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ABSTRACT 
 
With machine learning at the core of detection systems, the ability to systemically 
capture, store and analyze the outputs the model generates has become critical for 
operational efficacy and model governance. This thesis presents a MLOPS 
pipeline, the Analytics Ingestion System (AIS), developed to collect and persist rich 
analytics from the Machine Learning powered cybersecurity workflows within the 
Sysdig ecosystem. AIS offers a model-driven approach to managing inferences, so 
that any prediction, batch or real-time, is logged, contextualized, so that it can be 
used for further analysis. 
The platform has also been designed for scalable storage, message brokers and 
orchestration tools to allow for modular, cloud native deployments. Particular 
attention is paid to observability and traceability of the model outputs, which 
allows good audit and data collection best practices across the different versions of 
the model and input sources that it receives. By modelling model inference as a 
first-class analytical event, the AIS provides a foundation for more elaborate 
analyses downstream, such as between model comparisons, data and concept drift 
detection, and A/B testing. 
In this design, the AIS provides a crucial common carrier for ML-driven security 
systems at Sysdig that demand with more than just inference and a production 
quality infrastructure, to get intelligence from those inferences. 
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Chapter 1 
 
 
 
 
Introduction and context 
 

 
 

The deployment of machine learning models in cybersecurity environments creates a 
critical operational challenge that extends beyond model development: how to 
systematically capture, process, and store the outputs of production models at scale. 
While considerable attention has been devoted to training pipelines and initial model 
validation, the systematic collection of model inferences, the actual predictions 
generated during operation, remains an under addressed requirement in most ML 
implementations. This gap is particularly problematic in cybersecurity contexts, where 
models must continuously detect threats, such as cryptomining malware, among 
evolving attack patterns and changing system behaviors. 
ML models in production environments face several operational realities that necessitate 
comprehensive analytics collection. First, the distribution of input data inevitably shifts 
over time, causing gradual performance degradation as models encounter scenarios 
different from their training data.  
Second, in adversarial domains like cybersecurity, threat actors deliberately modify their 
techniques to evade detection, creating a concept drift, where the relationship between 
features and target outcomes changes.  
Third, security operations require auditability and traceability of detection decisions for 
compliance and forensic purposes. Without structured mechanisms to capture model 
outputs, security teams operate with limited visibility into how models actually perform 
against real-world threats beyond their initial deployment. 
Usually, MLOps practices inadequately address these challenges by focusing primarily 
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on model deployment and training pipelines rather than creating robust infrastructures 
for inference analytics collection. Organizations typically deploy models that make 
predictions which trigger immediate security actions, but these valuable signals are often 
treated as ephemeral outputs rather than persistent analytical assets. This approach 
creates significant blind spots in operational monitoring, impedes performance 
diagnostics when models fail to detect threats, and complicates essential governance 
tasks such as model comparison and version management. 
The Analytics Ingestion System (AIS) introduced in this thesis directly addresses these 
operational requirements through a purpose-built pipeline that treats model predictions 
as first-class data product, considering their need for systematic processing and 
persistence. As we will see in the system architecture, the AIS creates a structured 
workflow that begins when ML worker nodes generate predictions through their 
inference processes. Rather than merely acting on these predictions, the system captures 
them through a robust message queue infrastructure, which provides reliable transport 
while decoupling prediction generation from downstream processing. Its design 
provides the flexibility to handle both high-volume, latency-tolerant batch predictions 
and time-sensitive real-time detection events within the same infrastructure.  
The AIS culminates in structured persistence of all analytics data through a standardized 
API interface to predictions logs storage, transforming ephemeral prediction events into 
durable analytical assets that support essential operational capabilities.  
With this comprehensive collection mechanism in place, at Sysdig, security and data 
teams gain the ability to analyze model performance across different time periods, 
detection scenarios, and system environments. This visibility enables empirical 
assessment of when models begin to degrade, which threat variants they struggle to 
detect, and how different deployment configurations affect detection accuracy. 
The implementation of the AIS addresses several practical challenges inherent in 
operational machine learning for cybersecurity.  
First, it handles the high volume and velocity of predictions generated by continuous 
security monitoring across enterprise environments. Second, it accommodates the 
heterogeneous nature of security analytics by supporting multiple model types and 
prediction formats within a unified collection framework. Third, it minimizes 
performance impact on critical detection paths through its asynchronous design. Finally, 
it creates the foundation for advanced operational capabilities like model performance 
comparisons and automated drift detection. 
By focusing on the systematic collection and processing of model outputs, the AIS fills 
a critical gap in the operational machine learning lifecycle. While most MLOps 
approaches emphasize how models are built and deployed, the AIS addresses what 
happens after deployment, how the actual intelligence generated by these models is 
captured, processed, and leveraged for continuous improvement. 
 



11 

 

 

 

1.1 Traditional cybersecurity approaches  
 
The cyber environment is constantly changing because the new threat environment itself 
is dynamic. Legacy detection technology, while vital to today's defense initiatives, 
typically has a tough time when confronted with advanced, adaptive attack practice. 
Legacy security systems were made in an era of static threats, viruses and exploits that 
could be caught based on defined signatures or foreseen patterns of activity. But as 
threats have become increasingly elusive, adaptive, and sophisticated, the shortcomings 
of these conventional detection approaches have become more pronounced. In reaction, 
modern security infrastructures are moving towards more analytics-oriented, flexible 
architectures, typically constructed with Machine Learning (ML) and analytics 
capabilities. Prior to an examination of these advanced paradigms, it is important to 
delve into the classic forms of detection that remain the foundation of much security 
infrastructure today: rule-based detection and heuristic techniques. 
 
1.1.1 Rule-Based Detection 
 
Rule-based detection is probably the oldest cybersecurity method. Rule-based      systems 
operate by comparing observed data with pre-established rules or signatures in an 
attempt to determine if they represent threatening or suspicious activity. These rules are 
usually crafted by experts from a given domain and reflect established indicators of 
threat such as file hashes, IP addresses, traffic patterns, or system behaviors. 
What rule-based systems monitor for includes: 
 File names, hashes, or behavior signatures that are recognized to be associated with 
malicious software. 
 Outbound network connections to recognized-suspicious IPs or domains, unusual port 
utilization, or unusual traffic frequency. 
 Unusual CPU, memory, or disk resource utilization caused by specific processes. 
Rule-based detection systems are prevalent in firewalls, Intrusion Detection Systems, 
and endpoint security programs. Their advantages are: 
 They employ simple matching logic, thus they are computationally inexpensive and 
well-suited to low-latency environments. 
 They are easy to configure and implement. 
They do have drastic shortfalls, though: 
 They can't recognize new, evasion techniques, or evolving threats that vary even 
slightly from known patterns. 
 It is needed to constantly update rule sets to keep pace with new attack surfaces is 
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labor-intensive. 
 Susceptibility to False Positives/Negatives: innocent activity will sometimes overlap 
with rule-based activity, whereas new malicious activity will be picked up on not at all. 
[1] 
Since current threats are more likely to incorporate obfuscation and polymorphism, rule-
based systems are not the first level of defense and are usually assisted by more dynamic 
methods. 
 
1.1.2 Heuristic Techniques 
 
Heuristic detection offers a more dynamic alternative to static rules by examining 
behavioral cues that can signal malicious intent. Instead of relying solely on 
preconfigured signatures, heuristic systems analyze runtime behavior, system 
interactions, and usage patterns to identify anomalous deviations from baseline norms. 
Typical heuristic checks may involve: 
 Suspicious process behavior: inconsistency in system calls, file accesses, or fast 
execution patterns. 
 Resource usage anomalies: high CPU, memory, or disk usage sustained over time but 
not typical for the usual application behavior. 
 Timing irregularities: processes running irregularly or displaying suspicious 
scheduling patterns. 
These approaches are intended to detect unknown or altered threats by generalizing from 
observed activity instead of exact known patterns. Advantages are:  
 Heuristic analysis may detect new or zero-day threats that static rules would not.  
 More independent of pre-existing threat knowledge, therefore more resilient in 
dynamic threat landscapes. 
          However, heuristic techniques also suffer the following disadvantages: 
 Higher False Positives: legitimate programs occasionally exhibit behaviors that are 
highly like malicious behavior and therefore produce false alarms. 
 Live behavior monitoring is costly in terms of computation and affects system 
performance. 
 Developing effective heuristics that are sensitive and specific enough requires 
extensive knowledge and experience with the context. [2] 
 

1.2 Machine Learning approaches to cybersecurity 
 

The application of Machine Learning (ML) in cybersecurity marks a significant 
departure from traditional, static security measures, offering dynamic and adaptive 
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solutions to address the increasing complexity of modern cyber threats. By leveraging 
its ability to learn from data, identify patterns, and predict future occurrences, ML 
provides an effective means to detect and mitigate a range of cyber threats. This chapter 
explores how the diverse ML techniques can be employed in cybersecurity, focusing on 
general applications. 
 
1.2.1 Machine Learning for cybersecurity 
 
Machine Learning (ML) has reshaped the way cybersecurity threats are identified and 
addressed. Unlike traditional systems, which depend on fixed rules and signature-based 
detection, ML offers a dynamic, data-driven alternative. This adaptability allows 
defenses to evolve alongside emerging threats, detecting not only known attacks but also 
previously unseen ones. 
One of ML’s greatest strengths in cybersecurity is its flexibility. While traditional 

defenses can be circumvented with slight modifications to attack patterns, ML models 
are trained on continuous data streams. This enables them to detect subtle anomalies and 
learn generalized behaviors—allowing them to flag threats they’ve never encountered 

before. 
ML also excels in behavioral analysis. Rather than relying solely on pre-set threat 
signatures, it can examine fine-grained system attributes like CPU usage, memory 
patterns, and network activity. This makes it especially effective at identifying stealthy 
threats, such as cryptomining malware, which often run silently in the background. By 
building a profile of what “normal” looks like, ML systems can detect even minor 

deviations that older systems might overlook. 
Beyond its adaptability, ML brings scalability and efficiency to the table. Today’s digital 

environments generate vast quantities of data, too much for humans to manually sift 
through. ML algorithms can process this data in real time, supporting rapid threat 
detection across large-scale enterprise and infrastructure settings. 
Another major benefit is ML’s ability to improve over time. As new data comes in, 

models refine their understanding of both regular and malicious behavior. This 
continuous learning keeps them relevant, even as attackers develop more sophisticated 
techniques. 
However, integrating ML into cybersecurity isn’t without challenges. Supervised 

learning models, for instance, depend on large volumes of high-quality, accurately 
labeled data—something that’s often expensive and labor-intensive to collect. And while 
real-time detection is a goal, the computational demands of training and deploying such 
models can strain limited resources. 
ML models are also not immune to manipulation. Adversarial attacks, deliberate inputs 
crafted to fool the system, can cause ML models to misclassify threats. A cryptominer, 
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for example, might mimic regular software activity to slip past detection. 
Lastly, there’s the issue of explainability. Security teams often need to understand why 

a system flagged a certain threat. Some ML models, particularly deep learning ones, act 
as "black boxes," making it difficult to interpret their decisions. [3] 
To better understand how these benefits and limitations play out in real-world 
applications, it’s essential to explore the core ML paradigms used in cybersecurity, 
specifically, supervised and unsupervised learning. 
 

1.2.1.1 Supervised Learning in Cybersecurity 
 

Supervised learning relies on labeled data sets in which each data instance, e.g., network 
packet, system log record, process, is tagged as normal or malicious. This type of 
learning allows the model to separate known behavior categories by learning the 
attributes associated with each label. 
For example, a supervised model trained on system logs for machines infected by 
cryptomining malware is able to learn to identify important indicators like anomalous 
CPU spikes and suspicious network communication patterns. After being trained, the 
model is able to report similar instances in real-time. Supervised learning is especially 
effective when handling characterized attack vectors and is capable of achieving high 
detection accuracy assuming that data is representative and diverse. 
 
