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Abstract

Addressing the critical challenge of efficiently allocating network resources to support
the demanding requirements of the Musical Metaverse, this thesis leverages the prin-
ciples of Network Virtualization and Virtual Network Embedding (VNE) to propose a
novel framework for optimizing the placement and routing of musical metaverse services.
The unique characteristics of the Musical Metaverse, including ultra-low latency com-
munication, stringent Quality of Service (QoS) requirements, and the need for precise
synchronization in multi-user interactions, necessitate a specialized approach beyond
traditional VNE solutions. To this end, the thesis introduces the Musical Metaverse Op-
timization (MusMOPT) model, which extends classical VNE to account for these specific
demands. Furthermore, a dedicated simulation environment, SiMusMet, is developed to
rigorously evaluate the proposed models and algorithms. SiMusMet provides a compre-
hensive platform for configuring network topologies, simulating various scenarios, and
assessing performance metrics relevant to the Musical Metaverse. The thesis also details
the design of a heuristic placement and routing algorithm, incorporating techniques such
as community detection and probabilistic iterative refinement, to efficiently map musi-
cal metaverse service graphs onto underlying cloud network infrastructures. Through
extensive simulations and analysis, this research demonstrates the effectiveness of the
proposed MusMOPT model and heuristic algorithm in achieving near-optimal resource
utilization and ensuring a high-quality user experience within the Musical Metaverse.
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The Scientific Revolution has not been a
revolution of knowledge.

It has been above all a revolution of
ignorance.

The great discovery that launched the
Scientific Revolution, was the discovery
that humans do not know,

the answers to their most important
questions.

[YuvAL NOAH HARARI, Sapiens: A Brief
History of Humankind]



Chapter 1

General Introduction

1.1 Summary

In an increasingly interconnected world, digital platforms are transforming how we in-
teract, work, and entertain. This evolution is leading towards the emergence of the
metaverse, a persistent virtual world that mixes physical and digital realities. Within
this context, music plays a pivotal role, giving rise to the ”Musical Metaverse” (MM).

The MM promises immersive, interactive experiences, from collaborative perfor-
mances across continents to massive virtual concerts with thousands of participants.
It envisions a future where musicians and audiences can co-create and engage in real-
time, transcending geographical boundaries. However, realizing the full potential of the
Musical Metaverse presents formidable challenges, particularly concerning its underly-
ing network infrastructure. Unlike traditional online activities, musical interactions in
the MM demand ultra-low latency, stringent Quality of Service (QoS) guarantees, and
precise synchronization across multiple users and devices. Even a few milliseconds of
delay or minor packet loss can disrupt the illusion of co-presence and compromise the
musical timing, leading to a degraded user experience.

Current network architectures and conventional Virtual Network Embedding (VNE)
models, designed primarily for less demanding applications, fall short in addressing these
unique requirements. They often lack the necessary flow-level intelligence, struggle with
dynamic, multi-modal data streams, and are not suitable for handling the complex inter-
play of compute and network resources across a distributed edge-cloud continuum. This
highlights a critical need for a specialized approach to efficiently allocate and orchestrate
network resources within the Musical Metaverse.

1.2 Contributions

This thesis addresses the above-mentioned challenges by introducing a novel framework
and associated tools for efficient service provisioning in the Musical Metaverse. Our
primary contributions are as follows:

e Musical Metaverse Optimization (MusMOPT) Framework: We propose

11



General Introduction

MusMOPT, a novel optimization framework that reconceptualizes how services
are mapped onto network infrastructure. Unlike classical VNE, MusMOPT treats
musical metaverse services as directed acyclic graphs (DAGs) of information pro-
cessing, enabling a unified approach to service placement, routing, and resource al-
location. This framework inherently supports multicast distribution, understands
information flows, and integrates compute-network decisions, directly addressing
the unique demands of the MM.

e Two-Layer Abstraction Model: We introduce a two-layer abstraction for MM
service design: a graph-layer responsible for the strategic placement of functions and
routing of commodities, and a data-layer that manages real-time information flow
behaviors, reacting to dynamic network conditions like jitter and congestion. This
decomposition allows for both long-term optimization and real-time adaptability.

e SiMusMet Simulator: To validate our theoretical advancements, we developed
SiMusMet, a Python-based discrete-event simulator. SiMusMet provides a ro-
bust and extensible environment for simulating dynamic service embeddings, fine-
grained traffic flows under realistic network impairments, and comprehensive eval-
uation of QoS and Quality of Experience (QoE) metrics in musical metaverse sce-
narios.

e Topology-Aware Cost-Load Heuristic Algorithm: Recognizing the computa-
tional complexity of optimal solutions for large-scale MM deployments, we designed
a novel heuristic algorithm for placement and routing. This heuristic balances
computational speed and efficiency with cost-consciousness and load restraint, of-
fering near-optimal results in practical timeframes, making it suitable for real-time
decision-making in dynamic MM environments.

e Comprehensive Evaluation and Analysis: We benchmark our proposed heuris-
tic against two Mixed-Integer Linear Programming (MILP) formulations (Min-Cost
and Load-Balancing) across various cloud network topologies and user scales. Our
extensive simulations demonstrate the practical value of the heuristic, showcasing
its superior runtime performance while maintaining competitive cost, load fair-
ness, and resource utilization compared to optimal, but computationally expensive,
MILP solutions.

The remainder of this thesis is structured as follows: Chapter 2 provides an in-
troduction to communication networks, laying the groundwork for understanding the
underlying infrastructure. Chapter 3 delves into the fundamentals of Virtual Net-
work Embedding (VNE), outlining its problem formulation, components, and inherent
complexities. Chapter 4 introduces the concept of the Musical Metaverse, detailing
its technological foundations and the specific networking infrastructure requirements.
Chapter 5 presents the Musical Metaverse Optimization (MusMOPT) model in de-
tail, highlighting the limitations of classical VNE and explaining our novel approach.
Chapter 6 focuses on Service-Graph Foundations, describing the interaction model for
pre-recorded concerts and the two-layer problem decomposition. Chapter 7 introduces
the MUSMET Simulator, detailing its design principles, core modules, and capabilities

12



General Introduction

for simulating MM scenarios. Chapter 8 discusses the Placement and Routing Policy
Design, including the general MILP formulation and our proposed heuristic algorithm.
Chapter 9 presents the Simulation Results and Analysis, comparing the performance
of our heuristic against MILP baselines across various experimental setups. Chapter
10 concludes the thesis by summarizing our findings and outlining future work.

13



Chapter 2

Introduction to Virtualization in
Telecommunication Networks

2.1 Why does this matter?

Imagine it’s Friday night. You curl up on the sofa, open your favorite streaming app,
and press “Play”. In that instant, millions of tiny data packets sprint across the globe:
leaping from the content provider’s data center, zig-zagging through long-haul fibre,
dodging congestion at Internet exchange points, and finally hopping across your home
Wi-Fi to paint an ultra-high-definition scene on your screen. To you, it feels effortless:
click, watch, relax. But beneath that simplicity lies a vast, hidden machinery: routers,
switches, cables, and servers all working in concert, orchestrating a seamless experience
that reaches your screen before you even think to question how.

Why does this matter? Because every “simple” online action, whether stream-
ing a film, scrolling social media, or backing up files to the cloud, rests on the
same fundamental question: how do we move data from A to B, on
time, every time, for everybody?

Now consider a different scenario: you’re playing an online multiplayer game. Your
actions (e.g. firing a virtual weapon, dodging an opponent) must reach a game server in
milliseconds. That server must update the game state and relay it back to you and all
other players just as quickly. Every delay, every spike in latency, becomes a lag that could
mean the difference between victory and defeat. To ensure this low-latency interaction,
your input is passed through load balancers, firewalls, and routing optimizers, each
acting as a service embedded within the network.

In both scenarios, video streaming and online gaming, users are not simply ”using the
Internet.” They are requesting network services: services that deliver data continu-
ously with guarantees. HD video needs sustained throughput; online games need ultra-
low delay. But these aren’t standalone services. They are made possible by a shared,
global physical network that must dynamically and intelligently allocate resources for
millions of concurrent demands.

14



Introduction to Virtualization in Telecommunication Networks

This underlying infrastructure, known as the substrate network, consists of physical
hardware (switches, routers, fiber-optic cables, data centers, etc..). It’s the real-world
canvas on which virtual services are painted. Every time a user makes a service request,
the substrate network is responsible for stitching together a path across this physical
mesh and allocating the right amount of bandwidth, processing power, and sometimes
even custom service nodes along the way.

But here’s the challenge: the physical network must support not just one, but thou-
sands - even millions - of different service requests simultaneously, each with different
requirements. Some need speed, others need bandwidth, still others require specific types
of processing along the path (like firewalls, caches, or deep packet inspection). And all
of this has to happen efficiently, fairly, and in real time. So how does the network
make this possible?

2.2 Network Virtualization

The answer lies in a powerful concept that has transformed the way networks are built
and managed: network virtualization.

At its core, network virtualization is the process of abstracting the physical infras-
tructure of a network (routers, switches, cable and servers) into flexible, programmable
components that can be recombined and reused to meet different service demands. It’s
a bit like urban planning: imagine a city with roads, power lines, and utility services.
Traditionally, if you wanted to build a new neighborhood, you’d need to lay down new
roads and wires for that specific purpose. But with virtualization, it’s as if the same
roads and infrastructure can be instantly reshaped to serve any neighborhood design,
residential one day, commercial the next, without laying a single new brick.

In networking terms, this means that instead of dedicating physical hardware to a
single service (like video streaming or online gaming), the same physical network can
be sliced into multiple, logically separate virtual metworks, each customized for a
particular use case. These slices are isolated from one another, ensuring that heavy
traffic in one (say, a video-on-demand platform) doesn’t interfere with performance in
another (say, real-time financial trading).

Each virtual network consists of virtual nodes (representing functions like firewalls,
caches, or processing units) and virtual links (representing bandwidth, latency, or quality-
of-service guarantees). These virtual components are mapped onto the real, physical
infrastructure in a way that’s invisible to the end user, but carefully orchestrated by the
network operator or orchestration system.

This approach has several major benefits:

e Flexibility: New services can be deployed without having to physically reconfigure
hardware.

e Isolation: Services can run independently, with guaranteed performance and se-
curity.

e Efficiency: Resources are shared dynamically, increasing overall network utiliza-
tion.

15
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e Scalability: Operators can support millions of users and services without building
a separate network for each.

Network virtualization is made possible by two enabling technologies: Software-
Defined Networking (SDN) and Network Functions Virtualization (NFV).
SDN decouples the control logic (which decides how traffic flows) from the data plane
(which forwards the traffic), enabling centralized, programmable control of the network.
NFV, meanwhile, replaces dedicated hardware appliances - like firewalls or load balancers
- with Virtual Network Functions (VNFs) that run on general-purpose servers.
Together, SDN and NFV make the network programmable, modular, and service-aware.

For end users, this architectural shift is invisible, but essential. When you start
a video stream or connect to a game server, you're not just sending packets. You're
implicitly requesting a temporary virtual network—one that meets your specific needs
for speed, reliability, and responsiveness. That network is created in real time, mapped
onto a set of physical routers, links, and compute nodes, and then torn down when the
session ends.

But this seemingly effortless experience masks a hard technical problem. Behind
every user request lies a critical challenge: how should the network decide where
and how to place each virtual service? How can it ensure that every virtual link
gets the bandwidth it needs, that virtual nodes don’t overload physical servers, and that
different services remain isolated while still sharing the same physical hardware?

This challenge becomes even more intricate when we realize that many services aren’t
just requesting bandwidth, but they’re asking for functionality: sequences of operations
that traffic must pass through to be delivered correctly and securely. Before we explore
the full complexity of placing virtual networks onto physical infrastructure, let’s take a
closer look at a real-world example: Service Function Chaining.

2.3 From Service Chains to Virtual Networks

To understand how virtual networks operate in real systems, let’s look at one of the
most widely deployed and practical use cases: Service Function Chaining (SFC).

Modern network services often require more than just moving data from point A to
point B, they require traffic to pass through a specific sequence of operations, such as
security checks, traffic shaping, or load distribution. These operations are performed by
network functions, and the ordered list of them forms what is known as a Service
Function Chain.

The Internet Engineering Task Force (IETF) defines an SFC as ”an ordered set of
service functions and the subsequent steering of traffic through them.” In practice, each
service function in the chain performs a distinct role. For example:

e A firewall may filter unwanted or malicious traffic.

e An Intrusion Detection System (IDS) can monitor packets for suspicious be-
havior.

¢ A load balancer distributes incoming requests evenly across a set of servers.
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Service Overlay

Figure 2.1. An illustration of the service function chaining example

Imagine an enterprise deploying a public-facing web application. To ensure security
and performance, they might request an SFC that routes traffic first through a firewall
(to block malicious requests), then through an IDS (to monitor for attacks), and finally
through a load balancer (to direct traffic to one of many backend servers). Traditionally,
this would require a set of physical appliances connected in a strict order: expensive,
inflexible, and hard to scale.

With network virtualization, all these functions can now be implemented as software,
Virtual Network Functions (VNFs), running on general-purpose servers. The chain
itself is enforced using software-defined forwarding rules that steer traffic through the
correct VNFs, in the correct order. This allows service providers to dynamically deploy,
scale, or reconfigure service chains as needed, without touching any hardware.

Crucially, this service chain represents more than a list of functions. It is a form of
a virtual network.

Each VNF in the chain is a virtual node, and the traffic flow between them forms
the virtual links. These links may carry performance constraints like bandwidth re-
quirements to support video traffic, or latency constraints for interactive services. The
entire service chain becomes a logical topology that must be embedded onto the physical
infrastructure.

While SFCs often take the form of linear chains, virtual networks in general can have
more complex topologies like stars, trees, meshes, or arbitrary graphs, depending on the
service logic. For example:

e A content delivery platform might require a mesh of VNFs for replication and
failover.

e A real-time analytics service might need a tree-shaped topology for data aggrega-
tion.

17
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e A large-scale gaming backend might use a hub-and-spoke model to coordinate traffic
among regional data centers.

