
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Egocentric Hand Pose Estimation during
Surgical Tool Usage: A Graph

Convolution and Transformer-Based
Approach

Supervisors

Prof. Giuseppe Bruno AVERTA

PhD. Sophokles KTISTAKIS

Candidate

Andrea PELLEGRINO

July 2025

i

Summary

Hand pose estimation is the task of determining the precise positions and orien-
tations of a person’s hand joints in an image or video. In the context of surgical
activities, this involves accurately tracking the hand’s movements and its interaction
with surgical tools, which is crucial for enhancing mixed reality applications in
surgery. Hand pose estimation in surgical activities presents unique challenges that
are more complex than those encountered in general hand pose estimation tasks.
The difficulty arises from several factors, including the scarcity of annotated surgical
data, frequent occlusions caused by surgical tools or the surgeon’s body, and visual
obstructions such as blood and tissue. These factors significantly complicate the
accurate recognition and tracking of hand poses during surgery, making it a critical
area of research for enhancing the support provided by mixed reality systems in
the operating room.

The goal of this thesis is to develop a 3D hand pose estimation model tailored
for medical settings, specifically addressing the challenges mentioned earlier. To
achieve this, the thesis utilizes the POV-Surgery dataset, a synthetic dataset created
specifically for egocentric hand and tool pose estimation in surgical activities. This
dataset is crucial as it offers a wide range of challenging scenarios that closely
replicate real surgical environments, capturing the full range of complexities and
issues involved in hand and object tracking, including those previously mentioned.

This model integrates the features of Transformers and Graph Convolutional
Neural Networks (GCNNs). GCNNs are particularly effective in this context
because they treat the hand structure as a graph, where the joints and their
connections are represented as nodes and edges, respectively. Transformers, with
their attention mechanisms, address the limitations of GCNNs by managing long-
range dependencies, which GCNNs alone cannot effectively handle. This integration
enhances the model’s ability to accurately capture spatial relationships between
hand joints, significantly improving pose estimation accuracy. Additionally, several
extensions have been explored: incorporating information from previous video
frames, reconfiguring the initial graph structure of the hand with intermediate
connections, and integrating data about the level of blood present on the hand
joints.

ii

The culmination of this research is the development of OHRSA-Net (One
Hand Reconstruction during Surgical Activities), a fast, robust and efficient model
designed to accurately predict hand poses during surgical tool usage. OHRSA-Net
has been rigorously tested on the POV-Surgery dataset, demonstrating its ability to
perform under the challenging conditions typical of surgical environments, although
the model’s ability to predict object meshes remains limited due to the dataset’s
annotations.

In conclusion, this thesis not only advances the field of hand-pose estimation
in surgical activities but also provides a framework for future research aimed at
improving surgical tool interaction recognition and the overall support of mixed
reality systems in the operating room.

iii

Table of Contents

Summary ii

1 Introduction 1
1.1 Computer Vision for Medical Applications 1
1.2 Hand pose estimation . 2
1.3 Objective and contributions . 3

2 Background 5
2.1 Keypoints extraction . 5

2.1.1 Keypoint RCNN . 5
2.1.2 YOLOv8 Pose . 6

2.2 Graph Convolutional Networks and Graph convolutions 7
2.2.1 Graph Convolutional Networks 8
2.2.2 Graph Convolutions . 9

2.3 Transformers . 11
2.3.1 An Overview of Transformers 11
2.3.2 The Attention Mechanism 11

2.4 From Graph-Based Models to GraFormer 14
2.4.1 The Idea Behind Integrating Graph Convolutions into Trans-

former Models . 14
2.4.2 GraFromer . 15

2.5 THOR-Net . 18
2.5.1 THOR-Net architecture and prediction pipeline 19

2.6 POV-Surgery Dataset . 21

3 Related works 24
3.1 Semi-Hand-Object . 24

3.1.1 Semi-Hand-Object architecture 25
3.1.2 Semi-Supervised Learning Framework 27

3.2 HandOccNet . 28
3.2.1 HandOccNet architecture 28

v

3.3 H2ONet . 32
3.3.1 H2ONet Overview . 33
3.3.2 Multi-frame integration . 34

4 Contributions and Methodology 36
4.1 Hand connectivity . 36

4.1.1 Overview . 36
4.1.2 Implementation Details . 37

4.2 Multi-frame integration . 40
4.2.1 Overview . 40
4.2.2 Implementation Details . 41

4.3 Bloodiness feature . 42
4.3.1 Overview . 42
4.3.2 Implementation Details . 42

4.4 OHRSA-Net: One Hand Reconstruction during Surgical Activities . 46
4.4.1 Transforming THOR-Net into OHRSA-Net 47

5 Experiments and Discussion 51
5.1 OHRSA-Net Timing analysis results 51
5.2 Evaluation of Extensions and OHRSA-Net 53

5.2.1 Methodology . 53
5.2.2 Hand Connectivity Evaluation 54
5.2.3 Multi-Frame Integration Evaluation 56
5.2.4 Combining Hand Connectivity and Multi-frame Integration

Extensions . 58
5.2.5 Comparison of THOR-Net and OHRSA-Net 59
5.2.6 Base Models Training Using Pre-trained Checkpoints 62

6 Conclusions and Future Works 66

Bibliography 68

vi

Chapter 1

Introduction

1.1 Computer Vision for Medical Applications
Computer vision is a branch of artificial intelligence focused on enabling machines
to perceive, analyze, and comprehend visual information, such as images and videos.
Its primary objective is to empower computers to interpret visual data. Computer
vision techniques are employed for several tasks, such as:

• Image classification: it involves assigning a label or category to an entire
image based on its content. The model analyzes the visual features of the
image and classifies it into predefined categories.

• Object detection: it is a technique that involves identifying and locating
specific objects within an image or video. The model not only recognizes
the presence of objects but also determines their precise positions, often by
drawing bounding boxes around them.

• Image Segmentation: it is the process of partitioning an image into distinct
regions, with each region corresponding to different objects or areas of interest.
This technique operates at the pixel level, classifying each pixel as belonging
to a specific region.

• Keypoints Extraction: this technique involves identifying and locating
specific points of interest within an image, such as the corners of an object,
facial landmarks, or joint positions in a human body. These keypoints are
used to understand the shape, pose, or structure of the objects.

Applying these computer vision techniques in the medical domain can signif-
icantly advance the capabilities of healthcare professionals. They enable more
accurate identification of medical issues, detailed mapping of abnormalities, and

1

Introduction

Figure 1.1: Computer vision tasks

in-depth analysis of body structures, thereby supporting more informed and effec-
tive treatment strategies. In medical imaging, object detection can help identify
where an anomaly, such as a tumor, is located within an image. For example,
in a scan of a body part, object detection can highlight the area where a tumor
might be, allowing doctors to focus on that specific region for further analysis.
Once an anomaly is detected, segmentation can be used to determine its precise
shape and boundaries. For instance, in the case of a detected tumor, segmentation
will outline the exact shape of the tumor, providing detailed information on its
size and form, which is crucial for treatment planning. Keypoint extraction is
useful for analyzing detailed anatomical features or tracking changes over time. For
example, in orthopedic imaging, keypoint extraction can be applied to track joint
positions and angles in a series of X-rays or MRIs, enabling precise assessment of
joint alignment or the progression of degenerative diseases.

1.2 Hand pose estimation
Hand pose estimation is a computer vision task that involves predicting the positions
and orientations of a hand’s joints, either in 2D or 3D space. This technique is
essential for understanding hand movements, gestures, and interactions, making
it valuable for various applications such as virtual reality and human-computer
interaction. Hand pose estimation can be particularly challenging due to the
complexity of hand movements and the occlusions that can occur when hands
overlap with objects or themselves. In a medical setting, additional challenges
must be considered, including the scarcity of annotated surgical data and visual
obstructions such as blood and tissue.

In this thesis, hand pose estimation is employed to predict both 2D and 3D
hand poses, as well as to generate a 3D mesh of the hand. The process begins
with identifying the location of the hand within an image, followed by extracting
keypoints that represent the hand’s joints in 2D. From these 2D keypoints, the

2

Introduction

model then estimates the 3D pose of the hand and constructs a 3D mesh. This
mesh is a detailed, three-dimensional representation of the hand’s surface, which
captures the precise shape and structure of the hand.

Figure 1.2: Numbered
right-hand keypoints Figure 1.3: 2D projection of the 3D pose to be

predicted

1.3 Objective and contributions
This thesis is motivated by the need to develop a reliable hand pose estimation
model tailored specifically for surgical activities. Given the unique challenges
presented by the surgical environment, there is a clear demand for a specialized
approach to hand pose estimation. To address this, an existing model called
THOR-Net [1] was selected as a foundation and was further developed and adapted
to meet the specific requirements of surgical applications.

The adaptation of THOR-Net model for the surgical domain aims to achieve
several key objectives to enhance its effectiveness in this challenging environment:

1. Accuracy in Hand Pose Estimation: A crucial goal is to create an accurate
model that, despite structural changes, achieves results comparable to or better
than the original THOR-Net model. The objective is to maintain or surpass
the precision of hand pose estimation while incorporating modifications to
handle the specific demands of surgical settings.

2. Handling Occlusions: The adapted model is designed to effectively manage
various types of occlusions that can occur in surgical settings, such as obstruc-
tions caused by surgical instruments, other hands, or visual obstructions like
blood stains. The goal is to maintain reliable pose estimation even when parts

3

Introduction

of the hand are obscured. Special attention is given to mitigating the impact
of blood stains, which can further complicate visual analysis.

3. Faster Inference: Achieving real-time performance is crucial for obtaining
immediate feedback on hand positioning. Improvements focus on reducing the
processing time at each stage of input handling.

The contributions of this thesis include several extensions and improvements to
the original THOR-Net model, enhancing its capability for hand pose estimation
in the surgical environments. Key contributions are as follows:

1. Extensions to THOR-Net:

1.1. Multi-Frame Integration: To address the challenge of hand occlusion
in single frames, the model incorporates information from multiple frames.
By leveraging data from preceding frames where the hand may be more
visible, the model improves the accuracy of hand pose prediction in
occluded situations.

1.2. Hands Connectivity: Enhancements to the internal representation of
hand structure are introduced by incorporating additional intermediate
connections between joints. A more interconnected graph structure facili-
tates the sharing of information between connected joints, which can be
particularly beneficial when a joint is occluded.

2. YOLOv8 Pose for 2D Keypoint Detection: The 2D keypoint detection
in THOR-Net is enhanced by substituting Keypoint RCNN with YOLOv8
Pose, resulting in OHRSA-Net. This upgrade to a more efficient and faster
model significantly boosts detection performance through the application of
state-of-the-art computer vision models.

3. Bloodiness Feature: The model incorporates a novel feature that quantifies
the amount of blood present at each keypoint. This information is integrated
with the 2D keypoints to enhance the accuracy of 3D pose and 3D mesh
predictions, addressing the challenge of visual obstructions caused by blood
and improving the robustness of hand pose estimation.

4

Chapter 2

Background

2.1 Keypoints extraction

2.1.1 Keypoint RCNN
Keypoint R-CNN is a keypoint detection model built upon the architecture of Mask
R-CNN, which itself is an extension of Faster R-CNN. To fully understand Keypoint
R-CNN, it’s essential to first comprehend the underlying ideas and enhancements
introduced by these two preceding models.

