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Abstract

This thesis presents a swarm-based optimization method inspired by the over-

damped Langevin dynamics. A swarm consists of particles, each characterized by

its position and friction coefficient, and subjected to a random force. The particles

communicate by updating their friction coefficients based on relative performance

within the swarm.

The friction communication mechanism enables better-performing particles to

move slower and remain near optimal regions, while worse-performing particles move

faster to explore the search space. This creates a balance between exploration of new

areas and careful exploitation of promising regions. The communication mechanism

leads to emergent annealing behaviour, where average friction increases over time,

similar to temperature reduction in simulated annealing.

Two types of random forces are considered: a Gaussian random force, where the

noise variance decreases with the friction coefficient, leading to Brownian motion,

and a Lévy-stable random force, producing Lévy flight dynamics.

The method is experimentally evaluated on benchmark function optimization

and neural network training, demonstrating competitive performance compared to

existing algorithms. A GPU-based implementation enables efficient parallel execu-

tion.
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2.2.1 Lévy-stable distribution . . . . . . . . . . . . . . . . . . . . . 14
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Introduction

Particle swarm optimization is a computational method for optimizing continuous

non-linear functions, introduced by Kennedy and Eberhart [1]. The method is in-

spired by social behaviour in nature, such as the group dynamics observed in bird

flocking and fish schooling. Interaction between particles, which implies informa-

tion sharing, plays a fundamental role in emergent behaviour, allowing particles to

capitalize on each other’s knowledge and form a collective intelligence.

In the Swarm-Based Gradient Descent (SBGD) method, introduced in [2], the

swarm agents are characterized by their position and mass. The agents communi-

cate by transferring a quantity termed ”mass”, which has the role of slowing down

more optimal agents and speeding up the less optimal agents. Thus, the ”mass”

determines the step size of each agent, allowing lighter agents to take bigger steps to

explore, and heavier agents to take smaller steps towards their local minima. The

study of SBGD is extended in [3], where the particle’s descent direction is chosen

randomly, centered on the gradient direction, allowing a more thorough exploration

of the search space, increasing the method’s performance. The Swarm-based Simu-

lated Annealing method is introduced in [4], which applies an approach similar to

simulated annealing to SBGD: particles are subject to Brownian motion with the

annealing rate being a decreasing function of their ”mass”. Thus, the system ”cools

down” as it approaches the solution by transferring the mass from higher ground

agents to more optimal agents at lower ground.

This work considers a swarm optimization method inspired by the overdamped

dynamics of a particle swarm with friction transfer. Similarly to ”mass” in SBGD,

the friction coefficient is transferred from poorer to better-performing particles, al-

lowing better-performing agents to further explore their vicinity. Poorer performing

particles are more motile, taking larger steps. The particles are subject to a random

force, the choice of which is discussed here. We consider and compare: a Gaus-

sian force, depending on the friction coefficient, leading to Brownian motion, and a

Lévy-stable random force with various parameters, leading to Lévy flight dynamics.
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Chapter 1

Swarm-Based Optimization

Methods

Let U(x) be a continuous potential function, defined on a d-dimensional Euclidean

space Rd. We consider the following optimization problem

min
x∈Rd

U(x) (1.1)

The potential is assumed to be confining, meaning U(x)→∞ as |x| → ∞.

1.1 Particle Swarm Optimization (PSO)

The standard Particle swarm optimization (PSO) is an iterative algorithm, where

N agents search for the solution with movement influenced by inertia, personal

experience and social influence [1]. Each particle i is initialized with a random

position x
(0)
i in the search space and velocity v

(0)
i . Each particle keeps track of its

personal best solution pi and the global best solution g, reached among all particles.

At each iteration, the velocities and positions are updated according to the system{
v
(n+1)
i = wv

(n)
i + c1A1(p

(n)
i − x

(n)
i ) + c2A2(g

(n) − x
(n)
i )

x
(n+1)
i = x

(n)
i + v

(n+1)
i

i = 1, . . . , N (1.2)

where w, c1, c2 ∈ R are chosen constants and A1,A2 ∈ Rd×d are diagonal matrices

with random samples drawn at each iteration for each particle from the uniform

distribution in [0, 1] on the diagonal. The roles of the parameters are as follows:

1. w controls momentum: the contribution of the particle’s previous velocity to

its current movement;
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2. c1 controls the influence of the best personal solution pi, determining how

individualistic are the particles;

3. c2 controls the impact of the best global solution g, determining the extent to

which the particles are driven by social influence.

In addition to updates (1.2), the velocity of each particle is clamped up to a max-

imum velocity vmax on each dimension, preventing excessive movement. The four

parameters w, c1, c2 and vmax are subject to tuning. Having a significant impact on

performance, parameter selection has been the subject of extensive research [5]. A

major issue in PSO is premature convergence to local minima without ever discov-

ering the global minimum.

PSO has been successfully applied to a wide range of optimization problems, due

to its simplicity and high efficiency, with the most success in the areas of system

design, multi-objective optimization, resource allocation, and many others [6].

1.1.1 PSO variants

Bare bones PSO

The Bare bones particle swarm optimization (BPSO) is a simplified version of the

PSO with the velocity eliminated [7]. Instead, the particle position xi is updated

by drawing from the Gaussian distribution based on the personal pi and global g

best solutions:

xi ∼ N
(
pi + g

2
, ||pi − g||

)
The simplification introduced by BPSO makes the algorithm more compact and

parameter-free, eliminating the need for parameter tuning. BPSO has seen successful

applications, including in feature selection [8], integer programming [9] and vapor-

liquid equilibrium modelling [10].

Competitive swarm optimizer

The Competitive swarm optimizer (CSO) is inspired by PSO, but instead of using the

best global and personal solutions in updates, it introduces a pairwise competition

mechanism, where the winner learns from the loser [11].

At each timestep n, the particles are randomly paired into N/2 couples, assuming

that the number of particles N is even. Within each pair k, the particles compete by

comparing their fitness, resulting in one particle being the winner w and the other

the loser l, on the basis of the criterion U(x
(n)
w ) ≤ U(x

(n)
l ). The position and velocity
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of the winner remain unchanged, while those of the loser are updated, according to

the following system:

v
(n+1)
k,w = v

(n)
k,w

x
(n+1)
k,w = x

(n)
k,w

v
(n+1)
k,l = A1vk,l + A2(x

(n)
k,w − x

(n)
k,l ) + φA3(x̄

(n)
k − x

(n)
k,l )

x
(n+1)
k,l = x

(n)
k,l + v

(n+1)
k,l

k = 1, . . . , N/2 (1.3)

where A1,A2,A3 ∈ Rd×d are diagonal matrices with random vectors in [0, 1]d on the

diagonal, generated for each pair k at each timestep n, x̄
(n)
k is the mean position of

the swarm and φ ∈ R is a parameter controlling social influence. The update rule

for the loser’s velocity v
(n+1)
k,l is analogous to that of the standard PSO (1.2) with

certain differences:

1. The first term A1vk,l accounts for inertia, as in standard PSO, but with an

introduced weight A1

2. The second term A2(x
(n)
k,w − x

(n)
k,l ) is the cognitive component: the loser learns

from the winner, instead of being guided by the personal best position.

3. The third term φA3(x̄
(n)
k −x

(n)
k,l ) is the social component. However, the particle

is influenced by the current mean position of the swarm x̄
(n)
k , rather than the

global best.

As a result, CSO is conceptually similar to the standard PSO, maintaining its sim-

plicity and, furthermore, eliminating the concept of memory in the form of tracking

the personal and global best solutions.

CSO shows better performance than the standard PSO and state-of-the-art op-

timization algorithms in large-scale optimization problems (∼ 103 dimensions) with

successful applications across different domains, such as resource allocation, engi-

neering design, and complex system modelling [12].

1.2 Swarm-Based Gradient Descent (SBGD)

The Swarm-based gradient descent (SBGD) method, introduced in [2], models a

swarm of N agents characterized by their position xi and ”mass” mi. The agents

interact by transferring ”mass” from the less optimal to the more optimal agents.

