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Summary

In recent year, automatic speech recognition (ASR) systems have seen drastic improve-
ment in accuracy, driven by deep learning advancements. Nonetheless, their black-box
nature is reduces trust and debug possibility, making it hard for users and developers to
gain insights into how raw audio signals are transformed into text-like outputs and how
these outputs are obtained. This opacity could also hide errors or biased outputs, making
their deployment unfair and unreliable. In this context, Explainable AI (XAI) tries to
cover this gap by producing human-understandable explanations of the model behavior.

Current ASR explanations have stopped at word-level explanations, hiding what might
be found only at phonetic level. A word-level explanation attributes importance to each
word, indicating how much the results prediction shifts when omitting or perturbing
a word. This granularity can give good insights, but to gain the full picture we can
explore further and explore phonemes and morphemes (groups of phonemes). This can be
particularly useful for situations where a singular phonetic change can alter the meaning
or intent of a sentence.

This thesis aims to transition from the word-level down to phoneme-level. To
achieve it, we introduce a framework for generating explanations down to the phoneme
level with high precision. We adapt three popular post-hoc, model-agnostic explainers
(Leave-One-Out, LIME and SHAP) as to mask individual phoneme segments rather than
entire words. Phonemes can also be perturbed to modify the prosodic features (e.g. pitch,
duration, noise) to study how paralinguistic features influence predictions. Another im-
plementation is the sliding-window aggregation, which can group adjacent phonemes into
syllables or morphemes. All these configurations can be adjusted to explore explanations
at different granularities, and by comparing results we can see where certain patterns
start to form. The process saves the original classification output for a certain audio,
then converts it into a time-aligned phoneme sequence. The explainers then mask the
features, creating multiple versions of the original audio with a feature removed. Each
new audio created is passed through the classifier and the results are compared to the
original output, obtaining the individual importance score for each feature.

Three different datasets have been used to test the functionality of this program. Fluent
Speech Commands (FSC) is composed of English sentences for smart-home appliances
with three different intent classification. Then, ITALIC is used to test the framework with
a different phoneme alignment library for Italian intent classification audios. Similarly,
Speech MASSIVE is used to test the model for other languages, such as German and
French.



Through qualitative and quantitative metrics, this thesis demonstrates that phoneme-
level explanations can confirm some expectations, while showing at a finer granularity
which features the system is using to arrive to its conclusions, confirming that it does not
necessarily use the same human patterns and clues to arrive to a certain output.
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Chapter 1

Introduction

1.1 Research Motivation

Speech recognition systems are everywhere in our daily lives, and as these systems
become more and more sophisticated and deployed in critical applications, understand-
ing how they make decisions has become increasingly important. Traditionally, speech
recognition models can be highly effective but they also operate as "black boxes" models,
making decisions that are difficult for humans to understand, interpret or verify. This is
especially true for the application of deep learning and neural networks, which brought
great advancements in the field at the cost of complexity and opacity of these models.
This becomes even more important when they make errors or introduce biases in their
decisions [2].

Interpreting these models is hard because speech is complex, containing multiple lay-
ers of information such as raw acoustic features, semantic meaning and sounds such as
words and phonemes. Current approaches typically work at the word level, providing a
good enough insight into which words influence the model predictions the most. However,
words can have insufficient granularity if we want to really understand and deep dive into
the model behavior and which information are really important, as some of it could be
hidden at higher levels of granularity.

For example, consider a speech emotion recognition system that can identify anger in
a speaker. A word-level explanation might be able to tell us which words contributed the
most to this classification, but it cannot tell us if the model is responding to some specific
phonetic features, such as pitch or speed or even accents.

1.2 Problem Statement

The fundamental problem this thesis tries to address is the gap between word-level
and phoneme-level interpretability in speech recognition systems. Current explanations
methods can provide lots of insights for how vision and tabular data operate, but speech
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Introduction

model explanations still suffer from some limitations such as:

1. Granularity: Asintroduced, existing methods typically treat words as atomic units,
which causes explanations to miss sub-words patterns that can influence model de-
cisions. This is especially important in languages where phonetic features can assign
totally different meanings to certain words.

2. Perturbation: Perturbation-based methods are usually applied to the whole audio,
making it difficult to understand both which word carries the most information and
which type of perturbation can affect the classification the most.

3. Segmentation: Moving from audio or word level to smaller units such as phoneme
is a challenge by itself, because on one hand we might lack precision explanations at
word level but on the other hand we might introduce errors in the segmentation at
phoneme level, skewing explanations.

4. Lack of datasets with proper timestamps for phonemes.

1.3 Objectives

The aim of this thesis is to address the limitations and enhance the interpretability of
speech recognition models through fine-grained analysis at the phoneme level, specifically
by:

1. Improving the granularity, to move from word-level to phoneme-level segmenta-
tion.

2. Adapting the explainability methods to work at phoneme-level since the ex-
isting explanation frameworks (LOO, LIME and Gradient-based) work at the word
level.

3. Adapting the perturbation techniques that work at the audio level and increase
their precision by perturbing words or phonemes.

4. Introduce a phoneme aggregation method while respecting word boundaries to
gain more insights on how they interact with each other.

5. Compare and visualize the results of these explanations across different levels of
granularity.

The goal is to give a deeper understanding on how these models work and enable more
reliable and transparent speech recognition systems, while also maintaining the ability to
quickly switch between the different granularities. The study of the benefits of phoneme-
level explanations will demonstrate their utility in certain scenarios, while also discussing
some of the limitations of this approach.

16
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1.4 Structure

This thesis will be organized in the following chapters:

1.

Chapter 1. Introduction - Presents the motivation, the problem statement, the
objective and the contribution of the research.

. Chapter 2. Background - Reviews existing work in speech model interpretability,

discusses limitations and examines the relevant technical foundations.
Chapter 3. Explainability

Chapter 4. Methodology and Implementation — Details the theoretical frame-
work for the explanation methods, the approach to perturbations and the integration
of multiple levels of granularity.

Chapter 5. Experiments and Results - Presents the datasets, the settings and
an explanation for the choices made for certain parameters. Also include the results
and the analysis of the effects of the different explanations, perturbations and levels.

Chapter 6. Conclusion - Summarizes key findings and discuss the outlines for
future research directions.

17



18



Chapter 2
Background

This first chapter will introduce the basics of speech processing and the reasons why it
is important to study it. We will then outline the evolution of speech recognition models
and their current limitations.

2.1 What is Speech?

Speech is a complex form of human communication that involves the production of
vocal sounds. These sounds are structured and organized to enable the exchange of
information, emotions, and intentions between individuals. Unique to humans, speech
is a fundamental aspect of society that facilitates interpersonal communication and the
sharing of ideas, requiring a shared understanding of a language that allows individuals to
share concepts efficiently. At the base of human-computer interaction through the means
of speech, we find the topic of speech processing.

2.1.1 Why Study Speech Processing?

Speech processing is a critical area of research and application within the fields of arti-
ficial intelligence (AI) and computer science. It involves the analysis, interpretation, and
generation of human speech through a variety of models. Speech processing has gained
importance due to its wide range of applications, from voice recognition to artificial speech
synthesis because, unlike writing or typing, spoken language allows for seamless commu-
nication. By enabling machines to comprehend and respond to spoken language, speech
processing improves the development of intelligent systems capable of human-like inter-
actions.

2.1.2 From Speech Processing to Recognition Models

Speech processing includes multiple stages, from capturing the acoustic signal to the
interpretation of their meaning. A simplified pipeline can be seen in (Figure 2.1).
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Figure 2.1. Basic pipeline for speech recognition.

At its core is speech recognition, the ability to convert spoken audio into written text
through an internal representation of the features of the audio. Each model can work in
a different way, and understanding them can help shifting their limitations forward.

2.2 Speech Recognition Models

In this section, we will provide an overview on speech recognition models, and discuss
the challenges in their interpretability.

Speech recognition models are advanced systems designed to convert spoken lan-
guage into text, enabling human-computer interaction through the means of voice. This
technology has improved a lot from early techniques that used pattern matching techniques
[3], that tried to measure the distance between words and a predefined stored template,
to the most recent deep learning techniques that work with multiple hidden layers ca-
pable of modeling complex non-linear relationships, translating to better feature handling.

Speech recognition is used in a variety of application and ranges from automated
controls and interaction with virtual assistants to accessibility tools for individuals with
disabilities, and more. Despite the advancements, there are also some challenges due
to the differences between individuals and the way everyone speaks: different accents,
pitches, speech impairments, background noises, code-switching... Moreover, the dynamic
nature of language with an evolving vocabulary necessitates continuous advancements in
Automatic Speech Recognition (ASR) systems.

2.2.1 Hidden Markov Models (HMMs) and Guassian Mixture
Models (GMMs)

Before the application of deep learning, Hidden Markov Models (HMMs) combined with
Gaussian Mizture Models (GMMs) were the backbone of ASR. HMMs captured the
sequential structure of speech using probabilistic state transitions with the likelihood
of words and sentences sequences, combined with the GMMs which provided statistical
models for the acoustic features. In other words, HMMs analyzed speech as a sequence of
sounds predicting the most likely words and phrases based on probabilities, while GMMs
helped distinguish different sounds by modeling speech patterns. Together, they allowed
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ASR systems to predict phonemes, syllables, words, and sentences.

Even though they achieved good results, they struggled with long sentences and
complex speeches due to their probabilistic nature. HMM were gradually integrated into
the first deep learning models, and while most models today have moved beyond pure
HMM architectures, their principles influenced the modern approach to ASR.

2.3 Deep Learning

The development of deep learning was a big leap forward for speech recognition, as it
did not require the need for a phoneme dictionary and improved robustness against noise,
speaker characteristic, and acoustic conditions. Unlike earlier methods, deep learning
models can learn directly from raw data, making them highly versatile.

Deep learning models are structured using multiple layers of artificial neurons,
where each layer extracts more complex features from the input. The first levels capture
low-level details, such as frequency components, while deeper layers recognize features like
phonemes, syllables and words recognizable by humans. By utilizing large datasets and
advanced algorithms, they can learn complex patterns in speech without the need of
feature manipulation.
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weights
1st layer

welghts )
2nd layer

\ J J \ J
T T T

1st layer 2nd layer 3rd layer

Figure 2.2. Deep neural network representation

The primary architectures involved in ASR are Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformers.

2.3.1 Convolutional Neural Networks (CNNs)

CNNSs, which are generally used for image processing, have also been applied to
speech recognition [4]. This is due to the ability to visualize audio signals as spectro-
grams, where the x-axis represent the time and the y-axis the frequency, and the color
represents amplitude. They are good at analyzing spectrograms because they can detect
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patterns such as pitch variations, phoneme transitions and other frequency characteristics.
This allows CNNs to extract high-level acoustic features, such as formants and harmonics,
and pass this information to other models.

CNNs are generally not used alone for ASR anymore, but when combined with RNNs
or transformers, CNNs can enhance feature extraction and improve ASR performance, as
seen in Conformers [5] from Google.

2.3.2 Recurrent Neural Networks (RINNs)

RNNs, and particularly the Long Short-Term Memory (LSTM) variants, are good at
processing sequential data by maintaining memory of previous inputs and capture
the patterns of speech data, which develops over time.

RNNs by themselves suffer from the problem of vanishing gradient, resulting in
RNNs '"forgetting" parts of the input that appeared earlier when processing longer se-
quences. LSTM were introduced to allow RNNs to retain information over longer time
spans, improving the architecture and the accuracy.

Even though RNNs and LSTM have significantly improved ASR, they have been re-
placed by Transformer-based models.

2.3.3 Transformers

Transformers were introduced in 2017 and revolutionized deep learning methods thanks
to the attention mechanism [6]. Unlike RNNs, which process data sequentially, Trans-
formers can parallelize computations and use an attention mechanism to analyze the entire
input at once.

The attention allows the models to focus on the most relevant part of the input dy-
namically, consider the entire sentence context without suffering from vanishing gradients
and capturing short-term and long-term dependencies in the input sequence.

Many of the the state-of-the-art ASR models are based on Transformers, such as
Wav2Vec 2.0 from Meta [7], that learns representation from raw audio, Conformers from
Google [5] and Whisper from OpenAl [8].

2.4 Current Limitation of ASR

While Automatic Speech Recognition systems have seen good improvements in recent
years, they still face several significant challenges that impact their accuracy, reliability
and real-world applications.

2.4.1 Biases and Robustness

One of the most widely known challenges of Al systems is the presence of data biases,
including ASR systems. Als need to be trained on large amounts of data, and since this
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data comes from the real-world, they often reflect societal imbalances. Biases can man-
ifest in multiple ways, such as disparities in performance across different genders, ages,
ethnicity or accents. Numerous studies have explored methods to identify, quantify and
mitigate these biases [9], [10], [11], [12], [13].