Fatser R-CNN

Faster R-CNN [2] is a model that addresses the task of object detection in images.
Released in 2015, this model represents a significant advancement in the field
by overcoming some of the major limitations of its predecessors, particularly in
terms of efficiency. It builts upon the success of earlier models like R-CNN [3] and
Fast R-CNN [4], but introduced a novel approach to generating region proposals.
The key innovation was the introduction of the Region Proposal Network (RPN),
which allowed the model to generate high-quality region proposals quickly and
efficiently, all within a single, end-to-end trainable network. Prior to Faster R-
CNN, object detection was primarily handled by two-stage pipelines that separated
region proposal generation from object classification. The architecture of Faster
R-CNN consists of three main components. First, a convolutional backbone network
extracts feature maps from the input image. This backbone is typically a deep
convolutional network like VGG16 or ResNet, which provides feature maps. Second,
the Region Proposal Network operates on these feature maps to generate candidate
object proposals. The RPN uses sliding windows over the feature map to predict
objectness scores and bounding box coordinates for potential regions of interest.
Finally, the proposed regions are refined in the second stage of the network, where

5

Background

they are classified and their bounding boxes are adjusted.

Figure 2.1: Fatser R-CNN architecture

Mask R-CNN and Keypoint R-CNN

The main improvement Mask R-CNN brings over its predecessor, Faster R-CNN,
is the addition of a branch for predicting segmentation masks on each Region of
Interest (RoI), in parallel with the existing branch for classification and bounding
box regression. This allows the model to not only detect objects but also to precisely
delineate their boundaries at the pixel level.

Similarly, Keypoint R-CNN further extends Mask R-CNN by incorporating an
additional branch dedicated to keypoint detection.

2.1.2 YOLOv8 Pose
YOLO Pose builds on the original YOLO, so understanding YOLO is crucial to
understand its enhancements.

YOLO

YOLO [5] (You Only Look Once) presents a fundamentally different approach
compared to Faster R-CNN, prioritizing speed and efficiency, making it particularly
suitable for real-time applications. While Faster R-CNN employs a two-stage
process that first generates region proposals and then classifies them, YOLO adopts
a one-stage detection approach. The key idea behind YOLO is to treat object

6

Background

detection as a single regression problem, directly predicting bounding boxes and
class probabilities from the entire image in one evaluation. This direct approach
contrasts with the region proposal mechanism in Faster R-CNN and allows YOLO
to perform detection much faster, as it does not require the intermediate step of
generating proposals. The architecture of YOLO is designed to be both simple and
efficient. YOLO divides the input image into a grid, with each grid cell responsible
for predicting a set number of bounding boxes and their associated confidence
scores, as well as class probabilities. The entire image is processed in a single
forward pass through the network, which directly outputs the final detection results.
The network backbone uses convolutional layers to extract features, followed by
fully connected layers that predict the bounding boxes and class probabilities. This
end-to-end approach eliminates the need for complex pipelines and region proposal
networks, simplifying the detection process.

Figure 2.2: YOLO architecture

YOLO Pose

Since its initial release, YOLO has undergone continuous upgrades to enhance its
accuracy, efficiency, and versatility across various computer vision tasks. It has
been adapted for applications beyond basic object detection, including keypoint
detection, leading to the development of the YOLO Pose model.
For this work, it has been used YOLOv8 Pose, the eighth version of YOLO.

2.2 Graph Convolutional Networks and Graph
convolutions

To fully understand the THOR-Net and OHRSA-Net models, it’s crucial to first
comprehend graph convolution, a key operation derived from Graph Convolutional
Networks and utilized within the GraFormer module present in both models.

7

Background

Figure 2.3: YOLO detection process

Figure 2.4: Performances of different YOLO versions

2.2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCNs or GCNNs) represent a class of neural
networks designed to operate on graph-structured data. Unlike traditional convo-
lutional neural networks, which are optimized for grid-like data such as images,
GCNNs are tailored for data represented as graphs, where relationships between
data points are more complex.

In this context, each node is associated with a set of features, which provide
specific information about the entity it represents. The connections between these
nodes, known as edges, define the relationships or interactions between them,
forming the structure of the graph that GCNNs operate on.

8

Background

Figure 2.5: Model of the Graph Convolution Neural Network Model

2.2.2 Graph Convolutions
Graph convolution is the primary operation underlying graph neural networks. To
understand what a graph convolution consists of, let’s consider a graph G with a set
of n vertices {v1, ... vn}, a set of edges connecting these vertices and an associated
feature vector xi for each vertex. The goal of graph convolution is to update these
feature vectors by aggregating information from neighboring vertices, allowing each
vertex to learn from its local graph structure.

The graph convolution operation for a vertex vi consists of two main steps:

1. Neighborhood Aggregation: for each vertex vi, the features from its neighboring
vertices and its own features are aggregated. The set N (vi) denotes the set of
neighbors of vi, including vi itself. While various aggregation functions can be
employed in different GCNs architectures, for this explanation, we’ll consider
a simple averaging approach.
Considering xi′ as the updated feature vector of vi, the aggregation operation
can be written as:

xi′ = 1
|N (vi)|

Ø
j∈N (vi)

xj

2. Feature Transformation: after aggregation, the resulting vector xi′ is trans-
formed using a learnable weight matrix W . This step is analogous to applying
a linear layer in traditional neural networks. The transformation is followed
by a non-linear activation function (e.g., ReLU) to introduce non-linearity.
The operation can be expressed as:

x(l+1)
i = σ

1
W (l)xi′

2
9

Background

where x(l+1)
i is the updated feature vector for vertex vi at the next layer, W (l)

is the weight matrix for layer l, and σ is the activation function.

Figure 2.6: Graph Convolution Operation

Generalizing to Matrix Operations

The operations described so far for a single node in a graph convolutional net-
work can be extended to understand how they operate across the entire graph.
When dealing with multiple nodes, these operations naturally generalize to matrix
operations.

The core function of a single graph convolutional layer, when viewed as matrix
operations, is given by:

f(X, A) := σ(D−1/2(A + I)D−1/2XW)

Here, X represents the matrix of node features, A is the adjacency matrix, D
is the degree matrix, I is the identity matrix, W is the weight matrix for the
convolutional layer, and σ is the activation function.

The core components and operations of a graph convolutional layer can be
broken down into the following key steps:

1. Adjacency Matrix Augmentation: The term A + I modifies the adjacency
matrix to include self-loops, ensuring that each node’s own features are also
considered in the aggregation process.

2. Normalization: The normalization step involves the degree matrix D, which
scales the adjacency matrix to account for varying node degrees. Specifically,
D−1/2(A + I)D−1/2 normalizes the adjacency matrix, balancing the influence
of neighboring nodes by accounting for their degrees.

10

Background

3. Feature Aggregation: The product D−1/2(A + I)D−1/2 · X performs the ag-
gregation of features from neighboring nodes, effectively pooling information
across the graph.

4. Feature Transformation: The subsequent multiplication by the weight matrix
W applies the learned transformation to these aggregated features.

5. Activation Function: Finally, applying the activation function σ introduces
non-linearity, enabling the network to capture complex relationships within
the graph.

2.3 Transformers
Transformers is the core architecture behind GraFormer, which enhances the
traditional transformer design by incorporating the graph convolution operations
previously described.

2.3.1 An Overview of Transformers
Transformers have become fundamental to modern deep learning, revolutioniz-
ing nearly every field, including natural language processing, computer vision,
multimodality, audio/speech processing, and signal processing [6]. Since their
introduction, transformers have dramatically reshaped the landscape of artificial
intelligence, advancing many of today’s most influential models, including GPT,
BART, DALL-E, CLIP and other state-of-the-art systems.

At a high level, the transformer architecture is designed around a novel approach
to handling sequential data. Unlike traditional models that rely on recurrent
layers, transformers leverage a mechanism known as self-attention to process
input sequences in parallel, allowing for greater scalability and efficiency. This
architecture consists primarily of encoder and decoder layers, each built from a
series of attention mechanisms and feed-forward neural networks. By moving away
from the sequential nature of recurrent layers, transformers can capture long-range
dependencies in data more effectively, making them particularly powerful in tasks
that require understanding complex relationships within the data. This versatility
and power have made transformers the backbone of modern AI systems, enabling
a new era of models that can generate text, interpret images, and even create art
with unprecedented sophistication.

2.3.2 The Attention Mechanism
Attention is the fundamental mechanism at the heart of transformer models, allow-
ing them to dynamically focus on relevant parts of the input when producing each

11

Background

Figure 2.7: Transformer architecture.

element of the output. To understand how it works, let’s consider its application
in the field of natural language processing, particularly in computing how relevant
one word is to another. In the transformer model, self-attention allows each word
(or token) in a sentence to weigh the importance of other words when encoding its
representation. This mechanism captures dependencies between words, regardless
of their position in the sentence.

Computing Attention Scores

Each word in the input sequence is initially embedded as a vector into a continuous
space, capturing its semantic meaning. These vectors, denoted as x1, x2, . . ., xn

for a sequence of length n, form the basis for further processing.
The attention mechanism utilizes three key elements derived from these input

embeddings:

• Queries (Q): These are vectors derived from the input embedding, used to
query other words’ importance.

• Keys (K): Also derived from the input embeddings, these vectors represent
the words being “queried.”

12

Background

Figure 2.8: Visualization of Self-Attention Scores for the Word “It” in the Example
Sentence

• Values (V): These are the actual values derived from input embeddings that
are combined to form the output after attention scores are computed.

To compute the attention scores, these steps are followed, starting with the
queries, keys, and values:

1. The attention score between two words is computed by taking the dot product
of the Query vector of one word with the Key vector of another. For example,
when calculating the attention score between words represented by x1 and
x2, the dot product q1 · k2 determines how much the word associated with x2
should influence the representation of the word associated with x1.

2. This score is then divided by the square root of the dimension of the key
vectors (denoted as

√
dk), a scaling factor that stabilizes the gradients during

training.

3. The softmax function is applied to these scaled scores to convert them into
probabilities that sum to 1, reflecting how much focus each word should receive
in the context of the current word.

Attention(Q, K, V) = Softmax
A

Q · K⊤
√

dk

B
· V

13

Background

Figure 2.9: Computing Attention Scores for the word "Thinking"

2.4 From Graph-Based Models to GraFormer
One of the primary stages in THOR-Net is the transformation of 2D keypoint
predictions into their 3D representations, which is handled by GraFormer, a graph
convolution-based transformer that enables the construction of a 3D pose from 2D
representations of graph-structured objects

2.4.1 The Idea Behind Integrating Graph Convolutions
into Transformer Models

Traditional Graph Convolutional Networks (GCNs) have been widely used for
pose estimation due to their ability to handle graph-structured data. However,
GCNs are primarily effective at sharing information across first-order neighbors,
meaning nodes that are directly connected. As nodes become more distant in the
graph, it becomes increasingly difficult to share information effectively, which limits
the model’s ability to capture relationships between these distant nodes. This
limitation becomes especially problematic in the task of hand-pose estimation in a
surgical environment, where various types of occlusions can occur more frequently.
In such settings, the interactions between distant joints are crucial for accurate
3D reconstruction, making it essential to prioritize and effectively manage these
long-range dependencies.

14

Background

To overcome this challenge, modern deep learning advancements have introduced
transformers [7] [8] [9], known for their self-attention mechanism. This mechanism
allows the model to effectively consider relationships between elements that are
far apart in the input sequence, making it well-suited for managing long-range
dependencies. The integration of attention mechanisms with graph convolutional
networks has led to the development of models like GraFormer [9] and similar
models.

Figure 2.10: Performance comparison of GCNN, Transformer, and Graphormer
models across mesh reconstrucion datasets [7]

2.4.2 GraFromer

GraFormer is an architecture that combines the strengths of GCNs with the global
interaction capabilities of transformers. The core idea behind GraFormer is to
leverage the self-attention mechanism of transformers, which can manage long-
range dependencies, while preserving the graph structure inherent in the 2D joint
data through graph convolutions. By integrating these two powerful techniques,
GraFormer is able to more effectively capture both local and global relationships
among 2D joints, leading to superior performance in reconstructing accurate 3D
poses. GraFormer takes as input a set of N distinct 2D joint coordinates, structured
as a graph. The output of the GraFormer model is a set of 3D joint coordinates,
represented with dimensions of (N, 3).

At the heart of GraFormer are two key modules: GraAttention and the ChebG-
Conv block.