Because they are software-defined, these virtual networks are highly flexible. They
can be spun up on demand, scaled elastically, and removed once no longer needed. Impor-
tantly, many virtual networks can coexist on the same physical infrastructure.
A service chain handling enterprise traffic can operate alongside a video delivery network
and a multiplayer gaming backend, all isolated logically, yet sharing the same physical
routers, switches, and compute nodes.

This is the essence of network virtualization: the ability to construct heterogeneous,
purpose-built virtual networks over a shared, general-purpose substrate. But this pow-
erful capability introduces a central question:

How should the network decide where and how to place all these virtual components
(nodes and links) onto the physical infrastructure, while satisfying constraints and avoid-
ing conflicts?

This is the challenge that brings us to the next chapter: the Virtual Network
Embedding Problem.

18



Chapter 3

A primer on Virtual Network
Embedding

Before we delve into the intricacies of the embedding problem, we first present a straight-
forward mathematical model that formally represents the critical components involved,
namely virtual network requests VNRs and substrate network SN. Subsequently, we break
down the embedding process into two sub-problems: virtual machine embedding (VME)
and virtual link embedding (VLE). While various papers in the literature have provided
disparate representations of VNE [1], [20], we believe that a simplified modeling approach
can aid first-time readers and those unfamiliar with the domain in quickly grasping the
complexities and comprehending the subsequent information presented .

3.1 Formulating the VNE Problem

Before formulating the VNE problem, we introduce the components involved in the em-
bedding process. Before this, we discuss the various approaches for modeling a VNR. In
this context, a directed graph representation may offer a more accurate model than the
weighted undirected graph. Furthermore, the choice between directed and undirected
graphs for modeling VNRs depends on the application’s communication patterns and
the specific goals of the embedding process. We will then offer insights on which model
could be adopted based on the use case.

3.1.1 Directed vs. Undirected vs. Directed Graphs with Bidirectional
Edges for VNR Modeling:

Directed graphs are optimal representations for VNRs where data flow direction is es-
sential, as seen in content delivery networks (CDNs) and streaming services that require

LAT has been used as an assistant to generate the content of this chapter
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A Virtual Node
Node Capacity

3 Link Capacity

Figure 3.1. A virtual network request (VNR) with VMs and virtual links (VLs)
and their respective resource demands. The value 2 of v; represents the re-

source demand of the VM, whereas the number 2 between v; and vy indicates
the bandwidth demands for a VNR.

one-way data transmission from servers to users [6]. This approach captures asymmetric
resource constraints, such as distinct bandwidth and latency needs, and enables prioriti-
zation for critical paths, enhancing security through directional restrictions [36]. In con-
trast, undirected graphs suit bidirectional communication applications, like traditional
client-server models, simplifying embedding by allowing two-way traffic and improving
fault tolerance through rerouting [22]. This setup also facilitates flexible resource allo-
cation in general-use networks, like VPNs, and handles dynamic traffic changes in MEC
and IoT networks without re-embedding [25]. While directed graphs with bidirectional
edges offer precision for sequence sensitive tasks by highlighting dependencies among
VMs, they add complexity, increasing computational demands and resource consump-
tion, especially in more extensive networks. Managing such models requires sophisti-
cated algorithms and may necessitate protocol updates, complicating scalability and
implementation. Table 3.1 captures a comparative study of different VNE models. Note
that the appropriate model selection should align with the application’s communication
patterns, operational dependencies, and network requirements, ensuring the most effec-
tive representation for each scenario. As most of the literature reviewed models the VNR
as an undirected graph, we follow the same definition. However, the undirected graph
model can be adapted to a directed graph with minimal adjustments.

Definition 1. (virtual network request (VNR)) A VNR, as illustrated in Fig-
ure 3.1, comprises multiple interacting VMs with communication dependencies cap-
tured as VLs.

Modeling a VINR: Formally, a VNR is represented as an undirected weighted graph
GV = (WV,EY). The set of vertices in the graph, i.e., NV = {vy,v9,...,v;,...} capture
the set of VMs and the i** VM is uniquely identified as v;. The set of edges, i.e., LY =
{(1,2),(2,4), ..., (4,i), ...} capture the VLs interconnecting any two VMs in NV. Note
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that an edge (4,4") implies that the VMs v; and v;/, exhibit communication dependencies.
Every VM v; € 'Y requests service resources for seamless operation and this demand is
captured as d(v;) and the requisite physical bandwidth resource demand of a VL (4,7)
interconnecting v; and v is captured as d(i,4").

Definition 2. (Substrate Network (SN))) A substrate network refers to the
physical organization of servers, switches, and physical links providing user services.

Modeling a SN: Formally, a SN is also modeled as an undirected weighted graph
GS = (N, L%). Here, NS = {s1,59,5p,...} be the set of physical servers and £5 =
{(1,2),(3,4),...,(1,1"),...} is the physical link set. The available resources of server s; €
NT is represented as a(sy), and that of a substrate link (I,1') € £° is captured in a(l,1').

Modeling the Computational Resources: The SN and the VNR resources are
often multidimensional, and different authors have adopted disparate representations.
Therefore, we impose various representations adopted in the literature before delving
deeper into the modeling of VNE. Ideally, the VM and server resources are multi-
dimensional, comprising CPU and memory demands. Most works express the demands
individually for each resource type or as resource vectors. However, such a model adds
to the notational complexity. Therefore, some works in [24, 23, 26] have adopted a more
simplified approach to express the multi-dimensional resources. The authors use com-
putational resource blocks (CRBs) as initially reported in [35, 34], wherein one CRB
resource corresponds to I CPU core and 512 MB of memory. A two CRB demand
implies 2 CPU cores and 1 GB of memory. Moreover, large-scale SPs widely adopt such
sizing policies as they reduce resource management complexity. We adopt this resource
modeling in the report due to its obvious advantages. We would also like to mention that
the above-discussed model is easily adaptable to multiple multi-dimensional resources.
On the other hand, the bandwidth demand of a VL (i,7’) and a physical link (1,1’) is
unidimensional and is captured as d(i,4") and a(l,’) (in Gbps).

Note that the VNE comprises two interconnected subproblems: firstly, the allocation
of VMs of VNRs to substrate servers, termed as virtual machine embedding (VME), and
secondly, the assignment of interconnecting VLs of VNRs to physical/substrate paths
after embedding the VMs termed as virtual link embedding (VLE). Both sub-problems
are challenging, computationally intractable, and are proven to be N'P— Hard [2]. Next,
we formally define each subproblem and present high-level example scenarios to assist
the readers in understanding the sub-problems.

Definition 3. (virtual machine embedding (VME)) Virtual machine embed-
ding is a function fum : NV — NS, where in Yv; € N°,3s;, € NS such that
d(v;) < a(sg).

The VME sub-problem is captured in Definition 3. It essentially states that at least
one host machine sj should have enough resources (in CRBs) to accommodate the VM
v;. lIdeally, a VM is assigned to only one server, but in cases of parallel workflows,
a VM may be mapped onto multiple servers. However, this model is explainable for
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Aspect Directed Undirected | Directed
Graphs Graphs Graphs
with Bidi-
rectional
Edges
Use case CDNs and Client—server | Sequence-
streaming sensitive
services operations
Data Flow One-way Flexible Directional
data two-way flow
transmission | traffic
Resource Constraints Specific to a Generic both | Distinct in
direction direction each
direction
Traffic Rerouting Complex Fasier Moderately
complex
Management Complexity Moderately Less complex | Highly
complex complex
Resource Consumption Moderate Low Higher
Traffic Management Flexibility | Less More Moderate
Implementation Challenges Moderately Easier More
complex complex

Table 3.1.
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applications with splittable jobs. On the other hand, a server can host multiple VMs of
the same/other VNRs. However, some works in [22, 24] have disallowed such assignments
to facilitate distributed services and avoid single-point failures. Additionally, for a VNR,
VME is said to be complete if all its VMs (set A'V) obtain a successful assignment.

Definition 4. (virtual link embedding (VLE)) Virtual link embedding is a func-
tion fu : LY — L5 between a VL and a physical/substrate link. The VL (i,i')
between VMs v; and vy is assigned to a substrate paths (1,1") if d(i,i") < a(l,l’).

In contrast to the VME, where a VM is assigned to a substrate server, VLE assigns
a VL to a substrate path, constituting multiple physical links, each satisfying the VL’s
bandwidth requirement.

Definition 5. (virtual network embedding (VNE)) A VNR is said to be suc-
cessfully embedded if all the VMs and VLs are respectively assigned substrate servers
and paths satisfying their resource demands.[22, 24]

3.1.2 Optimization Goals for VNE

VME goals may include improving resource utilization [22], consolidating virtual ma-
chines on energy-efficient servers [13], increasing the acceptance ratio [26], and maxi-
mizing service provider revenue [27]. In contrast, the objectives of VLE typically focus
on meeting various quality of service measures, such as bandwidth, communication, and
delay requirements [11]. Additionally, both sub-problems entail a set of constraints essen-
tial for successful VNE. While it is challenging to mathematically encompass the various
objectives and constraints found in the literature, we have concentrated on modeling
and selected a few of the most critical metrics.

Before formulating various objectives, we introduce two binary indicator variables,
i.e., VM indicator (Equation 3.1) and VL indicator (Equation 3.2), which subsequently
assist in defining the objectives and constraints of the VNE. The former is set to 1 if v;
is hosted on si, and the latter is set to 1 if the VL (4,4") is mapped onto the physical
link (1,1').

1 if v; is assigned to server s,
Til = _ (3.1)
0 otherwise.
L _ 1 if VL (i,4') € £Y is mapped to the physical link (I,1') € £5 (3.2)
L 0 otherwise.

Objectives of VINE Schemes: We subsequently formulate some optimization goals
of popular VNE schemes.

(A) Minimize Embedding cost: One of the key metrics that has gained significant at-
tention in the literature on VNE is the reduction of embedding costs, which refers
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to the cost of SN resources utilized during embedding a ‘V,NR. The overall objective
function is captured in Equation 3.3, where ¢;. and cﬁ, respectively capture the
cost of embedding v; on sj and (4,7’) on the physical link (,1).

min Z Z Cik * Tig + Z Z c”,- ”, (3.3)

SRENS v;ENV (i5)eLy (LI)eLs

(B) Mazimize Revenue-to-cost ratio: Another key metric that dictates the performance
of VNE schemes is the revenue-to-cost ratio, which captures the ratio of the number
of resources requested to the actual amount of SN resources used to embed a VNR.
Equation 3.4 captures the overall objective of maximizing the ratio, which assists
in compact embedding, boosting the SPs revenue.

mazx 2veny i) + 3 ineey A7) — (3.4)

17
DosieN's 2oveNv Cik - Tik + Z(i,i’)eﬁv Z(l,l’)eﬁs G Ty

(C) Mazimize Acceptance Ratio: It captures the number of VNRs successfully embed-
ded (V™) to the number of VNRs in the system (V%) as depicted in Equation 3.5.
A higher acceptance implies more profit for the SPs.

Vemb

Constraints on VNE Schemes: Any VNE scheme must adhere to the following
constraints.

(A) VM Embedding Constraint: A VM wv; can be assigned to at most one server as
reflected in Equation 3.6

Z Tk = 1 VYV € NV (36)
SkGNS

(B) Server Capacity Constraint: A server si cannot host VMs beyond its capacity
captured by ¢(sy) as shown in Equation 3.7.

Z d(v;) - i, < c(sp), Vspe NS (3.7)
v, eENV

(C) VL Embedding Constraint: A VL (i,i') € £Y must be mapped to at least one
physical link as per equation 3.8.

oy > 1, W(i,i') e LY (3.8)
(LinecLs
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(D) Link Capacity Constraint: The number of VLs hosted by a physical link is bounded
by its maximum capacity ¢(l,1") as captured in Equation 3.9

>y (i) <e(l,l), (1,1) e LS (3.9)
(3,e")eLv

(E) Flow Constraint: Given the mapping of v; and v, mapped onto servers s; and s the
flow conservation constraint for the VL (7,7') is expressed in Equation 3.10. The
first case captures the flow constraint at intermediate points, whereas the others
capture the start and end points dictated by the hosting servers.

Z(l,l’)eﬁs (L’;:;: : d(% Z,) = Z(l,l”)eﬁs x;:f// . d(l, ’L,)
D (kecs vy - A1) = d(i i) (3.10)
Z(l”,k")eﬁs x;;}’k/ ° d(l, ’L/) = d(Z, Z/)

3.1.3 NP-Hardness

VNE is well-established to be NP — Hard and shares similarities with the multi-way sep-
arator problem [2]. Even after the VMs are embedded, allocating VLs to substrate paths
reduces the unsplittable flow problem, which is also proven to be NP — Hard. Thus,
achieving an optimal solution for VNE essentially involves tackling two computationally
complex problems: VME (Definition 3) and VLE (Definition 4). Additionally, due to
the intractable nature of these problems, obtaining an optimal solution for larger prob-
lem instances poses significant challenges. A problem instance of VNE is subsequently
discussed.

3.2 A High-Level Illustration of a VNE Problem
Instance

To illustrate the problem of VNE more effectively, we provide an example scenario
depicted in Figures 3.2 and 3.3. Referring to Figure 3.2, we have a SN consisting of
servers S1,59,53,54. A VNR with two VMs v1, v9 needs to be embedded into the SN.
The resource demands of the VMs and the servers’ capacities are expressed in CRBs,
which are placed adjacent to the respective node in a rectangular box. The capacities
of the hosts, expressed in CRBs, are denoted as numerals in rectangular boxes adjacent
to the servers in Figure 3.2. For example, the capacity of server S; and VM vy is 2 and
1 CRB, respectively. Alternatively, the link demands are assumed to be gigabits per
second (Gbps). For instance, the VL interconnecting v; and ve has a bandwidth demand
of 2 Gbps. Similarly, the physical link between servers S; and So has a capacity of 3
Gbps. In the provided setup, an embedding solution is depicted in Figure 3.3. The VMs
v1 and vy are mapped onto servers S; and Sy, respectively. The VL interconnecting the
VMs is assigned onto the substrate path S; — S2 — S4. The updated capacities of the
substrate resources after embedding are also indicated in Figure 3.3.
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Figure 3.2. An embedding instance. It consists of (i.) a VN with two VMs and a VL
with their resource demands and (ii.) a substrate network with four servers and four

physical links and their available capacities.

