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Summary

This thesis presents a lightweight approach for isolated Italian Sign Language (LIS)
recognition, leveraging Hand Energy Images (HEIs) and custom convolutional
neural networks (CNNs) designed for efficiency and real-world adaptability. Several
preprocessing strategies, including Gaussian blur, background lightening, and
adaptive thresholding, were explored to enhance model robustness across controlled
and unconstrained environments. Experiments conducted on a subset of the Italian
Sign Language A3LIS-147 dataset and a real-world dataset recorded by the author
revealed distinct trends: models trained without preprocessing achieved the highest
performance on the controlled A3LIS test set, while models trained with adaptive
thresholding and Gaussian blur achieved superior generalization to real-world
data. The best real-world model attained a Top-1 accuracy of 48.28% and a Top-3
accuracy of 75.86%, highlighting the effectiveness of preprocessing in improving
transferability. Despite limitations related to dataset size, signer diversity, and
isolated sign scenarios, the proposed system demonstrated strong potential for
future applications in real-time, mobile, or embedded environments.

Keywords: Sign Language Recognition, Italian Sign Language, Hand Energy
Image, Convolutional Neural Networks, Gaussian Blur, Adaptive Thresholding.

11



Acknowledgements

First and foremost, I would like to thank God, who has blessed me throughout
my entire life and especially during the more challenging recent periods. His
guidance, strength, and grace sustained me through the difficult moments and
made it possible for me to overcome the many obstacles along this journey.

I would like to express my deepest gratitude to my parents, Tony and Placida,
and to my brother Rafael, for their unconditional support and encouragement
throughout my entire academic development. Their belief in me has been a
constant source of strength and motivation. I also extend my heartfelt thanks to all
my family members and friends, whose support has been fundamental in helping
me reach this important milestone.

A special thanks to my girlfriend Alissa, who supported me through the many
challenges of balancing student and working life. Her encouragement, patience,
and positivity were crucial during the most demanding moments.

[ am also sincerely grateful to all the professors from the University of Sao Paulo
and Politecnico di Torino, whose guidance and teachings contributed significantly
to my personal and academic growth. It has been an enriching experience to learn
from such distinguished educators in both institutions.

Finally, I would like to thank Sarah Azimi and Corrado De Sio for their invaluable
guidance and mentorship throughout the development of this thesis. Their support
and understanding were essential during my experience as an international student
in Italy, and I am deeply thankful for their role in this achievement.

To all of you, my sincere appreciation.

“Have I not commanded you? Be strong and courageous. Do not be afraid; do not
be discouraged, for the Lord your God will be with you wherever you go.”

Joshua 1:9

II1






Table of Contents

List of Tables VIII
List of Figures X
Acronyms XII
1 Introduction 1
1.1 Motivation and Goals . . . . . . . .. ... ... 4
2 Literature Review 6
2.1 Pioneering Work . . . . . . ... 6
2.2 Input Modality . . . . . . . . .. ... 7
2.3 Datasets . . . . . .. 8
2.3.1 American Sign Language (ASL) . . . . ... ... ... ... 9
2.3.2  Arabic Sign Language (ArSL) . . . .. ... ... ... ... 9
2.3.3 Brazilian Sign Language (LIBRAS) . . . ... ... ... .. 10
2.3.4 British Sign Language (BSL) . . ... ... ... ... ... 10
2.3.5  German Sign Language (DGS) . . . . . ... ... ... ... 10
2.3.6 Italian Sign Language (LIS) . . . ... ... ... ... ... 10
2.4 Image Preprocessing . . . . . . .. ... oo 10
2.4.1 Image Enhancement . . . . . ... ... ... .. .. .. .. 11
2.4.2 Image Restoration . . . .. .. ... .. ... .. .. .... 12
2.4.3 Image Segmentation . . . . . .. ... ... L. 12
2.5 State-of-the-art . . . . . ... ..o oo 13
2.5.1 Recognizing American Sign Language Gestures from within
Continuous Videos . . . . . . .. .. .. .. ... ... 14
2.5.2  Deep convolutional neural networks for sign language . . . . 14
2.5.3 Isolated sign language recognition using Convolutional Neural
Network hand modelling and Hand Energy Image . . . . . . 15
2.5.4  On the role of multimodal learning in the recognition of sign
language . . . . . ..o 15



2.5.5  Deep learning-based sign language recognition system for

static signs . . . . ... Lo
2.5.6  SignCLIP: Connecting Text and Sign Language by Con-
trastive Learning . . . . . . . ... L oo
2.5.7 Considerations . . . . . . . .. ...

3 Methodology

3.1 Overview . . . . . ..
3.2 Database. . . . . . ...
3.3 Image Preprocessing . . . . . .. . .. ... ... ...
3.3.1 Hand Tracking with MediaPipe . . . . . .. .. .. ... ..
3.3.2 Adaptive Thresholding . . . . .. .. ... ... ... ....
333 GaussianBlur . . . . ... ... oL
3.3.4 Hand Energy Image (HEI) . . . . ... ... ... ......
3.3.5 HEI Generation . . . . .. . ... ... ... ... ......
3.3.6 HEI Datasets . . . . .. ... ... ... .. .........
3.4 Classification Model . . . . . . . .. ... oL
3.4.1 CNN Architectures . . . . . . . ... .. ... ... ... ..
3.4.2 Combined Hand Model Integration . . . . ... .. ... ..
3.4.3 Model Design Considerations . . . . ... ... ... ....
3.5 Evaluation Metrics . . . . . .. .. 0L oL
3.6 Baseline Model . . . . ... ... ... ... ... ..
3.7 Experimental Setup . . . .. ...
3.7.1  Summary of Experimental Procedure . . . . . . . ... ...
3.8 Challenges . . . . . . . . .
4 Experiments and Results
4.1 Overview . . . . . . .
4.2 Experimental Setup . . . . . . ... ...
4.3 Baseline Results . . . . . ... .. ... ... .
4.4 Evaluation on Preprocessed HEI Datasets . . . . . .. .. ... ..
4.4.1 Resultson ABLIS-GB . . . ... ... ... ... ......
4.4.2 Resultson ASLIS-LB . . . ... ... ... ... ......
4.4.3 Results on ASBLIS-LB-GB . . . ... ... .........
4.4.4 Results on ABLIS-AT-GB . .. ... ............
4.5 Summary of Experimental Results . . . . . . . ... . ... ... ..
4.5.1 Summary of Best Performing Models . . . . . ... ... ..
5 Discussion
5.1 Overview . . . . . . . .
5.2 Interpretation of Results . . . . . . .. .. ... ... ... .....

19
19
20
22
22
23
25
27
27
29
30
31
31
33
33
35
35
37
38

40
40
41
41
42
43
44
45
46
47
50



5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.3 Strengt
5.3.1
5.3.2
5.3.3
5.34
5.3.5

Performance on A3LIS Test Set . . . . . ... .. ... ...
Performance on Real-World Test Set . . . . . ... ... ..
Model Architectures and Dropout Effects . . . . . . . . . ..
Average True Probability Trends . . . . .. ... ... ...
Summary of Interpretation of Results . . . . . . .. ... ..
hs of the Proposed Approach . . . . ... ... ... ....
Lightweight and Efficient Architecture . . . . .. ... ...
Effective Utilization of HEI Representations . . . . . . . ..
Robustness to Real-World Variability . . . . ... .. .. ..
Independence from Large Datasets . . . . .. .. .. .. ..
Flexible and Modular Design . . . . .. ... ... .. ...

54 Challenges . . . . . . . .

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.5 Future
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

Limited Dataset Size . . . . . .. .. ... ... ... .. ..
Environment Constraints in Original Dataset . . . . . . . . .
Quality of Real-World Evaluation Data . . . . . . .. .. ..
Tracking and Preprocessing Challenges . . . . . . . . .. ..
Scope of Recognition: Isolated Signs Only . . . . .. .. ..
Computational Constraints . . . . . . . .. ... ... ...
Work . . . ..
Increasing Dataset Size and Diversity . . . . . . . . ... ..
Improving Hand Tracking Robustness . . . . . . . .. .. ..
Exploring Sequence Models for Continuous Sign Recognition
Testing Alternative Architectures . . . . . . ... ... ...
Real-Time Mobile Implementation . . . . . ... ... ...

5.6 Discussion Summary . . . . . ...

6 Conclusion

6.1 Summary of Contributions . . . . . . . ... .. ... ...
6.2 Key Findings . . . . . .. .. .o
6.3 Challenges . . . . . . . . ...

6.4 Future

Directions . . . . . . . ..

6.5 Final Remarks . . . . . . . . . .

Bibliography

VII



List of Tables

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15

Summary of HEI datasets generated for experimentation . . . . . .

Baseline model performance trained on A3LIS dataset without pre-
PTOCESSING . « . . v v v v e e e e e e
Model performance trained on A3LIS-GB . . . . . .. .. ... ..
Model performance trained on ASLIS-LB . . . . . ... ... ...
Model performance trained on A3SLIS-LB-GB . . . .. ... ...
Model performance trained on ASLIS-AT-GB . . . ... ... ..
Top-1 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants . . . . . . ..o
Top-1 Accuracy (%) on Real-World Test Set across Different Pre-
processing Variants . . . . . . . ... .. Lo
Top-2 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants . . . . . . .. Lo
Top-2 Accuracy (%) on Real-World Test Set across Different Pre-
processing Variants . . . . . . . . ...
Top-3 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants . . . . . . ...
Top-3 Accuracy (%) on Real-World Test Set across Different Pre-
processing Variants . . . . . . . . . ... Lo
Average True Probability (%) on A3LIS Test Set across Different
Preprocessing Variants . . . . . . .. . ... L Lo L
Average True Probability (%) on Real-World Test Set across Different
Preprocessing Variants . . . . . . . .. ... oo
Best Performing Models on A3LIS Test Set . . . . . .. ... .. ..
Best Performing Models on Real-World Test Set . . . . . . ... ..

VIII



List of Figures

1.1
1.2

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.11
3.12
3.13

4.1

4.2

4.3

American Sign Language fingerspelling alphabet [9] . . . . . . . . .
British Sign Language fingerspelling alphabet [10] . . . . . . . . ..

Sample frame (inviare SMS) from the A3LIS-147 dataset [41].
Sample frame (inviare SMS) from the real-world test dataset recorded
by the author. . . . . . . . . ...
Sample frame (affitto) from the modified A3LIS-147 dataset with
light background color. . . . . . . . .. .. ... ... ... ...,
Effect of adaptive thresholding for background removal on a frame
from A3LIS-147 dataset. . . . . . . . . . ... ...
HEI without Gaussian blur . . . . . . . .. .. ... ... ... ...
HEI with Gaussian blur . . . . .. ... ... ... ... ... ..
HEI with adaptive thresholding (no blur) . . . ... ... ... ...
HEI with adaptive thresholding and Gaussian blur. . . . . . . . ..
[lustration of Hand Energy Image (HEI) adapted from [57]. The
sequence shows several segmented frames of a hand gesture, and the
right image shows the resulting HEI obtained by averaging them.
Sequence of frames and two resulting HEIs for the right hand per-
forming the sign inviare SMS. HEI 1 is obtained from blurred RGB
frames; HEI 2 is constructed from thresholded and then blurred

Workflow of data preprocessing, model training, and evaluation.

Confusion matrix for A3LIS test set predictions of model vO ND
trained on A3LIS. . . . . . . . ...
Confusion matrix for A3LIS test set predictions of model vl ND
trained on A3LIS-AT-GB. . . . . . ... ... ... ... ......
Confusion matrix for real-world test set predictions of model vO ND
trained on A3LIS. . . . . . . . ...

28



4.4  Confusion matrix for real-world test set predictions of model vl ND
trained on A3LIS-AT-GB. . . . . . .. ... ... ... .......






Acronyms

AHE
Adaptive Histogram Equalization

ANN
Artificial Neural Network

ArSL
Arabic Sign Language

ASL

American Sign Language

AT
Adaptive Thresholding

ATP
Average True Probability

BSL
British Sign Language

CLAHE
Contrast Limited Adaptive Histogram Equalization

CNN

Convolutional Neural Network

DGS
Deutsche Gebardensprache (German Sign Language)

XII



FC-RNN

Fully Connected Recurrent Neural Network

GB

Gaussian Blur

HE

Histogram Equalization

HEI
Hand Energy Image

HMM
Hidden Markov Model

ISL
Indian Sign Language

KNN
K-Nearest Neighbors

LB
Light Background

LIBRAS

Lingua Brasileira de Sinais (Brazilian Sign Language)
LIS

Lingua dei Segni (Italian Sign Language)
LRCN

Long-term Recurrent Convolutional Neural Network

LSTM
Long Short-Term Memory Network

MSE

Mean Squared Error

XIII



ND
No Dropout

ReLU
Rectified Linear Unit

RGB
Red, Green, Blue

RNN

Recurrent Neural Network

SGD

Stochastic Gradient Descent

SVM
Support Vector Machine

X1V



Chapter 1
Introduction

Hearing enables humans to perceive sounds in our environment, facilitating inter-
action, communication, expression of thoughts, and learning. Globally, over 1.5
billion people will experience some degree of hearing loss during their lifetime, of
whom at least 430 million will need care [1]. Language development, psychosocial
well-being, quality of life, educational attainment, and economic independence can
be affected when hearing loss is not identified and properly addressed.

Various causes of hearing loss, including ear diseases, ear infections, and exposure
to noise and chemicals, can jeopardize individuals’ hearing across all age groups.
The World Health Organization (WHO) estimates that over 1 billion young people
risk permanent hearing loss, often unknowingly, by listening to music at high
volumes for extended periods [1]. Addressing hearing loss through public health
measures is essential to mitigate these risks.

Many individuals with ear conditions or hearing loss can benefit from effective
interventions. In recent decades, advancements in hearing technology and medical
treatments have significantly aided the hearing loss community. Medical and
surgical treatments, hearing aids, cochlear implants, and rehabilitative therapy
can help these individuals access education and communication, enabling them to
reach their potential. However, most people can only afford to learn sign language
to overcome their challenging barriers and have their potential constrained by the
fact that the primary mode of communication relies on speaking and hearing.

Nevertheless, for a child who cannot receive a treatment such as a cochlear
implant early in life, it is essential to teach sign language from birth. A study
on language deprivation in deaf children [2] indicates that cochlear implants are
not a reliable standalone intervention for a child’s first language development.
The priority should be fostering healthy growth across all developmental domains
through a fully accessible first language foundation, such as sign language. Language
deprivation, while waiting for a cochlear implant, can cause cognitive delays and
mental health difficulties across the lifespan and can become a mental health
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disorder, “language deprivation syndrome” in severe cases [2]. A study compared
deaf babies exposed to sign language from birth to hearing ones and concluded
that infants may utilize visual and auditory linguistic inputs equally [3]. The
phenomenon studied in the paper was babbling, which, for many, was considered
intrinsic to spoken language development. However, it was also observed in its
manual form with deaf babies performing hand signs. Therefore, the authors
suggest that the babies’ predisposition to discover the particular patterns in the
input signal (babbling) is a property of an amodal language capacity.