The step size hi of each agent i is a decreasing function of its ”relative mass” m̃i =

mi/maximi, allowing lighter agents to take longer steps to explore the space, while
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heavier agents take shorter steps towards their local minima. The discrete-time

update rule for agents with positive ”mass” mi > 0 is:

dxi = −hi(xi, m̃i)∇U(xi) dt

dmi = −
(
U(xi)− Umin

Umax − Umin

)p

mi(t) dt, i ̸= i∗

mi∗ = 1−
∑
j ̸=i∗

mj, i = i∗

(1.4)

where i∗ = argmini U(xi) is the index of the current best-performing agent, Umin =

mini U(xi), Umax = maxi U(xi) and p > 0 is a fine-tuning parameter with the default

choice p = 1. The ”mass” update mechanism ensures that at each step the worst

performing agent loses all of its ”mass” and is eliminated. Thus, the simulation ends

after N−1 timesteps, when a single particle is left. The update rules also ensure that

the total ”mass” is conserved. When initialized as mi = 1/N , the ”mass” obtains a

probabilistic interpretation, indicating the probability of a particular agent reaching

the optimal solution.

Numerical simulations on benchmark functions demonstrate the effectiveness of

SBGD, but reveal sensitivity to the shift of the target function from the particle

initialization positions: when the particles are initialized outside of the vicinity of

the solution, the success rate of the algorithm drops significantly.

1.2.1 SBGD variants

SBGD with random descent

Swarm based optimization with random descent (SBRD) is a modification of SBGD,

introduced in [3]. The particle’s descent direction pi is chosen randomly, centered

around the gradient direction, enabling a more thorough exploration of the search

space. The equation for particle position in (1.4) is replaced with

dxi = −hi(xi, m̃i)pi dt

where the descent direction pi = |∇U(xi)|ωi is sampled from the spherical cap

centered around the gradient direction, according to:

ωi · qi = r, qi =
∇U(xi)

|∇U(xi)|
, r ∼ U

(
1

2
(1 + m̃i)

)
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where U denotes the uniform distribution. The maximum deviation from the steep-

est descent direction is higher for lighter agents, given by θ = arccos(1
2
(1 + m̃i)).

The modification increases the SBGD’s performance, being especially crucial for

higher-dimensional optimization and in the case of a shifted target function.

Swarm-based simulated annealing

The Swarm-based simulated annealing (SSA) combines SBGD with Simulated an-

nealing (SA) [4]. Particles are subject to Brownian motion with the annealing

rate σ(m) being a decreasing function of their ”mass”. The dynamics is described

by the system
dxi = −∇F (xi) dt+

√
2σ(mi(t)) dWi

dmi = −(U(xi)− U
(N)

(t))mi(t) dt
i = 1, . . . , N (1.5)

where dWi is the Wiener process and U
(N)

(t) is the provisional minimum, calculated

as the mass-weighted average of potentials:

U
(N)

(t) =

∑N
i=1 mi(t)U(xi)∑N

i=1 mi(t)

As in the original SBGD, the total ”mass” remains constant. Contrary to traditional

SA, where the annealing rate σ is explicitly controlled, the dynamics ”cools down”

the better-performing agents implicitly by transferring them ”mass” from the worse-

performing agents. In contrast, the worse-performing particles are ”heated up”,

enabling them to escape local basins and explore the space for better solutions.

The main result of [4] states that under certain assumptions on σ(m) and as-

suming the uniqueness of the global minimizer of U(x), the provisional minimum

converges to the global minimum U∗ in the large-particle, long-time limit:

lim
N→∞

U
(N)

(t)
t→∞−−−→ U∗ = U(x∗)
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Chapter 2

Theoretical Background

2.1 Langevin dynamics

2.1.1 Langevin equation

The Langevin equation, introduced in 1908 [13], describes the dynamics of a macro-

scopic particle suspended in a viscous fluid. Influenced by random collisions with

surrounding microscopic particles, the particle’s position fluctuates, resulting in

Brownian motion. The original equation in one dimension, for simplicity, can be

written as

mẍ = −µẋ+ F (t) + ω(t) (2.1)

where x is the particle’s position, m is its mass, µ is its friction coefficient and F (t)

is a force the particle is subjected to. The random force ω is a white noise term

(Wiener process), which has zero mean and is uncorrelated at any two different

moments in time

⟨ω(t)⟩ = 0, ⟨ω(t)ω(t′)⟩ = 2µTδ(t− t′)

where T is the temperature. For simplicity, the Boltzmann constant is set to 1 in

natural units: kB = 1.

In the overdamped case, the inertia term becomes negligible. If the force F (t)

is conservative with potential U(x), we obtain the equation that forms the basis for

the method proposed in this work

ẋ = − 1

µ

∂U

∂x
+ η(t) (2.2)
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where η(t) = ω/µ is the rescaled random force with the autocorrelation function

⟨η(t)η(t′)⟩ = 2
T

µ
δ(t− t′) = 2Dδ(t− t′)

Here, the diffusion coefficient D was introduced according to Einstein’s relation

D = T/µ (2.3)

2.1.2 Fokker-Planck equation

As derived in [14], the corresponding Fokker-Planck Equation (FPE) for the prob-

ability density P (x, t), equivalent to the overdamped Langevin equation (2.2), is

given by
∂

∂t
P (x, t) =

∂

∂x

(
1

µ

∂U

∂x
P (x, t)

)
+D

∂2

∂x2
P (x, t) (2.4)

This partial differential equation describes the time evolution of the probability

density P (x, t), giving the probability that the particle is at position x at time t.

The first term on the right-hand side accounts for deterministic gradient descent,

and the second term for diffusion.

The continuity equation for probability density P (x, t) is

∂

∂t
P (x, t) +

∂

∂x
J(x, t) = 0 (2.5)

where J(x, t) is the probability current

J(x, t) = − 1

µ

∂U

∂x
P (x)−D

∂

∂x
P (x)

In order to find the steady-state solution P0(x), which is reached at equilibrium,

we assume that ∂P (x,t)
∂t

= 0 and rewrite the equation (2.4) as

∂

∂x

(
1

µ

∂U

∂x
P0(x) +D

∂

∂x
P0(x)

)
= 0

This equation expresses that the probability current J(x) is constant in space

∂

∂x
J(x) = 0

Given the boundary conditions P0(x) −−−→
x→∞

0 and ∂
∂x
P0(x) −−−→

x→∞
0, it follows that
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J ≡ 0. We obtain a separable first order differential equation

1

µ

∂U

∂x
P0(x) +D

∂

∂x
P0(x) = 0

dP0

P0

= − 1

Dµ

∂U

∂x
dx

After integrating and using Einstein’s relation (2.3), the solution is obtained

P0(x) =
1

Z
exp

(
−U(x)

T

)
(2.6)

where the constant Z is defined as

Z =

∫ +∞

−∞
exp

(
−U(x)

T

)
dx

to normalize the probability density function P0(x).

The obtained steady-state solution corresponds to the Boltzmann distribution,

which arises in a wide variety of problems. In statistical physics, the Boltzmann

distribution describes the energy distribution of a particle system at thermal equi-

librium. In machine learning, it is known as the softmax function, commonly used

as the activation function in the output layer of a neural network to obtain a prob-

ability distribution from its output. An example of the Boltzmann distribution for

the non-convex Rastrigin function (5.3) is given in Fig. 2.1. Every local minimum

of the potential function leads to a peak in the probability density, indicating that

the particle is more likely to be found in these lower potential states.

