Interpretation and Impact

The green status indicators for both stages reflect the robustness of the deployment
scripts and the effectiveness of the automation strategy. Key impacts observed
from this result include:

• Consistency Across Environments: Ensuring that the same versions of
objects are deployed to both environments without discrepancies.

• Efficiency: Reducing manual effort and accelerating the release cycle.

• Risk Mitigation: Automated backups and validation steps minimized
deployment risks and supported rapid rollback if needed.

The successful validation of the deployment in both PRE and PROD environmen-
ts underscores the reliability and efficiency of the automated deployment pipeline.
By automating the export, packaging, validation, and deployment processes, I have
ensured a scalable and sustainable deployment model for Automic workflows that
aligns with enterprise standards for release management.

This deployment framework not only supports current operational requirements
but is also scalable to accommodate future expansions and integrations with other
teams and systems.

50

Capitolo 9

Monitoring and Reporting

After establishing a robust deployment and automation process for the ingestion
pipelines, it was essential for me to develop a monitoring system to validate data
integrity and track workflow executions in the production environment. In this
chapter, I will describe the design and purpose of the Power BI reports that I
created to meet these objectives.

9.1 Overview of Data Discrepancy Report
To ensure the reliability of data between the source systems and the Operational
Data Store (ODS), I designed a comprehensive Power BI report that provides an
overview of data discrepancies. This report enables quick identification of
inconsistencies between the source databases and the corresponding tables in the
ODS.

9.1.1 Purpose and Structure
The report consolidates discrepancy checks performed across various databases and
schemas. Its primary objectives are:

• Track the Number of Checked Databases and Tables: Monitor the
extent of coverage in the validation process.

• Identify Discrepant Databases and Tables: Highlight databases and
tables where discrepancies were found.

• Discrepancy Trends: Visualize trends over time to detect patterns and
potential degradation in data quality.

51

Monitoring and Reporting

Figura 9.1: Power BI Report: Overview of Data Discrepancies

• Details of High-Impact Discrepancies: Provide detailed insights into
discrepancies with significant impact, such as large differences in record counts
or critical business tables.

9.1.2 Key Metrics and Numerical Analysis

From the report shown in Figure 9.1, I analyzed the following metrics:

• Data Checked Databases: A total of 52 databases were subjected to
discrepancy checks.

• Discrepant Databases (%): 27% of the databases contained discrepancies.
This highlights that approximately one in four databases had at least some
form of data inconsistency.

• Data Checked Tables: 1,170 tables were verified during the validation
period, out of a total population of 1,177 tables.

• Discrepant Tables (%): 4% of the tables had discrepancies. Although
this percentage is relatively low, it still points to a non-negligible risk in data
consistency.

52

Monitoring and Reporting

Trends and High-Impact Discrepancies

The discrepancy trends over time show a slight upward movement in the number of
discrepancies identified as the data volume and operational complexity increased,
especially around late April and May 2025.

In terms of detailed table discrepancies:

• The most critical discrepancy was found in the table EquipmentCalculationDetail,
with a total discrepancy count of 659,462,790.

• Other notable discrepancies include:

– SVCChargeBasePorts: 304,159,812 discrepancies.
– CRECM_Commodity: 16,100,336 discrepancies.
– CRSHH_ShipmentHeader: 11,338,439 discrepancies.
– CECDT_ContractDetail: 10,968,943 discrepancies.

• Specific to the BunkerManagementSystem, discrepancies were detected in
the following tables:

– ProductOrderLine: 24,849 discrepancies.
– MarketIndexValue: 10,179 discrepancies.
– ProductOrder: 4,983 discrepancies.
– MarketIndex: 2,157 discrepancies.

The cumulative sum of discrepancies across all highlighted tables reached appro-
ximately 1,005,143,037 records. The BunkerManagementSystem contributes
to this total with a moderate discrepancy count, signaling the need for ongoing
monitoring and focused remediation efforts in its corresponding data pipelines.

9.1.3 Visualization Components
The report integrates several visual elements for better comprehension:

• Bar Chart: Displays the number of tables checked per database, differentia-
ting between those with and without discrepancies.

• Trend Lines: Illustrate the evolution of discrepancies over time.