“Suppose that we had no voice or tongue, and wanted to communicate with
one another, should we not, like the deaf and dumb, make signs with the

hands and head and the rest of the body?” - Socrates (469 - 399 BC)

[4] The sign language history dates from the 5th century BC represented by a
Greek vase showing Philomela, whose tongue was cut by King Tereus of Thrace,
using signs. Furthermore, Socrates’ aforementioned statement in Plato’s Cratylus
was the first written evidence of sign language usage in human history. From the 5th
AD, monastic communities, particularly those under vows of silence, used hand signs
and finger alphabets for communication. The earliest known description of a hand
alphabet is attributed to Saint Bede (5th-6th centuries), with further developments
by Saint Bonaventure in the 13th century. These practices, especially prevalent
in Benedictine communities, were probably the basis for the later application of
manual language to the deaf in the 16th century. In 1771, Charles Michel de L'Epée
established the first free school for the deaf and published syntax for sign language
in 1774. In 1880, at the International Congress of Teachers of the Deaf held in
Milan, the predominance of oralists resulted in anti-sign language resolutions being
passed, banning sign language from schools. For most of the 20th century, speech,
considered superior to sign language, was the only communication method for
educating the deaf and dumb [4].

Later in the 20th century, sign language began to be recognized as the ideal
method of deaf education. Initially, sign language was viewed as merely an imitation
of spoken language. However, it gradually became recognized as a distinct form of
communication that uses gestures to convey meaning independently [5]. According
to National Deaf Children’s Society [6], “Sign language is a visual language that
uses hand shapes, facial expression, gestures and body language. Sign languages
have their own vocabulary, construction, and grammar. Like spoken languages, sign
languages are natural, which means that they’re developed over the years by the
people who use them”. Currently, there are 138 to 300 distinct sign languages with
no universal sign language shared across the globe [7]. Even countries with the same
spoken language have different sign languages, such as Australia, England, and
the United States of America [8]. Figures 1.1 and 1.2 show that the fingerspelling
alphabet from ASL (American Sign Language) and BSL (British Sign Language)
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are completely different, starting from the fact that ASL uses one hand while BSL
uses both.

G AN
Al | 'B* [ /Cc_ | ‘D' | TE

M 2a 9 AR
2B L5 sk
WP s
“WQ%@W B AR o

QW 5o& A sk

= ASL sign language FINGERSPELLING

: alphabet 2 b \ ALPHABET

. . . CHANGING THE WORLD FOR DEAF FiEOPLE : terptree“
Figure 1.1: American Sign Language hellomuerneeco.uk Jwtaicacouk 1655895254 Gure e

fingerspelling alphabet [9]
Figure 1.2: British Sign Language fin-
gerspelling alphabet [10]

Another compelling aspect of sign language is its unique grammar, syntax, and
structural characteristics. Unlike spoken languages, sign language operates with
its distinct syntactical rules, where a single sign can convey an individual letter, a
word, or even an entire sentence [5]. For a layperson, sign language is based only
on the hands’ movements, shapes, and positions, but it has many other features
that most can not perceive at first glance.

[11, 12] Sign language can be divided into manual and non-manual signs. Manual
signs consist of the basic movements, shapes, and positions of the hands and arms
that carry explicit lexical meanings, such as letters, words, or phrases. Complemen-
tarily, non-manual signs, produced through facial expressions, tongue movements,
cheek gestures, and body posture, convey morphemic information about lexical
items or mark syntactic boundaries, such as the ends of phrases. In American
Sign Language (ASL), an example of combining both features is the expression
for "driving carelessly", which involves performing the manual sign for "driving"
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while simultaneously placing the tongue between the front teeth to indicate the
"carelessly” nuance [11, 12].

Sign language has many rules and nuances, just like any spoken language.
However, it has only been in the spotlight since the late 20th century, and there
are still many studies to be conducted so that it can continue to evolve and become
more accessible to a wider audience. Even though relatively few people use sign
language, they are an integral part of society and deserve to be included and
empowered to reach their full potential as human beings.

1.1 Motivation and Goals

Higher education is key to the career and life development of any individual. How-
ever, for disabled people, it can become an inaccessible and challenging step in their
educational journey. Disabled students have reported a lack of information about
pursuing higher education, staff underdevelopment, and inadequate infrastructure
to ensure equal access and support for academic formation [13]. Universities and
institutions must focus on minimizing the stress caused by their infrastructure and
systems, especially since the pressure of the higher education environment already
increases mental health needs even among non-disabled students [14].

For deaf students, additional challenges include vulnerability to marginalization,
inaccessibility of entire lectures even when interpreters are provided, and reliance on
note-taking services [15]. Scottish students identified group tutorials and seminars
as particularly challenging, acknowledging that creating effective access strategies
for these situations remains difficult [16]. Deaf students experience exclusion not
only in educational and organizational activities but also during participation in
extracurricular events [15]. These difficulties demand so much energy that many
deaf students report withdrawing from social activities, feeling less integrated into
the “university family” compared to their hearing peers [17, 18].

[15] Hendry et al. report that the English language constitutes a major com-
munication barrier for deaf Scottish higher education students, many of whom
use British Sign Language (BSL) as their first or preferred language. A lack of
educational materials available in BSL further exacerbates accessibility issues. Even
for students proficient in reading English, obtaining further information about
courses proves difficult due to barriers such as the inability to make phone inquiries.
While a few students have access to sign language interpreters, in most cases such
support is insufficient or unavailable, creating yet another communication barrier
that limits active participation in academic and social spheres [15].

The aforementioned studies show that even with access to interpreters and
note-taking services, deaf students continue to experience marginalization and
exclusion due to limited accessibility during lectures, seminars, and extracurricular
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activities. These challenges highlight the urgent need for innovative solutions that
promote inclusion and accessibility. A sign language recognition model represents
a promising approach to mitigating these barriers. Such a model could help bridge
communication gaps by offering real-time translation of signs into written or spoken
language, ensuring that deaf students can benefit from direct communication with
their hearing peers. This technology would also empower students to engage more
fully in academic and social environments, reducing the sense of isolation and
allowing them to participate on more equitable terms.

Several engineering approaches have been proposed in the literature to address
sign language recognition, including deep convolutional neural networks (CNNs),
hand skeleton-based feature extraction, optical flow-based motion representation,
and attention mechanisms. However, many of these approaches require large
annotated datasets, highly complex architectures, or significant computational
resources, limiting their practical applicability to real-world, low-resource scenarios.

In this context, this master’s thesis proposes a lightweight and accessible solution
by leveraging Hand Energy Images (HEISs) to represent the dynamic movement of
hands during signs, combined with compact, custom-designed convolutional neural
networks trained individually for each hand. Furthermore, multiple preprocessing
strategies, such as background color lightening, Gaussian blur, and adaptive thresh-
olding, were systematically evaluated to enhance model robustness across different
environments. By training specialized models for left and right hands and later
combining their predictions through a probabilistic strategy, this work aims to offer
a simple yet effective architecture suitable for real-world deployment. The ultimate
goal is to contribute a feasible tool to help deaf students overcome communication
barriers within educational settings, promoting greater inclusion and participation.



Chapter 2
Literature Review

This chapter provides an overview of key studies and theoretical frameworks related
to sign language recognition, highlighting the current state of knowledge, identifying
gaps, and positioning this thesis within the broader academic discourse. The scope
of this review lies in works that propose sign language or gesture recognition
systems or contribute to the technical understanding of sign languages. This
chapter will be divided into key topics: pioneering work, input modality, datasets,
image preprocessing, and state-of-the-art work.

2.1 Pioneering Work

In 1981, Tartter and Knowlton [19] explored the possibility of using a simplified
visual representation to enable sign language communication over a telephone line.
They designed gloves with thirteen pieces of retro-reflective tape strategically placed
on the hands and wrists to capture essential movements and hand shapes during
signing. Subjects engaged in conversation while viewing only the reflected light
spots on a monitor. The findings demonstrated that communication was successful
at near-normal conversational speeds, although some difficulties were observed in
fingerspelling. The study concluded that this reduced information system could
be transmitted over a single telephone line, suggesting the potential for real-time,
remote sign-language communication.

Throughout the 1990s, the majority of research efforts focused on employing
Hidden Markov Models (HMMs) for sign language recognition, often utilizing
DataGlove devices or colored gloves to improve hand tracking accuracy [20, 21,
22, 23, 24, 25, 26, 27]. HMMs operate under the assumption that a sequence of
observations follows the Markov property, where the current state depends only on
a limited history of prior states. Training HMMs involves addressing three core
problems: evaluation, estimation, and decoding.

6
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In 1995, Starner et al. [20] applied the forward-backward algorithm to evaluate
the probability of observation sequences, the Baum-Welch algorithm to iteratively
refine model parameters, and the Viterbi algorithm to find the most probable
sequence of hidden states. Using a 40-word lexicon and a set of 99 test sentences,
their system achieved a word recognition accuracy of 91.3% without relying on
grammatical rules. Later, in 1998, Starner et al. [25] proposed two additional
recognition systems that did not require colored gloves. One of these systems,
utilizing a camera mounted on a cap worn by the signer, achieved 97% word
recognition accuracy with unrestricted grammar on a 100-sentence test set, still
within a 40-word lexicon.

In 2000, Bauer et al. [27] enhanced the traditional HMM-based approach by
incorporating a language model during the decoding phase. Without the use of a
language model, their system achieved accuracies of 94.0% and 91.8% for lexicons
of 52 and 97 signs, respectively. When a Bigram language model was incorporated,
the accuracies improved to 95.4% and 93.2%, respectively.

Overall, the early work on sign language recognition predominantly relied on
glove-based systems to either provide direct signal measurements or improve hand-
tracking accuracy before feeding the data into HMM frameworks. Additionally,
training and testing datasets were typically collected under standardized and
highly controlled conditions, often involving only one or a few signers. This setup,
while effective in early experiments, posed limitations on model generalization and
increased the risk of overfitting to specific signers or environments.

2.2 Input Modality

Generally, data input methods for sign language recognition are categorized into
two main groups: glove-based and vision-based approaches. Zheng et al. [28] refer
to glove-based methods as touch-based approaches, where data is captured through
optical, magnetic, or acoustic sensors attached to the hands or body. In contrast,
vision-based or untouched-based methods rely on video and depth data acquired
from standard cameras or more advanced devices, such as the Microsoft Kinect,
which additionally provides depth maps. Zheng et al. emphasize that glove-based
methods tend to burden users with wearable devices and cables, whereas vision-
based systems allow users to communicate naturally in front of a camera without
physical constraints.

Expanding this categorization, Rastgoo et al. [29] further analyzed input modal-
ities in vision-based systems, highlighting the use of infrared sensors and proposing
an additional classification of inputs based on their temporal characteristics. Ac-
cording to their survey, input data can be divided into static and dynamic forms.
On the one hand, many deep-learning models process static inputs, treating each
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image or frame independently, focusing solely on spatial information. On the other
hand, dynamic inputs incorporate temporal information, considering sequences of
frames where spatial features evolve over time, which can significantly enhance
recognition accuracy. Dynamic approaches also address challenges such as sen-
tence tokenization into words, start and end detection of signs, and managing
abbreviations or synonyms.

In summary, input modalities can vary depending on available resources, tech-
nological constraints, and the final objectives of the sign language recognition
system. For daily applications, vision-based approaches offer a more practical
and user-friendly solution, particularly considering the widespread availability of
cameras in mobile devices.

2.3 Datasets

The main benchmark datasets for sign language recognition include:

e American Sign Language (ASL):

— Purdue RVL-SLLL Database [30]

— American Sign Language Lexicon Video Dataset (ASLLVD) [31]
— RWTH-BOSTON-104 [32]

— RWTH-BOSTON-400 [33]

— Massey Dataset [34]

Arabic Sign Language (ArSL):

— SignsWorld Atlas Database [35]
— Arabic Sign Language Database [36]

Brazilian Sign Language (LIBRAS):
— LIBRAS-HC-RGBDS [37]

British Sign Language (BSL):

— British Sign Language Corpus [38]

German Sign Language (DGS):
— SIGNUM Database [39]
— RWTH-PHOENIX-Weather 2014 [40]
8
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The American Sign Language (ASL) datasets are among the most widely used
in academic research and were among the first available benchmark datasets.
Consequently, ASL is one of the most influential sign languages in computer vision
and machine learning studies. In this work, the Italian Sign Language A3LIS-147
dataset [41], an uncommon but easily accessible database, was utilized.

2.3.1 American Sign Language (ASL)

In 2002, Martinez et al. [30] introduced the Purdue RVL-SLLL Database, consisting
of 2,576 videos: 184 videos for each of 14 native ASL signers. The dataset was
recorded under two lighting conditions: diffuse illumination to suppress shadows
and directed illumination to enhance contrast. All videos are RGB AVI files with
640 x 480 resolution and 24-bit color depth.

In 2008, Athitsos et al. [31] presented the American Sign Language Lexicon
Video Dataset (ASLLVD), created as part of a project to enable visual sign lookup
systems. Initially covering almost 3,000 signs, each sign was performed by up to
four native ASL signers and recorded from four different camera angles. Video
resolution varies: most recordings are at 640 x 480 pixels and 60 fps, while some
frontal views reach 1600 x 1200 pixels at 30 fps. The dataset now includes almost
9,800 videos across more than 3,300 signs.

In 2007, Dreuw et al. [32] compiled the RWTH-Boston-104 corpus from a larger
Boston University dataset. It contains 201 sign sequences performed by three
signers within a 104-sign vocabulary. The grayscale videos were recorded at 312 x
242 resolution at 30 fps.

In 2008, Dreuw et al. [33] introduced RWTH-Boston-400, expanding their prior
work to 843 sentences performed by four signers using a 406-sign vocabulary. Videos
are available in two versions: uncompressed at 648 x 648 resolution and compressed
at 324 x 242 resolution.

In 2011, Barczak et al. [34] released MU__HandImages ASL, focusing on static
ASL fingerspelling (letters and numbers). Initially, it included 2,425 hand gesture
images captured under different lighting conditions. The goal was to expand the
dataset to 18,000 images across 20 individuals.

2.3.2 Arabic Sign Language (ArSL)

In 2015, Shohieb et al. [35] proposed the SignsWorld Atlas Database, covering both
manual and non-manual signs (e.g., hand shapes, lip movement, facial expressions).
Although the exact size was not specified, the dataset includes approximately 257
labels performed by 10 signers in front of a black background with 1024 x 768
image resolution.
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In 2019, Ghazanfar et al. [36] released the ArSL2018 dataset, consisting of 54,049
grayscale images (64 x 64 resolution) covering the 32 Arabic alphabet letters.

2.3.3 Brazilian Sign Language (LIBRAS)

In 2013, Porfirio et al. [37] introduced LIBRAS-HC-RGBDS, a dataset with 610
videos from 5 signers covering 61 hand configurations. Each recording captured
both RGB and depth information using a Kinect® sensor at 640 x 480 resolution,
with videos lasting between 5 to 10 seconds.

2.3.4 British Sign Language (BSL)

In 2013, Schembri et al. [38] presented the BSL Corpus Project, gathering data
from 249 participants who learned BSL before the age of seven. Participants
engaged in 30-minute conversations recorded with three cameras. From this data,
7,332 lexical annotations and 25,000 conversational signs were created, yielding a
lexical database of approximately 1,800 unique signs.