3.3 Components and Modules

In any VNE system, as shown in Figure 4.1, there are generally two main components:
(1) the VNR and (2) the SN. The control modules are crucial for any embedding solution
and are broadly categorized into (1) the Resource Manager and (2) the Embedding &
Monitoring module. The Resource Manager primarily logs the status of resources, track-
ing both used and unused resources within the network. Meanwhile, the Embedding &
Monitoring module is responsible for identifying the optimal embedding on the SN and
continuously monitoring the VNRs and SN resources. This module also collaborates
with the Resource Manager to re-embed or reallocate resources in response to dynamic
network changes, such as fluctuating VM or VL demands of a VNR or in cases of hard-
ware or software failures in the SN. Furthermore, these two modules interact regularly
to execute essential management tasks, such as resource consolidation during offpeak
times, disaster recovery, and failure management.
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3.4

Depending upon the nature of deployment, the VNE strategies are either (1) static or (2)
dynamic. The former infrastructure remains consistent, whereas the latter encompasses
changing VNRs and SN. Moreover, the VNRs may be spread over multiple SNs owned
by different SPs. In such cases, the VNE may be performed using resources of different
SNs in a distributed manner instead of a centralized setup with a single SP. Considering

S1
o7 (/a\ :
Substrate
1 Network

[*] 3

Figure 3.3. The state of the substrate network after VM and VL embedding
of the VNR in Figure 3.2
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the number of resources consumed to provision service requirements, the VNE can be
classified as precise, where the VNRs are provisioned with minimum possible substrate
resources, or redundant, where multiple substrate resources are provisioned together
to realize a virtual component. On the other hand, depending on the stakeholders to
which the embedding caters, the strategies can be broadly classified into SP-centric or
user-centric. Based on the above-discussed classification, the overall literature on VNE
can be categorized as static or dynamic, centralized or distributed, precise or redundant,
SP-centric or user-centric.

Static or Dynamic (S/D) In a static setup, the embedding algorithm is exposed to
a fixed set of VNRs executing over a SN for a pre-determined time with no change in the
demanded resources. On the other hand, modern applications are dynamic because they
arrive and leave the system dynamically. Additionally, during their stay in the system,
the resource requirements of the components, i.e., VMs and VLs, fluctuate dynamically
[37]. In theory, the static embedding policies can operate in a dynamic setup but are
not designed to handle the relocations of VNRs in their entirety or parts. Relocation
or rearrangement of the VNRs’ can also be performed to handle the fragmentation of
resources caused by the dynamic arrival and departure of VNRs. Over a while, the SN
may be upgraded to deal with scalability, calling for the re-organization of VNRs.

Centralized or Distributed (C/D) A single central entity generates the embed-
ding for centralized setups. Such an approach has a significant advantage over non-
centralized approaches due to the availability of global knowledge about the state of the
SN and other VNRs, significantly assisting the embedding protocol in making optimal
decisions. However, like any other centralized setup, these approaches suffer from single-
point failures and congestion owing to overwhelming requests during peak load. On
the other hand, in a distributed setup, multiple stakeholders generate the embedding,
which improves the scalability compared to centralized approaches but requires proper
synchronization to achieve optimal results [3]. Moreover, the lack of global information
in decision making mandates synchronization between decision-makers, resulting in an
apparent trade-off between performance and communication overhead.

Precise or Redundant (P /R) Ideally, the VNR components, i.e., a VM and a VLs,
are assigned to a substrate server and path having requisite resources. Such embedding
policies are precise as they map the VNRs with the minimum possible substrate resources
without foreseeing the possibility of failure. However, reserving redundant resources
for failure-sensitive applications is critical to recovering from unforeseen failures [17].
An instance of such mapping is reserving multiple paths for a VL and splitting the
requisite bandwidth over the selected paths. Unlike single-path mapping, the multipath
reservation policy keeps the communication channel intact when faced with failures
in any of the paths. An obvious consequence of reserving additional resources is the
embedding cost, and the users are often required to strike a trade-off between cost and
reliability.

SP-Centric or User-centric (S/U) Depending on the objective of the embedding
strategies, the VNE schemes can be either SP-centric or user-centric. Note that if the
VNE approaches focus on boosting the SP-specific metrics such as the embedding cost,
revenue, revenue-to-cost ratio, and acceptance ratio, they are categorized as SP-centric.
However, if the goal is to optimize parameters such as delay, throughput, and path length
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directly impacting the user service, it is referred to as user-centric.

3.5 Embedding Metrics

To assess the performance of different embedding strategies, we consider multiple embed-
ding metrics that can broadly be classified as quality-of-service (QoS) based, cost-based,
resilience-based, and other metrics [11]. A visual representation/classification of differ-
ent embedding metrics in the literature is provided in Table 3.2. A brief insight into
each category and type is subsequently presented.

Table 3.2. The relevant metrics used in the literature to evaluate different VNE schemes.

Embedding Met- | Category Description
ric
Path Length QoS Captures the number of substrate links reserved to provision a VL.
Stress Levels QoS Indicates the number of virtual entities assigned to a substrate entity.
Utilization QoS Ratio between aggregating the resources provisioned/spent due to em-
bedding to the total capacity of a substrate entity (e.g., server or link).
Delay QoS Maximum tolerable delay for communication between any two commu-
nicating VMs mapped onto substrate servers.
Embedding Cost Resource Spend- | Total substrate resources expended in provisioning VNRs, including
ing both VM provisioning (server resources) and VL provisioning (band-
width).
Embedding Revenue | Resource Spend- | Total amount of resources a VNR requests, considering both the VMs
ing and VLs.
Cost/Revenue Resource Spend- | Ratio of resources provisioned to the demanded resource for a VNR.
ing
Acceptance Ratio Resource Spend- | Ratio between the number of successfully embedded VNRs and the
ing total number received.
Backups Resilience  and | Number of backups reserved for a virtual component (VMs or VLs).
Robustness
Path Redundancy Resilience and | Ratio between the number of backup and direct paths.
Robustness
Node Redundancy Resilience and | Number of running and backup nodes.
Robustness
Network Criticality Resilience and | Measures robustness against environmental changes, including traffic
Robustness request variation, topology, and transmitter/receiver states.
Algorithm Runtime Others Local execution overhead from generating the embedding.
Communication Others Overhead from control message exchange between DCs or SPs, possibly
Overheads leading to congestion and delayed processing.
Migration Overheads | Others Overhead of relocating VMs and/or VLs, including consumed /released
resources, disruption time, and relocation time.
Security Features Others Features added to improve embedding reliability.
Energy Concerns Others Energy consumed by nodes and/or links provisioned by the VNRs.
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3.5.1 QoS-based metrics

These metrics measure service quality post-embedding of VNRs.

(1) Path Length: Tt reflects the number of substrate links reserved to provision a VL. A
longer path length indicates a higher reservation of resources and escalated packet
forwarding delays, thereby impacting the latency requirements of real-world appli-
cations such as video conferencing.

(2) Stress Levels: It indicates the number of virtual entities assigned to a substrate
entity. The more entities mapped, the higher the stress levels. A higher stress level
can negatively impact applications QoS. For instance, a substrate server loaded with
multiple VMs keeps the operating system busy, resulting in degraded responses. On
the other hand, a highly stressed physical link can result in congestion and packet
transmission delay due to resource sharing.

(3) Utilization: Tt is the ratio between aggregating the resources provisioned/spent
due to embedding to the total capacity of a substrate entity, i.e., a substrate server
or a substrate link.

(4) Delay: Many real-world applications such as online gaming, video conferencing, and
distributed computing often impose stringent restrictions on the maximum tolerable
delay for communication between any two communicating VMs mapped onto the
substrate servers. The VNE strategies must ensure that the delay requirements of
the users are met.

3.5.2 Resource spending-based

The metrics discuss the number of resources expended in VNRs provisioning.

(1) Embedding Cost: Embedding cost refers to the aggregate amount of substrate re-
sources expended in provisioning the VNRs, which includes the server resources
for provisioning the VMs and the bandwidth resources for provisioning the VLs.
The dominant factor is the VL. embedding cost, as they are mapped onto substrate
paths comprising multiple physical links. Other resources, such as storage, can also
be considered while computing the embedding cost.

(2) Embedding Revenue: It is the total amount of resources a VNR requests considering
both the VMs and VLs constituting it.

(3) Cost/Revenue: It is the ratio of resources provisioned to the demanded resource for
a VNR. This metric helps compare different embedding protocols often tested over
different topologies that make the embedding cost or revenue-based comparisons
unfair.

(4) Acceptance Ratio: It captures the ratio between the number of VNRs successfully
embedded and the number of VNR requests received.
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3.5.3 Resilience and Robustness-based

These metrics focus on computing the resilience and reliability of an embedding.

(1) Backups: It captures the number of backups reserved for a virtual component, i.e.,
VMs and VLs. These backups can be used when the primary entity fails.

(2) Path Redundancy: Tt is the ratio between the number of backup and direct paths.
These redundant paths can be used as backups in case of total/partial failures of
the primary path.

(3) Node redundancy: It captures the number of running and backup nodes. In contrast
to path redundancy, this metric captures the demanded resources only and not the
connectivity.

(4) Network criticality: It is a measure of robustness that dictates the ability of a
network to be stable irrespective of environmental changes such as (i.) changes in
traffic request, (ii.) changes in topology and connections, and (iii.) changes in the
state of transmitters and receivers. The detailed computation of network criticality
can be found in [28].

3.5.4 Other metrics

These focus on different aspects of embedding, such as security, energy, migration, and
communication overheads during embedding/re-embedding.

(1) Algorithm runtime: It refers to the total execution overhead generating the embed-
ding. It is often a crucial metric for comparative studies of different embedding,
especially for real-time applications.

(2) Communication overheads: For distributed setups, synchronization is essential and
involves the exchange of messages between DCs or, in some cases, SPs. A higher
degree of exchange can result in network congestion and delayed processing.

(3) Migration Overheads: For dynamic setup, there are scenarios where the VNRs have
to be reorganized, implying the relocation of VMs and/or VLs. Such operations
often incur overheads in terms of relocation, including additional resources con-
sumed /released, service disruption time, and time expended in generating the re-
location. Altogether, we categorize such costs as migration overheads.

(4) Security Features: To avoid malicious attacks on VMs and mapped VL paths, se-
curity features are often added to improve embedding reliability.

(5) Energy Concerns: As the VNR uses substrate resources such as CPU, memory, and
bandwidth, energy is expended to use such resources. Therefore, this parameter
encapsulates the energy consumed by the nodes and/or links provisioned by the
VNRs.
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3.6 Coordination between VME and VLE

VNE consists of two interdependent sub-problems: VME and VLE. Solving VME in-
dependently, without considering VLE, often results in suboptimal solutions due to a
limited search space. Such methods, known as uncoordinated approaches, solve VME
first, using its output as input for VLE. Recent uncoordinated solutions, as explored in
[22], aimed to improve the revenue-to-cost ratio and resource utilization in substrate net-
works. Although promising, these approaches face several challenges: (1) restricted VLE
search space leading to suboptimal resource utilization, (2) higher embedding costs due
to inefficient VME;, increasing bandwidth usage, (3) increased likelihood of embedding
failures when VLE lacks sufficient bandwidth resources after VME, (4) poor network
performance with higher latency and inefficient paths, (5) difficulty in meeting diverse
QoS requirements without joint optimization, and (6) added computational overhead
when reprocessing is required due to embedding failures.

In contrast, VME and VLE can be coordinated using one of two approaches. The
first is a single-stage approach, where VME and VLE are solved simultaneously, map-
ping the corresponding VLs immediately after the VMs are mapped. As discussed in
[10], this approach jointly optimizes both VME and VLE, avoiding the inefficiencies
of uncoordinated methods where sub-optimal VM placement can limit the VLE search
space. Considering VMs and VLs holistically reduces latency, improves path efficiency,
and minimizes the risk of embedding failures, especially in applications requiring strict
performance guarantees, like low latency or high bandwidth. The second method is a
two-stage approach, as illustrated in [18], where VME is first performed with future VLE
requirements in mind. In the second stage, VLE is solved based on VM placement, ensur-
ing optimized link embedding. Although the one-stage approach offers tighter resource
optimization, it can be computationally expensive. In contrast, the two-stage method
provides better scalability and flexibility, making it more suitable for more extensive
networks or scenarios where computational efficiency is a priority without sacrificing
significant performance.

3.7 Exact and Approximate VNE strategies

The VNE problem has been demonstrated to be NP — Hard [2]. Similarly, the issues
of VME and VLE are also computationally intractable. Consequently, as the size of the
problem increases, the complexity of finding an optimal solution within an acceptable
time frame rises exponentially. Given these challenges, researchers have mainly adopted
two different solution approaches, namely (1) ezact, and (2) approzimate. This section
aims to introduce the most important strategies used to solve the VNE problem, It also
serves as an introduction that facilitates understanding how these formulations are later
extended for the CNG problem.

Exact methods produce optimal solutions for small-scale problem instances. However,
they prove to be compute-intensive, time-consuming, and non-scalable when confronted
with more prominent test cases. Despite these drawbacks, exact solutions serve as bench-
marks for evaluating the optimality bounds of approximate approaches. To address the
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limitations inherent in exact methods, some researchers have adopted approximation
techniques, aiming to generate satisfactory solutions within reasonable time constraints.

3.7.1 Exact Solutions

Optimal VNE solutions can be achieved by means of Linear Programming (LP). More
exactly, Integer Linear Programming (ILP) can be used to optimally formulate the VNE,
including the virtual node and link mapping subproblems in the same formulation. there
are exact algorithms (e.g., branch and bound, branch and cut, and branch and price)
that solve small instances of the problem in a reasonable time.

3.7.2 Heuristic Solutions

Execution time is crucial in VNE. Network virtualization deals with dynamic online
environments where VNRs arrival time is not known in advance. Therefore, to avoid
delay in the embedding of a new VNR, the execution time of VNE algorithms should
be minimized. Accordingly, heuristic-based VNE solutions are proposed. They attempt
to find an acceptable solution, compromising optimality for short execution time. One
good example of heuristic-based VNE approaches is the following: It proposes two main
phases:

e (VNom) to map virtual nodes to substrate nodes based on CPU availability and
connectivity.

e (VLim) Map virtual links onto the substrate paths using shortest paths that have
sufficient bandwidth.