Figure 2.1: Rastrigin function (see (5.3)) and corresponding Boltzmann distribution
(T = 5)
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2.1.3 Convergence to equilibrium

The entropy of the probability distribution P is defined as

H(P ) = −EP [logP ] = −
∫ +∞

−∞
P (x) logP (x)dx (2.7)

The Helmholtz free energy is given by

F = E − TH =

∫ +∞

−∞
P (x)(U(x) + T logP (x))dx = EP [U + T logP ] (2.8)

To show the convergence of the overdamped Langevin dynamics (2.2) to the unique

stationary distribution (2.6), we consider the Kullback-Leibler (KL) divergence DKL

of the current probability distribution P (x, t) with respect to the stationary distri-

bution P0(x):

DKL(P ∥P0) =

∫ +∞

−∞
P (x) log

P (x)

P0(x)
dx (2.9)

which is a measure of difference between probability distributions, also called the

relative entropy. The KL divergence is non-negative and minimized when P = P0,

where it is zero. We notice that

DKL(P ∥P0) = EP

[
log

P

P0

]
= EP [logP − logP0]

= EP

[
logP +

U

T
+ logZ

]
=

F

T
+ logZ

The time derivative of free energy F is such that

dF

dt
=

d

dt

∫ +∞

−∞
P (U + T logP ) dx

=

∫ +∞

−∞

∂P

∂t
(U + T logP ) dx+

∫ +∞

−∞
P

(
∂U

∂t
+ T

∂

∂t
logP

)
dx

The second term is null, since ∂U
∂t

= 0 and∫ +∞

−∞
P

∂

∂t
logP dx =

∫ +∞

−∞
P

1

P

∂P

∂t
dx =

∫ +∞

−∞

∂P

∂t
dx =

∂

∂t

∫ +∞

−∞
P dx = 0
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The first term is analysed by expressing ∂tP from the Fokker-Planck equation (2.4)

and using Einstein’s relation (2.3):

∂P

∂t
=

∂

∂x

(
1

µ
P
∂U

∂x

)
+D

∂2P

∂x2

=
∂

∂x

(
1

µ
P
∂U

∂x
+D

∂P

∂x

)
=

∂

∂x

(
1

µ
P

∂

∂x
(U + T logP )

)
Then, the derivative of free energy F becomes

dF

dt
=

∫ +∞

−∞

∂

∂x

(
1

µ
P

∂

∂x
(U + T logP )

)
(U + T logP ) dx

By integration by parts, considering P (x) −−−−→
x→±∞

0, we obtain

dF

dt
= − 1

µ

∫ +∞

−∞
P

∂

∂x
(U + T logP )

∂

∂x
(U + T logP ) dx

= − 1

µ

∫ +∞

−∞
P

(
∂

∂x
(U + T logP )

)2

dx

= − 1

µ
EP

[(
∂

∂x
(U + T logP )

)2
]
≤ 0

Therefore, the KL divergence decreases with time:

dDKL

dt
=

1

T

dF

dt
≤ 0

The KL divergence DKL serves as a Lyapunov functional of the Fokker-Planck equa-

tion (2.4), decreasing under the Langevin dynamics until reaching DKL = 0 at

equilibrium, so indeed the probability distribution P converges to Boltzmann’s dis-

tribution P0.

2.1.4 Simulated Annealing

The overdamped Langevin dynamics (2.2) theoretically converges to the equilib-

rium Boltzmann distribution (2.6), which suggests setting T → 0 for particles to

concentrate at the global minimum. However, the time required to reach equilib-

rium increases exponentially with 1/T [15]. Low temperature diminishes the impact
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of random Brownian motion, which prevents particles from leaving local minima,

trapping them for a long time.

Simulated annealing is an optimization technique inspired by the annealing pro-

cess in metallurgy, in which a metal is heated and then slowly cooled, resulting in

structural changes that reduce internal energy. The method was proposed by Kirk-

patrick et al [16] and Cerny [17], and involves first ”melting” the system to a high

temperature and then slowly lowering it according to a certain annealing schedule

until no changes occur, eventually ”freezing” the system at a lower energy state,

which approximates the global optimum of the objective function. The original

simulated annealing method is an adaptation of the Metropolis-Hastings algorithm

[18], which generates a Markov chain with a Boltzmann stationary distribution at a

fixed temperature.

Simulated annealing is extended to any algorithm that samples the Boltzmann

distribution, including continuous systems, such as the overdamped Langevin dy-

namics [15]. In this case, the dynamics are described by the following equation

ẋ = − 1

µ

∂U

∂x
+ σ(t)ξ(t) (2.10)

where ξ is a random Gaussian noise with zero mean and unit variance

⟨ξ(t)ξ(t′)⟩ = δ(t− t′)

Extensive work has been dedicated to analysing the choice of the cooling schedule

σ(t). In [19] and [20] it is shown that the cooling schedule σ(t) = A/
√
log t for some

A > 0 guarantees convergence to the solution under weak conditions on U(x). In

[21], the same result is confirmed for the more general case of multiplicative noise

σ(x, t) = a(x)b(t).

2.2 Lévy processes

2.2.1 Lévy-stable distribution

The symmetric Lévy-stable distribution with stability index α has the characteristic

function

φ(k) = exp (−cα|k|α) (2.11)

where c is a scale parameter and α ∈ (0, 2] is the stability index. Plots of proba-

bility density functions (PDFs) of Lévy-stable distributions with different stability

indices α and scale c = 1 are presented in Fig. 2.2.
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Figure 2.2: Lévy-stable distributions (c = 1)

The PDF of a Lévy-stable distribution can be expressed in terms of elementary

functions only in two cases:

1. when α = 2, the distribution becomes a Gaussian with zero mean and vari-

ance 2c2:

φ(k) = exp
(
−c2k2

)
⇒ X ∼ N(0, 2c2)

2. when α = 1, the distribution is a Cauchy distribution with zero location and

scale parameter c:

φ(k) = exp (−c|k|)⇒ X ∼ Cauchy(0, c)

2.2.2 Lévy flights

A Lévy flight is a random walk with steps made in random directions with lengths

having a stable Lévy distribution. The important features of the distribution, that

define the properties of Lévy flights, are the following:

1. Stability. LetX1 andX2 be independent random variables drawn from a stable

distribution. Then, the linear combination αX1 + βX2 with α > 0 and β > 0

has the distribution as aX + b for some constants a > 0 and b. This ensures

that a Lévy flight, being a sum of Lévy-stable steps, remains Lévy-stable.

2. For α < 2, the distribution is heavy-tailed, decaying as ∼ 1/x1+α, causing

the variance to be infinite. This allows particles to take large steps, exploring

other regions.
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Examples of 2D Lévy flights for different parameters α are shown in Fig. 2.3.

For each stability index α, ten experiments were performed, each starting from (0, 0)

and taking 100 steps with the scale factor c = 1.

Figure 2.3: Lévy flights for different parameters α (c = 1)

Lévy flights exhibit a fractal-like structure composed of series of many short steps

interrupted by rare long-distance jumps, reflecting the heavy tails of the underlying

distribution. Bigger jumps are more common for lower values of α, as the PDF

tail decreases more slowly with lower values of α. The dynamics is scale invariant,

meaning that its statistical properties remain consistent across different spatial and

temporal scales, allowing efficient exploration of a large search space.

Theoretical results show that Lévy flights are the optimal search strategy in

terms of mean search time, given the absence of memory and that the target sites

are sparsely and randomly distributed and can be revisited [22]. The Lévy foraging

hypothesis predicts that biological systems have adopted Lévy flights as a search

strategy, as a result of natural selection [23]. There are extensive studies supporting

the hypothesis by confirming Lévy flights in nature, such as the foraging behaviour

of the wandering albatross [24], the movement patterns of marine predators while

locating prey [25] and the migration of bacteria [26]. However, other studies deny

the hypothesis based on other data, such as [27], which analyses high-resolution data

of wandering albatross flights and questions the strength of empirical evidence for

Lévy flights.

2.2.3 Fractional Fokker-Planck equation

The partial differential equation governing the probability density P (x, t), equivalent

to the overdamped Langevin equation (2.2) with symmetric Lévy-stable noise η(t),
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is the Fractional Fokker-Planck Equation (FFPE). As derived in [28], it is given by

∂

∂t
P (x, t) =

∂

∂x

(
1

µ

∂U

∂x
P (x, t)

)
+ cα

∂α

∂|x|α
P (x, t) (2.12)

where the operator ∂α

∂|x|α denotes the Riesz fractional derivative, defined via the

Fourier transform F as

F
{

∂α

∂|x|α
f(x)

}
(k) = −|k|αF {f} (k) (2.13)

Since the Fourier transform is a non-local operator, the fractional derivative is like-

wise spatially non-local, reflecting the long-range jumps of Lévy noise [29].