• Detailed Table: Lists discrepancies per source database and target schema,
indicating whether they are classified as high impact and presenting the total
number of discrepancies detected.

53

Monitoring and Reporting

9.1.4 Impact and Usage
By using this report, I am able to:

• Rapidly detect and prioritize data quality issues.

• Provide transparency to BI teams regarding data reliability.

• Support ongoing data governance initiatives by ensuring a consistent and
repeatable validation process.

The implementation of this Power BI report has significantly enhanced the
transparency and traceability of data validation activities within the production
environment. It enables multi-domain teams to quickly grasp the consistency of
their respective data and focus their correction efforts where they are most needed.

In the following section, I will detail the design and function of the Log Ana-
lysis Report, which tracks workflow executions and system performance in the
production environment.

9.2 Log Analysis Report
In addition to monitoring data discrepancies, I designed a Log Analysis Report
in Power BI to provide visibility into the operational performance of the workflows
running in the production environment. This report enables me to track workflow
execution times, identify performance trends, and quickly detect any failures or
anomalies.

9.2.1 Purpose and Structure
The main objectives of the Log Analysis Report are to:

• Monitor Execution Durations: Track the run time of workflows across
different databases and schemas.

• Identify Failures: Detect workflows that have failed or encountered issues
during execution.

• Analyze Trends Over Time: Visualize changes in execution durations to
identify potential degradations or improvements.

• Support Operational Stability: Enable proactive actions to optimize
performance and reliability of data workflows.

54

Monitoring and Reporting

Figura 9.2: Power BI Report: Log Analysis of Workflow Executions

9.2.2 Key Metrics and Visualizations
The report provides several critical insights:

• Start Date and Duration Filters: Allow filtering of the data based on
custom date ranges and execution durations.

• Database Job Duration Trend: Displays how execution times vary over
time, allowing me to detect anomalies or performance degradations.

• Duration Runs and Start Time by DB: Summarizes average execution
durations per database and allows comparison across systems.

• Detailed Execution Table: Lists each table with the following attributes:

– Last Run Start and End Time
– Last Execution Status (OK or KO)
– Average Duration and Maximum Duration

9.2.3 Numerical Interpretation
From the report in Figure 9.2, I observed the following:

• The average execution time across all monitored workflows remains under 10
hours, with some databases like edi and CR_CalculationEngine reaching
durations of 8.3 and 7.6 hours respectively.

55

Monitoring and Reporting

• For the BunkerManagementSystem, the monitored tables such as:

– MarketIndex

– MarketIndexValue

– PortData

– ProductOrder

– ProductOrderLine

– ProductType

– PurchaseContract

– PurchaseContractIndex

– PurchaseContractLocation

– SupplierBusinessEntity

consistently show OK status with zero average duration, suggesting that
these workflows are optimized for fast execution or represent lightweight data
loads.

• Other databases show more variability with occasional failures (KO) especially
for larger tables, highlighting the importance of this monitoring report for
early problem detection.

9.2.4 Impact and Usage
Thanks to this report, I am able to:

• Detect performance degradations early by analyzing historical execution trends.

• Identify and address workflow failures immediately, reducing downtime.

• Optimize workflow performance by pinpointing tables or databases with
abnormal execution durations.

• Provide the operations team with real-time visibility into system health,
enabling faster resolution of issues.

The Log Analysis Report complements the data discrepancy report by focusing
on operational metrics. Together, they form a comprehensive monitoring solution
that ensures both data quality and system reliability are maintained at the highest
standards in the production environment. Through this monitoring setup, I
enhanced the ability to maintain stable, reliable, and efficient data ingestion
processes.

56

Capitolo 10

Reconciliation and
Discrepancy Fixing Using
Dagster

The goal of this chapter is to present the approach implemented to detect, analyze,
and correct data discrepancies between a source table and a target table within a
given environment.

While Change Data Capture (CDC) mechanisms are useful for tracking
changes in databases, they can sometimes compromise data quality. For example,
some data may be missing in the target, absent in the source, or modified without
being detected by CDC. These inconsistencies can result from various factors:
connection issues, improper handling of special characters, or technical limitations
of the CDC mechanism itself.

The Synapse pipelines I implemented do account for deleted records, but
they do not yet handle updates to existing values, which can lead to misalignment
between the source and the target.