Another advantage of supervised models is that they are more interpretable. When a 
threat is detected by the model, analysts generally know exactly which particular input 
features, e.g., bandwidth activity, file access patterns, or process behavior, determined 
the decision. This transparency helps with both response to an incident and trust in 
system judgment. 
However, its primary shortcoming is its reliance on labeled data. Labeling cybersecurity 
data is normally an intensive labor process, usually involving specialist knowledge to 
classify complex instances. In addition, supervised models suffer from being unable to 
handle novel attack types whose behavior differs from the training data. [4] For instance, 
an instance of cryptomining malware that slows its CPU utilization to resemble benign 
system processes or obscures its communications through encryption to conceal 
outbound traffic can evade a model that learned from past forms of the same threat when 
they were more conspicuous. This is evidence of supervised systems' native brittleness 
in dealing with novel attack approaches. 
 

1.2.1.2 Unsupervised learning in Cybersecurity 
 

In contrast to supervised learning, unsupervised learning is not based on tagged data. 
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Instead, it examines raw data to determine patterns, clusters, or anomalies that do not fit 
into the normal behavior. This makes it especially useful in security settings, as threat 
profiles change rapidly and numerous attacks might never be similar to previously seen 
patterns. 
In the case of cryptomining detection, unsupervised approaches could flag a previously 
unknown cryptomining activity by detecting an abnormal spike in outbound traffic or 
unexpected spikes in CPU activity during idle times. These patterns may not be 
associated with any previously seen malware but still be representative of an intrusion 
or abuse of system resources. 
The power of unsupervised learning is its capability to find zero-day attacks and other 
emerging threats. Since it does not need to be pre-trained to recognize an attack, it is 
ideal for deployment in settings where flexibility and responsiveness are primary 
concerns. Additionally, the absence of a need for labeled training data ensures faster and 
less costly deployment, enabling organizations to harness ML capabilities even when 
labeled data is missing or incomplete.  [5] 
But unsupervised learning poses an interpretation problem as well. Since their anomalies 
are statistically rather than semantically defined, it is hard to decide whether an alert is 
genuine or a false positive. An increase in network traffic could be evidence of attacks, 
or software installation. That uncertainty more often results in false positives, and if they 
happen too regularly, they lead to a desensitization among security teams and 
systemwide ineffectiveness. 
To sum up, machine learning became an essential driver behind developing 
cybersecurity defenses in response to increasingly subtle and ever-changing attacks. 
With an offering of learning from data, identifying nuanced behavioral patterns, and 
scalability in large and complex settings, ML greatly increases the resiliency and 
responsiveness of contemporary security solutions. However, ML is not a silver bullet. 
The data dependence, computational intensity and interpretability need to be carefully 
controlled. Moreover, the decision to use supervised vs unsupervised approaches is 
context-dependent as well as data and threat landscape dependent. 
 

1.3 MLOps pipelines and monitoring 
 
As cyber threats grow in complexity and volume, traditional rule-based and heuristic 
approaches are no longer sufficient on their own. As we said, the cybersecurity industry 
is increasingly adopting data-driven methods such as Machine Learning to enhance 
detection capabilities. However, building accurate models is only part of the solution; 
ensuring their effectiveness in real-world environments demands robust infrastructures 
for deployment, monitoring, and analysis. 
This is where MLOps (Machine Learning Operations) becomes critical.  
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Combining principles from software engineering, DevOps, and data science, MLOps 
provides a structured framework for managing the full lifecycle of ML models, from 
deployment to continuous monitoring and maintenance.  
In cybersecurity, MLOps platforms must do more than serve models; they must also 
enable observability, traceability, and structured data collection to support downstream 
tasks like performance evaluation, data and concept drift detection, and A/B testing. 
This thesis introduces an analytics-oriented MLOps infrastructure tailored for 
cybersecurity applications. The proposed ingestion service is designed to manage 
model-generated signals at scale, ensuring that inference outputs are auditable and 
actionable. In doing so, it shifts the focus from model accuracy alone to the broader 
operational ecosystem needed for reliable, adaptive, and transparent ML-based defense 
systems. 
 
In this chapter, we explore the complexities of ML model deployment, the challenges of 
production monitoring, and the essential role of pipelines in addressing issues like data 
drift and model drift. 
 
 
1.3.1 Deploying ML Models and continuous monitoring 
 
Getting machine learning models deployed to production is more than replicating code 
from a notebook to a production system, and then running it. It involves a whole range 
of practices with the goal that models work well, are efficient, and reliable when applied 
in real-world situations. This involves not only the deployment, but also ongoing 
monitoring and maintenance of model performance throughout its lifecycle.  Right at 
the center of this, we have MLOps pipelines that give us an infrastructure to automate, 
a streamline this process. 
Bringing an ML model from research to production is about making sure that a model, 
trained and evaluated in a clean room, can work robustly with real data. This operation 
usually includes the following steps: 
• Model productization and deployment in autonomous driving systems or incorporated 
in products or services. 
• Serving real-time or batch predictions, based on use case. 
• Compatibility with different environments, such as software dependencies, hardware 
setups and data preprocessing logic. 
And unlike typical software, ML models are inherently data-specific. What a model 
does depends not only on the code it comprises, but also on the data to which it is 
applied. Hence, even minute differences in production data pipeline may violate the 
assumptions made during training and result in performance degradation. Also 
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production systems tend to have very strong requirements in terms of latency, scalability 
and fault tolerance, especially in fraud or cyber security. 
 
A model does not stay unchanged when deployed; the environment changes. A model's 
prediction must be continuously monitored so that it does not drift over time. Critical 
performance that must be tracked in real-time include prediction accuracy, response 
times and resource usage. 
Instead, two widespread and important challenges for the model degradation are: 
• Data Drift: the change on the distribution of input data, along the time. 
• Model Drift: when the statistical relationship between inputs and outputs changes, 
which affects how well the learned parameters of a model can perform. 
Left unchecked, either type of drift can silently degrade model performance and 
invalidate downstream decisioning. 
 
1.3.2 MLOps Pipelines 
 
Deploying a model is not the end of a process; ML models are not static entities. Any 
amount of data is ever sufficient data, and, the more we collect, the more models learn. 
More data tells us more about the world, which, in turn, allows us to learn new things 
and make better decisions. 
Model Lifecycle Management, also known as MLOps, answers these needs. It can be 
sounded out as a series of actions that guarantees models to be valid and perform as 
expected, also in the future. The idea is to be proactive, i.e. to be able to notice a drift or 
performance deterioration even before they actually occur. Auto-retrain mechanisms 
allow updating a model automatically to keep up with the traffic evolution, but, at the 
same time, it must be done with care as, in some cases, further updates may yield 
negative effects only. 
MLOps pipelines introduce automation, reproducibility, and observability into every 
stage of the workflow. Key components include: 
• Data ingestion and preprocessing: this is where we fetch, process, and validate the fresh 
data and check no missing values no new patterns or new ones can be found. 
• Training and validation pipeline: only the best 5 percent of models are moved to the 
next stage. We can also simultaneously put the new model into production and, if after 
a period of observation it has not yet been proven good, we would not promote it. 
• Automated deployment: every time a new model is created that passes all the controls, 
pipelines help to compile it and put it into the deployment environment with all the other 
elements, such as the right container. 
Deploying a model is nothing but the beginning of a new challenge, with new data which 
is expected to change and with models which have to adapt. All this is possible with 
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MLOps. 
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Chapter 2 
 
 
 
 

Related Works 
 
 
 
 
 

2.1 Related Works on MLOps Pipelines and Monitoring 
 
The deployment and monitoring of machine learning models have received considerable 
attention in recent years, resulting in a diverse ecosystem of tools, frameworks, and 
methodologies. In this chapter, we examine the most relevant literature and existing 
production-grade solutions to draw inspiration for the design and implementation of 
AIS. Our review focuses on established practices and innovations in areas such as 
analytics ingestion, real-time model monitoring, A/B testing, and drift detection. 
We analyze how leading platforms and frameworks, such as TFX (TensorFlow 
Extended), KubeFlow and others, tackle these challenges, identifying key design 
patterns and trade-offs that informed our architectural decisions for AIS. 
 
2.1.1 TensorFlow Extended 
 
TensorFlow Extended (TFX) is a leading framework for the ML lifecycle, a production-
grade system that ties together the ML pipeline stages. TFX is relevant as a related work 
for its ingestion pipelines and alignment with the goals of scalable analytics ingestion 
systems. 
TFX supports a wide range of ML applications, with a focus on scalability, 
reproducibility, and automation. It enables a smooth transition from research to 
production, with modularity to allow custom workflows while using its prebuilt 
components. This is in line with our Analytics Ingestion Service, as both systems 
manage high volume, dynamic data pipelines with a focus on modularity and scalability.  



20 2

0 

 

 

 

 
The TFX pipeline starts with the ExampleGen component, which ingests raw data from 
various sources like CSV files, TFRecords, BigQuery or columnar formats like Apache 
Parquet, which is also at the heart of our pipeline. This component reads the input data 
and partitions it into training and evaluation splits, ready for downstream processing. 
The data ingestion and transformation logic throughout the pipeline is done using 
Apache Beam, a unified programming model for batch and streaming data processing. 
This allows for scalable, distributed computation across different execution 
environments, from local machines to cloud native backends like Google Cloud 
Dataflow. 
Once ingested, the StatisticsGen component computes statistics over the dataset, 
providing insights into feature distributions and helping to identify data issues. These 
statistics are consumed by SchemaGen which infers a schema specifying expected types, 
ranges and feature shapes. The ExampleValidator then checks the incoming datasets 
against this schema to detect anomalies like missing values or type mismatches, ensuring 
data integrity before training. 
For preprocessing and feature engineering, the Transform component applies 
transformations like normalization, one-hot encoding or bucketing defined using 
TensorFlow Transform.  
The Trainer component then consumes the transformed data to train a model using 
TensorFlow, optionally integrating hyperparameter tuning through the Tuner module. 
After training, the Evaluator component performs a detailed model quality analysis, 
using metrics and slicing specifications to verify that the model meets production 
thresholds. If the evaluation is successful, the Pusher component deploys the validated 
model to a serving system, such as TensorFlow Serving, for real-time inference. 
To manage the end-to-end workflow, TFX integrates with orchestration tools like 
Apache Airflow and Kubeflow Pipelines. These platforms automate the execution of 
pipeline components, manage task dependencies, enable experiment tracking, and 

Figure 1: TFX includes both libraries and pipeline components. This diagram illustrates the relationships between 
TFX libraries and pipeline components. 
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support fault-tolerant operation of machine learning workflows. [6] 
 
TFX has been widely adopted by organizations such as Spotify, underscoring its 
applicability to large-scale, production-grade ML systems. Spotify has indeed integrated 
TensorFlow Extended into its machine learning infrastructure. They detailed how they 
standardized their ML workflows using TFX and Kubeflow Pipelines to streamline 
model development and deployment processes. Additionally, Spotify has utilized 
TensorFlow and its extended ecosystem, including TF-Agents, for reinforcement 
learning applications in music recommendation systems. These implementations 
underscore Spotify's commitment to leveraging TFX for scalable and automated ML 
pipelines. [7] 
In its implementations, TFX is exploited to enforce schema consistency, optimize data 
storage through columnar formats, and scale horizontally to meet high-throughput 
requirements. These features highlight its relevance as a related work for our system, 
particularly in its approach to handling isolated pipelines for production and non-
production environments, schema enforcement, and fault-tolerant data processing. 
 
While TFX offers a robust foundation for managing ML workflows, several lessons 
should be noted from its implementation: 
 TFX requires expertise in multiple technologies, including Apache Beam, Airflow, or 
Kubeflow, and a deep understanding of its modular components. This can result in 
longer onboarding times and increased complexity in maintaining pipelines. 
 TFX’s reliance on distributed systems like Apache Beam and its orchestration 
platforms necessitates significant infrastructure resources. Organizations must invest in 
scalable computing environments and robust DevOps practices to support its 
deployment. 
 TFX primarily assumes distributed processing but does not inherently address fault 
tolerance during in-memory operations. This limitation aligns with the challenges 
identified in our Analytics Ingestion Service, particularly concerning data loss risks 
when processing messages in memory without a write-ahead log strategy. 
 TFX enforces schema consistency to maintain data quality, but this rigidity can pose 
challenges in dynamically evolving pipelines. For example, Parquet’s inability to handle 

mixed data types within the same column requires strict upstream validation and 
preprocessing. 
 The ability to scale ingestion and processing workloads horizontally ensures that 
high-throughput systems can handle growing data volumes without bottlenecks. 
 Leveraging orchestration tools like Airflow or Kubeflow Pipelines provides not only 
automation but also crucial monitoring and error-handling capabilities for large-scale 
systems. 