The issue of bias is strictly linked to the robustness of the model, which refers to
the ability of accurately transcribing speech under various conditions, speakers, and ac-
cents. This connection comes from the natural variation of human speech, where factors
like pronunciation, accent, and paralinguistic features (such as pitch, speed, rhythm) can
impact the model performances. For example, a model trained primarily on native Amer-
ican English speakers, might struggle when dealing with strong accents or non-native
speakers, since the model is not familiar with their pronunciation and could create wrong
transcriptions (Figure 2.3, from [14]).
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Figure 2.3. Disparities in a speaker identification task, showing better performance for
women and different performance based on race.

A similar issue is represented by out-of-vocabulary words, words that the system
have never seen during training, including slang, proper names or technical vocabulary.
For example, a ASR model trained for automated captioning in a general context would
not be fit for the deployment in a social media, where users communicate with informal
language, slang and code-switching between languages.
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To address these challenges and build systems that are more robust and fair, researchers
need to develop more diverse and representative training datasets from a wider
variety of speakers. On top of this, it’s important to consider where the model will be
deployed and who will be interacting with it. This will ensure better performance in
real-world application and for a more diverse crowd.

2.4.2 Hallucinations

Hallucinations are a type of error produced by deep neural networks, widely studied
in natural language processing. Recently, hallucinations have also been studied for ASR
systems, defined as transcriptions that are linguistically coherent and fluid, but that have
little to no relation to the source sound. Wrong outputs impact the credibility of the
system, since traditional methods cannot differentiate between hallucinations and accurate
transcriptions.

Hallucinations often arise due to low-quality training data, where incorrect annotations
or noise can introduce wrong correlations in the learned model. This issue underscores the
importance of high-quality datasets and proper preprocessing. The susceptibility of these
models to create hallucinations has been studied through perturbation-based techniques
[15].

2.4.3 Black-Box Models

Even though neural network can have as low as two layers, ASR systems generally
employ deep architectures and have a very large number of parameters, ranging from the
thousands to the billions. This is at the base of the problems regarding the interpretability
of these "black-box" models. Unlike rule-based systems, that have defined and explicit
decision steps, deep learning models operate with multiple layers of abstraction and non-
linear transformations, meaning that they have an opaque decision making process.

The general pipeline of an ASR model starts with feature extraction, transforming the
output into an internal representation that is comprehensible to the model. These features
are then processed through deep neural layers, where weights and transformations influ-
ence the final output. This internal representation is not directly interpretable, increasing
the gap between human-understandable features and the model abstract feature space.

Improving interpretability and being able to gain insights of the inner workings of these
black-box models is crucial for ASR, leading also to improvements in biases identification,
user trust and even helping in debugging errors. Some possible solutions are discussed in
the following chapters.
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Chapter 3

Related Work

In the recent years, Artificial Intelligence (Al) has gained a lot of interest, especially
thanks to the popularization of Large Language Models (LLMs) like ChatGPT. Al if used
correctly, can deliver an improvement in the outcome of many different sectors. For this
to happen, the machine learning community needs to address the barrier of explainability.
This stems from the inherent problem of Als: using sub-symbolism, such as ensembles
or neural networks which humans cannot easily understand like rule-based systems. As
we have already introduced, eXplainable Al (XAI) is the field that tries and explain how
these new Al systems work, and it is acknowledged as one of the most important features
for safe deployment of AI models [1].

In this chapter we will briefly present the existing literature regarding XAl, particularly
in the field of Automatic Speech Recognition.

3.1 Explainable Al in Automatic Speech Recognition

The advancements of Al even in the field of ASR ([16]) has made it clear that even
speech requires deep researches to clarify the inner workings of these increasingly sophisti-
cated models. As previously seen, initially ASR systems relied on Hidden Markov Models
(HMMs) combined with Gaussian Mixture Models (GMMs), which were then substituted
because of their inability to capture and manage complex and long sequence of speech
data. With the advent of deep learning, ASR performance significantly increased but they
also gained complexity, acting now effectively as black-boxes, thus losing transparency in
their decision making.

Some of the immediate challenges that researchers have to address when implement-
ing the already existing methods for ASR is the nature of audio data: both temporal
and sequential, unlike static images or text data. This means that a sentence can have
temporal dependencies and variations, which makes the traditional perturbation meth-
ods less direct to implement: audio frames usually do not have inherent meaning unless
considered in context. Perturbations such as zeroing or adding noise to some frames can
create unrealistic audio sequences, which has to be taken into account when applying

25



Related Work

these methods. On top of this, speech resides in a high-dimensional feature space, and
methods like SHAP that require lots of calculations to assess all possible combinations
of features. This makes the method even harder to implement, especially as granularity
increases, making optimized methods such as Kernel SHAP, Deep SHAP and other even
more important to research and develop [17].

3.1.1 Adaptation of XAI Techniques to ASR

To address the transparency issue, researchers have adapted the already existing post-
hoc explainability methods that were originally designed for images and texts. Some
of these are Local Interpretable Model-Agnostic Explanations (LIME) [18] and SHapley
Additive exPlanations (SHAP) [17]. Particularly, LIME can be adapted in a way that
enables to identify the minimal and sufficient subset of audio features that can identify
the correct output, as seen in [19]. This allows the user to get frame-level insights, to
precisely identify the most important features. Similarly, also SHAP has been extended
to work within ASR systems, which also allows the visualization similarly to the already
existing implementations [? |.

LIME was originally developed for images and works by generating perturbations of
the input and evaluating how these changes affect the output of the model. In the case
of ASR, the input is made of audio frames, which are the raw unit of data of speech
at specific time intervals, so the method had to be adapted to be able to move from
the pixel-feature space to this new feature-space. The method also used to mask pixels,
and now needs a new way to mask audio frames. This creates mutated versions of the
original audio input that are then fed into the speech classification model and the output
is then analyzed once again, to evaluate if the changes in those audio frames affected the
output [19]. Similarly, they also adapted the Causal method [20], which was also originally
proposed for image classifiers. This method focuses on understanding causal relationships
between audio frames and the output, but works with the concept of "superframes". This
means that instead of perturbating single frames, it uses groups of frames and evaluates
how changes in multiple frames affect the model’s decisions.

As seen in [21], multiple studies use Layer-wise Relevance Propagation (LRP) [22],
which was also proposed for image classification and then adapted to explain audio tasks.
This method works by backtracking the relevance of of the prediction through the layers
of the network, and it uses spectrograms and waveforms of the audio data to identify
which parts of the spectrum are the most relevant for the output. LRP can also be used
to derive relevance scores for individual samples of an input, as for [23].

3.1.2 Visualization and Interpretation Strategies

For what it concerns the visualization of explanation for audios, some works represent
explanations using time-frequency heatmaps over the spectrogram of an audio, which
means highlighting areas of importance over the time and frequency representation, for
example in [23], [24], [25], [21], or even heatmaps over some terms [23]. Heatmaps and
spectrogram can carry a lot of information, but they are hard to interpret for many people
since they require specialized knowledge to decode them, creating a barrier for non-experts
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users. Similarly, another method assigns relevance scores to audio frames, dividing the
audio in data bins based on predefined time spans [26]. Some variations of LIME, like
SoundLIME [27], apply this equal-width approach to segments within the time and/or
frequency domains to perform music content analysis. It is important to notice that
the time we choose for the creation of the segment does affect the explanations, on top
of the fact that the explanations are not based on linguistic elements such as words or
paralinguistic features, thus reducing the interpretability of the results.

3.1.3 Word-level analysis

In [28] we find a new explainability approach for speech classification, that analyzes
speech at word-level and also addresses the role of paralinguistic features. Unlike the pre-
vious methods, their approach tries to align the audio with each transcription, and eval-
uates the contribution of each word segment or paralinguistic feature (e.g. pitch, noise)
to the model’s predictions. The work in this thesis is based on this research and adopts
similar perturbation-based techniques, and methods like Leave-One-Out and LIME, im-
plementing SHAP into our research, a well-established method in the field of XAT [29].
They also propose a user study to assess the plausibility of their explanations, also val-
idating their new approach for visualizing explanations even to non-experts. In [30] a
similar approach is used, but they test fixed-width segments of audio and align the audio
with the phonemes. Unlike our work, they already had phoneme-level timestamps for the
transcription, which is usually not provided and hard to obtain.

To perturb the data, different domains utilize different techniques, such as removing
parts or masking them with the addition of noises, blurring, masks for vision or removing
words for texts, or even average values for structured data [29]. In the case of audios, we
can zero the signal to mask certain parts of it [30], add noises, modify the speed, pitch
and many more.

Always in the field of XAI, multiple efforts have been made to analyze speech models
at the subgroup level, trying to address and mitigate biases and fairness issues that might
arise [31], [32], [33], [34], [35], [36]. This is different from the work presented in this thesis,
which focuses on improving the granularity of interpretability at the individual level.

3.1.4 Filling The Gaps

Despite the advancements and the ongoing research, addressing our problem at hand
had some specific challenges to overcome.

Dataset Scarcity. One of the biggest problems when dealing with phoneme-level ex-
plainability is the lack of datasets that provide accurate phoneme timestamp. While
word-aligned datasets can be found, phoneme-level is hard to obtain because it requires a
trained ear or the use of forced alignment tools, which add a layer of uncertainty and error
possibility. One dataset, TIMIT [37], is available with phoneme-level transcription and
timestamps, but it also uses a proprietary representation of phonemes instead of the In-
ternational Phoneme Alphabet (IPA) or ARPABET, commonly used for machine learning
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tasks, making it unusable to obtain comparison for our task. To overcome this problem,
we will utilize a compatible forced aligner developed only for English and Chinese [38].

Granularity Shift. Most techniques for explainability in ASR use fixed-width audio
frames or datasets with timestamps already available. Shifting from fixed-width or word-
level to phoneme-level introduced a new challenge on how to obtain this very granular
and precise information. Multiple forced alignment tools were not compatible with the
structure of the program, such as MFA [39]. These tools can also introduce a layer
of possible error, and when we extend our research outside of the English language the
challenge becomes even harder. This shift also increases the complexity of the explanation
space, increasing the number of features to evaluate. This can lead to an exponential
increase in the time of execution of certain methods, such as SHAP, which requires the
calculation of many combination of such features to obtain the importance scores.
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Chapter 4

Explanation Methods in
Artificial Intelligence

As Artificial Intelligence systems become increasingly complex, understanding their
decision-making progress has increased in priority in the research field. Explainable
AT (XAI) addresses this challenge by developing techniques to make AI systems more
transparent on their inner functioning. This is as important in speech recognition sys-
tems, where the relationship between input audio and model predictions can be especially
opaque.

While good progress has been made in the field of XAI for image, text and tabular
data, speech presents more intricacies due to its temporal nature and the gap between
continuous signals and the discrete units that we use. With some adaptation, traditional
explanation models can be adapted to work for speech systems.

This section will present the main terminology and topics of XAI, the most common
approaches to generating explanations for speech models, as well as presenting the chal-
lenges in phoneme adaptations for each of them.

4.1 Introduction to Explainable Artificial Intelligence

Explainability is defined as the ability to explain the reasoning behind the decisions or
predictions that the Al system makes in understandable terms to humans. Explainability
is often confused with interpretability but they carry subtle differences. The latter
refers to the inherent characteristic of a model to be understandable, or "to make sense',
from a human perspective, while the former is more of an acquired characteristic through
external methods, with the intent of clarifying the output or its internal functions. Aside
from these differences, the terms are more used interchangeably, even though to achieve
full transparency a model should satisfy both the condition at the same time [1].

Decisions should be explained to and understood by those directly and indirectly
affected by the Al and told in a clear and understandable way by them Figure 4.1. It
should also be possible to demand a suitable explanation of the decision-making process
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as for the General Data Protection Regulation (GDPR) Articles 13 and 14 [40]. All these
requirements are impossible to fulfill for a black-box model such as deep networks, and
the X AT field is working on improving these opaqueness to increase the trust in the models
of the general consensus.

Trust is also extremely important for the implementation and the

Who? Domain experts/users of the model (e.g. medical doctors, insurance agents) | 7
Why? 'T'rust the model itself, gain scientific knowledge -

Who? Users affected by model decisions
Why? Understand their situation, verify | 7
fair decisions...

Who? Data scientists, developers, product owners...
Why? Ensure/improve product efficiency, research, |-

new functionalities...

Who? Managers and executive board members
Why? Assess regulatory compliance, understand
corporate Al applications...

Figure 4.1. Diagram showing the stakeholders and the reasons they might
need explainable systems, from [1].

4.1.1 By-Design vs. Post-Hoc Explainability

First, we can introduce the two categories of approaches when talking about explainable
models.

1. By-design explainability: They are models that are inherently interpretable
through their architecture, thus being transparent. This can include decision trees
(Figure 4.2, from [41]), decision rules, regressions .

2. Post-hoc explainability: They generate explanations for a trained model, ana-
lyzing its behavior without modifying its internal structure. This is the focus of
this thesis, since post-hoc explanations are usually applied to the high-performing
black-box models and is where the majority of XAl approaches focus on.

One might think to always apply by-design explainable models, but they suffer from
many drawbacks, like the accuracy-explainability trade-off. Some models require regu-
larization (e.g. introducing some constraints so that the model remains interpretable) to
target interpretability, while others, like decision trees, can get extremely deep and lose
interpretability (Figure 4.3).