2.3.5 German Sign Language (DGS)

In 2007, Agris et al. [39] introduced the SIGNUM database, designed to address
signer-independence challenges. It includes 15,600 sentence videos performed by 20
signers across 450 signs, with 780 x 580 pixel RGB videos recorded at 30 fps.

In 2014, Forster et al. [40] released the RWTH-PHOENIX-Weather 2014 corpus,
based on German weather forecasts. The dataset contains 6,861 sentences across
1,558 signs, performed by 9 signers and recorded at 210 x 260 resolution at 25 fps.

2.3.6 Italian Sign Language (LIS)

In 2012, Fagiani et al. [41] presented A3LIS-147, one of the first Italian Sign
Language datasets. It contains 147 signs performed by 10 different signers, totaling
1,470 videos. Signs are grouped into six categories (e.g., education, transportation,

healthcare) and were recorded against a green background at 720 x 576 resolution
and 25 fps.

2.4 Image Preprocessing

Preprocessing techniques are applied to images to enhance their quality, improving
the input data of a model. Choosing a good selection of preprocessing techniques
can greatly affect the accuracy of a given image-based model. There are two main
classes of preprocessing techniques: image enhancement and image restoration.
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Image enhancement techniques include Histogram Equalization (HE), Adaptive
Histogram Equalization (AHE), Contrast Limited Adaptive Histogram Equalization
(CLAHE), and logarithmic transformation. Image restoration includes a media
filter, mean filter, Gaussian filter, adaptive filter, and Wiener filter. Furthermore,
image preprocessing may involve operations such as image subtraction or averaging,
generating additional features from the input.

2.4.1 Image Enhancement
Histogram Equalization

Histogram equalization is a preprocessing technique that strengthens colors and
increases the contrast of an image (Gonzalez and Woods [42]). Verma and Dutta
[43] discuss contrast enhancement techniques, pointing to histogram equalization
as one of the best methods considering its easy implementation and great results.
They also reviewed other extensions of the histogram equalization method, such
as Adaptive Histogram Equalization and Contrast Limited Adaptive Histogram
Equalization.

The Adaptive Histogram Equalization Technique differs from classical Histogram
Equalization since the adaptive method computes several histograms for distinct
sections of the images. According to Kumar et al. [44], this technique loses
information, amplifies the noise, fails to retain the brightness, has a low signal-to-
noise ratio, is very complex to implement, and takes a long computational time.
They discuss how the Background Brightness Preserving Histogram Equalization
performs better in all the aforementioned metrics than the classical, adaptive,
brightness preserving bi, and recursive mean separate histogram equalization
techniques.

These techniques are not suitable for RGB images since their methods generate
histograms for grayscale images. Therefore, grayscale conversion is often applied to
RGB images as a preprocessing technique that allows the application of grayscale-
focused techniques.

Grayscale Conversion

According to Adeyanju et al. [45], grayscale conversion is one of the simplest
image processing enhancement techniques in which the color space is converted to
grayscale. Using grayscale images over RGB-colored ones simplifies the algorithms
and reduces the computational requirements. Although the preprocessed image
loses color information, it preserves the salient features of the colored image. The
grayscale conversion equation (Biswas et al. [46]) is given in Eq. 2.1

GY = 0.56G + 0.33R + 0.11B (2.1)
11
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2.4.2 Image Restoration

According to Reeves [47], an image is a 2D representation of a 3D scene, and image
restoration involves processing it to generate a more accurate representation of
reality by reducing blur and noise. Various techniques, such as mean, median,
Gaussian, and Wiener filters, serve different restoration purposes. The mean filter
replaces the center pixel with the average value of its neighboring pixels, resulting
in a smoother image and helping to reduce salt-and-pepper noise.

The Gaussian filter is a linear, non-uniform low-pass filter that blurs an image
using a Gaussian function. It is widely used in image preprocessing to reduce noise
and smooth edges. Common in sign language recognition research, it serves as a
smoothing operator to enhance image clarity [45]. Oliveira et al. [48] applied the
Gaussian filter for hand shape classification, achieving a precision of 99.65%.

The Wiener filter is used for noise removal and minimizes the mean square error
(MSE) between the estimated and desired processes. It balances image smoothing
and noise reduction, but may cause blurring due to its fixed filter. Its restoration
function considers both the degradation function and noise characteristics, using a
high-pass filter for deconvolution and a low-pass filter for noise reduction. Kaluri
and Reddy [49] used this method to eliminate image noise beforehand, applying
the adaptive histogram technique to enhance the hand gesture images.

2.4.3 Image Segmentation

According to Egmont-Petersen et al. [50], segmentation involves dividing an image
into distinct regions based on specific criteria to ensure coherence within each
part. There are two basic approaches used for image segmentation: contextual and
non-contextual. The former leverages the relationships between image features,
such as edges, intensity similarities, and spatial proximity, to improve segmentation
accuracy. In contrast, non-contextual segmentation disregards spatial relationships
and instead groups pixels based only on global attribute values. Furthermore, image
segmentation techniques can be categorized into edge detection-based, thresholding-
based, region-based, clustering-based, and artificial neural network-based [45].

Thresholding

Thresholding is the simplest and most commonly used technique for background
removal. Global thresholding sets a single threshold value to divide the image into
foreground and background. Meanwhile, adaptive thresholding partitions an image
into sub-images, determining each threshold based on statistical measures, such
as the mean plus the standard deviation of the pixel values within each region.
Rao and Kishore [51] applied adaptive thresholding to remove the background of
the videos for a continuous sign language recognition system. Dudhal et al. [52]
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utilized adaptive thresholding to binarize the grayscale image into a black and
white hand contour image for an isolated sign language recognition. Multilevel
thresholding is applied to extract homogeneous regions in an image by defining
multiple thresholds. The method performs well on images with complex or colored
backgrounds where bi-level thresholding fails. Skin color segmentation, commonly
used in applications like human-computer interaction, image recognition, traffic
control, video surveillance, and hand segmentation, utilizes a color model to isolate
skin regions in images. According to Shaik et al. [53], the RGB color space is the
least favored for color-based detection and analysis, as the variation in human skin
tones makes it hard to identify and distinguish skin regions.

Edge Detection

Edge detection is a fundamental technique in image processing that identifies areas
in an image where intensity values change rapidly. This is typically done by locating
points where the first derivative of intensity exceeds a certain threshold or where the
second derivative shows zero crossings. Effective edge-based segmentation involves
three key steps: identifying edges, removing unnecessary ones, and connecting the
relevant edges. The most commonly used edge detection methods include Robert,
Sobel, Prewitt, Laplacian of Gaussian, and Canny edge detectors. Thepade et al.
[54] propose a method for recognizing sign language static gestures from images
by leveraging edge detection techniques. All the aforementioned edge detection
techniques are tested for extracting gradient information from the input images,
generating edge maps highlighting the contours of hand shapes. The authors then
compute color mean features fed into a Support Vector Machine classifier, achieving
promising accuracy for static gesture recognition. Among the evaluated methods,
the Sobel edge detector demonstrated superior performance in accurately capturing
the relevant contour features for static sign language recognition.

2.5 State-of-the-art

Recent advancements in sign language recognition have been primarily driven by
deep learning, particularly convolutional neural networks (CNNs), spatiotemporal
models, and increasingly, contrastive learning techniques. The literature reveals a
broad spectrum of approaches from static image classification using tailored CNNs to
dynamic video modeling through 3D CNNs and recurrent neural networks (RNNs).
Multimodal fusion strategies also feature prominently, leveraging combinations of
RGB, depth, optical flow, skeletal data, and feature-based representations such
as Hand Energy Images (HEIs) to capture richer sign descriptions. More recently,
methods like SignCLIP have introduced language-agnostic, contrastive learning
frameworks that align sign videos and textual inputs in a shared embedding space,
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enabling scalable and flexible recognition. Across these methods, key trends include
the use of extensive preprocessing, modality-specific architectures, and training
optimizers such as Stochastic Gradient Descent (SGD), all aimed at enhancing
robustness and generalization.

2.5.1 Recognizing American Sign Language Gestures from
within Continuous Videos

In 2018, Ye et al. [55] proposed a 3DRCNN hybrid model that combines 3D
Convolutional Neural Networks (3DCNNs) with Fully Connected Recurrent Neural
Networks (FC-RNNs) to recognize American Sign Language (ASL) gestures in
continuous video streams. The model is designed to both classify signs and localize
their temporal boundaries within the video. The 3DCNN component captures
spatiotemporal features from RGB, motion (optical flow), and depth data, while
the FC-RNN captures sequential dependencies between video clips. To further
enhance performance, features from the three modalities are concatenated before
being passed to the RNN. A greedy linking method is used to merge video clips
with the same label into coherent segments.

The authors also introduce a new multi-modal ASL dataset containing RGB,
depth, and optical flow channels, along with full temporal annotations for individual
signs within continuous sequences. Experimental results demonstrate that the
3DRCNN outperforms baseline models like C3D, LRCN, and Two-Stream CNNs,
achieving 69.2% accuracy (person-dependent) and 65.8% (person-independent) on
a subset of 27 ASL signs. Their results highlight the importance of combining both
spatial and temporal information across multiple data modalities for improved
recognition and segmentation performance in real-world ASL applications.

2.5.2 Deep convolutional neural networks for sign language

Also in 2018, Rao et al. [56] presented a deep learning-based system for recognizing
Indian Sign Language (ISL) gestures using a selfie video input approach. The
authors constructed a custom dataset containing 200 ISL signs, performed by five
native signers in five different orientations, resulting in 300,000 video frames. The
proposed method uses a deep convolutional neural network (CNN) architecture with
four convolutional layers, two stochastic pooling layers, and a SoftMax classifier.
Various pooling strategies were tested, and stochastic pooling provided the best
results in terms of accuracy and generalization.

Training was conducted in three batches using one, two, and three user sets,
respectively, with performance evaluated on unseen signer data. The system
achieved a maximum recognition accuracy of 92.88%, outperforming traditional
classifiers like Mahalanobis Distance, AdaBoost, and both shallow and deep ANNs.
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The architecture was optimized for mobile platforms, making it suitable for real-
time sign recognition on smartphones. The study highlights the effectiveness of
CNNs combined with stochastic pooling for robust and efficient sign language
recognition in mobile applications.

2.5.3 Isolated sign language recognition using Convolu-
tional Neural Network hand modelling and Hand
Energy Image

In 2019, Lim et al. [57] presented an isolated sign language recognition framework
centered on a two-phase process: hand tracking and hand representation. The
hand tracking is performed using a particle filter, which combines hand motion
information and CNN-based pre-trained hand models to accurately detect hand
positions across frames. Once detected, the hand regions are used to generate
a Hand Energy Image (HEI), a compact representation obtained by averaging
segmented hand regions over time.

The system was evaluated on two benchmark datasets, RWTH-BOSTON-50 and
ASLLVD, demonstrating that the CNN-based hand tracking (CNNT) significantly
outperformed traditional methods such as Kalman filters, Dynamic Programming,
and color-based tracking in terms of accuracy and robustness. The Hand En-
ergy Image (HEI) representation further enhanced performance by capturing the
temporal dynamics of hand movements. Sign recognition was performed using
a nearest-neighbor approach, where gestures were classified based on the mini-
mum distance between the vectorized HEIs of the test and training samples. This
technique achieved up to 89.33% accuracy on RWTH-BOSTON-50 and showed
strong resilience to signer variability and occlusion, indicating its suitability for
signer-independent recognition tasks.

2.5.4 On the role of multimodal learning in the recognition
of sign language

In 2019, Ferreira et al. [58] proposed a novel multimodal learning approach for
static sign language recognition by combining data from Kinect (color and depth)
and Leap Motion sensors. It introduces EENReg (End-to-End Network with
Regularization), a deep neural network that jointly learns modality-specific and
shared feature representations. The architecture comprises separate private and
shared convolutional streams for each modality, trained using a custom loss function
that encourages feature orthogonality and alignment across modalities. A robust
hand detection pipeline is also implemented using YCbCr-based skin segmentation
and depth filtering, followed by a background suppression step and extensive data
augmentation.
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The model was trained and evaluated on a 10-class American Sign Language
dataset comprising 1400 samples with 5-fold signer-independent cross-validation.
Results show that multimodal fusion methods consistently outperform single-
modality ones, with EENReg achieving 97.66% accuracy, surpassing previous
state-of-the-art methods. Notably, the study reveals that combining Leap Motion’s
structural hand data with Kinect’s visual modalities leads to strong complementary
information, improving recognition performance. This work demonstrates the
potential of deep multimodal learning in enhancing the generalization and robustness
of sign language recognition systems.

2.5.5 Deep learning-based sign language recognition system
for static signs

In 2020, Wadhawan and Kumar [59] introduced a robust sign language recognition
system for 100 static signs of Indian Sign Language (ISL), utilizing a custom-built
dataset of 35,000 RGB images captured under various environmental conditions.
The authors design and evaluate nearly 50 different CNN models, fine-tuning
hyperparameters such as the number of convolutional layers, filters, and optimiz-
ers. The architecture includes standard components, such as convolutional layers,
ReLU, max-pooling, dropout, and fully connected layers, culminating in a SoftMax
classifier for multi-class recognition. Preprocessing steps include image resizing and
normalization. Experimental results show that reducing the CNN depth to four
layers while using Stochastic Gradient Descent (SGD) leads to optimal performance,
achieving a training accuracy of 99.90% and validation accuracy of 98.70% on
grayscale images, and 99.72% training accuracy and 98.56% validation accuracy on
colored images.

The system is evaluated not only by accuracy but also by precision, recall,
and Fl-score, and it significantly outperforms several existing ISL recognition
methods based on machine learning (e.g., KNN, SVM, ANN). The authors also
demonstrate the system’s effectiveness across different optimizers (Adam, RMSProp,
Adagrad), concluding that SGD provides the best generalization. One of the
notable contributions of this work is the large-scale static ISL dataset and extensive
comparative experimentation, which establish this CNN-based approach as a state-
of-the-art benchmark for static sign recognition. Future work includes extending
the model to dynamic sign recognition and deploying it in real-time applications
on mobile devices.
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2.5.6 SignCLIP: Connecting Text and Sign Language by
Contrastive Learning

In 2024, Jiang et al. [60] presented SignCLIP, a contrastive learning framework
designed to bridge the gap between spoken language text and sign language
videos by projecting both into a shared latent space. Unlike most sign language
processing models that rely on labeled datasets and gloss annotations, SignCLIP
leverages video-text pairs from the large-scale multilingual Spreadthesign dictionary
(~500k videos across 41 sign languages). By adapting the CLIP (Contrastive
Language-Image Pretraining) architecture, the authors train a dual-encoder model
with a 3D-CNN-based video encoder and a BERT-based text encoder. Notably,
they explore both raw video inputs and pose-based representations using MediaPipe
Holistic, finding the latter to be more efficient and interpretable for downstream
tasks. A smaller variant called FingerCLIP is also tested on isolated fingerspelling
recognition, achieving perfect retrieval accuracy using dominant hand keypoints
and augmentation strategies.