This chapter therefore describes the design of a discrepancy detection and
correction workflow, based on Dagster, a modern and modular orchestration
framework. The objective is to ensure a process that is reliable, traceable,
and automated, in order to strengthen data governance and data integrity
throughout the pipeline.

10.1 Reconciliation Workflow Design
The reconciliation process is both proactive and corrective. It not only detects
discrepancies but also proposes and applies fixes based on intelligently designed

57

Reconciliation and Discrepancy Fixing Using Dagster

matching and merging logic.

10.1.1 High-Level Architecture

Figura 10.1: High-Level Workflow of Reconciliation and Discrepancy Fixing

The process consists of the following steps:

1. Discrepancy Detection: Identifies rows that exist in one system (source or
target) but not in the other, or rows with mismatched values.

2. Fetch Candidate Fixes: Retrieves the corresponding versions of the discre-
pant rows from both the source and the target databases.

3. Merge Fixes: Applies business logic to reconcile differences and determine
the correct version of the data.

4. Apply Fixes: Writes back the reconciled data to the target system for
automated fixing or exports the results for manual review.

58

Reconciliation and Discrepancy Fixing Using Dagster

10.2 The generic_reconciliation_fixer Job
10.2.1 Job Overview
I designed a generalized Dagster job named generic_reconciliation_fixer,
capable of performing discrepancy detection and reconciliation across any table by
parameterizing the database connection, schema, table name, and key columns.

This makes the job reusable and scalable for multiple datasets without requiring
changes to the underlying code.

10.2.2 Graph Components
The job is composed of the following operations structured within a Dagster graph:

• discrepancy_keys: This operation queries both the source and the target
systems, computes hashes of each record, and identifies discrepancies by
comparing hash values or detecting missing records.

• fixes_from_ods: Given a set of discrepancy keys, this operation retrieves
the corresponding records from the ODS (Operational Data Store) layer.

• fixes_from_source: Similarly, this operation retrieves the corresponding
records from the source system.

• reconciliation_merge_fixes: This is the core logic of the pipeline. It
merges the two data streams using a set of predefined reconciliation rules such
as:

– Prefer source values in case of conflict.
– Apply timestamps to select the most recent version.
– Retain non-null target values if the source has null.

• apply_fixes (optional): Depending on the configuration, this operation can
either update the ODS tables directly or export the reconciled records into a
file for manual review.

10.2.3 Detailed Steps
1. Discrepancy Detection:

• Perform a left outer join and right outer join between the source and
target.

• Compute a row-level hash for faster comparison.

59

Reconciliation and Discrepancy Fixing Using Dagster

• Extract primary keys of discrepant rows.

2. Fetching Candidate Fixes:

• Retrieve all fields for the discrepant keys from both systems.
• Ensure data type consistency during fetch to avoid merge conflicts.

3. Merging Logic:

• Apply column-wise comparison for each discrepant row.
• Construct a unified record resolving conflicts according to business rules.

4. Output:

• Output the merged data as a Delta table in a Lakehouse, a parquet file on
storage, or update the database directly depending on the configuration.

10.2.4 Execution Process
The execution of the reconciliation pipeline follows a controlled and modular
process:

1. Parameter Initialization: The reconciliation job is launched through the
Dagster Launchpad interface, where parameters such as the source system,
target schema, table name, and primary key are specified.

2. Resource Configuration: Database connections and credentials are loaded
dynamically, ensuring secure access to both the source and ODS systems.

3. Parallelism and Batching: For large datasets, the job supports batch
processing, breaking the workload into manageable chunks to optimize memory
usage and processing time.

4. Execution Monitoring: As the job runs, Dagster’s Dagit UI provides
real-time logs and progress indicators, enabling proactive monitoring and
immediate error handling.

5. Fix Application: Depending on the execution configuration, fixes are either
applied automatically to the ODS or exported for validation.

6. Post-Execution Validation: Upon completion, detailed logs and reports
are generated, ensuring full traceability of all fixes applied and discrepancies
resolved.

60

Reconciliation and Discrepancy Fixing Using Dagster

10.3 Use Case: Interlink_LinkMSCNet Agency_User
Table

One of the critical applications of the reconciliation pipeline was for the Agency_User
table in the Interlink_LinkMSCNet database. This table holds sensitive user
information used for operational reporting.

