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Abstract

This thesis explores the role of DNA methylation outliers in breast cancer within the framework of
the epigenetic field defect hypothesis. The hypothesis posits that stochastic epigenetic alterations in
histologically normal tissue may signal early carcinogenic processes. Using the GSE69914 dataset from
the Gene Expression Omnibus, we analyzed methylation profiles across three tissue types: normal,
cancer-adjacent normal, and cancerous breast tissue.

A comprehensive preprocessing pipeline was implemented. Raw beta values were converted to M-
values to reduce heteroscedasticity, followed by normalization, dimensionality reduction, and group
labeling. Additional steps included variance-based filtering, Z-score transformations, and exclusion
of low-quality or invariant CpG sites. Unlike earlier studies that rely solely on differential analysis,
this work employed unsupervised machine learning algorithms for outlier detection, with the goal of
identifying CpGs whose methylation values deviate substantially from the typical population-level
distribution.

Variance thresholds of 0.015 and 0.02 were tested to balance signal retention with computational
feasibility. Five algorithms—K-Nearest Neighbors (KNN), Isolation Forest, Local Outlier Factor
(LOF), One-Class SVM (OC-SVM), and Z-score analysis—were applied across multiple hyperpa-
rameters to detect anomalous CpG methylation patterns. Results showed that CpG sites such as
cgl19374752 and cg00000622 were consistently flagged as outliers across tissues and algorithms. The
comparative analysis revealed that Z-score detection offered the highest recall and F1-score, whereas
One-Class SVM delivered the highest precision, suggesting each method’s suitability for different
diagnostic priorities.

A secondary benchmark using the Thyroid Disease dataset validated the comparative performance
of the algorithms on structured, labeled data. Pathway enrichment analysis of the most frequently
outlying CpG-associated genes highlighted cancer-relevant biological processes, including DNA repair,
Notch signaling, and estrogen response pathways.

This work demonstrates the feasibility and diagnostic potential of methylation-based outlier de-
tection in cancer and proposes a flexible, scalable pipeline for epigenetic biomarker discovery. It
reinforces the value of integrating multiple detection models and adjusting preprocessing thresholds
to uncover biologically meaningful patterns in complex, high-dimensional data.



1 | Background

1.1 DNA Methylation and Epigenetics

Epigenetics refers to heritable changes in gene function that do not involve alterations to the un-
derlying DNA sequence. Among the various epigenetic mechanisms, DNA methylation is one of the
most extensively studied and functionally significant. DNA methylation typically involves the co-
valent addition of a methyl group to the 5’ carbon of cytosine residues within CpG dinucleotides,
forming 5-methylcytosine (5mC). These CpG sites are often clustered in genomic regions known as
CpG islands, commonly located near gene promoters [7].

In mammalian cells, DNA methylation is established and maintained by DNA methyltransferases
(DNMTs), primarily DNMT1, DNMT3A, and DNMT3B. It plays a crucial role in several physiologi-
cal processes including embryonic development, genomic imprinting, X-chromosome inactivation, and
suppression of transposable elements [9, 24]. In the context of gene regulation, promoter hyperme-
thylation is generally associated with transcriptional silencing, whereas gene body methylation may
correlate with active transcription [18].

In cancer, DNA methylation patterns are profoundly disrupted. Aberrant hypermethylation of
tumor suppressor gene promoters and global hypomethylation of repetitive elements and oncogenes are
commonly observed [13, 15]. These epigenetic alterations can arise early during carcinogenesis, making
them attractive candidates for biomarker discovery. Because methylation changes are chemically
stable and detectable in small samples (e.g., blood, biopsies), they hold promise for early cancer
diagnostics, prognostics, and therapy selection.

Advances in high-throughput platforms, particularly Illumina’s HumanMethylation450 and EPIC
(850k) arrays, have enabled genome-wide profiling of DNA methylation at single-CpG resolution across
hundreds of thousands of loci [6]. These technologies facilitate the identification of not only consistent
differential methylation but also stochastic, outlier-level alterations that may be functionally relevant.
This study focuses on the latter—methylation outliers—as potential early indicators of cancer-related
field defects.

1.2 Field Defects in Cancer and Methylation Outliers

The concept of field defects—also called “field cancerization”—was first proposed in the 1950s by
Slaughter et al. [23], describing histologically normal tissue surrounding tumors that may carry molecu-
lar abnormalities predisposing to malignancy. This concept has since been extended into the molecular
and epigenetic domain, where field defects refer to subclinical changes in gene expression, chromatin
structure, or DNA methylation that may signal early carcinogenic processes [11].

In the epigenetic context, the field defect hypothesis suggests that even tissue appearing histolog-
ically normal may contain subtle but widespread epigenetic alterations. Among the most informative
of these are DNA methylation outliers — CpG sites whose methylation values in individual samples
deviate significantly from the population norm. These stochastic deviations are thought to reflect
early clonal expansions or epigenetic instability associated with aging, environmental exposure, or
genomic stress [14].

Importantly, such outliers may not shift the average methylation level of a population and can
therefore be missed by traditional differential methylation analysis. However, their presence may



reflect key early events in carcinogenesis. Teschendorff et al. [25] showed that DNA methylation
outliers are significantly enriched in morphologically normal breast tissue of individuals who later
developed breast cancer. This finding supports the notion that epigenetic field defects, observable as
methylation outliers, can serve as early molecular markers of cancer predisposition.

Outlier-based approaches thus offer a promising complement to average-based comparisons, allow-
ing for the detection of rare but potentially impactful epigenetic events. Identifying such CpG outliers
in normal or adjacent-normal tissue could provide early biomarkers for cancer detection or risk strat-
ification, especially when combined with tissue-specific context and pathway-level interpretation.

1.3 Challenges in Detecting Methylation Outliers

The identification of methylation outliers presents a set of unique biological and computational chal-
lenges, distinct from those associated with conventional differential methylation analysis. While tra-
ditional methods focus on population-level mean differences in methylation between groups, outlier
detection seeks to uncover CpG sites that exhibit extreme methylation values in a subset of samples,
often in a stochastic or sample-specific manner [5].

From a statistical standpoint, these outliers are rare events embedded in a high-dimensional feature
space, often comprising more than 450,000 CpG sites per sample. This high dimensionality exacerbates
the “curse of dimensionality,” reducing the effectiveness of distance-based or density-based algorithms
without prior feature selection or dimensionality reduction [4]. Additionally, methylation distributions
are often non-Gaussian and exhibit strong heteroscedasticity, particularly at extreme beta values near
0 or 1. This violates the assumptions of many parametric statistical methods and motivates the
transformation of beta-values to M-values [12].

Biologically, methylation outliers are often sparse and context-dependent. A CpG site may act as
an outlier in one tissue type but not another, and its functional relevance depends heavily on genomic
location (e.g., promoter vs. intergenic). Moreover, methylation variability may arise not only from
true biological differences but also from technical artifacts such as batch effects, DNA quality, and
probe cross-reactivity [28].

Preprocessing decisions—including normalization method, variance filtering thresholds, and the
handling of missing values—can dramatically affect outlier detection outcomes. For example, overly
aggressive filtering may discard informative CpGs with modest but relevant variability, while in-
sufficient filtering may amplify noise. Therefore, careful consideration of preprocessing pipelines is
essential for preserving biological signal and avoiding false positives or negatives in outlier calls.

These challenges necessitate robust, flexible algorithms and thoughtful experimental design to
reliably detect methylation outliers that are biologically meaningful and reproducible across datasets.

1.4 Outlier Detection in Machine Learning

Machine learning offers robust approaches for identifying outliers in high-dimensional, noisy, and
heterogeneous data such as DNA methylation profiles. Outlier detection methods are particularly
suited to this context because cancer-related methylation alterations often occur in a sparse, stochastic
manner, and may affect only a small number of samples or CpG sites. Unlike classical differential
analysis, which targets population-wide effects, outlier-based models can reveal rare yet biologically
meaningful events that deviate from normal methylation patterns.

Several algorithms have been developed for unsupervised and semi-supervised outlier detection,
each with strengths and limitations. Below is an overview of the primary techniques employed in this
thesis:

e K-Nearest Neighbors (KNN): A distance-based method that identifies outliers by computing
the average distance from a given sample to its k nearest neighbors in the feature space. Samples
with unusually large distances are flagged as outliers. While simple and interpretable, KNN is
sensitive to the curse of dimensionality and assumes uniform data density.



e Local Outlier Factor (LOF): A density-based approach that measures the local deviation of a
data point relative to its neighbors [8]. LOF excels at detecting local anomalies in heterogeneous
data, making it suitable for uncovering context-dependent methylation outliers that may not be
globally extreme.

e One-Class SVM (OC-SVM): A semi-supervised method that learns a soft boundary around
normal data in high-dimensional space [22]. OC-SVM uses a radial basis function kernel to map
input data into a higher-dimensional space, enabling separation of inliers and outliers with a
maximal margin. It is well-suited for scenarios where only “normal” training data is available.

e Isolation Forest: An ensemble-based algorithm that isolates anomalies by recursively parti-
tioning the feature space using randomly selected attributes and split values [20]. Anomalies
require fewer splits to isolate and thus receive higher anomaly scores. Isolation Forest is com-
putationally efficient and performs well in high-dimensional, sparse datasets like methylation
matrices.

e Z-Score Thresholding: A statistical baseline method in which CpG values are transformed
into Z-scores based on their deviation from the mean, measured in units of standard deviation.
CpG sites exceeding a specified threshold are labeled as outliers. While computationally simple
and interpretable, Z-score assumes normally distributed data and lacks adaptability to complex
data geometry.