SignCLIP shows excellent in-domain performance on isolated sign recognition
tasks, especially when trained on pose data, achieving top-1 accuracy up to 0.40
and top-10 accuracy up to 0.83 on 4,531 unique signs. However, its zero-shot
performance on out-of-domain datasets (like PopSign and ASL Citizen) is limited
due to domain shifts in both visual and textual modalities. The model excels in
few-shot and fine-tuned scenarios, sometimes outperforming previous state-of-the-
art methods, particularly on datasets such as PopSign ASL and ASL Citizen. The
paper concludes that multilingual pretraining, pose-based inputs, and contrastive
objectives offer a promising path toward scalable, language-agnostic sign language
recognition systems. Moreover, it emphasizes the potential of SignCLIP as a
universal embedding model for sign languages, with implications for recognition,
translation, and retrieval tasks.

2.5.7 Considerations

A noteworthy pattern across the reviewed studies is the influence of dataset choice
on reported performance. Systems trained on custom-built or controlled datasets
often demonstrate high accuracy, likely due to domain-specific optimizations and
reduced variability. Conversely, models evaluated on public or more diverse datasets
tend to report lower but more realistic performance, highlighting the challenge of
generalization in real-world scenarios. This trade-off becomes especially apparent
in cross-domain evaluations, as seen in SignCLIP, where zero-shot performance
drops significantly despite strong in-domain results. These findings underscore the
need for standardized, large-scale benchmarks and transparent reporting to enable
fair comparisons, encourage robust model development, and advance sign language
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recognition systems that are inclusive, scalable, and truly deployable across diverse
settings.
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Chapter 3

Methodology

3.1 Overview

This chapter presents the methodology adopted for building a sign language
recognition system focused on the classification of isolated signs in the Italian Sign
Language (LIS). The proposed pipeline combines computer vision techniques for
hand localization and segmentation with deep learning-based classification, aiming
to create a lightweight and effective model suitable for real-world deployment.

The system is developed and evaluated using the A3LIS-147 dataset, which
contains video recordings of isolated LIS signs performed by multiple signers.
Each video is first processed using MediaPipe [61], a real-time pose estimation
framework, to detect and track the hand regions. Once the hand bounding boxes
are extracted, a sequence of preprocessing operations is applied to enhance the input
quality. The first step is adaptive thresholding, which removes the green screen
background and simplifies the image by preserving only the most salient contour
information of the hands. This transformation reduces the visual complexity of each
frame, highlighting the key motion and shape features relevant for classification.
After thresholding, a Gaussian blur is applied to smooth the result and reduce
high-frequency noise, leading to cleaner and more consistent representations for
generating Hand Energy Images.

The preprocessed hand crops are then used to generate a Hand Energy Image
(HEI) for each hand. This representation captures temporal dynamics and spatial
movement patterns by averaging the segmented hand frames into a single composite
image. Each HEI, left and right, is then passed through a separate Convolutional
Neural Network (CNN) trained to classify the corresponding sign. The final
prediction is obtained by averaging the confidence scores from both hands, enabling
effective bi-manual integration.

This methodology emphasizes the use of pose-guided cropping and temporal
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feature condensation while incorporating targeted preprocessing steps to improve
segmentation quality and model robustness. The pipeline is designed to maintain
low computational complexity while delivering strong classification performance
across a representative set of isolated signs. To evaluate the generalization capability
of the model, a real-world video was recorded by the author performing the target
signs in a natural environment, without the standardized green screen background,
allowing for testing under less controlled conditions.

3.2 Database

Figure 3.1: Sample frame (inviare SMS) from the Figure 3.2: Sam-

A3LIS-147 dataset [41]. ple frame (inviare SMS)
from the real-world test
dataset recorded by the
author.

This work utilizes a subset of the A3LIS-147 dataset, a publicly available video
corpus of Italian Sign Language (Lingua Italiana dei Segni — LIS). The dataset
was developed by Fagiani et al. [41] in collaboration with the Ente Nazionale dei
Sordi (ENS) and contains 147 distinct isolated signs, organized into six thematic
categories relevant to daily life. All signs are recorded under repeatable and
controlled conditions, specifically designed for automatic sign recognition and
synthesis research.

The full corpus includes recordings from 10 native LIS signers (7 males and
3 females), aged between 18 and 43 years with an average age of 29 years, and
heights ranging from 156 cm to 190 cm (average of 172 cm). Each signer performed

20



Methodology

all 147 signs individually. Each video clip begins and ends with a standardized
“silence” pose, recorded for consistency across samples. Videos were recorded in a
controlled environment with uniform lighting, green chroma-key background, and
a 25 fps, 720x576 pixel resolution, using a frontal commercial camera setup.

For this thesis, a subset of 148 videos of 14 signs from the Common Life category
was selected, comprising signs frequently used in everyday interactions: abitare (to
live), acqua (water), affitto (rent), banca (bank), caldo (hot), casa (house), cibo
(food), data (date), freddo (cold), interprete (interpreter), inviare SMS (send SMS),
lingua dei segni (sign language), litro (liter), and the idle or silence position used
as a background class. This reduced vocabulary allows for focused development
and evaluation of the proposed recognition system on semantically meaningful and
visually distinct signs. The Figure 3.1 shows a frame of the inviare SMS (send
SMS) sign performed by one male sign.

To ensure that the classification model focuses on the meaningful portion of
each sign, the original videos from the A3LIS-147 dataset were manually trimmed
to remove the initial and final silence poses, leaving only the active signing segment.
However, selected samples of the silence position were still retained and explicitly
added to the training data as a separate class. This allows the model to also identify
idle or transition periods, improving its applicability in continuous or real-time
settings.

Figure 3.3: Sample frame (affitto) from the modified A3LIS-147 dataset with
light background color.

In addition to the original dataset, an alternative version of the A3LIS-147 subset
was generated by replacing the green screen background with a light color close
to white (Figure 3.3). This modification aimed to simulate a more realistic visual
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environment by reducing the stark contrast between the signer and the background,
thereby better approximating real-world recording conditions. The purpose of this
adapted dataset was to evaluate the model’s robustness when transitioning from
highly controlled settings to more naturalistic visual contexts, bridging the gap
between laboratory-trained systems and their deployment in everyday scenarios.

In addition to using the A3LIS-147 dataset, a separate set of real-world test videos
was recorded by the author to evaluate the model’s generalization capability outside
of the controlled dataset conditions. 61 videos were captured in a bedroom setting
using a smartphone at 720x 1280 resolution and 29 frames per second, without a
green screen background. The recorded signs include: abitare (4 samples), acqua
(4), affitto (4), banca (4), caldo (5), casa (4), cibo (3), data (5), freddo (5), idle (5),
interprete (5), inviare (6), lingua (3), and litro (4). Although the author is not
a native LIS signer, each sign was carefully reproduced by referencing standard
LIS materials to simulate realistic usage and test the system in an uncontrolled
environment. The Figure 3.2 shows a frame of the inviare SMS (send SMS) sign
performed by the author. A clear contrast can be observed between Figures 3.1
and 3.2, highlighting the difference between the controlled, studio-like conditions
of the A3LIS-147 dataset and the more variable, real-world environment of the
author-recorded videos.

3.3 Image Preprocessing

To ensure high-quality input for classification and to emphasize relevant visual
features, a preprocessing pipeline was designed to operate on each video frame
prior to feature extraction and classification performed by the convolutional neural
network. The goal of this stage is to isolate and enhance the hand regions responsible
for conveying sign information while suppressing irrelevant background noise and
visual clutter. The preprocessing procedure is composed of four main components:
hand tracking, which localizes and crops the hand areas using pose estimation;
adaptive thresholding, which removes the background and retains essential contours;
Gaussian filtering, which smooths the segmented images and reduces noise; and
the generation of Hand Energy Images (HEI), which condense motion and spatial
features across the video sequence into a single composite representation. Each
of these components plays a critical role in shaping the input to the classification
model and improving its robustness and performance.

3.3.1 Hand Tracking with MediaPipe

Hand tracking is a crucial first step in the preprocessing pipeline, responsible for
localizing and cropping the hand regions used to build the Hand Energy Images
(HEISs). In this work, the hand tracking task is performed using the MediaPipe Hands
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solution, a real-time hand perception framework developed by Google. MediaPipe
detects and tracks up to two hands per frame, returning 21 3D landmarks for each
hand, including positions for the wrist, finger joints, and fingertips.

To define a stable and consistent bounding box around each hand, two specific
landmarks are used: the wrist (landmark ID 0) and the metacarpophalangeal
joint of the middle finger (landmark ID 9). The Euclidean distance between these
two points serves as a reference for estimating the size of the square bounding
box centered at the middle finger base. Let (g, o) and (z9,y9) denote the image
coordinates of the wrist and the middle finger base, respectively. The distance d
between these two landmarks is computed as:

d = /(g — 20)2 + (y9 — 40)? (3.1)

To ensure the box fully captures the spatial extent of the hand, this value is
scaled by a factor of 1.25:

s=125-d (3.2)

The bounding box is then defined as a square of side length 2s, centered at
(x9,y9). The top-left and bottom-right corners of the square are computed as:

start = (29 — 5,99 — 5), end = (g + S,y + 5) (3.3)

The computed bounding box is used to crop the hand region from the original
frame. These cropped images are stored in temporal buffers separately for the left
and right hands. The buffered sequences are then used to generate Hand Energy
Images by averaging the preprocessed cropped hand frames over time.

This approach ensures that each HEI captures the spatial and motion character-
istics of the sign, while reducing the influence of background or non-manual features.
The use of landmark-based dynamic cropping leads to consistent localization even
in the presence of signer movement or hand shape variation.

3.3.2 Adaptive Thresholding

Following hand tracking and cropping, each hand region undergoes an image
segmentation step to remove background noise and emphasize the hand’s structural
contours. This is achieved using cv2.adaptiveThreshold, a local thresholding
method provided by OpenCV, which dynamically adjusts the threshold value across
different regions of the image based on local intensity distributions. Unlike global
thresholding techniques that apply a single fixed value, adaptive thresholding
is more robust to illumination changes and shadows, features often present in
real-world video frames.
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In this work, the cropped hand image is first converted to grayscale before
undergoing adaptive Gaussian thresholding. This technique dynamically computes
a local threshold for each pixel based on the intensity distribution in its surrounding
neighborhood. The binarization process follows the rule:

255 if I(x,y) > T(z,y)

. (3.4)
0 otherwise

dst(z,y) = {

Where I(x,y) is the grayscale intensity at pixel location (z,y), and T'(x,y)
represents the adaptive threshold calculated from the weighted sum of intensities
in a local neighborhood around that point.

In particular, the method applies a Gaussian-weighted window to the neighbor-
hood, assigning greater importance to pixels closer to the center. This weighting is
defined by the two-dimensional Gaussian function:

w(i,j) = exp (—ZQ +j2> (3.5)
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Here, (i, j) are the offsets from the center pixel and o is the standard deviation,
which determines the spread of the Gaussian distribution. The threshold T'(x,y) is
then computed as the sum of the weighted intensity values within the window, and
a constant C' is subtracted to control the sensitivity of the binarization:

T(x,y) = (Zw(i,j) -I(x—i—i,y—i—j)) -C (3.6)

i3

This approach improves robustness to local lighting variations and ensures that
meaningful edges and hand contours are preserved. By simplifying the image
content and removing background noise, adaptive thresholding contributes to a
more focused and informative input for the subsequent generation of Hand Energy
Images.

This technique, particularly the Gaussian-weighted neighborhood strategy, is a
well-established method in image processing for edge-preserving binarization [62].

Figure 3.4 illustrates the result of this process. The left image shows a raw frame
from the A3LIS-147 dataset with its original green background, while the right
image shows the corresponding output after adaptive thresholding. As observed,
the hand contours are preserved clearly, and the background is removed effectively,
leaving a simplified yet informative representation that enhances the downstream
Hand Energy Image (HEI) computation.
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(a) Raw frame (b) After adaptive thresholding

Figure 3.4: Effect of adaptive thresholding for background removal on a frame
from A3LIS-147 dataset.

3.3.3 Gaussian Blur

After adaptive thresholding is applied to remove the background and emphasize
hand contours, a Gaussian blur is introduced as a complementary preprocessing
step to further smooth the image and suppress residual noise. This operation
uses a Gaussian kernel structurally identical to the one employed in the adaptive
thresholding method for computing local threshold values (see Equation 3.5). In
both cases, the kernel assigns greater weight to pixels nearer the center, promoting
spatial coherence.

When applied as a blurring filter, the Gaussian kernel performs a convolution
across the image, replacing each pixel value with a weighted average of its neighbors.
This process reduces high-frequency noise and softens sharp edges, particularly
around segmented hand regions. The resulting images exhibit improved visual
consistency, which is crucial for generating Hand Energy Images (HEIs) through
temporal averaging.

The effects of this procedure are illustrated in Figures 3.5 and 3.6. Figure 3.5
shows an HEI constructed without Gaussian blur, where aliasing and abrupt edge
transitions are evident. In contrast, Figure 3.6 demonstrates how the blur mitigates
pixel-level artifacts and produces a smoother, more coherent representation of hand
motion. This enhancement improves visual clarity and supports more stable and
discriminative feature extraction during classification.
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Figure 3.5: HEI without Gaus- Figure 3.6: HEI with Gaussian
sian blur blur

Further benefits of applying Gaussian blur after adaptive thresholding are evident
in Figures 3.7 and 3.8. Both HEIs were generated using adaptive thresholding
to isolate hand contours and remove background content. However, the image in
Figure 3.7 exhibits sharper edges and greater visual noise due to residual high-
frequency components and aliasing. In contrast, the blurred version in Figure 3.8
displays smoother contours and fewer artifacts, resulting in a more continuous
and compact visual representation of motion. This refinement enhances sample
consistency and reduces the likelihood of overfitting to spurious edge patterns,
making it advantageous for neural network-based classification.

‘ai“;{_, \ A

Figure 3.7: HEI with adaptive Figure 3.8: HEI with adaptive
thresholding (no blur) thresholding and Gaussian blur

In this work, Gaussian blur is implemented using OpenCV'’s standard library.
The kernel size and standard deviation are empirically tuned to balance noise
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suppression with contour preservation. When applied consistently across all frames,
this filter enhances the spatial stability of hand regions while maintaining essen-
tial structural features, ultimately contributing to more robust and reliable sign
classification.

3.3.4 Hand Energy Image (HEI)

Inspired by the work of Lim et al. [57], the Hand Energy Image (HEI) is adopted
in this project as a compact representation of temporal and spatial hand movement
patterns in isolated sign videos. Originally proposed for summarizing a sequence of
hand gestures into a single image, HEI encodes the spatiotemporal characteristics
of hand motion by averaging segmented hand regions across all video frames.
This approach transforms temporal dynamics into a static but information-rich
representation, enabling efficient sign classification using image-based models.