15

Background

Figure 2.11: GraFormer acrhitecture

GraAttention Module

The GraAttention module is designed to capture both the local and global rela-
tionships among 2D joints.

• Multi-Head Attention with Graph Structure: At the core of the GraAttention
module is the multi-head self-attention mechanism, inherited from standard
transformer architectures. However, unlike standard transformers that treat
the input sequence as independent tokens, GraAttention incorporates the
inherent graph structure of the joints into the attention mechanism. This
is achieved by integrating a learnable adjacency matrix within the attention
computation, referred to as LAM-Gconv (Learnable Adjacency Matrix Graph
Convolution). This matrix allows the attention mechanism to consider both
the similarity of the joints (as in a standard transformer) and their connectivity
in the graph, ensuring that the spatial relationships between joints are not
lost during the attention process.

• Graph Residual Block: Following the multi-head attention, the GraAttention
module includes a residual connection that integrates additional graph convo-
lution operations. This is critical for maintaining the integrity of the graph
structure while allowing for deep feature extraction. The residual connection
also helps in stabilizing the training process by mitigating issues such as
gradient vanishing or exploding, which are common in deep networks. The
graph residual block typically involves applying a ChebGConv layer (described
below) to further refine the features extracted by the attention mechanism,
followed by activation functions like ReLU and normalization layers to enhance
learning stability and feature representation.

• Dropout and Layer Normalization: Regularization techniques such as dropout
and layer normalization are also employed within the GraAttention module to

16

Background

prevent overfitting and ensure that the features learned by the model are robust
and generalizable. These layers help in balancing the model’s complexity and
its ability to generalize well to unseen data.

ChebGConv Block

The ChebGConv block is designed to enhance the processing of graph-structured
data by extending its ability to capture information from nodes that are several
steps away within the graph. This is achieved through Chebyshev polynomials,
which allow the model to approximate the graph convolution operation over a
larger area, expanding the receptive field beyond immediate neighbors.

This broader reach enables the ChebGConv block to understand and process
more complex relationships between joints, crucial for accurate 3D pose recon-
struction. By efficiently propagating information across the graph, Chebyshev
graph convolution allows the model to capture long-range dependencies, improving
3D pose estimation accuracy. The block introduces non-linearity through ReLU
activation functions, enabling the model to learn more intricate patterns, while
normalization techniques ensure stable training and performance.

17

Background

2.5 THOR-Net

Now that all the core building blocks have been presented, it is possible to introduce
THOR-Net [1], the foundational model of this thesis.

THOR-Net is a deep learning model designed to reconstruct realistic 3D shapes
and poses of two hands interacting with an object from a single RGB image. At
the heart of THOR-Net are two critical components: the Keypoint R-CNN and
the GraFormer. The Keypoint R-CNN serves as the initial stage of the model,
extracting 2D keypoints (or heatmaps) from the input image. These 2D keypoints
are then modeled as graphs and passed into the GraFormer network. The GraFormer
transforms these 2D keypoints into accurate 3D pose and shape representations. In
addition to pose estimation, THOR-Net includes a mesh extraction process, where
a coarse-to-fine GraFormer network gradually refines the shape, producing detailed
3D meshes of the hands and the interacting object. By combining the precise
feature extraction of Keypoint R-CNN with the robust 2D-to-3D transformation
capabilities of the GraFormer, THOR-Net can effectively addresses the challenges
of hand-object reconstruction.

Figure 2.12: THOR-Net acrhitecture

18

Background

2.5.1 THOR-Net architecture and prediction pipeline
Input and Keypoint Extraction (Keypoint R-CNN)

The process begins with an RGB image, which is fed into the Keypoint R-CNN.
This component is responsible for extracting essential 2D features from the image,
which could be N distinct 2D coordinates or N heatmaps, one for each keypoint.
The Keypoint R-CNN identifies specific points of interest in the hands and objects,
creating pose heatmaps (or 2D coordinates) for these keypoints. The feature maps
generated at this stage are 256 × 14 × 14 in size, capturing spatial information from
the image, which will then be used for graph initialization and, subsequently, 3D
mesh reconstruction.

Graph Initialization

The next step involves initializing the graph structure for the hands and object,
where the 2D information extracted by the Keypoint R-CNN is organized into a
graph format The 256×14×14 feature maps generated by the Keypoint R-CNN are
first passed through a 2-layer Multi-Layer Perceptron, which extracts a condensed
2048-dimensional feature vector for each keypoint. These extracted features, along
with the 2D coordinates or heatmaps, are then used to create the initial graph. In
this graph, each keypoint and its associated features are treated as nodes, while
the connections between them (edges) represent the relationships between different
joints in the hands or between the hands and the object.

2D-to-3D Pose Estimation (Pose GraFormer)

The previously extracted keypoint heatmaps are fed into the Pose GraFormer. The
Pose GraFormer, as described earlier, is a specialized network that integrates graph
convolutional layers and transformer-based attention mechanisms. Its primary role
is to convert the 2D pose information from the heatmaps into 3D coordinates. The
output of this stage is a set of 3D joint coordinates, which represent the pose of
the hands and the object in 3D space.

Coarse-to-Fine Shape Reconstruction (Shape GraFormer)

Parallel to the 3D pose estimation, THOR-Net also performs 3D shape reconstruc-
tion using the Coarse-to-Fine Shape GraFormer, a slightly modified version of the
vanilla GraFormer. This network takes the initialized graph and keypoint heatmaps
and progressively refines them to produce a detailed 3D mesh of the hands and
the object. The process begins with a coarse representation, which is gradually
refined through several stages, each increasing the resolution and detail of the mesh.
Unpooling layers are used between the stages to increase the number of vertices,

19

Background

allowing the network to capture finer details of the hand shapes and the interacting
object.

Reprojection and Photometric Loss

To ensure that the reconstructed 3D poses and shapes align accurately with the
original image, THOR-Net employs a reprojection step, where the 3D outputs are
projected back into 2D space. This projection is compared with the original input
image, and the differences are used to compute a photometric loss, which is an
additional loss computed alongside the pose and mesh losses. This loss function
plays a crucial role in refining the realism of the reconstructed shapes by directly
penalizing discrepancies between the predicted and actual textures of the mesh
vertices, ensuring that the reconstructed hands and objects not only have accurate
shapes but also realistic textures.

Photometric Loss The process of computing the photometric loss begins with
the projection of the 3D hand shape, represented as a mesh, onto the 2D image
plane using the camera’s intrinsic parameters. This projection maps the 3D vertices
of the hand mesh onto corresponding 2D coordinates in the image. For each vertex
in the projected 3D mesh, the corresponding pixel in the 2D image is identified,
and the RGB color values of these pixels are retrieved. These values represent the
true colors of the hand texture as captured by the camera.

Simultaneously, THOR-Net predicts RGB color values for the projected vertices
based on its learned texture model. These predicted RGB values are compared
with the actual RGB values extracted from the image. The photometric loss is
then calculated as the Mean Squared Error (MSE) between the actual RGB values
from the target image and the predicted RGB values generated by the model.
Mathematically, this is expressed as:

Lphoto = MSE(I[proj(Vgt)], Vpred,rgb)

Where I[proj(Vgt)] refers to the RGB values of the pixels in the target image
corresponding to the projected vertices of the ground truth 3D shape, and Vpred,rgb
refers to the RGB values predicted by the model for those vertices.

The primary purpose of the photometric loss is to refine the texture of the 3D
hand mesh by ensuring that the model’s predicted RGB values closely match the
actual RGB values observed in the image.

20

Background

2.6 POV-Surgery Dataset
Dataset Overview

The POV-Surgery dataset [10] is a synthetic, egocentric video dataset designed to
advance research in hand and tool pose estimation during surgical activities. Its
primary purpose is to aid in developing applications like robot-assisted surgery,
surgical navigation systems, and skill assessment tools. The dataset focuses on
capturing the surgeon’s perspective, providing highly detailed, temporally consistent
sequences that simulate real-world surgical environments.

The dataset consists of 53 video sequences, each capturing interactions between
a surgeon’s hands and surgical tools. These sequences are recorded from an
egocentric perspective, simulating the surgeon’s point of view during real surgeries.
The dataset contains a total of 88,329 frames and provides high-resolution RGB-D
video streams, which can be used for model training. To support accurate hand
and tool pose estimation, the POV-Surgery dataset includes a comprehensive set
of annotations, which are as follows:

• RGB images for visual representation

• Depth information to capture spatial relationships

• Segmentation masks outlining the boundaries of hands and objects

• 3D mesh data for both hands and objects

• 2D annotations specifying hand joint keypoints

• 3D annotations for hand joint keypoints and object bounding boxes

Objects in the Scene

The POV-Surgery dataset includes interactions between a surgeon’s hands and
three common orthopedic tools: the diskplacer, scalpel, and friem. Each tool is
associated with specific hand movements, making the dataset valuable for training
models on different types of tool manipulations:

• Scalpel: Used primarily for cutting, requiring precise side-to-side motions.

• Diskplacer: Typically used with a screwing motion, suitable for tasks involving
rotation and adjustments.

• Friem: Resembling an awl, this tool demands downward punching motions,
adding variability in hand dynamics.

21

Background

Figure 2.13: Dataset samples for sequences and annotation

Figure 2.14:
Diskplacer

Figure 2.15: Friem Figure 2.16: Scalpel

As can be seen in Figure 2.17, the distribution of the three tools—scalpel,
diskplacer, and friem—is evenly spread across the training and testing sets, ensuring
that each object has a similar representation in both splits. This equal distribution
is important because it allows models trained on the dataset to encounter a
consistent range of hand-object interactions during both training and testing. As
a result, it helps to prevent bias toward any specific tool and ensures that model
performance can be evaluated fairly across all object types, leading to more reliable
and generalizable outcomes. In addition to scenes where tools are present, the
dataset also includes frames with no object interactions (hand-only), allowing for
the capture of diverse hand manipulations, even in the absence of tools. This

22

Background

variety makes the dataset versatile for training models on different hand motions,
whether or not tools are involved.

Figure 2.17: Number of frames for each surgical instrument in training and
testing sets.

Gloves, Blood and Scene variability

Another key feature of the POV-Surgery dataset is its inclusion of various surgical
glove colors to simulate real-world variability. The dataset contains gloves in blue,
green, and white, each exhibiting different bloodstain patterns or no blood at all.
This variability is crucial for creating realistic surgical scenarios, as in real surgeries,
gloves are often obscured by fluids or blood, making hand pose estimation more
challenging. Notably, gloves with visible bloodstains are more frequent in the
testing set than in the training set, ensuring that the test set better simulates
real-world conditions. This strategic distribution helps assess how well models
generalize across diverse surgical environments. The combination of different glove
colors, blood patterns, and interactions with surgical tools provides a comprehensive
range of scenarios for training and testing robust pose estimation models.

Additionally, the dataset includes environmental textures that simulate surgical
rooms with varying backgrounds and lighting conditions. In the test set, scenes
are more complex, featuring elements such as a surgical bed, patient, and hospital
furniture. These added details, visible in the last row of Figure 2.13, are intended
to assess how well models generalize to new, unseen conditions, providing a more
rigorous evaluation of their ability to handle real-world surgical scenarios.

23

Chapter 3

Related works

In the domain of hand pose estimation, especially in medical settings, there remains
a significant gap in models that are specifically designed to handle the unique
challenges posed by surgical environments. As of now no dedicated architectures
exist that explicitly target hand pose estimation in these settings. This is critical
because surgery introduces additional challenges such as occlusions from surgical
tools, variability in lighting and visibility (due to elements like blood or the surgeon’s
body), and the need for high accuracy in dynamic environments.

Some of the model architectures presented in this chapter were originally designed
for generic hand pose estimation tasks using more generalized datasets. While
they were not specifically developed for medical scenarios, they have been adapted
and tested on POV-Surgery dataset [10], which simulates the unique challenges of
surgical environments. These models are included and explained here because they
have demonstrated the best performance on the POV-Surgery dataset, making
them highly relevant to the context of hand pose estimation in surgical activities.