Another approach is the explanation-in-the-loop, which consists of training the Al
with the correct prediction and an associated explanation. When a system outputs a
prediction, we will also get its associated explanation [42]. This last approach introduces
the need of datasets annotated with explanations, and the faithfulness to the model and
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petal length (cm) <= 2.45
gini = 0.6667
samples = 150
value =[50, 50, 50]
class = setosa

True \=‘alse

petal width (cm) <= 1.75
gini=0.5
samples =100
value = [0, 50, 50]
class = versicolor

Figure 4.2. Transparent decision tree used to categorize the iris flower based on its features.

Even Deeper Decision Tree (Max Depth = 25)

Figure 4.3. Deep trees lose their interpretability.

plausibility problems [43].

4.1.2 Accuracy-explainability Trade-off

The accuracy-explainability trade-off arises from the complex algorithms used in
Al systems. On one hand, models that are accurate, such as deep networks, can achieve
high performances on many tasks like image recognition or natural language processing
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(NLP), but, as seen, they also act like "black-boxes', making it hard to understand the
process to get to their result. On the other hand, simpler models like decision trees or
linear regressions can offer great transparency because their decision-making paths are
explicit and easy to follow, but they usually achieve less satisfying results than more
complex models, as Figure 4.4 [44]. This creates the dilemma, is it better to prioritize
accuracy for better predictions or choose explainability for greater trust and transparency?

2

-C .
oo Deep Learning
T [---
@ SVM
o
~‘~\
Random Forest .
>
8
5 Bayesian Models .\
g
< \
kNN
“\
Decision Trees .‘
‘\
3 \
o Rule-based models ..

Low Interpretability High

Figure 4.4. The trade-off between accuracy and explainability

A possible solution could depend on the application of the system and its context. A
model deployed in healthcare should be able to provide clear reasoning for each prediction,
so that the users can trust the model. This case would prefer higher explainability, so that
in case of false-positives the expert can spot them with ease. Another possible solution
is to use post-hoc explainability methods, which can clarify the output of a model. By
carefully considering the needs and the context, developers can balance properly the need
for accuracy or explainability.

4.1.3 Faithfulness and Plausibility

Other two important topics in the realm of XAl are faithfulness and plausibility.

1. Faithfulness indicates whether or not the explanation matches the model inner
working. If an explanation is faithful, it accurately represents how a model arrived
at its decision.

2. Plausibility indicates whether or not the explanation matches what humans expect,
meaning an explanation may seem plausible to a human, even if it does not reflect
the true model’s inner thinking. The use of dataset annotated with explanations can
help evaluate the plausibility of the model-generated ones [43].
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In modern systems, faithfulness and plausibility are in an antagonistic situation, mean-
ing that if we increase the plausibility to create user-friendly explanations, it might come
at the cost of diminishing faithfulness [45]. This means that the model creates a solution
that is acceptable by humans because of its logic and coherence, but it’s not an accurate
depiction of how the model actually arrived to that conclusion. This is due to the fact
that models learn from patterns that humans might not consider, features that we do not
perceive such as frequencies or noises, and mathematical operations through layers.

4.1.4 Scope of explainability

Explanations can be categorized based on their scope, ranging from insights applicable
to the entire model to more granular explanations for specific instances. The main levels
of explainability are:

1. Global explanations: Global explainability aims to provide insights into the over-
all behavior of the model, to explain how it works "in general'. It tries to answer
questions like "Which features influence the model the most?" by using feature im-
portance analysis, partial dependence plots and interpretable simplified models.

2. Subgroup explanations: Subgroup explainability aims to provide insights into
how the model behaves for a particular group (e.g. a race, an age range). This
level of explanations is particularly useful when we want to test the model against
disparities across different groups. A question we can try to answer is "Does the
model behave differently for a certain group?” and if it does, try and understand the
reason why with fairness metrics.

3. Local explanations: Local explainability aims to provide insights for individual
predictions, answering questions like "Why did the model make this particular de-
cision?". Explaining a single prediction is easier than explaining an entire model,
and it’s also easier to understand and analyze. Many methods have been proposed,
differentiating on how they represent and generate the explanation.

4.1.5 Post-hoc explainability: model-dependent vs model-agnostic
solutions

When models do not meet the criteria to be classified as transparent and do not have
inherent characteristics of interpretable models, external methods must be applied to it
to explain its decisions. In this section, the solutions are divided in model dependent or
model agnostic. These approaches differ in how they interact with the model and the level
of flexibility in explaining different systems.

Model-Dependent Approaches

These methods are built for specific types of models, leveraging their internal struc-
ture to generate explanations. These models can usually provide accurate and fine-grained
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explanations because they utilize details specific to that model, such as weights and gra-
dients, but they have to be developed ad-hoc.

1.

Decision trees naturally provide feature importance scores by analyzing how fea-
tures contribute to splits.

. Support Vector Machines (SVMs) were the focus for model-specific simplifi-

cation techniques to make their high-dimensional decision boundaries more inter-
pretable, but their interest declined with the rise of deep learning models [46] [1].

Gradient-based methods are used for deep learning models. Saliency maps and
Grad-CAM utilize gradients to identify the most important input features for a given
prediction and visualize the result on text and images (Figure 4.5) [47].

Attention mechanisms are used for transformers and attention-based neural net-
works to highlight the relevant parts of the input. This method also count as in-model
because attention mechanisms are built-in, but there is an ongoing debate whether
attention can be counted as explanation or not [48], [49], [50].

. Through the years, multiple approaches were developed for specific networks, like

TreeSHAP for tree-based models [17] (e.g. XGBoost [51]), or GNNExplainer for
graph-based neural networks [52].

Original Image Grad-CAM “Cat’ Grad-CAM ‘Dog’

Figure 4.5. Grad-CAM identifying different animals.

Model-Agnostic Approaches

Model agnostic techniques are designed to be applicable to any model, relying on it as
an oracle that output probabilities and focusing on the relationship between inputs and
outputs. The intent is to extract information from its prediction procedure independently
from its underlying structure [53]. Aside from the flexibility to apply each technique
to a variety of models, they also offer the ability to represent the explanation in a for-
mat different than the one used in the internal structure of the model and suitable for
the targets. Finally, if the case arises, it’s possible to change the underlying model while
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preserving the explanation method, or to compare different model for the same prediction.

Many methods have been developed, the following is a broad classification of existing
methods, but many more exists and many could also be categorized under multiple classes:

1. Simplification: This is the broadest category of model agnostic post-hoc methods.
It can use interpretable surrogate for more complex models. This is achieved by
training an interpretable model with the outputs of the black-box, and trying to
minimize the difference in predictions. Some of these models can suffer from over-
simplification and need to be trained on outputs representative of the whole datasets.
As for Figure 4.6, the black-box model is then simplified by an interpretable model,
which can output a human-understandable solution.

Humans .
ﬁinform
Interpretability
Methods
ﬁ extract
Black Box
Model
ﬁ learn
VAT
ﬁ capture

Figure 4.6. Main steps to achieve an interpretable explanation

2. Feature Importance Methods or Perturbation-based Methods: These meth-
ods aim to describe the functioning of a model by measuring the importance of each
feature. They do not rely on the internal structure of the model but instead evaluate
changes in the output when specific inputs are altered, whether it means removed,
modified or aggregated.

¢« Permutation Feature Importance measures the decrease in performance
when the values of a particular feature are shuffled, [54], [55].
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+ Leave-One-Out (LOO) or Leave One Feature Out (LOFO) evaluates
the importance of individual features by removing them one at a time and
measuring the impact on the model’s predictions.

¢ Perturbation-based methods work by perturbing features, whether it means
removing or modifying, and measure the influence that these perturbations have
on the output.

« SHAP (SHapley Additive exPlanations) based on game theory, it assigns
importance values to each feature considering all possible subsets of features to
estimate their contribution. [17].

3. Visualization-Based Methods: These techniques represent the effect of features
in a visual format, making it easier for the user to understand the behavior of the
model.

» Partial Dependence Plots (PDPs) show the average effect of a feature on
the predicted outcome, showing if the relation between input and output is
linear or more complex [56].

+ Individual Conditional Expectation (ICE) Plots improve PDPs by visu-
alizing the effect of a feature at the individual instance level [57].

o Saliency are applicable to any image classifier, showing the pixel that were
most relevant for a certain image classification [58]. Saliency is at the base of
many other visualization techniques, such as Grad-CAM [47] and SmoothGrad
[59].

4. Rule-Based Explanations: Some model-agnostic methods generate local rules
that approximate the decision process for a specific instance.

« Decision lists and sets extract logical rules from a model to generate expla-
nations in a simple "if-then” statement [60]. In case of overlapping rules, in a
list the first rule is picked, in a set there is a voting mechanism to decide which
rule to apply.

¢ Anchors provide highly precise "if-then” rules that explain the sufficient con-
ditions under which a model makes a certain decision [61].

5. Instance-Based Explanations: These methods explain individual predictions,
exploring how the model behaves for specific instances rather than analyzing the
global patterns.

o LIME (Local Interpretable Model-Agnostic Explanations) approximates
the behavior of a complex model around a specific prediction by training a lo-
cally interpretable model, such as a linear regression [18].

¢ Counterfactual Explanations generate a similar instance with slight modi-
fications to understand the minimal change that would lead to a different pre-
diction [62].
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6. Example-Based Explanations: Similar to instance-based, but instead of ana-
lyzing features, these methods select or generate instances (examples) to generate
explanations.

e Prototypes and criticism are used to identify representative samples of the
input (prototypes) and also what is not accurately represented by prototypes
(criticism) [63].

« Nearest neighbors retrieve the most similar case or cases from the training
data to explain the decision

¢ Counterfactual explanations, seen before, can also be categorized here.

We will now dive deeper into the details of some of these methods used to generate
explanations for the scope of this thesis.

4.2 Leave-One-Out (LOO) or Leave-One-feature-Out
(LOFO)

The Leave-One-Out (LOO) method is a model-agnostic perturbation-based technique

used to evaluate the contribution of each feature to the prediction of a model. To do so,
features are removed or perturbed, one by one from the input, then the modified input
is fed to the model and measuring the impact of this removal based on the difference in
output probabilities.
Removing, especially in the case of audio data, can introduce differences in the audio
duration and this can cause problems in the downstream process, so a zeroing perturba-
tion would be preferred. The perturbation can be of any type, such as zeroing the input,
using the mean value, or, in the case of speech, introducing different types of noise as
explained in section 4.5. This technique is based on the assumption that a big change
in the prediction probabilities when a feature is removed is associated to a high level of
importance for that feature, while a small change means that the feature is not important
for that target.

Mathematically , we indicate with 2 € R™ the audio signal and {1, ..., x,} the set of
features (e.g. words or phonemes) that the audio is segmented with.

For a classification model f applied for a task such as intent classification or emotion
recognition, the output probabilities are f(y = k|z) for a target k given the input z. We
can define the relevance, meaning the importance, r(x;) € R of each feature z; to the
model’s prediction for a target class k as:

r(zi) = fly=Fk|x) = fly=k[x\w) (4.1)

where x \ z; is the signal z without the feature z;.
The higher the absolute value of r(z;), the more impact the segment that was removed
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from the prediction has. If the difference is positive, it means that the feature x; con-
tributes to the probability of belonging to class k, while a negative result means that x;
points toward another other class. If the classification is binary, it pushes towards the
other class, if it is multi-class, it’s any other possible class [28], [64].

The

The

advantages of LOO are the following:

Simplicity of the concept. It directly connects the absence of a feature to the
change in the model’s prediction and its importance, making the explanation easy
to interpret and visualize.

Model-agnostic design, making it applicable to any black-box model with minimum
adaptations.

Local explanations obtained by evaluating the impact of each feature for a given
input, particularly useful for application requiring instance-based interpretation.

Good baseline for other more sophisticated models to build on, like SHAP or
LIME.

limitations of LOO instead are:

Computations can ramp up quickly for dataset with a fine-grained feature
segmentation, requiring many computations for the same input. For ¢ features,
it requires ¢ + 1 evaluations.

Ignores feature interactions since it evaluate each feature independently and
can create unrealistic data. This can cause problems when evaluating inputs with
features that interact with each other, which leads to misleading importance scores.

Non additive approach can be problematic when explaining a prediction that is a
sum of individual contributions. Similar is the case of phoneme-level segmentation,
where a single phoneme can carry little importance but when two or more phonemes
are aggregated, their importance can drastically increase.

Simplicity can be a good thing, but in case we need a deeper understanding we
have to choose a different approach.

4.3 Local Interpretable Model-Agnostic Explanations

(LIME)

LIME is part of the instance-based explanation methods and is defined as a local
surrogate interpretable model. Surrogate models are trained to imitate the output pre-
dictions of the black-box model, but this type only focuses on individual predictions
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instead of trying to imitate the global model.