As an example, an algorithm begins by ranking substrate nodes based on their available
CPU and node degree. Similarly, virtual nodes from the incoming VNR are ranked by
CPU and degree as well. For each virtual node v , we select a substrate node s such that
it satisfies the capacity constraint, and that s is not assigned to another v from the same
request. After this stage, for each link (u,v) € £Y, Dijkstra algorithm is used to find the
shortest path going from s, = map(u) to s, = map(v) such that each link in that path
satisfies the bandwidth constraint. If a valid path is found, we reserve bandwidth on
each substrate link, otherwise, we backtrack previous node mappings and try alternative
node mappings.

3.7.3 Metaheuristic and Evolutionary Solutions

While heuristics significantly reduce execution time, they may still become trapped in
local optima when tackling large-scale or highly-constrained instances. Metaheuristics
extend the search beyond local neighborhoods by applying stochastic operators inspired
by natural or physical processes. Widely—used metaheuristic frameworks for VNE in-
clude:
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e Genetic Algorithms (GA) [14]: chromosomes encode either a complete node-link
mapping or separate mappings; crossover and mutation explore new embeddings
while fitness combines resource utilisation and acceptance ratio.

e Particle Swarm Optimization (PSO) [15]: particles represent candidate em-
beddings and cooperate through velocity updates to converge toward high-quality
regions of the search space.

e Ant Colony Optimization (ACO) [9]: artificial ants incrementally construct
embeddings by probabilistically selecting substrate resources, with pheromone trails
reinforcing successful mappings.

e Simulated Annealing (SA) [16]: a single solution is gradually improved by
random moves that are accepted according to a temperature-controlled probability,
enabling occasional uphill steps to escape local minima.

e Tabu Search (TS) [12]: short-term memory forbids recently visited embeddings,
promoting exploration of unvisited areas.

3.7.4 Concluding Remarks

The Virtual Network Embedding problem encapsulates the trade-off between optimality
and scalability. Exact formulations deliver gold-standard solutions for small instances,
while heuristic, metaheuristic, and hybrid techniques unlock practicality for real-time,
large-scale deployments. The methodological insights gathered here will underpin our
discussion of resource orchestration in more imaginative digital realms. In the next
chapter we move beyond classical telecommunication contexts and begin our exploration
of the musical metaverse, where network virtualization meets immersive, interactive
soundscapes.
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Chapter 4

The Musical Metaverse

Throughout history, the way music is composed, performed, learned, and experienced
has continually evolved alongside technological advancements. Today, the emergence of
the metaverse, a persistent virtual world parallel to the physical world, offers a new
frontier for musical activities. In general terms, the metaverse can be defined as a blend
of the physical and digital worlds, enabled by the convergence of Internet of Things
(IoT) and Extended Reality (XR) technologies. Users participate in the metaverse via
avatars in immersive 3D environments, overcoming physical distance to socialize, work,
play, and create together .

Within this broad vision, music is poised to play a prominent role: the Musical
Metaverse refers to the sector of the metaverse dedicated to musical experiences and
interactions. The MM is currently in its infancy, but it is rapidly evolving as researchers
and practitioners explore how musicians and audiences can meet, perform, and co-create
in shared virtual spaces. Recent work has begun to articulate a vision for the Musical
Metaverse and identify the opportunities it opens for musical stakeholders, as well as
the challenges that must be addressed to realize this vision [30].

4.1 From IoMusT and IoS to the Musical Meta-
verse

One way to understand the Musical Metaverse is as an extension of existing trends in net-
worked music technology, in particular, the Internet of Musical Things (IoMusT)
and the broader Internet of Sounds (IoS). The IoMusT is an emerging field at the
intersection of IoT and music technology that focuses on embedding computing and con-
nectivity into musical objects and instruments. From a computer science perspective,
IoMusT refers to networks of computing devices embedded in physical objects (called

LAT has been used as an assistant to generate the content of this chapter
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Musical Things) that are dedicated to the production and/or reception of musical con-
tent. Examples of Musical Things include smart musical instruments (instruments aug-
mented with sensors, processors, and wireless communication) and wearable devices for
performers or listeners. These devices form local or remote networks enabling novel
interactive music scenarios. Crucially, the loMusT infrastructure supports multidirec-
tional communication among Musical Things and human users, both co-located and
geographically distributed. This allows performers, audiences, and other stakeholders to
be connected in an ecosystem that supports musician-musician, audience-musician, and
audience-audience interactions in real time [31]. In effect, IoMusT provides a techno-
logical backbone for connecting the physical and digital domains of music, opening the
door to new musical applications and services.

The Internet of Sounds (IoS) generalizes this concept to encompass all networked
devices dealing with sound and music. It can be seen as the union of two paradigms: the
IoMusT (musical domain) and the Internet of Audio Things (non-musical sound domain)
[32]. In other words, the IoS covers networks of devices capable of sensing, processing,
and exchanging sound-related data, from musical instruments and smart speakers to
acoustic sensor networks. Both IoMusT and IoS reflect a convergence of Sound and Mu-
sic Computing with IoT, laying groundwork for immersive, interconnected sonic experi-
ences. The Musical Metaverse builds on these foundations by situating IoMusT /ToS
devices and data streams within immersive virtual environments. In the MM, Musical
Things (smart instruments, wearables, etc.) become interfaces between real musicians
and their virtual avatars or venues. XR technologies (VR/AR) provide the interactive,
3D context in which musical collaboration and audience participation can occur, while
ToMusT provides the connected instruments and sensors that feed real-world musical
actions into the virtual world [30]. In fact, IToMusT is expected to play a vital role in the
network infrastructure of the Musical Metaverse, effectively bridging the real and vir-
tual musical worlds. Through this bridge, data from performers actions and the physical
environment can be captured and transmitted into the metaverse, and feedback can be
sent back out to influence real-world devices (for example, actuators or haptic wearables).

Figure 4.1 represents a conceptual framework of the Musical Metaverse, illustrating
the physical layer (real-world musical stakeholders and Musical Things), the link layer
(networking and integration infrastructure), and the virtual layer (shared digital mu-
sic environments and content). The physical layer includes real musicians (performers,
students, audiences) equipped with ToMusT devices (e.g. smart instruments, wearables,
XR headsets) that capture musical actions and environmental data. The link layer acts
as a bidirectional bridge: it transmits sensor data from the physical layer into the virtual
layer and returns feedback (e.g. audio streams, control signals) from the virtual layer
back to physical devices. This layer comprises the communication network and services
(such as data processing and storage) needed to synchronize and integrate the real-time
musical interactions. Finally, the virtual layer hosts the metaverse’s digital musical world
- 3D venues, virtual instruments and objects, avatars, and interactive musical content
- where users (as avatars) engage in musical activities within an immersive, interactive,
and social experience.
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Figure 4.1. Framework of the Musical Metaverse, which consists of a physical layer, a
link layer, and a virtual layer [30]

Equipped with IoMusT devices and connected through the link layer, users can con-
duct a variety of musical activities in the virtual realm of the MM. Envisioned scenarios
range from intimate co-located performances enhanced by augmented reality, to mas-
sive online music events gathering thousands of participants in a shared virtual
concert space. For example, researchers have proposed use cases including augmented
live concerts (overlaying live performances with interactive AR/VR content), audience
participation systems (where audience members inputs influence the music in real time),
remote rehearsals and jamming across long distances, networked music education (virtual
music lessons and practice in XR), and even cloud-backed studio production environments
where distributed performers and producers collaborate in virtual studios. These scenar-
ios illustrate how the Musical Metaverse could transform musical experiences, making
them more accessible, inclusive, and enriched by digital content. A music student in
Milan could play a virtual duet with a teacher in New York in a simulated concert hall,
or thousands of fans could attend a virtual music festival from their homes, each rep-
resented by avatars and sharing an interactive audio-visual experience. The MM vision
also encompasses new economic and creative opportunities: musicians might perform
as virtual avatars or create interactive music NFTs, and content creators could build
virtual instruments or stages to be traded and used in metaverse platforms.
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While high-profile virtual concerts and music events (e.g. in gaming platforms
or VR applications) have demonstrated the audience appetite for such experiences, the
current metaverse technology stack is “not ready for musicians” to fully embrace
interactive music-making in shared virtual worlds [5]. In other words, one-off events
with a single performer streaming to a virtual audience (as seen in Fortnite or other
platforms) have been feasible, but synchronous co-creation where multiple musicians
actually play together in real time within a virtual environment remains extremely
challenging with today’s technology. Key limiting factors include technical constraints
in networking and audio processing (especially latency), as well as the lack of standards
and interoperability for music-related data and audio formats across different platforms.
Researchers have only begun to investigate real-time networked musical interactions in
XR settings, and early studies are few in number [30]. This gap between the vision and
the current state-of-the-art highlights the need for focused development. To truly enable
a Musical Metaverse that is interactive, immersive, and widely accessible, significant
advancements are required in the underlying technologies. The following sections will
delve into these foundations: first examining the core technologies that make a Musical
Metaverse possible from immersive audio to smart instruments and XR interfaces (as
this part is out of scope of this research we will provide only a brief overview, readers
to get to know more, are invited to check references cited in this chapter). And then
addressing the networking infrastructure and design required to support seamless,
low-latency musical collaboration in the metaverse.

4.2 'Technological Foundations of the Musical Meta-
verse

The Musical Metaverse (MM) rests on four tightly-coupled technology pillars: im-
mersive audio, musical extended-reality (XR), smart musical things, and a
cloud/edge backbone. Together they allow physically distributed users to feel, hear,
and act as if they were co-present in the same musical space.

4.2.1 Immersive Audio

Spatial-audio techniques: binaural rendering, ambisonics, and multichannel loudspeaker
layouts recreate a believable acoustic scene so that every virtual instrument or audience
reaction has a clear direction and distance. Rendering must remain real-time and
head-tracked, yet keep end-to-end delay under =~ 30 ms to preserve musical timing
[21]. Remaining challenges are:

e Standardisation: proprietary engines and HRTF [21] libraries prevent content
portability across XR and metaverse platforms.

e Latency vs. fidelity: uncompressed multichannel audio and complex room mod-
elling increase bandwidth and computation. Lightweight codecs and GPU/ASIC-
accelerated spatializers are active research areas.
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4.2.2 Musical Extended Reality (XR)

VR, AR and MR supply the visual and gestural layer of the MM. Head-mounted
displays place performers and listeners inside volumetric concert halls or studios; AR
headsets can overlay scores or virtual band-mates onto a real room. Recent prototypes
cover composition workspaces, educational tools, live VR concerts and virtual-studio
mixing.

The main limitation is networked multi-user scale: only a handful of studies
demonstrate geographically-separated musicians rehearsing in XR, because audio/graph-
ics synchronization must share the same ultra-low-latency budget. Consequently, XR
headsets and controllers are treated as Musical Things that stream sensor data alongside
audio and therefore inherit the MM’s strict timing constraints.

4.2.3 Smart Musical Instruments & Wearables

Smart instruments integrate sensors, embedded DSP and wireless links; wearables add
motion capture or haptic feedback. Together they:

e convert analog gestures into digital streams (position, pressure, bow speed,
etc.)

e transmit high-quality audio or control data

e receive commands, firmware or effect parameters in return.

4.2.4 Cloud- and Edge-based Music Services

Because performers, audiences and devices are geographically dispersed, MM workloads
are off-loaded to a cloud/edge continuum, as described Table 4.1.

A representative architecture places local 5G base-stations plus edge servers in
each city where musicians reside; those edge nodes exchange only the mixed or down-
sampled audio, shrinking backbone traffic and equalising latency paths.

4.2.5 Interdependence

These four layers are inter-locking. For example, a guitarist’s smart instrument cap-
tures gesture and audio, an edge mixer merges it with remote performers, the cloud’s
spatialiser renders a 6-DoF soundfield, and a VR headset displays synchronised visu-
als, all within the same 30 ms deadline. Any bottleneck (Wi-Fi congestion, HRTF
mismatch, delayed cloud uplink) immediately breaks the illusion of co-presence. Under-
standing these dependencies is essential before tackling the next chapter’s networking
design, where virtual network embedding and QoS guarantees turn conceptual building
blocks into a reliable, real-time musical infrastructure.
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Service

Role in MM

Latency considerations

Real-time mixing &
spatialisation

Combines N audio
streams into personalised
binaural output

Deployed on Multi-access
Edge Computing (MEC)
nodes close to users
(around 10 ms round-trip)

Global clock / state

Distributes metronome
and synchronises avatars

& effects

Requires sub-millisecond
clock alignment across
nodes

Content delivery (3-D
models, samples)

Fetches virtual
instruments & stage
assets on demand

Less time-critical but
bandwidth-hungry

AI/ML services

Transcription, tutoring
feedback, avatar
animation

Off-loaded to GPU
clusters; non-blocking if
pipelined

Elastic scaling

Spins up extra mixers or
physics engines for large

Must not degrade active
performers’ latency

events

Table 4.1. Selection of services and their roles in MM scenarios

4.3 Networking Infrastructure for the Musical
Metaverse

The most critical enabler for the Musical Metaverse is the networking infrastruc-
ture that connects all participants, devices, and services with the required performance.
Musical interactions are highly sensitive to delay and disruptions, much more so than
typical internet applications. This chapter focuses on the networking aspects that must
be engineered to support the MM: ultra-low latency communication, Quality of
Service (QoS) and Quality of Experience (QoE) guarantees, network topology
and resource design, synchronization mechanisms, and support for multi-user
real-time interaction. We discuss current approaches and challenges, linking them
to the virtual network embedding problem of how to allocate and orchestrate network
resources for these demanding scenarios.

4.3.1 Ultra-Low Latency Communication

Latency is the time it takes for data (such as an audio packet or a sensor message) to
travel through the network, is arguably the single most important network metric for
the Musical Metaverse. In a collaborative music performance, latency directly translates
to delay between a musician’s action and another musician’s perception of it.
If this delay is too large, it becomes impossible to stay in sync rhythmically. Decades
of research in Networked Music Performance (NMP) have shown that performers
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Figure 4.2. Interaction possibilities between musicians, audience members, and machines. [31]

start to feel the effect of delay on musical timing at very low thresholds: generally, one-
way latencies above roughly 25-30 milliseconds make it difficult to play tightly together,
especially for fast tempo music. This corresponds to about a 50-60 ms round-trip delay
(musician A’s sound to B and back to A), beyond which the musical interaction de-
grades, notes might come in late, rhythmical grooves fall apart, or the performers might
unconsciously slow down to compensate. Hence, ultra-low latency (ULL) networking
(targeting tens of milliseconds or less) is a foundational requirement for the MM. For
reference, typical latencies on today’s Internet (hundreds of milliseconds) are far too
high, and even a video call’s latency (around 100 ms) would be inadequate for real-time
jamming. The MM requires networking performance closer to that of local-area networks
or specialized audio links.