The first two models discussed are Semi-Hand-Object [11] and HandOccNet
[12], both of which have been evaluated on the POV-Surgery dataset, as outlined
in the POV-Surgery paper [10]. These models show promising results in handling
occlusions, particularly those caused by interactions between hands and objects.

Following this, H2ONet [13] will be presented as a further evolution of HandOc-
cNet. This model enhances the capabilities of its predecessors by incorporating
more advanced features, particularly in handling interactions between hands and
objects in cluttered, occluded environments.

3.1 Semi-Hand-Object
The Semi-Hand-Object model is designed to address the problem of estimating
3D hand and object poses from monocular RGB images, a task that becomes

24

Related works

significantly more complex during interactions due to frequent occlusions. One
of the key issues with such tasks is the lack of sufficient 3D annotations, which
limits the performance and generalization of supervised models. To overcome these
challenges, Semi-Hand-Object employs a semi-supervised learning framework that
leverages large-scale unlabeled video data. By utilizing spatial-temporal consistency
and generating pseudo-labels for self-training, the model improves both hand and
object pose estimation accuracy, even in scenarios with occlusions and limited 3D
ground-truth data.

The core idea behind Semi-Hand-Object is the joint estimation of hand and
object poses, where the interactions between the hand and object are leveraged as
contextual information to improve the accuracy of pose estimation. By employing
a Transformer-based contextual reasoning module, the model can effectively model
the relationships between the hand and the object during interaction, using these
relations to improve pose estimation.

Figure 3.1: Semi-Hand-Object acrhitecture

3.1.1 Semi-Hand-Object architecture
The Semi-Hand-Object model is composed of several key components, including
a shared encoder, a contextual reasoning module, and two separate decoders for
hand and object pose estimation.

Shared Encoder

The backbone of the model is a ResNet-50-based Feature Pyramid Network, which
extracts multi-scale feature maps from the input RGB image. These features
provide information for both hand and object pose estimation. To focus on the
specific regions of the image that contain the hand and object, RoIAlign is applied,
cropping the relevant regions to produce and features and object features. These
features are then passed to the next module for contextual reasoning.

Contextual Reasoning

The Contextual Reasoning (CR) module plays a key role in handling occlusions and
improving pose estimation. It leverages a Transformer-based attention mechanism to

25

Related works

model hand-object interactions during manipulation tasks, using these interactions
as critical contextual information to enhance pose estimation accuracy for both
entities.

The CR module processes features from the regions corresponding to the hand
and object, with a focus on areas where they intersect. These intersections, often
occluded during tasks, are treated as opportunities to infer additional information
about the object from the hand’s position, and vice versa.

The process starts by using the object’s feature map as the query and the
hand-object intersecting regions as the key and value. The attention mechanism
updates the object’s features based on the hand’s, producing an enhanced object
representation that is passed to the object decoder for pose estimation.

The Transformer architecture in the CR module has two components: an
attention module that computes relationships between hand-object feature maps,
and a feed-forward module that refines the enhanced features, preparing them for
decoding. This ensures that the object features are improved before being passed
to the decoders.

Figure 3.2: Contextual reasoning module

Hand and Object Decoders

After the contextual reasoning stage, the enhanced feature maps are sent to two
decoders: one for the hand and one for the object.

The Hand Decoder consists of two main parts: one that predicts 2D joint
positions by generating heatmaps, and another that estimates the 3D hand mesh
using a model that captures hand shape and pose.

The Object Decoder is responsible for estimating the object pose. It uses

26

Related works

two streams: one to predict the 2D coordinates of control points on the object,
and another to assess the confidence of each prediction, ensuring accurate pose
estimation.

3.1.2 Semi-Supervised Learning Framework
In hand-object pose estimation, the lack of fully annotated 3D datasets poses
challenges for effective model training. To overcome this, the Semi-Hand-Object
model employs a semi-supervised learning framework that combines annotated data
with pseudo-labels generated from unlabeled videos. By applying spatial-temporal
consistency checks and self-training, the model improves its performance, making
it more robust in handling occlusions and diverse, real-world environments.

As shown in Figure 3.3, the semi-supervised learning framework consists of the
following stages:

1. Initial Supervised Learning: The process starts by training the model on
an annotated dataset containing fully labeled 3D hand and object poses. This
supervised training provides the foundation for the model to estimate hand
and object poses during interaction tasks.

2. Pseudo-Label Generation: Once trained, the model is deployed on large-
scale, unlabeled video datasets that capture hand-object interactions in uncon-
trolled environments, referred to as "videos in the wild." The model predicts
3D hand and object poses for each frame, generating pseudo-labels that serve
as additional training data without the need for human annotation.

3. Self-Training with Pseudo-Labels: The model is then retrained using
both the original annotated data and the pseudo-labels generated from the
video dataset. To ensure the quality of these pseudo-labels, spatial-temporal
consistency checks are applied: spatial consistency ensures that the predicted
3D hand and object poses align with their 2D projections in the image, while
temporal consistency ensures smooth transitions in hand and object poses
across consecutive video frames, filtering out noisy predictions.

4. Testing and Evaluation: After self-training, the model is tested to assess
improvements. First, the model shows better performance, with improved
accuracy in hand-object pose estimation, as seen in comparisons of predictions
made before and after the process. Additionally, it demonstrates robust
cross-domain generalization, performing well on out-of-domain datasets that
were not part of the initial training. This generalization ability is crucial for
real-world applications where the model may encounter new environments and
objects.

27

Related works

Figure 3.3: Semi-supervised learning framework

3.2 HandOccNet
HandOccNet [12] is a model designed for the 3D hand mesh estimation task in
scenarios where significant parts of the hand are occluded by objects, a frequent
issue in hand-object interaction tasks. Traditional hand pose estimation models
tend to perform poorly under occlusions, as they rely heavily on visible hand
regions. HandOccNet overcomes this limitation by not only focusing on visible
parts of the hand but also learning to exploit occluded regions to improve overall
pose estimation accuracy.

The core innovation of HandOccNet lies in its ability to integrate information
from both visible and occluded hand regions using a feature injection mechanism.
This mechanism is implemented through two key Transformer-based modules:

• Feature Injecting Transformer (FIT): This module injects hand feature in-
formation from visible regions into occluded areas, enriching the feature
representation of the occluded regions.

• Self-Enhancing Transformer (SET): After the initial feature injection, the SET
module further refines the injected features.

3.2.1 HandOccNet architecture
The HandOccNet architecture consists of four main components: the Backbone,
the Feature Injecting Transformer (FIT), the Self-Enhancing Transformer (SET),
and the Regressor.

Backbone

The Backbone is responsible for extracting essential features from the input hand
image, which has a resolution of 512 × 512. It uses a ResNet50-based Feature
Pyramid Network to generate a feature map with dimensions 32 × 32 × 256.
Additionally, a necessity map (M) is computed from the feature map to assess the

28

Related works

Figure 3.4: Feature injection process operated by FIT

Figure 3.5: HandOccNet architecture

importance of different regions in the image. This map helps divide the feature
map into two components:

1. Primary feature (FP): Contains critical hand information from the visible
regions.

2. Secondary feature (FS): Represents occluded regions where hand details are
hidden.

FP is used as the primary input for hand mesh estimation, while FS contains
information about occluded areas that are not directly used for mesh prediction.
However, in later steps, both FP and FS are employed as the query, key, and value
for the FIT module.

Feature Injecting Transformer (FIT)

The Feature Injecting Transformer (FIT) injects hand feature information from
visible regions into the occluded areas to enhance the feature representation of

29

Related works

those occluded regions. The FIT module operates using two attention mechanisms:
softmax-based attention and sigmoid-based attention. Both mechanisms contribute
to enriching the secondary feature map FS by leveraging the primary feature map
FP .

The primary feature FP and secondary feature FS are processed through two
attention mechanisms: the Softmax-Based Attention Module and the Sigmoid-
Based Attention Module, as shown in Figure 3.6.

Softmax-Based Attention Module The primary feature FP is processed into
the query qsoft, while the secondary feature FS is transformed into the key ksoft. A
matrix-matrix multiplication is then performed between qsoft and ksoft, generating
an attention map that captures the relationships between the visible and occluded
regions. This attention map is passed through a softmax function to highlight the
most relevant areas between these regions, producing the output Csoft.

Sigmoid-Based Attention Module Similarly, FP and FS are processed into the
query qsig and the key ksig, respectively. An element-wise multiplication is performed
between qsig and ksig, followed by a fully connected layer and the application of a
sigmoid function to filter out irrelevant or noisy information, resulting in the output
Csig. This sigmoid-based module provides complementary filtering, preventing
overly strong correlations between unrelated features and effectively reducing noise.

Fusion and Output After the softmax-based and sigmoid-based attention mod-
ules generate their respective outputs, Csoft and Csig, these outputs are combined
by summing the two results. The sum is then element-wise multiplied with the value
vector v, which contains feature information from both the visible and occluded
regions. This process produces the enhanced feature map RF IT .

Finally, the result RF IT passes through a series of fully connected layers, dropout,
and normalization, producing the final output FF IT , which contains enriched
information from both the visible and occluded hand regions. This enhanced
feature map is used in subsequent stages of the model.

30

Related works

Figure 3.6: FIT module pipeline

Self-Enhancing Transformer (SET)

The Self-Enhancing Transformer (SET) module further refines the feature map
generated by the FIT module FF IT . Unlike FIT, which primarily focuses on
injecting visible hand information into occluded areas, the SET module focuses on
enhancing the entire feature map by considering long-range dependencies within the
same feature space. This allows the model to capture relationships across various
spatial locations, ensuring that both visible and occluded regions are represented
in greater detail.

In the SET module:

1. The feature map FF IT is processed into query q′, key k′, and value v′ vectors.

2. A matrix-matrix multiplication between q′ and k′ generates an attention map
that captures spatial relationships.

3. The attention map is normalized using a softmax function and then element-
wise multiplied with the value vector v′.

4. The processed features are passed through fully connected layers, ReLU
activations, and dropout layers.

The output is the refined feature map FSET , which captures detailed relationships
between visible and occluded regions.

31

Related works

Figure 3.7: SET module pipeline

Regressor

The Regressor takes the refined feature map FSET and predicts the 3D hand mesh
by estimating the MANO model parameters (pose and shape). This is done in a
two-step process:

1. First, a heatmap for the 2D hand joints is generated.

2. Then, a series of residual blocks concatenate the hand features and the heatmap
to produce the final MANO pose and shape parameters.

Once the parameters are predicted, they are fed into the MANO layer, which
produces the final 3D hand mesh, representing the full hand pose and structure.

3.3 H2ONet
H2ONet introduces several advanced concepts in hand pose estimation, including a
two-branch architecture designed to efficiently leverage non-occluding information
from multiple frames, along with novel finger-level and hand-level occlusion-aware
feature fusion modules. However, a detailed description of this model will not be
provided here for a few key reasons.

The reason for including H2ONet here is its noteworthy multi-frame integration,
which serves as a key inspiration for extending THOR-Net in this thesis by incorpo-
rating multi-frame analysis to enhance performance in handling occlusions during
surgical tool usage. Additionally, H2ONet has not been tested or mentioned in the
POV-Surgery paper, which limits its direct relevance to the current focus. The pa-
per also positions H2ONet as being inspired by and closely related to HandOccNet,
a model already discussed in detail.

32

Related works

3.3.1 H2ONet Overview

H2ONet [13] introduces a framework for addressing 3D hand mesh reconstruction
and orientation prediction, particularly in scenarios where hand-object interactions
lead to significant occlusions. The model’s architecture is structured around
two main modules: Hand Mesh Reconstruction (HMR) and Hand Orientation
Regression (HOR), both of which are designed to exploit multi-frame information
for better handling of occlusions.