The idea behind LIME is to use the black-box model as an oracle that you can ques-
tion how many times you want and need to understand why it made a certain decision.
LIME tests what happens when we feed to the model many slightly different inputs based
on the original one. It generates a new dataset consisting of perturbed samples and the
obtained prediction of the black-box. The new dataset is used to train an interpretable
model, with weights based on the proximity of the new samples to the original one. This
model respect the property of local fidelity, meaning it is a good local approximation,
but this does not imply global fidelity.

Similarly to LOO, the perturbation can be zeroing the input, using a mean value or noises.
The difference is that each of these perturbed samples can have multiple segments masked,
capturing the effects of multiple missing pieces.

To get an importance score for each of the original features we leverage the coefficient of
the interpretable model. The scores we derive from LIME have the same meaning of LOO
as well, with higher score indicating higher relevance and lower score pointing towards
another class.

Mathematically, a local surrogate model is defined as follows:
explanation(z) = arg miél L(f,g,7m) + Q(g) (4.2)
g€

Where, x is the instance we want to explain, g is the model that minimizes the loss L
between all possible interpretable models G, while ©(g) is the model complexity that we
want to keep low (e.g. few features). The loss L measures how close the explanation is
to the one of the original model f, while the locality is measured with 7,, meaning how
much a perturbed sample can differ from x. The loss L(f, g, ) defines the concept of
locality, while Q(z) defines that of interpretability. This equation translate to: "The
explanation of an instance x, is the model g that minimizes the loss L while respecting the
complexity constraints Q(g) in the m, locality’.

The advantages of LIME are the following:
¢ Model-agnostic design, reusable even for different underlying models.

« Adaptable representation of the explanation based on who is going to consume it,
with the possibility to use a different representation from how the black-box model
represents the input.

e Local and short explanations obtained through the surrogate model and con-
trolled by the number of features selected.

« Works for multiple input types, tabular, text and images.

o Feature attributions are provided by the model.
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The limitations and disadvantages instead are:

» Ignores features interaction since perturbations are produced from a Gaussian
distribution, and this can lead to unrealistic data samples that are then used to learn
local explanations and misleading importance scores.

o Complexity has to be defined in advance by the user, who has to choose
neighborhood locality and the number of perturbed samples.

« Instability of the explanations, which means that on multiple runs the explana-
tion for two very similar inputs can vary greatly ([65] & [66]), because the neighbor-
hood depends on random perturbations. This has also repercussions on the trust we
can put on the explanations.

« It’s possible to manipulate them to hide biases in the black-box model [66] &
[67] .

4.4 SHapley Additive exPlanations (SHAP)

SHAP is a local method that aims to explain the prediction of a single instance x
through the computation of the contribution of each feature to the final prediction. It
is based on the computation of the Shapley values, which will be the first focus of this
section. Then, we will see how the SHAP method uses this concept and focus on the
KernelSHAP variation [17]

4.4.1 Shapley Values

The explanation methods that rely on the removal mechanism often fail to consider
the interaction that features can have. This can lead to results that are misleading or
samples that are not realistic. To solve this, we need an approach that is able consider
the contribution of multiple features: we do not want to measure the effect of re-
moving feature x; by itself, but rather consider its impact when removed in combination
with other features (e.g. z; and x;, or more). A possible solution to aggregate these
importance scores is using Shapley values.

Shapley values calculation comes from the game theory, where each player is assumed
to collaborate with the others, and that allows us to assign to each of them a contribu-
tion score [68]. In linear models or regressions it is easy to assign a score, based on the
coefficient each component has times the value of that component. In black-box models,
this is not possible and we need more complex solutions, as LIME or SHAP.

Shapley values are easier to understand with an example, before diving into their math.

Example

Suppose there is a team of people working on a project. Usually, the combination of
two or more people is more productive than the sole contribution of a single person, but
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this also depends on how effective these people work with each other. In a group of three
people, (A, B, C), A might work well with B but not as much with C, and to achieve
the completion of the job they have to work together in sequence.

The idea behind Shapley values is to form a group by adding people one-by-
one and see how much the output changes. Let’s say that if A works by themselves,
they achieve 10 points, B achieves 20 points and C' achieves 30 points. In the case of
two people working together, we might have (A + B) getting to 60 points because their
combination work well together, while (A+C') only 50 and (B+C') get to 65. We can also
consider the different sequences in which A, B, C can work. For example, A starts, then
B joins and finally C' joins, translating to an output increase of 0 — 10, then 10 — 60
and 60 — 100. Another sequence could be C'— B — A, or any other. These allows us to
compute the contributions of each person, for the first sequence A = 10, B = 50, C' =40
and the other sequence A = 35, B = 35, C' = 30 and so on. Taking the average of their
contribution across all sequences for each person gives the Shapley values of this problem:

A = (10450 4 35 + 10 + 50 + 40) /6 = 195/6 = 32.5 (4.3)
B = (50 + 20 + 35 + 35 + 20 + 20) /6 = 180/6 = 30 (4.4)
C = (40 + 30 + 30 + 55 + 30 4 40) /6 = 225/6 = 37.5 (4.5)

These values represent the average contribution of each person to the job, considering
all possible interactions with each other.

Properties

Before moving to the mathematical formulation of Shapley values, we will focus on the
properties that this method respect, along with their formulas to anticipate some concepts
for later. It’s important to note that Shapley values is the only attribution method that
satisfies all of the following:

1. Efficiency: All the features contributions must add up to 100% of the value of the
whole team. The formulation is:

Z ¢i(v) = v(N) (4.6)

ieN
where ¢;(v) is the contribution of player i for a certain coalition.

2. Symmetry: If two features have the same marginal contributions to all the possible
coalitions, they should have the same contribution value.

Ifo(SU{i}) =v(SU{j}) for all S C N{i,j}, then ¢;(v) = ¢;(v) (4.7)
Where v(S) is the function that predict the contributions for the features in set S.

3. Null-player: A features that does not change the prediction, regardless of its coali-
tion, should have Shapley value of 0.

v(SU{i}) =v(S) for all S then ¢;(v) =0 (4.8)
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4. Linearity: If a game is the result of two or more functions v and w, then the
resulting function is the sum of the contribution from v and w:

¢i(v + w) = ¢i(v) + di(w) (4.9)

Mathematical formulation

Intuitively, the Shapley value of a feature j is the average marginal contribution ¢;
across all possible combinations to the prediction of a particular instance (Equation 4.10).
This does not mean that it is the difference in prediction when we remove the feature,
but instead it is the average contribution of a feature to the prediction, through different
coalitions.

For any subset S of features that does not include j, the marginal contribution of
feature j is defined as:

Afi(S) = F(SU{5}) = f(S) (4.10)

The Shapley value for feature j is calculated as the weighted average of these marginal
contribution, so all the possible feature combinations, and the contribution of j is defined

as:
TEEDY

SCN\{j}

[SIINT = 151 = 1)
(V]!

s U ih - £(9)] (4.11)

where:

o N is the set of all features.

o S represents a subset of features not including j.

o f(S) is the prediction (or payoff) when considering the features in S.

Even though the Shapley value allow to consider for the interaction between features,
the computation time for this method is exponential with the number of features, and the
exact computation can become extremely intensive. This is why it’s usually preferred to
use an approximation method such as the Monte-Carlo sampling introduced in [69] which
samples random coalitions, or the two versions of SHAP introduced in [17].

4.4.2 SHAP

SHAP introduces a new way to compute the estimation of Shapley values, with two
specific methods called KernelSHAP, as model-agnostic approach, or TreeSHAP, specif-
ically for tree-based models [17]. On top of that, it proposes a way to aggregate local
explanations to achieve global insights of the underlying black-box model. We will focus
on the KernelSHAP variation because of its ability to explain any model.

Based on Shapley values and game theory, SHAP’s goal is to explain a prediction for an
instance based on how much each feature has contributed to that prediction. Each feature
(or group of features, such as grouped pixels) acts as a player and SHAP. Differently from
Shapley values, in SHAP the explanation is represented as a linear model, an additive
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feature attribution method, bridging LIME and Shapley values.
An additive feature attribution method is defined as follows:

M
g(&') = o+ Y _ ;] (4.12)
j=1

where:

o g is the surrogate interpretable model of the original model f
o 2’ are the simplified features derived from z

o ¢g is the average prediction taken as a baseline (g9 = E[f(X)]
e ¢; is the contribution of the simplified j — th feature

e M is the number of simplified features

The simplified features derived from z are mapped through a function h where z =
h(x'), and it’s usually a binary indicator (7 € {0,1} of the presence (1) or absence (0)
of a feature j. M instead can be as many as the original features, but it can also be
less in case of aggregations, or more in case of segmentation. In other terms, we want
an interpretable model g that explains the original model f through a simplified feature
representation z’, so we want g(z’) ~ f(z).

Properties

Aside from the underlying properties of the Shapley value, that SHAP also satisfies,
there are three main properties that SHAP imposes on the additive surrogate models:

1. Local Accuracy: The model should match the original model’s prediction when all
features are present, g(z') = f(x).
In many formulations, ¢p = E[f(X)] which ensures that at the point = the surrogate
is faithful to f:

M M
f@) = g(z') = ¢o + Y diaf = E[f(X)] + Y dia] (4.13)
i=1 i=1

2. Missingness: If a feature is absent, meaning it’s missing from the input feature
coalition, it gets an attribution of 0.

=0 = ¢ =0. (4.14)

3. Consistency: If a model f changes so that the marginal contribution of a feature
1 stays the same or increases, then the corresponding score ¢; should not decrease
either.
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Let fz(2') = f(hy(2')) and 2’ \ i indicates that 2] = 0 (feature ¢ is absent). For any
two models f and [/, if:

fo(Z) = (N2 fa(2") = fu(2"\ 1)
v € {0,1}M

then
oi(f,x)>¢i(f, )

From this property automatically follow the linearity, null-value and symmetry prop-
erties of the Shapley values.

Connecting to Shapley values

The only additive feature attribution method (Equation 4.12) that satisfies
all of these properties is the set of Shapley values. In this case, the different
coalitions are represented by binary vectors 2/, indicating which features are present or
absent. The formula for the Shapley value of a feature ¢ for a model f and an instance x

becomes:
P () - i) (1.15)

2/CM

in which |2/| represent the number of features present in 2z’ and 2’ \ ¢ the same set with
feature ¢ set to 0.

In practice, obtaining these values remains very complex and this is why SHAP intro-
duces an approximation to compute them (KernelSHAP & TreeSHAP), to make the
model applicable in more practical case.

In this framework, f,(z’) means evaluating the original model f on a version of x where
only a subset of features of 2’ is present, the non-zero entries, which we call S. This is
written as:

fo(#) = f(ha(2))

where h is the mapping function from 2z’ to the original input for f. When features are
missing, SHAP approximates their values by taking the conditional expectation of the
model output over the missing features:

f(ha(2) = E[f(2) | (2)s]

where zg indicates the values of the features in S. By integrating over the distribution of
the missing features, SHAP can simulate the effect of their absence, by assuming feature
independence to simplify this calculation and S being the complement of .S:

As previously seen, each ¢; represents how much each feature shifts the prediction from
the baseline:
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E[f(2)] —¢1—d2—...—du=f(7)
%o

Considering each ¢; as the weighted average contribution of all possible paths in which
a feature can appear.

KernelSHAP

Since the exact computation of Shapley values is exponential in the number of features
M, KernelSHAP tries to address this problem by sampling coalitions of features
and fitting a weighted linear model to approximate the underlying Shapley values. This
method is also model-agnostic because it only requires to query the black-box model f
for specific instances.

KernelSHAP can be seen as a refinement of LIME, because similarly it minimizes a loss
function L that measures how well the surrogate mode g approximates a function f in the
neighborhood of z. In LIME it also appears a regularization term §2(g) for interpretability,
while for KernelSHAP this constraint is dropped and set to €2(g) = 0, meaning no penalty
for interpretability.

The locality is defined inside the loss function:

L(f,g,ﬂx) = Z () (f(hx(zl)) - g(zl))

z'eZ

2 (4.16)

particularly,
M-1

M
(|z’|) |2/ (M = |2'])
where |2/| is the number of non-zero elements in z and M the maximum size of a

coalition. This kernel pushes towards sampling coalitions of different sizes and it corrects
based on how often each size appears.

m(2) = (4.17)

Pseudocode In practice, what KernelSHAP does is:

1. Samples K coalitions {2} ;}, where z; ; = 1 if the feature j is present

2. Computes f(h;(z})), meaning the prediction of the model f after converting the
instance zj, to the original feature space

3. Assigns a weight to each coalition z;, with SHAP kernel, similarly to Equation 4.17:
M -1
- M
() 1kl (M = 124

4. Fits a weighted linear model

min L(f,g,7;) = Z 7o () (f (he(2)) — g(2"))

z'eZ
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where
M
9(2') =0+ > _ b2
i=1

and the coefficient of the linear model ¢; are the approximated Shapley values

Global insights

Even though SHAP is a local explanation method, there are ways to derive global
insights for an entire dataset. This can be obtained by aggregating each Shapley value to
identify which features are most influential, on average.