22 2

2 

 

 

 Incorporating robust schema validation and exploring fault-tolerant strategies, such 
as write-ahead logs, are critical to ensuring the reliability of ingestion pipelines in 
production environments. 
 
2.1.2 Kubeflow 
 
Kubeflow is a Kubernetes-native platform developed to facilitate end-to-end machine 
learning (ML) processes and provide a modular and extensible architecture notably 
suited to container environments. Kubernetes is an open-source container orchestration 
platform that automates the use, augmentation, and administration of containers. 
 
Kubeflow’s main strenght lies in abstracting ML pipelines as containerized tasks 
orchestrated over Kubernetes, using native concepts such as pods (the most minute 
deployable unit of calculation in Kubernetes), support, and persistent capacity for 
scalable application and lifecycle management. 
 
Kubeflow Pipelines, which allow the composition and execution of complex work flows 
as directed Acyclic Graphs (DAGs), a graph with an individual verge direct from one 
vertex to another identical that follows their direction will never structure a closed cycle. 
The above DAGs are executed using Argo Workflows, an implicit orchestration engine 
that automates task scheduling, dependency resolution, retry logic, and resource 
allocation. The corresponding node in the graph represents an individual container 
action, which makes it possible to modularize systematic analysis phases such as data 
preprocessing, feature extraction, model training, and analysis. Moreover, Kubeflow 
pipelines integrate metadata tracking, artifact handling, performance monitoring, 
facilitating reproducibility and auditability, and mandatory properties for production-
grade information frameworks. 
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Figure 2: here are shown Kubeflow components and how they are used in its pipeline 
 
For serving models in production, Kubeflow employs KFServing, which supports 
serverless inference. KFServing provides autoscaling, traffic splitting, and model 
versioning capabilities. It enables dynamic allocation of compute resources based on 
request volume, making it highly efficient for deploying lightweight analytics inference 
tasks.  
Despite its comprehensive batch processing capabilities, Kubeflow does not natively 
support real-time or continuous ingestion pipelines. Its architecture is primarily designed 
around static workflows triggered by batch jobs or manual invocations. However, 
Kubeflow’s Kubernetes foundation and modular pipeline interfaces make it well-suited 
for integration with external streaming systems. [8] 
Notably, Apache Spark Structured Streaming and Apache Flink can be integrated to 
bridge this gap: 
 Apache Spark Structured Streaming adopts a micro-batch execution model, enabling 
incremental updates with tight latency constraints. It provides structured APIs and 
stateful operations ideal for building low-latency ingestion pipelines where data arrives 
continuously. [9] 
 Apache Flink, on the other hand, offers true stream processing with event-at-a-time 
execution semantics and exactly-once guarantees. [10] 
 
From Kubeflow’s design, several architectural insights can inspire the development of 
the Analytics Ingestion System: 
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 The separation of pipeline stages and the use of a DAG-based orchestrator (e.g., Argo) 
inform AIS's need for fault-tolerant scheduling, observability across ingestion, 
validation, and enrichment stages. 
 Kubeflow’s compatibility with streaming frameworks illustrates a viable hybrid 

model where batch pipelines are managed in Kubernetes while ingestion and 
preprocessing are delegated to real-time engines like Flink or Spark. 
 The emphasis on containerized, reusable components suggests a best practice for 
designing AIS operators as self-contained, stateless services that can be tested and 
deployed independently. 
 

2.2 Monitoring ML Models in Production 
 

In production environments, machine learning models are susceptible to performance 
degradation due to factors like data drift, concept drift, and infrastructure anomalies. 
Effective monitoring systems are essential to detect and address these issues promptly. 
This section delves into relevant methodologies for detecting data and concept drift, as 
well as strategies for A/B testing. 
 
2.2.1 Detecting Data Drift and Concept Drift 
 
Data drift refers to changes in the statistical properties of input data over time, while 
concept drift involves changes in the underlying relationship between input features and 
the target variable. Detecting these drifts is crucial for maintaining model performance. 
Various methods have been developed to identify and address drift in streaming data 
environments. 
Error-Rate Based methods monitor the model's error rate to detect significant deviations 
that may indicate drift. These include: 
 Drift Detection Method: DDM assumes that the error rate of a stable model decreases 
over time. It monitors the error rate and its standard deviation, raising warnings or 
detecting drift when the error rate significantly increases. Specifically, if the current 
error rate plus its standard deviation exceeds the minimum recorded error rate plus a 
multiple (typically 2 or 3) of its standard deviation, a warning or drift is signaled. [11] 
[12] 
 Early Drift Detection Method: EDDM enhances DDM by focusing on the distance 
between classification errors, making it more sensitive to gradual drifts. It tracks the 
average distance between errors and their standard deviation, signaling drift when these 
metrics deviate significantly from their historical maxima. [13] 
 Hoeffding Drift Detection Method: HDDM utilizes Hoeffding's inequality to detect 
drift. There are two variants: HDDM_A, which uses the average error rate, and 
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HDDM_W, which employs a weighted average to give more importance to recent data. 
Both methods signal drift when the observed statistics deviate beyond predefined 
confidence levels. [14] 
 
And then we have the Distribution-Based Methods. These approaches detect drift by 
comparing the statistical distributions of input features over time. For instance: 
 Kullback–Leibler (KL) Divergence and Chi-Squared Tests: these statistical tests 
measure the divergence between the distributions of current and reference data. 
Significant divergence indicates potential drift. 
 Two-Sample Testing with Dimensionality Reduction: Rabanser et al. propose using 
pre-trained classifiers for dimensionality reduction, followed by two-sample tests to 
detect dataset shift. This method effectively identifies shifts in high-dimensional data. 
[15]  
 
Hence, some considerations that are inspirational for the development of the systems 
are: 
 Choosing an appropriate window size for monitoring is crucial. Smaller windows 
allow for quicker detection but may increase false positives. Larger windows reduce 
false alarms but may delay detection. 
 Implementing dynamic thresholds that adjust based on historical data variability can 
improve detection accuracy. 
 Embedding drift detection mechanisms within streaming platforms like Apache Flink 
or Spark Streaming enables real-time monitoring and rapid response to detected drifts. 
[16]  
 
2.2.2 A/B Testing 
 
Measurement of the machine learning model in production requires rigorous statistical 
methodology to ensure that the determined performance difference is useful and 
scheduled for random opportunity. The usual A/B test is essential, but tailored strategies 
such as McNemar's Trial and Adaptive Experiments provide an extra strong option. 
 
In classical A/B testing, users are randomly assigned to a unique group, each exposure 
to a specific model discrepancy. The main things that must be kept in mind while testing 
are: 

 Ensuring unbiased assignment to treatment and control groups to mitigate confounding 
variables. 

 Deciding the required number of inspections in order to find a significant divergence 
between disparate elements and high certainty. 
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 Preventing spillover effects between groups and ensuring a fair treatment across user 
segments. [17] 
 
McNemar's test is a non-parametric method used to compare the performance of two 
classification models on the same dataset, specifically suited for binary classification 
problems where each prediction can be categorized into correct or incorrect. It is 
particularly valuable when dealing with paired data—such as the outputs of two 
classifiers on the same set of observations—and focuses on the disagreements between 
models rather than their absolute performance. The core idea is to assess whether the 
proportion of discordant pairs is significantly different, thus enabling the detection of 
subtle performance differences that might not be evident through traditional accuracy 
metrics. 
Unlike classical A/B testing, which requires large-scale randomized user allocation and 
multiple experimental runs, McNemar’s test evaluates models based on a single testing 

dataset. This makes it especially appealing in scenarios where model retraining or 
deployment is computationally expensive or infeasible. It operates on a 2x2 contingency 
table, counting how often one model is correct and the other is not, and vice versa, 
thereby directly comparing decision boundaries rather than average performance. 
The paired t-test is another statistical method often used for comparing the performance 
of two models. However, it assumes that the performance metric (e.g., accuracy or error 
rate) across different folds of a cross-validation scheme follows a normal distribution. 
This makes the paired t-test more suitable for regression tasks or classification scenarios 
with continuous evaluation metrics and multiple independent measurements. In contrast, 
McNemar's test does not rely on distributional assumptions, making it a more robust 
choice for categorical, paired data and binary classification outputs. [18] 
The classic A/B test allocates users equally between discrepancies, which may remain 
inefficient, particularly when one discrepancy is clearly superior. Multi-armed bandit 
(MAB ) procedures deal with the present by dynamically adjusting the allocation of 
users in order to achieve different disparities based on their performance.Common MAB 
Strategies: 
1. Epsilon-Greedy: with a probability ε, a random variant is selected (exploration); with 

probability 1−ε, the best-performing variant is chosen (exploitation). 
2. Upper Confidence Bound (UCB): selects variants based on the upper confidence 
bounds of their estimated rewards, favoring variants with higher uncertainty to 
encourage exploration. 
3. Thompson Sampling: a Bayesian approach that samples from the posterior 
distribution of each variant's performance, selecting the variant with the highest sampled 
value. 
4. Best Arm Identification (BAI): focuses on identifying the best-performing variant as 
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quickly as possible, minimizing the time spent on suboptimal variants. [19] 
 
Practical considerations for their usage: 
 In environments where user behavior or data distributions change over time, non-
stationary bandit algorithms that adapt to these changes are essential. 
 Incorporating MAB strategies into MLOps workflows enables continuous model 
evaluation and deployment, ensuring that the best-performing models are always in 
production. 
 Ensuring fairness and avoiding bias in adaptive experimentation is critical, especially 
when deploying models that impact user experiences or decisions. 
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   Chapter 3 
 

  
 

 

   Project Details 
 
 
 
 
 

3.1 Overview and Requirements 
 
In any organization deploying machine learning models for real-time detection, the need 
for a robust MLOps pipeline for analytics ingestion has increased. As ML models 
generate continuous streams of detection data, having a scalable and reliable ingestion 
system ensures that insights can be derived effectively while maintaining data integrity 
and governance. In our case, with the deployment of the crypto mining ML detection 
model into production and the anticipation of future ML detection streams, the necessity 
for such a system became evident. 
The primary motivation behind this project was to ensure that data generated by ML 
detection models in production environments could be efficiently collected, stored, and 
made readily available for analytics purposes. This necessitated the development of an 
Analytics Ingestion Service (AIS) capable of handling large-scale ML detections while 
ensuring scalability, reliability, and maintainability. 
The main objectives of the Analytics Ingestion Service then are: 
 Consumption of ML detections. The AIS must be able to reliably consume ML 
detections from each ML pipeline deployed in both production and development 
environments. 
 Efficient ingestion into long-term storage. To facilitate future analytics, detections 
must be ingested in batches into durable and scalable object storage systems, such as 
Amazon S3. 
 Support for MLOps analytics datasets. The ingested data must be structured and 
organized in a way that enables efficient querying and processing for downstream 
analytics tasks. 
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 (Long term goal) Support real time drift detection. The AIS should evolve to enable 
low-latency streaming capabilities that facilitate the monitoring of statistical properties 
of incoming data in real time. This includes computing drift metrics on incoming feature 
distributions and model outputs, triggering alerts when deviations from expected 
behavior are detected. 
 
3.1.1 Context 
 
The Machine Learning services in production are designed to consume streams of 
messages from queues fed by other company internal data sources. The general process 
at a high level that characterizes most of the ML services is the following: 
1. The messages are unpacked, and eventually batched (to optimize the prediction phase) 
2. Feature Engineering is applied to produce feature vectors 
3. Feature vectors are fed into the ML model to get the predictions as a result. 
We then decided that each ML detection service publishes, together with some metadata, 
the produced detections to a dedicated Analytics Ingestion queue subject, ensuring 
logical separation and operational independence across different ML pipelines. This 
architecture allows for tailored processing and consumption strategies, enabling each 
ML service to maintain its own data flow without interference.  
Moreover, the detection queues act as structured data sources that multiple consumer 
services can subscribe to and process based on their specific needs. 
 