Hand Mesh Reconstruction (HMR)

The HMR module is tasked with generating a detailed 3D hand mesh, even in the
presence of occlusions. To achieve this, HMR uses a finger-level occlusion-aware
feature fusion mechanism, which integrates information from multiple consecutive
frames to selectively utilize non-occluded data. Specifically, for each frame, HMR
predicts occlusion probabilities at the finger level, allowing the network to identify
which parts of the hand are occluded in the current frame and which are visible.
By doing so, the model can aggregate non-occluded information from different
frames to reconstruct the full 3D hand mesh more reliably. This approach helps
mitigate the occlusion problem, as the model can pull relevant details from past
frames where the hand may not be occluded, thus improving the accuracy of the
hand shape reconstruction.

Hand Orientation Regression (HOR)

The HOR module focuses on predicting the global orientation of the hand, a task
made challenging by occlusions, especially when the entire hand is blocked from
view. To address this, HOR utilizes a hand-level occlusion-aware feature fusion
mechanism, aggregating orientation information from multiple frames, particularly
those where the hand is visible or less occluded. By collecting data from previous
frames, the HOR module compensates for moments when the hand is fully or
heavily occluded in the current frame. This approach allows HOR to overcome the
"ill-posed" problem of estimating the hand’s orientation when little to no visual
information is available in a single frame.

33

Related works

Figure 3.8: H2ONet architecture overview

3.3.2 Multi-frame integration

One of H2ONet’s key innovations is its ability to exploit multi-frame integration,
using temporal context to enhance both HMR and HOR. By analyzing multiple
frames, the model can effectively gather information from visible regions in other
frames to compensate for occluded parts. This temporal fusion not only improves
hand mesh reconstruction but also ensures more robust and accurate orientation
estimation, making the model more resilient to occlusions and noisy data.

The effectiveness of multi-frame integration, as shown in Figure 3.9 from the
H2ONet paper, demonstrates significant improvements over single-frame methods.
This inspired its inclusion as a key extension in the base THOR-Net model to better
address the frequent and varied occlusions encountered during surgical activities.
By leveraging multi-frame data, THOR-Net can more effectively manage occlusions
caused by tools, instruments, and anatomy, improving hand pose estimation in
complex surgical environments.

34

Related works

Figure 3.9: Comparison of model performance showing improved hand pose
estimation results when using multi-frame integration (MF)versus single-frame
approaches (SF)

35

Chapter 4

Contributions and
Methodology

In this chapter, the core contributions of this thesis will be presented, from the initial
extensions made to the THOR-Net model to the development of OHRSA-Net (One
Hand Reconstruction during Surgical Activities), a novel architecture specifically
designed for surgical activities. The primary objective of these contributions is
to tackle the persistent challenges posed by occlusions, which frequently occur in
surgical environments, as discussed in previous chapters. The extensions made
to THOR-Net are aimed not only at improving occlusion handling but also at
enhancing the model’s overall speed and efficiency.

4.1 Hand connectivity

4.1.1 Overview
One of the key extensions introduced in this thesis is the enhancement of the hand’s
internal representation within the model, referred to as Hand Connectivity.

In hand pose estimation, the hand can be modeled as a graph where its 21
joints can be represented as nodes, and the connections between them as edges. A
visualization of the hand graph is provided in Figure 4.2.

In THOR-Net, defining hand connectivity is essential for transforming 2D
keypoints into their corresponding 3D poses. This transformation is carried out by
the GraFormer module, which relies on a graph structure modeled to represent the
hand. The connections between hand joints in this graph dictate how information
is exchanged, both incoming data from connected joints and outgoing data shared
with other joints.

The core idea behind this extension is to add additional intermediate edges

36

Contributions and Methodology

between fingers. By expanding the connectivity between the fingers, the model can
estimate the position of occluded joints using visible information from other joints
in the same frame. For instance, if a finger is partially or completely occluded, the
model can infer its position by referencing the positions of other, unobstructed
fingers.

However, while adding more connections improves the model’s ability to estimate
occluded joints, it comes with trade-offs. Introducing too many connections can
slow down the processing pipeline of the GraFormer module. The complexity of the
graph increases as more connections are introduced, leading to higher computational
demands during the transformation from 2D keypoints to 3D poses. Therefore, a
balance must be struck between enhancing connectivity to handle occlusions and
maintaining the efficiency of the model’s inference process.

4.1.2 Implementation Details

Three additional types of hand connectivity have been implemented: SIMPLE,
EXTENDED, and FULL hand connectivity. For each type, the corresponding
adjacency matrix used as input for the graph in GraFormer will be provided, along
with a visualization of the hand. The hand connectivity that models the natural
structure of a real hand will be referred to as the BASE connectivity, as shown in
Figures 4.1, 4.2.

Figure 4.1: BASE adjacency matrix Figure 4.2: BASE hand connectivity

37

Contributions and Methodology

SIMPLE Hand Connectivity The SIMPLE hand connectivity is a slight
upgrade of the BASE connectivity. In addition to the connections in the BASE
model, this configuration introduces edges between joints located at the same
height across each finger. These additional edges enable the sharing of information
between corresponding joints on different fingers, allowing the model to better
estimate joint positions by leveraging the information from adjacent fingers at
similar positions.

Figure 4.3: SIMPLE adjacency matrix Figure 4.4: SIMPLE Hand Connectiv-
ity

EXTENDED Hand Connectivity The EXTENDED hand connectivity builds
upon the BASE and SIMPLE configurations. In this structure, for each keypoint
on a finger, additional connections are introduced between that joint and every
corresponding joint on the neighboring fingers. In Figure 4.6, these additional
connections are visualized for keypoint 6 only, but they apply to every keypoint
across all fingers.

FULL Hand Connectivity Expanding on the BASE, SIMPLE, and EX-
TENDED configurations, the FULL hand connectivity introduces further inter-
connections between each keypoint on a finger and every other keypoint across all
fingers. In Figure 4.8, these additional connections are visualized for keypoint 6
only, but they apply to every keypoint across all fingers. This connectivity structure

38

Contributions and Methodology

Figure 4.5: EXTENDED adjacency ma-
trix

Figure 4.6: EXTENDED Hand Con-
nectivity for keypoint 6

maximizes the information sharing between joints, allowing the model to have the
most comprehensive view of the hand.

Figure 4.7: FULL adjacency matrix Figure 4.8: FULL Hand Connectivity
for keypoint 6

39

Contributions and Methodology

The motivation behind the various hand connectivity designs presented in this
thesis is rooted in the goal of enhancing information sharing between the joints,
particularly across the fingers. Fingers have a wide range of motion and can occupy
diverse positions, which makes them more prone to occlusions during activities,
especially in scenarios involving hand-object interactions or complex movements.
By increasing the connectivity between the joints in the fingers, the model can
share more information between corresponding keypoints across fingers, improving
its ability to infer the position of occluded joints.

Palms, on the other hand, are relatively static compared to fingers. The
movement and possible positions of the palm are far more limited, as the palm
serves primarily as a base for finger movement rather than being actively involved
in most complex tasks. Due to this limited range of motion, even if part of the
palm is occluded, its position can be more easily estimated without the need for
additional connections. Furthermore, adding extra connections for palm keypoints
would only increase the complexity of the graph, leading to higher computational
costs without providing a significant benefit. The additional connections in the
palm would not contribute substantially to resolving occlusions, since the palm’s
position is relatively fixed and predictable.

4.2 Multi-frame integration

4.2.1 Overview
In most hand pose estimation models, including THOR-Net, the prediction of hand
pose and shape for a given frame is typically based solely on the data available
in that specific frame. These models attempt to reconstruct the 3D pose without
leveraging information from surrounding frames. This single-frame approach has
limitations, particularly when dealing with occlusions, where parts of the hand are
obstructed or not fully visible, making it difficult to accurately reconstruct the full
3D pose from limited visual information.

The multi-frame extension aims to address these limitations, especially the
occlusion problem. When predicting hand pose in a single frame, the model may
struggle if certain hand parts are occluded or obstructed. However, by incorporating
information from preceding temporal frames, the model can leverage previously
visible data to reconstruct occluded parts in the current frame. For instance, if a
finger is hidden or partially occluded in the present frame, the model can refer to
earlier frames where that finger was fully visible, allowing for more accurate pose
estimation.

The idea of utilizing multiple frames to improve pose estimation was inspired
by the H2ONet paper [13], as discussed in previous chapters. This approach,
specifically highlighted in Figure 3.9, demonstrates the advantages of leveraging

40

Contributions and Methodology

temporal information for more accurate hand pose predictions. Motivated by these
findings, a multi-frame strategy was incorporated into THOR-Net architecture to
test its effectiveness in addressing the occlusion problem more robustly.

It is important to note that this multi-frame feature is only available in THOR-
Net. OHRSA-Net does not support multi-frame integration due to limitations in
its implementation. Additionally, while multi-frame approaches can significantly
enhance pose estimation accuracy in various scenarios, they also introduce additional
computational complexity and memory usage. A more detailed exploration of these
limitations will be presented in a subsequent chapter of this work.

4.2.2 Implementation Details

The multi-frame integration feature is only available during the training phase.
When enabled, the model can utilize information from preceding frames in the
prediction pipeline by incorporating temporal context to improve accuracy. However,
during inference, this feature is disabled because the model is designed to work at
the image level, meaning there is no guarantee that a video or sequence of frames
will be provided as input. In real-world scenarios, the model must be capable of
accurately predicting hand pose from single, standalone images, without relying on
multi-frame data.

Parameter Configuration for Multi-frame Processing

Before training, two parameters must be configured: N (number of frames) and S
(stride).

Number of Frames N This parameter determines how many previous frames the
model can access during training. While more frames provide a broader temporal
context for making predictions, frames that are too far in the past may not be
relevant to the current frame, limiting their usefulness. So, selecting an appropriate
number of frames is critical to ensure the model captures meaningful temporal
information without incorporating irrelevant data.

Stride S The stride controls the temporal distance between the frames used in
the multi-frame integration. A larger stride means the selected frames are further
apart in time, providing a broader view of the hand’s movement over a longer
sequence. Conversely, a smaller stride means the frames are closer together, giving
the model more immediate past information, which can be useful for capturing
fine-grained details in continuous movements.

41

Contributions and Methodology

For instance, if N = 3 and S = 5, and the current frame is frame 149, the model
will extract features from the 3 previous frames, each spaced 5 frames apart. In this
case, the model would use frames 144, 139, and 134 to provide temporal context.

Feature Extraction and Aggregation

In THOR-Net, the ResNet-50 feature extractor is used to process the images
and extract relevant features from each frame. When implementing multi-frame
integration, ResNet-50 is capable of receiving multiple frames as input, producing
N output feature maps corresponding to the N input frames.

Once the feature maps are extracted, they are aggregated by averaging the values
together. This aggregation allows the model to combine temporal information from
the multiple frames into a unified representation.

In some cases, during the aggregation process, the feature map shapes from
different frames may not match due to slight variations in the input data. To
handle this, zero-padding is applied to the smaller feature maps to ensure that
all feature maps are of the same size. Once padded, the feature maps can be
successfully aggregated.

4.3 Bloodiness feature

4.3.1 Overview
The Bloodiness feature is a method introduced to help the model handle occlusions
caused by the presence of blood on the glove during surgical activities. This
feature provides information about the amount of blood present in specific areas of
the hand, particularly around keypoints, to help the model make more accurate
predictions when parts of the hand are obscured by blood.

The bloodiness feature is represented as a value between 0 and 1, where 0
indicates no blood and 1 signifies a significant amount of blood covering the
keypoint. This value is passed along with the 2D keypoints during the pose to
improve predictions of both the 3D pose and mesh of the hand.

The feature quantifies the amount of blood present around each keypoint by
analyzing the pixel data and determining the proportion of pixels that can be
classified as "red," which indicates the presence of blood.