Global Feature Importance is an approach that computes the average of the ab-
solute Shapley values for each feature across all dataset.

1. Compute SHAP for each instance of the dataset, obtaining the importance of each
feature for all the instances.

2. Compute the average of the absolute Shapley values per feature:
1 & i
Ij=- >l (4.18)
i=1

where ¢§Z) is the SHAP value for feature j in instance i, and n the total number of
instances.

The higher the value of I;, the stronger the impact on the overall model’s prediction
is. Figure 4.7 shows how to represent these averages through a bar chart for a
multi-class model.

SHAP Beeswarm Plot is a visualization tool also called summary plot, in which each
point of the plot corresponds to the SHAP value of a feature for a particular instance,
where the x-axis shows the SHAP value and on the y-axis the feature name sorted by the
sum of the SHAP value across all samples (Figure 4.8).

Dependence Plot offer a way to visualize feature interactions. For a specific feature j

we plot (xy), gﬁgi), for each instance 4, having on the x-axis the feature value and on the

y-axis the corresponding SHAP value. Points can be colored based on another feature k
to visualize potential interactions (Figure 4.9).

Advantages and Limitations
The advantages of SHAP

o Model-agnostic & local explanations: SHAP can be applied to any model by
sampling feature subsets and the approximation of Shapley values.
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Figure 4.7. Global insights of a multi-class model, showing feature importance
for each possible class output.

« Global interpretability: Through the aggregation of local explanations it’s possi-
ble to derive global insights.

o Interaction among features: By averaging over all possible coalitions, SHAP can
account for the possible feature interactions.

+ Reduced computational complexity: Thanks to approximations and well-implemented
libraries across multiple languages.

o Theoretical foundation: SHAP inherits the game-theory properties of Shapley
values (efficiency, symmetry, null player, linearity), as well as adding some like con-
sistency, missingness, and local accuracy.

The limitations of SHAP

« Requires data access: SHAP needs data access to compute f(hy(z"))

o Independence assumption: To simulate the absence of features, it assumes that
features are independent.
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Figure 4.8. Global insights obtained from a beeswarm plot.
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Figure 4.9. Feature dependence for the feature Age and the feature Education_Num.

o Unrealistic data samples: The absence of feature and independence assumption
can create unrealistic samples, that can make the explanations less accurate.

o Approximation: KernelSHAP is an approximation of the true Shapley values, and
is based on random instances which can also cause variance in the estimations.
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o KernelSHAP is slow: In the case of large number of features, KernelSHAP can
become slow. Other methods exists to speed up the process, such as new sampling
strategies [70], or other approximation methods such as FastSHAP [71], Gradient-
based SHAP, or model-specific SHAP methods such as TreeSHAP and LinearSHAP.

TreeSHAP

TreeSHAP is a specialized variant of SHAP, which is tailored to tree-based models
such as random forests and gradient-boosted trees [51]. It leverages the structure of the
decision trees to compute the exact Shapley value in polynomial time with respect to the
number of leaves. It is significantly faster than KernelSHAP for large trees ensembles and
has the same theoretical foundation that Kernel guarantees.

4.5 Paralinguistic Attributions

Aside from the semantic information that we can convey with words, speech also
includes paralinguistic information. These can carry additional information, focusing on
how things are said, rather then what is said. Paralinguistic features can be attributed
to the speaker’s voice, such as pitch, speed and rhythm or external condition as the
background noise.

This type of information is important to capture in the field of ASR, since:

o It can lead to a more holistic understanding of speech, capturing the different
ways in which a sentence can be delivered.

o It is used in emotion recognition since paralinguistic features are the main carrier
of these information.

o It can help the speaker identification.

o In certain languages the same word can change meaning if spoken with different
attributions.

This can also help XAl methods, because it can give insights into the non-verbal
dimension of speech and how it affects model predictions, which can be used to identify
biases and weaknesses of the models. Finally, it can help in building models that are more
resistant to variations, whether in pitch or in background noises.

To tackle this problem, we can use perturbation-based techniques to attribute
importance to different speech features, which in this case are represented by the paralin-
guistic attribute we choose.

Mathematically We indicate with p := f : R” — R a function to extract a paralin-
guistic measure of interest, such as the pitch, and maps the input of an audio signal to
a real value measure p(x). We then transform z into T such that p(z) is either higher or
lower than p(z). In other words, this means we shift the pitch up.
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To compute the effect of p on the prediction of a certain objective class k, we perturb x
multiple times and average the result as:

rp(@) = f(y = klz) — f(y = k[Z) (4.19)
1 ~
r(z,p) = —= Y (@) (4.20)
%l 2%,
where 7,(7) is the effect of a single perturbation, )N(p ={T1,...,T¢} is the set of t per-

turbed audio signals along the p feature, ¢t depends on the granularity of the perturbations
applied.

r(z,p) is the relevance, measuring how sensitive the model’s decisions are to the feature
p. This value is bound to [—1, +1], specifically if:

o r(x,p) > 0, then increasing p(z) lowers the probability of class k
o r(z,p) <0, then increasing p(x) raises the probability of class k

o r(x,p) = 0, then the model is robust to changes of p(x)

4.6 Implementation of Interpretable Techniques

In this section we will see how the previously introduced methods have been imple-
mented, studying a summary of their headers containing the possible parametrization and
functionality of each method. Moreover, some under-the-hood functions are described for
better clarity of what happens when these methods are called, as well as the parametriza-
tion for some important calculations (section 4.6).

All the code can be used from the speech_xai__exp.ipyb notebook. To pick a specific
method to create an explanation, we can use the following syntax:

explanation = benchmark.explain (
audio__path=audio_ path
methodology="LOO")

In this case an explanation for the audio corresponding to the audio_path with the LOO
methodology with default parameters will be returned.

The full code is available at (https://github.com/Raoolo/Phoneme-Thesis). We will
also see the main frameworks and libraries used to support the code, such as WhisperX and
others. Through the combination of the parameters presented for each of the explainability
methods, we can alter the explanations and get more insights from the same audio sample.

In Figure 4.10 we can see how the program achieves a result through a graphic, to
easily understand how the data flows from the input layer to the output.

Once the data is loaded and in its raw form, the first step of the pipeline is to obtain
a baseline classification from the model. Then, the audio is transcribed, and at the same
time the transcription is converted to its phonemic version. Once we have this data,
we can perform phoneme alignment. This step splits the transcription into its phonetic
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Figure 4.10. Graph showing the main steps of how the program achieves explanations.

units and provides the timestamp of each unit, allowing the program to distinguish each
phoneme based on its start and end time. Once we have this information, we can utilize
an explanation method, that, after perturbing the audio using the phoneme timestamps,
obtains the new classification scores. Comparing the original classification scores and the
new ones, the method returns an explanation and we are able to extract insights and
visualize it properly.

4.6.1 Leave-One-Out (LOO)

This method evaluates the contribution of each feature in an audio by removing them
one at a time and then quantifying the change in the model’s output. Through this method
it’s also possible to perturb the features with different modifications, such as shifting their
pitch, to see how it affects the predictions. The full implementation is found inside the
explainers folder, loo_speech_explainer.py.

The simplified workflow is as follows:

1. Load audio: Load the audio using pydub [72].

2. Transcription: Obtain the transcription of the audio file using WhisperX [73] and
obtain the details about each feature. Phonemes are obtained thanks to a Wav2Vec
model [7] fine-tuned for phonetic recognition [74].

3. Feature modification: For each feature, create a new audio in which the feature
is either removed or perturbed with audiomentations [75].
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4. Generating explanations: Obtain the predictions for each new audio and compare
them with the original prediction to obtain the importance scores of each feature.

Parameters The following are the parameters that modify the functionality of this
class:

e audio_path: a string that corresponds to the audio path that contains the .wav
file.

» removal_type: a string that corresponds to the type of removal we want to apply
to the feature we are removing. This parameter is also used in the case we want to
perturb a feature instead of removing it.

— To remove an audio, we can use "nothing" or silence. By default it is set to
"nothing".

— To perturb an audio, we can use any of the following modifications: "pitch shifting",
"pitch shifting down", "pitch shifting up", "reverberation",
"time stretching","time stretching down'", "time stretching up",
"stress", "degradation", "noise", "white noise", "pink noise", "claps",
"intensity"

e phonemization: a boolean value that activates the phoneme-level explanation.
If not provided, or set to false, the method will work at word-level.

o window_size: an integer that turns on the aggregation of two or more phonemes
into groups of size window__size. By default this is off.

o respect_word_boundaries: a boolean value subordinated to the window_size pa-
rameter. In case of aggregation, this avoids the aggregation of phonemes from dif-
ferent words (e.g. the last phoneme of the preceding and the first phoneme of the
following). By default this is on (set to true).

e sliding: a boolean value subordinated to the window_size parameter. It is used to
choose between two different types of sliding windows. By default this is set to
false.

Using characters instead of phonemes for simplicity, when set to true for window_size=3
the aggregations will be "bed edr dro oom" rather than "bed roo m"'. This concept is
detailed in subsection 4.6.4.

o single_perturbation_value: a numerical value that allows the user to study in
details the effects of a single perturbation value. The value chosen should be
appropriate for the perturbation (removal_type) chosen.

o complete_perturbation: a boolean value used to perturb each of the feature with
multiple perturbation values. By default this is set to false.

o perturbation_list: a list of multiple perturbations subordinated to the acti-
vation of the complete_perturbation parameter.
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words_transcript: a list containing the words of the transcription of the audio.
If not provided, the model will automatically create a transcription.

visualization: a boolean values used to activate the visualization of graphs.

display_audio: a boolean value used for logging and debugging. Set to false by
default

verbose and verbose_target: a boolean and a subordinated integer value used for
logging and debugging a specific class of interest. By default set to false.

4.6.2 Local Interpretable Model-Agnostic Explanations (LIME)

This method uses the LIME framework to locally approximate the behavior of an audio
black-box model. Instead of solely removing features, LIME creates a neighborhood of
perturbed audio samples and fits a surrogate interpretable model to estimate the contri-
bution of each feature. The full implementation is found within the explainers folder in
lime_speech_explainer.py and lime_timeseries.py.

The simplified workflow is as follows:

1.
2.

Load audio: Load the audio using pydub [72].

Transcription: Obtain the transcription of the audio file using WhisperX [73] and
obtain the details about each feature. Optionally, phonemes are obtained thanks to
a Wav2Vec model [7] fine-tuned for phonetic recognition [74].

Interpretable representation: LIME requires the input to be represented with
interpretable features, in this case each phoneme is represented with a binary mask
that indicates whether it is present (1) or absent (0) [29] [30].

Neighborhood generation: Create a set of perturbed audio samples by randomly
deactivating features.

Surrogate model: Using an adapted version of the lime library [28], fit a weighted
linear model on the perturbed samples.

Generate explanations: Based on the regression coefficients, derive the impor-
tance scores and build the explanation.

Parameters The following are the parameters that modify the functionality of this

class:

e audio_path: a string that corresponds to the audio path that contains the .wav

file.

e removal_type: a string that corresponds to the type of removal we want to apply to

the feature we are removing. In this case, the supported removal types re "silence",
"noise", "mean", and "total mean". By default it is set to "silence".
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o num_samples: an integer that represents the number of perturbed samples to
generate to train the surrogate model.

e phonemization: a boolean value that activates the phoneme-level explanation.
If not provided, or set to false, the method will work at word-level.

o window_size: an integer that turns on the aggregation of two or more phonemes
into groups of size window _size. By default this is off.

o respect_word_boundaries: a boolean value subordinated to the window_size pa-
rameter. In case of aggregation, this avoids the aggregation of phonemes from dif-
ferent words (e.g. the last phoneme of the preceding and the first phoneme of the
following). By default this is on (set to true).

» sliding: a boolean value subordinated to the window_size parameter. It is used to
choose between two different types of sliding windows. By default this is set to
false.

Using characters instead of phonemes for simplicity, when set to true for window_size=3
the aggregations will be "bed edr dro oom" rather than "bed roo m"'. This concept is
detailed in subsection 4.6.4.

o words_transcript: a list containing the words of the transcription of the audio.
If not provided, the model will automatically create a transcription.

e visualization: a boolean values used to activate the visualization of graphs.

4.6.3 SHapley Additive ExPlanations (SHAP)

This method uses SHAP values to quantify the contribution of each feature to the
model’s prediction. SHAP computes importance scores by comparing the model’s out-
put on the original audio with outputs on perturbed versions where certain features
are masked. The full implementation is located in the ezplainers folder inside the file
shap_speech_explainer.py.

The simplified workflow is as follows:

« Load Audio: Load the audio using pydub [72].

« Transcription: Obtain the transcription of the audio file using WhisperX [73] and
obtain the details about each feature. Optionally, phonemes are obtained thanks to
a Wav2Vec model [7] fine-tuned for phonetic recognition [74].

o Feature masking: Create an interpretable representation of the features, in this
case a binary 0,1 mask, where 0 means absent and 1 means present.