Each algorithm brings trade-offs between computational complexity, interpretability, and sensi-
tivity to global versus local anomalies. For instance, LOF and OC-SVM are more sensitive to local
patterns, while Isolation Forest and Z-score emphasize global structure. As shown in comparative
reviews [29], algorithm performance varies widely depending on data dimensionality, noise, and out-
lier definition. Therefore, in this work, multiple algorithms were implemented and benchmarked to
increase robustness and cross-validate results.

1.5 Related Work and Motivation

Epigenetic alterations, particularly DNA methylation changes, have been extensively studied as both
causes and consequences of tumorigenesis. Early research in this area focused on identifying dif-
ferentially methylated regions (DMRs) between cancerous and normal tissues [13]. However, these
average-based methods may overlook rare but biologically relevant events such as methylation out-
liers—extreme values in a small subset of samples that may signal early clonal expansion or tissue
instability.

Teschendorff et al. [25] demonstrated that DNA methylation outliers are enriched in histologically
normal breast tissues of individuals who later developed breast cancer, highlighting the potential of
outlier-based features as early epigenetic biomarkers. Other studies have explored statistical defini-
tions of outlier burden [14], but relatively few have examined the application of machine learning
methods for systematic outlier detection in large methylation datasets.

Moreover, current literature often treats preprocessing as a fixed pipeline rather than an experi-
mental variable. However, decisions such as whether to use beta- or M-values, the choice of variance
thresholds, and methods for handling batch effects can significantly influence downstream results and
biological interpretation [12]. Few studies have quantitatively compared how these parameters affect
outlier detection outcomes across multiple algorithms.

This thesis builds upon these biological and computational insights while addressing several
methodological gaps:

e Applying and benchmarking five unsupervised outlier detection models (KNN, LOF, Isolation
Forest, One-Class SVM, and Z-score) to large-scale breast methylation data.

e Investigating the impact of different variance filtering thresholds (0.015, and 0.02) on algorithm
sensitivity and outlier reproducibility.



e Characterizing both tissue-specific and shared CpG outliers across normal, adjacent-normal,
and cancer samples.

e Linking consistently identified outliers to gene-level annotations and performing pathway en-
richment analysis using MSigDB Hallmark gene sets.

e Conducting a comparative performance evaluation on a secondary benchmark dataset (Thyroid
Disease) to validate algorithm behavior under known class labels.

These contributions aim to advance the interpretability and reliability of outlier detection in DNA
methylation studies, ultimately supporting the development of more sensitive diagnostic tools for
cancer risk assessment and early intervention.



2 | Materials and Methods

2.1 Dataset Acquisition and Description

To conduct a robust analysis of DNA methylation outliers in the context of breast cancer, a systematic
dataset selection process was undertaken using the NCBI Gene Expression Omnibus (GEO) repository.
The primary inclusion criteria for dataset selection were:

e Platform Coverage: Preference was given to datasets generated using the Illumina Human-
Methylation450 BeadChip or the updated 850K EPIC array, both of which provide genome-wide
coverage of CpG sites with sufficient resolution for outlier detection.

e Sample Diversity: The dataset needed to include both healthy (normal) and cancerous breast
tissue samples. This allows for the comparative analysis of methylation patterns and detection
of potential field defects or early carcinogenic signatures.

e Sample Size: To ensure statistical power and mitigate batch effects, datasets with at least 50
samples per group were prioritized.

e Data Accessibility: Availability of preprocessed beta values or raw .idat files was essential.
Beta values simplify downstream analysis, whereas raw files offer full control over normalization
pipelines if needed.

After evaluating several candidate datasets, including GSE51032 and GSE101961, the dataset
GSE69914 was selected as the primary data source for this thesis. This dataset meets all outlined
criteria:

e Platform: Illumina HumanMethylation450 BeadChip.

e Sample Composition: 50 normal breast tissue samples and 263 breast cancer tissue sam-
ples, including subgroups such as adjacent-normal tissues, BRCAl-mutated normal tissues, and
BRCA1-mutated cancers.

e Data Format: Processed beta-value matrices were made available through the GEO portal,
with no missing values and prior normalization applied.

Sample Categories and Biological Groups

The dataset was further categorized into biologically meaningful groups based on sample metadata
and clinical annotations:

e Breast Cancer Samples: Tumor-derived methylation profiles from 263 individuals.

e Adjacent-Normal Samples: Normal tissue samples taken from regions near the tumor, pro-
viding an opportunity to evaluate the epigenetic field defect hypothesis.

e Normal Samples: Independent healthy breast tissue samples used as baseline controls.



e Normal-BRCA1 Samples: Samples from individuals carrying BRCA1 mutations but without
tumors.

e Cancer-BRCA1 Samples: Tumor samples from BRCA1 mutation carriers, potentially re-
vealing hereditary risk patterns.

Initial Dimensionality Reduction Attempt (Correlation and PCA)

As part of the early data preparation phase, I explored various dimensionality reduction strategies
to manage the high dimensionality of the dataset. One initial approach involved applying correla-
tion filtering to reduce redundancy across CpG sites. The assumption was that highly correlated
CpGs—those with correlation coefficients greater than 0.99—likely carried redundant information
and could be clustered or averaged. Using this technique, I identified 13 groups of highly correlated
columns, each containing between 2 to over 275 CpG sites. Three strategies were considered to reduce
these groups: selecting a representative CpG, computing group-wise means or medians, and applying
Principal Component Analysis (PCA) to extract the first principal component from each group.

However, upon review and guidance from Dr. Gambino, it became evident that this direction,
although mathematically valid, was not suitable for the biological objective of this study. Specifically,
these techniques—particularly correlation filtering and PCA—risk discarding epigenetic outliers and
biologically relevant “noise,” which are central to detecting field defects in cancer. Moreover, PCA
transforms the CpG matrix into new principal components, thereby removing the ability to directly
trace anomalous methylation signals back to specific genomic sites, which is critical for downstream
gene and pathway analysis.

Although this approach was eventually discontinued, documenting it here reflects a comprehensive
investigation of possible preprocessing strategies.

Analysis Objective

The primary objective of using this dataset was to identify methylation outliers—CpG sites with
extreme beta values in individual samples—that may serve as early indicators of cancer development.
These outliers were subsequently subjected to algorithmic detection using several machine learning
models, and the biological interpretation was further refined through gene annotation and pathway
enrichment analyses.

2.2 Data Preparation

The data preparation phase was critical in ensuring that the methylation data from the GSE69914
dataset was suitable for downstream analysis, especially given its high dimensionality (over 450,000
CpG sites) and the complexity of detecting biologically meaningful outliers. The following steps
outline the complete preprocessing pipeline.

2.2.1 Dataset Acquisition and Preprocessing

The GSE69914 dataset was downloaded from the Gene Expression Omnibus (GEO) and contains
methylation beta values across different breast tissue types: cancerous, adjacent-normal, and normal
tissues. The platform used is the Illumina HumanMethylation450 BeadChip, which provides broad
coverage of the methylome. The dataset had already been normalized and underwent quality control,
as confirmed from its GEO metadata.

Due to memory constraints associated with large ‘.txt* files, the dataset was saved in ‘.csv‘ format
and stored in Google Drive for direct access via the gdown library in Google Colab. This optimization
significantly improved data loading performance and reduced RAM usage.



2.2.2 Conversion from Beta-values to M-values

The dataset provided beta-values representing the proportion of methylation at each CpG site across
samples, ranging from 0 (completely unmethylated) to 1 (fully methylated). While beta-values are
intuitive for biological interpretation, they suffer from heteroscedasticity—where the variance is not
uniform across the range—which can bias downstream statistical tests and outlier detection.

To address this, beta-values were transformed into M-values using the standard logit transforma-
tion:

u=tos, (125

Before transformation, beta-values were clipped within the range [10%,1—107] to prevent mathe-
matical instability due to division by zero or logarithm of zero. The dataset, being large, was processed
in chunks of 10,000 rows at a time to prevent RAM overflow in Google Colab. The transformation
was applied only to numeric columns (excluding the ID REF column), and the converted M-values
were written back into a single DataFrame.

Justification for Choosing M-Values: M-values are preferred in differential methylation and
variance-based studies due to their improved statistical properties. They correct for heteroscedasticity
inherent in beta-values—particularly at extreme methylation levels—and better satisfy the assump-
tions of many machine learning and statistical models. Furthermore, they yield a more symmetric
distribution across features, enhancing the effectiveness of variance thresholding and outlier detection.

2.2.3 Data Structure and Transposition

Initially, rows corresponded to CpG probes and columns to sample IDs. To align with machine
learning frameworks where rows represent samples and columns represent features, the dataset was
transposed. This facilitated downstream labeling and analysis.

2.2.4 Sample Grouping and Labeling

To support supervised analysis and evaluation across biological contexts, samples were categorized
into three primary groups:

e Cancer — Breast tumor tissues.
e Adjacent-normal — Tissues adjacent to tumors.

e Normal — Healthy tissues from cancer-free individuals.

Based on manual inspection of metadata, and in the absence of a sample sheet from GEO, a
custom classification was constructed to label each sample appropriately. Sample IDs were manually
assigned into their respective categories using information embedded in GEO file names.

An integer label column was added: 0 for normal, 1 for adjacent-normal, and 2 for cancer. Any
unclassified samples were discarded to ensure consistency and analytical clarity.

2.3 Dimensionality Reduction Techniques

Due to the high dimensionality of methylation datasets—often exceeding 450,000 CpG sites—dimensionality
reduction was critical to enable meaningful analysis while maintaining biological relevance. A multi-
phase pipeline was employed to sequentially filter features based on statistical properties, biological
knowledge, and supervised learning approaches.



2.3.1 Variance Thresholding

Variance thresholding was used as a primary filter to exclude CpG sites with low variability across
samples, which are less likely to capture disease-related patterns.