Challenges Encountered:

• High data volatility: frequent updates and deletes.

• Inconsistent timestamps across source and target.

• Duplicate rows due to lack of strict primary key enforcement.

The generic_reconciliation_fixer successfully detected inconsistencies, re-
trieved conflicting records, and merged them based on the most recent modification
timestamp. Through this, I ensured that the operational reporting layer had a
consistent and up-to-date view of user data.

10.4 Advantages of Using Dagster for Reconcilia-
tion

• Modularity and Reusability: The graph-based design allows easy reuse
across different datasets with minimal adjustments.

• Robust Error Handling: Dagster’s native support for retries, backfills, and
detailed logging makes the reconciliation process highly reliable.

• Operational Transparency: With Dagster’s web interface (Dagit), each
step of the process is visualized, enabling faster root cause analysis in case of
failure.

• Seamless Integration: The framework integrates well with Microsoft Fabric
and Delta Lake, ensuring that ingestion and reconciliation processes are well
aligned.

The systematic use of Dagster for reconciliation haddress a crucial gap in the
data pipeline lifecycle, reinforcing the overall data governance framework and
ensuring that our business-critical reports are backed by trusted and validated
data.

61

Capitolo 11

Possible Improvements and
Future Developments

Although the data integration pipelines described above meet the operational needs
of MSC Technology Italia, there are several areas for improvement to enhance
the performance, scalability, and flexibility of the pipelines. This chapter presents
improvement opportunities for future development, including the implementation of
a medallion architecture, a metadata-driven approach, the incorporation of machine
learning models for data analysis and processing, and many more.

Adopting a Medallion Architecture

Figura 11.1: Dynamic Ingestion Pipeline

One major enhancement would be the implementation of a medallion architecture,
which organizes data processing into logical layers:

62

Possible Improvements and Future Developments

• Bronze: Raw and unstructured data directly ingested from the source.

• Silver: Cleaned and structured data, with management of formats, types and
inconsistent values.

• Gold: Curated, business-ready data prepared for reporting, dashboards, and
analytics.

This layered structure improves data traceability, facilitates troubleshooting,
and enforces data governance across the entire pipeline.

Implementing a Metadata-Driven Approach
A key improvement would be to adopt a metadata-driven approach. Instead of
hard-coding rules and logic, pipelines can be controlled by centralised configuration
tables containing:

• Source and target table names

• Columns to include or exclude

• Filtering or transformation rules

• Ingestion settings (paths, formats, frequency, etc.).

This would reduce hard-coded code, facilitate multi-environment deployment (DEV,
TEST, PROD), and significantly improve the reusability and maintainability of
workflows. This approach is particularly suited to multi-source ingestion contexts
with scalable data structures.

11.0.1 Integration of Microsoft Data Activator for proactive
detection

To take automation and responsiveness further, integrating Microsoft Data Activator
would be a strategic move. This tool allows you to monitor data in Microsoft Fabric
in real time and automatically trigger actions when a specific event or condition is
detected (abnormal value, lack of update, etc.).

For example, if a significant discrepancy in the data or a missed deadline in a
pipeline is detected, Data Activator could automatically send an alert, trigger a fix,
or notify a specific team. This would strengthen proactive governance and reduce
response time to incidents.

63

Possible Improvements and Future Developments

11.1 Incorporating Machine Learning for Ano-
maly Detection

As data volumes increase, traditional rule-based checks may not be sufficient for
detecting subtle issues. A potential evolution of the platform would be to integrate
machine learning models that detect data anomalies. These models could be
trained on historical data and alert BI teams to irregularities in ingestion volume,
latency, or content.

64

Capitolo 12

Conclusion

This report gives an overview of the data ingestion pipelines I created during
my Thesis at MSC Technology Italia. I worked with different tools, from classic
ETL solutions like Informatica PowerCenter to more modern platforms like Azure
Synapse and Microsoft Fabric.

During this project, I solved many problems. I made sure data was consistent,
built flexible and reusable pipelines, and handled both batch and real-time data. I
also set up automated processes with good monitoring. I always focused on making
the pipelines scalable, fast, and easy to maintain.