« Background data: Create a set of binary samples with various combination of
presence and absence of the features.

« SHAP value computation: Using the KernelExplainer from shap [17], we com-
pute the SHAP values for our instance.
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« Generate explanations: Map the SHAP values to the features and generate the
corresponding explanation.

Parameters The following are the parameters that modify the functionality of this
class:

1. audio_path: a string that corresponds to the audio path that contains the .wav
file.

2. removal_type: a string that corresponds to the type of removal we want to apply to
the feature we are removing. In this case, the supported removal types re "silence",
"nothing". By default it is set to "nothing".

3. num_samples: an integer that represents the number of background samples to
generate used in SHAP.

4. phonemization: a boolean value that activates the phoneme-level explanation.
If not provided, or set to false, the method will work at word-level.

5. window_size: an integer that turns on the aggregation of two or more phonemes
into groups of size window__size. By default this is off.

6. respect_word_boundaries: a boolean value subordinated to the window_size pa-
rameter. In case of aggregation, this avoids the aggregation of phonemes from dif-
ferent words (e.g. the last phoneme of the preceding and the first phoneme of the
following). By default this is on (set to true).

7. sliding: a boolean value subordinated to the window_size parameter. It is used to
choose between two different types of sliding windows. By default this is set to
false.

Using characters instead of phonemes for simplicity, when set to true for window_size=3
the aggregations will be "bed edr dro oom" rather than "bed roo m'. This concept is
detailed in subsection 4.6.4.

8. words_transcript: a list containing the words of the transcription of the audio.
If not provided, the model will automatically create a transcription.

9. visualization: a boolean values used to activate the visualization of graphs.

4.6.4 Transcription and Aggregation

The program’s transcriptions are based on WhisperX [73], which is a state-of-the-art
multi-lingual alignment and transcription model, used to transcribe the audios and obtain
the timestamp at different level of granularity.

WhisperX is based on Whisper [8], which is one of the first and most used large-scale
speech recognition models across different domains and languages. These models however
are prone to inaccuracies, especially when it comes to predicting timestamps. To over-
come these challenges, WhisperX was introduced as a time-accurate speech recognition
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system, supporting word-level timestamps through forced phoneme alignment and parallel
computation to speed up the processing.

Focusing on the forced phoneme alignment, this is where WhisperX stands out. Af-
ter computing the transcription, an external phoneme recognition model is used in the
forced alignment step. Under the hood, the system employs Dynamic Time Warping
(DTW) to determine the mapping between audio and the text, properly assigning start
and end timestamps to each word, and if necessary also to phonemes. In this case, the
phoneme recognition model chosen is different from the default one. To achieve even
more precise phoneme timestamps for multiple languages, the facebook/wav2vec2-lv-60-
espeak-cv-ft model has been used [74]. It is based on Wav2Vec2.0 [7] and fine-tuned on
the task of phoneme timestamp recognition. For English utterances a different model
can be used, the Charsiu’s phonetic aligner, which return even more accurate timestamps
[38]. Both the model work in a similar, starting from the transcription of the audio they
create phonetic representation with a grapheme-to-phoneme approach, and then aligning
each phoneme to the audio. This means that they do not take into account the possible
different pronunciation of the speaker, but instead are based solely on the transcription
provided.

Inside the code, this process can be found in the folder explainers in the file utils _remowval.py.
The transcribe_audio function is structured as follows:

1. Load Audio: Load the audio from audio_path using WhisperX integrated function.

2. Transcription: Obtain the transcription of the audio file using WhisperX’s large-
v3-turbo model.

3. Phoneme alignment: To obtain even more precise phoneme start and end times-
tamps, we leverage the fine-tuned model facebook/wav2vec2-lv-60-espeak-cv-ft or the
Charsiu’s phonetic aligner. The result is aligned using ARPABET or following the
International Phonetic Alphabet (IPA) representation (more on this in section 6.1),
and structured as follows inside the variable chars:

’chars’: [
’char’: ’t’, ’start’: 0.878, ’end’: 0.958, ’score’: 0.752,
’char’: ’3’, ’start’: 0.958, ’end’: 1.099, ’score’: 0.717,

’char’: 17,
’char’: ’n’, ’start’: 1.099, ’end’: 1.159, ’score’: 0.664,
’char’: ’ 7,

’char’: ’5’, ’start’: 1.159, ’end’: 1.32, ’score’: 0.879,
’char’: ’f’, ’start’: 1.32, ’end’: 1.4, ’score’: 0.992,

This is equivalent to the words "turn off" in IPA alphabet. Each phoneme also comes
with a score, indicating the model’s certainty on the predictions.
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4. Removing diacritics: To clean the structure, we remove the diacritics from it.
Diacritics are symbols that are used to modify the sound of a word thus do not have
any timestamp associated, such as 1.

5. Aggregate phonemes: Optionally, phonemes are also aggregated if window_size
is set to a number bigger than 1.

(a)

Index assignment: Each one of the feature is assigned an index corresponding
to the word it belongs to by checking its middle-point timestamp and assigning
it to the word that include that time. This information is then added to the
previously seen structure of chars.

Window-based aggregation: The aggregation is performed using a sliding
window approach where phonemes are grouped based on their word index field.
The function aggregate_phonemes iterates through the list and merges consec-
utive ones into larger features of size window_size.

Generally, a good size for the window is 2 or 3 phonemes. This is because
2 phonemes can often form a syllable, and 3 phonemes form a syllable or a
grapheme, which is one of the smallest constituents in a language, often carry-
ing most of the significance of the word. This aggregation preserves the initial
structure of chars.

Word boundary constraints: If respect_word_boundaries is set to True,
phonemes are only aggregated within the same word. Otherwise, phonemes can
be aggregated across words, leading to a more continuous segmentation. For
example, for window_size=2 the previous structure with the parameter set to
False would be aggregated as:
‘chars’: [
’char’: ’t3’, ’start’: 0.878, ’end’: 1.099, ’score’: 0.734,
’char’: ’nd’, ’start’: 1.099, ’end’: 1.32, ’score’: 0.771,
’char’: ’f’, ’start’: 1.32, ’end’: 1.4, ’score’: 0.992,

Effectively merging n and o into a single feature, even from different words.

Sliding vs. non-sliding approach: The aggregation can be performed using
either a fixed window or a sliding window. When sliding is set to False, non-
overlapping windows are used, meaning phonemes are grouped into distinct
chunks. Instead, with sliding set to True, a rolling approach is adopted,
allowing each phoneme to be included in multiple aggregated units, leading to
more granular transitions between phoneme groups. The different result would
be, for windows_size=2, respect_word_boundaries=True and sliding=True:
’chars’: [

’char’: ’t3’, ’start’: 0.878, ’end’: 1.099, ’score’: 0.734,

’char’: ’3n’, ’start’: 1.099, ’end’: 1.32, ’score’: 0.691,

’char’: ’of’, ’start’: 1.32, ’end’: 1.4, ’score’: 0.936,
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whereas for sliding=False
’chars’: [
’char’: ’t3’, ’start’: 0.878, ’end’: 1.099, ’score’: 0.734,
’char’: ’n’, ’start’: 1.099, ’end’: 1.159, ’score’: 0.664,
>char’: ’of’, ’start’: 1.159, ’end’: 1.4, ’score’: 0.936,

By using different combinations of these parameters, we can obtain different results
and see how each phoneme and its possible aggregation affect the result in different ways.

4.6.5 Evaluation Metrics

To further assess the faithfulness of the previous explanations, we introduce two eval-
uation metrics: comprehensiveness and sufficiency. They are based on the Average
Over Perturbation Curve (AOPC) technique, which quantifies how much a model’s pre-
diction changes when parts of the input are either removed or retained, in order of their
relevance as estimated by the explanation method.

1. AOPC Comprehensiveness: Measures how much the model’s confidence de-
creases when the most important features are removed, where a higher score indicates
that the removed features were actually important for the decision.

2. AOPC Sufficiency: Similarly, measures how much the prediction changes when
only the most important features are retained. In this case, a lower score indicates
that the retained features are sufficient for the model to maintain a similar prediction.

Both of these methods use different importance thresholds to compute their evaluation,
and they allow the user to understand if the apparently important features actually matter
(comprehensiveness) or if they are enough (sufficiency). By comparing the metrics of the
different explainers and evaluators, we can determine which one is able to generate the
most faithful explanation.
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Chapter 5

Experimental Results

In this chapter, the datasets used for the experiments are described to understand
what their aim is and how they are treated for this task (section 5.1).
Finally, we will introduce the results of our experiments and analyze their meaning, study-
ing how different combinations of parameters can change the final results, and why they
do it (chapter 6).

5.1 Datasets

Three different datasets have been used for this study. We will shortly introduce them,
and see how they are treated so that we can discuss the results in the following chapter 6.

Each dataset has an associated model_helper class that serves as a wrapper for the
HuggingFace models used for feature extraction and classification [76]. The main func-
tionalities are:

o Feature extraction: Preprocesses the raw audio to the expected format for the
prediction model. In the code this means squeezing and padding the audio, then
transforming it to a tensor.

o Prediction: The preprocessed data is passed to the prediction model, which outputs
logits (uninterpretable raw values) that are then transformed into probabilities using
a softmax.

o Label mapping: The output can then be mapped to the corresponding label for
more clarity.

5.1.1 Fluent Speech Commands (FSC)

Fluent Speech Commands is a dataset containing .wav audio files, each recording con-
tains a single spoken English command usually used in a smart home with a virtual
assistant. Such can be "Turn off the bedroom heat" or more complex like "I couldn’t hear
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anything, turn up the volume'.

FSC is widely used as a benchmark for intent classification tasks, specifically each
audio has three label slots: action, object, and location and the combination of them forms
the intent. Each slot takes one of multiple possible values, and some can also be none,
such as the location. An intent can be expressed in many forms, this means that {action:
"activate", object: "lights", location: '"none"} can be expressed as "turn on
the lights", "switch the lights on" and many more. The total of possible different sentences
are 248 that can be mapped to 31 intents, including both native and non-native speakers
[77].

In the code this dataset is treated using model_helper_fsc.py inside the model helpers
folder. The prediction model in this case outputs three probabilities, each corresponding
to one of the categories above. Specifically for this task, we will use the Wav2Vec 2.0
base [7] fine-tuned with the checkpoint superb/wav2vec2-base-superb-ic [78], optimized for
intent classification on the FSC dataset.

5.1.2 ITALian Intent Classification (ITALIC) and Speech MAS-
SIVE

Unlike the majority of spoken language understanding datasets that focus on English,
the ITALIC dataset is designed for intent classification in Italian. Similarly to FSC, it
contains .waev audio files, corresponding to an Italian utterance, like "Svegliami alle nove
di mattina venerdi" ("Wake me up at 9 AM on Friday") or "Spegni le luci per favore'
("Turn off the lights please"”). Similarly, the Speech MASSIVE dataset contains the same
utterances translated into multiple other languages, such as Spanish, German, French and
many more.

These datasets contains audio from a variety of people from different regions and
detailed metadata, offering many labeling possibilities such as speaker identification or
accent identification, but we will use it only for single label intent classification. There
are 60 different possible intent labels, covered by thousands different phrases. This means
an intent can be expressed through various phrases, for example both "Controlla se mi
funziona il portatile” ("Check if my laptop works") and "Mi serve che la posizione sia
accesa puoi controllare” ("I need the location to be turned on can you check") are classified
as "general_quirky" [79].

In the code this dataset is treated using model _helper_italic.py inside the model helpers
folder. The model predicts a single label probability, using the multilingual XLS-R [80]
and the fine-tuned checkpoints for ITALIC [79]
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5.1.3 Interactive Emotional Dyadic Motion Capture (IEMO-
CAP)

The Interactive Emotional Dyadic Motion Capture dataset is designed for the study
of human emotions in speech. It includes 12 hours of data from ten actors engaging in
both scripted and improvised dialogues. The dataset includes video, audio and text tran-
scription making it a good foundation for emotion recognition [81].

Being used for emotion recognition tasks, each utterance in the dataset is categorized
with labels such as anger, happiness, sadness, and others. Multiple utterances can be
connected to a label, such as "I'm really upset about this" and "This makes me so angry"
being classified as "anger".

In the code this dataset is treated using model _helper_er.py inside the model helpers
folder. The model predicts a single label probability, using the Wav2Vec 2.0 base [7] fine-
tuned with the checkpoint superb/wav2vec2-base-superb-er [78], optimized for emotion
recognition on the IEMOCAP dataset.
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Chapter 6

Results

In this chapter we will analyze the audios and explain the outputs for each of them.
This means explaining why the model assigns a certain probability to the predicted label,
providing insights into how the model produces its predictions. This will be conducted
for some audios and with different configurations of the explanation methods, seen in
section 4.6.

To analyze them, we will conduct a qualitative manual evaluation, meaning we will
manually review the quantitative explanations provided by the methods. This includes
evaluating if the explanation is logical and clear, and if it aligns with the human ex-
pectations (i.e. plausibility, introduced in subsection 4.1.3). Through quantitative
faithfulness evaluations methods we will also evaluate the faithfulness (introduced in
subsection 4.1.3) of the explanation generated.