4.3.2 Implementation Details
The steps for creating this feature for a specific predicted keypoint are outlined
below:

42

Contributions and Methodology

1. Defining a Region Around the Keypoint: For each hand keypoint
detected in the image, a square box with dimensions DIM × DIM pixels is
defined, centered on the keypoint. This region is used to analyze the color
information around the keypoint. In the current implementation, the box size
is set to 50 × 50 pixels.

Figure 4.9: Detected bounding boxes around keypoints

2. Red Color Detection: Blood is typically associated with shades of red, so
the next step involves determining which pixels in the region around each
keypoint can be classified as red.
The classification of a pixel as red is based on the principle that, in images,
the color red is perceived when the red component in the RGB color space is
higher than the green and blue components. This principle is the foundation
for the implementation used to classify “red” pixels in the bloodiness feature.
The detection of red pixels in the bloodiness feature relies on two parameters
that determine how the color red is classified: Red Dominance and Red
Minimum Value.

• Red Dominance requires the red (R) component of a pixel’s RGB
value to be significantly higher than both the green (G) and blue (B)
components by a specific ratio. For example, if this ratio is set to 1.5 and
the values of G and B are 100 and 90 respectively, then R must be at
least 150, for the pixel to be classified as red.

• Red Minimum Value sets a threshold for the red component, requiring
it to exceed a certain value to be classified as red. This prevents very low
red component values, which might not indicate blood but rather colors
closer to black, from being counted.

43

Contributions and Methodology

In the implementation of this feature, the values used are a Red Dominance of
1.15, meaning the red component must be at least 1.15 times greater than the
green and blue components, and a Red Minimum Value of 100. Both criteria,
dominance and minimum value, must be met for a pixel to be classified as red.
These parameters have been calibrated to optimally detect complex patterns
of blood colors in this dataset, allowing for robust detection across different
lighting conditions and image qualities.
An example of blood detection on the hand is shown in Figure 4.11. It should
be noted that irrelevant parts, such as the wrist, may also be classified as
red. However, these areas are not relevant, as only the red pixels around the
keypoints are used in further processing.

Figure 4.10: Original frame Figure 4.11: Pixels detected as blood
highlighted in green

3. Bloodiness Calculation: Once the red pixels are identified within the
dim × dim box around each keypoint, the bloodiness value is computed. This
value is the ratio of red pixels to the total number of pixels in the box:

bloodiness = Number of red pixels
Total number of pixels in the box

For each keypoint, this ratio gives a percentage that represents how much of
the surrounding area is covered by blood. For example, if 50% of the pixels in
the box are classified as red, the bloodiness value for that keypoint would be
0.5. An example of blodiness values computed for each bounding box around
each keypoint are visible in figures 4.24, 4.34.

4. Integration into the Model: During the prediction process, the bloodiness
feature is passed along with the 2D keypoints when the model is predicting
the 3D pose and mesh of the hand.

44

Contributions and Methodology

Keypoint 0:
10.80%

Keypoint 1:
51.88%

Keypoint 2:
71.92%

Keypoint 3:
71.48%

Keypoint 4:
89.68%

Keypoint 5:
92.12%

Keypoint 6:
74.80%

Keypoint 7:
68.84%

Keypoint 8:
91.16%

Keypoint 9:
47.56%

Keypoint 10:
39.72%

Keypoint 11:
66.88%

Bloodiness values as percentages for the first 12 keypoints in the previously shown
frame.

45

Contributions and Methodology

Keypoint 12:
85.76%

Keypoint 13:
53.68%

Keypoint 14:
67.68%

Keypoint 15:
69.12%

Keypoint 16:
70.76%

Keypoint 17:
24.92%

Keypoint 18:
33.84%

Keypoint 19:
30.60%

Keypoint 20:
22.64%

Bloodiness values as percentages for the remaining 9 keypoints in the previously
shown frame.

4.4 OHRSA-Net: One Hand Reconstruction dur-
ing Surgical Activities

From the THOR-Net paper, it is evident that some of its results are not the best
among existing models in this domain. However, the GraFormer module, the key
component of THOR-Net responsible for transforming 2D keypoints into 3D poses,
has been shown to outperform other models in this specific task. This indicates
that, to create a more advanced version of THOR-Net, the primary bottleneck lies
in the keypoint extraction stage.

46

Contributions and Methodology

To address this, OHRSA-Net (One Hand Reconstruction during Surgical Ac-
tivities) was developed with the aim of replacing the KeypointRCNN component
with a more efficient and accurate keypoint detector: YOLOv8 Pose. Furthermore,
OHRSA-Net is designed to incorporate the best-performing extensions tested on
THOR-Net, making it a model specifically tailored for surgical activities.

Figure 4.35: OHRSA-Net architecture

4.4.1 Transforming THOR-Net into OHRSA-Net
The decision to replace the KeypointRCNN component in OHRSA-Net with
YOLOv8 Pose was driven by the continuous advancements in the YOLO model
over the years, as well as an analysis of the inference speed of THOR-Net and
KeypointRCNN, which will be explained further. The specific implementation from
Ultralytics [14] is consistently updated with improvements, and as of now, there
are more than 10 versions, each offering better performance and optimizations.

One key advantage of YOLOv8 Pose is its efficiency. There are five different
scales of YOLOv8 Pose, ranging from small to extra-large. Even the extra-large
version is smaller in terms of parameters compared to KeypointRCNN, making it
more lightweight and easier to deploy in real-time applications, such as surgical
hand pose estimation.

Designing OHRSA-Net

To replace KeypointRCNN with YOLO in the design of OHRSA-Net, several design
choices were made to ensure a fair comparison with the original THOR-Net model.
The first decision involved selecting the scale of YOLO to use. Given that the
original THOR-Net model comprises approximately 197 million parameters and its
KeypointRCNN module has around 59 million parameters, it was determined to
opt for the small version of YOLO Pose (11 millions parameters) while extracting
a larger number of features.

To achieve this, an important adjustment was made to the original two-layer
perceptron (MLP) used to transform the extracted 2D keypoint features into input

47

Contributions and Methodology

features suitable for the GraFormer. This MLP was originally designed with an
input dimension of 256 × 14 × 14, producing a 2048-feature vector as output, used
as input for the GraFormer. This MLP was modified to ensure that OHRSA-Net
retains a similar parameter count to THOR-Net. Given the substantial reduction
in parameters from the 2D keypoint extractor, there was an opportunity to increase
the size of the MLP. This adjustment aimed to capture a greater number of features
than the original configuration of 256 × 14 × 14.

The final decision was to use input features with dimensions 256 × 17 × 17.
The dimension of 17 × 17 was computed from this set of equations:

Given:

• NMLP = 256 · 14 · 14 · 2048, the original number of parameters of MLP

• NMLPOHRSA−Net
= 256 · X2 · 2048, the newly designed MLP

• NY OLO = 11,528,225, the number of parameters of YOLOv8 Pose small

• NkeypointRCNN = 59,137,258, the number of parameters of KeypointRCNN

So solving the equation for X:

NMLP + NKeypointRCNN = NMLPOHRSA−Net
+ NY OLO

256 · 14 · 14 · 2048 + 59,137,258 = 256 · X2 · 2048 + 11,528,225

→ X ≈ 16.94 ∼ 17

Figure 4.36: Original Two Layer MLP in THOR-Net

A Timing Analysis of KeypointRCNN and THOR-Net

One of the driving factors for replacing the KeypointRCNN component in THOR-
Net was the inference time observed during two experiments focused on the keypoint
extraction stage.

48

Contributions and Methodology

First Experiment In the first experiment, a direct comparison of the prediction
speed between KeypointRCNN and YOLOv8 Pose was performed on a sample
composed of 1000 POV Surgery frames. For both models, the average prediction
time was calculated to assess their efficiency. The results clearly demonstrated
a significant advantage in favor of YOLOv8 Pose. On average, YOLOv8 Pose
required 61.4 ms per prediction, whereas KeypointRCNN took 140 ms per prediction,
resulting in a reduction of approximately ≈ 56.14%. This considerable reduction in
inference time highlighted the inefficiency of KeypointRCNN, especially in real-time
applications like surgical hand pose estimation. These results made it evident that
optimizing the keypoint extraction stage by using YOLOv8 Pose would lead to
better real-time performance in OHRSA-Net.

Second Experiment The second experiment involved an analysis of the entire
prediction pipeline of THOR-Net, from the extraction of 2D keypoints to the final
3D pose and mesh prediction. This experiment collected timestamps for the three
main stages: 2D keypoint extraction, 3D pose prediction, and 3D mesh prediction,
using the entire validation split of POV-Surgery (≈ 9000 samples). Additionally,
the processing times between these stages were recorded.

Below are the results of this analysis:

Stage Duration (ms)

Image Preprocessing 3.3031
2D Keypoints Inference 37.5879

Pose Features Preprocessing 2.2427
3D Keypoints Inference 5.20815

Mesh Feature Preprocessing 0.1197
3D Mesh Inference 14.9182

Results Postprocessing 3.1528

Total 66.5326

Table 4.1: Duration of the different stages in THOR-Net’s hand pose estimation
process

49

Contributions and Methodology

Figure 4.37: THOR-Net Timing Analysis

This experiment highlights that keypoint extraction is a bottleneck in THOR-
Net’s speed, as it is the longest stage among the three. As a positive outcome,
this finding also led to the decision to replace the KeypointRCNN model with the
faster YOLOv8 Pose.

50

Chapter 5

Experiments and Discussion

5.1 OHRSA-Net Timing analysis results

Using the same setup described in the previous chapter for THOR-Net, timestamps
were collected for the three main stages across the full validation split of the
POV-Surgery dataset.

The timing analysis results for each stage of the OHRSA-Net model, compared
to THOR-Net, are presented below.

Stage THOR-Net Duration (ms) OHRSA-Net Duration (ms)

Image Preprocessing 3.3031 3.2795
2D Keypoints Inference 37.5879 13.5282

Pose Features Preprocessing 2.2427 0.0975
3D Keypoints Inference 5.2081 10.1792

Mesh Feature Preprocessing 0.1197 0.1743
3D Mesh Inference 14.9182 31.7364

Results Postprocessing 3.1528 0.1289

Total 66.5326 58.1221

Table 5.1: Duration of the different stages in THOR-Net and OHRSA-Net’s hand
pose estimation processes.

51

Experiments and Discussion

Figure 5.1: OHRSA-Net Timing Analysis Compared to THOR-Net

The most significant improvement in OHRSA-Net is observed in the 2D keypoints
inference stage, where the processing time has been reduced from 37.59 ms in
THOR-Net to 13.53 ms in OHRSA-Net, a reduction of ≈ 64%.

In terms inference time, OHRSA-Net demonstrates better efficiency, with a total
processing time of 58.12 ms, compared to THOR-Net’s 66.53 ms (a reduction of
≈ 12.65%).

Overall, OHRSA-Net demonstrates a significant reduction in the duration of
every processing step, streamlining the pipeline and enhancing efficiency.

The 3D keypoints inference and 3D mesh inference stages in OHRSA-Net take
longer than in THOR-Net, with OHRSA-Net requiring 10.18 ms for keypoints
inference (compared to 5.21 ms in THOR-Net) and 31.74 ms for mesh inference
(compared to 14.92 ms in THOR-Net). These increases are expected, as OHRSA-
Net uses a richer set of features derived from the 2D keypoints prediction, which
necessitates additional computations for enhanced accuracy in both 3D pose and
mesh estimation. While these stages take more time, the trade-off is a more detailed
and accurate output, which improves overall performance in subsequent steps.

Overall, despite the increased time in certain stages, OHRSA-Net performs
faster than THOR-Net, particularly in preprocessing and postprocessing. The
trade-off in increased time for mesh and pose prediction stages is outweighed by the
improved accuracy and the overall faster processing time. The results suggest that
OHRSA-Net provides a more efficient solution for hand pose estimation, particularly
in scenarios where speed and accuracy are critical, such as in surgical applications.