3.1.2 Requirements and Design Choices 
 
To fulfil the goals described above, several design decisions and technical requirements 
were made: 
 The analytics ingestion system must handle different ML Pipelines: there should be a 
different AIS instance that consumes from each deployed ML detection queue, since 
there is one for each detection service.  
 We need a batch processing model: with the high volume of ML detections created in 
production, a batch processing methodology was embraced. This provides optimized 
performance in terms of ingestion rates and cost savings while avoiding the excess stress 
on computing assets relative to the real-time streaming solutions. 
 Container orchestration and deployment plan: due to the requirement to have a 
scalable, feature-rich, and manageable production deployment setup, the orchestration 
platform was chosen to be Kubernetes. It facilitates effective containerized deployments, 
resource allocation, and failover management and is suitable to handle AIS instances in 
different production environments. 
 Long-Term storage strategy: having compared various kind of storage, Amazon S3 
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has been selected as the key long-term storage medium for its reliability, scalability, and 
its ability to integrate with AWS analytics services. 
 Predetermined choice in storage data format: to optimize storage, query and analytics 
processing, we considered various data formats and chose Parquet as the final option. 
This columnar format provides better compression ratios and query performance and is 
the ideal choice to store big data. 
 Environment configuration differences for MLOps account: For proper governance 
of the data and separation between environments, we have configured separate AWS 
Prod-MLOps and NonProd-MLOps accounts: 
o Prod-MLOps: Holds S3 buckets used for production ML detections where strict 
access controls and data residency policies are implemented. 
o NonProd-MLOps: Retains development, testing and non-production ML detections 
so experimentations don't have any impact on production data integrity. 
This separation is MLOps' standard best practice since it reduces the risk by keeping 
experimental models from affecting core production environments. 
 Compliance of the data residency principle: the data residency principles specify that 
the data needs to stay within specified geographic areas for operational and regulatory 
purposes. AWS S3 multi-region design facilitates this compliance through the ability to 
host ML detection data in S3 buckets within specified regions so as to ensure regulatory 
compliances and optimize access latency across consumers in various regions. 
 
With careful consideration of those needs and technical design selections, the Analytics 
Ingestion Service is structured to be fault-tolerant and scalable as a part of the larger 
MLOps infrastructure to serve both existing and future ML detection pipelines.  
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3.2 Technological Stack 
 
Before discussing the design and architectural choices of the Analytics Ingestion Service 
(AIS), it is essential to introduce the core technologies utilized in the project.  
 
3.2.1 Protocol Buffers (Protobuf) 
 
Protocol Buffers (Protobuf ) is a languageless, platform independent mechanism to 
serialize structure statistics. It was created by Google's search engine and offers a simple 
and compact binary design that makes it easier to exchange information across dispersed 
networks. 
Compared to the traditional JSON and XML formats, Protobuf has higher serialization 
efficiency, thereby reducing the size of the warhead and the cost of parsing. 
 
Protobuf specifies data structures using.proto files, which specify the message layout 
using a strong typed syntax. This definition can be extended to different programming 
languages, such as Python, Java, and Go, which allow seamless integration in 
heterogeneous environments. The generated code provides effective serialization and 
deserialization systems to ensure interoperation and type safety. 
 
One of the obligatory advantages of Protobuf is its assistance in the back and forth 
compatibility. Fields within message definitions can be added or deprecated without 
breaking existing implementations, making it particularly well-suited for evolving 
systems that require long-term maintainability. 
Additionally, Protobuf integrates seamlessly with Remote Procedure Call (RPC) 
frameworks such as gRPC, allowing efficient communication in distributed 
architectures. 

Figure 3: This  picture is descriptive of the principal needs we have just stated, illustrating the various instances of 
AIS stacked up corresponding to every ML service, finally being deployed in various regions, such as the buckets 
holding the data in the long term. 
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Figure 4:  a gRPC-based interaction between a Java-based Service A and a Javascript-based Service B 
 
Given its performance benefits and schema evolution capabilities, Protobuf is widely 
adopted in modern data-intensive applications, particularly in microservices 
architectures, event-driven systems, and machine learning pipelines. [20] 
 
3.2.2 Helm 
 
Helm is a Kubernetes package manager that simplifies the use, administration, and 
configuration of containers. Helm is a templating organization developed by Deis 
(subsequently acquired by Microsoft) and currently maintained as part of the Cloud 
Native Computing Foundation (CNCF), which enables the specification, packaging, and 
distribution of Kubernetes applications using a reusable and customizable configuration 
known as the Helm Chart. 
 
A Helm chart encapsulates all the indispensable Kubernetes tools, such as deployment, 
services, Config maps, and Secrets, into a single package. This abstraction enables 
developers and operators to deploy applications systematically across different 
environments while minimizing configuration complexity. Parameters can be 
dynamically adjusted via “values.yaml” file, allowing for flexibility in modifying a 
Kubernetes manifest without changing its base.   
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          Figure 5: A typical Helm workflow, the chart developer defines reusable Helm charts with templates and default    
 values, while the chart user customizes them via values.yaml to deploy resources to a Kubernetes  cluster. 

 
Helm also introduces release management, which monitors the deployment of the 
implementation and supports versioning, rollback, and upgrade procedures, so that 
changes can be safely used during the maintenance of the ability to return to previous 
nations if necessary. In addition, Helm integrates with the Helm repository, facilitating 
the allocation and sharing of pre-packaged functions, encouraging reuse and 
standardization in the cloud environment. [21] 
 
Helm is widely accepted in the DevOps and MLOps workflow, facilitating automated, 
scalable, and maintainable network supervision. One's declarative and modular 
technique enhances the efficiency of handling complex tasks and ensures consistency 
across different groups and environments. 
 
 
3.2.4 NATS 
 
NATS is a high-performance, cloud-native messaging system designed for distributed 
systems, microservices, and real-time data streaming. It provides a lightweight, scalable, 
and reliable publish-subscribe communication mechanism that enables seamless data 
exchange between decoupled services. 
At its core, NATS follows a simple and efficient architecture based on subjects and 
topics. Publishers send messages to a specific subject, and subscribers receive messages 
by subscribing to relevant subjects. This design ensures high throughput and low 
latency, making NATS well-suited for real-time applications. 
One of the key advantages of NATS is its scalability. It supports horizontal scaling by 
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distributing messages across multiple nodes, ensuring high availability and fault 
tolerance. Additionally, it provides different messaging patterns, including: 
 Publish-Subscribe: Multiple subscribers can receive messages published to a subject. 
 Request-Reply: Enables synchronous communication between services, often used 
for microservices interactions. 
 Queue Groups: A mechanism that allows multiple subscribers to join a queue group, 
where each message is delivered to only one subscriber within the group. This enables 
load balancing while preserving the benefits of the publish-subscribe model. [22] 

 
 
Figure 6: Example of a microservice architecture using NATS for communication between services written in Java, 
Go, and Python for scalable and resilient distributed systems. 

 
NATS is widely used in cloud-native and IoT ecosystems due to its lightweight footprint 
and ability to handle millions of messages per second with minimal overhead. It is often 
deployed in conjunction with container orchestration platforms like Kubernetes and 
integrates seamlessly with modern event-driven architectures. 
 
3.2.5 AsyncIO Programming and queues 
 
AsyncIO is a Python library that provides support for writing concurrent code using the 
async/await syntax. It enables non-blocking, event-driven programming, allowing 
applications to handle multiple I/O-bound tasks efficiently without relying on traditional 
multi-threading or multi-processing.  
At its core, AsyncIO employs an event loop that schedules and executes coroutines, 
which are special functions defined with the async keyword. Unlike standard functions, 
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coroutines can pause execution at certain points (await) to allow other tasks to run, 
thereby improving performance in applications that require high concurrency, such as 
network servers, web scraping, and message processing. [23] 
 

 
 
Figure 7: Event loop mechanism. Tasks are selected and run one at a time; when a task yields control, the loop 
continues, enabling asynchronous, non-blocking execution. 
 
One of the key components of AsyncIO is its support for queues, which facilitate 
communication and data exchange between coroutines. AsyncIO queues operate 
similarly to traditional queue implementations but are designed for asynchronous 
workflows. The primary queue types include: 
 asyncio.Queue: A first-in, first-out (FIFO) queue that allows coroutines to produce 
and consume messages asynchronously. It ensures safe access between multiple 
coroutines without requiring explicit locks. 
 asyncio.PriorityQueue: A variant that orders elements based on priority, useful for 
task scheduling. 
 asyncio.LifoQueue: A last-in, first-out (LIFO) queue, often used for stack-like 
behavior. 
Queues in AsyncIO are widely used in event-driven systems, such as distributed 
processing pipelines and message brokers, where efficient coordination between 
producers and consumers is essential. Since these queues are non-blocking, they prevent 
bottlenecks in applications that need to handle high-throughput data streams. 
 
3.2.6 AWS S3 
 
Amazon Web Services (AWS) is a cloud computing platform that offers a wide range 
of infrastructure, storage, computing, and analytics services. It provides scalable, on-
demand resources that help organizations to build and deploy applications efficiently 
without managing physical hardware. Some of the key services within AWS include: 
 Compute: EC2 (Elastic Compute Cloud) for virtual machines, Lambda for serverless 
computing, and ECS/EKS for container orchestration. 
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 Networking: VPC (Virtual Private Cloud) for networking isolation, Route 53 for DNS 
management, and API Gateway for managing APIs. 
 Database: RDS (Relational Database Service) for managed SQL databases, 
DynamoDB for NoSQL, and Redshift for data warehousing. 
 Storage: S3 (Simple Storage Service) for object storage, EBS (Elastic Block Store) 
for persistent volumes, and Glacier for long-term archival storage.  
Among these storage options, AWS S3 (Simple Storage Service) is one of the most 
widely used and fundamental storage services. It provides highly durable, scalable, and 
cost-effective object storage for a variety of use cases, including data lakes, backup and 
disaster recovery, big data analytics, and machine learning pipelines. 
 
S3 is designed for 99.999999999% durability (11 nines), ensuring reliability and 
security. It supports: 
 Object-based storage: unlike traditional block or file storage, S3 stores data as objects 
in buckets, making it ideal for large-scale unstructured data. 
 Scalability: it automatically scales to handle massive data volumes, eliminating 
storage capacity concerns. 
 Access Management: integration with IAM (Identity and Access Management) 
allows fine-grained access control, supporting policies, encryption, and compliance 
requirements. 
 Storage Classes: different tiers like Standard, Intelligent-Tiering, Glacier, and Deep 
Archive allow cost optimization based on access frequency. [24] 
 
Moreover, AWS S3 operates across multiple regions to ensure low-latency access and 
compliance with data residency regulations. Organizations can select specific AWS 
regions to store data within their legal jurisdiction, ensuring adherence to local data 
protection laws such as GDPR in Europe or CCPA in California. 
 
3.2.7 Parquet 
 
In Artificial Intelligence Systems, particularly those that operate over distributed 
architectures and handle large-scale data ingestion or feature extraction workflows, the 
choice of data storage format plays an important role in determining system efficiency, 
scalability, and throughput. Apache Parquet has emerged as a dominant storage format 
tailored to such needs, offering a highly optimized columnar data layout that 
fundamentally departs from traditional row-based storage mechanisms like CSV or 
JSON. The columnar design of Parquet enables it to store data by fields rather than by 
records, allowing analytical engines to access only the specific columns required for 
computation. This selective access capability significantly reduces input/output 
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operations and is particularly beneficial in machine learning pipelines where typically 
only a subset of features is relevant during model training or inference. 
 