6.1 FSC Sample Analysis

Following on from the work of [28], which analyzed sentences at the word level, we
will now analyze the same sample from the FSC dataset, this time working at different
phoneme granularities.

Starting from the utterance with transcription "Turn up the bedroom heat" the model
correctly predicts the intent as {action: "increase", object: "heat", location:
"bedroom"}. Table 6.1 shows word-level explanations for this sentence for each intent
slot, correctly identifying each of them. As expected, "up" is associated with the action of
increasing, "heat” with the object heat and "bedroom" with the location. This aligns with
what a human would expect from this model, thus making the explanation plausible [28].

ARPABET vs IPA When we move to phoneme-level, we do not use the characters
composing a word, but instead we have two possibilities to represent phonemes: one is to
use the International Phonetic Alphabet (IPA) [82], the other is to use ARPAbet
[83]. The former is an alphabetic notation that is used to represent the sound and intona-
tion of the speech of all languages, while the latter was developed for American-English
phonetics and widely adopted in speech recognition models for its simplicity, being only
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Turn up the bedroom heat
action=increase 0.250 | 0.545 0.260 0.139 0.021
object=heat 0.000  0.000 0.000 0.014 0.550
location=bedroom 0.002 0.006 0.037 [ NN 0.323

Table 6.1. Word-level explanations with LOO for the FSC dataset sample, a higher
value and deeper color corresponds to more relevance for the prediction.

a subset of the IPA. Both of them have a unique way of identifying phonemes, but it is
also possible to map ARPAbet to IPA’s sounds as shown in Figure 6.1. For the following
examples, we will proceed with ARPAbet. It’s also important to note that in this program
there is no difference between the chosen representation aside from clarity for the viewer,
because the model works end-to-end at the audio level and to apply modifications we only
use the start and end timestamps of the features.

ARPAbet IPA
AA la]
AH (Al
AE 2]
EH [=]
H 1]
UH ls]

Figure 6.1. Conversion between ARPAbet vowels and IPA vowels.

LOO We can start our analysis from the results of the LOO method without phoneme
aggregation in Table 6.2 for the same previous sample, "Turn up the bedroom heat".

By inspecting the results, the first thing we have to clear is the representation used.

As introduced, phonemes in ARPAbet have a unique way of being represented, either
as a single character or as a couple to indicate a particular sound. Based on how the
program works, the representation used does not impact the final result, because we only
care about their start and end timestamps.
When we look at the predictions, we have to analyze each intent slot and the associated
result row. Each cell value indicates the impact on the performance when the correspond-
ing phoneme is removed, where higher values are associated to more significant decrease in
the model’s ability to predict the correct intent. Many phonemes have a low importance
score or close to 0, and that can be expected because it is logical that a single phoneme
does not carry a high amount of information by itself, especially for the phonemes that
belong to words that are not associated with a certain intent slot. Others instead carry a
lot of importance by themselves:

« T, ER, N: These are the phonemes associated with the word "Turn’, and even
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| T ER N | AH P | DH AH |
action=increase 0.000  0.000 0.001 | 0.175 0.006 | 0.003 0.001
object=heat 0.000  0.000 0.000 | 0.000 0.000 | 0.000 0.000
location=bedroom | -0.001 -0.001 0.004 | 0.020 0.004 | -0.001

| B EH D R UW M |HH IY T

action=increase 0.002 0.000 0.001 0.000 0.002 0.001 | 0.002 0.116 -0.000
object=heat 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000 0.000
location=bedroom | 0.022 - 0.020 -0.001 0.011 0.001 | 0.002 0.027 0.000

Table 6.2. Phoneme-level explanations with LOO for the FSC dataset sample, a
higher value and deeper color corresponds to more relevance for the prediction. To fit
the page, the table was visually split in two rows, and the vertical lines help distinguish
between words. Results are approximated to 3 decimals.

though it carries slight importance for the action increase at word level, we can
notice that its phonemes carry no importance by themselves for any intent. This
could be due to the fact that, from a linguistic point-of-view, they do not distinguish
the intent when removed individually, or maybe due to their duration or less distinct
pronunciation.

« AH, P: The first phoneme of the word "Up" carries slight importance, about 20%
for the category increase. This might mean that the phoneme AH is sufficient to
identify the intent, or that the P sound is not pronounced clearly or too short to
carry information on its own (durations are shown in Figure 6.2) . We can see a big
difference when comparing the individual results to word level, meaning that their
aggregation makes a big difference in the computation of the explanation.

« DH, AH: They compose the word "The", which we might assume has no importance
for the intents we are recognizing, but we can clearly see that the phoneme AH carries
a lot of importance for the recognition of the location. We can hypothesize some
reasons for this:

— The alignment is not working correctly, identifying the wrong timestamps for
this phoneme, which might be instead belonging to the following phoneme B.

— The classification model uses different clues than what the humans might expect
to identify this intent, which goes against the concept of plausibility.

— Even though the timestamps identified might be correct, the pronunciation of
some phonemes, even from different words, can cause the process called sandhi,
where two phonemes are merged or blended together [84].

A combination of them could also be the real reason, and to better understand this
we could use a different alignment model to see if this process persists.

« B, EH, D, R, UW, M: They compose the word "bedroom”, and all of the phonemes
have very low importance scores aside from FH, which carries the most and is able to
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Phonemes -

uniquely identify the correct location. This could be due to how the model internally
works, or because of misalignment issues.

HH, 1Y, T: The final word "heat’, in which IY is the only phoneme carrying slight
importance, both for the action and the location, but none for the object which we
want to identify. This means that removing each of this phoneme individually does
not cause any difference in the output prediction by themselves, even though 1Y
occupies the majority of the duration of the word, as seen in Figure 6.2.

Original Text: " Turn up the bedroom heat."

[ Segment

3 word
[ Phoneme
Segment 4 turn up the bedroom heat
Words 4 turn up the bedroom heat

0.4 0.6 0.8 1.0 12 14 1e
Time (seconds)

Figure 6.2. The figure shows the timestamp of the sentence, each word and phoneme.

Analyzing the result under a different perspective, we can confirm or deny some of the

previous claims. For example, with the representation in Figure 6.3, we can see how the
timestamps for each phoneme compare to the waveform of the audio and their importance
scores.

By analyzing it, we can make some extra considerations.

« P, B, D, T all have a very short duration and the waveform always diminishes,

tending to 0 for the last 7" both in amplitude and duration. These phonemes are
called stops and can be realized without sound release, especially for the last phoneme
of a word [85].

AH, EH, 1Y, UH and all the vowels tend to have more energy thus showing an
increase in amplitude [86].

o Some phonemes, like the R could barely have a duration due to their pronunciation,

making their impact minimal [85].

One important thing to note is that phoneme alignment models work with a grapheme-

to-phoneme approach. What this means is that they work on a transcription of the
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Waveform of the FSC audio sample with phoneme alignment and
importance scores color-coded.
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utterance, then convert the transcription to ARPAbet and then try to align all of them
to the audio, even if a certain phoneme was not actually pronounced. Methods that
try to dynamically create phonemic transcriptions and align the audio have been found
to be under performing compared to this approach.

LIME Analyzing the problem with LIME, results in Table 6.3, we can further analyze
the problem. First, LIME evaluates importance scores based on local perturbations around
a specific prediction, which gives more nuanced results compared to the sharp results of
LOO. This reflects especially in phonemes that had 0 as score, and even though they
increased slightly they still do not carry enough information to be considered influent.
Aside from this, similar observations of the LOO method can be carried. AH has the
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most importance for the action increase, for location bedroom both AH, from the word
"the" and FH, from "bedroom" show the highest scores, and for the object heat we have an
improvement of 15% circa on the importance of the phoneme IY of the word heat. This
confirms how long vowels seem to carry more information.

| T ER N | AH P | DH AH
action=increase 0.037 0.015 0.069 | 0.268 0.054 | 0.062 0.093
object=heat 0.003 -0.008 0.010 | 0.001 0.006 | -0.008 0.029
location=bedroom | -0.038 -0.029 0.021 | 0.019 0.027 | -0.012 | 0.401

| B EH D R UW M |HH IY T
action=increase | 0.030 0.013 0.060 0.019 0.061 0.081 | 0.106 0.076 0.021
object=heat 0.007 0.004 -0.008 -0.003 -0.008 0.003 | 0.037 0.163 -0.001

location=bedroom | -0.016 - 0.074 -0.033 -0.000 0.020 | 0.053 0.086 -0.024

Table 6.3. Phoneme-level explanations with LIME for the FSC dataset sample, a
higher value and deeper color corresponds to more relevance for the prediction. To fit
the page, the table was visually split in two rows, and the vertical lines help distinguish
between words. Results are approximated to 3 decimals.

SHAP Finally, we can conduct the same analysis with the SHAP, results in Table 6.4.
This method reinforces what was previously said, providing an interpretation with stable
phoneme contribution and possible acoustic blending.

| T ER N | AH P | DH AH |
action=increase 0.017 0.025 0.062 | 0.168 0.031 | 0.0561 0.056
object=heat 0.003 0.003 -0.012 | 0.003 0.007 | -0.011 0.012
location=bedroom | -0.021 -0.016 -0.008 | 0.026 0.036 | -0.013 0.200

‘ B EH D R Uw M ‘ HH Iy T
action=increase 0.036 0.028 0.056 0.016 0.049 0.035 | 0.060 0.120 0.005
object=heat -0.006 0.006 0.002 -0.011 -0.009 -0.003 | 0.035 0.107 -0.002
location=bedroom | -0.032 ' 0.346 0.074 -0.019 0.024 0.020 | 0.025 0.096 0.000

Table 6.4. Phoneme-level explanations with SHAP for the FSC dataset sample,
a higher value and deeper color corresponds to more relevance for the prediction. To fit
the page, the table was visually split in two rows, and the vertical lines help distinguish
between words. Results are approximated to 3 decimals.

One more thing we can do is listen to the audios produced by the removal of the
features. This is achieved in the methods by setting the parameter verbose=True, allowing
us to hear each audio after the perturbation. Even though understanding phoneme timings
require lots of training and expertise, an approximate evaluation can be done by an
amateur listener. What this shows is that phoneme alignments are mostly right, with
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the least accuracy in recognizing the DH of the word "the” and the B of "bedroom’. Other
problematic phonemes are the P of "up’, R of "bedroom’, the HH and T of "heat', but
this is mostly because the first two have a very short duration and are barely pronounced,
and the last two are not pronounced at all. Conversely, the phoneme AH of the word
"the" is actually correctly recognized, showing how the classification model gives high
importance to phonemes that we would not associate with certain intent.

Evaluation Metrics Here we utilize the previously introduced metrics in subsection 4.6.5
to evaluate the explanation we have found. The methods output a single value, which rep-
resents the average change in the model’s prediction probabilities across different thresh-
olds, showing how important or sufficient the high-importance features are for the model’s
decision. The evaluation can be carried for all the methods we use and based on the results
we can understand which one worked the best at identifying the most relevant features.
For each method we will evaluate both the comprehensiveness and the sufficiency scores
to understand which method worked best for this specific sample.

Before analyzing the results, we must remember that for the comprehensiveness a
higher score means that the removed features were important for the model’s prediction,
whereas a lower score means they didn’t affect the prediction much, and the explainer
didn’t actually find the truly important parts. On the other hand, for the sufficiency eval-
uator a lower score means that it found the important features. So, for an explanation
to be faithful, we would expect a high comprehensiveness (removing important features
causes big losses) and a low sufficiency (retaining only the most important parts is enough
for the prediction).

For the LOO explainer, the comprehensiveness and sufficiency scores are found in
Table 6.5.
Evaluator (LOO)  Action = Increase Object = Heat Location = Bedroom

Comprehensiveness 0.879 0.765 0.942
Sufficiency 0.624 0.030 0.687

Table 6.5. Evaluation for the LOO explanation for the FSC sample, where a deeper
green indicates a good result and orange a result that could be improved.

As we can see the comprehensiveness suggest a highly faithful explanation for all three
intents, and we also have a very low sufficiency for object = heat. Even though for the
other two intents the sufficiency is higher, we can still conclude that the method is able
to identify the important features at a good level.

For LIME, the results are in Table 6.6.

They show a similar situation to the results of the LOO method, with very good results
for the comprehensiveness and for object = heat in case of sufficiency. A higher value
of sufficiency might mean that some context might have been missed when retaining only
the most important features.
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Evaluator (LIME)  Action = Increase Object = Heat Location = Bedroom

Comprehensiveness 0.901 0.707 0.997
Sufficiency 0.694 0.002 0.817

Table 6.6. Evaluation for the LOO explanation for the FSC sample, where a deeper
green indicates a good result and orange a result that could be improved.