The FFPE (2.12) generalizes the classical Fokker-Planck equation (2.4) to ac-

count for Lévy-stable noise. In the Gaussian limit of α = 2, the standard equation

is recovered, describing Brownian motion with diffusion coefficient D = c2, lead-

ing to thermal equilibrium described by the Boltzmann distribution. In the case of

α ∈ (0, 2), the dynamics becomes anomalous, deviating from thermal equilibrium.

The stationary distribution cannot be analytically obtained for an arbitrary poten-

tial U(x). For a harmonic potential, the stationary distribution is a non-Boltzmann

distribution with no finite variance [30].

2.2.4 Anomalous diffusion

In the absence of the force field of the potential U(x), the FFPE (2.12) describes

anomalous diffusion
∂

∂t
P (x, t) = cα

∂α

∂|x|α
P (x, t) (2.14)

which is solved in closed form. As shown in [30], the asymptotic behaviour of the

solution at |x| → ∞ decays as a power law:

P (x, t) ∼ cαt

|x|1+α
(2.15)

This reflects that large displacements, caused by large jumps, dominate the long-

term behaviour.

Although the second moment diverges, a scale relation for the mean displacement

is obtained by performing scale analysis [31], suggesting that

⟨∆x2(t)⟩ ∼ t2/α (2.16)

which for α < 2 describes superdiffusion, spreading faster than Brownian motion.
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Chapter 3

Mathematical Model

This chapter describes the mathematical model of the swarm-based optimization

algorithm, which is the main object of study of this work. It provides the govern-

ing equations for particle motion and friction dynamics, explores different types of

random forces, and analyses the key system properties.

3.1 Model Description

A swarm consists of N particles. A particle is identified within the swarm by an

index i ∈ N and characterized by its position xi ∈ Rd and friction coefficient µi > 0.

The set A contains indices of active particles in the swarm. Each active particle

obeys the d-dimensional overdamped Langevin equation (2.2):

ẋi = −
1

µi

(∇U(xi) + ωi(t)) , i ∈ A (3.1)

where ωi is a random force. The friction coefficients of active particles evolve in

time according to

µ̇i = −f(µi)
∑
j∈A

U(xi)− U(xj)

Umax − Umin

, i ∈ A (3.2)

where Umax = maxi∈A U(xi), Umin = mini∈A U(xi) and f(µ) > 0 is a positive

function, termed friction response rate. In the case of equal fitness of all particles

Umax = Umin, friction is not updated: µ̇i = 0.

Friction coefficients serve as a platform for communication between particles,

exchanging information about performance. The dynamics (3.2) ensure that when

the particle i is in a more optimal position than the particle j (that is, U(xi) <

U(xj)), its friction coefficient µi increases, while that of the particle j decreases.
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This ensures that the better-performing particles ”stick” to their positions, moving

slower than the worse-performing particles, which move faster, exploring the area.

The difference in potential values between a pair of particles U(xi) − U(xj) is

normalized against the range of all particle potentials Umax−Umin. This ensures that

the scaling of the potential does not affect the dynamics and provides acceleration of

friction transfer when Umax is close to Umin, which happens when all particles have

similar fitness.

When the friction coefficient of a particle falls below a fixed threshold δµ, the

particle is labelled inactive and is no longer updated. Thus, the set of active particles

A at any time is given by

A = {i ∈ {1, . . . , N} | µi > δµ} (3.3)

Figure 3.1: Friction response function

The friction response rate function f(µ)

is selected as the following decreasing

function:

f(µ) =

√
µ

1 +
√
µ

(3.4)

as shown in Fig. 3.1, assuming µ to be

positive. This choice ensures that low

µ values experience a slower rate of re-

duction, preventing sudden elimination

of poor-performing particles.

To conclude, the mathematical model is described by the system:

ẋi =
1

µi

(−∇U(xi) + ωi) , i ∈ A

µ̇i = −f(µi)
∑
j∈A

U(xi)− U(xj)

Umax − Umin

, Umax ̸= Umin, i ∈ A

µ̇i = 0, Umax = Umin, i ∈ A

Umax = max
i∈A

U(xi), Umin = min
i∈A

U(xi)

A = {i ∈ {1, . . . , N} | µi > δµ}

(3.5)
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3.2 Random Force

3.2.1 No Random Force

In the absence of a random force, the system (3.5) is deterministic, fully governed

by the initial positions of the particles x
(0)
i . Each particle follows the direction of

the negative gradient, descending to a local minimum. The equilibrium of (3.1) for

active particles is reached at stationary points:

|∇U(xi)| = 0, ∀i ∈ A (3.6)

While the equilibrium of (3.2) is reached when all active particles have the same

fitness:

U(xi) = U(xj), ∀i, j ∈ A (3.7)

The total energy is chosen as a Lyapunov function:

V =
∑
i∈A

U(xi) (3.8)

Its derivative along the system trajectories is given by

dV

dt
=
∑
i∈A

∇U(xi)ẋi = −
∑
i∈A

1

µi

|∇U(xi)|2 ≤ 0

The value is non-positive, vanishing only when all xi are stationary points of U , in-

dicating that the total energy of the system decreases monotonically and the system

converges to the equilibrium (3.6).

As a result, in the equilibrium all particles are either eliminated or reach the

same minimum. However, it is not guaranteed that the particles settle in the global

minimum, since it may never be discovered. In fact, the global minimum is found if

and only if at least one particle is on its slope.

Communication between particles has an insignificant role, making better-performing

agents travel slower, and worse-performing agents travel faster, without changing

the travel direction. The interaction can be viewed as a selective pressure for worse-

performing agents to travel faster to avoid elimination. The case with no random

force performs especially poorly with a small number of particles and a large search

space since no new regions are explored.
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3.2.2 Gaussian Random Force

The Gaussian random force ωi in (3.5) is given by

ωi = Crξi (3.9)

where

• C = diag{c} ∈ Rd×d is a diagonal matrix with elements of a constant vec-

tor c ∈ Rd on its diagonal, representing the scale in each direction. This

allows the method to be invariant under rescaling of variables by modifying

the corresponding elements in c. For symmetric problems, it is natural to

choose c with identical elements. Using identical elements also serves as a way

to reduce the number of tuning parameters.

• r ∈ Rd is a uniformly sampled random direction vector, lying on the unit

d-dimensional sphere.

• ξi ∼ N (0, σ2(µi)) is a Gaussian random variable with zero mean and vari-

ance σ2(µ), which is a decreasing function of µ.

The function σ2(µ) is chosen to decrease with a higher friction coefficient µ, so

that the better-performing particles are less affected by the random force, staying in

the vicinity of their location, while the worse-performing particles are more inclined

to leave their local minima and explore the space, as shown in Fig. 3.2.

Figure 3.2: Gaussian random force Figure 3.3: Variance functions σ2(µ)

The functions σ2(µ) that we consider have the following form

σ2(µ) =


1
µq − 1, µ ≤ 1

0, otherwise
(3.10)
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where q > 0 and we consider the values q = 0.5, 1, 2, shown in Fig. 3.3. The param-

eter q controls the decrease rate, lower q leads to more rapid decrease. Starting from

the threshold value of µ = 1, the variance and thus the force becomes null, meaning

that these particles proceed solely according to the gradient descent. However, the

force may be reapplied to these particles, if their friction coefficient µ falls below the

threshold again, as a result of other agents finding a better solution. The variance

function σ2(µ) captures only the shape of the desired dynamics, while the scale is

defined by the scale matrix C, taking into account the initial value σ2(µ0).

3.2.3 Lévy-stable Random Force

Analogously to the Gaussian random force (3.9), the Lévy-stable random force is

defined as

ωi = Crηi (3.11)

where ηi ∼ Sα(1) is a random variable drawn from the symmetric Lévy-stable distri-

bution with stability index α and unit scale factor. We do not introduce an explicit

relationship between the scale factor and the friction coefficient µ, since large jumps

are considerably more common in Lévy flights than in Brownian motion, enabling

agents to escape local minima. Moreover, the final step taken by an agent is already

inversely proportional to µ, as given in (3.5). Unlike in Brownian motion dynamics,

particles are less likely to accumulate in the global minimum, even after reaching it,

making it crucial to save the best-found solution.