Internally, a Parquet file is structured into a nested hierarchy comprising row groups, 
column chunks, and pages. Each file begins and ends with a footer that encodes essential 
metadata, including the file schema, statistics, and column-level metadata. The data 
itself is divided into one or more row groups, which are horizontal partitions of the 
dataset. Each row group contains data for all columns within a bounded number of rows 
and is designed to be read in parallel by multiple processors. Within each row group, 
column chunks represent the physical storage of a single column’s data, enabling 

compression and encoding strategies to be applied independently per column. These 
column chunks are further divided into pages, which are the smallest unit of data 
accessed during a read operation. Pages can contain data values, dictionaries for 
encoding repeated terms, and indexes for efficient navigation. 
To sum up, advantages of Parquet include: 
 Efficient compression: by storing similar values together, Parquet achieves high 
compression ratios, reducing storage costs and improving data retrieval efficiency. 
 Optimized query performance: columnar storage enables faster analytical queries, 
as only the required columns are read instead of scanning entire rows. 
 Schema evolution: it supports schema evolution, allowing modifications over time 
without requiring a complete rewrite of stored data. 
 Compatibility: parquet is widely supported by data processing frameworks such as 
Apache Spark, Presto, Hive, and Pandas, making it a standard choice in data lakes and 
analytics platforms. [25] 
 
When combined with object storage solutions like AWS S3, Parquet becomes an 
efficient way to store and manage large datasets. Storing Parquet files in S3 allows 
organizations to benefit from cost-effective, durable, and scalable storage while 
leveraging Parquet’s optimized structure for analytical workloads. Additionally, S3 

Select can be used to retrieve only specific parts of Parquet files, further enhancing 
performance by reducing the amount of data transferred. 
 
 

3.3 System Architecture 
 

In this chapter, we present a detailed explanation of every component of the Analytics 
Ingestion pipeline. This section describes how data flows through the system, 
highlighting the mechanisms that ensure efficient and reliable ingestion. 
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3.3.1 Architectural Design - Write Path 
 
The Analytics Ingestion pipeline is responsible for collecting, batching, and storing 
predictions and logs generated by multiple machine learning services. The overall 
workflow is depicted in Figure 8, which outlines the various components and their 
interactions. 
 
 

 
 
Figure 8:  The AIS architecture 

 
The ingestion process starts with ML Workers, which include a critical Anonymization 
step, which has been implemented for the AIS project, since the data now are retained. 
This step ensures that customer data is encrypted before being forwarded to a NATS 
queue. The NATS queue serves as a message broker, temporarily holding all incoming 
prediction logs and facilitating the decoupling between ML model execution and data 
ingestion. 
In a realistic deployment scenario, multiple ML services produce different types of 
prediction logs. To efficiently process these logs, a Data Dispatcher Worker is 
employed. Its primary function is to consume messages from the NATS queue and 
distribute them into separate in-memory queues (implemented using Asyncio queues) 
based on the corresponding message type. This ensures that different types of logs are 
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processed independently and efficiently. 
 
 
The actual data ingestion into storage is managed by a pool of Batching Workers. These 
workers retrieve messages from their respective in-memory queues, aggregate them into 
batches, and perform efficient bulk writes into the storage system. The storage backend 
is implemented using an object store (e.g., S3), and the write operations are performed 
via optimized PyArrow APIs. 
 
Even though these were not stringent requirements for the project, each component in 
the pipeline is designed to handle high-throughput and minimize processing latency. 
In the following subsections, we provide in-depth explanations of the core 
implementation details of each component. 
 
3.3.1.1 Anonymization Step 
 
Before messages are pushed to the NATS queue from the ML Workers, an 
anonymization step is performed within the Analytics Ingestion System to safeguard 
sensitive information. This step makes sure that identifiable data, such as process names, 
customer identifiers, and other proprietary metadata—is obfuscated in a way that 
preserves analytical value without exposing private or regulated information. 
The anonymization process leverages a deterministic cryptographic hashing technique, 
which allows the system to consistently generate the same anonymized output for 
identical inputs within the same environment, facilitating aggregation and trend analysis 
over time. The procedure involves the following steps: 
1. A unique, environment-specific salt is generated and stored securely using SOPS 
(Secrets OPerationS), a tool designed to manage encrypted secrets. This ensures that 
salts are both confidential and tightly scoped to their respective deployment 
environments. [26] 
2. The retrieved salt is concatenated with each piece of sensitive data to introduce 
uniqueness and prevent hash collisions or rainbow table attacks. The first ones occur 
when two different inputs produce the same hashed output. For the cited attack, rainbow 
tables are precomputed by mapping plaintext inputs to their hash outputs and are used 
by attackers to reverse-engineer hashed values. Salting the input disrupts this by making 
precomputation infeasible. 
3. The concatenated string (salt + sensitive data) is then passed through the SHA-256 
hashing algorithm, a secure, one-way cryptographic function from the SHA-2 family. 
This produces a fixed-length, irreversible hash that serves as the anonymized 
representation of the input. 



40 4

0 

 

 

4. The resulting anonymized values are then transmitted to the NATS message queue 
for downstream processing, ensuring that no raw sensitive data ever leaves the ML 
Workers boundary. 
The process is resumed in the following pseudo-code of the anonymization algorithm: 
 
Input: original_data (String) 
Output: hashed_data (String) 
 
1. Generate a 16-byte random salt using a secure generator 
2. Securely store or retrieve the salt using SOPS 
3. Convert original_data to bytes 
4. Concatenate original_data_bytes with salt → data_with_salt 
5. Compute SHA-256 hash of data_with_salt 
6. Convert hash to hexadecimal format → hashed_data 
7. Return hashed_data 
 
With this approach, AIS maintains data privacy; the use of deterministic salts ensures 
reproducibility within a controlled scope, together with a reliable correlation of 
anonymized entities across different data capture events, without ever exposing the 
original identifiers. 
 
3.3.1.2 Dispatcher Worker 
 
The Dispatcher Worker is a key component in the Analytics Ingestion pipeline, 
responsible for consuming messages from the NATS queue, validating them, and 
efficiently distributing them into appropriate topic-based partitions for downstream 
processing. This worker ensures that different types of machine learning events are 
correctly classified and routed to the appropriate processing queues. 
 
The Dispatcher Worker operates in an event-driven manner, continuously fetching 
messages from the NATS queue. When messages arrive, they are first decompressed 
using gzip, reducing network and storage overhead while ensuring efficient data 
transmission. 
Once decompressed, messages are deserialized using Protocol Buffers (protobuf), 
specifically the IngestMLEvent proto message format has been defined for this scope. 
This message structure encapsulates metadata like customer_id, and timestamp_ns, 
along with a specific ML detection event (e.g., CryptoMiningDetection).  
The worker extracts the type of event using the WhichOneof method of protobuf’s 

python library, determining the correct processing logic, and, before processing, it 
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applies a validation step: 
 If the event type is unrecognized, it is promptly rejected. 
 If the message structure is not conform to the expected protocol buffer schema, with 
all required fields present and properly formatted, it is discarded to prevent corrupt data 
from propagating. 
 
Subsequently, each valid event is classified based on its type. The Dispatcher Worker 
relies on a configuration management system (the WorkerConfigManager component) 
to determine the correct topic for each event type. Each event is then converted into an 
internal representation, ensuring that it conforms to downstream processing 
requirements. 
The configuration includes the number of partitions and other attributes to support 
scalable event consumption. 
 
A key step in this classification process is determining the partition key. The worker 
extracts a meaningful partition key from the event, ensuring that related events are 
processed together for consistency. 
To distribute workload efficiently, the dispatcher partitions events based on key 
attributes that define logical separation within each topic. For instance, the 
CryptoMiningDetection events are partitioned using the following fields: 
 region – The geographical area where the event originated, so that events from the 
same geographical area are processed together. 
 customer_id – The identifier of the customer generating the event, so that all events 
from a single customer are consistently routed 
 year, month, day, hour – Timestamps to group events in a structured time-based 
manner. This can facilitate downstream time-series analysis and efficient data retrieval. 
 model_version – The version of the machine learning model used for detection, so 
that events processed by the same model version are grouped together. 
 prediction – The classification result of the detection system, for efficient processing 
of events with same label. 
 
Once classified, the event is dispatched to a Topic, a specialized abstraction that 
manages partitioned message queues. The Topic ensures that messages are evenly 
distributed across partitions with a dedicated channel for processing, while maintaining 
ordering guarantees within each partition, enabling the correct handling of different 
event streams.  
This correct handling is enforced via a deterministic hashing function (SHA-256), which 
maps partition keys to specific partitions, so that events related to the same identifier 
consistently arrive in the same partition, optimizing state management. 
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The Topic structure consists of multiple in-memory partitions, each implemented as an 
asynchronous queue, using asyncio. These partitions prevent message overload by 
enforcing a maximum queue size, ensuring that backpressure mechanisms regulate 
excessive message flow. 
Workers can then subscribe to specific partitions within a Topic, consuming messages 
asynchronously. If multiple workers subscribe, partitions are distributed in a load-
balanced manner, improving scalability. 
 
Another important implementation detail, is that the Dispatcher Worker incorporates 
several error-handling mechanisms: 
 If a message is invalid, it is acknowledged and skipped, preventing unnecessary 
retries. 
 If the NATS queue is temporarily unavailable, the worker handles timeouts and retries 
automatically. 
 Every processed, skipped, or failed message is logged for traceability, ensuring that 
issues can be diagnosed. 
 
To sum up, multiple dispatcher instances can operate simultaneously, with automatic 
load balancing across available workers. The system's configuration management allows 
for dynamic adjustment of partition counts and processing parameters without requiring 
system downtime. This architecture allows the Dispatcher Worker to efficiently route 
and organize events while maintaining system integrity, ensuring that the Analytics 
Ingestion pipeline remains efficient and robust. 
 
3.3.1.3 Batching 
 
The Batching Worker processes incoming events efficiently by grouping them into 
batches before writing them to the storage layer. This batching mechanism: 
 optimizes resource utilization 
 minimizes write operations 
 ensures scalability in handling large event streams. 
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As we are going to see, the implementation balances multiple constraints, including 
batch size and memory usage. 
 
The batching process is managed through an In-Memory Batch component, which 
temporarily stores events retrieved from the Dispatcher's asyncio queues, until 
predefined conditions trigger a write operation.  
The batch enforces two primary constraints: 
 Maximum batch size: A limit on the number of events stored in a single batch. 
 Maximum memory usage: A threshold that ensures the batch does not exceed a 
predefined memory footprint. 
Each event added to the batch increases the current memory usage based on a fixed per-
message size. If either the size or memory limit is reached, the batch is flushed and 
processed. 
To maintain consistency and prevent race conditions, we added a locking mechanism, 
which ensures that only one process can modify the batch at any given time. 
 
In addition to the size and memory constraints, a time-based expiration mechanism 

Figure 9: Class diagram showing the structural relationships between the core components involved in the 
batching process. 
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ensures that events are processed even if the batch has not yet reached its limits. This is 
managed through a Ticker, which decrements a timer at regular intervals. If the timer 
expires before the batch is full, the batch is flushed and written. 
The ticker is reset after each batch flush, ensuring that events are not held indefinitely 
in low-volume scenarios. This has been done to prevent excessive latency in event 
processing while maintaining efficient batching behavior. 
 
To recap, the Batching Worker continuously monitors incoming events and processes 
them according to the following sequence: 
1. Events are dequeued from the Dispatcher queue and added to the in-memory batch. 
2. If the batch exceeds the defined size or memory constraints, it is flushed immediately. 
3. If the ticker signals that the maximum wait time has elapsed, the batch is written even 
if it has not reached its other limits. 
4. Once a batch is written, both the batch and ticker are reset to prepare for the next 
cycle. 
 
While having a good balance between latency and throughput, by dynamically adjusting 
to incoming event rates while avoiding excessive write operations, the worker 
continuously runs in an asynchronous loop, checking batch conditions and executing the 
necessary operations in a non-blocking manner. 
In the next section, we will detail the writing mechanism that, as preannounced, follows 
the batching process. 
 
3.3.1.4 Writer 
 
The Writer component is responsible for persisting event data batches to durable storage 
after they have been prepared for export. Its design emphasizes scalability, fault 
tolerance, and modularity to accommodate different deployment scenarios and data 
volumes without compromising on performance or maintainability. 
 
At its core, the Writer is designed to support a pluggable storage backend model. It 
dynamically selects the appropriate strategy based on the URI scheme of the target path, 
thereby abstracting the physical characteristics of the underlying storage medium. For 
example, write paths prefixed with “file://” are interpreted as local file destinations, 
while those starting with “s3://” indicate remote object storage using Amazon S3. This 
guarantees portability and ease of integration across environments, from on-premise 
setups to cloud-based pipelines. 
 