3.3.5 HEI Generation

To construct the HEI, the signer’s hand is first localized in each frame using
bounding boxes obtained via hand tracking (see Section 3.3.1). To ensure uniformity
in the dimensions and proportions of the cropped hand regions across the entire
sequence, the hand is cropped using the largest bounding box detected among all
frames of the sequence. This guarantees that all hand crops used for HEI generation
share the same spatial size and proportion, preventing issues that could arise if each
frame were resized individually based on its own bounding box dimensions. Such
independent resizing could introduce distortions or scale inconsistencies, especially
when the bounding boxes vary significantly. By anchoring the crop size to the
maximal bounding box, no part of the hand is clipped, and all frames are properly
aligned for averaging. This strategy contributes to the visual consistency and
semantic integrity of the resulting HEI. Each hand crop is then preprocessed using
adaptive thresholding and Gaussian blur to improve the consistency and clarity of
shape contours. Let S; represent the segmented hand region at time ¢, and T" be
the total number of frames in the video. The HEI is computed as:

1 T
T t=1

This averaging operation emphasizes spatial regions that are most consistently
occupied by the hand across time, effectively encoding motion patterns and struc-
tural consistency. In this work, separate HEIs are generated for the left and right
hands, following the bilateral tracking performed in the preprocessing stage.
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The resulting HEI images serve as inputs to dedicated Convolutional Neural
Networks (CNNs), which are trained to classify isolated signs based on the spatial-
temporal hand signature. This representation allows the network to focus on
overall hand movement and articulation characteristics while being robust to minor
frame-wise variations.

Figure 3.9 (adapted from [57]) illustrates an example of HEI generated from a
sequence of hand images. The cumulative intensity in the HEI highlights frequent
motion zones and preserves essential gesture features for accurate classification.

First 5 frames
. .

Figure 3.9: Illustration of Hand Energy Image (HEI) adapted from [57]. The
sequence shows several segmented frames of a hand gesture, and the right image
shows the resulting HEI obtained by averaging them.

Figure 3.10 illustrates the visual process of generating the Hand Energy Image
(HEI) for the sign inviare SMS. A sequence of cropped right-hand frames is shown
on the left, demonstrating the temporal evolution of the sign. These frames are first
spatially aligned and then averaged to form the HEIs shown on the right. HEI 1 is
produced by averaging the original cropped images after applying Gaussian blur,
which helps suppress noise and stabilize local variations across frames. HEI 2, on
the other hand, is generated by first applying adaptive thresholding to highlight
hand contours and remove background content, followed by Gaussian blurring to
smooth the resulting edges. This combination produces a sharper, contour-focused
representation of hand motion, potentially more informative for neural network
classification. Both approaches benefit from temporal condensation, but HEI 2
emphasizes the structural outlines, while HEI 1 captures a softer, intensity-based
motion trace.
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Sequence of frames of the right hand for “inviare SMS” HEI 1 HEI 2

AW
Ll ES

)

Figure 3.10: Sequence of frames and two resulting HEIs for the right hand
performing the sign inviare SMS. HEI 1 is obtained from blurred RGB frames;
HEI 2 is constructed from thresholded and then blurred frames.

3.3.6 HEI Datasets

To evaluate the impact of different preprocessing techniques on the quality and
performance of the HEI-based recognition system, several variants of the HEI
dataset were generated throughout this work. Each variant corresponds to a specific
combination of preprocessing steps, such as background modification, adaptive
thresholding, and Gaussian blur, and is constructed by applying a consistent HEI
generation pipeline to differently processed video inputs.

The datasets are grouped into two main sources: the original A3LIS-147 dataset
and the author-recorded real-world videos. For the A3LIS-147 data, variants were
created using both the original green-screen background and a modified version
with a lighter tone to better simulate real-world lighting conditions. Within each
background category, HEIs were generated under different configurations, including
raw input, adaptive thresholded input, and with or without Gaussian blurring.

Importantly, a distinction exists between the left and right hand datasets. Several
of the signs in the chosen vocabulary, namely acqua, cibo, affitto, and lingua dei
segni, are typically performed using only the right hand. As a result, the left hand
remains idle during these signs. In this work, HEIs corresponding to the left hand
for these signs were assigned to the "idle" class, reducing the number of meaningful
gesture labels for the left hand channel from 14 to 10. This asymmetry is reflected in
the distribution of samples across the two channels and has implications for training
and evaluation, especially in terms of class balance and recognition accuracy.

The following table (Table 3.1) summarizes all processed datasets used in this
study, indicating the preprocessing applied to each variant and the number of
samples used for training and testing in both left and right hand channels.
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Table 3.1: Summary of HEI datasets generated for experimentation

Dataset Background | Adaptive thresholding | Gaussian Blur
A3LIS Green No No
A3LIS-GB Green No Yes
A3LIS-LB Light No No
A3LIS-LB-GB Light No Yes
A3LIS-AT-GB Green Yes Yes
Real-world Real No No
Real-world-GB Real No Yes
Real-world-AT- Real Yes Yes

GB

Note: LB = Light Background; GB = Gaussian Blur; AT = Adaptive Thresholding.

Additionally, for consistency between training and evaluation conditions, the
real-world test datasets were selected to mirror the preprocessing strategies applied
during model training, as described below.

For models trained on the A3LIS and A3LIS-LB datasets, the real-world evalua-
tion was conducted using the Real-world dataset without additional preprocessing.
For models trained on A3LIS-GB and A3LIS-LB-GB, the real-world test set used
was the Real-world-GB dataset, applying Gaussian blur to match the training
conditions. Finally, models trained on A3LIS-AT-GB were evaluated using the
Real-world-AT-GB dataset, which underwent both adaptive thresholding and
Gaussian blur. This approach ensured coherence between the training and test-
ing environments, allowing for a more accurate assessment of the generalization
capabilities of each model.

3.4 Classification Model

The proposed sign language recognition system prioritizes a lightweight yet effective
convolutional neural network (CNN) architecture suitable for real-world deployment.
Given the need for low computational complexity, especially for scenarios like mobile
or embedded systems, we adopt compact custom-designed CNNs instead of relying
on large pre-trained models.
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3.4.1 CNN Architectures

Two versions of the CNN architecture were explored: model version v0 (Figure
3.11) and model version v1 (Figure 3.12). Both versions begin with a rescaling
layer to normalize pixel values, followed by a series of convolutional layers and
max-pooling operations to extract spatial features from the Hand Energy Image
(HEI) input.

Model v0 uses three consecutive standard convolutional layers with 32 filters
each, followed by a fully connected layer of 128 units. Model v1 introduces separable
convolutions, gradually increasing the number of filters (32, 64, and 128) across
layers to improve representational capacity while keeping the parameter count low.
Both models conclude with a dense classification layer using a SoftMax activation
function to output class probabilities, while ReLLU was utilized as activation function
for the other layers.

In addition, each architecture was tested with and without a dropout layer before
the final classification layer, enabling evaluation of its effect on model generalization.
These configurations are referred to in the experimental analysis by appending
the suffix “~-dropout” where applicable. Both models are compiled with the Adam
optimizer and trained using sparse categorical cross-entropy at a learning rate of

0.001.

3.4.2 Combined Hand Model Integration

Given the bi-manual nature of many signs in LIS, predictions from the left and right
hand CNNs are combined to enhance recognition performance. This is particularly
relevant in signs involving both hands, while also accommodating one-handed signs
in which the non-dominant hand remains idle.

The final classification is computed using a combined model class, which merges
predictions from the independently trained right-hand and left-hand networks. The
model outputs a weighted combination of the respective probability distributions
Pr (right hand) and P, (left hand):

- P - P
pcombined = R f —iZ_ oL L (38)

Where:

« P] represents a potentially scaled version of Pp,

o wp and wy, are weight coefficients for the right and left hand models,
e / is a normalization constant ensuring > P.ombined = 1.

This combination follows a series of logical conditions:
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Hand Hand
Energy Energy
Image Image

100 x 100 x 3 100 x 100 x 3
! !
3 x 3 conv 32 3 x 3 conv 32
! !
max pooling max pooling
! !
3 x 3 conv 32 3 x 3 conv 64
! !
max pooling max pooling
{ !
3 x 3 conv 32 3 x 3 conv 128
{ !
max pooling max pooling
{ !
flattening flattening
! !
fc 128 fc 128
! !
dropout 0.3 dropout 0.3
! !
fc softmax (n labels) fc softmax (n labels)

Figure 3.12: Architecture
of the CNN model vl1.

Figure 3.11: Architecture
of the CNN model vO0.

1. If the input to the right-hand model is missing (e.g., no HEI generation caused
by occlusion), Pg is excluded from the final prediction.

2. If the left-hand model’s top-1 prediction is the idle label or its input is missing,
Py, is also excluded.

3. If the top-1 prediction of the left-hand model appears within the top-Ng
predictions from the right-hand model, its output probabilities are multiplied
by a boosting factor w}. This condition promotes mutual agreement across
hands. Ni and w} model parameters that can be tuned like wg and wy,.
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These rules account for the structural asymmetry present in the dataset: signs
such as acqua, cibo, affitto, and lingua dei segni are typically performed with only
the right hand. The left hand remains idle, and its corresponding HEIs are assigned
to the idle class, effectively reducing the number of active sign classes for the left
hand to 10. By introducing logic to suppress idle or uninformative contributions,
the model maintains robustness while effectively integrating information from both
hands.

3.4.3 Model Design Considerations

Using compact, custom CNN architectures, rather than large-scale pre-trained mod-
els, was a deliberate choice to balance accuracy with computational efficiency. The
system is designed for real-time scenarios and constrained hardware environments
like mobile devices or embedded platforms.

The independent hand models allow for flexibility in sign interpretation, while
the combined model mechanism merges their outputs using contextual rules, im-
proving overall robustness without adding significant computational overhead. By
accounting for asymmetric gesture involvement and optimizing for lightweight
deployment, the architecture offers a practical and scalable solution for isolated
sign language recognition.

3.5 Evaluation Metrics

The evaluation of the sign language recognition models developed in this work
relies on a set of metrics specifically selected to align with the nature of the task.
Since the models perform isolated sign classification without access to linguistic
context or language model priors, it is critical to assess their predictive confidence
and ranking ability, rather than relying solely on hard top-1 decisions.

The primary evaluation metrics used are:

o Top-N Accuracy: Top-N accuracy measures the percentage of test samples
where the true label appears among the model’s N most confident predictions.
In this work, top-1, top-2, and top-3 accuracies are reported:

— Top-1 Accuracy (overall classification accuracy): The model is consid-
ered correct only if the true label is the one with the highest predicted
probability.

— Top-2 Accuracy: The true label is considered correctly predicted if it
appears among the two classes with the highest predicted probabilities.

— Top-3 Accuracy: Similarly, the prediction is deemed correct if the true
label appears within the top three most probable classes.
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This family of metrics provides a richer understanding of the model’s be-
havior, particularly useful for applications where secondary suggestions (e.g.,
autocorrection or user feedback systems) could be incorporated in real-world
deployments.

o Average True Probability: In addition to discrete accuracy metrics, the
average predicted probability assigned to the true label across all test samples
is computed. Formally, if p; is the predicted probability for the true label of
sample ¢, and N is the number of samples, the average true probability is:

1 N
Average True Probability = N > " p; (3.9)
i=1

This metric captures the model’s confidence in its correct predictions, offering
a continuous evaluation complementary to top-N accuracies. It is particularly
meaningful when high-confidence correct predictions are critical, even if the
true label occasionally ranks lower among the top predictions.

o Confusion Matrix: To provide a more detailed analysis of model perfor-
mance across different sign classes, confusion matrices were generated for
each evaluation setting. The confusion matrix illustrates how predictions are
distributed across all classes, highlighting common misclassifications, per-class
performance, and the overall confusion patterns of the model. Visualizing
these matrices enables qualitative assessment of the recognition strengths and
weaknesses, particularly in distinguishing between visually similar signs or
handling idle gestures.

The use of top-N accuracy metrics is justified given the nature of isolated sign
recognition, where the model cannot rely on sequential dependencies or grammatical
cues to refine its prediction. Unlike continuous sign language recognition systems
that can leverage temporal context or language models to disambiguate uncertain
predictions, isolated sign classification requires each prediction to be made purely
based on the visual features captured from the input.

Moreover, reporting multiple levels of top-N accuracies acknowledges the inherent
visual similarity between some signs and reflects more practical real-world usage
scenarios. For instance, in assistive technologies or educational applications, offering
the top-2 or top-3 suggestions could significantly enhance user experience and
usability.

Similarly, the average true probability serves as a valuable measure of the
system’s reliability by quantifying how strongly the model "believes" in its correct
predictions. High average true probability values imply that correct predictions
are made with high confidence, which is desirable for downstream decision-making
and building trust in the system.
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3.6 Baseline Model

In order to provide a reference point for evaluating the impact of various preprocess-
ing techniques and model enhancements, baseline models were established in this
study. These baseline models serve as the fundamental performance benchmark
against which all subsequent experiments and improvements are compared.

The baseline models are defined as follows:

o They are based on the two CNN architectures described previously, namely
model version v0 and model version v1.

e No dropout layers were applied in the baseline versions, allowing for the
evaluation of the core network architecture without any explicit regularization.

e The models were trained on the original A3LIS-147 dataset without any
additional preprocessing steps beyond the basic HEI generation pipeline.
Specifically, no Gaussian blur filtering, no background color modification
(green screen was maintained), and no adaptive thresholding were applied to
the input videos.

o The Hand Energy Images (HEIs) used were generated directly from the raw
green background videos, preserving the controlled recording conditions of the
dataset without introducing any artificial variations.

By utilizing the simplest data preparation and architectural setup, these baseline
models offer a clean and controlled environment for quantifying the benefits of later
preprocessing steps, network regularization (such as dropout), and combined model
strategies. The performance of these baseline models, measured using the evaluation
metrics described earlier, provides a fundamental reference for understanding the
improvements achieved by the more advanced configurations explored in subsequent
sections.

3.7 Experimental Setup

The experimental protocol followed a structured multi-phase approach to maximize
model generalization while ensuring comparability across different preprocessing
experiments.

First, the available labeled videos for each signer and sign were split into 80%
for training (118 videos) and 20% for testing (30 videos). This first split
was performed at the video level before generating any Hand Energy
Images (HEISs), and a fixed random seed was used to guarantee reproducibility.
This strategy ensures that all HEI datasets generated from different preprocessing
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techniques (e.g., raw images, Gaussian-blurred, adaptive-thresholded) share the
exact same video samples for training and testing. Consequently, the impact of
preprocessing methods could be compared fairly, as all models are evaluated on
consistent data splits.

After the 80%-20% split at the video level, the HEIs were generated independently
for each hand (left and right) according to the selected preprocessing technique.
Then, within the training set (80% of the total), a secondary split was performed
at the HEI level: 82% for training and 18% for validation. These proportions
correspond to 66% for training and 14% for validation relative to the full
dataset.

The CNN models for the left and right hands were trained separately using
this internal train-validation split. Validation was monitored during training to
select the optimal number of epochs based on the best validation accuracy. After
identifying the best epoch, the final models were retrained from scratch using
the entire 80% training portion (i.e., combining previous training and validation
sets) for the chosen number of epochs.

Following separate training, the CombinedModel was constructed. This
model merges the outputs of the left-hand and right-hand classifiers by combining
their probability distributions while applying specific decision rules to handle
asymmetries:

o If the right-hand model output is invalid (sum equals zero), its prediction is
disregarded.

o If the left-hand model output is invalid (sum equals zero) or if the top prediction
corresponds to the idle class, its prediction is disregarded.

o If the top-1 prediction of the left-hand model appears within the top-INg
predictions of the right-hand model, the left-hand probabilities are multiplied
by an additional weight factor (w/).