Another technique to reduce perceived latency is to handle as much processing in
parallel as possible. For instance, audio capture, encoding, network transmission, de-
coding, and playback should be pipelined efficiently. Specialized protocols can be used
instead of generic ones, many NMP systems avoid the overhead of TCP and instead use
UDP with custom loss recovery, to cut down latency. Some even send uncompressed
audio to skip encode/decode delay (at the expense of bandwidth). Every millisecond
counts, so engineers consider everything from kernel-level audio drivers to avoiding con-
gested routers on the path. The metaverse infrastructure may employ dedicated
network routes or slices for music traffic to bypass Internet congestion and hops,
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ensuring a faster, more predictable path (this is related to virtual network embedding,
where a virtual dedicated circuit is mapped onto physical links with reserved capacity).

4.3.2 QoS, Reliability, and QoE Considerations

Beyond just latency, the Quality of Service (QoS) provided by the network encom-
passes bandwidth (throughput), reliability (packet loss/error rates), and jitter (latency
variation). Musical applications can be quite demanding in these aspects as well. High-
fidelity audio streams (especially multi-channel or many streams at once) require sig-
nificant bandwidth; likewise, video or XR data streams in a musical performance (for
visuals of avatars or gesture data) add to the load. The network must support these
data rates without introducing congestion that leads to packet loss. Even a small packet
loss can mean an audible glitch or drop-out in an audio stream, which is very disruptive
during a performance. Thus, reliability mechanisms or over-provisioning are needed to
ensure near-zero loss. Some systems use forward error correction (FEC) or redundant
audio packet streams to mask losses, but these add overhead; ideally, the network should
be reliable enough not to drop packets in the first place.

Quality of Experience (QoE) is the user-centric counterpart to technical QoS
metrics. It measures the actual satisfaction or perceived quality by the musicians and
listeners. In a musical context, QoE involves subjective elements like does the per-
formance feel “in sync” and together?, is the audio clear and natural?, is there any
distracting artifact?, it is possible to meet QoS targets on paper but still have poor
QoE if, for instance, the latency, while low, is just high enough to create subtle timing
issues that bother trained musicians, or if jitter causes slight rhythm fluctuations. Thus,
system designers often aim for stricter QoS than the bare minimum to provide a com-
fortable margin for QoE. Studies have indicated that musical experts might detect and
be annoyed by even smaller latencies under certain conditions (for example, in highly
rhythmic tasks or with certain instruments), meaning the network should ideally keep
delays as low as possible, not merely below a threshold.

The link layer infrastructure of the MM is envisioned with these stringent require-
ments in mind. It must support synchronous musical interactions with strict latency
and reliability, while carrying potentially large volumes of data (audio, video, haptic
feedback, etc.). Potential solutions recommended by recent research include the use of
5G and beyond-5G networks, and deployment of ultra-dense networks (to shorten
wireless distances and increase capacity). These approaches all aim to support QoS
by reducing physical distance, increasing bandwidth, and localizing traffic. Addition-
ally, the network should be adaptable: if a sudden surge in traffic happens (say a new
musician joins with a high-bandwidth instrument feed), or if a route degrades, the in-
frastructure should quickly adjust (reroute, allocate more resources, etc.) to maintain
the quality.
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4.3.3 Synchronization and Multi-User Interaction

Achieving tight synchronization in a Musical Metaverse session is a multifaceted chal-
lenge. It’s not just the network transport latency that matters, but also aligning the
musical timing among all participants and media. There are a few synchronization
aspects to consider:

e Audio-Visual Sync: Within each user’s experience, the audio should sync with
visual cues. If a drummer’s avatar is seen hitting a drum, the sound should co-
incide with that action. This implies that the pipeline for audio and the pipeline
for graphics (and possibly haptic feedback) must be coordinated. Any differences
in their latency need compensation, for instance, if audio is faster than video, one
might delay audio slightly to match. Metaverse platforms often have inter-
nal clocks to tag media timestamps, so they render frames and play audio in a
synchronized fashion for each user.

e Inter-user Musical Sync: This is the core of playing music together. Even if
the network has low latency, there will always be some delay between one player
and another. To maintain a stable tempo, groups often implicitly follow a single
timing leader or a metronome. In a networked setting, a common technique is to
designate a master clock (could be one participant or a server) and have everyone
synchronize to that. Protocols like RTP with timestamping, or specialized sync
protocols (similar to NTP but for media) can align clocks with sub-millisecond
precision over networks.

e Event Synchronization: In virtual worlds, beyond continuous media, there might
be musical events (like starting a song, triggering a visual effect on a downbeat)
that need to happen simultaneously for everyone. This requires distributing a
trigger signal that all clients execute at the same agreed time. Techniques from
online gaming (lockstep protocols, or using the network delay to schedule a future
simultaneous moment) are applicable. For example, "we will all start playing at
time T' according to the shared clock”, each client waits until their clock hits T,
thus compensating for any difference in when they got the message.

For multi-user interaction, scaling to larger numbers of active participants intro-
duces further complexity. With two players, the main concern is their mutual latency.
With, say, five players, latency differences can form a complex matrix. you might have
to ensure that the slowest link doesn’t ruin it for everyone.

One exciting possibility in the MM is having audience participation where many au-
dience members become quasi-performers (for instance, everyone can trigger a sound
or sing along). This starts to look like a massively multi-user scenario. Handling that
might require clever architectural solutions like local grouping (e.g., if 1000 audience
members sing, perhaps their inputs are aggregated into a ”crowd audio” mix per region
and then those region mixes are combined, to avoid sending 1000 individual streams).
These kinds of hierarchical mixing and network aggregation strategies will be important
as we push into larger metaverse events.
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In conclusion, synchronization and multi-user interaction in the Musical Metaverse
demand meticulous coordination. It’s an area where human factors (perception of tim-
ing) meet network engineering. By using global time references, careful buffering, and
adaptive strategies, and by confining all users to a well-managed virtual network slice,
the MM systems strive to give the illusion that everyone is playing in the same room
at the same time. Achieving this illusion is precisely the challenge that motivates ad-
vanced networking solutions: including virtual network embedding, edge computing, and
custom protocols as discussed throughout this chapter.

44



Chapter 5

Musical Metaverse Optimization
(MusMOPT)

5.1 Limitations of classical VINE for Musical Meta-
verse requirements

The Musical Metaverse, places extreme demands on networking and computing that
expose fundamental limitations of the classical Virtual Network Embedding (VNE)
model. In practice, ensuring end-to-end latencies on the order of only a few millisec-
onds with near-zero jitter and packet loss is necessary to preserve the illusion of co-
presence and maintain musical timing. Moreover, musical metaverse scenarios involve
multi-modal, interactive media flows beyond just audio. Musicians and audiences
exchange not only high-fidelity audio streams but also real-time control signals, sensor
data (e.g. gestures or motion capture), and even shared virtual environment data. De-
livering and synchronizing these multimodal streams (audio, video, haptic feedback,
etc.) introduces additional challenges in maintaining quality of service (QoS) and quality
of experience (QoE).

Classical VNE, however, was not designed with these demands in mind. In the tra-
ditional VNE model, a service is abstracted as a wvirtual network: a set of virtual
nodes (virtual machines or functions) connected by virtual links with fixed capacities or
bandwidth demands. The goal is to map (embed) this virtual network onto a physical
substrate network (infrastructure of phyiscal nodes and links) while respecting resource
capacities. VNE assumes a one-to-one mapping: each virtual node is placed on a
single substrate node, and each virtual link is assigned a specific path through substrate
links. Crucially, classical VNE treats each virtual link as an independent point-to-point
traffic demand, without awareness of the content or relationships between flows.

This assumption becomes a critical drawback in the musical metaverse. For exam-
ple, if one musician’s audio stream needs to be delivered to multiple other participants,
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Figure 5.1. Illustrative example of a musical chunk data stream sent by a musician to
two different consumers (listeners)

the VNE model would represent this as multiple separate virtual links carrying iden-
tical audio data. The VNE embedding algorithms would attempt to route each link
separately, potentially duplicating data over the network and consuming bandwidth on
each path redundantly. Figure 5.1 shows a simple example. Imagine the data being sent
(here denoted as "Musical Chunk #7”) must be delivered to two different destinations.
Here, following the definition of classical VNE, we need to create two different replicas to
represent a data stream originating in the United States and going to Paris. However,
this creates an additional cost because we are simply replicating this ”link” for each
consumer.

Definition 6. There is no mechanism in basic VINE to realize that these flows
carry the same information and could be served by a single multicast distribution.

Similarly, if a virtual audio processing function (e.g. a mixer or effect) needs to be
applied for multiple users, VNE would typically allocate one instance of that function at
a single location, forcing all relevant flows through that point. It cannot natively model
replicating that function across edge servers to process streams closer to each user.

In summary, the classical VNE model fails to meet the musical metaverse needs in
several aspects:

e Latency-aware placement: VNE embeddings often optimize resource usage or
cost, but without built-in guarantees of strict latency bounds. Ensuring that, say,
an audio path stays below 10 ms end-to-end would require manually adding latency
constraints, which makes an already NP-hard problem even more complex. There
is no straightforward way in classical VNE to integrate distributed edge computing
decisions purely to minimize delay e.g. placing audio processing on a nearby edge
server to reduce round-trip time, unless explicitly formulated.

e Lack of flow-level intelligence: VNE sees traffic demands as abstract quantities
between virtual nodes. It has no awareness of the actual information flows
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(e.g. which audio stream is being sent) and thus cannot exploit commonalities
between flows.

e Static and one-to-one mappings: Musical experiences are dynamic and often
many-to-many (many performers to many listeners). Classical VNE’s one-to-one
mapping and point-to-point links do not naturally support multicast or anycast
delivery, nor the concept of multiple simultaneous placements of a function. If
a virtual service requires duplicating a stream to multiple endpoints or instantiating
an audio effect in multiple locations, a VNE-based approach has to approximate this
by embedding multiple separate virtual nodes/links, losing efficiency and increasing
management complexity.

e Limited resource heterogeneity: NE typically considers two resource types —
substrate node CPU (or processing capacity) and substrate link bandwidth. Musi-
cal metaverse applications require a broader view of resources: not only compute
and network, but potentially storage (for caching audio assets or recorded media),
and they operate across a device-edge-cloud continuum. These additional re-
source dimensions and the need for modalities-aware routing (choosing paths
appropriate for audio vs. less time-sensitive data) are beyond the scope of tradi-
tional VNE formulations.

All these limitations indicate that classical VNE, on its own, is insufficient to orches-
trate real-time, immersive musical services. The musical metaverse calls for a paradigm
that natively understands information flows, multicast distribution, and inte-
grated compute-network decisions under strict QoS constraints. This motivates a
transition to a new model: MusMOPT which we discuss next.

5.2 MusMOPT Model

To address the shortcomings of VNE, we introduce Musical Metaverse Optimization
as a graph-based optimization framework that reconceptualizes how services are mapped
onto infrastructure. In essence, MusMOPT treats the joint placement of functions, rout-
ing of data, and allocation of resources as a single unified information flow problem
on an augmented network graph. Rather than embedding a ”virtual network” of nodes
and links, MusMOPT considers the service as a directed graph of information processing
(often modeled as a Directed Acyclic Graph, DAG). And the physical infrastructure is
a rich cloud—network graph.

This cloud-network substrate graph includes not only physical links and nodes but
also represents available compute and storage resources at those nodes. Each sub-
strate node (e.g. user device, edge server, cloud data center) has capacities for hosting
service functions (processing) and possibly storing content, and each link has communi-
cation capacity and propagation delay.
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Figure 5.2. Illustration of the lack of isomorphism between an information-aware
service graph and its instantiation into the physical infrastructure: (a) depicts an
information-aware service graph with colors indicating the information carried by each
data stream; (b), (c), and (d) illustrate three different possible information-aware
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On the service side, MusMOPT’s virtual service model is an information-aware
service graph that captures the structure of the application’s data flows and pro-
cessing requirements. For a musical application, this could be a DAG where vertices
represent processing tasks or functions (e.g. audio analysis, mixing, spatial rendering,
sensor processing) and edges represent data streams (audio signals, control messages,
etc.) flowing between those functions or to end-users. Importantly, this model carries
information attributes for each stream: for example, an audio stream might be one infor-
mation object with a certain bitrate and latency requirement, a video or sensor stream
another object, etc. MusMOPT introduces the notion of commodities to represent
these distinct information flows (See Figure 5.2). Each information commodity (say, a
particular musician’s audio stream) can have multiple destinations (all other performers
and audience members who should receive that audio). The MusMOPT formulation
then allows these commodity flows to be routed, replicated, and processed through the
substrate in an optimal way.

Key characteristics of the MusMOPT model include:

e Service DAG with splitting and merging: The virtual service is a general
DAG, not restricted to a chain or single tree. This allows a function to have
multiple outputs (branching) and multiple inputs (merging), capturing complex
interactions (e.g. an audio mixing node takes inputs from several instruments).
MusMOPT enforces service chaining constraints so that each flow goes through the
required sequence of functions in the DAG (respecting input-output dependencies).

e Flow replication (multicast support): MusMOPT inherently handles multi-
cast distribution. If a data stream (commodity) is needed in multiple places, the
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model can create replication flows that duplicate the packets toward different des-
tinations. Multiple receivers can thus share parts of the path. The formulation
allows overlapping flows: if two virtual flows carry the same information object,
they can traverse the same substrate link without consuming separate capacity for
each copy. In other words, the network only carries one copy of a stream up until
the point it needs to split toward different receivers (akin to a multicast tree). This
is a fundamental departure from classical VNE, which lacked awareness of shared
information and could not overlap demands in this way.