To achieve consistent behavior across heterogeneous storage targets, the Writer 
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constructs a virtual file system abstraction by leveraging the filesystem interface 
provided by PyArrow, a high-performance Python library that provides a bridge between 
in-memory data structures and on-disk formats. PyArrow's use of Arrow’s zero-copy 
memory model allows efficient memory layout and minimizes serialization overhead, 
making it ideal for large-scale, high-throughput data processing. 
This abstraction encapsulates the specifics of the underlying backend, whether it is a 
local disk or a remote object store like Amazon S3, behind a common API for file 
operations. For S3, the system initializes a S3FileSystem object with explicit parameters 
such as region, access key, and endpoint, enabling direct interaction with the S3 protocol 
through optimized, low-level network primitives. For local storage, a lightweight 
LocalFileSystem implementation is used. This approach provides a clean separation of 
concerns: storage-specific details like authentication, protocol handling, and connection 
management are delegated to the filesystem layer, significantly reducing system 
complexity and increasing modularity.  
 
For data serialization, the Writer processes each event by first transforming it into a 
normalized Python dictionary that conforms to a predefined schema. These dictionaries 
are then collectively converted into a RecordBatch, a memory-efficient structure 
provided by PyArrow that represents a table-like collection of rows with a shared 
schema. Unlike row-oriented formats, RecordBatch stores data in contiguous columnar 
buffers, allowing for better CPU cache utilization and SIMD-friendly processing. To 
prepare the batch for Parquet serialization, the system aggregates one or more 
RecordBatch instances into an Arrow Table, which provides a higher-level abstraction 
over columnar data and supports rich metadata, schema enforcement, and type-safe 
operations. 
Once the data is represented as an Arrow Table, it is written to disk in the Parquet format. 
This format is chosen for its efficient compression, schema evolution support and 
interoperability with analytical steps.  
To further accelerate downstream querying and analytics, the Writer organizes the 
output into logical partitions, typically based on temporal or categorical dimensions such 
as timestamps or event types. This enables selective scanning and parallel reads in 
distributed processing engines. 
 
All in all, the write process follows a definite pipeline: 
 The received batches are checked to ensure that every component fulfils the 
anticipated event schema. 
 The events are serialized into Arrow-based forms for efficiency and compactness. 
 The data is partitioned and stored as Parquet files based on defined partition keys, 
which provides optimized lookup performance. 
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 The associated metadata such as schema details and partition structure are preserved 
in order to aid in future evolution and retrieval efficiency. 
 
3.1.4.3 Helm Configuration 
 
As we already introduced it, Helm is a powerful package manager for Kubernetes that 
streamlines the deployment, management, and configuration of applications within a 
Kubernetes cluster. In the context of our project, Helm was leveraged to efficiently 
manage the deployment and scaling of the Analytics Ingestion Service within a 
containerized environment. The service needed to handle the ingestion of machine 
learning detection data at scale, and Helm provided an ideal solution for managing the 
deployment lifecycle, configuration, and consistency across various environments. 
Here we outline the steps taken to configure Helm for the deployment of the Analytics 
Ingestion Service. 
 
To deploy the Analytics Ingestion Service, we began by creating a custom Helm chart. 
The chart serves as a package that defines the deployment of all required Kubernetes 
resources, including pods, services, deployments, and configuration files. This chart 
encapsulates the specific configurations necessary for AIS to interact with ML detection 
queues, manage data ingestion, and handle storage integration. 
Key configurations included: 
 Deployment Specifications: these defined the number of replicas, resource requests 
and limits, and environment-specific configurations, such as NATS queue endpoints and 
storage bucket references, enabling the service to write data to the appropriate storage 
buckets without hardcoding paths or credentials directly into the code. 
 Service Definitions: by exposing the necessary services to allow inter-service 
communication within the Kubernetes cluster. 
 ConfigMaps and Secrets: used to securely manage and inject environment variables, 
such as credentials for accessing queues and storage systems, into the AIS containers.   
 
By integrating Kubernetes secrets into the Helm deployment process, sensitive 
information, such as API keys and credentials for external services, could be injected 
securely into the containers during deployment. This ensured that sensitive data was 
never exposed in the configuration files or code repositories, maintaining compliance 
with data protection and security best practices. 
 
Helm also helped with the modifications made to CPU and memory allocation to match 
different deployment stages. For example, during the staging phase, fewer resources 
might be allocated to reduce costs, while production environments could be configured 
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for high availability with more robust resource allocation. 
Moreover, given that data ingestion may vary in load, we used Helm's ability to scale 
pods based on performance metrics. Horizontal Pod Autoscalers (HPA) were configured 
to adjust the number of running pods based on resource usage, ensuring that the ingestion 
service could handle varying amounts of incoming detection data without overloading 
resources. 
 
To sum up, by leveraging Helm’s templating, customization through values files, and 

management of resources and secrets, we were able to streamline the deployment 
process keeping flexibility and facilitating both the scalability and maintainability of the 
Analytics Ingestion Service across multiple production and non-production 
environments. 
 

3.4 Analytics Tasks 
 
In the previous chapters, we have explored the write path of our data pipeline up to the 
point where predictions and logs are collected and stored in the central Logs S3 Bucket. 
This chapter introduces the analytical layer, which builds upon that foundation to extract 
meaningful insights, detect anomalies, and guide future decisions based on real-world 
data. The architecture diagram in figure 10 illustrates our long-term vision for the 
analytics system.  
 
Ideally, the analytical part of the pipeline would comprise the following key 
components: 
 Models Comparator Worker: this performs periodic A/B testing between different 
model versions deployed in the environments. It generates evaluation reports and stores 
them for future inspection. This comparison helps track model performance for models 
promotions in production environments, and detect regressions or improvements over 
time. 
 Analytics Worker: A general-purpose component capable of handling various tasks 
using the collected prediction data. It performs analytics operations such as: 
o Outlier Detection 
o Drift Detections 
These analyses can then result in further actions, such as: 
o Alerting via communication channels, e.g., Slack 
o Triggering model retraining workflows when performance degradation or 
significant drift is observed. 
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Figure 10: The long-term vision for the pipeline. 

 
For the purposes of this thesis project, we have implemented some demos of the 
workflow that the Analytics workers should tackle, to demonstrate their utility in real-
world company scenarios. These were needed to showcase how actual ingested data can 
be leveraged to perform drift detection and A/B testing. 
In the following sections, we will dive deeper into the specific analytical tasks 
implemented and techniques used, and the practical results obtained from running them 
on real data. 
 
3.4.1 Data and Concept Drift 
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3.4.1.1 Data Drift 
 
Data drift refers to a significant shift in the distribution of the input data over time, which 
can lead to performance degradation in machine learning models. Essentially, it occurs 
when the statistical properties of the input data in production differ from those in the 
training data, potentially rendering the model's predictions less accurate or unreliable. 
This can happen for various reasons such as changes in user behavior, seasonal effects, 
shifts in market trends, or technical changes in the data collection process. 
To monitor data drift, we need to track the changes in the statistical properties of the 
features over time. This is typically achieved by continuously evaluating the incoming 
data stream and comparing it to the reference distribution from the training phase. The 
key to detecting data drift is to identify whether certain properties of features, like mean, 
standard deviation, and frequency distribution, have changed significantly. 
For continuous features, techniques such as Kullback-Leibler Divergence, Kolmogorov-
Smirnov Statistics, and Hellinger Distance are used. These metrics allow for the 
comparison of probability distributions between two datasets, helping to quantify the 
degree of change in the feature distribution. Specifically: 
 Kullback-Leibler Divergence measures the difference between two probability 
distributions, highlighting how much information is lost when approximating one 
distribution with another. 
 Kolmogorov-Smirnov Statistics tests whether two samples come from the same 
distribution, useful when comparing historical and current feature distributions. 
 Hellinger Distance provides a measure of the similarity between two probability 
distributions, effectively quantifying how much the distribution of a feature has changed. 
 
For categorical features, monitoring can focus on the cardinality (number of distinct 
values) and frequency distribution of categories. Here, statistical tests such as the Chi-
Squared Test, and metrics like Entropy can be used. 
The Chi-Squared test compares the observed frequency distribution of a feature with the 
expected distribution, helping to detect shifts in categorical data. Entropy quantifies the 
randomness in categorical feature distributions, providing insight into whether certain 
categories have become more or less common. 
By monitoring these aspects of the data continuously, we can identify any signs of drift 
and take action to retrain the model or adjust the feature engineering process before 
model performance suffers significantly. 
We will describe the methodology applied in our demonstration in another chapter. 
 
 
3.4.1.2 Concept Drift 
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While data drift refers to changes in the distribution of input features, concept drift 
involves changes in the underlying relationship between the input features and the target 
variable over time. In other words, it occurs when the statistical relationship that the 
model has learned between inputs and outputs no longer holds true in production. 
Concept drift can be particularly problematic for predictive models, as the model may 
continue to rely on outdated patterns that no longer accurately represent the real-world 
scenario. 
Concept drift typically manifests when external factors affect the decision boundary of 
the model, such as shifts in user behavior, regulatory changes, economic fluctuations, or 
evolving patterns in the data that influence the predictions. This drift is harder to detect 
than data drift, as it requires identifying a change not just in the data but in the 
relationship between the features and the target variable. 
Detecting concept drift involves comparing model predictions over time and assessing 
how they align with the expected outcomes. We can monitor model performance and 
track metrics such as Hellinger Distance, Kullback-Leibler Divergence, and Population 
Stability Index (PSI) to assess whether the predicted probabilities have diverged from 
the expected distribution. These metrics can be calculated over different time windows, 
helping to identify whether the model's predictions are becoming less reliable. 
PSI tracks changes in the distribution of predicted probabilities over time, identifying 
whether certain segments of the predicted population have shifted in a way that requires 
attention. 
 
3.4.2 A/B Testing of models 
 
In this section, we refer to the process of performing A/B testing on the ingested data to 
validate a release candidate model. A/B testing in this context is essential to evaluate the 
performance of new models in a production environment, especially given that models 
deployed in production often experience shifts in data distribution that can degrade their 
performance. 
 
Machine learning models are generally trained in offline environments, using historical 
data, before being deployed into production. However, when a model is deployed in a 
live, production environment, it may encounter changes in the data; hence A/B testing 
allows us to assess whether a new model is better suited to the current state of production 
data compared to an existing model. 
In the context of the Analytics Ingestion Service, we plan to use A/B testing to evaluate 
the performance of a newly deployed model (often referred to as the sidecar model) 
alongside the primary model already in production. The goal is to compare the models' 
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performance using specific key performance indicators (KPIs) that are relevant to the 
model's intended task, such as detecting false positives and accurately recalling miners 
in the case of a crypto mining detection model. 
For example, to compare the models, for the mining detection task we focus on the 
following KPIs: 
 False Positives (FP): The number of times a model incorrectly identifies a non-mining 
activity as mining. 
 Recall: The ability of the model to correctly identify actual mining activities, ensuring 
that legitimate miners are captured by the model. 
Once these metrics are defined, A/B testing can be conducted to assess whether the 
sidecar model performs statistically better than the primary model.  This involves using 
hypothesis testing to ensure the observed differences are not due to random chance. 
To confirm that the performance differences between the models are statistically 
significant, we can apply several hypothesis tests. Two common approaches for this in 
the context of A/B testing are the paired t-test and McNemar’s test. 
We will review both the methodologies and select one for our purpose. 
 
3.4.2.1 Paired t-test 
 
The paired t-test, also known as the dependent samples t-test, is a statistical method used 
to test whether the mean difference between paired measurements is zero. In the context 
of model comparison, we would compare the performance of the two models (primary 
and sidecar) on the same dataset by using their predictions (e.g., probability of being a 
miner). If we take the before-and-after predictions for each sample, we can apply the 
paired t-test to assess whether the observed differences between the models are 
statistically significant. 
To do this, we analyze the difference in predicted probabilities for the same set of 
samples under both models. By computing the mean of these differences and measuring 
their variability, we can assess whether the observed deviation is likely due to random 
fluctuations or represents a meaningful performance shift. 
Paired t-test is used to evaluate whether the average difference between the two models 
is significantly different from zero. This test relies on the assumption that the distribution 
of differences follows a normal distribution, and it accounts for both the magnitude of 
deviations and their consistency across the dataset. Since the test is paired, each sample’s 

prediction under the primary model is directly compared to its prediction under the 
sidecar model, rather than treating the two sets of predictions as independent. 
 