3.3 Properties

3.3.1 Communication

The importance of communication, in the form of updating friction coefficients based

on agents’ performance, is demonstrated by running the simulation without any

communication. In this case, the dynamics is that of the overdamped Langevin,

converging to the equilibrium Boltzmann distribution (2.6). As an example, we run

the simulation with N = 500 particles optimizing the 1D Rastrigin function with

Gaussian noise and q = 1. The particle distribution at different timesteps T and

the corresponding Boltzmann distribution are presented in Fig. 3.4. It is observed

that the particle distribution approximates the theoretical equilibrium distribution,

converging to it over time.

The same experiment was run with communication, that is, with friction up-

dates. The particle distribution is presented in Fig. 3.5. In this case, the particles
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Figure 3.4: Particle position distribution without communication for 1D Rastrigin
function (N = 500, Gaussian noise with q = 1)

accumulate densely at the function minima. As worse-performing particles either

move to a better location or get discarded, the swarm becomes more focused on the

best basins. Better-performing particles stay in the vicinity of their current loca-

tions, since their friction increases. It is observed that the worse basins of attraction

are eventually abandoned. In this experiment, running the simulation for a longer

time would result in all active particles concentrating in the global minimum. The

Boltzmann distribution is shown for reference and does not represent the equilibrium

distribution in this case.

Figure 3.5: Particle position distribution with communication for 1D Rastrigin func-
tion (N = 500, Gaussian noise with q = 1)

As given in (3.7), the system converges to a consensus state, where particles either

reach a potential with the same fitness, or become inactive. However, convergence

to the global minimum is not guaranteed, since it may never be discovered by any

particle, and the system may settle in a local minimum instead. Unlike in the case

with no random force, the initialization of particle positions is less crucial: even if no

particle is initialized on the slope of the global minimum, it may still be discovered

by movement, influenced by the random force.
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3.3.2 Emergent Annealing

It is possible to reformulate the evolution of friction coefficients (3.2) in the following

way:

µ̇i = −f(µi)
∑
j∈A

U(xi)− U(xj)

Umax − Umin

= f(µi)

∑
j∈A U(xj)−

∑
j∈A U(xi)

Umax − Umin

= f(µi)|A|
U − U(xi)

Umax − Umin

where U =
∑

j∈A U(xj)/|A| is the average fitness of active particles. Since
∑

i∈A(U−
U(xi)) = 0, we notice that ∑

i∈A

µ̇i

f(µi)
= 0

Given that inactive particles are not updated, their contribution is zero. Thus, the

dynamics have a conserved quantity:

M :=
N∑
i=1

F (µi) = const, where F (µ) =

∫
dµ

f(µ)
(3.12)

Assuming that F (µ)→ 0 as µ→ 0, the contribution of inactive particles with µ < δµ

into M is negligible. Therefore, the conserved quantity is approximated by restrict-

ing the sum only to the active particles:

M ≈
∑
i∈A

F (µi)

For our choice of f(µ), given by (3.4), the integral is

F (µ) =

∫ √
µ+ 1
√
µ

dµ = µ+ 2
√
µ+ C

Assuming C = 0, indeed F (µ)→ 0 as µ→ 0. Thus, the conserved quantity is

M =
∑
i∈A

(µi + 2
√
µi)

neglecting the maximum possible error of (N − |A|)F (δµ), corresponding to the

contribution of inactive particles.

Since the number of active particles |A| does not increase with time and M is

conserved, the average friction coefficient µ̄ of active particles is a non-decreasing
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function. Indeed, when a particle becomes inactive, its contribution to M is already

negligible: F (µi) ≤ F (δµ) ≈ 0, so the sum of the contributions of the remaining

particles must increase to compensate, keeping M constant.

As µ̄ increases over time, particles take shorter steps and consequently move

slower. In the case of Gaussian noise, this also reduces the magnitude of the random

force according to (3.10). This behaviour is analogous to the simulated annealing

(SA) approach, where the system starts at a high temperature that is gradually

lowered to aid convergence. In our model, 1/µ̄ plays a similar role as tempera-

ture. However, unlike in SA, µ̄ is not explicitly controlled, but its increase emerges

naturally from the system dynamics.

The theoretical result of an increasing average µ̄ is supported by experimental

results, showing an approximately linear growth. Fig. 3.6 shows the evolution of µ̄

in a simulation with N = 500 particles optimizing the 1D Rastrigin function under

Gaussian noise with q = 1.

Figure 3.6: Average friction coefficient µ̄ (N = 500, Gaussian noise with q = 1)
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Chapter 4

Algorithm

4.1 Computational Scheme

The system (3.5) is solved using a time discretization scheme with a fixed timestep τ .

Stochastic differential equations for xi are solved using the Euler-Maruyama method [32],

while the ordinary differential equations for µi are solved using the explicit Euler

method. The update rule for each timestep n+ 1 is given by:

x
(n+1)
i = x

(n)
i +

1

µ
(n)
i

(
−∇U(x

(n)
i )τ +∆ω

(n)
i

)
i ∈ A(n)

µ
(n+1)
i = µ

(n)
i − τ |A(n)|f(µ(n)

i )
U(x

(n+1)
i )− U

(n+1)

U
(n+1)
max − U

(n+1)
min

|Umax − Umin| > ε, i ∈ A(n)

µ
(n+1)
i = 0 |Umax − Umin| ≤ ε, i ∈ A(n)

U
(n+1)

=
1

|A(n)|
∑

i∈A(n)

U(x
(n+1)
i )

U
(n+1)
min = min

i∈A(n)
U(x

(n+1)
i ), U (n+1)

max = max
i∈A(n)

U(x
(n+1)
i )

(4.1)

where the same notation as in the system (3.5) is used. To avoid numerical insta-

bility, a small threshold parameter ε is introduced as a numerical zero. The random

force term ∆ω
(n)
i is sampled at every timestep, according to the Euler-Maruyama

scheme as

∆ω
(n)
i ∼


√
τ N (0, c2σ2), if Gaussian

τ 1/α Sα(0, c, 0), if Lévy-stable

(4.2)
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Here, Sα(0, c, 0) denotes the symmetric Lévy-stable distribution centered at zero

with scale c.

After each update of friction coefficients, if the particle i has µi lower than a set

threshold δµ, it is removed, discarding the equations for xi and µi in (4.1):

A(n+1) =
{
i ∈ A(n) : µ

(n+1)
i > δµ

}
(4.3)

At each timestep n, the best obtained solution x∗ with fitness U∗ is tracked:

U∗ = min
i∈A(m)

U(x
(m)
i ), x∗ = argmin

x
(m)
i

U(x
(m)
i ), m ≤ n (4.4)

The full state of the system at timestep n is described by the variables:

• x
(n)
i : position of particle i

• µ
(n)
i : friction coefficient of particle i

• A(n): set of active particle indices

• x∗: best solution obtained so far

• U∗: corresponding best function value

4.2 Function Optimizer

The pseudocode for the function optimizer algorithm is given in Algorithm 1 and

described below.
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Algorithm 1 Particle swarm optimization with friction transfer

Require: Parameters N, T, Tearly, τ, δµ, ω

A ← {1, . . . , N}
xi ← x ∼ U(S), µi ← µ0 for i ∈ A
x∗ ← argmin

i∈A
U(x), U∗ ← U(x∗), n∗ ← 0

for n = 0, . . . , T do

for i ∈ A do

Generate ∆ωi

xi ← xi +
1
µi
(−τ∇U(xi) + ∆ωi)

Ui ← U(xi)

end for

U ← 1
|A|
∑
i∈A

Ui, Umin ← min
i∈A

Ui, Umax ← max
i∈A

Ui

if Umin < U∗ then

i∗n ← argmin
i∈A

Ui, x∗ ← xi∗n , U∗ ← Umin, n∗ ← n

end if

if n− n∗ ≥ Tearly then break

µi ← µi − τ |A|f(µi)(Ui − U)/(Umax − Umin) for i ∈ A
A ← {i ∈ A : µi > δµ}

end for

return x∗

Initialization

At initialization, each of the swarms N particles is active. The initial particle

positions are uniformly sampled from a given search space S. Each particle is

assigned the same friction coefficient of µ0.
x
(0)
i ∼ U(S) i ∈ A(0)

µ
(0)
i = µ0 i ∈ A(0)

A(0) = {1, . . . , N}

(4.5)

Update rule

The simulation is run for a given number of steps T with timestep τ . At each

timestep, the state is updated according to the scheme (4.1).
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Stopping criteria

The simulation is run for a maximum of T steps with an early stopping condition:

if the best found solution does not improve after Tearly steps. In all experiments,

the values T = 1000 and Tearly = 200 are used unless otherwise stated. The early

stopping condition is applied in most cases.