Two hyperparameters, w; and Ng, were tuned during this stage. Multiple
configurations were tested to maximize performance on the 20% held-out "test set,"
which in this context served as a secondary validation set for hyperparameter
tuning of the combined model.

Once the optimal combination strategy was determined, the final model was
evaluated on the independent real-world test set recorded by the author. This
final test set was designed to assess the generalization capability of the system in
uncontrolled, non-studio environments.

All training and evaluation experiments were conducted on a Dell G3-3590-
A20P laptop equipped with an Intel Core i5 9th generation processor and
8 GB RAM, without GPU acceleration. The entire training and inference
process relied solely on CPU computation.
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80/20 Split
(Train/Test)

HEI Generation
(different preprocessing)

82/18 Split
(Train/Validation)

Train Separate CNNs
(Left and Right)

Retrain CNNs on full
80% Training Set

Build Combined Model
+ Tune Combination Parameters

Final Test on
Author’s Real Dataset

Figure 3.13: Workflow of data preprocessing, model training, and evaluation.

3.7.1 Summary of Experimental Procedure

1. First split: 80% train / 20% test at the video level using a fixed random
seed (before HEI generation).

2. HEI generation: preprocessing applied individually to generate datasets.
3. Second split: 82% train / 18% validation at the HEI level for each hand.

4. Model training: separate CNNs trained for left and right hands, selecting
best epoch based on validation accuracy.
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5. Model retraining: retrain using full 80% training set with optimal number
of epochs.

6. Model combination: build CombinedModel, tune w/, for left-hand predic-
tions and the Ny top labels to allow the extra weight on 20% test set (as
validation).

7. Final evaluation: perform testing on the real-world, author-recorded dataset.

The overall workflow of the data preparation, model training, and evaluation
process is summarized in Figure 3.13. This flowchart illustrates the key steps,
starting from the initial 80/20 split of the original video dataset, the generation of
HEI datasets with different preprocessing configurations, the separate training and
validation of the left and right hand CNN models, the retraining on the full training
data, the combination and fine-tuning of the ensemble model parameters, and
finally the evaluation of the combined system on the real-world dataset recorded
by the author.

3.8 Challenges

While the proposed methodology demonstrates promising results for isolated sign
recognition, several challenges must be acknowledged regarding data, model gener-
alization, and system performance.

First, the subset of the A3LIS-147 dataset selected for this work consists of only
148 training videos across 14 classes. Although balanced across signs, the relatively
small number of samples limits the model’s ability to fully capture intra-class
variability, such as signer-specific differences in hand movement styles or minor
variations in gesture execution. Additionally, the A3LIS-147 videos were recorded
in a highly constrained environment: a green-screen background, frontal camera
positioning, stable lighting conditions, and standardized clothing. These factors
simplify the visual complexity of the task compared to real-world scenarios but
restrict the model’s exposure to more diverse signing conditions.

To partially address this, a real-world evaluation dataset was recorded by the
author. However, while careful effort was made to replicate the LIS signs accurately,
the signer is not a native LIS user. Therefore, the produced gestures may not
fully align with authentic LIS sign execution, introducing another potential source
of variability and limiting conclusions regarding model performance with expert
signers. Moreover, the background, lighting, and camera angle in the author’s
recordings differ from the A3LIS environment, adding realism but also posing
additional recognition challenges.

Another limitation arises from the hand tracking stage. Although MediaPipe
provides strong real-time hand localization, it is sensitive to occlusions, motion blur,
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and lighting inconsistencies. Consequently, there were occasional frames where
hands were poorly localized or not detected at all, especially in the real-world
videos. This affects the quality of the generated HEI representations and can
degrade classification performance. Specifically, in the author-recorded test set
comprising 61 videos, three instances (two for the banca sign and one for the
freddo sign) resulted in failure to generate usable HEI inputs for either hand, thus
excluding these examples from final testing.

Furthermore, due to the natural asymmetry between the left and right hand
usage in some signs, the left-hand model received less variability for certain classes,
particularly for one-handed signs. Although a strategy was adopted to assign
idle positions to the left-hand HEIs for such cases, this reduces the diversity of
informative samples for the left-hand classifier.

Finally, no external linguistic model or post-processing was employed to enhance
predictions based on language model priors. Since the classification task treats each
isolated sign independently, the model cannot rely on contextual cues that would
normally be present in connected sign language communication. This isolates the
evaluation purely to visual and spatial recognition, but may also limit the practical
deployment of the system in continuous signing scenarios.

Despite these limitations, the results achieved suggest that the proposed system
serves as a solid foundation for lightweight, real-time isolated sign recognition and
highlights multiple directions for future improvement and expansion.
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Experiments and Results

4.1 Overview

This chapter presents the experimental evaluations conducted to assess the perfor-
mance of the proposed sign language recognition system based on Hand Energy
Images (HEIs). The experiments were designed to investigate the influence of
different preprocessing techniques, CNN model architectures, and combination
strategies on classification accuracy.

First, baseline models were trained and evaluated using HEIs generated from
the A3LIS-147 dataset without any preprocessing, serving as reference points
for subsequent comparisons. Then, the impact of specific preprocessing steps,
including Gaussian blur, background color modification, and adaptive thresholding,
was analyzed through systematic experiments across multiple dataset variants.

The models were trained separately for each hand and subsequently integrated
using the CombinedModel strategy. Different hyperparameter configurations for
the combined prediction, namely w} and Ng, were explored to optimize system
performance.

Finally, the best-performing models were tested on a real-world dataset recorded
by the author under uncontrolled environmental conditions, providing insights
into the system’s generalization capability beyond the constrained laboratory
environment of the original dataset.

The following sections detail the experimental setup, baseline performance,
evaluations across different dataset variants, and results obtained on the real-world
dataset.
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4.2 Experimental Setup

The experiments were conducted following the training, validation, and evaluation
procedures described in Chapter 3. Separate CNN models were trained for left
and right-hand Hand Energy Images (HEIs) and later combined into a unified
classifier using the CombinedModel approach. Hyperparameters specific to the
model combination were tuned on the validation set, and the final evaluation was
carried out on a real-world dataset recorded by the author.

4.3 Baseline Results

The baseline models were evaluated using the Hand Energy Images (HEIs) generated
from the original A3LIS dataset, without applying any additional preprocessing
such as Gaussian blur, background color modification, or adaptive thresholding.
Both model architectures (Model vO and Model v1) were tested with and without
the use of a dropout layer before the final classification layer.

Performance was assessed separately on two different datasets:

o The internal A3LIS test set, composed of 20% of the original videos, serving as a
validation benchmark for isolated sign recognition under controlled conditions.

o The real-world dataset recorded by the author, used to assess the generalization
capabilities of the models to unconstrained environments.

The evaluation metrics considered include Top-1, Top-2, and Top-3 accuracy,
along with the average true probability, the mean predicted probability assigned to
the correct class.
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Table 4.1: Baseline model performance trained on A3LIS dataset without prepro-

cessing
Metric / Parameter vOND | v030%D | vl ND | vl 30%D

wh | Ng 403 215 405 203

Test Top-1 Accuracy (%) 90.00 86.67 70.00 86.67
Test Top-2 Accuracy (%) 90.00 93.33 86.67 96.67
Test Top-3 Accuracy (%) 100.00 93.33 86.67 100.00
Test ATP (%) 63.50 67.74 62.51 57.23

Real Top-1 Accuracy (%) 18.97 41.38 18.97 22.41
Real Top-2 Accuracy (%) 32.76 44.83 20.69 37.93
Real Top-3 Accuracy (%) 39.66 51.72 31.03 44.83
Real ATP (%) 17.47 30.16 17.72 19.00

Note: w} and N = combined model parameters; vIN = model version vN; ND = No Dropout;
30%D = 30% Dropout; ATP = Average True Probability.

Table 4.1 presents the baseline model performances trained on the A3LIS dataset
without any preprocessing. Among the configurations, model version v0 without
dropout achieved the highest Test Top-1 accuracy at 90.00%, while model version
vl without dropout yielded the lowest Test Top-1 accuracy at 70.00%. In the
real-world evaluation using the author’s dataset, the best Real Top-1 accuracy
was 41.38%, obtained by model vO with a 30% dropout rate. Across all models,
performance on the real-world dataset was consistently lower than on the A3LIS
test set. Notably, models incorporating dropout outperformed their non-dropout
counterparts in real-world conditions. Furthermore, Top-2 and Top-3 accuracies
showed an expected trend of improvement as the prediction window widened.
These baseline results serve as a critical reference point for assessing the impact
of preprocessing strategies and model combination techniques discussed in the
following sections.

4.4 Evaluation on Preprocessed HEI Datasets

This section presents the evaluation results of the proposed system when trained
on various versions of the HEI A3LIS-based datasets generated with different
preprocessing techniques. The aim is to assess the impact of each preprocessing
strategy, Gaussian Blur (GB), Light Background modification (LB), and Adaptive
Thresholding (AT), on model performance.
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Following the dataset definitions summarized earlier in Table 3.1, the experiments
reported here cover the following processed datasets:

o A3LIS-GB: applying Gaussian blur over the original green background videos.

o A3LIS-LB: modifying the green background to a lighter color without addi-
tional filtering.

o A3LIS-LB-GB: combining light background modification with Gaussian
blur.

o A3LIS-AT-GB: applying adaptive thresholding followed by Gaussian blur
for background simplification and contour emphasis.

For consistency, the same evaluation metrics used for baseline models are adopted
here, including Top-1, Top-2, Top-3 accuracies, and Average True Probability (ATP).
Results are compared directly against the baseline established in Section 4.3,
providing insight into how different preprocessing steps affect both controlled
(A3LIS test set) and real-world performance.

4.4.1 Results on ASLIS-GB

Table 4.2 presents the model performance when trained and evaluated on the
A3LIS-GB dataset, where a Gaussian blur was applied to the original videos
without altering the green background. As in the baseline evaluation, both model
versions (v0 and v1), with and without dropout, were tested.

Compared to the baseline results, the application of Gaussian blur alone generally
led to a slight decrease in Test Top-1 accuracy for all models. The best Test Top-1
accuracy for A3LIS-GB was 86.67%, achieved by model vO without dropout, which
is slightly lower than its corresponding baseline performance (90.00%). In the
real-world evaluation, a modest improvement was observed for models with dropout:
model vO with dropout reached 34.45% Real Top-1 accuracy, compared to 41.38%
in the baseline, showing some instability in generalization.

Top-2 and Top-3 accuracies remained relatively high across test evaluations,
suggesting that even when the top prediction was incorrect, the true label of-
ten remained among the top candidate predictions. However, the Average True
Probability (ATP) showed a slight decrease compared to baseline models.

Overall, applying Gaussian blur alone did not consistently improve the recogni-
tion performance and, in some cases, introduced minor degradation, particularly
on real-world data.
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Table 4.2: Model performance trained on A3LIS-GB

Metric / Parameter vOND | v0 30%D | vl ND | vl 30%D

W, | Ng 213 215 314 213

Test Top-1 Accuracy (%) 86.67 80.00 76.67 80.00
Test Top-2 Accuracy (%) 93.33 86.67 83.33 86.67
Test Top-3 Accuracy (%) 96.67 100.00 90.00 93.33
Test ATP (%) 69.01 66.46 61.21 57.99

Real Top-1 Accuracy (%) 22.41 34.45 20.69 22.41
Real Top-2 Accuracy (%) 31.03 36.21 27.59 32.76
Real Top-3 Accuracy (%) 48.28 44.82 36.21 43.10
Real ATP (%) 20.36 26.23 17.95 19.36

Note: w; and Nr = combined model parameters; vIN = model version vN; ND = No Dropout;
30%D = 30% Dropout; ATP = Average True Probability.

4.4.2 Results on ASLIS-LB

Table 4.3 presents the model performance when trained and evaluated on the
A3LIS-LB dataset, where the green background was replaced by a light color
background without applying Gaussian blur. As before, both CNN model versions
(v0 and v1) were evaluated with and without a dropout layer.

Compared to the baseline (A3LIS), modifying the background color slightly
decreased the Test Top-1 accuracy for most configurations. The best Test Top-1
accuracy was 83.33%, achieved by model vO without dropout, which is lower than
the 90.00% recorded for the same model in the baseline. However, on the real-world
dataset, a noticeable improvement in Real Top-1 accuracy was observed for most
configurations. The best Real Top-1 accuracy was 41.38%, achieved by model v1
without dropout.

The Top-2 and Top-3 accuracies also remained relatively high on the A3LIS
test set, showing that the models maintained reasonable ranking of correct labels
despite the background modification. Real ATP values also improved compared
to the baseline, indicating better average confidence on the real-world dataset,
especially for models trained with the lighter background.

Thus, replacing the green screen background with a lighter color appears to
have contributed to slight gains in generalization, while maintaining comparable
test performance.
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Table 4.3: Model performance trained on A3LIS-LB

Metric / Parameter vOND | v0 30%D | vl ND | vl 30%D

wh | Ng 213 212 23 32

Test Top-1 Accuracy (%) 83.33 80.00 80.00 76.67
Test Top-2 Accuracy (%) 90.00 86.67 90.00 80.00
Test Top-3 Accuracy (%) 90.00 90.00 93.33 90.00
Test ATP (%) 67.14 53.24 65.62 08.17

Real Top-1 Accuracy (%) 32.76 39.66 41.38 36.21
Real Top-2 Accuracy (%) 53.45 53.45 55.17 48.28
Real Top-3 Accuracy (%) 60.34 62.72 56.90 60.34
Real ATP (%) 97.55 30.09 31.54 26.10

Note: w; and Nr = combined model parameters; vIN = model version vN; ND = No Dropout;
30%D = 30% Dropout; ATP = Average True Probability.

4.4.3 Results on A3LIS-LB-GB

Table 4.4 presents the model performance when trained and evaluated on the
A3LIS-LB-GB dataset, where the background was modified to a light color and
Gaussian blur was applied as a preprocessing step.

Compared to the baseline results, the application of Gaussian blur after back-
ground modification led to mixed effects. On the A3LIS test set, model v1 without
dropout achieved the highest Test Top-1 accuracy at 86.67%, matching the top
baseline performances. However, Real Top-1 accuracies showed notable improve-
ments, particularly for model v1 with dropout, which achieved the best Real Top-1
accuracy of 41.38%.

Top-2 and Top-3 accuracy scores remained consistently high across all models,
indicating that correct labels were often among the top predictions even when
Top-1 accuracy was lower. The Real ATP metric also improved, especially for
the dropout configurations, suggesting better confidence calibration in real-world
conditions.

Overall, the combination of light background replacement and Gaussian blur
appeared to enhance generalization to the real-world dataset without severely
compromising performance on the original A3LIS test set.
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Table 4.4: Model performance trained on A3LIS-LB-GB

Metric / Parameter vOND | v0 30%D | vl ND | vl 30%D

w, | Ng 12 212 302 303

Test Top-1 Accuracy (%) 73.33 83.33 86.67 76.67
Test Top-2 Accuracy (%) 83.33 90.00 90.00 83.33
Test Top-3 Accuracy (%) 93.33 93.33 93.33 93.33
Test ATP (%) 64.79 62.55 69.86 69.83

Real Top-1 Accuracy (%) 39.66 39.66 25.86 41.38
Real Top-2 Accuracy (%) 53.45 50.00 43.10 58.62
Real Top-3 Accuracy (%) 67.24 62.07 51.72 63.79
Real ATP (%) 31.44 31.82 26.14 36.52

Note: w; and Nr = combined model parameters; vIN = model version vN; ND = No Dropout;
30%D = 30% Dropout; ATP = Average True Probability.