And finally for the SHAP method, the scores are as follows in Table 6.7:

Evaluator (SHAP) Action = Increase Object = Heat Location = Bedroom

Comprehensiveness 0.899 0.462 0.923
Sufficiency 0.636 0.003 0.790

Table 6.7. Evaluation for the SHAP explanation for the FSC sample, where a deeper
green indicates a good result and orange a result that could be improved.

For the action = increase and for location = bedroom we have a strong compre-
hensiveness score and a relatively lower sufficiency, meaning the explanations are quite
faithful. On the other hand, object = heat presents a very low sufficiency, which is a
good sign, but a low comprehensiveness as well, meaning that the model might be able to
use other clues to get to the same result, even when removing the most important feature.

When comparing comprehensiveness, LIME and LOO give comparable results while
SHAP presents a drop for one of the intents. In terms of sufficiency, LOO performs the
best across the three intents. When comparing results it’s important to always check these
scores as well to understand which method is giving the best explanation.

Parameter Tuning We will now see different configurations of phoneme aggregation
and quickly analyze the results with tables. We will start with the following configura-
tion of parameters: windows_size = 2, respect_word_boundaries = True, sliding
= False, meaning that we aggregate phonemes in group of 2 without allowing repetitions
of the same phoneme in different aggregations and avoiding aggregations across words.
Aggregations of two phonemes often represent syllables, which can carry more information
than the single phoneme.
In Table 6.8 we can see that for the LOO methodology, DHAH and BEH uniquely identify
the location, HHIY carries the prediction for the object and, as expected, AHP has the
most importance for the action. It’s important to remember that these scores are not
aggregated from the single phonemes scores, but instead treated as a feature in itself.

And similarly, in Table 6.9, the results for the same configuration for SHAP. We can
see again how the results are more spread out and have a lower magnitude.

If we activate the sliding parameter, we achieve the results seen in Table 6.10 with
LOO. For each word, the phonemes are aggregated two by two, creating features such
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| TER N | AHP | DHAH

action=increase 0.002 0.001 | 0.271 | 0.001
object=heat 0.000 0.000 | 0.000 | 0.000
location=bedroom | -0.001 0.004 | 0.024

‘ BEH DR ‘ UWM ‘ HHIY T
action=increase 0.001 0.002 | 0.001 | 0.011 0.000
object=heat 0.000 0.000 | 0.000 0.000
location=bedroom 0.020 | 0.024 | 0.139 0.002

Table 6.8. Phoneme-level explanations with LOO for the FSC dataset sample,
where higher values and deeper colors indicate more relevance. The table is split in
two to fit the page. Parameters: windows_size = 2, respect_word_boundaries
= True, sliding = False.

| TER N | AHP | DHAH
action=increase 0.022 0.053 | 0.263 0.091
object=heat 0.014 -0.032 | -0.003 | -0.017
location=bedroom | -0.021 0.003 | 0.035 0.185

‘ BEH DR UWM ‘ HHIY T
action=increase 0.021 0.066 0.046 | 0.123 0.004
object=heat -0.002 -0.023 -0.011 | 0.353 -0.000
location=bedroom | 0.295 0.087 0.018 | 0.183 -0.001

Table 6.9. Phoneme-level explanations with SHAP for the FSC dataset sample,
where higher values and deeper colors indicate more relevance. The table is split in
two for readability. Parameters: windows_size = 2, respect_word_boundaries
= True, sliding = False.

as TER, from T and ER, and ERN, from ER and N, showing how FER repeats acorss
different features. Even though this specific case does not show much difference, for a
different sample analyzing the audio with different combination of parameters could show
varying scores across aggregations.

6.2 Multi-language analysis

In this section, we will analyze the same utterance spoken in different languages, to
analyze how the differences in languages and how the models perform under different
conditions. To do this, we will use the ITALIC dataset for Italian audios and Speech
Massive for German and French audios. We compare the same transcription, in this case
"What is the weather for this week?" in English, which corresponds to id = 5038 in the
train split for I[TALIC, while for the rest of the dataset it appears in the corresponding
test split. The audio has been randomly chosen and for each language an assessment of
the audio quality was done by listening to the audio, checking if the pronunciation sounds
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| TER ERN | AHP | DHAH |
action=increase 0.002 0.003 | 0.271 | 0.001
object=heat 0.000 0.000 | 0.000 | 0.000
location=bedroom | -0.001 0.002 | 0.024

| BEH EHD DR RUW UWM | HHIY IYT
action=increase | 0.001 0.000 0.002 0.002 0.001 | 0.011 0.007
object=heat 0.000  0.001 -0.000 -0.000 0.000 0.115
location=bedroom [JISSEINOEO8Y 0020 0.018 0024 | 0.139 0.029

Table 6.10. Phoneme-level explanations with LOO for the FSC dataset sample,
where higher values and deeper colors indicate more relevance. The table is split in
two for readability. Parameters: windows_size = 2, respect_word_boundaries
= True, sliding = True.

clear.

Furthermore, for this analysis we use a different phoneme alignment model, since the one
previously used only supports English utterances, called "facebook/wav2vec2-lv-60-espeak-
cu-ft" from Meta [74]. Unlike Charsiu’s model, this one supports multiple languages
while possibly losing accuracy since we do not have a comparison of the timestamps
with the benchmark dataset TIMIT [87]. On top of this, this model returns phonetic
timestamps, thus we will use IPA alphabet for the analysis since IPA is an internationally-
accepted phonetic dictionary unlike ARPABET which is built on top of American-English
pronunciation. Since a qualitative evaluation of the phoneme timestamps is not possible
for all the mentioned languages, we will only analyze the quantitative results provided,
and carry a qualitative evaluation only for the Italian sample.

Italian Starting off with the Italian instance, "Che tempo fa questa settimana?" = "What
is the weather for this week?", the following are the results for the alignment (Figure 6.4):

tf i t &€ mpowv f a kwe st a3 s € [ 1 m a na
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Figure 6.4. Phoneme-level explanations with LOO for the ITALICS dataset sample "Che
tempo fa questa settimana?’, where higher values indicate more relevance.
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Immediately we can notice how the representation of the phoneme has changed, using
now the IPA representation to be conformed with the output of the multi-language model.
Another important thing we can notice is that the alignment is probably not correct,
because the final part of the audio (in Figure 6.4 represented by the gray amplitude) is
not covered by any phoneme, which is unlikely. To confirm this, we can manually assess
the audio, even though the high quantity of phonemes and their short duration makes
it hard to evaluate their correctness. As expected, some of the phonemes are correctly
aligned, but others are not (such as the phonemes in the last word of the sentence).
This could be due to poor training of the model used for alignment, since the audio is
correctly pronounced and has high and clear quality. On average, we can also see that
the phonemes have a very short time aside from some of the vowels. This reflects in the
results, which highlights a situation where all the importance scores are very close to 0,
even when aggregating multiple phonemes. This is a weird result and could be due to the
robustness of the model to small changes in the input.

With a different audio, id=71 saying "M piacciono le canzoni di Bocelli" = "I like Bocelli’s
songs', we get the output in Figure 6.5.
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Figure 6.5. Phoneme-level explanations with LOO for the ITALICS dataset sample "Mi
piacciono le canzoni di Bocelli", where higher values indicate more relevance. Parameters:
windows_size = 2, respect_word_boundaries = True, sliding = False.

For this example we use an aggregation window of size 2, to capture more information,
otherwise we would find results close to 0 once again. Here we can see that the alignment
already seem to perform better, and two groups of phonemes carry most of the importance
in a much greater magnitude than the previous example. Particularly, the second group
of the word "piacciono" and the first of "canzoni” have high importance to recognize
intent=music_likeness. Not by chance, they correspond to the words "like" and "songs".
A qualitative assessment confirms that these phoneme groups are correctly identified, and
once again vowels carry the highest importance in the sentence.

German Similarly for the German sample, if we analyze the same initial sample of the
ITALICS dataset, we get similar bad results for the sentence "Wie wird diese Woche das
Wetter?" = "What is the weather for this week?" (Figure 6.6):
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Figure 6.6. Phoneme-level explanations with LOO for the Speech MASSIVE dataset
sample "Wie wird diese Woche das Wetter?" where higher values indicate more relevance.

Similarly to before, it fails to capture correctly the end of the sentence, but this time
we cannot carry a qualitative assessment due to language limitations. The color-coded
results also show that the highest magnitude is for a phoneme inside the word "Wetter" =
"Weather" which has very short duration, and is probably not correctly recognized, but
this might also suggest which part of the utterances carry more information.

The second sample, id = 71, contains "Ich mag Lindenberg-Lieder', which translates to
"I like Lindenberg’s songs" (Figure 6.7). This sample also shows low accuracy in the
alignment, making the analysis hard to carry.
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Figure 6.7. Phoneme-level explanations with LOO for the Speech MASSIVE dataset
sample "Ich mag Lindenberg-Lieder", where higher values indicate more relevance. Param-
eters: windows_size = 2, respect_word_boundaries = True, sliding = False.

French Finally, the first French sample we analyze, id = 5038 with transcription "Quelle
est la météo pour cette semaine?" = "What is the weather for this week?", shows apparently
better alignment results (Figure 6.8).
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Figure 6.8. Phoneme-level explanations with LOO for the ITALICS dataset sample
"Quelle est la météo pour cette semaine?”, where higher values indicate more relevance.

Analyzing the audio, we can hear that some of the final phonemes are slightly mis-
aligned again, while the spike that we can see at the end of the audio is caused by a low
bump sound. We can also see that there is a single phoneme with higher importance than
the others, the second "1" of the word "météo" (= "weather’. Listening to that sample, we
can hear that it corresponds to part of the final sound of that word, so we can assume it
is correctly identified and rightfully carries importance in identifying the intent. An ear
with a better French understanding could confirm this hypothesis.

For the second sample, id = 71 with transcription "J’aime les chansons de Jacques Brel"
which translates to I like Jacques Brel songs”, we see the first word ('J”" = '"I") having
a high importance (Figure 6.9:

dz etetm st @ s nz do 3 k bs el

0.4

0.2

0.0 q

Amplitude
21025 2ouenodw

0.0 0.5 L0 15 2.0 2.5 3.0 35
Time (s)

Figure 6.9. Phoneme-level explanations with LOO for the Speech MASSIVE
dataset sample "J’aime les chansons de Jacques Brel", where higher values indicate
more relevance. Parameters: windows_size = 2, respect_word_boundaries =
True, sliding = False.

Listening to the modified audios we can hear that the first group (which only identifies
a single letter "J") leaks into the second word, cutting away part of the word "aime" (=
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"like"). This is due to poor alignment, but it shows how heavily the model relies on a
small part of the input, only 0.2 seconds long.

In addition to what has been reported in this thesis, there are still thousands of samples
to be tested. For example, for other samples the classification model failed to correctly
identify the intent, and for other the alignment model performed accurately. Still, it is
evident that the different model introduced a heavy drop in performance when we look
at the samples provided. This underlines how even one of the best models available has
still great improvement potential, and how there is still room for further research into the
role of phonemes in ASR.
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Chapter 7
Conclusion

This thesis addressed the challenges of improving the interpretability for speech recog-
nition models, specifically the objective was moving from word-level explanations to
phoneme-level. This sets a foundation for further and more detailed analyses of the black-
box models that are used for automatic speech recognition, shedding light on a problem
that was yet to be explored at this granularity.

Specifically, this approach introduced customizable phoneme explanations, with aggre-
gations and sliding windows techniques that enables the exploration of the models at
different granularities, from phonemes to syllables and morphemes. This transition al-
lowed us to have a new view of how the chosen model makes decisions, leveraging new
audio alignment techniques that have high accuracy in this task. Through the adaptation
of different methodologies (LOO, LIME, and SHAP), we are able to obtain the results
we have previously analyzed and understand which phonemes carry the most importance.
What they showed is that phonemes play an important role in determining predictions,
even though at first we might think they are too short to make a difference in the pre-
dictions. This is confirmed through the analyses of the sufficiency and comprehensiveness
results.

When switching model for the multi-language analysis we can see a drastic drop in ac-
curacy for the alignment of phonemes. This is a hard task and the exploration of better
models might be explored. This includes language-specific alignment models or other
alignment tools. For the former, currently there are not many models that can out-
put timestamps with this granularity for specific languages, and the literature has only
worked out solutions for English and Chinese languages. Other alignment tools, like Mon-
treal Forced Aligner (MFA) [88], were incompatible with the current implementation of
certain methods, thus making them unusable for this project.

These results directly enable transparency on the models, increasing user trust if needed
in sensitive applications where understanding a prediction might be crucial. Moreover, it
allows the ability to identify, and if needed correct, some patterns that drive a certain pre-
diction. For example, we see that the phoneme AH of the word "the” is highly influential
for the result of location in Table 6.2. This goes against what a human might expect, but
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Conclusion

further investigation could help understand the reason. This could also help in identify-
ing and correcting biases, for example for certain accents, and through the paralinguistic
perturbations at phoneme level we might be able to understand where a model fails.

Future improvements might include how to implement a multi-lingual phoneme recog-
nition model or a model that dynamically create phoneme representation instead of using
a grapheme-to-phoneme approach.
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