To conduct the test, we first calculate the difference in predicted probabilities for each 
sample i, defined as: 
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di =  p{i,A} −  p{i,B} 
Next, we compute the mean of these differences to understand the overall direction and 
magnitude of the discrepancy between the models: 

d =
1

n
∑ di

n

{i=1}

 

where n is the total number of paired samples.  
To measure the variability in the differences across all samples, we calculate the sample 
standard deviation of the differences: 

sd =  √
1

n − 1
∑ (di −  d)

2
n

{i=1}

 

 
This tells us how consistent or variable the model differences are from one prediction to 
another. 
With these quantities in hand, we compute the test statistic for the paired t-test: 

t =
d
sd

√n 

 

This statistic follows a Student’s t-distribution with n - 1 degrees of freedom.  
Once the test statistic is computed, it is compared against a reference distribution to 
determine the probability of obtaining such a result under the assumption that the models 
have no real performance difference. This probability, known as the p-value, indicates 
whether we can reject the null hypothesis, which assumes that both models perform 
identically. If the p-value falls below a predefined significance threshold (commonly 
0.05), we conclude that the models have statistically different behaviors. Otherwise, we 
lack sufficient evidence to claim a meaningful distinction. [27] 
We must bear in mind that the paired t-test assumes that the measurements are paired, 
the subjects (samples) are independent, and the differences in predictions are normally 
distributed. Violations of these assumptions can render the test unreliable, especially if 
the differences are not normally distributed. In such cases, alternative tests may be more 
appropriate. 
3.4.2.2 McNemar’s Test 
 
For categorical data, such as whether a model correctly identifies or fails to identify 
mining activity, McNemar’s test is often used. This non-parametric test is designed for 
paired nominal data and assesses whether there is a significant difference in the error 
rates between the two models. 
McNemar's test is based on a contingency table that records how the two models classify 



53 5

3 

 

 

the data. The table compares the outcomes of the models on each data sample, 
categorized into four groups: 
 

Number of examples misclassified 
by both model A and B 

Number of examples misclassified 
by model A but not by B 

Number of examples misclassified 
by B but not by A 

Number of examples misclassified 
by neither model A or B 

         
         We can better name them like: 
  

n00 n01 

n10 n11 

 
The null hypothesis of McNemar’s test is that the two models have the same error rate.  
The McNemar test statistic is computed as: 

χ2 =
(|n01−n10|−1)2

n01+n10
, 

where the continuity correction (-1 in the numerator) adjusts for the discrete nature of 
the test, improving accuracy for small sample sizes. Hence, the test is based on a chi-
squared distribution with one degree of freedom, and if the p-value is below a certain 
significance level (e.g., 0.05), we can reject the null hypothesis and conclude that the 
models have significantly different performances. [28] 
McNemar’s test is particularly useful because it has a lower risk of type I errors (false 

positives), meaning it is less likely to incorrectly conclude that there is a difference 
between the models when none exists. [29] Moreover, unlike the paired t-test, it does 
not rely on assumptions such as normality of the differences. 
Based on the result of the test and KPIs, decisions can be made regarding whether to 
promote the sidecar model to full production status or make further adjustments.  
 
3.4.3 Analytics Detections demo 
 
As cited previously, we are going to describe some experiments that we conducted to 
demonstrate the application of drift detection techniques to real data ingested with our 
analytics pipeline. The data was collected from a time when there was a suspicion of 
data drift. 
 
The dataset used for these tests consists of high-dimensional event-level analytics logs 
for mining detection, structured in a tabular format with 139 columns. Of these, 5 
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columns contain metadata (e.g., identifiers and timestamps), 1 column represents the 
binary prediction target, 13 columns are numerical features, and the remaining 120 are 
boolean features encoding system and behavioral signals. 
 
While the write path of these logs is not subject to strict latency constraints, a potential 
analytics worker in place for the detection of drift would rely on fetching and processing 
historical analytics data as quickly as possible to ensure timely monitoring of data, so it 
is essential to optimize the read path to analytical data. For this reason, we benchmarked 
PyArrow. 
 
In our implementation, feature-rich event logs are stored in Amazon S3 using partitioned 
Parquet format. Each file is relatively small (~120 KB) and contains high-dimensional 
records with 139 columns. For benchmarking, we evaluated the ingestion of a filtered 
subset amounting to 4,936 rows distributed across approximately 110 Parquet files. 
In production on-premises environments, data processing workloads typically run on 
nodes with 8–16 vCPUs and 32–64 GB RAM per worker. To match this capacity in a 
managed cloud setting, for our experiments we selected the ml.m5.4xlarge instance for 
SageMaker Studio. 
This instance provides 16 vCPUs and 64 GB of memory, offering similar performance 
to a typical on-premise data processing node.  
 
Reading the dataset with PyArrow took ~40.5 seconds. This latency is primarily due to 
the high overhead of sequentially accessing a large number of small Parquet files over 
S3, which introduces cumulative I/O and network latency. However, once loaded, in-
memory operations such as .count() were extremely fast (~0.01 seconds), reflecting the 
efficiency of pandas-based computation on moderate-sized data held in memory. Hence, 
to optimize ingestion performance in S3-based architectures, both the number and size 
of Parquet files and processing framework must be carefully considered. 
 
3.4.3.2 Drift Detection Implementation and Results 
 
In order to operationalize the data and concept drift theoretical notions presented in the 
first four sections, we used the following statistical detection pipeline, specifically 
geared toward a real-case anomaly identified in production. Namely, we had reason to 
suspect drift when we saw that one specific sub-group of miners was not being 
appropriately picked up by the model anymore. To check our hypothesis, we performed 
a comparison analysis between the miner-related examples of the initial training set and 
a sub-sample of miner-related records pulled out of the analytics logs which we had 
described in the paragraph before. Such ingestion was done by applying filters to the 
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analytics data over relevant fields to separate out the interesting examples. 
From ingested data, we extracted 48 miner samples in order to be compared to 122 miner 
samples belonging to the training set of production. 
Our dataset consists of both numerical and boolean features. The purpose of the analysis 
was to see whether the feature distributions in the data being produced had changed 
significantly in comparison to the training data, hence implying data or concept drift. 
 
To detect changes in the distributions of features, we applied statistical tests appropriate 
to each data type: 
 Numerical Features: for continuous variables, we used the two-sample Kolmogorov-
Smirnov (KS) test, which evaluates whether two samples originate from the same 
continuous distribution. The null hypothesis states that both samples are drawn from the 
same distribution. The KS statistic is defined as: 

D{n,m} =  supx| Fn(x) −  Gm(x)| 
where Fn(x) and Gm(x)  are the empirical distribution functions (EDFs) of the two 
samples, based on sample sizes n and m, respectively.  
The KS statistic captures the maximum absolute difference between the two empirical 
cumulative distribution functions (ECDFs) of the samples. This means that we look for 
the single point where the discrepancy between the cumulative frequencies of the two 
samples is greatest. A large value of this difference suggests that the distributions differ 
in shape, location, or scale.  
We compute a p-value corresponding to this statistic, which quantifies the probability 
of observing such a difference (or a more extreme one) under the null hypothesis that 
both samples are drawn from the same underlying distribution. If the p-value falls below 
a predefined significance level, commonly 0.05, we reject the null hypothesis. This 
statistical rejection indicates a significant difference in the distributions, providing 
evidence of a shift or drift in the feature's behavior over time. 
 
 Boolean Features: For binary categorical variables, we applied the Chi-Squared Test 
of Independence using 2×2 contingency tables. These tables are constructed by counting 
the frequency of each possible value (0 or 1) for the feature in both the training and 
production datasets. The Chi-Squared Test is designed to determine whether there is a 
statistically significant association between two categorical variables—in our case, the 
binary feature value and the dataset origin (training or production). The null hypothesis 
assumes that the distribution of feature values is independent of the dataset source, 
meaning any observed difference in frequencies is due to random variation. By 
computing a test statistic that measures the deviation between observed and expected 
frequencies under this null hypothesis, we assess whether the two variables are 
independent.  
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So, we construct a contingency table where each cell (i, j) contains the observed 
frequency Oi,j of a particular feature value i (e.g., 0 or 1) in a dataset j (training or 
production). We then compute the expected frequency Eij for each cell, assuming 
independence between feature value and dataset source: 
 

E{ij} =
∑ Oij

c
j=1 ∗ ∑ Oij

r
j=1

∑ ∑ Oij
c
j=1

r
i=1

 

 
This tells us what frequency we would expect in each cell if the feature value and the 
dataset source were truly independent. 
The Chi-Squared test statistic aggregates the deviations between observed and expected 
frequencies using the formula:  
 

χ2 = ∑ ∑
(O{ij} −  E{ij})

2

E{ij}

c

j=1

r

i=1

 

 
Where: 
 O{ij} is the observed count in cell (i, j) 
  E{ij}  is the expected count in that same cell, 
 r  is the number of rows (feature values), 
 c  is the number of columns (dataset sources). 
Now we can notice how this statistic measures how much the actual frequencies deviate 
from what we’d expect if there were no association. The more the observed counts differ 

from expected counts, the higher the test statistic. 
This statistic follows a Chi-Squared distribution with (r − 1)(c − 1) degrees of 
freedom. 
 
We then compute the p-value, under the assumption that the null hypothesis is true. A 
small p-value (typically less than 0.05) leads us to reject the null hypothesis, proving 
that the feature’s distribution differs significantly between training and production, i.e., 
drift has occurred. 
 
3.4.3.3 Numerical Feature Results 
 
The statistical testing for the numerical features was conducted using the ks_2samp 
function from the scipy.stats module, which implements the two-sample Kolmogorov–

Smirnov test to assess distributional differences. 
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The following table summarizes the outcomes of the KS tests: 
 
 
  

Feature p-value Drifted 
numerical_feature_1 1.000 No 
numerical_feature_2 1.000 No 
numerical_feature_3 1.000 No 
numerical_feature_4 0.705 No 
numerical_feature_5 0.035 Yes 
numerical_feature_6 1.000 No 
numerical_feature_7 0.852 No 
numerical_feature_8 0.000 Yes 
numerical_feature_9 0.000 Yes 
numerical_feature_10 0.011 Yes 
numerical_feature_11 0.000 Yes 
numerical_feature_12 1.000 No 
numerical_feature_13 0.000 Yes 

 
The results show that over half of the numerical features experienced significant 
distributional changes. This confirms the presence of data drift in the continuous 
domain. 
 
3.4.3.4 Boolean Feature Results 
 
For the boolean features, contingency tables were constructed using pandas.crosstab, 
and the Chi-squared test for independence was performed via the chi2_contingency 
function from the scipy.stats module. 
These are the results of the tests: 

Feature p-value Drifted 
boolean_feature_1 0.001 Yes 
boolean_feature_2 0.002 Yes 
boolean_feature_3 0.1 No 
boolean_feature_4 0.955 No 
boolean_feature_5 1.000 No 
boolean_feature_6 0.000 Yes 
boolean_feature_7 1.000 No 
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boolean_feature_8 1.000 No 
boolean_feature_9 0.184 No 
boolean_feature_10 0.275 No 

 
The detection pipeline identified drift in 5 out of 10 boolean features, signaling notable 
changes in binary behavioral signals. 
 