4.4.4 Results on ASLIS-AT-GB

Table 4.5 presents the model performance when trained and evaluated on the
A3LIS-AT-GB dataset, where adaptive thresholding was applied to segment the
hands and Gaussian blur was used for noise reduction.

Compared to the baseline results, the application of adaptive thresholding
combined with Gaussian blur produced mixed outcomes. On the A3LIS test
set, Test Top-1 accuracies were noticeably lower across all models, with values
ranging from 63.33% to 70.00%. This indicates that the preprocessing steps may
have removed some visual information necessary for classification under controlled
conditions.

However, the models demonstrated interesting behavior when evaluated on the
real-world dataset. Model v1 without dropout achieved the highest Real Top-1
accuracy at 48.28%, surpassing the best real-world results obtained in previous
configurations. Furthermore, Real Top-2 and Top-3 accuracies showed substantial
improvements, particularly for model vl without dropout, which reached 75.86%
Top-3 accuracy.

These findings suggest that although adaptive thresholding may impair perfor-
mance on clean studio-like data, it significantly improves generalization to more
complex, unconstrained environments by focusing on hand contours and suppressing
irrelevant background features.
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Table 4.5: Model performance trained on A3LIS-AT-GB

Metric / Parameter vOND | v0 30%D | vl ND | vl 30%D

W, | Na 513 3[4 303 213

Test Top-1 Accuracy (%) 63.33 70.00 63.33 70.00
Test Top-2 Accuracy (%) 83.33 80.00 80.00 90.00
Test Top-3 Accuracy (%) 93.33 90.00 90.00 93.33
Test ATP (%) 54.13 61.48 52.40 59.93

Real Top-1 Accuracy (%) 39.66 41.38 48.28 39.66
Real Top-2 Accuracy (%) 48.28 51.72 60.34 56.90
Real Top-3 Accuracy (%) 56.90 62.07 75.86 68.97
Real ATP (%) 26.92 34.96 25.29 29.73

Note: w; and Nr = combined model parameters; vIN = model version vN; ND = No Dropout;
30%D = 30% Dropout; ATP = Average True Probability.

4.5 Summary of Experimental Results

This section consolidates the results obtained across different preprocessing con-
figurations, training datasets, and model versions. The evaluation covers Top-1,
Top-2, and Top-3 accuracies, as well as Average True Probability (ATP) for both
the A3LIS internal test set and the real-world test set recorded by the author.
Tables 4.6-4.13 summarize the results, with the best performance values for each
column highlighted in blue and underlined, and the lowest performances marked in

red.

In terms of Top-1 accuracy on the A3LIS test set (Table 4.6), model version
v0 without dropout trained on the A3LIS dataset achieved the highest accuracy
of 90.00%, while the lowest value of 63.33% was observed for models trained on
A3LIS-AT-GB. When evaluated on the real-world dataset (Table 4.7), the highest
Top-1 accuracy of 48.28% was achieved by model v1 without dropout trained on
A3LIS-AT-GB, while the lowest was 18.97% for models vO and v1 without dropout
trained on A3LIS.
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Table 4.6: Top-1 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 90.00 86.67 70.00 86.67
A3LIS-GB 86.67 80.00 76.67 80.00
A3LIS-LB 83.33 80.00 80.00 76.67
A3LIS-LB-GB 73.33 83.33 86.67 76.67
A3LIS-AT-GB 63.33 70.00 63.33 70.00

Table 4.7: Top-1 Accuracy (%) on Real-World Test Set across Different Prepro-
cessing Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 18.97 41.38 18.97 22.41
A3LIS-GB 22.41 34.45 20.69 22.41
A3LIS-LB 32.76 39.66 41.38 36.21
A3LIS-LB-GB 39.66 39.66 25.86 41.38
A3LIS-AT-GB 39.66 41.38 48.28 39.66

For Top-2 accuracy (Tables 4.8 and 4.9), the best performance on the A3LIS test
set was achieved by model vl with dropout trained on A3LIS, reaching 96.67%. In
the real-world test set, the highest Top-2 accuracy was 60.34%, obtained by model
v1 without dropout trained on A3LIS-AT-GB. Models trained on A3LIS-AT-GB
consistently recorded lower Top-2 accuracies on the internal test set compared to
other preprocessing variants.

Table 4.8: Top-2 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 90.00 93.33 86.67 96.67
A3LIS-GB 93.33 86.67 83.33 86.67
A3LIS-LB 90.00 86.67 90.00 80.00
A3LIS-LB-GB 83.33 90.00 90.00 83.33
A3LIS-AT-GB 83.33 80.00 80.00 90.00
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Table 4.9: Top-2 Accuracy (%) on Real-World Test Set across Different Prepro-
cessing Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 32.76 44.83 20.69 37.93
A3LIS-GB 31.03 36.21 27.59 32.76
A3LIS-LB 53.45 53.45 55.17 48.28
A3LIS-LB-GB 53.45 50.00 43.10 58.62
A3LIS-AT-GB 48.28 51.72 60.34 56.90

Regarding Top-3 accuracy (Tables 4.10 and 4.11), perfect classification (100.00%)
was achieved by model v0 without dropout and model v1 with dropout, both trained
on A3LIS. Model vO with dropout also achieved 100% accuracy when trained on
A3LIS-GB. The best real-world Top-3 accuracy, 75.86%, was achieved by model v1
without dropout trained on A3LIS-AT-GB.

Table 4.10: Top-3 Accuracy (%) on A3LIS Test Set across Different Preprocessing
Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 100.00 93.33 86.67 100.00
A3LIS-GB 96.67 100.00 90.00 93.33
A3LIS-LB 90.00 90.00 93.33 90.00
A3LIS-LB-GB 93.33 93.33 93.33 93.33
A3LIS-AT-GB 93.33 90.00 90.00 93.33

Table 4.11: Top-3 Accuracy (%) on Real-World Test Set across Different Prepro-
cessing Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 39.66 51.72 31.03 44.83
A3LIS-GB 48.28 44 .82 36.21 43.10
A3LIS-LB 60.34 62.72 56.90 60.34
A3LIS-LB-GB 67.24 62.07 51.72 63.79
A3LIS-AT-GB 56.90 62.07 75.86 68.97

In terms of Average True Probability (Tables 4.12 and 4.13), the best performance
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on the A3LIS test set was 69.86%), achieved by model v1 without dropout trained
on A3LIS-LB-GB. In the real-world evaluation, the highest ATP value was 36.52%,
recorded by model v1 with dropout trained on A3LIS-LB-GB.

Table 4.12: Average True Probability (%) on A3LIS Test Set across Different
Preprocessing Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 63.50 67.74 62.51 57.23
A3LIS-GB 69.01 66.46 61.21 57.99
A3LIS-LB 67.14 53.24 65.62 58.17
A3LIS-LB-GB 64.79 62.55 69.86 69.83
A3LIS-AT-GB 54.13 61.48 52.40 59.93

Table 4.13: Average True Probability (%) on Real-World Test Set across Different
Preprocessing Variants

Train Dataset v0 ND v0 30%D vl ND vl 30%D
A3LIS 17.47 30.16 17.72 19.00
A3LIS-GB 20.36 26.23 17.95 19.36
A3LIS-LB 27.55 30.09 31.54 26.10
A3LIS-LB-GB 31.44 31.82 26.14 36.52
A3LIS-AT-GB 26.92 34.96 25.29 29.73

4.5.1 Summary of Best Performing Models

Table 4.14 and Table 4.15 present a consolidated view of the best performing
models across different evaluation metrics for both the A3LIS test set and the
real-world dataset. On the controlled A3LIS test set, models trained without any
preprocessing (A3LIS) consistently achieved the highest Top-1, Top-2, and Top-3
accuracies, confirming that the original green background dataset remains highly
effective under laboratory-like conditions. In contrast, for the real-world dataset,
the best performances were achieved by models trained with adaptive thresholding
combined with Gaussian blur (A3LIS-AT-GB), highlighting the positive impact of
this preprocessing strategy for generalizing to unconstrained environments.
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Table 4.14: Best Performing Models on A3LIS Test Set

Metric Best Model Training Dataset
Top-1 Accuracy (%) | vO ND A3LIS
Top-2 Accuracy (%) | v1 30%D A3LIS
Top-3 Accuracy (%) | vO ND, v1 30%D | v0 30%D | A3LIS | A3LIS-GB
ATP (%) v1 ND A3LIS-LB-GB

Table 4.15: Best Performing Models on Real-World Test Set

Metric Best Model Training Dataset
Top-1 Accuracy (%) | vl ND A3LIS-AT-GB
Top-2 Accuracy (%) | vl ND A3LIS-AT-GB
Top-3 Accuracy (%) | vl ND A3LIS-AT-GB

ATP (%) v1 30%D A3LIS-LB-GB

Overall, models trained with preprocessing techniques involving background
modification and/or Gaussian blur generally achieved better generalization per-
formance on the real-world dataset compared to models trained on the unaltered
green background dataset. Notably, the models trained on the adaptive threshold-
ing variant (A3LIS-AT-GB) showed a significant advantage for real-world testing,
achieving the highest Top-1, Top-2, and Top-3 accuracies despite demonstrating
lower performance on the A3LIS controlled test set. These findings reinforce the
importance of preprocessing choices to bridge the gap between controlled datasets
and real-world applications.

To provide further insights into model behavior, confusion matrices for the
best-performing models on each test set are presented in Figures 4.1, 4.2, 4.3, and
4.4. These matrices illustrate the distribution of predicted versus true classes,
highlighting common misclassifications and offering a detailed view of the models’
prediction patterns.

Figures 4.1 and 4.2 show the results on the A3LIS test set for, respectively, model
v0 ND trained on A3LIS and model vl ND trained on A3LIS-AT-GB. Figures 4.3
and 4.4 display the corresponding results on the real-world test set.

Figure 4.1 highlights the strong performance of model vO ND on the controlled
A3LIS test set. However, the same model struggles significantly when evaluated
on the real-world dataset (Figure 4.3), often misclassifying most inputs as either
the interprete or idle classes. In contrast, model vl ND trained on the adaptive
thresholded and blurred dataset (A3LIS-AT-GB) exhibits a more consistent and
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balanced performance across both controlled and real-world conditions, as shown
in Figures 4.2 and 4.4.
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Figure 4.1: Confusion matrix for A3LIS test set predictions of model vO ND
trained on A3LIS.
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Figure 4.2: Confusion matrix for A3LIS test set predictions of model vl ND
trained on A3LIS-AT-GB.
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Figure 4.3: Confusion matrix for real-world test set predictions of model vO ND
trained on A3LIS.
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Figure 4.4: Confusion matrix for real-world test set predictions of model v1 ND
trained on A3LIS-AT-GB.
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Chapter 5

Discussion

5.1 Overview

This chapter discusses and interprets the experimental results presented in Chapter 4.
Beyond reporting numerical outcomes, the analysis focuses on identifying underlying
trends, evaluating the impact of different preprocessing techniques, and assessing
the overall effectiveness of the proposed methodology.

The discussion also highlights the strengths and limitations of the developed
system, emphasizing both the successes achieved and the challenges encountered.
In addition, suggestions for future research directions are provided to guide further
development and potential improvements.

The goal of this chapter is to critically assess the work carried out, placing the
results into context and exploring how different design decisions influenced the
system’s performance in both controlled and real-world scenarios.

5.2 Interpretation of Results

The experiments conducted in this work revealed distinct patterns regarding the
impact of preprocessing techniques, model architectures, and dropout regularization
on isolated sign recognition performance.

5.2.1 Performance on A3LIS Test Set

On the controlled A3LIS test set, the best overall performance was achieved when
training models using the original dataset without additional preprocessing. In
particular, the model version v0 without dropout reached the highest Top-1 accuracy
of 90% (Table 4.6). Models trained with only Gaussian blur (A3LIS-GB) or light
background modification (A3LIS-LB) showed slight drops in performance compared
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to the original dataset, although they remained competitive. In contrast, adaptive
thresholding preprocessing (A3LIS-AT-GB) consistently led to lower accuracies on
the A3LIS test set across all metrics, suggesting that important spatial information
was lost when hand segmentation was overly simplified.

These results indicate that models trained directly on the raw A3LIS dataset may
have overfitted to specific characteristics of the controlled acquisition environment.
The green screen background, standardized lighting, and consistent clothing worn
by signers provided strong visual cues that persisted across all samples, potentially
biasing the models towards exploiting these non-essential features. Preprocessing
techniques such as Gaussian blur, light background substitution, or adaptive
thresholding acted to remove or attenuate some of these cues, thereby eliminating
shortcuts the models might have learned. Consequently, while preprocessing slightly
degraded performance on the highly constrained test set, it encouraged the models
to focus more on essential hand structures and motion patterns, at the cost of
reduced reliance on background and environment artifacts.

5.2.2 Performance on Real-World Test Set

In contrast to the controlled test set, models trained with preprocessing involving
adaptive thresholding and Gaussian blur (A3LIS-AT-GB) demonstrated the best
results on the real-world test set recorded by the author. Specifically, the model
version v1 without dropout achieved the highest Top-1 accuracy of 48.28% and a
Top-3 accuracy of 75.86% (Tables 4.7 and 4.11), which represent strong results for
real-world evaluation. This highlights that adaptive thresholding, while detrimental
to performance on highly controlled backgrounds, improved the system’s robustness
under real-world conditions, where lighting, background clutter, and visual noise
differed significantly from the original training environment.

The application of preprocessing techniques, particularly adaptive thresholding,
appears to have forced the models to generalize beyond superficial background and
environmental features. By simplifying the hand region to its most salient contours
and discarding background information, adaptive thresholding encouraged the
models to focus primarily on hand shape, motion, and relative positioning, which
are critical features for sign recognition. As a result, even though models trained
with adaptive thresholding underperformed on the A3LIS dataset, they proved
more resilient when facing the natural variability present in real-world scenarios.

Moreover, models incorporating Gaussian blur or light background adjustments
also showed improved generalization to real-world data compared to models trained
purely on the original green background. These techniques introduced mild distor-
tions or background variations during training, reducing the models’ dependency
on constrained conditions and making them more tolerant to imperfect and noisy
inputs at inference time.
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Further insights can be drawn from the confusion matrices presented in Fig-
ures 4.1 and 4.3. The model version v0 without dropout trained on A3LIS with no
preprocessing, which performed best on the A3LIS test set, struggled significantly
when tested on the real-world dataset. As shown in Figure 4.3, this model tended to
predict most inputs as either the interprete or idle classes. A plausible explanation
is that, during training, these signs were performed with the hands positioned closer
to the body, partially covering the green background and reducing background
variability in the HEIs. Consequently, the model might have learned to associate
certain spatial patterns, less influenced by the background, with these classes. When
exposed to real-world HEIs with different background characteristics, the model
defaulted to these familiar and safer predictions, reflecting its overdependence on
constrained training aspects rather than robust hand gesture features.