Flexible function placement and replication: Rather than fixing one location
per virtual function, MusMOPT can deploy multiple instances of a function
across the network. For example, if a spatial audio rendering function is needed
for audiences on different continents, MusMOPT might spawn that function at
two edge servers (one per region) and send each audience member’s stream to the
nearest server, reducing latency. The model decides the number of replicas and the
location of each service function as part of the optimization.

Flow splitting and multi-path routing: MusMOPT supports both unsplittable
flows (a commodity’s data must follow one route) and splittable flows (traffic can
be split across multiple paths). In the majority of musical scenarios, splitting an
audio stream over parallel links might not be meaningful (due to needing in-order
audio), so flows are be treated as unsplittable.

Flow scaling (volume changes): As data passes through processing functions,
its rate can change. For instance, raw audio might be compressed (shrinking data
rate) or a sensor stream might trigger generation of a larger media stream. Mus-
MOPT explicitly accounts for this by linking the rates of output flows to input
flows via scaling factors

Definition 7. By casting the problem in this flow-based way, MusMOPT essentially
generalizes VNE. In fact, if we restrict MusMOPT to a scenario with unsplittable
unicast flows (no multicast) and disallow function replication, it reduces to the
classical VNE problem.

5.3 Cloud Network Graph

The MusMOPT discussed earlier was originally introduced in [7] as CNFlow. However,
the framework was designed for 3C networks (Connected Collaborative Computing) and

lacks a clear and generalized graph formulation suitable for metaverse scenarios.
this section, we are going to explain our first contribution, represented by the Cloud

Network Graph (CNG). Unlike VNE, where the substrate network is modeled as an

undirected graph that consists of a set of nodes and links. CNG is an directed augmented
cloud network graph that represents the network infrastructure as a set of commodities
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(information flows), allowing for a seamless design for MM scenarios, and enabling study-
ing complex connections between components for data-intensive applications.

The cloud network graph (CNG) is a directed augmented graph denoted as G = (V, £).
Where V represent cloud-network nodes (e.g. core cloud nodes, edge cloud nodes,
compute-enabled base stations, or end devices with embedded computing resources),
and edges, e € &, represent network links between computing locations. Each node
u € V, is further augmented as illustrated in Figure 5.3 where:

. Computation Node —> Production Link

Communication Node Consumption Link

Source Link
Source Node ——  Destination Link
. Destination Node Communication Link
Figure 5.3. Augmented node G¢,. Grey edges are inter-site communication links.

Coloured edges: source, production, consumption, destination.

o s € {5,5,....,5.},d € {D1,Ds,...,Dy}, and p € {P1, P», ..., P;}, and associated
links are used to model production, consumption, and processing of data streams
respectively.

e The resulting network graph is denoted by G = (V, &), where V = VCUVPUV* UVY,
and £ = ECUEPUES UEY denoting the set of communication, computation, source,
and destination nodes, and links respectively.

e In G, each link (4, j) € £ is characterized by its capacity ¢;; and cost w;; parameters.
In particular:
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— Each communication link (¢,j) € £°, ¢;; and w;; denote the capacity in com-
munication flow units (e.g., bits per second or bps) and the cost per unit flow
at link (7, j), respectively. Additionally, we denote by ¢;; the propagation delay
(in ms) for a communication link.

— Analogously, for each computation link (i,j) € &P, ¢;; and w;; denote the
capacity in computation flow units (e.g., FLOPS) and the cost per unit flow at
link (i,7) € EP, respectively. The propagation delay between a communication
node and its computation nodes is assumed to be negligible.

e We further expand the set EP. We use the set of computation out links EPevt C
EP with original at a computation node p € VP and target at a communication
node u € V¢, to represent the processing resources (e.g., CPU) available at that
computation node/cluster.

e Similarly, we define the set of computation in links, EPi» C EP with original at a
communication node u € V¢ and target at a computation node p € VP to represent
the memory resources (e.g., RAM) available at that computation node/cluster.

e Source and destination links £%, £% are assumed to have zero cost and high enough
capacity, acting as network ingress and egress points, respectively.

e Finally, we denote by N~ (u) and N (u) the set of incoming and outgoing neighbors
of node u € V¢, respectively.

Cloud Network Graph with Node and Edge Labels

Link Types

Figure 5.4. A cloud-augmented network graph of 8 communication nodes

In Figure 5.4 we present a sample example of a CNG, as shown in the illustration,
it is not necessary for a communication node to have computation nodes (acts just as
forwarding stubs). On the other hand, the number of computation nodes is independent
for each communication node.
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As a conclusion, in this chapter, we motivated and formalized a shift from classical
virtual network embedding to the cloud network flow paradigm in order to satisfy
the extreme real-time requirements of Musical Metaverse applications. We introduced a
novel, concrete directed, augmented graph tailored to metaverse scenarios. A physical
node is expanded into communication, processing-out, processing-in, source, and des-
tination interfaces, allowing unified treatment of bandwidth, CPU, and memory. Link
capacities and costs are assigned per modality, enabling latency-aware, modality-aware
routing across the device—edge—cloud continuum.

In the next chapter, we will discuss our second contribution: A service graph for one
of the musical metaverse scenarios, and discuss both its graph layer and data layer.
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Chapter 6
Service-Graph Foundations

In chapter 4, we discussed the application space and highlighted the network stressors
introduced by immersive musical scenarios, while in Chapter 5, we introduced the cloud
network graph (CNG) as a principal graph infrastructure to orchestrate scenarios at
scale. We now pivot from the general framework to a concrete use case: audience
interaction in pre-recorded virtual concerts. Unlike real-time networked perfor-
mances, where the performers themselves generate live media, pre-recorded concerts start
from static, studio-quality content. The novelty lies in enabling large, geographically-
dispersed audiences to interact with that content, and with one another, as though
attending a traditional live concert. The result is an experience that merges the produc-
tion values of studio recordings with the social energy of a live venue.
This chapter has two goals:

e Introduce, and motivate the design, a novel service graph for the above-mentioned
scenarios

e Formulate the ”MM problem” as a two-layer problem: Data layer, responsible for
handling real-time traffic data, and a graph layer, that focuses on the embedding
of services over the network infrastructure.

6.1 Interaction Model for Pre-Recorded Concerts

A pre-recorded concert in the Musical Metaverse typically begins with multitrack studio
stems (audio), synchronised high-resolution video, lighting cues, and stage metadata. By
themselves, these assets constitute a passive immersive scene. Interactivity is unlocked
by overlaying three tightly-coupled feedback channels:

e Downstream high-bit-rate media delivery: a multicast distribution of au-
dio—visual flows to every participant, rendered locally into spatial audio and im-
mersive video.

e Upstream micro-interaction events: low-latency, low-bit-rate signals such as
avatar gestures, emoji reactions, haptic triggers, "clap” packets, or crowd noise
captured by user microphones.
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e Global state updates: computed analytics (e.g., cumulative applause intensity,
trending emotions, dynamic spot-lighting of fan avatars) that are re-inserted into
the media pipeline to shape the concert atmosphere in real time.

6.2 Graph-layer and Data layer

Designing services for the Musical Metaverse (MM) is inherently more complex than a
single-layer embedding problem. In classical VNE, one typically treats an incoming
virtual-network request (VNR) as a static graph whose nodes and links must be mapped
onto a substrate to optimize some objective (cost, revenue, utilization, etc.). By contrast,
MM workloads demand a two-layer perspective:

e Graph-layer: At this level the concert (or more generally, the MM application)
is modelled as a virtual service graph. The canonical question is: "How should we
embed this graph onto the infrastructure to meet a given objective?” still applies,
but with a crucial twist: the topology is dynamic. Audience members can join or
leave at any moment, meaning the embedding must adapt continuously without
violating stringent latency or QoS/QoE constraints.

e Data Layer: Above the graph mapping lies a data-centric layer that captures
the real-time behaviour of flows after they are placed. Classical VNE often idealises
the substrate, assuming the network can absorb jitter, packet loss, or congestion
within a single link-capacity constraint. In MM scenarios, we cannot make that
simplification. End-to-end musical interaction is hypersensitive to latency varia-
tion, packet loss, and even congestion spill-over from neighbouring concerts or
experiences. The data layer must therefore monitor and react to these runtime con-
ditions e.g., by rerouting specific commodities, invoking redundant edge renderer,
or dynamically adjusting bit-rates to maintain the illusion of co-presence.

6.2.1 Modeling a general service graph

In this part, we will discuss how to model the service graph for MM scenarios. Later,
we will use this generalized framework to design a customized service graph for the
pre-recorded interaction scenarios. A generic service can be described by a directed
acyclic graph (DAG) R = (Z,K) where vertices represent the service functions (e.g.,
stream processing operators), and edges correspond to data streams (or commodities).
Figure 6.1 shows an example of a general service graph where source commodities pass
through a set of processing functions (Tracking, Synthesis, and Rendering) to finally
multicast to their corresponding destinations.

The vertices with no incoming edges of the service graph represent source functions
that produce source data streams (e.g., video capture), and the vertices with no out-
going edges represent destination functions that consume processed data streams (e.g.,
video display). Source/destination functions may also represent purely ingress/egress
points injecting/ejecting data in/out of the network, and are always associated with a
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€
S
3 e

Source 1 Tracking 1 es Destination 1
—_—
Synthesis Rendering
- O
—
Source 2 Tracking 2 Destination 2

Figure 6.1. Example of a service graph, where edges represent data streams (commodi-
ties) and vertices service functions. The example represents a NextG media application,
in which streams from two sources go through tracking, synthesis, and rendering functions
before being delivered to corresponding destinations.

fixed and unique location in the cloud-network. While the remaining functions are sub-
ject to placement optimization as shown in Figure 6.1.

An edge k = (i,j) € K represents a commodity or data stream produced by function
i € Z and consumed by function j € Z. We use X (k) to denote the set of incoming edges
of node i € Z, i.e. the set of inputs commodities required to produce commodity k € IC
via function ¢ € 7.

To clarify these concepts, we use as an example Figure 6.1. X(e5) = {es;eq}, i.e.
data traversing from synthesis to rendering cannot exist without having data produced
by traking 1 and tracking 2 ready at node 1.

We denote by K° € K, the set of source commodities, i.e. the commodities produced
by a source function (in the figure {e1, e2}), and by K € K the set destination commodi-
ties, i.e., the commodities consumed by a destination function (in the figure {eg, e7}).
Finally, Table 6.1 shortlists the type of each commodity in Figure 6.1.

Commodity Set Commodities
s €1, €2

}Cp €3, €4, €5

}Cd €6, €7

Table 6.1. Type of commodities: K® source commodities; KCP processing com-
modities; K¢ destination commodities

Analogously, we define Z°, 7%, and ZP as the set of source, destination, and compu-
tation (processing) functions, respectively. In R, each commodity is characterized by
its multidimensional rate requirement Rfj, which denotes the average rate of commodity
k € K when it goes over link (i,5) € £. Hence, the rate of a given commodity &k will
depend on the type of link (resource) (i,7) it goes through. That is, commodity k
will impose a certain communication rate (e.g., in bps) when it goes over a communi-
cation link (i,j) € £¢, a certain processing rate (e.g., in FLOPS) when it goes over a
”computation out” link (7,7) € EPo+*, and certain memory rate (e.g. in bits) when it
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goes over a ”computation in” link (i,7) € EP». Note also that communication, process-
ing, and memory rates will be different for different commodities along the service graph.

Finally, one of the most important aspects of the information-aware service DAG
model, which allows efficiently leveraging the multicast nature of real-time data streams
and their possible replication over the network, is the ability to characterize the actual
information or content carried by each commodity. As such, we differentiate between
the set of commodities K and the set of information objects O, and use the surjective
information mapping function g : K — O to indicate the information object 0 € O as-
sociated with each commodity k € K.

Before concluding this part, we summarize all model notation already mentioned in

Table 6.2.

Notation

Description

G=WV,¢)

Cloud network graph, and its associated
V and links €

VvV

Computation nodes; source nodes;
destination nodes

£e; EP; £5, £4

Communication links; computation
links; source links; destination links

EPout; EPin

Computation in links (storage
resources); Computation out links
(processing resources)

NF(u); N~ (u)

Incoming and outgoing neighbors of
node u € V¢

Cij; Wij

Capacity and cost of link (4, 5)

R = (Z,K)

Service graph DAG

7514 7P

Source functions; Destination functions
and processing functions

X (k)

Set of input commodities required to
produce commodity k

s K ke

Source commodities; Destination
commodities and processing commodities

ysrc(k); ydst(k>

Source node hosting the function
producing commodity k € K°;
Destination node hosting the function
consuming commodity k € K¢

Zsre. zdst

Node hosting source function
i € I%;Node hosting destination function
ieT?

VrL(i) = VPR (k)

Computation nodes that can host
function 7 and hence produce commodity

k

k
Ry

Rate of commodity k£ € K when it goes
over link (i, 7)

O;9: K- 0

Set of information objects; Information
mapping function

Table 6.2.

Main System Model Notations
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6.2.2 Modeling pre-recorded scenario’s service graph

In the previous section, we defined the general graph-based formulation of any service
graph. In this section, our focus is on building the service graph specific to ”audience
interaction in pre-recorded virtual concert”.

The modeling is based on the following components:

e Producers (Z°): The entities generating the continous flow of data

e Processors (Z?): The entities responsible for processing the data generated by the
producers, possibly receiving information also from databases

e Consumers (Z%): The entities receiving the information computed by the proces-
SOrs.

The service graph R = (Z, K) is the graphical topology of the concert. On the other
hand, each user u € U will be represented in the topology by its producing and consuming
components. Figure 6.2 illustrates the service graph, assuming that there are two users
at the concert.

Producers Processors Consumers

VE Controls I\ VE Visuals
4 \\
’ \
3D Audio

Audience Member 1

\\
\\
\\
VE Visuals
3D Audio

Figure 6.2. Service graph for the ”pre-recorded” scenario

Music Streaming
x :
1 1
1 1
i
Latency o
Compensation

| ----- = Control Data ——> Audio Data —> Gesture Data

Audience Member 1

The producers are as follows:

e Emotions: retrieves in real-time from biometric signals (EEG, heart rate) the
emotional state of the audience member (as a class of 4 basic emotions as reported
in [33]), and transmits it to the network every 5s using UDP.
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Gestures: Tracks the movements of the audience member (typically the position
and rotation of head and hands), and transmits them to the network every 5 ms
using UDP.