Statistical Summary:

e Mean variance: 0.0231

Median: 0.0222

Standard deviation: 0.0102

e Minimum: 0.0016

e Maximum: 0.1571

Thresholds Evaluated:

e 0.01: Captures sites above the 25th percentile.

e 0.015: Near the median, capturing moderate-to-high variance.

e 0.02: Restricts selection to the top 25% most variable CpGs.

Visualization: Figure 2.1 illustrates the distribution of variance across CpGs, with vertical lines
showing threshold levels.

Variance Distribution with Multiple Thresholds
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Figure 2.1: Distribution of CpG site variances. Thresholds at 0.01, 0.015, and 0.02 are overlaid to illustrate
selection sensitivity.

Comparative Evaluation:
e At 0.01, too many features were retained, resulting in memory overload during model training.
e At 0.02, 291,830 features were retained, optimizing speed but risking biological loss.

e At 0.015, 390,742 CpGs were retained—Dbalancing coverage and feasibility.



Final Decision: A threshold of 0.015 was chosen for all downstream analyses as it provided a
biologically meaningful subset while remaining computationally feasible in a Colab environment.

2.3.2 Biological Relevance-Based Filtering

Another strategy I implemented for dimensionality reduction was the selection of CpG sites based on
biological relevance, specifically those previously implicated in breast cancer. This approach aims to
prioritize features that are not only statistically informative but also grounded in prior biomedical
findings.

Method: I curated a list of CpG sites associated with known breast cancer-related genes from the
literature. These include genes involved in tumor suppression (e.g., BRCA1, RASSF1A), hormone
receptor signaling (e.g., ESR1, ERBB2), DNA damage response (e.g., TP53, HIF1A), and others.
A total of 70 CpG sites were selected from studies that examined methylation signatures in breast
cancer and from reputable genomic databases.

Sources:

e Yan et al. [27] employed CpG island arrays to identify aberrant methylation in BRCA1 and
RASSF1A.

e Feng et al. [16] studied methylation in relation to hormone receptor status, highlighting FSR1
and ERBB2.

o Widschwendter & Jones [26] reviewed the role of DNA methylation in breast carcinogenesis.

e Rice et al. [21] demonstrated that methylation in the BRCA1 promoter reduces its expression
in sporadic breast cancer.

e Li et al. [19] linked CpG methylation in HIF1A to its elevated expression and hypoxia-related
responses in tumors.

Databases Consulted:

e The Cancer Genome Atlas (TCGA) [1].

e Gene Expression Omnibus (GEO) [2].

e Illumina 450K/EPIC BeadChip CpG annotations [3].

This biologically guided filtering allowed for an interpretable and hypothesis-driven feature subset,
forming a bridge between statistical analysis and molecular oncology.

2.3.3 Univariate Statistical Feature Selection — ANOVA (F-test)

The Analysis of Variance (ANOVA) F-test is a statistical method used to assess whether there are
significant differences in the means of a numerical variable (in this case, methylation levels at each
CpG site) across multiple categorical groups (normal, adjacent-normal, and cancer tissue types). It
is particularly useful when evaluating features individually to determine how strongly each CpG site
discriminates between sample classes.

Goal: To retain CpG sites that show statistically significant differences in methylation levels
across the tissue groups, identifying those that may serve as potential biomarkers or indicators of
early cancer progression.

Method: I employed the SelectKBest method from scikit-learn with the f_classif scoring
function. This function computes the ANOVA F-value for each feature, measuring the ratio of variance
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between the groups to the variance within the groups. CpG sites with higher F-values are more likely
to show distinct methylation profiles across the tissue types.

Interpretation: A high F-statistic and a low p-value indicate that the CpG site exhibits sig-
nificant differences in methylation across the groups, warranting retention for further analysis. This
method assumes that the values within each group are normally distributed and that variances are
approximately equal (homoscedasticity), although it remains robust under mild violations.

Implementation Detalils:

e CpG features were ranked by their F-statistics.

e The top 1,000 CpG sites were selected based on their scores.

e This subset was used for downstream machine learning and biological interpretation tasks.
Advantages:

e Simple, fast, and interpretable.

e Highlights CpGs most distinctively different across conditions.

Limitations:

e Sensitive to outliers and assumptions of normality.

e Evaluates features independently, ignoring multivariate interactions.

2.3.4 Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) was applied as a supervised, model-based feature selection
technique to further reduce the dimensionality of the methylation dataset after applying variance
thresholding. RFE is particularly effective when the objective is to retain features that are most
informative for classification tasks, while discarding those that contribute minimally to predictive
performance.

Concept: RFE operates by recursively training a model and pruning the least important features
based on the model’s internal importance scores. At each iteration, the model ranks all features, and a
defined number of the lowest-ranking features are eliminated. This process continues until the desired
number of features remains.

Model and Configuration: In this analysis, a Random Forest classifier was used as the estimator
due to its ability to capture nonlinear relationships, robustness to overfitting, and built-in mechanism
for evaluating feature importance. RFE was configured to select the top 100 most relevant CpG sites.
A step size of 500 features per iteration was used to make the elimination process computationally
feasible, given the large number of features remaining after variance filtering.

Outcome: The dimensionality of the dataset was successfully reduced from over 290,000 CpG
sites to just 100. These retained features represent the most discriminative CpG sites with respect
to the three tissue classes: normal, adjacent-normal, and cancer. The resulting dataset retained the
original sample indexing and was fully compatible with subsequent classification and outlier detection
analyses.

Advantages:

e Produces a compact and highly informative feature set tailored to the classification problem.
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e Offers model-driven feature relevance scores, avoiding reliance on arbitrary statistical thresholds.
e Particularly well-suited for high-dimensional biological datasets.

Limitations:

e Computational cost increases with dataset size, particularly in early iterations.

e Feature rankings can vary depending on the base estimator and presence of correlated features.
e Does not inherently prioritize biological interpretability, requiring downstream annotation.

Overall, RFE contributed to the construction of a biologically and statistically robust feature set,
ensuring the retention of CpG sites most critical to class discrimination in methylation-based breast
cancer analysis.

2.3.5 Excluded Methods: Correlation Filtering and PCA

Two dimensionality reduction methods were initially explored but later excluded:

e Correlation Filtering: Groups of highly correlated CpGs were identified and reduced by
retaining one representative per group. However, this method was abandoned based on expert
feedback because it risks eliminating the specific CpG harboring an epigenetic outlier—crucial
to our study’s objective.

e Principal Component Analysis (PCA): PCA was not used because it transforms original
CpG values into principal components, making it impossible to trace back specific CpGs respon-
sible for variation. This loss of interpretability is incompatible with our biomarker discovery
goals.

Summary: The dimensionality reduction pipeline combined unsupervised filtering (variance), bi-
ological relevance (literature-derived CpGs), univariate statistics (ANOVA), and model-based feature
selection (RFE). Together, these steps ensured that retained features were computationally manage-
able, statistically discriminative, and biologically relevant for downstream analysis.

2.4 Outlier Detection Methods

Identifying DNA methylation outliers is essential for uncovering early epigenetic disruptions that may
signal the onset of cancer. In this study, multiple machine learning (ML) algorithms were employed to
flag CpG sites exhibiting significant deviations from typical methylation patterns across three tissue
categories: cancer, adjacent-normal, and normal. The multi-algorithm strategy enhanced robustness,
allowed cross-validation of results, and enabled detection of both global and local anomalies.

The dataset was filtered using a variance threshold of 0.015 and some other methods which were
mentioned before, balancing biological richness with computational feasibility. Outlier detection was
then performed using five distinct methods: Isolation Forest, Local Outlier Factor (LOF), One-Class
SVM, Z-score, and K-Nearest Neighbors (KNN). Each method provides a different perspective on what
constitutes an outlier, varying in their sensitivity to global vs. local deviations and their assumptions
about data structure.
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2.4.1 Isolation Forest

Isolation Forest is a tree-based algorithm optimized for anomaly detection in high-dimensional data.
It isolates anomalies by recursively partitioning data using randomly chosen features and split values.
Points that require fewer splits to be isolated are flagged as outliers.

Key Advantages:

o Effective for global outlier detection.

e Scales well with large, high-dimensional datasets such as methylation profiles.
e Non-parametric: No assumptions about data distribution.

Hyperparameter Tuning: I tested multiple values for n_estimators (100, 125, 150, 175, 200).
Higher values increased precision and stability, while lower values were faster and suitable for prelim-
inary scans.

Observations: Isolation Forest consistently flagged certain CpG sites (e.g., cg19374752) across
all tissues and configurations. Its ability to detect outliers based on tree depth proved valuable for
identifying globally aberrant methylation sites.

2.4.2 Local Outlier Factor (LOF)

LOF is a density-based method that compares the local density of a point with its neighbors. Outliers
are those with substantially lower density.

Key Advantages:
e Captures local deviations that may not appear anomalous globally.

e Adaptable to varying neighborhood structures.

Hyperparameter Tuning: LOF was run using n neighbors values of 5, 10, 15, and 20. Lower
values captured subtle anomalies; higher values prioritized robustness.

Observations: LOF identified CpG sites exhibiting localized irregular methylation. It was espe-
cially useful in detecting anomalies in adjacent-normal tissues, supporting the field defect hypothesis.

2.4.3 One-Class Support Vector Machine (OC-SVM)

OC-SVM constructs a boundary around the majority of the data using kernel functions. Points falling
outside this boundary are flagged as outliers.

Key Advantages:
e Suitable for high-dimensional data.
e Creates a global boundary around normal instances.

Hyperparameter Tuning: The nu parameter was varied across 0.01, 0.05, 0.15, and 0.2. Lower
nu values result in strict detection; higher values detect broader anomaly distributions.