This project also taught me how to manage the full data process, from extraction
to deployment. I followed best practices and adapted to the tools used by the
company.

After used Informatica PowerCenter Azure Analytics, and Microsoft Fabric tools
for data ingestion, it’s evident that Microsoft Fabric is the most adapted for the
company’s needs. It brings all data services into one place and is fully cloud-based.
Thanks to OneLake, all data is stored in a single and unified storage layer, which
avoids duplication and makes access faster and easier. The platform is simple
to use, well integrated with Power BI, and fits well with the existing Microsoft
ecosystem. It also reduces the number of tools needed, which makes development
and maintenance easier.

Beyond the technical implementations, this project also gave me valuable expe-
rience in managing data workflows end-to-end from extraction and transformation
to deployment, versioning, monitoring, and discrepancy fixing. I applied best prac-
tices in data engineering while continuously adapting to the evolving technological
landscape of the organization.

In short, this project not only allowed me to contribute meaningfully to the
modernization of MSC Technology Italia’s data infrastructure but also helped me
grow as a data engineer technically, methodologically, and professionally. I look
forward to build a pipeline with metadata-driven initiatives.

65

Conclusion

66

Bibliografia

[1] Informatica LLC. Informatica PowerCenter 10.x Documentation. ETL tool
used for data ingestion workflows. 2023. url: https://docs.informatica.
com/data-integration/powercenter.html.

[2] Microsoft Docs. Change Data Capture (CDC) in SQL Server. Official docu-
mentation for CDC in SQL Server. 2023. url: https://learn.microsoft.
com/en-us/sql/relational-databases/track-changes/about-change-
data-capture-sql-server.

[3] Microsoft Docs. SQL Server Import and Export Wizard. Used to transfer
historical data to the ODS. 2023. url: https://learn.microsoft.com/en-
us / sql / integration - services / import - export - data / import - and -
export-data-with-the-sql-server-import-and-export-wizard.

[4] Microsoft Docs. Azure Synapse Pipelines Documentation. Used to design
and orchestrate scalable ingestion pipelines. 2024. url: https://learn.
microsoft.com/en-us/azure/synapse-analytics/pipelines/overview.

[5] Broadcom Inc. Automic Automation Documentation. Used to orchestrate and
schedule Informatica workflows. 2024. url: https://docs.automic.com.

[6] Microsoft. What is Microsoft Fabric? https://learn.microsoft.com/en-
us/fabric/get-started/. 2024.

[7] Microsoft. Send notifications to Microsoft Teams from Azure Data Factory.
https://learn.microsoft.com/en-us/azure/data-factory/how-to-
send-notifications-to-teams?tabs=data-factory. 2024.

[8] Microsoft. Use Eventstream in Microsoft Fabric to process real-time data.
https://learn.microsoft.com/en-us/fabric/real-time/eventstream-
overview. 2024.

[9] Microsoft. Kusto Query Language (KQL) documentation. https://learn.
microsoft.com/en-us/azure/data-explorer/kusto/query/. 2024.

[10] Elementl. Dagster Documentation. https://docs.dagster.io/. 2024.

67

https://docs.informatica.com/data-integration/powercenter.html
https://docs.informatica.com/data-integration/powercenter.html
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://learn.microsoft.com/en-us/sql/integration-services/import-export-data/import-and-export-data-with-the-sql-server-import-and-export-wizard
https://learn.microsoft.com/en-us/sql/integration-services/import-export-data/import-and-export-data-with-the-sql-server-import-and-export-wizard
https://learn.microsoft.com/en-us/sql/integration-services/import-export-data/import-and-export-data-with-the-sql-server-import-and-export-wizard
https://learn.microsoft.com/en-us/azure/synapse-analytics/pipelines/overview
https://learn.microsoft.com/en-us/azure/synapse-analytics/pipelines/overview
https://docs.automic.com
https://learn.microsoft.com/en-us/fabric/get-started/
https://learn.microsoft.com/en-us/fabric/get-started/
https://learn.microsoft.com/en-us/azure/data-factory/how-to-send-notifications-to-teams?tabs=data-factory
https://learn.microsoft.com/en-us/azure/data-factory/how-to-send-notifications-to-teams?tabs=data-factory
https://learn.microsoft.com/en-us/fabric/real-time/eventstream-overview
https://learn.microsoft.com/en-us/fabric/real-time/eventstream-overview
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://docs.dagster.io/

BIBLIOGRAFIA

[11] Broadcom Inc. Automic Automation Documentation. https://docs.automic.
com/documentation/webhelp/english/all/components/DOCU/21.0/
index.htm. 2024.