Sounds: Tracks, via the microphone embedded in the HMD (head-mounted dis-
play), the voice and contextual sounds generated by the audience member (e.g.,
while cheering, clapping, singing), and transmits them to the network, as a mono
signal, using RTP over UDP with packets encapsulated in IPv6 packets (consider-
ing 480 samples per packet, at a sampling rate of 48 KHz and a resolution of 16
bit).

The processors are as follows:

VE Controls: takes as input the emotional state of each audience member and
produces as output (e.g., via majority voting schemes) a set of control messages for
changing the parameters of the VE).

Avatars Synch: takes as input the gestures from each audience member and uses
them to control the embodiment of the corresponding avatar, synchronized across
all instances of the multi-player VR application. The synchronized gestures are
sent to the network every 5ms using UDP, this processor also receives as input the
data from the Multimodal Prediction module.

Audience Sounds Mix: takes as input the audio stream of each audience member
and creates a mix of the sounds of all avatars, far from the avatar of the receiving
audience member, while delivering to him/her the independent sound streams of
the closest avatars (up to 10, if their distance from the user is compatible with per-
ceptual constraints). Therefore, the outgoing communication rate can be computed
as 11 mono audio streams: (10 users + mix) * 0.816 Mbps = 8.976 Mbps. This
processor also receives as input the data from the Multimodal Prediction module.

Multimodal Prediction: takes as input the data related to gestures, sounds and
delay compensation, and produces predictions for gestures and sounds (via ML
methods based on previous data) in order to cope with the excessive latencies that
would prevent audio-visual synchronization.

Music Streaming: Takes in input a database of compensation delays and uses
them to stream music content to the connected audience members each with a
different delay (in this way all geographically displaced audience members receive
the music at the same time, regardless of the latency introduced by the network).
Music is streamed (as stereo signals, via TCP/IP) with a varying level of audio
quality depending on the service plan (basic, medium,premium,).

Latency Compensation: A network controller that updates a database of network-
related information that is used to compute compensation delays for the Music
Streaming and Multimodal Prediction modules.

58



Service-Graph Foundations

The are as follows:

e VE Visuals: runs the multi-player VR application which updates the parameters
of the VE based on the control messages received from the VE Controls.

e Avatars Visuals: runs the multi-player VR application which updates the move-
ments of the avatars of the connected users based on the control messages received
from the Avatars Synch.

e 3D Awudio: receives as input the position of the 10 closest avatars surrounding
the avatar of the audience member and delivers to him/her their sounds spatialized
according to 3D audio methods, along with the mix of the sounds of the farther
avatars.

e Haptics: provides a tactile representation of the music and other sounds, based
on the audio signal produced by the 3D Audio device.

6.3 Conclusion

This chapter describes two connected objectives:

e Concrete Service-Graph Instantiation: Using the general CNFlow template intro-
duced in Chapter 5, we derived a fully-annotated DAG for the audience-interaction
i pre-recorded concerts use-case.

e Two-Layer Problem Decomposition: We argued that the orchestration task cannot
be solved by a single, static embedding:

— The graph layer decides where to place each function and how to route/repli-
cate every commodity. This layer operates on a seconds-to-minutes horizon
and must remain feasible under churn (users joining or leaving) and replica
scale-out /scale-in events.

— The data layer closes the loop at sub-second granularity, reacting to jitter,
burst-loss, and cross-concert congestion by micro-rerouting flows. These lay-
ers are coupled, changes at the data layer may invalidate latency guarantees
assumed by the graph layer, while large shifts in audience distribution may
trigger a new global embedding.

To satisfy all these requirements, we need a framework where we can place all these
variables in a single place. For this reason, in the next chapter, we will introduce a
complete Python-based simulation framework for musical metaverse scenarios.
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Chapter 7

MUSMET Simulator

In this chapter, we present SiMusMet, the first Python-based discrete-event simulator
that brings the concepts of graph layer and data layer into executable artefacts. SiMus-
Met allows researchers to (i) embed dynamic service graphs on arbitrary cloud-network
topologies, (ii) stream fine-grained traffic commodities through those embeddings under
realistic link-level impairments, and (%ii) measure end-to-end musical-quality, quality of
experience, and quality of services for users.

The simulator follows five practical design principles.

e Modularity: Keeps each part: Network model, service-graph engine, traffic gen-
erator, and log collector, its module does changes in one place, do not break the
rest.

e Extensibility: New algorithm and processing blocks can be added as plug-ins
rather than rewriting core code. Through a central YAML/CLI interface, every
key knob (e.g. capacity, rate) remains configurable, making large experiments
straightforward.

e Observability: The system provides comprehensive metrics and visualization
(built-in dashboards and detailed event logs).

e Simplicity: Only the essential features are implemented, ensuring the code is easy
to read now while leaving clear hooks for future expansion.

In this section, we present the general architecture of our simulator. The design
is illustrated in Figure 7.1. Our simulator consists of two modules: Core Module and
Scenarios Module, the former is the principal part of the simulator responsible for the
creation, management, and interactions between components. It groups all functionality
that is common to every experiment. Scenarios Module, a directory module where users
(developers) can create their customized scenarios and use cases. Each scenario in the
scenarios module is treated independently.
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7.1 Core Module

The Core Module is the part of the framework that remains intact between experiments
(except for setting general configurations), all scenario-specific code lives outside it. It
bundles four subsystems that correspond, one-for-one, to the formal elements introduced
in Chapter 6.

| i Configuration = Components

| “tessssssssssssssssssssssiassnsssssest .
1 -
R E - Processor  Consumer
P Network

Scenario #1

Figure 7.1. SiMusMet Architectural Design

7.1.1 Simulator Configuration

This subsystem serves as the single point of truth for every run-time parameter that the
simulator might need. At start-up the engine instantiates a ‘BaseConfig’ object that:

e Loads a default parameter set from a version-controlled YAML/JSON file. These
parameters are for example: simulation time, time step, random Seeds, logging
levels, and logging paths.

e Validates each entry against a schema and raises human-readable errors.
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e Persists the effective configuration alongside simulation outputs to guarantee re-
producibility.

Scenario authors extend this behavior by sub classing ‘BaseConfig® inside their sce-
nario directory. An inherited class can override or add fields, while still benefiting from
the same validation and persistence logic. The simulation engine receives a reference to
the (immutable) configuration object during initialisation; every other core subsystem
(network model, metrics collector, policy plug-ins) reads its parameters through that
shared reference. This pattern keeps parameter handling centralised and type-safe, yet
lets each scenario tailor the knobs it cares about without touching core code.

7.1.2 Network Subsystem

The Network Subsystem is the bridge between the abstract service-graph logic discussed
in Chapter 6 and the event traffic that flows through the simulator at run time. very
experiment, whether it stresses only the graph layer (placement / embedding), only the
data layer (flow-level dynamics), or both, must run on a coherent cloud-network graph
(CNG). This subsystem owns that graph from end to end.

The Network Subsystem therefore performs three high-level roles:

e CNG Construction: Assembling a topology whose nodes and links carry detailed
resource attributes (e.g., packet loss, jitter, propagation delay). Moreover, a user
can easily add some other dimensions.

e Semantic Validation: Ensuring that the constructed topology obeys domain-
specific constraints so that no unrealistic artefacts bias the results. As an example,
imagine two nodes, one is a 'core’ and the second is an ’edge’ node. As we already
know that computing capabilities for edge nodes are limited with respect to core
nodes. Such a violation of realistic conditions will be automatically raised by the
Network Unit.

At the start of every run the subsystem ingests either (i) a ready-made template
derived from real deployments or (ii) a synthetic topology specification generated for
specific studies. By capturing heterogeneous resource types in one place, the simulator
can represent composite constraints such as compute-heavy but bandwidth-light links or
memory-rich edge nodes, features that are typical of modern 5G&Beyond, and thereby
saving researchers from drawing conclusions on physically impossible networks.

7.1.3 Components

A service graph inside the simulator is realised as an ordered set of components,
the vertices of the directed-acyclic graph introduced in Chapter 6. Each component
encapsulates the internal logic of a single service-graph node and is instantiated as one
of three canonical roles:

e Producer: Generate source commodities (e.g. ”Gestures”, ”Sounds”)
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e Processor: Transforms or fuses incoming streams (e.g. ” Audience Sounds Mix”)

e Consumer: Delivers the final output to end-devices (e.g. 73D Audio”)

Figure 6.2 shows how these roles combine to form the pre-recorded-concert template.

Object ingtantiation Added to Simulation Registry Links to Netwerk

Create — ‘ Register ’ — ‘ Initialize |

Figure 7.2. Component Lifecycle

The simulator ships with a catalogue of well-documented, ready-to-use components
that cover the reference scenario. Researchers may nevertheless need custom-logic, per-
haps a novel ML-based predictor. This is achieved by subclassing the appropriate ab-
stract base class (Producer, Processor, Consumer), or, if a fundamentally new role is
required, by extending the generic Component superclass. The inheritance hierarchy
enforces consistent method signatures and guarantees that custom code remains com-
patible with the rest of the framework.

Figure 7.2 summarises the three mandatory stages for every component:

e Creation: the developer instantiates the object and invokes its create() method.
During this phase the simulator validates the provided metadata (I/O rates, state
size, latency budget) against domain constraints.

e Registration: Once validated, the component is added to the global registry, making
it discoverable by the placement and routing routines.

e Initialization & Self-test: after all required components are registered, the simula-
tor connects them via provisional data-flows and exchanges lightweight ”dummy”
messages to verify type compatibility, buffer sizes, and back-pressure signals. Any
mismatch triggers a descriptive error before the actual experiment begins.

D Gates — Connections

Component 1 l Component 2 H Component 3

Figure 7.3. Connecting components approach

Components are joined by explicit Data Flows (Figure 7.3), each of which binds
an output gate of the upstream node to an input gate of the downstream node. The
connection routine rejects disjoint or cyclic graphs, ensuring that the final topology
satisfies the DAG requirement and that every commodity has a well-defined path from
its producer to at least one consumer. Successful initialization promotes the provisional
flows to active links, completing the service-graph assembly.
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This disciplined life-cycle, enforced by the Components Subsystem, guarantees that
every service graph loaded into the simulator is syntactically correct, semantically co-
herent, and immediately ready for placement on the cloud-network graph.

7.1.4 Simulation Orchestrator

The Orchestrator is the control plane of the entire simulator, the entity that knows
every component, sees every link, and advances simulated time. Its design is delib-
erately centered on a discrete-event scheduling paradigm, because audience-interaction
workloads exhibit highly uneven traffic bursts and tight latency budgets that are best
captured by event-driven, rather than fixed-timestep, execution. What follows is a com-
prehensive description of how the Orchestrator is constructed, why each design choice
was made, and how it interacts with the other subsystems already introduced.
At a high level the Orchestrator fulfils four responsibilities:

e Global time monitoring: It moves the simulation clock to the timestamp of the
next event in the queue. By default, the simulator works without a regular ”tick”,
however, the simulator also allows fixed time step jumps.

e Event Dispatcher: It invokes the callback attached to each event, thereby triggering
computation, communication, or rendering inside the appropriate component. The
event also accepts a set of optional arguments required.

e State book-keeper: It updates link capacities, queue lengths, and component states
after every callback, guaranteeing that subsequent events observe a consistent world
view.

e Variability engine: It injects stochastic effects (propagation-delay distributions,
packet-loss bursts, device jitter) at the precise moment they materialise, this infor-
mation are initially provided by the user in the configuration files.

Every occurrence inside the simulator, sending a packet, completing a CPU task,
finishing an audio render, is encoded as an Event object with three immutable fields:
unique Id, timestamp (at which the event must start executing), and callback (the func-
tion to execute).

The Orchestrator holds a single binary min-heap keyed on timestamp. Inserting,
peeking, and popping events all run in O(logN), where N is the queue length. Thanks
to the full control of the orchestrator, it also manages cancelling events in case of loss of
information (e.g., data packet corrupted during transmission).

Lifecycle of a packet

e Production: The "Sounds” producer crafts a UDP packet and hands it to the
Orchestrator via ‘scheduleEvent(currenttimestamp,, data packet)*.
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e Propagation: The orchestrator receives this request, and schedules an event (cre-
ates an event and inserts it inside the queue), this event will have a timestamp =
currenttimestamp + propagationDelay, and the packet, may also encounter some
changes in case of corruption, loss or other possible external effects. Finally, a
callback, which is the function that will be executed when the event time comes
(event to be processed). This function in this case will be retrieve_data() that will
be executed by each destination endpoint.

e Reception After the event has been processed, the consumer component stores the
packet in a rendering buffer and schedules an event (this time, within its internal
buffer) for collecting (ingesting) data.

e Rendering The consumer calls a specific function to render this data, and accord-
ingly, applies some changes to the current state. The network simulator here has
a full view of the state of all consumers and thus, collects or updates QoE/QoS
metrics.

Propagation delays, retransmission timers, and even user-behaviour spikes are sam-
pled at the moment an event is scheduled, not when it fires. This separation prevents
downstream callbacks from changing the past, once an event is in the heap, its times-
tamp is immutable. All pseudo-random draws are sourced from a single, seeded generator
stored inside the configuration module and accessible by the orchestrator.

The Orchestrator is more than a scheduler; it is the simulator’s core system. By rep-
resenting every network, computation, and rendering action as a time-stamped event, it
harmonises the graph-layer placement logic with the data-layer traffic dynamics, enforces
reproducibility, and provides the hooks required for rigorous performance measurement.
Its discrete-event architecture is therefore indispensable to studying the tight latency
loops and bursty workloads characteristic of audience interaction in the Musical Meta-
verse.

Finally, we provide in Figure 7.4 a more in-depth view of the core engine where each
module/subsystem is shown along with its parts.

7.2 Scenarios Module

This workspace allows users to create their customized scenarios. Figure 7.1 shows the
general architectural design of a scenario inside the workspace, however this design may
change depending on the user’s goals. As mentioned in chapter 6, the need for a specific
simulator for the musical metaverse is the complexity of the multi-layer problem. Our
simulator allows to create experiments on a specifc layer (data layer or graph layer), or
both.