Parameters

The list of algorithm parameters and their typical values are presented in Table 4.1.

The random force is defined by two parameters, which require tuning: the scale c

and the parameter q connecting friction and variance for Gaussian noise, and the

scale c and the stability index α for Lévy noise.

Parameter Description Typical values

N number of particles 10 ∼ 103

T number of timesteps 103 ∼ 104

τ timestep 10−4 ∼ 10−2

Tearly early stopping threshold 102 ∼ 103

µ0 initial friction coefficient 10−1

δµ minimum friction coefficient threshold 10−4

ω type of noise Gauss, Lévy

Gaussian noise parameters

q parameter connecting friction and variance {0.5, 1.0, 2.0}
c noise scale ∼

√
τ
d
max |∇U(x)|

Lévy noise parameters

α stability index {1.0, 1.5, 2.0}
c noise scale ∼

√
τ
d
max |∇U(x)|

Table 4.1: Algorithm parameters

4.3 GPU Implementation

Algorithm 1 is parallelized for execution on a graphics processing unit (GPU), ex-

ecuting N concurrent threads, one per particle. The implementation is developed

using Rust and the WebGPU Shading Language (WGSL), using the wgpu library,
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a cross-platform graphics API based on the WebGPU standard [33]. This technical

approach enables native execution on Vulkan, as used in this work, and supports

browser-based execution on WebGPU after compilation to WebAssembly (WASM).

The source code is published in a repository1.

4.3.1 Storage layout

The structure of Algorithm 1 is well-suited for parallel implementation within each

timestep. For a grid search with cardinality |G| and number of samples S, a total of

|G|S workgroups are dispatched. A workgroup is associated with a single simulation

and consists of N threads, each corresponding to a single particle. Thus, the total

number of threads becomes |G|SN , significantly speeding up computation.

Each thread independently manages the particle’s position xi and friction coef-

ficient µi, storing these values in private memory with efficient access. If a particle

becomes inactive, its corresponding thread skips all computations. The function

value U(xi) is shared among threads within a workgroup and stored in the work-

group memory. The parallel version requires a workgroup memory synchronization

barrier inserted after updating the particle position and the corresponding function

value, since these values are used subsequently in friction coefficient updates.

The aggregate values of average function value U , value g = |A|/(Umax − Umin),

the best position x∗, the best function value U∗ and the best iteration n∗ are stored

in the workgroup memory and managed by a designated single thread, which re-

quires another workgroup memory synchronization barrier after their calculation.

The designated thread also checks the stopping condition. When the simulation is

stopped, the thread writes the values U∗, x∗ and n∗ to the storage buffer, which is the

algorithm’s output, accessible by the central processing unit (CPU) after copying.

The storage locations of variables are summarized in Table 4.2.

Storage Location Variables

Private memory xi, µi

Workgroup memory U(xi), U , g, x∗, U∗, n∗

Storage buffers x∗, U∗, n∗

Table 4.2: Storage locations of variables for GPU algorithm for each simulation

1Source code available at https://github.com/IvanLudvig/swarm_wgpu
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4.3.2 Random variable generation

Due to the deterministic nature of GPU programming, random variables must

be generated manually. Uniform random variables are obtained via a hash-based

pseudo-random stateless algorithm based on MurmurHash3 [34], which is chosen

for its high speed, excellent statistical properties and strong avalanche effect [35].

Including the thread index in the seed is vital to ensure minimal correlation between

threads. Other desired distributions are generated by transforming uniform random

variables.

Gaussian random variables with mean µ and variance σ2 are generated using the

Box-Muller transform, which maps pairs of independent uniform random variables

to standard normal variables (Algorithm 2) [36].

Algorithm 2 Box-Muller transform for Gaussian r.v.

Require: Parameters µ, σ

Generate u1, u2 ∼ U(0, 1)
R←

√
−2 lnu1

θ ← 2πu2

x1 ← R cos(θ), x1 ← σx1 + µ

x2 ← R sin(θ), x2 ← σx2 + µ

return x1, x2

For computational generation of symmetric Lévy-stable distributed random vari-

ables, the algorithm proposed by Chambers, Mallows and Stuck (CMS) [37] is used,

which simulates any stable random variable in an efficient way [38]. Algorithm 3

generates a random variable drawn from the Lévy-stable distribution with stability

parameter α and scale parameter c. In the case of α = 1, the algorithm requires just

one uniform random variable. Otherwise, an additional exponentially-distributed

random variable is necessary, which is obtained by applying the inverse transform

to another independently generated uniform random variable.
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Algorithm 3 CMS algorithm for Lévy-stable r.v.

Require: Parameters α, c

Generate u ∼ U(−π
2
, π
2
)

if α ̸= 1 then

Generate w ∼ U(0, 1)
w ← − lnw

x← sin(αu)

cos1/α(u)

(
cos((1−α)u))

w

) 1−α
α

else

x← tan(u)

end if

x← cx

return x

4.4 Application to Neural Network Optimization

Algorithm 1 is adapted for use as an optimizer in Neural network (NN) training,

where the loss function serves as the potential U . Each particle i maintains an inde-

pendent set of model weights xi, updated iteratively based on stochastic gradients

and injected noise.

Training proceeds over TE epochs, with each iteration dealing with a single mini-

batch of data. During an iteration, the position of each particle is updated according

to the scheme (4.1), computing the gradients of the loss function ∇U(xi) via back-

propagation for each model on the same mini-batch. After weight updates, the

friction coefficients are updated based on mini-batch losses, leading to selective-like

behaviour that favours better-performing models.

Model weights xi are initialized using standard initialization (Kaiming uniform).

No early stopping mechanism is applied during training. The algorithm is imple-

mented within the PyTorch library.
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Chapter 5

Experiments

5.1 Optimization of Benchmark Functions

The performance of the method is assessed on a set of functions selected from the

survey [39], which covers benchmark functions widely used for validating and com-

paring optimization algorithms.

5.1.1 Function Descriptions

Sphere

The sphere function is a simple convex function with a single global minimum at

the origin. In this work, it is used solely for algorithm validation.

f(x) =
d∑

i=1

xi
2 (5.1)

Figure 5.1: 2D Sphere function
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Ackley

The Ackley function is a multimodal function with a global minimum at the origin.