52

Experiments and Discussion

5.2 Evaluation of Extensions and OHRSA-Net

5.2.1 Methodology
The experiments presented in this chapter were conducted using the test split of
the dataset, while models were trained on the training split and validated during
training on the validation split. The dataset, comprising 53 sequences in total,
was divided into three subsets: 35 sequences (54.02%, 47,715 frames) were used
for training, 5 sequences (8.98%, 7,932 frames) for validation, and 13 sequences
(37.01%, 32,682 frames) for testing.

All experiments were conducted using a single NVIDIA GeForce RTX 4090 GPU
with 24GB of memory, which provided the necessary computational resources to
handle the high complexity of the models and the large number of frames in the
dataset.

It is important to note that the reported results are not in standard units
such as millimeters or pixels but are instead computed in camera space. Camera
space refers to the coordinate system defined by the camera’s perspective, where
distances and positions are represented relative to the camera’s viewpoint. This
choice of representation was made after encountering significant difficulties during
training with alternative unit systems. Models trained with other representations
consistently failed to learn effectively. After extensive experimentation, the decision
to use values in camera space proved to be the only approach that allowed the
models to converge during training. A more detailed discussion of this choice and
its implications is provided in the Conclusions chapter 6 .

Metrics used for Evaluation The evaluation metrics used in this study assess
the 3D accuracy of hand pose and shape predictions. These metrics provide a
comprehensive view of the model’s performance across different aspects of hand
reconstruction.

The following metrics are employed to assess the performance of the proposed
models:

• MPJPE (Mean Per Joint Position Error):
MPJPE quantifies the average Euclidean distance between the predicted and
ground truth 3D joint positions. It provides an overall measure of the joint-
level accuracy of the model’s predictions. Lower MPJPE values indicate higher
precision in estimating the 3D joint positions.

• PA-MPJPE (Procrustes-Aligned Mean Per Joint Position Error):
PA-MPJPE is a variant of MPJPE where the predicted and ground truth 3D
joints are aligned using Procrustes analysis. This alignment technique removes

53

Experiments and Discussion

the effects of global translation, rotation, and scale, allowing the metric to
focus solely on the structural differences in pose estimation. Lower values
signify better structural alignment and improved pose estimation accuracy.

• PVE (Per Vertex Error):

PVE calculates the mean Euclidean distance between the predicted and ground
truth 3D vertices of the hand mesh. This metric assesses the accuracy of the
reconstructed hand shape, going beyond joint positions to consider the entire
mesh. Lower PVE values indicate a more accurate reconstruction of the hand
geometry.

• PA-PVE (Procrustes-Aligned Per Vertex Error):

PA-PVE extends the concept of Procrustes alignment to the 3D hand mesh
vertices. By aligning the predicted and ground truth meshes, PA-PVE eval-
uates the shape accuracy independent of position and orientation. Lower
PA-PVE values indicate a better fit of the predicted mesh to the actual hand
shape.

5.2.2 Hand Connectivity Evaluation

This extension has been evaluated on the THOR-Net model and compared against
the baseline hand connectivity configuration of the right hand, referred to as the
BASE configuration.

The results for the various metrics considered are presented below.

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

THOR-Net (BASE) 0.00009613 0.0001629 0.0004685 0.0003494
THOR-Net

+ SIMPLE hand connectivity 0.00008284 0.00018233 0.00027836 0.00003487 -24.14%

THOR-Net
+ EXTENDED hand connectivity 0.00006482 0.00016931 0.00029649 0.00003472 -25.85%

THOR-Net
+ FULL hand connectivity 0.00006993 0.00015342 0.00028038 0.0003496 -29.35%

Table 5.2: Experimental results for THOR-Net with different hand connectivity
configurations, including percentage change in average error.

54

Experiments and Discussion

Figure 5.2: Hand Connectivity Results

Discussion The experimental configurations demonstrate a noticeable perfor-
mance improvement with the introduction of custom hand connectivity strategies.
Starting from the simplest configuration (BASE), we observe a significant reduction
in error metrics when the SIMPLE hand connectivity scheme is applied. This
suggests that even a modest increase in inter-joint connections positively influences
the model’s performance. Among all the metrics, PVE (Per Vertex Error) exhibits
the most substantial improvement as more connections are added. This trend
continues with more extensive connectivity configurations, such as EXTENDED
and FULL, where the model shows further refinement in pose estimation. This is
particularly evident in metrics like MPJPE and PA-MPJPE.

In further experiments on timing, despite the increased complexity of the
graph structure due to more connections, the inference time remained largely
unaffected. This indicates that the computational overhead introduced by additional
connections is minimal and does not significantly impact performance. The absence
of a noticeable slowdown can be attributed to the model’s design, where the main
computational constraints are imposed not by the graph connections.

In summary, the results indicate that strategically increasing the connectivity

55

Experiments and Discussion

of the hand can enhance pose and shape estimation without sacrificing efficiency,
making it a valuable extension for more accurate applications.

5.2.3 Multi-Frame Integration Evaluation

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

THOR-Net (BASE) 0.00009613 0.0001629 0.0004685 0.0003494
THOR-Net

+ Multi-frame N = 2, S = 10 0.00002733 0.00007274 0.00017958 0.0001726 -61.06%

THOR-Net
+ Multi-frame N = 2, S = 30 0.00003203 0.00005211 0.00021052 0.0001739 -59.07%

Table 5.3: Experimental Results for Multi-frame Integration with THOR-Net,
including percentage change in average error.

Figure 5.3: Multi-frame Integration Results

56

Experiments and Discussion

Discussion The multi-frame integration experiments on THOR-Net demonstrate
a substantial enhancement in model performance, clearly surpassing the improve-
ments achieved through the hand connectivity extensions. This significant drop is
observed across all error metrics, indicating a uniform gain in both pose and shape
reconstruction quality. The average error reduction of nearly 60% in both configu-
rations underscores the effectiveness of leveraging multiple frames, suggesting a
robust mitigation of occlusion issues inherent to the surgical setting. Unlike the
hand connectivity adjustments, where specific metrics like PVE showed the most
impact, the multi-frame approach results in a broader reduction in errors.

The improvement in accuracy can be attributed to the model’s enhanced capacity
to utilize temporal information from multiple frames, allowing it to infer hand poses
more reliably even when parts of the hand are obstructed by surgical tools or other
occluding elements. However, this approach introduces additional computational
complexity. While integrating more frames improves performance, varying the
stride parameter S does not appear to yield further gains, as it only adjusts
the temporal sampling rate without increasing the number of frames processed
concurrently.

A notable challenge faced during these experiments was the extended training
time. Extracting features from multiple frames in parallel became the most
computationally demanding part of the pipeline, leading to a training duration
approximately 3-4 times longer than that of other experiments. Each epoch took
about 1.5 to 2 hours, compared to the typical 30-minute duration in previous
configurations. This increase in training time scales linearly with the number of
frames due to the need for parallel feature extraction.

Additionally, hardware constraints limited the number of frames that could be
processed. The increased memory and computational demands made it infeasible to
train configurations with N > 2, as the available hardware could not accommodate
the larger batch sizes required. Consequently, the experiments were restricted to
N = 2. On the other hand, altering the stride parameter did not encounter these
limitations, since it only modifies the sampling rate and does not increase the
concurrent processing load.

57

Experiments and Discussion

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

THOR-Net (BASE) 0.00009613 0.0001629 0.0004685 0.0003494
THOR-Net

+ Multi-frame N = 2, S = 10
+ FULL hand connectivity

0.00002042 0.0000717 0.00013487 0.00001722 -67.97%

Table 5.4: Experimental Results for Multi-frame Integration with THOR-Net,
including percentage change in average error.

5.2.4 Combining Hand Connectivity and Multi-frame Inte-
gration Extensions

Figure 5.4: Results of Combining the Best Settings for Multi-frame Integration
and Hand Connectivity Extensions

Discussion This combined experiment was conducted to evaluate whether the
integration of both extensions shown previously could lead to an enhanced model
performance compared to applying these extensions separately. While the goal

58

Experiments and Discussion

was primarily exploratory, rather than to form new conclusions, it serves as an
informative baseline on the additive potential of these methods.

The combined extension showed a significant reduction in average error, achieving
a -67.97% decrease compared to the original THOR-Net configuration. This is
notably better than the results from the individual extensions, where the best-
performing hand connectivity setup reduced the average error by -29.35%, and
the multi-frame extension achieved a -61.06% reduction. The evidence points to
an effective combination of the two strategies, significantly boosting the model’s
performance in hand pose estimation.

It is worth mentioning that both the limitations and strengths identified in each
individual extension still apply.

5.2.5 Comparison of THOR-Net and OHRSA-Net

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

THOR-Net 0.00009613 0.0001629 0.0004685 0.0003494
OHRSA-Net 0.00036798 0.00040626 0.00060424 0.00007018 +90%

Table 5.5: Experimental Results for Multi-frame Integration with THOR-Net,
including percentage change in average error.

59

Experiments and Discussion

Figure 5.5: Comparison of THOR-Net and OHRSA-Net Results

Discussion The comparative analysis of THOR-Net and OHRSA-Net reveals
that the performance of OHRSA-Net is consistently inferior to that of THOR-Net
across all evaluation metrics. Since the primary architectural difference between
these models lies in their keypoint detection module (KeypointRCNN in THOR-
Net and YOLOv8 Pose in OHRSA-Net) the disparity in their performance can be
directly attributed to the effectiveness of these keypoint extractors.

Despite the speed advantage, the lower accuracy of OHRSA-Net reflects the
limitations of YOLO-based keypoint detection in handling intricate hand poses in
the presence of occlusions. The simplification of the keypoint detection module in
OHRSA-Net results in a model that is better suited for real-time applications but
less capable of precise hand reconstruction.

The comparison between THOR-Net and OHRSA-Net highlights a fundamental
trade-off in hand pose estimation tasks: while THOR-Net prioritizes accuracy
and detailed reconstruction through its keypoint detection and feature extraction
pipeline, it suffers from increased computational complexity and slower inference
times. Instead, OHRSA-Net achieves faster and more efficient processing by
utilizing YOLOv8 Pose, making it more practical for real-time scenarios, but at

60

Experiments and Discussion

the cost of reduced accuracy.

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

OHRSA-Net 0.00036798 0.00040626 0.00060424 0.00007018
OHRSA-Net + Bloodiness 0.0003714 0.00037283 0.00093723 0.00007014 +20.91%

Table 5.6: Experimental Results of the Bloodiness Feature with OHRSA-Net

Figure 5.6: Results of the Bloodiness Feature on OHRSA-Net

Discussion The experimental results indicate that this extension did not lead to
meaningful improvements. While the pose-related metrics remained unchanged, the
shape-related metrics exhibited a decline in performance. These findings suggest
that the inclusion of bloodiness as an additional feature for the GraFormer input
did not enhance the reconstruction accuracy of the hand pose or shape.

This lack of improvement may be attributed to the way the bloodiness feature
was integrated. If a keypoint is not accurately identified or is occluded, the
bloodiness value associated with it might introduce noise rather than meaningful

61

Experiments and Discussion

information, potentially misleading the model during subsequent reconstruction
stages. A more effective approach might have involved including bloodiness as
part of the original annotations for each keypoint in the dataset. This would have
allowed the model to learn to associate specific bloodiness levels with keypoint
occlusions during training, providing a more robust representation. Unfortunately,
the POV-Surgery dataset does not include such annotations, limiting the potential
impact of this feature.

Additionally, it is important to note that OHRSA-Net underperformed compared
to THOR-Net. While the two other extensions presented earlier significantly
enhanced THOR-Net’s performance, applying these extensions to OHRSA-Net
was unlikely to yield better results than those achieved with the extended THOR-
Net. The weaker baseline performance of OHRSA-Net made it improbable that
integrating these successful extensions would surpass the improvements already
realized with THOR-Net. This also justified the decision not to implement the
bloodiness feature within THOR-Net, as the limitations observed in OHRSA-Net
would likely persist.