Overall, the findings suggest that preprocessing strategies that intentionally
remove or reduce dataset-specific artifacts can play a pivotal role in improving
model transferability from laboratory environments to real-world applications, even
at the expense of some degradation in performance under controlled settings.

5.2.3 Model Architectures and Dropout Effects

Comparing model versions, the simpler model v0 often performed better on the
controlled A3LIS test set, while the deeper model v1, based on separable convo-
lutions and a larger representational capacity, achieved competitive or superior
results on the real-world dataset when combined with appropriate preprocessing
techniques. This suggests that while simpler architectures may excel in clean,
standardized environments, more complex models are advantageous when the input
data presents greater variability.

Regarding dropout, its impact was particularly evident when evaluating real-
world performance. Models trained without dropout tended to overfit more severely
to the constrained conditions of the A3LIS dataset, as evidenced by their sharp
drop in accuracy when tested on the real-world dataset (Table 4.7). In contrast,
adding a dropout layer improved robustness, especially for models trained on
datasets without extensive preprocessing (e.g., A3LIS and A3LIS-GB). In these
cases, dropout acted as an effective regularizer, mitigating overfitting to background
color, signer clothing, and other controlled environment artifacts.

However, it is important to note that the combination of heavy preprocessing
(such as adaptive thresholding) and dropout did not always lead to further improve-
ments. Since preprocessing techniques like adaptive thresholding already promote
generalization by simplifying the input data and removing environment-specific
biases, the additional application of dropout sometimes reduced performance. This
suggests that, in cases where the input is already highly generalized, dropout may
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remove useful discriminative features that are still necessary for reliable classifica-
tion. Therefore, the benefit of dropout appears to be more pronounced for models
trained on minimally preprocessed or raw datasets, while its effect becomes less
clear, or even slightly detrimental, when strong preprocessing is already applied.

These results corroborate the broader observation that models trained on con-
strained datasets without regularization tend to capture false correlations, and that
dropout, even in small lightweight architectures, plays a crucial role in encourag-
ing better feature abstraction and generalization, especially when raw or lightly
preprocessed data is used.

5.2.4 Average True Probability Trends

The Average True Probability (ATP) metric, which captures the model’s confidence
in its correct predictions, largely followed the patterns observed in Top-N accuracies
across different datasets and preprocessing strategies. On the controlled A3LIS
test set, models trained without heavy preprocessing typically achieved higher
ATP values, indicating strong confidence when operating in a familiar, constrained
environment.

However, when evaluated on the real-world dataset, ATP values dropped sub-
stantially for models trained solely on raw A3LIS data, reflecting their limited
ability to maintain high confidence under unseen and variable conditions. In con-
trast, models trained on datasets incorporating light background modifications
(A3LIS-LB), Gaussian blur (A3LIS-LB-GB), and particularly adaptive thresholding
combined with Gaussian blur (A3LIS-AT-GB) demonstrated higher ATP scores
on real-world data. This improvement suggests that preprocessing strategies that
simplify the input distribution, by reducing background variability and emphasiz-
ing hand shapes, help the models produce more confident and reliable predictions
outside the original training domain.

Moreover, ATP trends reinforced the earlier observations about the nuanced role
of dropout. Models with dropout trained on lightly or non-preprocessed datasets
(e.g., A3LIS) displayed noticeable ATP improvements on real-world evaluations,
further supporting the idea that dropout effectively counters overfitting to specific
backgrounds or signer artifacts. Conversely, in models trained on heavily prepro-
cessed datasets, the additional regularization imposed by dropout sometimes led to
minor reductions in ATP, likely because the available discriminative information
had already been compressed through preprocessing.

Overall, the ATP results strengthen the conclusion that targeted preprocessing
enhances model robustness and that the appropriate balance between data simpli-
fication and architectural regularization is critical for achieving strong, confident
performance in real-world sign recognition tasks.
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5.2.5 Summary of Interpretation of Results

In summary, the experimental findings highlight the critical interplay between pre-
processing choices, model architecture, and regularization strategies in isolated sign
language recognition. While raw data training preserved maximum information for
constrained environments, preprocessing techniques such as adaptive thresholding
and Gaussian blur proved essential for real-world generalization. Dropout played a
complementary role, especially for models trained on less processed data, improv-
ing robustness by mitigating overfitting to environment-specific artifacts. These
insights set the stage for a broader reflection on the strengths and contributions of
the proposed system, discussed next.

5.3 Strengths of the Proposed Approach

The methodology developed in this work demonstrated several strengths, particu-
larly considering the challenges posed by isolated sign language recognition under
constrained data conditions.

5.3.1 Lightweight and Efficient Architecture

A major strength of the proposed system is its reliance on simple, lightweight
Convolutional Neural Networks (CNNs) without the need for pretraining on large
external datasets. Both model versions (v0 and v1) were specifically designed
to balance computational efficiency and classification performance, making them
highly suitable for real-world deployment scenarios, including potential use on
mobile or embedded devices with limited resources.

5.3.2 Effective Utilization of HEI Representations

The Hand Energy Image (HEI) strategy proved to be an effective way to condense
temporal motion and spatial information from video sequences into a compact,
static input format. By averaging the sequence of segmented hand frames into a
single image, the system was able to capture meaningful gesture dynamics without
requiring complex sequential modeling. This greatly simplified the learning task
while maintaining competitive classification results.

5.3.3 Robustness to Real-World Variability

Despite being trained on a relatively small and controlled dataset, the system
exhibited encouraging generalization capabilities when applied to real-world videos.
Preprocessing strategies such as adaptive thresholding and Gaussian blur played a
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critical role in this achievement, enabling the models to better handle variations
in background, lighting, signer clothing, and camera quality. Notably, models
trained with these techniques outperformed baseline models in real-world conditions,
demonstrating the practical adaptability of the approach.

5.3.4 Independence from Large Datasets

Unlike many modern deep learning approaches that depend heavily on massive
annotated datasets, the proposed system was able to achieve reasonable performance
using only 148 training videos. This emphasizes the system’s efficiency and its
potential for deployment in contexts where large-scale labeled datasets for sign
language are not readily available—a common limitation in minority languages or
resource-constrained settings.

5.3.5 Flexible and Modular Design

The training pipeline, including independent hand models and a combination
strategy with tunable hyperparameters (e.g., extra_ weight2 and top_ for extra),
offers flexibility for further improvements. The modular nature of the system
allows easy substitution of preprocessing techniques, hand tracking modules, or
classification backbones, making it a good foundation for future research or real-
world adaptations.

5.4 Challenges

While the proposed approach demonstrated several promising strengths, some
important limitations and challenges were encountered throughout the project. A
critical evaluation of these aspects is essential for understanding the scope of the
results and identifying areas for future improvement.

5.4.1 Limited Dataset Size

One of the main limitations of this work was the relatively small size of the training
dataset. The A3LIS subset used for training comprised only 148 videos across 14
sign classes (including the idle class). Although the system achieved reasonable per-
formance under these conditions, the limited amount of data likely constrained the
model’s ability to learn highly robust and generalized representations, particularly
for signs with subtle inter-class differences.
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5.4.2 Environment Constraints in Original Dataset

The A3LIS videos were recorded under highly standardized conditions: green screen
background, controlled lighting, and consistent signer positioning. While beneficial
for initial experiments, these constraints introduced a bias that made the models
sensitive to environmental features not representative of real-world signing contexts.
As observed, models trained solely on this data often overfitted to the controlled
background and lighting artifacts.

5.4.3 Quality of Real-World Evaluation Data

Although the real-world dataset recorded by the author served as an important
benchmark for generalization, it presents its own limitations. The videos were
recorded by a single individual who is not a native LIS signer. Despite efforts
to replicate the signs accurately, subtle inaccuracies in sign execution may have
influenced model performance and do not fully capture the variability expected
from a broader signer population.

5.4.4 Tracking and Preprocessing Challenges

Hand tracking errors, including missed detections, poor bounding box estimations,
or occlusions, occasionally affected the quality of the generated HEIs. In some cases,
tracking failures were significant enough that no usable HEIs could be extracted
from particular video samples, as observed for two instances of the sign banca and
one instance of the sign freddo in the real-world dataset.

Although preprocessing methods like adaptive thresholding improved generaliza-
tion, they sometimes oversimplified the hand representations, potentially discarding
subtle but discriminative features necessary for fine-grained classification.

5.4.5 Scope of Recognition: Isolated Signs Only

The current system was designed and evaluated exclusively for isolated sign recog-
nition, meaning that each video contained a single, well-defined sign. In real-world
scenarios, continuous signing, including transitions, coarticulations, and sentence-
level structures, presents a much greater challenge. The methodology developed
here does not yet address sequential modeling, temporal segmentation, or the
recognition of continuous sign streams.
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5.4.6 Computational Constraints

All training and testing were conducted without GPU acceleration, relying solely
on CPU computation. While this setup reinforces the lightweight nature of the pro-
posed approach, it also imposed practical constraints on experimentation speed and
the possibility of testing more complex architectures or larger-scale hyperparameter
tuning strategies.

5.5 Future Work

While the results obtained in this work demonstrate the potential of Hand Energy
Images (HEIs) combined with lightweight CNN architectures for isolated sign
recognition, several paths for future improvements and extensions have been

identified.

5.5.1 Increasing Dataset Size and Diversity

One of the primary limitations of the current study is the restricted dataset
size, particularly regarding the diversity of training and real-world evaluation
data. Expanding the dataset with more native LIS signers, a wider range of sign
variations, and different environmental conditions (such as varied backgrounds,
lighting setups, and camera angles) would be crucial to enhancing the system’s
robustness and generalization capability. Collecting data from multiple individuals
with diverse signing styles would not only improve the model’s ability to generalize
across different users but also help mitigate signer-dependent biases. A more varied
and representative dataset would support both the training of more resilient models
and a more rigorous evaluation of their performance in realistic usage scenarios.

5.5.2 Improving Hand Tracking Robustness

Although the hand-tracking solution used in this work was generally effective,
occasional failures in detecting or accurately tracking hands, due to occlusions,
non-standard poses, or subtle hand movements, highlight the need for even more
robust solutions. Future work could focus on integrating more advanced or adap-
tive hand-tracking algorithms that better handle occlusions, hand overlaps, or
challenging lighting conditions. Improved tracking stability would directly enhance
the quality of the generated Hand Energy Images (HEIs), resulting in better input
representations for recognition models.
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5.5.3 Exploring Sequence Models for Continuous Sign Recog+
nition

The current system addresses isolated sign recognition without considering the
temporal dynamics between consecutive signs. Future research could extend
the approach to continuous sign language recognition by incorporating sequence
modeling techniques, such as recurrent neural networks (RNNs), Long Short-Term
Memory networks (LSTMs), or attention-based temporal models. Capturing inter-
sign transitions and context could significantly increase the system’s applicability
for real-world communication, where signs are performed naturally in sequences
rather than in isolation.

5.5.4 Testing Alternative Architectures

While lightweight CNN architectures proved effective in this work, exploring alter-
native model designs could further improve performance and efficiency. Attention-
based CNNs, lightweight transformer models, or architectures optimized for mobile
deployment (such as MobileNet variants) represent promising directions. These ap-
proaches could provide a better balance between computational cost and accuracy,
especially for scenarios requiring real-time performance on resource-constrained
devices.

5.5.5 Real-Time Mobile Implementation

Given the compact nature of the proposed models and the low computational
requirements of the HEI representation, a future goal is to implement a real-time
sign recognition system on mobile or embedded platforms. This would involve
optimizing the full pipeline, from hand tracking to inference, to ensure low-latency
processing, possibly leveraging hardware accelerators like GPUs or NPUs available
on modern smartphones. A real-time system would significantly enhance the
practicality and accessibility of sign language recognition technology for daily use.

5.6 Discussion Summary

This chapter provided a critical interpretation of the experimental results, high-
lighting the role of different preprocessing strategies, model architectures, and
regularization techniques in shaping system performance. The strengths and limi-
tations of the proposed methodology were discussed, along with potential avenues
for future research. The next chapter presents the final conclusions of this work,
summarizing the main contributions and outlining broader implications for sign
language recognition.
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Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis proposed a lightweight and effective system for isolated Italian Sign
Language (LIS) recognition based on Hand Energy Images (HEIs) and custom
convolutional neural networks (CNNs). By systematically evaluating different
preprocessing strategies, such as Gaussian blur, light background modification, and
adaptive thresholding, the study demonstrated how preprocessing impacts both
performance on controlled datasets and generalization to real-world scenarios.

The system was built with simplicity and computational efficiency in mind,
avoiding the need for large pre-trained models or extensive data augmentation.
Despite the limited size of the available datasets, the approach achieved promising
results, particularly when preprocessing methods that emphasized the hand’s
structural features were applied.

Furthermore, the thesis introduced a combined model approach, merging in-
dependent left- and right-hand classifiers to improve recognition performance,
especially in more complex signs involving both hands.

6.2 Key Findings
The experiments conducted revealed several important trends:

o Models trained on the original A3LIS dataset without preprocessing achieved
the highest accuracies on the controlled A3LIS test set, benefiting from dataset-
specific biases like uniform backgrounds and standardized signing conditions.

o Preprocessing techniques that simplified the hand region, especially adaptive
thresholding combined with Gaussian blur, significantly improved model
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generalization to real-world test conditions, where variability in lighting,
backgrounds, and signer styles is prominent.

Applying dropout regularization improved real-world performance, especially
for models trained on less preprocessed, more constrained datasets, by miti-
gating overfitting to background artifacts.

Hand Energy Images (HEIs) proved to be a compact and effective representa-
tion for isolated sign recognition, particularly when combined with lightweight
CNN architectures.

6.3 Challenges

Despite the promising results, several challenges were identified:

The dataset used for training remained relatively small, limiting the system’s
exposure to signer variability and environmental diversity.

The real-world test set, although helpful in simulating more practical condi-
tions, was still limited in size and signer representation.

Hand tracking errors occasionally affected the quality of HEIs, especially in
cases of occlusions or rapid hand movements.

The study focused exclusively on isolated sign recognition without modeling
temporal dynamics or continuous signing sequences.

6.4 Future Directions

Building on the findings of this work, several avenues for future research are
recommended:

Expanding the dataset to include more signers, environments, and spontaneous
signing to improve model robustness.

Enhancing the hand tracking pipeline to better handle occlusions and partial
hand visibility.

Exploring sequential models, such as Recurrent Neural Networks (RNNs) or
Transformers, to address continuous sign language recognition.

Investigating lightweight attention-based architectures that could offer better
feature extraction while maintaining efficiency.

Pursuing real-time deployment strategies on mobile or embedded devices to
make the system accessible in everyday assistive applications.

64



Conclusion

6.5 Final Remarks

This thesis demonstrated that even with limited resources and without relying
on massive pre-trained models, it is possible to design an effective isolated sign
language recognition system by carefully crafting preprocessing pipelines and model
architectures. The results encourage further exploration into lightweight, real-world
deployable solutions for sign language recognition, aiming to promote more inclusive
technologies for the Deaf and hard-of-hearing communities.
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