It is used to evaluate the exploration ability of algorithms.

f(x) = 20 + e− 20 exp

−0.2
√∑d

i=1 xi
2

d

− exp

(∑d
i=1 cos(2πxi)

d

)
(5.2)

Figure 5.2: 2D Ackley function

Rastrigin

The Rastrigin function is a highly-multimodal function with a global minimum at

the origin. Its landscape features frequent and deep local minima, the number of

which grows exponentially fast in terms of dimensionality: on [−3, 3]d the number

of local minima is 5d.

f(x) =
d∑

i=1

(
xi

2 − 10 cos(2πxi) + 10
)

(5.3)

Figure 5.3: 2D Rastrigin function
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Rosenbrock

The Rosenbrock function is a non-convex function with a long, narrow, parabolic-

shaped valley with a global minimum at xo = (1, . . . , 1). It tests the algorithm’s

ability to navigate an ill-conditioned and deceptive landscape.

f(x) =
d−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
(5.4)

Figure 5.4: 2D Rosenbrock function

5.1.2 Evaluation Methodology

An experiment is deemed successful if the best obtained solution x∗ is within the

Euclidean distance δr = 0.1 of the global optimum xo:

∥x∗ − xo∥ < δr

The success rate, defined as the fraction of successful experiments, is computed

over 1,000 independent simulations. To optimize performance, a two-stage grid-

search is applied for the scale parameter c of Gaussian and Lévy noise:

1. Coarse search over G1 = {10−4, . . . , 102} to identify the order of magnitude c1

2. Refined search over G2 = {0.25c1, 0.5c1, . . . , 8c1} to determine the optimal c

Only the best success rate across all tested c values is reported. Additionally, the

number of completed iterations is recorded in order to evaluate algorithm efficiency.
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5.1.3 Performance

Particle positions are uniformly initialized in the hypercube S = [−3, 3]d with initial

friction coefficient µ0 = 0.1. The algorithm was validated on the Sphere function

(5.1), showing a 100% success rate. Success rates on the Ackley, Rastrigin and

Rosenbrock functions are reported in Tables 5.1, 5.2 and 5.3 respectively.

d q = 0.5 q = 1 q = 2

N = 10

6 91.5% 91.4% 87.4%

12 62.5% 77.9% 54.8%

18 27.1% 49.5% 24.4%

N = 50

6 100.0% 100.0% 99.8%

12 96.0% 99.0% 74.2%

18 53.5% 74.5% 27.3%

(a) Gaussian noise with q parameter

d α = 0.5 α = 1 α = 1.5

N = 10

6 95.6% 96.1% 96.2%

12 91.2% 91.5% 89.6%

18 85.3% 87.3% 82.0%

N = 50

6 100.0% 100.0% 100.0%

12 95.4% 99.3% 99.0%

18 86.2% 90.1% 88.6%

(b) Lévy noise with α stability index

Table 5.1: Success rate on d-dimensional Ackley function (5.2) with N particles for
different noise types (T = 5000, Tearly = 500, τ = 10−4)

d q = 0.5 q = 1 q = 2

N = 10

2 93.4% 94.2% 82.3%

3 45.2% 44.5% 41.8%

4 15.0% 12.1% 12.4%

N = 50

2 100.0% 100.0% 100.0%

3 88.8% 83.0% 87.3%

4 42.9% 40.0% 32.5%

(a) Gaussian noise with q parameter

d α = 0.5 α = 1 α = 1.5

N = 10

2 85.0% 84.2% 83.6%

3 44.6% 45.7% 46.0%

4 21.4% 21.2% 22.4%

N = 50

2 97.4% 96.5% 96.3%

3 63.2% 56.3% 52.5%

4 31.3% 20.6% 18.2%

(b) Lévy noise with α stability index

Table 5.2: Success rate on d-dimensional Rastrigin function (5.3) with N particles
for different noise types (T = 1000, Tearly = 200, τ = 10−4)

The results show several consistent trends. Firstly, increasing the number of par-

ticles N leads to a significant improvement in success rates across all test cases. This

confirms that a larger swarm is more effective at exploring the search space. Sec-
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d q = 0.5 q = 1 q = 2

N = 10

3 99.6% 99.5% 99.1%

6 38.9% 39.7% 37.8%

9 30.6% 31.9% 33.2%

N = 50

3 100.0% 100.0% 100.0%

6 60.0% 58.8% 61.3%

9 34.8% 36.9% 36.1%

(a) Gaussian noise with q parameter

d α = 0.5 α = 1 α = 1.5

N = 10

3 18.8% 23.5% 25.1%

6 9.1% 11.5% 13.5%

9 7.5% 9.2% 9.5%

N = 50

3 53.1% 58.0% 67.1%

6 27.6% 36.0% 43.4%

9 22.7% 30.1% 31.2%

(b) Lévy noise with α stability index

Table 5.3: Success rate on d-dimensional Rosenbrock function (5.4) with N particles
for different noise types (T = 1000, Tearly = 200, τ = 10−5)

ondly, the method performs worse as the dimensionality of the problem d increases,

which is particularly evident for the highly-multimodal Rastrigin function.

The choice of the noise (Gaussian and Lévy) and its parameters (q and α) has a

problem-dependent impact on performance:

• For the Ackley function, Lévy noise yields significantly better results than

Gaussian noise, especially in higher dimensions, suggesting the importance of

more exploratory behaviour facilitated by longer jumps. Within Lévy noise,

the stability index α = 1 is the most effective, suggesting a balance in jump

lengths. For Gaussian noise, the value q = 1 shows the best results.

• For the Rastrigin function, Gaussian noise leads to better performance, partic-

ularly for a larger swarm (N = 50) and the parameter q = 0.5. This suggests

that the function’s highly-multimodal complex landscape benefits from careful

exploration. For Lévy noise, the values α = 1.0, 1.5 show better results in the

case of fewer particles (N = 10) and α = 0.5 for more particles (N = 50).

• For the Rosenbrock function, Gaussian noise shows significantly better perfor-

mance than Lévy noise. The success rates are similar across all choices of q.

Within Lévy noise, the stability index α = 1.5 with shorter average jumps is

consistently the most effective. This indicates that Lévy jumps are detrimental

for navigating the Rosenbrock’s narrow valley.
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5.1.4 Shifted Initialization Range

The particle position initialization range is shifted by B ∈ R units along each direc-

tion: SB = [−3+B, 3+B]d. We select B = 6, 9, so that particles are not initialized

on the slope of the minimum. In order for the particles to have enough time to

explore the landscape, we increase the number of timesteps T , as well as the early

stopping threshold Tearly to avoid premature convergence.

B q = 0.5 q = 1 q = 2

N = 10

0 95.5% 90.0% 87.1%

6 60.3% 58.1% 59.7%

9 12.4% 14.4% 12.7%

N = 50

0 100.0% 100.0% 100.0%

6 98.4% 98.9% 98.5%

9 98.4% 98.2% 98.4%

(a) Gaussian noise with q parameter

B α = 0.5 α = 1 α = 1.5

N = 10

0 90.6% 88.9% 89.1%

6 55.1% 58.4% 60.2%

9 53.1% 58.6% 58.2%

N = 50

0 99.2% 98.7% 98.5%

6 98.4% 97.7% 97.3%

9 97.3% 95.2% 96.2%

(b) Lévy noise with α stability index

Table 5.4: Success rate on 2D Rastrigin function (5.3) with N particles with B shift
for different noise types (T = 5000, Tearly = 500, τ = 10−4)

The negative impact of shifting the initialization range is more pronounced for

the smaller swarm (N = 10), with success rates dropping considerably for the shift

B = 6. The additional performance drop for B = 9 is less pronounced for Lévy

noise, suggesting that longer jumps help particles escape local minima and traverse

long distances effectively. In contrast, for Gaussian noise, the drop for B = 9 is

substantial. With a larger swarm (N = 50), both noise types maintain high success

rates, demonstrating the effectiveness of a larger swarm. There is no clear preference

for the Gaussian noise parameter q or the Lévy stability index α.
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5.1.5 Comparison with Other Optimizers

The performance of the proposed method is benchmarked against established op-

timization algorithms: PSO, SBGD, and Adam. The proposed method is termed

Langevin Particle Swarm optimization with Friction-based communication (LPSF).

For LPSF, PSO and Adam the same number of iterations is used: T = 1,000 for

Rastrigin and Rosenbrock, and T = 5,000 for Ackley function, whereas in SBGD, the

number of iterations is equal to the number of particles N . The following parameters

are used for each optimizer:

• LPSF is reported with the best-performing parameters for each function, se-

lected via grid search described in Subsection 5.1.2.

• PSO uses standard parameters derived from the constriction coefficient ap-

proach [40]: inertia weight w = 0.729, equal cognitive and social coefficients

c1 = c2 = 1.494 and velocity clamping at vmax = 1.2.

• SBGD employs default parameters: h0 = 1 and p = 1.

• Adam employs recommended parameters [41]: momentum coefficients β1 =

0.9, β2 = 0.999 and numerical stability ε = 10−8. Learning rate η is selected

via grid search over {10−2, 10−3, 10−4}.