Observations: OC-SVM consistently flagged core CpG sites across tissue types. However, it was
less sensitive to tissue-specific deviations, suggesting its strength lies in identifying common epigenetic
disruptions.
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2.4.4 Z-Score Based Detection

This statistical approach flags CpG sites as outliers based on their standardized distance (Z-score)
from the mean methylation value.

Key Advantages:

e Simple and interpretable.

e Effective as a baseline model.

e Useful for datasets with approximately normal distribution.

Thresholds Used: 1.5 to 2.0 in 0.1 increments. Lower thresholds captured minor deviations,
while higher thresholds focused on extreme methylation shifts.

Observations: Z-score effectively flagged both extreme and subtle anomalies. Consistent outliers
such as cg00000622 were frequently detected, and threshold tuning provided flexible control over
sensitivity.

2.4.5 K-Nearest Neighbors (KNN)

KNN was adapted for outlier detection by calculating the average distance to each point’s nearest
neighbors. Points with large average distances were marked as outliers.

Key Advantages:
e No assumptions on data distribution.
e Detects outliers based on proximity in CpG methylation space.

Parameter Tuning: n_neighbors values tested were 3, 5, 8, 10, and 12.

Observations: KNN identified both global and tissue-specific anomalies. It was particularly
useful in adjacent-normal tissues, highlighting CpG sites that diverge early during transformation.
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3 | Results and Discussion

3.1 Cross-Comparison of Outliers Across Tissue Types

Objective: The goal of this analysis was to identify CpG sites consistently flagged as outliers
across different machine learning algorithms, hyperparameter configurations, and tissue types (cancer,
adjacent-normal, and normal). This helps uncover robust epigenetic changes that may act as early
indicators of cancer development.

Algorithms Used
e K-Nearest Neighbors (KNN)

e [solation Forest
e Local Outlier Factor (LOF)
e One-Class SVM

e 7-Score Based Thresholding

Shared CpG Outliers Across Tissue Types

Several CpG sites were consistently flagged as outliers across tissue types and multiple algorithms,
suggesting potential roles in cancer initiation or progression. These included:

e cgl19374752: Detected across all tissue types using KNN and consistently found in all algo-
rithms and configurations.

e cg00000622: Identified by Isolation Forest, LOF, One-Class SVM, and Z-score across multiple
configurations and tissues.

e cg00000108: Frequently flagged across LOF, Isolation Forest, and One-Class SVM.
e cg21908886: Shared among LOF, One-Class SVM, and Z-score in all tissue groups.

e cg04242728: Detected mainly by One-Class SVM and Z-score in adjacent-normal and cancer
tissues.

Summary of Shared and Tissue-Specific Outliers

Table 3.1 details the detection of specific CpG sites as outliers across tissue types and algorithm
configurations. Each row corresponds to a CpG site identified in at least one configuration. Algorithms
and their parameter values (such as KNN neighborhood size, Isolation Forest tree count, and Z-
score thresholds) are fully enumerated to provide clear traceability. CpG sites like cg19374752 and
cg00000622 were detected across nearly all algorithms and configurations in all three tissue types,
indicating their potential as robust biomarkers. Conversely, sites such as cg23006567 and cg12492087
were more specific to one tissue type, suggesting potential context-dependent methylation anomalies.
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Table 3.1: Outlier CpG Sites Detected Across Algorithms, Configurations, and Tissue Types

CpG Site

Cancer

Adj-Normal

Normal

Algorithms and Configurations

cg19374752

v

v

v

KNN(n=3,5,8,10,12),
LOF(n=5,10,15,18,20),
OC-SVM(nu=0.01,0.05,0.15,0.2),
Z-Score(1.5,1.6,1.7,1.8,1.9,2.0),

IF (n_estimators=100,125,150,175,200)

cg00000622

LOF(n=5,10,15,18,20),

OC-SVM (nu=0.01,0.05,0.15,0.2),
7-Score(1.5,1.6,1.7,1.8,1.9,2.0)

IF (n_estimators=100,125,150,175,200),

cg00000108

LOF (n=15,18,20),
OC-SVM (nu=0.01,0.05,0.15,0.2)
IF(100,125,150,175),

cg21908886

LOF (n=5,10),
OC-SVM(nu=0.01,0.05,0.15,0.2),
Z-Score(1.5,1.6,1.7,1.8,1.9,2.0)

cg04242728

OC-SVM (nu=0.01,0.05,0.15,0.2),
Z-Score(1.5,1.6,1.7,1.8,1.9,2.0)

cg00001099

OC-SVM(nu=0.01,0.05,0.15,0.2),
Z-Score(1.5,1.6,1.7,1.8)

cg13456241

OC-SVM(nu=0.01,0.05,0.2),
Z-Score(1.5,1.6,1.7)

cg23006567

OC-SVM (nu=0.05,0.15,0.2)

cgl1731596

KNN(n=3,5,8,10),
Z-Score(1.5,1.6,1.7)

cg17939805

KNN(n=5,8,10),
Z-Score(1.5,1.6,1.7,1.8)

cg12492087

OC-SVM (nu=0.15,0.2),
Z-Score(1.5,1.6,1.7)

cg16085649

OC-SVM(nu=0.15,0.2),
Z-Score(1.5,1.6,1.7,1.8)
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Venn Diagram of Outlier CpG Sites Across Tissue Types

Cancer
Adjacent-Normal

Normal

Figure 3.1: Venn diagram showing shared and unique CpG site outliers across cancer, adjacent-normal, and
normal tissues.

To visually represent the overlap among cancer, adjacent-normal, and normal tissues, a Venn diagram
(Figure 3.1) was generated. It shows CpG sites that are uniquely or jointly identified across tissue
types. Sites like cg19374752 lie at the intersection of all three regions, while tissue-specific outliers
such as cg11731596 (adjacent-normal) or cg16085649 (normal) reside in non-overlapping regions.
This visualization underscores both the shared and divergent epigenetic alterations present in early
cancer progression.

Interpretation and Conclusions

Interpretation: CpG sites detected consistently across algorithms and tissues (such as cg19374752
and cg00000622) are strong biomarker candidates. In contrast, tissue-specific sites like cg11731596
(adjacent-normal only) may reflect early epigenetic field defects.

Algorithm Sensitivity: The results varied depending on the algorithm and hyperparameter
choice. KNN and Isolation Forest detected more cancer-related outliers, while Z-score and OC-SVM
identified subtle deviations in adjacent-normal tissues.

Conclusion: This cross-comparison provides biological and methodological insight, reinforcing

the importance of using multiple algorithms and tissue types to detect robust and early cancer-
associated epigenetic changes.

3.2 Validation of Matched Samples

Objective

The aim of this step was to investigate whether patient identifiers (IDs) were available in the GSE69914
dataset to support paired analysis between breast cancer samples and their corresponding cancer-
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adjacent normal tissues. The presence of matching IDs is crucial for minimizing biological variability
due to inter-individual differences and for testing hypotheses such as the epigenetic field defect.
Search for Patient IDs

A thorough review of the dataset’s metadata and supplementary files was conducted to locate patient-
specific identifiers that could be used to pair cancer and adjacent-normal samples. Key files examined
included:

e GEO series matrix files
e Supplementary raw data files (e.g., GSM1712772_BCFD400_Raw. txt)

e Platform annotation files (GPL13534)

Despite this extensive search, no explicit patient IDs or sample pairing indicators were found. None
of the available files contained structured information that could be used to associate samples from
the same patient. The filenames and metadata fields focused primarily on sample-level annotations
(e.g., tissue type, platform ID), without linking them to individual subjects.

Conclusion

The absence of patient-specific identifiers in the GSE69914 dataset precluded any possibility of con-
ducting paired analysis between cancer and cancer-adjacent normal tissues. While the study design
implied a match between certain samples (e.g., based on tissue proximity), no metadata could reliably
support such alignment.

As aresult, all analyses in this thesis proceeded using group-based comparisons rather than patient-
matched pairs. This limitation is important to note, especially for hypotheses involving early field
defects, as paired data would have offered stronger statistical power and biological interpretability.

Future work may benefit from integrating external clinical metadata or contacting the dataset
authors directly to obtain patient-matching information, if available.

3.3 Methylation Patterns and Pathway Enrichment

Overview and Objective

This section explores differential methylation patterns between normal, adjacent-normal, and cancer
breast tissues using data from the GSE69914 dataset. The goal was to identify statistically significant
CpG sites, annotate them with genomic features, and explore biological implications through pathway
enrichment.

3.3.1 Statistical Identification of Significant CpG Sites

Comparative Analysis Using T-tests

To detect methylation alterations associated with cancer progression, independent two-sample t-tests
(with Welch’s correction) were conducted between:

e Normal vs Cancer
e Normal vs Adjacent-Normal

e Adjacent-Normal vs Cancer
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Pre-filtering: Prior to statistical testing, CpG sites were filtered based on two criteria to ensure
analytical robustness and biological relevance. First, a variance threshold of 0.01 was applied to
eliminate sites with negligible variability across samples, which are unlikely to carry informative
signal. Second, a fold-change cutoff of 0.1 was enforced to retain only those CpG sites exhibiting
substantial average methylation differences between groups. This combination focuses the analysis on
CpG sites with both statistically and biologically meaningful variation.

Multiple Testing Correction: Given the large number of CpG sites tested (often exceeding
400,000), unadjusted p-values would result in an unacceptably high false positive rate. To address
this, the Benjamini-Hochberg procedure was employed to control the false discovery rate (FDR). CpG
sites were retained for further analysis only if their adjusted p-values satisfied p,q; < 0.05, ensuring
that the identified signals were unlikely to arise by chance alone.