It is also worth highlighting that the bloodiness experiments were conducted
exclusively on OHRSA-Net, as it was the initial model used for implementing this
feature. The overall poorer performance of OHRSA-Net, combined with the lack of
meaningful improvements from the bloodiness experiments, underscores the need
for future research to explore alternative approaches.

5.2.6 Base Models Training Using Pre-trained Checkpoints
One promising approach to improve the accuracy of THOR-Net and OHRSA-Net
involved fine-tuning these models using a pre-trained THOR-Net checkpoint from
the HO-3D dataset [15]. Instead of training the models from scratch, this strategy
leverages a previously trained model that may have already developed a generalized
understanding of hand representation. If the pre-trained checkpoint is sufficiently
robust and capable of generalization, it could accelerate convergence during training
and enhance the models’ performance on specific tasks.

HO-3D Dataset The HO-3D dataset, short for Hand Object 3D, is a widely
used dataset designed for 3D hand-object interaction understanding. It contains
a large collection of images depicting hands interacting with various objects in
diverse real-world settings. The dataset includes RGB images, depth maps, and
3D annotations for both hands and objects, providing a resource for tasks like 3D
hand pose estimation and hand-object interaction analysis. The annotated hand
poses span various activities, offering a rich representation of hand configurations
under occlusion and interaction with objects.

For these experiments, version 2 of the HO-3D dataset (HO-3D v2) was utilized,

62

Experiments and Discussion

which includes updated and improved annotations, enhancing the quality of the
training data.

Figure 5.7: HO-3D Dataset

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

THOR-Net 0.00009613 0.0001629 0.0004685 0.0003494
THOR-Net pre-trained

on HO-3D dataset 0.00056731 0.00018166 0.00043800 0.00003268 +59.96%

Table 5.7: Experimental Results for THOR-Net with HO-3D Pre-training.

MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Average
Error Change

OHRSA-Net 0.00036798 0.00040626 0.00060424 0.00007018
OHRSA-Net pre-trained

on HO-3D dataset 0.00484654 0.00040093 0.00110541 0.00006474 +343%

Table 5.8: Experimental Results for OHRSA-Net with HO-3D Pre-training.

63

Experiments and Discussion

Figure 5.8: Results of Pre-trained THOR-Net

Figure 5.9: Results of Pre-trained OHRSA-Net

64

Experiments and Discussion

Discussion The experiments using a pre-trained model revealed clear limitations
in how well the learned representations could generalize. Specifically, the pre-trained
model struggled to perform well outside the domain it was originally trained on.
As a result, the expected improvements from using a pre-trained model did not
materialize.

For OHRSA-Net, the challenges were even greater. Due to architectural differ-
ences between OHRSA-Net and THOR-Net, only the parameters of the GraFormer
module could be transferred from the HO-3D pre-trained checkpoint. Since the
GraFormer is the only part of the architecture that remained unchanged, the rest of
OHRSA-Net had to be trained from scratch. This led to much worse performance
compared to the original configuration of the model.

Ultimately, fine-tuning with the HO-3D pre-trained model did not lead to
any improvements in accuracy for either THOR-Net or OHRSA-Net. The lack of
meaningful performance gains made further experiments with this setup unnecessary,
as it became clear that this approach was not effective for improving the models.

65

Chapter 6

Conclusions and Future
Works

The goal of this thesis was to explore the domain of hand pose estimation, with
a specific focus on its application during surgical tool usage. Through the de-
velopment and evaluation of models such as THOR-Net and OHRSA-Net, the
study investigated the efficacy of various architectural and methodological exten-
sions. While the findings did not culminate in a breakthrough discovery, they
provided critical insights into the strengths and limitations of combining Graph
Convolutional Neural Networks and Transformers for this application.

The comparative analysis revealed that THOR-Net remains the superior model
in terms of overall performance. Several enhancements were successfully integrated
into THOR-Net. Among these, the multi-frame integration and hand connectivity
extensions demonstrated substantial promise. They effectively mitigated challenges
like occlusions caused by surgical tools or the surgeon’s body, contributing to more
accurate pose estimation. However, the bloodiness level extension did not yield any
significant improvements, suggesting that additional strategies may be required to
address visual obstructions during surgery.

OHRSA-Net, while not outperforming THOR-Net, offered meaningful advance-
ments in certain areas. By replacing KeypointRCNN with YOLO v8 Pose for
keypoint detection, the model achieved remarkable speed improvements, signifi-
cantly reducing inference time for 2D keypoints prediction. However, the inability
of OHRSA-Net to surpass THOR-Net’s overall accuracy suggests that these speed
gains come with trade-offs in predictive precision.

The thesis also highlighted broader challenges within this field. The POV-
Surgery dataset introduced significant difficulties due to its diverse and intricate
surgical scenarios, which greatly complicated the model’s learning process. This
challenge was compounded by the annotations, where the original dataset’s large

66

Conclusions and Future Works

numerical values caused the loss function to stagnate. Only after transforming and
scaling these values down to a smaller range did the models begin to converge during
training. Additionally, hardware limitations constrained the number of experiments,
as model training was highly time-intensive, with some configurations requiring
up to five days for adequate convergence. These issues highlight the pressing need
for more efficient training pipelines and better computational resources for future
research.

Looking forward, there are several directions that future work could take to build
upon the foundations laid by this thesis. One promising avenue is the integration
of tool pose estimation into the current framework. The POV-Surgery dataset
lacks object keypoint annotations, limiting its application to hand-only tasks.
Adding such annotations could enable models to predict both hand and tool poses
simultaneously, offering a more comprehensive understanding of surgical activities.
Similarly, advancing the multi-frame integration capabilities of OHRSA-Net would
be invaluable. Due to limitations in Ultralytics’ implementation of YOLO v8 Pose,
it was not feasible to process multiple frames concurrently. If an open-source
implementation of YOLO v8 Pose becomes available, this limitation could be
addressed, allowing for seamless feature extraction across multiple frames.

Another critical direction involves rethinking the use of the MANO model
for hand representation. Instead of directly predicting keypoints and vertices,
future models could leverage MANO’s parametric design to estimate hand pose
and shape using a reduced set of parameters. This approach would simplify the
learning process and potentially improve accuracy. Moreover, exploring open-source
alternatives to YOLO v8 Pose that can be fully integrated into larger PyTorch-
based architectures would eliminate the need for a two-stage training process,
streamlining the development pipeline.

67

Bibliography

[1] Ahmed Tawfik Aboukhadra, Jameel Malik, Ahmed Elhayek, Nadia Robertini,
and Didier Stricker. THOR-Net: End-to-end Graformer-based Realistic Two
Hands and Object Reconstruction with Self-supervision. 2022. arXiv: 2210.
13853 [cs.CV]. url: https://arxiv.org/abs/2210.13853 (cit. on pp. 3,
18).

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. «Faster r-cnn: To-
wards real-time object detection with region proposal networks». In: Advances
in neural information processing systems 28 (2015) (cit. on p. 5).

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. «Rich
feature hierarchies for accurate object detection and semantic segmentation».
In: Computer Vision and Pattern Recognition. 2014 (cit. on p. 5).

[4] Ross Girshick. «Fast R-CNN». In: International Conference on Computer
Vision (ICCV). 2015 (cit. on p. 5).

[5] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. «You Only
Look Once: Unified, Real-Time Object Detection». In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 779–788.
doi: 10.1109/CVPR.2016.91 (cit. on p. 6).

[6] Saidul Islam, Hanae Elmekki, Ahmed Elsebai, Jamal Bentahar, Najat Drawel,
Gaith Rjoub, and Witold Pedrycz. A Comprehensive Survey on Applications
of Transformers for Deep Learning Tasks. 2023. arXiv: 2306.07303 [cs.LG].
url: https://arxiv.org/abs/2306.07303 (cit. on p. 11).

[7] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di
He, Yanming Shen, and Tie-Yan Liu. Do Transformers Really Perform Bad
for Graph Representation? 2021. arXiv: 2106.05234 [cs.LG]. url: https:
//arxiv.org/abs/2106.05234 (cit. on p. 15).

[8] Kevin Lin, Lijuan Wang, and Zicheng Liu. «Mesh Graphormer». In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV).
Oct. 2021, pp. 12939–12948 (cit. on p. 15).

68

https://arxiv.org/abs/2210.13853
https://arxiv.org/abs/2210.13853
https://arxiv.org/abs/2210.13853
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/2306.07303
https://arxiv.org/abs/2306.07303
https://arxiv.org/abs/2106.05234
https://arxiv.org/abs/2106.05234
https://arxiv.org/abs/2106.05234

BIBLIOGRAPHY

[9] Weixi Zhao, Yunjie Tian, Qixiang Ye, Jianbin Jiao, and Weiqiang Wang.
GraFormer: Graph Convolution Transformer for 3D Pose Estimation. 2021.
arXiv: 2109.08364 [cs.CV]. url: https://arxiv.org/abs/2109.08364
(cit. on p. 15).

[10] Rui Wang, Sophokles Ktistakis, Siwei Zhang, Mirko Meboldt, and Quentin
Lohmeyer. «POV-Surgery: A Dataset for Egocentric Hand and Tool Pose
Estimation During Surgical Activities». In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. 2023, pp. 440–
450 (cit. on pp. 21, 24).

[11] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xiaolong Wang. «Semi-
Supervised 3D Hand-Object Poses Estimation with Interactions in Time». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2021 (cit. on p. 24).

[12] JoonKyu Park, Yeonguk Oh, Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu
Lee. «HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network».
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2022
(cit. on pp. 24, 28).

[13] Hao Xu, Tianyu Wang, Xiao Tang, and Chi-Wing Fu. «H2ONet: Hand-
Occlusion-and-Orientation-Aware Network for Real-Time 3D Hand Mesh
Reconstruction». In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2023, pp. 17048–17058 (cit. on
pp. 24, 33, 40).

[14] Ultralytics. Ultralytics Pose Documentation. Accessed: 2024-10-19. 2024. url:
https://docs.ultralytics.com/tasks/pose/ (cit. on p. 47).

[15] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent Lepetit.
«HOnnotate: A Method for 3D Annotation of Hand and Object Poses». In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2020 (cit. on p. 62).

69

https://arxiv.org/abs/2109.08364
https://arxiv.org/abs/2109.08364
https://docs.ultralytics.com/tasks/pose/

	Summary
	Introduction
	Computer Vision for Medical Applications
	Hand pose estimation
	Objective and contributions

	Background
	Keypoints extraction
	Keypoint RCNN
	YOLOv8 Pose

	Graph Convolutional Networks and Graph convolutions
	Graph Convolutional Networks
	Graph Convolutions

	Transformers
	An Overview of Transformers
	The Attention Mechanism

	From Graph-Based Models to GraFormer
	The Idea Behind Integrating Graph Convolutions into Transformer Models
	GraFromer

	THOR-Net
	THOR-Net architecture and prediction pipeline

	POV-Surgery Dataset

	Related works
	Semi-Hand-Object
	Semi-Hand-Object architecture
	Semi-Supervised Learning Framework

	HandOccNet
	HandOccNet architecture

	H2ONet
	H2ONet Overview
	Multi-frame integration

	Contributions and Methodology
	Hand connectivity
	Overview
	Implementation Details

	Multi-frame integration
	Overview
	Implementation Details

	Bloodiness feature
	Overview
	Implementation Details

	OHRSA-Net: One Hand Reconstruction during Surgical Activities
	Transforming THOR-Net into OHRSA-Net

	Experiments and Discussion
	OHRSA-Net Timing analysis results
	Evaluation of Extensions and OHRSA-Net
	Methodology
	Hand Connectivity Evaluation
	Multi-Frame Integration Evaluation
	Combining Hand Connectivity and Multi-frame Integration Extensions
	Comparison of THOR-Net and OHRSA-Net
	Base Models Training Using Pre-trained Checkpoints

	Conclusions and Future Works
	Bibliography