Table 5.5 summarizes the success rates of the optimizers for various benchmark

functions.

Function
N = 10 N = 50

AdamPSO SBGD LPSF PSO SBGD LPSF

Rastrigin, d = 2 91.4% 33.5% 94.2% 100% 89.8% 100% 5%

Rastrigin, d = 3 62.5% 4.5% 45.2% 99.8% 25.5% 88.8% 1%

Ackley, d = 6 78.4% 0.9% 91.4% 100% 100% 100% 0%

Rosenbrock, d = 3 38.1% 2.3% 99.5% 100% 35.5% 100% 100%

Rosenbrock, d = 6 1.3% 0.0% 37.8% 77.3% 1.4% 61.3% 82%

Table 5.5: Comparison of optimization methods success rates across functions

Adam shows poor performance on the multi-modal Rastrigin and Ackley func-

tions, but performs well on the Rosenbrock function, achieving better results than

swarm methods. In most cases, LPSF outperforms the other swarm optimizers. The

computational cost of LPSF is comparable to PSO, but it is significantly higher than

that of SBGD, which performs considerably worse.
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5.2 Neural Network Training

5.2.1 Dataset and Setting

The experiments are conducted on the CIFAR-10 image classification dataset [42],

consisting of 60,000 labelled 32 × 32 images across 10 classes. The dataset is split

into 50,000 training images and 10,000 test images. To improve generalization, the

training set is augmented with random cropping and horizontal flipping, followed

by normalization. The test set is only normalized. Sample images from each class

are shown in Fig. 5.5.

Figure 5.5: Sample images with class labels from CIFAR-10 dataset

The goal is to train a NN that maps images to class labels by minimising the

cross-entropy loss on the training data.

5.2.2 Network Architecture

Figure 5.6: Network architecture

We use a compact convolutional neural network

(CNN) with two convolutional layers followed by

two fully connected layers, having 545,098 pa-

rameters. Its diagram with layers and dimen-

sions is shown in Fig. 5.6. The two convolutional

layers use 3 × 3 kernels with ReLU activations

and 2 × 2 max-pooling, progressively reducing

spatial dimensions from 32×32 to 8×8, while in-
creasing feature depth to 64. The flattened out-

put of convolutional layers is passed to a fully-

connected layer with 128 output units and ReLU

activation, followed by the final output layer pro-

jecting to 10 classes.
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Although not state-of-the-art, the chosen CNN is well-suited for benchmarking

optimizers due to its simple architecture and low computational complexity. Its

shallow depth helps isolate the influence of the optimizer on training.

5.2.3 Comparison with Standard Optimizers

The proposed algorithm is compared with standard optimizers: Adam and stochastic

gradient descent (SGD). The following parameters are selected for the optimizers as

a result of tuning:

• LPSF: number of particles N = 10, timestep τ = 10−2, initial friction µ0 =

10−2, minimum friction threshold δµ = 10−6, Gaussian noise with q = 1 and

scale c = 10−4.

• Adam: learning rate η = 10−3, default momentum coefficients β1 = 0.9, β2 =

0.999 and numerical stability ε = 10−8.

• SGD: learning rate η = 10−2 with no momentum.

Training loss and test accuracy for different optimizers are shown in Fig. 5.7, 5.8.

The lowest loss values and highest accuracies obtained during training are presented

in Table 5.6.

Figure 5.7: Training loss during training
with different optimizers

Figure 5.8: Test accuracy during training
with different optimizers

Optimizer Loss Accuracy

LPSF 0.612 78.47%

Adam 0.643 76.69%

SGD 0.632 77.87%

Table 5.6: Best training loss and test accuracy of optimizers
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The proposed algorithm performs slightly better than the established Adam

and SGD optimizers in NN training. However, the computational cost of LPSF is

significantly higher, taking up to N times more time. Actually, in LPSF, N models,

one for each particle, are effectively trained initially. As worse-performing particles

are discarded, the computational cost eventually decreases, speeding up training

towards the end.

5.2.4 Impact of Particle Swarm Size

Using the same parameters as in the previous section, we compare the performance

of the proposed optimizer with different particle sizes N . The loss and accuracy

plots during training are presented in Fig. 5.9, 5.10. The best obtained values for

loss and accuracy are summarised in Table 5.7.

Figure 5.9: Training loss during training
with swarm sizes N

Figure 5.10: Test accuracy during train-
ing with different swarm sizes N

N Loss Accuracy

10 0.611 78.47%

20 0.612 78.82%

50 0.608 78.96%

Table 5.7: Best training loss and test accuracy of LPSF with N particles

During training, the performance of larger swarms is better. However, towards

the end of training, the optimizers converge to configurations with similar perfor-

mance. There is still a slight increase in the best test accuracy for larger swarms.

However, the computational cost of the method increases approximately linearly

with N and may not justify the increase in accuracy in practice.
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Chapter 6

Conclusions

This work proposed a swarm optimization algorithm where particle motion is in-

spired by overdamped Langevin dynamics with a friction-based communication

mechanism. The communication mechanism, based on agent fitness, plays an es-

sential role by enabling better-performing agents to focus on their current regions,

while allowing worse-performing agents to explore the search space. The model ex-

hibits emergent annealing, where the average friction coefficient increases over time,

gradually reducing the particles’ average step size and eventually settling the swarm

without explicit control.

Experiments on multi-modal benchmark functions demonstrate the method’s

effectiveness compared to other swarm optimizers, such as PSO and SBGD. Perfor-

mance improves with larger swarm sizes and longer simulation durations, as more of

the search space can be covered. No single noise type outperforms others across all

considered functions. However, Lévy noise, characterized by a heavy-tailed distribu-

tion, enhances exploration, while Gaussian noise facilitates more careful exploitation.

The method successfully trained a CNN on the CIFAR-10 dataset. However, its

performance is only marginally better than standard optimizers, at a much higher

computational cost. The computational cost scales linearly with the number of

particles N , comparable to training N models with SGD. This slight improvement

can be attributed to the problem’s high dimensionality and the inherent stochasticity

of SGD, which makes the additional noise from the proposed method less critical.

In contrast with the results from benchmark function minimization, increasing the

swarm size did not yield a significant performance improvement in this case.

The algorithm is sensitive to hyperparameter selection. In particular, the timestep

τ and the noise scale c are crucial.

Future work could delve deeper into the method’s theoretical properties and

provide a convergence analysis. Another direction involves modifying the method,
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such as:

• Exploring different coupling schemes between noise and friction, such as differ-

ent functions for σ2(µ), connecting Gaussian noise with friction, or introducing

a connection between Lévy noise parameters and friction.

• Introducing randomness in the gradient direction, as done in [3] for SBGD.

• Modifying the friction update rules. Since communication lies at the heart

of emergent behaviour, different choices may lead to different emergent be-

haviours. Modifications could be made to the friction response function f(µ)

or the update rule itself.
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Acronyms

BPSO Bare bones particle swarm optimization.

CMS Chambers, Mallows and Stuck.

CNN convolutional neural network.

CPU central processing unit.

CSO Competitive swarm optimizer.

FFPE Fractional Fokker-Planck Equation.

FPE Fokker-Planck Equation.

GPU graphics processing unit.

KL Kullback-Leibler.

LPSF Langevin Particle Swarm optimization with Friction-based communication.

NN Neural network.

PDF probability density function.

PSO Particle swarm optimization.

SA Simulated annealing.

SBGD Swarm-based gradient descent.

SBRD Swarm based optimization with random descent.

SGD stochastic gradient descent.

WGSL WebGPU Shading Language.
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and H. E. Stanley, “Lévy flight search patterns of wandering albatrosses,”
Nature, vol. 381, no. 6581, pp. 413–415, 1996.

[25] N. E. Humphries et al., “Environmental context explains lévy and brownian
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driven by non-gaussian lévy stable noises,” Journal of Mathematical Physics,
vol. 42, no. 1, pp. 200–212, Jan. 2001, issn: 1089-7658. doi: 10.1063/1.
1318734. [Online]. Available: http://dx.doi.org/10.1063/1.1318734.
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