Results Summary

e Normal vs Cancer: 91,954 significant CpG sites
e Normal vs Adjacent-Normal: 1,348 significant CpG sites

e Adjacent-Normal vs Cancer: 101,330 significant CpG sites

CpG Site Overlap

e Shared across all groups: 1,089 CpGs

Shared between Normal vs Cancer and Normal vs Adjacent: 1,250

Shared between Adjacent vs Cancer and Normal vs Adjacent: 1,104

Unique to Normal vs Cancer: 27,646

Unique to Adjacent vs Cancer: 37,168

Unique to Normal vs Adjacent: 83

To better visualize the statistical landscape of significant CpG sites, several figures were generated.
Figure 3.2 shows the number of shared and unique CpGs across comparisons, emphasizing the high
volume of unique CpGs between cancerous and other tissues. Figure 3.3 further confirms these
relationships with a Venn diagram that highlights overlaps in significant CpG sites. Finally, Figure 3.4
illustrates the p-value distributions, where both cancer-related comparisons show strong statistical
separation, while normal vs adjacent-normal shows more moderate divergence.
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Comparative Insights: CpG Sites
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Figure 3.2: Comparative bar plot showing the number of significant CpG sites that are shared or unique
across pairwise group comparisons. Most CpG sites are uniquely significant in the Cancer vs Adjacent-Normal
and Cancer vs Normal comparisons, suggesting stronger methylation shifts in tumor progression. Only 1,089
CpGs are shared across all three comparisons.

Overlap of Significant CpG Sites Across Comparisons

Normal vs Cancer

ormal vs Adjacent
3

Adjacent vs Cancer

Figure 3.3: Venn diagram visualizing overlap of significant CpG sites among the three pairwise comparisons.
The largest shared region is between Normal vs Cancer and Adjacent-Normal vs Cancer, consistent with similar
methylation patterns between adjacent and normal tissues.
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P-value Distribution: Normal vs Cancer P-value Distribution: Normal vs Adjacent P-value Distribution: Adjacent vs Cancer
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Figure 3.4: P-value distributions for each pairwise group comparison. Left: Normal vs Cancer shows a high
concentration of CpG sites with extremely low p-values, indicating strong methylation differences. Middle:
Normal vs Adjacent-Normal shows a less skewed distribution with fewer significant changes. Right: Adjacent-
Normal vs Cancer again shows many strongly significant sites, supporting progressive methylation changes.

3.3.2 Annotation of Significant CpG Sites

Objective: To provide biological context to the list of statistically significant CpG sites by linking
them to gene annotations and known regulatory genomic features. This aids in determining which
methylation alterations are most likely to affect gene regulation and, consequently, cancer progression.

Annotation Methodology: Following the identification of significant CpG sites across three
pairwise group comparisons (Normal vs Cancer, Adjacent vs Cancer, Normal vs Adjacent), each site
was annotated using genomic annotation files. These annotations mapped each CpG site to associated
genes, promoter regions, gene bodies (exons, introns), and regulatory features such as CpG islands,
shores, shelves, and open seas.

e CpG sites were matched with known gene identifiers (e.g., UCSC_RefGene_Name, GeneRegion Feature).

e Features such as promoter-associated CpGs were prioritized as more likely to influence gene
transcription.

e The annotated CpGs were categorized based on their significance across comparisons and their

genomic context.

Filtering for Biological Relevance: To refine the annotation, only CpG sites located within
promoter regions, first exons, or known regulatory elements were retained for further analysis. This
step eliminated intergenic or low-impact regions that are less likely to influence gene expression. The
resulting annotated dataframes were structured with 44 columns, including statistical metrics and
annotation descriptors.

e Normal vs Cancer: 91,954 significant CpGs
e Adjacent vs Cancer: 101,330 significant CpGs

e Normal vs Adjacent: 1,348 significant CpGs

Distribution of Adjusted P-values (Post-Annotation) To assess the statistical strength of
the annotated CpGs, histograms of adjusted p-values were plotted:
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P-value Distribution: Normal Vs Cancer P-value Distribution: Normal Vs Adjacent P-value Distribution: Adjacent Vs Cancer
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Figure 3.5: Distribution of adjusted p-values for significant CpG sites across three comparisons: Normal vs
Cancer (blue), Normal vs Adjacent (green), and Adjacent vs Cancer (red). Most p-values in cancer-related
comparisons are clustered near 0, suggesting strong statistical evidence of methylation changes.

Gene-Level Comparative Insights (Filtered) Following annotation, each CpG site was linked
to one or more genes. The resulting gene lists were compared across tissue comparisons:

e Shared Genes Across All Comparisons: 644 genes
e Unique Genes (Normal vs Cancer): 2,193 genes
e Unique Genes (Adjacent vs Cancer): 1,515 genes

e Unique Genes (Normal vs Adjacent): 7 genes

Gene Distribution Across Comparisons (Filtered Data)

2000

1500

1000

Number of Genes
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Figure 3.6: Bar chart showing the number of unique and shared genes annotated from significant CpG sites
across comparisons. Normal vs Cancer and Adjacent vs Cancer share the most overlap, while Normal vs
Adjacent contributes the fewest unique genes.
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Gene Overlap Across Comparisons (Filtered Data)

Normal vs Cancer

Adjacent

Adjacent vs Cancer

Figure 3.7: Venn diagram illustrating gene overlap across tissue comparisons (filtered data). Most genes are
unique to either Normal vs Cancer or Adjacent vs Cancer, while 644 genes are common to all three.

Interpretation of Results:

e High-Impact Genes: Genes identified across all tissue comparisons (e.g., BRCA1, RASSF1A)
may represent core methylation biomarkers involved in tumor suppression or oncogenesis.

e Tissue-Specific Regulation: Unique gene lists per comparison suggest stage- or context-
specific methylation patterns. For example, the 2,193 genes unique to the Normal vs Cancer
contrast could be directly involved in tumor onset, while the 1,515 unique to Adjacent vs Cancer
may reflect progressive changes from pre-malignant to malignant.

e Minimal Signals in Normal vs Adjacent: Only 7 unique genes were observed in the Normal
vs Adjacent comparison, reinforcing the hypothesis that field defect changes are subtle but
present.

Conclusion: The annotation of significant CpG sites with genomic features and gene contexts
has revealed patterns of methylation change with strong statistical and biological relevance. Shared
genes across comparisons highlight conserved mechanisms, while unique genes suggest stage-specific
events. These findings will inform pathway enrichment and downstream biomarker validation efforts.

3.3.3 Pathway Enrichment Analysis (GSEA)

Objective: To investigate the biological significance of differentially methylated genes by identi-
fying enriched pathways and molecular processes, thereby linking epigenetic alterations to potential
functional consequences in cancer development.

Rationale: DNA methylation affects gene expression and cellular behavior. Therefore, under-
standing which biological pathways are enriched among significantly methylated genes provides in-
sights into the molecular mechanisms altered in cancer progression. Gene Set Enrichment Analysis
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(GSEA) is a well-established method that detects coordinated changes in predefined gene sets rather
than analyzing genes individually, increasing statistical power and biological interpretability.

Methodology:

e Gene Set Preparation: Gene symbols associated with significant CpG sites (identified through
differential methylation analysis) were extracted for each of the three pairwise comparisons:

— Normal vs Cancer
— Adjacent-Normal vs Cancer

— Normal vs Adjacent-Normal

These gene lists were compiled from annotated CpG sites that passed the adjusted p-value
threshold (paqj < 0.05).

e Gene Set Enrichment Tool: Enrichment analysis was performed using the MSigDB (Molec-
ular Signatures Database) Hallmark gene set collection. The Hallmark sets consist of 50 curated
biological pathways that represent well-defined biological states or processes and show coherent
expression patterns across multiple datasets.

e Enrichment Algorithm: GSEA was executed using a hypergeometric test (or Fisher’s exact
test) to determine whether the overlap between input gene lists and predefined gene sets was
greater than expected by chance. The enrichment score was corrected for multiple testing using
the Benjamini-Hochberg procedure to control the false discovery rate (FDR).

Results and Interpretation:
e For the Normal vs Cancer comparison, enriched pathways included:

— E2F Targets, G2M Checkpoint, and MYC Targets — indicating deregulated cell cycle con-
trol.

— Apoptosis and p53 Pathway — highlighting disrupted tumor suppressor responses.

— DNA Repair and Hypozia — reflecting stress and genomic instability typical of cancer cells.

e For the Adjacent-Normal vs Cancer comparison, the following pathways were significantly
enriched:

— TNF-alpha signaling, Inflammatory Response, IL6-JAK-STATS signaling — pointing to
immune-related and inflammatory pathway involvement.

— Epithelial-Mesenchymal Transition (EMT) — suggesting early steps of metastasis and tissue
remodeling.

e For the Normal vs Adjacent-Normal comparison:

— No pathways reached statistical significance after FDR correction, reflecting fewer methy-
lation changes in this transition and supporting the idea that adjacent-normal tissue is
molecularly intermediate between healthy and cancerous states.

Biological Significance: The enriched pathways observed in the cancer and adjacent-normal
tissues reveal that methylation changes are not random but cluster in functionally related genes. This
suggests that epigenetic alterations drive coordinated disruptions in cancer-related processes. Notably,
the overlap of enriched pathways between Normal vs Cancer and Adjacent vs Cancer supports the
field defect hypothesis, where adjacent tissues exhibit pre-cancerous molecular signatures.

Conclusion: GSEA enabled identification of biologically meaningful pathways impacted by dif-
ferential methylation. These findings strengthen the link between CpG methylation and cancer pro-
gression, highlight candidate mechanisms, and may assist in the development of targeted diagnostics
or therapeutic strategies.
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3.4 Machine Learning-Based Outlier Detection

To identify anomalous methylation patterns indicative of cancer-related epigenetic changes, five ma-
chine learning (ML) algorithms were employed: K-Nearest Neighbors (KNN), Isolation Forest,
Local Outlier Factor (LOF), One-Class SVM, and Z-score Thresholding. These methods
were applied to a refined subset of the DNA methylation dataset derived from the GSE69914 study.