[12] Databricks. What is the medallion architecture? https://www.databricks.
com/glossary/medallion-architecture. 2024.

[13] Microsoft. Get started with Microsoft Data Activator. https://learn.micro
soft.com/en-us/fabric/data-activator/overview. 2024.

68

https://docs.automic.com/documentation/webhelp/english/all/components/DOCU/21.0/index.htm
https://docs.automic.com/documentation/webhelp/english/all/components/DOCU/21.0/index.htm
https://docs.automic.com/documentation/webhelp/english/all/components/DOCU/21.0/index.htm
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/medallion-architecture
https://learn.microsoft.com/en-us/fabric/data-activator/overview
https://learn.microsoft.com/en-us/fabric/data-activator/overview

	Elenco delle figure
	Introduction
	Goal
	Thesis structure

	Technologies
	Goal
	Key Technologies Used
	Informatica PowerCenter
	Azure Synapse Analytics
	Microsoft Fabric
	Azure DevOps
	Automic Automation
	Power BI
	Dagster

	Integration Strategy

	Integrating Data with Informatica PowerCenter
	Goal
	Understanding the Data and Architecture
	Source and Target Overview
	Loading Frequency and Volume Management

	Setting Up Tables and Workflows
	Getting Access and Preparing the Systems
	Using CDC and Automating Workflow Creation
	Initial Data Load

	Tracking Changes and Incremental Loading with PowerCenter
	Designing the Mappings
	Managing the Workflow

	Ingesting Data Using Azure Synapse
	Introduction
	How I Designed the Pipelines
	Step-by-Step Pipeline Logic
	Making Pipelines Reusable Across Environments
	Benefits of this Pipeline Design
	Orchestration with the IBOX_TN Master Pipeline

	Modern Ingestion with Microsoft Fabric
	Goal
	Pipeline Overview
	Failure Notification Mechanism
	Notify Teams Channel Pipeline
	Pipeline Structure and Logic
	MasterPipeline
	Key Benefits

	Establishing the Real-Time Data Pipeline
	Design and Role of Silver Tables
	Automated and Dynamic Update Policy
	Technical Considerations and Logic
	 Benefits of This Approach
	Limitations and Considerations
	Data Recovery Process After Schema Change

	Workflow Automation and Scheduling
	Execution of the Workflow via Automic Software Pre-Process Stage
	Initialization of Variables
	Retry Management
	Environment Initialization
	Workflow List Retrieval

	Post-Process Execution
	Job Workflow Design in Automic Software
	Integration into Finance Team Daily Schedule
	Results Interpretation

	Versioning and Deployment Process
	Goal
	Table Deployment
	Running Build and Validation (CI/CD Pipeline)

	Automic Workflow Deployment Using Azure DevOps
	Azure DevOps Pipeline Overview

	Deployment Script Functionality
	Creating the Deployment Package
	Deploying to the Target Environment
	Deployment Validation and Results Interpretation

	Monitoring and Reporting
	Overview of Data Discrepancy Report
	Purpose and Structure
	Key Metrics and Numerical Analysis
	Visualization Components
	Impact and Usage

	Log Analysis Report
	Purpose and Structure
	Key Metrics and Visualizations
	Numerical Interpretation
	Impact and Usage

	Reconciliation and Discrepancy Fixing Using Dagster
	Reconciliation Workflow Design
	High-Level Architecture

	The generic_reconciliation_fixer Job
	Job Overview
	Graph Components
	Detailed Steps
	Execution Process

	Use Case: Interlink_LinkMSCNet Agency_User Table
	Advantages of Using Dagster for Reconciliation

	Possible Improvements and Future Developments
	Integration of Microsoft Data Activator for proactive detection
	Incorporating Machine Learning for Anomaly Detection

	Conclusion
	Bibliografia