3.4.3.5 Drift visualization 
 
To better highlight these results, we create Kernel Density Estimation (KDE) plots of 
each of the quantitative features. KDE is one form of non-parametric estimation of the 
probability density function (PDF) of a continuous variable. It provides smooth 
estimation of the histogram of the data without being tied to fixed bin boundaries, trying 
to reveal the shape of the data's underlying distribution. 
The kernel function K(u) is one of the fundamental parts of Kernel Density Estimation. 
The shape of the weighting function to be used when smoothing the observed data is 
determined by it. It controls the degree of influence each observed point xi should place 
on the density estimate at a certain location. Overall, the kernel function must meet the 
following requirements: 
1. K(u) ≥  0  for all  u ∈  ℝ 

2. ∫ K(u)du
{∞}

{−∞}
=  1 

3. K(u)  =  K(−u) 
 
A commonly used kernel is the Gaussian kernel, which is infinitely differentiable and 
gives higher weights to points closer to the target location. It is defined as: 

K(u) =
1

√2π
 e−

u2

2  

In KDE, the kernel function is applied to the normalized distance between a target point 
x and each data point xi, scaled by a bandwidth parameter h, which controls the 
smoothness of the estimate. The full KDE formula is: 

f̂h(x) =
1

n ∗ h
∑ K (

x −  xᵢ

h
)

n

i=1

 

where: 
 f̂h(x) is the estimated probability density at point xxx, 
 n is the number of observations, 
 h is the bandwidth or smoothing parameter, 
 K(∗) is the kernel function. 
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The KDE procedure works as follows: 
1. For a given point x, compute the distance x − xi from each data point, 
2. Scale this distance by dividing by the bandwidth h, 
3. Apply the kernel function to the scaled value x − xᵢ

h
, 

4. Average the resulting kernel values across all data points to get the estimate  
f̂h(x). 
This process is repeated over many values of x (typically across a fine grid) to generate 
a smooth density curve. 
 
By generating the KDE plots, and by using histograms as plots for the Boolean features 
counterpart, we were able to confirm the presence of drift across both numerical and 
boolean domains and support the hypothesis that some features' statistical properties 
have changed between training and production, like the statistical tests revealed. This 
justified further model diagnostics and potential retraining. 
Some relevant examples are shown in the next images: 

 
Figure 11: this feature had a p-value approximated to zero. As we can see the distributions are nowhere similar. 
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Figure 12: similar distributions with p-value = 0.705. Both curves show primary peaks around 0 with comparable 
shapes, though the red curve (new set) has a slightly more pronounced secondary peak around 1, consistent with no 
significant drift detected. 

 
Figure 13: here we can notice a drastic distribution shift with p-value < 0.001. The red curve (drift set) forms an 
extremely narrow spike at 0, while the blue curve (training set) shows a much broader, gentler distribution, clearly 
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indicating severe drift 

 
Figure 14: similar situation to feature 13 but only slightly, as confirmed by the higher p-value = 0.035. 
 
  

 
Figure 15: here instead we illustrate two similar distributions with p-value = 0.705. Both curves show primary peaks 
around 0 with comparable shapes, though the red curve (new set) has a slightly more pronounced secondary peak 
around 1, consistent with no significant drift detected. 
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Figure 6: Distribution comparison showing significant drift with p-value = 0.002. The red bars (new set) show 
complete concentration in category 0 (100%), while the blue bars (training set) display a 70%-30% split between 
categories 0 and 1, indicating substantial distributional shift. 

 
Figure 17: The p-value is not that high (0.1), hence some changes are present, indeed, the red bars (new set) show 
higher concentration in category 0 (~87%) compared to blue bars (training set) at ~67%, but the differences are not 
statistically significant enough to indicate drift. 
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Figure 7: Distribution comparison showing significant drift with p-value < 0.001. They display opposite patterns, blue 
bars (training set) show 40%-60% split favoring category 1, while red bars (new set) show 77%-23% split favoring 
category 0. 

 
Figure 8: No drift with p-value = 1.000. Both distributions show nearly identical patterns with very high concentration 
in category 0 (~97% vs ~100%) and minimal presence in category 1 (~3% vs ~0%), confirming strong statistical 
similarity. 
 
 
3.4.3.6 Experiment final considerations 
 
The drift detection example illustrated the power of coupling statistical hypothesis 
testing with visualization in revealing emergent data dynamics in a production setting. 



64 6

4 

 

 

Through an application of the Kolmogorov–Smirnov test to continuous features and the 
Chi-squared test to boolean features, we quantified notable shifts in both spaces. 
Statistical results were supported by data visualizations: Kernel Density Estimation plots 
pointed to both small and significant shifts in the shape and central location of 
continuous feature distributions, with histograms giving a concise comparative overview 
of proportions of binary features.  
The alignment of statistical and visual findings reinforces the conclusion that a set of 
features, both numeric and boolean, exhibited drift, reflecting that the miner data’s 

features shifted since model training. This not only confirms the suspicion provoked by 
the unexpected model performance during the selected period but also highlights the 
importance of ongoing monitoring and possible retraining of models in response to 
changing operating conditions. 
Since the statistical tests and visual analyses were conducted independently for each 
feature used in the ML model, as we started to consider in previous paragraphs, this 
framework could be extended into an automated monitoring system. A dedicated worker 
process could routinely compute drift metrics and trigger model retraining when 
predefined thresholds are exceeded. For instance, retraining could be initiated when 
more than 30% of the model’s input features show statistically significant drift (e.g., p 
< 0.01) within a given time window. 
 
3.4.4 A/B Testing demo 
 
Whenever, after some round of testing in a controlled environment, a new candidate 
model is deployed in production, to evaluate the effectiveness for the mining activity 
detection, we need to conduct a structured A/B testing against the current primary model. 
We are going to illustrate a real situation in which we needed to discriminate among two 
different model in a definite period of time. 
 
In our setup, two models were tested simultaneously on the same incoming data: 
 Model A (Primary Model): the actual production model responsible for handling 
detection requests in real-time. 
 Model B (Sidecar Model): a release-candidate deployed in parallel with the primary 
model to shadow its inferences without influencing production behavior. 
This setup permitted us to gather predictions from both models for each sample in a real-
world environment without affecting system performance. The purpose of this test was 
to determine whether the differences we got with Model B are statistically significant 
and, therefore, if it is improving the performance of the detection system, it should be 
promoted to production. 
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The test was conducted over a controlled observation period in which both models 
worked through the same 6,630 data examples. All were mining-related detection events 
with pre-existing ground-truth labels based on either manual validation or past 
classification. 
We first made a 2 x 2 contingency table based on the two models' predictions on each 
sample. In this table, rows and columns represent whether a model predicted correctly 
or incorrectly with respect to a true label. 
The table encompasses four possible results: 
 Two models are correct 
 Both models are in error 
 Model A is right and Model B is incorrect 
 Model B is correct and Model A is wrong 
In our test, the table of contingencies had the following: 
 
 
 
 
 

 Model B 
Correct 

Model B 
Incorrect 

Model A 
Correct 

6511 2 

Model A 
Incorrect 73 44 

 
 
This reveals that: 
 In 6,511 cases, both models made correct predictions. 
 In 44 cases, both models were incorrect. 
 In 2 cases, Model A was correct while Model B was not. 
 In 73 cases, Model B was correct while Model A was not. 
The most interesting part for McNemar's test lies in the disagreement cases (i.e., the off-
diagonal counts). 
 
Given the contingency table, we applied McNemar’s test using the chi-squared 
approximation with continuity correction. This version of the test is appropriate when 
the number of discordant cases is moderate to large, as in our case. 
The continuity correction adjusts the test statistic to account for the discrete nature of 
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the data and reduce the risk of overestimating significance. 
 
The test statistic was computed as: 

χ2 =
(|b −  c| −  1)2

b + c
 

Where: 
 b=2: Model A correct, Model B incorrect 
 c=73: Model B correct, Model A incorrect 
Substituting these values into the formula yields a test statistic of approximately 65.33. 
The p-value associated with this chi-squared value (with 1 degree of freedom) was 
approximately: 

p = 6.32 × 10−16 
The p-value is orders of magnitude below the typical significance threshold of 0.05, 
leading us to reject the null hypothesis. This provides strong statistical evidence that the 
performance difference between the models is not due to chance. 
More specifically in this case Model B (sidecar) made significantly more correct 
predictions in cases where Model A failed than vice versa. 
 
Based on the outcome of McNemar’s test, we conclude that the sidecar model 

demonstrates statistically superior performance on the same input data and ground-truth 
labels. As a result, it is a strong candidate for promotion to production, replacing the 
existing model. 
The test proves to be both efficient and reliable, allowing us to: 
 Safely test improvements without risking production stability, 
 Make evidence-based model upgrade decisions, 
 Minimize Type I errors by applying McNemar’s test 
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Chapter 4 
 
 
 
 
Conclusions and future 
developments 
 

 
 
 
 
This thesis presented the design and implementation of the Analytics Ingestion System 
(AIS), a production-ready architecture for capturing, persisting, and analyzing machine 
learning model outputs in cybersecurity environments. The system was developed to 
meet a concrete operational need at Sysdig: transforming model predictions, typically 
transient and underutilized, into durable analytical assets that support robust post-
deployment observability. Unlike traditional MLOps pipelines that focus primarily on 
model training and deployment, AIS focuses on the post-deployment lifecycle, where 
real-world predictions, input features, and detection decisions become the foundation 
for performance analysis, model validation, and behavior monitoring. Through this 
work, we built an end-to-end infrastructure capable of reliably ingesting high-volume 
inference logs, asynchronously processing them for persistence, and enabling 
downstream analytics workflows. This included the development of a flexible queue-
based architecture, metadata-enriched logging interfaces, and integration points for 
statistical testing and comparative evaluation. The system is tightly aligned with 
Sysdig’s operational requirements and establishes a critical building block for long-term 
machine learning governance in adversarial and rapidly evolving threat environments. 
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And so we developed the Analytics Ingestion Service as a flexible setup that can be 
added to any existing machine learning workflow without causing disruptions. AIS is 
made up of separate, container-based components that handle data processing, 
transforming it, and sending it through different stages. Customer data comes into the 
main ML services, where predictions are made and sensitive information is anonymized 
first. After this, the anonymized data goes into a message queue designed to handle lots 
of messages reliably. From there, multiple batching workers pick up these messages and 
save them in a prediction log, where each entry has a unique ID, features, timestamps, 
and model version info. This setup keeps prediction generation and data storage 
separated, which helps with scaling and reduces how much the systems rely on each 
other. At the same time, we have a data dispatcher worker that gathers new data and 
labels and sends them to queues for processing. These queues allow different services, 
like evaluation and testing tools, to work independently and at the same time. 
Beyond building the AIS system, this thesis conducted concrete experiments to 
demonstrate the analytical value of collected inference data, particularly through the use 
of statistical testing. These experiments laid out how statistical tools can be applied to 
ingested detections to uncover significant data shifts and validate improvements in 
model performance. Specifically, we used the Kolmogorov–Smirnov test for continuous 
features and the Chi-squared test for categorical ones to identify distributional shifts over 
time. These findings were reinforced through Kernel Density Estimation (KDE) plots 
and histograms, which offered intuitive visual confirmation of the statistical results. This 
dual analysis approach, statistical and visual, not only confirmed that the miner data 
(detection data used for testing) had evolved since the model was trained, but also 
demonstrated how monitoring can inform decisions around retraining and model 
maintenance. 
In another experiment, we evaluated the effectiveness of a candidate model against the 
current production model using McNemar’s test for A/B testing, a robust non-parametric 
method ideal for comparing classifiers on paired data. By running the two models in a 
sidecar setup and comparing their predictions against shared ground truth labels, we 
were able to quantify and interpret performance differences in a statistical way. The test 
returned a p-value of 6.32 × 10⁻¹⁶, strongly rejecting the null hypothesis and confirming 

that the candidate model outperformed the incumbent. This result validated the power 
of statistical analysis in guiding model upgrade decisions without disrupting production 
workflows. 
Looking ahead, one of the key future developments for AIS involves evolving the 
architecture into a fully operational analytics worker. This component, envisioned as a 
persistent service, would continuously analyze model outputs in real time, detect data or 
concept drift, and flag anomalies using the same statistical techniques applied in our 
experiments. By integrating with communication platforms such as Slack, it could 
deliver alerts automatically, allowing teams to respond quickly to changes in model 
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behavior or data quality. We also foresee extending AIS with automated retraining 
triggers, such as activating a retraining pipeline when over 30% of input features exhibit 
statistically significant drift within a predefined window, thereby closing the loop 
between detection and response. These enhancements would transform AIS from a 
passive data collector into a proactive monitoring and governance tool for production 
ML and AI systems. 
Designed specifically for Sysdig’s machine learning and AI needs, AIS fits right into 

the company’s existing systems, allowing for a good view of predictive services and 

models on a larger scale. It helps create safer, clearer, and more adaptable AI processes, 
giving Sysdig a nice edge in keeping high-quality, reliable AI up and running. 
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