Before model application, the original high-dimensional dataset underwent a comprehensive multi-
stage dimensionality reduction and filtering pipeline, including;:

e M-value transformation: To stabilize variance and improve statistical robustness, beta values
were transformed into M-values.

e Variance thresholding at 0.015: Low-variance CpG sites were removed to focus on biologi-
cally informative regions.

¢ Biological relevance-based filtering: A curated list of breast cancer—associated CpG sites
from literature and public databases was used to retain loci of functional importance.

e Univariate statistical filtering (ANOVA): CpG sites with significant differences across
tissue types (cancer, adjacent-normal, and normal) were selected using F-test—based feature
selection.

e Recursive Feature Elimination (RFE): A wrapper-based feature selection approach using
Random Forest to further isolate the most informative CpG sites.

The resulting filtered dataset served as the input for outlier detection, enabling the algorithms
to operate on a biologically enriched and computationally manageable feature space. Outliers were
defined as CpG sites whose scores or deviations exceeded predefined thresholds across a spectrum
of hyperparameter configurations. By leveraging the strengths of diverse algorithms, this framework
aimed to detect both global and local methylation anomalies across tissue types, with the potential
to uncover early biomarkers of cancer and epigenetic field defects.

3.4.1 KNN-Based Outlier Detection
Objective

This section investigates the detection of anomalous CpG methylation patterns using K-Nearest Neigh-
bors (KNN)-based outlier detection. The primary goal was to identify CpG sites that deviate signifi-
cantly from local neighborhood structures across breast cancer, adjacent-normal, and normal tissues.
These outliers may serve as potential biomarkers for early cancer detection or reflect tissue-specific
epigenetic changes.

Outliers were defined as CpG sites whose average distance to their k nearest neighbors exceeded
the 95" percentile of the overall distance distribution. To ensure robustness, the algorithm was run
with multiple values of nueighbors: 3, 9, 8, 10, and 12.

Common CpG Sites Across Tissue Types and Hyperparameters: Several CpG sites were
consistently flagged as outliers across all tissues and hyperparameter settings:

e cg19374752: Detected in 25/25 runs across all tissues and npeighbors values (3, 5, 8, 10, 12).

e cg00000108: Detected in 20/25 runs in Cancer and Adjacent-Normal (n = 3,5,8,10), and in
15/25 runs in Normal (n = 3,5, 8).

e cg04242728: Found in 15/25 runs in both Adjacent-Normal and Normal (n = 5, 8,10, 12).
Tissue-Specific Outliers:

e Cancer-Specific:
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— ¢cg00001099, cgl13456241, cg23006567 Detected in Cancer (15/25 cases; n = 3,5,8,10);
absent in other tissues.

e Adjacent-Normal Specific:

— ¢cg11731596, cg17939805 Found in Adjacent-Normal (15/25 cases; n = 3,5,8); not de-
tected in Cancer or Normal.

e Normal-Specific:

— ¢g12492087 Identified in Normal (15/25 cases; n = 5,8, 10); absent in other tissue types.

Shared and Unique Outlier Genes Across Tissue Types

Normal

Breast Cancer

Normal

Figure 3.8: Venn diagram showing overlap of KNN-detected outliers across cancer, adjacent-normal, and
normal tissues. Shared CpGs such as cg19374752 appear in all three, while others are uniquely associated with
specific tissue types.

Hyperparameter Sensitivity:
e Low 7peighbors (3, 5): Captures strong, local outliers with sharp deviations.

e High nyeighbors (10, 12): Captures broader anomalies with more diffuse deviation patterns.

Interpretation and Insights:

e Consistent Outliers: CpG sites like cg19374752 and cg00000108, found across all settings
and tissues, are strong candidates for universal biomarkers.

e Field Defect Indicators: CpGs like cg11731596 and cg17939805 in adjacent-normal tissues
suggest early methylation drift near tumors.

e Tissue Specificity: Sites like cg12492087 in normal tissues may serve as controls for distin-
guishing disease-specific epigenetic patterns.
3.4.2 Isolation Forest-Based Outlier Detection
Objective:

This analysis aimed to detect CpG outliers across three tissue types—breast cancer, adjacent-normal,
and normal—using multiple configurations of Isolation Forest. The objective was to identify robust,
shared, and tissue-specific epigenetic signals that could potentially serve as cancer biomarkers.
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Algorithm and Hyperparameters
e Algorithm: Isolation Forest
e Contamination: 1% (indicates assumed proportion of outliers)

e n_estimators (Number of Trees): 100, 125, 150, 175, 200

Outliers were flagged in each tissue and configuration. CpG sites consistently identified across
tissues and hyperparameters were considered biologically significant.

Cross-Tissue and Configuration Analysis

Common CpG Sites Across All Tissues

e cgl19374752: Detected in all 25 runs (5 configs x 3 tissues). Highly robust signal across all
tissue types and configurations.

e cg00000108: Detected in 20/25 runs for cancer and adjacent-normal (n_estimators = 100,125,150,175),
and 10/25 in normal tissue (n_estimators = 100,125).

e cg04242728: Detected in 15/25 runs in adjacent-normal (125-175) and normal tissues (100,150,175).

Tissue-Specific CpG Sites Cancer-Specific Outliers:
e cg00001099, cgl13456241, cg23006567 — Detected in cancer only (n_estimators = 100,125,150).
Adjacent-Normal-Specific Outliers:
e cgl1731596, cg17939805 — Detected only in adjacent-normal (n_estimators = 125-175).
Normal-Specific Outliers:

e cg12492087 — Identified in normal tissue (n_estimators = 100,150,175).

Venn Diagram of CpG Sites Based on Provided Data
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Figure 3.9: Venn diagram illustrating shared and unique CpG sites across breast cancer, adjacent-normal, and
normal tissues as detected by Isolation Forest. cg19374752 and cg00000622 are present in all sets, indicating
high robustness.
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Hyperparameter Influence

e Low values (100-125): Capture prominent anomalies.

e High values (175-200): Capture subtler CpG deviations.

Sites like cg19374752 consistently emerge across all settings, reinforcing their robustness.

Biological Interpretation

e Shared Outliers: CpG sites such as cg19374752 and cg00000622 detected across all tissues
suggest global methylation anomalies that may underpin cancer biology.

e Cancer-Adjacent Overlaps: CpG sites like cg00000108 appear in both cancer and adjacent-
normal tissue, supporting field defect hypotheses.

e Tissue-Specific Signals: Unique CpGs highlight early transformation (adjacent-normal) or
healthy variability (normal).
Conclusion

Isolation Forest proved effective in capturing both widespread and tissue-specific outliers. It con-
sistently detected CpG sites like cg19374752, reinforcing their biomarker potential. Sites unique to
cancer or adjacent tissues may reflect early epigenetic shifts and deserve further functional validation.
3.4.3 Local Outlier Factor (LOF)

Objective

This analysis aimed to detect CpG sites with anomalous methylation patterns across three tissue
types (breast cancer, adjacent-normal, and normal) using the Local Outlier Factor (LOF) algorithm.
The goal was to uncover both consistent and tissue-specific epigenetic outliers that may serve as
biomarkers for early detection or disease progression.

Algorithm and Hyperparameters
e Algorithm: Local Outlier Factor (LOF)

e n_neighbors: 5, 10, 15, 18, 20

Outlier Detection Method: CpG sites were classified as outliers based on their deviation from
local density using LOF scores. CpG columns were flagged if identified in the LOF CSV outputs
across the tested hyperparameter values.

Detailed Cross-Tissue Findings
Common CpG Sites Detected in All Tissues and Configurations:

e cgl19374752: Identified as an outlier in all 5/5 configurations (n=>5, 10, 15, 18, 20) across all
three tissue types — 25/25 total detections

e cg00000622: Detected in all configurations across all tissues — 25/25 detections

Tissue-Specific Outliers: None found. All CpG sites flagged by LOF were consistent across
tissues and no unique outliers were identified in only one tissue type or configuration.

28



Impact of Hyperparameter Tuning

e Low n neighbors (5, 10): Increased sensitivity, capturing CpG sites with subtle deviations in
local density.

e High n neighbors (18, 20): More conservative, highlighting only strongly deviating sites with
pronounced local sparsity.

Visual Summary

Venn Diagram of CpG Sites (LOF Analysis)

Breast Cancer Normal

Adjacent Normal

Figure 3.10: Venn diagram illustrating CpG outliers detected by LOF across tissue types. Only two CpG
sites (cg19374752, cg00000622) were found consistently across all tissue types. No tissue-specific outliers were
observed.

Conclusion

This LOF-based analysis yielded two consistently detected CpG sites (cg19374752 and cg00000622)
across all tissue types and hyperparameter settings. These CpGs may serve as stable methylation
biomarkers. However, no tissue-specific outliers were observed, which suggests a potential limitation
of the LOF method in detecting localized epigenetic changes or a high degree of overlap in methylation
profiles between tissue types. Future studies could integrate LOF with complementary algorithms to
improve tissue resolution.

3.4.4 One-Class SVM
Objective

This analysis investigates the application of One-Class Support Vector Machine (OC-SVM) to detect
CpG site-level outliers across three breast tissue types—cancer, adjacent-normal, and normal. The
goal is to uncover shared or tissue-specific methylation patterns that may serve as early indicators of
cancer progression or epigenetic field defects.
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Algorithms and Hyperparameters
e Algorithm: One-Class Support Vector Machine (OC-SVM)

e Outlier Detection Basis: Decision boundary around the distribution of inliers. Outliers are
those falling outside the learned boundary.

e Key Hyperparameter: v (nu) — an upper bound on the fraction of training errors (i.e.,
outliers).

e Values tested: 0.01, 0.05, 0.15, 0.20
e Contamination: Fixed internally by v

e Kernel: Radial Basis Function (RBF)

Results and Cross-Tissue Comparison
Common CpG Sites Across All Tissue Types

e cg19374752 — Detected in all 25/25 configurations across all three tissues: nu = 0.01, 0.05,
0.15, 0.20

e cg00000622 — Also consistently detected in 25/25 configurations for each tissue

These sites show robust deviation from normal methylation patterns and are strong candidates for
pan-tissue biomarkers.

Tissue-Specific Outliers

No tissue-specific outliers were detected under any nu configuration, suggesting a lack of distinct
local-only methylation changes in this dataset.

Hyperparameter Sensitivity

e nu = 0.01: Most conservative; detected only extreme outliers.
e nu = 0.05: Balanced; captured both strong and moderate deviations.
e nu = 0.15: Detected broader but still biologically plausible outliers.

e nu = 0.20: Most inclusive setting; flagged many subtle deviations.

Comparative Insights

e Shared Biomarkers: Sites like cg19374752 and cg00000622 emerged as robust outliers across
all tissues and parameter sets.

e Tissue Homogeneity: The absence of tissue-specific outliers implies substantial overlap in
methylation anomalies across tissue types or limited resolution for detecting context-specific
changes with OC-SVM.

e Algorithm Behavior: OC-SVM is highly effective at defining a global decision boundary but
may benefit from integration with local anomaly detectors for finer resolution.
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Venn Diagram of CpG Sites (OC-SVM Analysis)

Breast Cancer Normal

Adjacent Normal

Figure 3.11: Venn diagram showing the overlap of CpG sites flagged as outliers across breast cancer, adjacent-
normal, and normal tissues using OC-SVM. The intersection contains only 2 CpG sites shared across all tissues.
No tissue-specific outliers were observed.

Summary

This OC-SVM-based analysis provided high consistency in outlier detection across tissue types, es-
pecially for CpG sites like cg19374752 and cg00000622. While tissue-specific markers were not
observed, the results support the existence of globally disrupted methylation sites potentially relevant
for cancer diagnostics. The sensitivity of detection was influenced by the v parameter, emphasizing
the importance of tuning this hyperparameter when applying OC-SVM in biological contexts.

3.4.5 Z-Score Detection

Objective

This analysis aimed to identify CpG sites consistently flagged as outliers across various Z-score thresh-
olds and tissue types (breast cancer, adjacent-normal, and normal). The objective was to uncover
both shared methylation patterns and tissue-specific markers indicative of cancer progression or early
detection.

Algorithm and Hyperparameters

Algorithm: Z-score based statistical outlier detection.

Hyperparameters: Threshold values used: 2.0, 1.9, 1.8, 1.7, 1.6, and 1.5.

Outlier Identification: CpG sites were flagged as outliers if their methylation Z-score exceeded the
specified threshold. A lower threshold (e.g., 1.5) identifies subtle anomalies, while a higher threshold
(e.g., 2.0) focuses on extreme deviations.

Cross-Comparison of Outliers Across Tissues and Thresholds

Consistently Flagged CpG Sites:
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e cg19374752: Detected in 30/30 configurations across all thresholds (1.5 to 2.0) and all three
tissue types. This site shows strong universal deviation.

e cg00000622: Found in Cancer and Adjacent-Normal in 4/6 thresholds (1.5-1.8) and in Normal
in 3/6 thresholds (1.5-1.7); total: 20/30 Cancer, 20/30 Adjacent-Normal, 15/30 Normal.

Tissue-Specific Outliers:

e Cancer-Specific: cg17137218, cg21346043, cg19484420 — detected in Cancer in 3/6 thresh-
olds (1.7-1.9).

e Adjacent-Normal-Specific: cg11731596, cg17939805 — flagged in thresholds 1.7-2.0.

e Normal-Specific: cg12492087, cg15509687, cg03617826, cg06629130 — consistently flagged
only in Normal.

Effect of Threshold Variation

e Thresholds 2.0, 1.9: Detected only extreme deviations, resulting in fewer CpG outliers.

e Thresholds 1.6, 1.5: Identified additional, more subtle methylation shifts, particularly in
adjacent-normal tissue.

Venn Diagram of CpG Sites Based on Provided Data

Breast Cancer
Normal

2

Adjacent Normal

Figure 3.12: Venn diagram showing shared and tissue-specific outlier CpG sites across normal, adjacent-
normal, and breast cancer tissues detected by Z-score algorithm across six thresholds.

Interpretation

Universal Markers: Sites like cg19374752 and cg00000622 were detected as outliers under all
thresholds and in all tissue types. These CpGs are strong biomarker candidates due to their robust
signal.

Cancer-Unique Sites: CpGs such as cgl17137218 and cg21346043 appeared only in cancer
datasets, indicating possible disease-specific methylation markers.

Field Defect Indicators: Sites like cg11731596 were present in adjacent-normal but not in
normal tissue, supporting the epigenetic field defect hypothesis.

Normal-Only Sites: CpGs like cg12492087 were flagged exclusively in healthy tissue, possibly
reflecting benign methylation variability rather than pathological deviation.
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Conclusion

The Z-score method effectively captured both global and subtle methylation anomalies across tissue
types and thresholds. While fewer tissue-specific CpGs were observed compared to other ML algo-
rithms, the method’s ability to flag stable universal outliers reinforces its utility as a baseline filter
for further biological validation.

3.5 Comparative Evaluation of Outlier Detection Algorithms

3.5.1 Comparative Summary of Machine Learning Algorithms for CpG Outlier
Detection

Table 3.2: Summary of Outlier Detection Algorithms, Hyperparameters, and Key Findings

Method Key Hyper- | Consistently | Tissue-Specific Hyperparameter
parameters Flagged Outliers Sensitivity
Outliers
KNN n_neighbors: cgl19374752, Cancer: cg00001099, | Low n detected strong
3,5,8,10, 12 | cg00000108 cgl3456241 (12/15) local anomalies; high n
Adjacent-Normal: revealed broader pat-
cgl11731596, terns
cgl17939805 (10/15)
Normal: ¢g12492087
(9/15)
Isolation n_estimators: | cgl9374752, Cancer: cg00001099, | Lower estimators
Forest 100-200 cg00000108 cgl3456241 (14/20) found strong outliers;
Adjacent-Normal: higher estimators
cgl11731596, identified subtler ones
cg17939805 (13/20)
Normal: ¢g12492087
(11/20)
LOF n_neighbors: cg19374752, None detected Higher n  detected
520 cg00000622 fewer outliers; lower
n captured broader
variation
OC-SVM v: 0.01-0.2 cgl19374752, None detected Higher v  detected
cg00000622 more outliers; lower v
detected fewer, more
extreme ones
Z-score Threshold: cgl19374752, Cancer: cgl7137218 | Higher threshold iden-
1.5-2.0 cg00000622 (7/10) tified only extreme
Adjacent-Normal: outliers; lower thresh-
cgl1731596 (8/10) olds captured more
Normal: ¢g12492087 | CpGs
(6/10)

Consistently Flagged Outliers: CpG site cg19374752 was detected across all five meth-

ods and all configurations, solidifying its candidacy as a robust epigenetic biomarker.

Similarly,

cg00000622 was consistently identified by LOF, OC-SVM, and Z-score, suggesting strong biological

relevance.

Tissue-Specific Detection: KNN and Isolation Forest were effective in detecting tissue-specific
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CpG sites, with strong recurrence of cancer-specific sites like cg00001099, cg13456241, and adjacent-
normal-specific outliers like cg11731596. In contrast, LOF and OC-SVM showed no tissue-specific
separation, highlighting their preference for global outlier structures. Z-score, despite its simplicity,
captured subtle and distinct methylation deviations in each tissue type.

Hyperparameter Impact: Across methods, hyperparameter tuning had a measurable effect:

e KNNN: Smaller n_.neighbors enhanced sensitivity to sharp local changes, whereas larger values
generalized better to broad patterns.

e Isolation Forest: Low n_estimators highlighted strong anomalies; higher estimators offered
broader detection.

e LOF: Lower neighbor values captured more dispersed anomalies.

e OC-SVM: Increasing nu resulted in higher outlier counts, whereas lower values narrowed focus
to extreme deviations.

e Z-score: Thresholds closer to 2.0 captured only the most extreme CpGs; lower thresholds
flagged milder shifts that could still be biologically informative.

Conclusion: This comparative summary illustrates the nuanced performance of each method.

The convergence on key CpG sites such as cg19374752 across diverse techniques strengthens their
credibility as true biological signals. Additionally, the presence or absence of tissue-specific CpGs and
the influence of hyperparameter variation underscore the importance of multi-method approaches and
parameter sensitivity tuning in methylation outlier analysis.

3.5.2 Tissue-Specific CpG Outliers Identified by Each Detection Method

Table 3.3: Summary of CpG-Level Outliers Identified by ML Algorithms Across Tissue Types

Method Common Outliers | Cancer-Specific Adjacent-Normal- | Normal-Specific Total Identified Cases
Outliers Specific Outliers Outliers
KNN cg10374752, 200001099, cg11731596, 212492087 cg19374752 (25/25),
¢g00000108, cgl3456241, cg17939805 cg00000108 (20/25),
g04242728 g23006567 g04242728 (15/25)
Isolation Forest | cgl19374752, ¢g00001099, cgl1731596, cg12492087 cg19374752 (25/25),
¢g00000108, cg13456241, cg17939805 cg00000108 (20/25),
cg04242728 cg23006567 cg04242728 (15/25)
LOF cgl9374752, None detected None detected None detected cg19374752 (25/25),
cg00000622 cg00000622 (25/25)
OC-SVM cgl9374752, None detected None detected None detected cg19374752 (25/25),
cg00000622 cg00000622 (25/25)
Z-score cgl9374752, cgl7137218, cg11731596, cg12492087, cg19374752 (30/30),
cg00000622 ¢g21346043, cg17939805 cg15509687 cg00000622 (20/30)
cg19484420

e Consistently Flagged CpG Sites:
The CpG site cg19374752 was detected across all five algorithms (KNN, Isolation Forest, LOF,
OC-SVM, Z-score), marking it as the strongest candidate for a robust methylation biomarker.
Likewise, cg00000622 was flagged consistently by LOF, OC-SVM, and Z-score, reinforcing its
biological relevance.

e Tissue-Specific Outlier Detection:
KNN and Isolation Forest successfully detected tissue-specific CpG outliers in cancer and adjacent-
normal tissues, demonstrating their utility in revealing localized methylation variations. Z-score
also identified distinct markers in all three tissue types, indicating its sensitivity to progressive
epigenetic changes. In contrast, LOF and OC-SVM primarily captured common outliers and
failed to detect tissue-specific patterns, suggesting a global anomaly detection profile.
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e Hyperparameter Sensitivity and Detection Patterns:

— KNN: Lower n_neighbors values (e.g., 3, 5) captured sharp local deviations; higher values
(10, 12) revealed broader, subtler changes.

— Isolation Forest: Lower n_estimators (100, 125) emphasized strong global anomalies;
higher values (175, 200) captured weaker signals.

— LOF: Higher n_neighbors (20, 18) detected fewer, more extreme outliers; lower values
(10, 5) were more inclusive of subtle variations.

— OC-SVM: Lower nu values (0.01) yielded stricter decision boundaries, while higher values
(0.2) allowed more CpGs to be classified as outliers.

— Z-score: Thresholds of 2.0 detected only extreme methylation shifts, while thresholds of
1.5 captured a wider range of deviations.

3.6 Comparative Evaluation of Outlier Detection Algorithms

This section evaluates the performance of five outlier detection algorithms on the benchmark Thyroid
Disease Dataset, offering a comparative analysis using standard classification metrics and visual outlier
inspection. The goal is to assess each method’s strengths and limitations in the context of biomedical
anomaly detection.

3.6.1 Dataset Description and Preprocessing

The Thyroid Disease Dataset contains 3,772 samples and 30 features. The target is binary (presence
or absence of hypothyroidism). The dataset required extensive cleaning, including;:

e Conversion of categorical True/False values to binary (0/1).
e Removal of unnecessary or completely missing columns (e.g., TBG).
e Replacement of missing values: numerical features were imputed or set to 0 if unmeasured.

e Normalization of all numerical variables to the range [0, 1].

3.6.2 Evaluation Metrics

Given the class imbalance typical of anomaly detection, standard metrics like accuracy are insufficient.
We instead employ:

e Precision: How many predicted outliers are true outliers.
e Recall: How many true outliers were detected.
e F1-Score: Harmonic mean of precision and recall.

e AUC-ROC: Area under the Receiver Operating Characteristic curve.

3.6.3 Visual Comparison using T3 vs T4U Features

To visually inspect model behavior, we plotted outliers (red) and inliers (blue) for each method using
the T3 and T4U features.
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Figure 3.13: Outliers detected by kNN (left) and Isolation Forest (right) in the T3-T4U space
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Figure 3.14: Outliers detected by LOF (left) and One-Class SVM (right) in the T3-T4U space
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Figure 3.15: Outliers detected by Z-score method in the T3-T4U space

Table 3.4: Performance Metrics of Outlier Detection Algorithms on Thyroid Disease Dataset

Algorithm Precision | Recall | F1-Score | AUC-ROC
kNN 0.939 0.051 0.097 0.505
Isolation Forest 0.901 0.049 0.093 0.492
LOF 0.945 0.051 0.097 0.507
One-Class SVM 0.951 0.052 0.099 0.510
Z-Score 0.918 0.365 0.522 0.488
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3.6.4 Key Observations

e Z-Score Method: Achieved the best overall performance with the highest recall (0.365) and
Fl-score (0.522). This method captured a large number of true outliers, making it ideal for
applications that require broad anomaly coverage.

e One-Class SVM: Recorded the highest precision (0.951), indicating its strength in minimizing
false positives. Best suited for tasks prioritizing low false-alarm rates.

e kKNN, LOF, Isolation Forest: All three had comparable results, showing high precision but
very low recall, suggesting that they detect only a small portion of true outliers.

e AUC-ROC Insight: One-Class SVM had the highest AUC-ROC (0.510), albeit only slightly
better than LOF (0.507), suggesting better discriminatory power between inliers and outliers.
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4

| Conclusion and Future Work

4.0.1 Conclusion

This study presented a comprehensive analysis of DNA methylation outliers in breast tissue sam-
ples by applying multiple machine learning-based unsupervised anomaly detection algorithms across
three tissue types: cancerous, cancer-adjacent (adjacent-normal), and normal. Five state-of-the-
art models—K-Nearest Neighbors (KNN), Isolation Forest, Local Outlier Factor (LOF),
One-Class SVM, and Z-Score-based detection—were applied to a dataset filtered for biologically
significant CpG sites using a multi-step pipeline involving variance thresholding, fold-change analysis,
and adjusted p-value filtering.

Each algorithm was evaluated across multiple configurations and hyperparameter settings. Our

cross-comparison revealed the following key outcomes:

Consistently Flagged Outliers: CpG sites such as cg19374752 were consistently identified as
outliers across all algorithms and configurations, reinforcing their potential as robust epigenetic
biomarkers.

Tissue-Specific Signals: While KNN, Isolation Forest, and Z-Score-based methods captured
several tissue-specific outliers (e.g., cg11731596 in adjacent-normal and c¢g00001099 in cancer),
LOF and OC-SVM primarily detected globally consistent patterns and failed to distinguish
tissue-specific methylation shifts.

Hyperparameter Sensitivity: The breadth and specificity of outlier detection were signifi-
cantly influenced by algorithm parameters. For example, lower n_neighbors values in KNN and
LOF favored local anomaly detection, while lower nu in OC-SVM or higher Z-score thresholds
captured more extreme methylation deviations.

Validation on the Thyroid Disease Dataset: A comparative evaluation on the Thyroid
Disease Dataset demonstrated that the Z-score method achieved the highest recall and F'1-score,
while OC-SVM attained the highest precision. These findings emphasize the context-dependent
effectiveness of anomaly detection techniques in high-dimensional biological data.

4.0.2 Challenges and Limitations

During this study, several challenges emerged:

e Missing Patient Pairing Metadata: Despite exhaustive searches through the GSE69914

dataset, patient IDs or matching labels were not available. This limitation precluded any patient-
level paired analysis between cancer and adjacent-normal tissues.

¢ High Dimensionality and Sparse Signals: The raw methylation matrix contained hundreds

of thousands of CpG sites, leading to a highly sparse and high-dimensional dataset. Dimension-
ality reduction was critical, but even after filtering based on statistical significance and variance,
the remaining CpG site set posed computational and analytical challenges.
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e Variance Threshold Tuning: Two alternate analyses were performed using stricter variance
thresholds of 0.015 and 0.02. While a threshold of 0.015 preserved a large number of CpGs
(resulting in high overlap but low tissue specificity), a threshold of 0.02 led to an overly reduced
feature space. This caused most algorithms (including KNN, LOF, and Isolation Forest) to fail
in identifying any tissue-specific outliers, suggesting that critical biological signals might have
been excluded during preprocessing.

e Lack of Unique Tissue-Specific Results for Some Models: Certain algorithms like LOF
and OC-SVM consistently failed to yield any tissue-specific outliers across all tested configu-
rations. This might be attributed to their design for global anomaly detection or their lack of
sensitivity in capturing subtle, context-dependent methylation deviations.

4.0.3 Future Work

The findings of this study lay a solid foundation for future research directions. Several improvements
and extensions are recommended:

e Multi-Omics Integration: Future analyses could integrate gene expression, clinical annota-
tions, or proteomics data with methylation outliers to prioritize functionally relevant CpG sites
and gain a systems-level view of epigenetic deregulation.

¢ Dimensionality Reduction Methods: Application of methods like PCA, t-SNE, or UMAP
for preprocessing may help preserve variance while reducing dimensionality, thereby improving
the performance of ML algorithms in detecting tissue-specific anomalies.

e Refined Filtering Strategies: Instead of rigid variance cutoffs, adaptive filters based on
biological relevance (e.g., promoter or enhancer regions, known cancer genes) may retain more
meaningful CpG sites.

e Ensemble Learning and Hybrid Models: Combining local density—based models with
global anomaly detectors (e.g., OC-SVM + LOF) may enhance sensitivity and specificity. Vot-
ing or score aggregation across methods could also help in defining high-confidence biomarker
panels.

e Paired Sample Acquisition: If matched patient samples become available in future studies,
the analysis could incorporate paired statistical models, enhancing signal detection for field
effects and early transformation.

e Biological Validation: Experimental validation (e.g., bisulfite sequencing, expression assays)
of identified outlier CpGs, especially cgl19374752 and cg00000622, should be prioritized for
assessing clinical and functional relevance.

Final Remark: This study demonstrates that machine learning—based anomaly detection can
be effectively adapted to DNA methylation analysis, providing unique insights into cancer-associated
epigenetic disruptions. However, achieving biological interpretability and clinical applicability de-
mands a balanced approach that integrates robust preprocessing, algorithmic diversity, and biological
validation.
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