Figure 7.5 shows a visual example of the hierarchical problem. First, focusing on the
data layer (separately), the problem becomes only studying and experimenting with
data-driven communication between components. In other words, the goal in this case is
just to understand the behavior of such a customized inter-service-graph communication
under some variability assumptions (e.g. burstiness, jitter and loss ...). Our simulator
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Figure 7.4. In-depth view of the ”core” engine

can offer this easily by setting the environment to data-layer, thus parameters and set-
tings related to the CNG won’t be considered. Another view of the problem is more
abstract (simpler), as a graph-layer problem (reduced back to simple VNE - check chap-
ter 4). In this case, we assume a negligible effect of variable arguments, and the focus of
the scenario will be only devoted to the design of a policy to satisfy an objective related
to the embedding problem.

What makes our simulator powerful is the combination of two layers, as a single prob-
lem, we are not just interested into achieving some embedding goals, but also considering
instateneous changes and fluctuations like realistic networks. As an example of this, we
refer to Figure 7.5. The top layer denoted as Service Graph 1, has been allocated over
a set of nodes on top of the cloud network graph (mappings are shown with dotted
green lines), small blue circles represent real-time data transmission between compo-
nents. Similarly, another service graph (Service Graph 2), is allocated such that the
red link is now shared between two commodities from the service graphs, which results
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Service Graph 1

Cloud Network Graph
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Figure 7.5. An illustration for the two-layers problem

Service Graph 2

in a more congested link, and therefore, increases variables like jitter and packet loss
(more disruptive). Our simulator can easily adapt to these sub-scenarios by varying the
probabilities of these actions depending on the load factors, which imitate realistic use
cases.

7.2.1 Scenario Configuration Module

Can extend the set of initial configuration parameters defined in the ”core” module. The
reason behind this design is to ensure separability; only the necessary parameters are
called, otherwise they remain set to default. In addition to this, we store the necessary
scenario configuration in this module. Following the documentation, we share with the
user the set of possible parameters to consider for the pre-defined scenarios; however, if
the user wants to create a completely customized scenario out of the provided template,
this may require additional steps as values has to be defined (and validated) first in the
core part.
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7.2.2 Policy Module

This module contains a set of abstract classes and methods to be extended for easy
design of a customized policy. The policy’s objective is to perform a placement &
routing of the incoming service graphs following static and dynamic approaches. The
researchers are now able to test their musical metaverse algorithms (ILP, heuristics, or
ML-based models) easily on realistic MM scenarios thanks to the realistic cases designed
by the simulator. The creation of the policy comes with detailed documentation and a
set of examples to make the process of creation easier for users and encourage future
contributions. This module is also flexible, i.e, you can just focus on either placement
or routing (the other case will be handled by built-in functions like multi-dimensional
resource-constrained shortest paths). In the next chapter, we will show how we used this
module to build three different customized policies (two MILPs and one heuristic) for
the placement and routing of processors, assuming fixed places of users (this assumption
is taken to focus on a specific aspect of the problem, otherwise the problem will become
similar to VNE).

7.2.3 Metrics Module

The metrics module is responsible for collecting real-time metrics; it has full access to all
component states and, therefore, can monitor the changes of these statuses and update
the list of metrics. This list depends on the scenario; however, a user can easily extend
the base classes provided in this module to create any customized metric along with the
interval of measuring or the set of components to use for collecting results.

7.2.4 Network Simulation Module

The main part of any created scenario is the component responsible for bridging the
communication with the core layer, and it is the component that receives callable from
the simulation engine (orchestrator) to execute over the network, and in turn, send infor-
mation requests and updates to the orchestrator (for scheduling events). This subsystem
is the place where all connections inside the simulator meet. From the CNG to the SG,
and where metrics are collected before being sent to the ”Metrics” module. It represents
the core functionality of the whole experimental scenario.

This has a strict and clear prototype to follow. Initially, we have a base abstract class
(this documentation provides easy-to-follow instructions for seamless extensibility) that
requires the following attributes:

e A configuration file (scenario config): extended by the ”core” configuration module
and based on the ”scenario configuration” module.

e A Network Template: configured and ready to use Cloud Network Graph topology.
e A policy (if the data-layer only experiment can be discarded).

e A copy of the registered service graphs templates.
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Having these attributes is enough to start the simulation. These attributes (blocks)
can be easily called inside the network simulator module as they have already been
verified by their base classes. At the end, the user can easily run the experiment and
start monitoring logs during the simulation, and collect results after the simulation time
is reached.

7.3 Conclusion & Summary

This chapter introduced SiMusMet, a novel Python-based discrete-event simulator de-
signed to bridge the theoretical concepts of graph layer and data layer into practical,
executable artifacts within the context of the Musical Metaverse. SiMusMet empow-
ers researchers to effectively embed dynamic service graphs onto diverse cloud-network
topologies, simulate fine-grained traffic under realistic network impairments, and accu-
rately measure end-to-end musical quality, quality of experience (QoE), and quality of
service (QoS) for users.

The simulator’s architecture consists of two primary modules: the Core Layer (Figure
7.4) hosts all run-time services that remain constant across experiments. And, the Sce-
narios Workspace empowers researchers to prototype, share, and reproduce experiments
without touching the Core. Through this separation of concerns, SiMusMet supports
three research modes: pure data-layer tests, pure graph-layer embeddings, and fully cou-
pled studies where placement decisions and packet-level dynamics feed back into each
other in real time (Figure 7.5). By combining a rigorously validated network model with
an event-accurate execution kernel and an extensible scenario interface, the simulator
offers a reproducible, researcher-friendly platform for exploring latency-critical, interac-
tive audio-visual workloads at scale for musical metaverse scenarios.

The next chapter leverages this foundation to develop and evaluate three concrete

placement—routing policies, two MILPs, and a novel topology-and-compute aware heuris-
tic algorithm.
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Chapter 8

Placement and Routing Policy
Design

With SiMusMet in place, we can now shift from how to simulate to what to optimize.
In this chapter, we introduce a new MILP formulation for the placement and routing
of processors, given the locations of users. This template is the same as the template
shown in Figure 6.2. Given a service graph for the pre-recorded scenario explained in
chapter 6, our goal is to examine the placement and routing of these components while
satisfying some constraints and achieving an optimization goal.

8.1 Problem Formulation

Figure 8.1 provides an illustrative example of a simple use case, given a set of users
U = {uy,...,u,} already connected to the network (their components are connected to
a specific set of communication nodes), the problem we want to solve is where to place
the processors of the service graph so that we min/max a specific objective value. As
an example, we see in Figure 8.1 that a user (denoted as wu;) is connected to the com-
munication node Cs, while us, is connected to communication node Cjy.

In this example, imagine we have a single processor to place over the network, which
receives input from users producers, and outputs to users consumers. Suppose also that
this processor’s requirements over computational commodities do not violate any of the
shown computational nodes in the network; therefore, we end up having 4 different
computational nodes as feasible candidates for the placement of the processor. After
selecting the appropriate node, we can move to the second phase (routing) and validate
feasibility and efficiency. The selection of the candidate node (for placement) does not
necessarily lead to the best possible results, depending on the objective goal, and the
parameters over commodities (e.g. delay, bandwidth), we may need to use longer paths.

In this cloud network graph, the number of processing nodes is limited, and the
selection of candidates must be based on the satisfaction of requirements (e.g. sufficient
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amount of capacities over commodities, or delay constraints are not violated), while
achieving the best objective value. Therefore, the problem can be written as a Mixed-
Ineger Linear Programming Formulation as shown in the next section.

Figure 8.1. An example of a cloud network graph with 2 users already connected

8.2 General MILP formulation

First, we invite the reader to check Table 6.2 for the set of main notations. In addition
to these notations, we define the following variables:

1. Virtual Commodity Flows { fi’j-}: A dimensional binary vector indicating whether
commodity k € K goes (i.e., is transmitted, processed, or stored) over link (i, j) € £.

2. Actual Information Flows {uf;} and {p;;} : Real variables indicating the amount
of information flow associated with object o € O and the total information flow,

respectively, going over link (i,7) € £.

The resulting mixed integer linear program (MILP) is described as follows:
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max / min Objective (8.1)
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In the provided MILP, the objective is not yet given. The reason is to focus first
on the set of decision variables and constraints that are fixed for any objective design.
Later, we will show how, by selecting an objective, we may need to add some additional
constraints. For now, we consider an unknown objective function.

Equation 8.2 states generalized (communication, computation, storage) flow conser-

vation constraints, requiring the total incoming flow to a given communication node
1 €V for a given commodity k € K, to be equal to the total outgoing flow from node i
for commodity k. L.e., no data is lost or created. This assumption holds when we solve
this for a specific instant of the time horizon (dt).
Equation 8.3 states flow chaining constraints, which impose that to generate commodity
k € K at the output of computation node i € VP all input commodities [ € X' (k) must
be present at the input of node i. As an example, suppose that k is a video enhancement
output, (the processing function enhances the quality of the video), thus, [ is needed as
input (decoded video) to produce k.
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Equations 8.4 and 8.5, are source and destination constraints that initialize the in-
gress/egress of the source/destination commodities at their corresponding source/desti-
nation nodes. So, each commodity k € K is generated at a unique node i = Y*"“(k).
That node must push the flow fi’; = 1 to its outgoing neighbors. This is how the Mus-
MOPT formulation injects data into the network. If the flow isn’t initialized, no down-
stream processing or delivery can happen.

One of the most important elements of this MusMOPT formulation is the connection be-
tween virtual commodity flows and actual information flows. Recall that a unique aspect
of NextG services (musical metaverse services) that cannot be captured via VNE models
is the sharing of data streams by multiple processing and/or destination functions. Such
multicast nature of NextG media streams means that different virtual commodity flows
carrying the same information must be able to overlap when going through the same
link (7,7) € €. This is assured by Equation 8.6, where we first multiply the commodity
flow variables by their corresponding rate requirement and then allow the overlap of the
resulting sized commodity flows that are associated with the same information object.
The total information flow at a given link (i, j) € £ is then computed by summing over
all information flows, which is naturally constrained to be no larger than the total ca-
pacity of link (i, 7), as stated in Equation 8.7.

The end-to-end service latency constraints are governed by equations Equations 8.8 8.9
8.10 8.11. Equation 8.8 computes the local latency of commodity &, ¥, (i.e., the time
taken to produce, deliver, and consume a unit of commodity k) as the sum, over the links
carrying commodity k, of the latency to transmit or process a unit of commodity k over
the given link, denoted by lfj Equations 8.9 8.10 compute the cumulative latency of
commodity k, likp , which represents the service latency that has been accumulated until
the consumption of commodity k. Equation 8.9 first sets the cumulative latency to be
equal to the local latency for all source commodities. Equation 8.10 then computes the
cumulative latency for all remaining commodities recursively by setting the cumulative
latency of commodity k to be larger than or equal to the local latency of commodity &
plus the cumulative latency of input commodity [, for all input commodities in X (k).
Lastly, Equation 8.11 imposes the cumulative latency at each destination commodity to
be no greater than the maximum allowed service latency L.

Finally, Equation 8.12 imposes the binary nature of commodity flow variables and the
real positive nature of information flow and latency variables.

8.3 Objective-Specific MILP Instantiations

The generic formulation in previous section, captures all hard constraints that every
musical-metaverse deployment must observe: flow conservation, information-aware mul-
ticast, multiresource link capacities, and end-to-end latency bounds. What drives the
optimizer toward one placement rather than another is the objective function sitting
atop those constraints (Equation 8.1). In real networks, operators rarely optimise a sin-
gle metric; they trade off monetary cost against resilience, jitter tolerance, or fairness.
To expose that design space we propose the template of two complementary MILPs:

1. Minimum-Cost MILP (Min-Cost): This model seeks the cheapest feasible
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embedding by minimizing the sum of ”costs” over utilized link resources.

2. Load-Balancing MILP (LB): Interactive music streams are hypersensitive to
jitter bursts that arise when a few network hot spots saturate. Here the goal is
to spread load evenly so that the most congested resource is as lightly used as
possible.

The min-cost objective is shown in Equation 8.13. The goal is to minimize the total
cloud-network resource cost, where recall that edges in £ can represent communication,
computation, or storage resources. As a showcase example, we define two processors py
and po, and the goal is to place these processors over the CNG shown in Figure 8.1.
Since the computation node placed in node C5 can accomodate both p; and po, and
since this placement will lead to the lowest possible cost, the solution will be to route
data from p; and po to/from u; and u; over the links C5 — C4, and C5 — Cy. However,
such routing makes both links more congested.

Z i Wi (8.13)

(i,9)€E

On the other hand, making the network balanced in terms of load means that we
have to minimize the maximum utilization over links (i.e. maximum loaded link), a link
is loaded when its capacity is near saturation. This can be modeled as described in
Equation 8.14.

Hij

mln(max(i’j)eguij) U5 = o
1)

(8.14)
where u;; is the utilization (or load) of links (4, j). The nested min-max breaks linearity,
so we linearize it back using the standard epigraph trick. To do that, we use a single
auxiliary variable Z, resulting in an additional constraint. The final form becomes:

minimize Z (8.15)
st pij <Z-cy V(i,j) €& (8.16)

Z cR* (8.17)

(8.18)

Equations 8.2 - 8.12

The exact MILP models derived above yield optimal embeddings, but their solver
runtime grows super-linearly with both user count and topology size. For concert-scale
scenarios (hundreds of avatars, tens of edge sites) even a warm-started Gurobi run can
exceed practical planning windows. To reconcile solution quality and computational
tractability, we next introduce a lightweight heuristic that blends greedy placement
with load-aware path selection. The algorithm completes in sub-second time on our
largest testbed, yet, as the results in the following chapter show, it achieves near-optimal
results.
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8.4 Heuristic Placement & Routing Algorithm

The two MILP formulations just presented give us the performance ”end-points” of
the orchestration space. Min-Cost delivers the cheapest feasible embedding, whereas
LB yields the flattest utilization profile, but neither scales to the decision latencies
required by a live, audience-driven concert. Imagine that at every 6t (a tiny instant of
the network /simulation state) you need to solve the MILP that takes a longer time than
expected, leading to a degraded performance. In this section, we introduce a Topology-
Aware Cost-Load heuristic algorithm designed to balance the trade-off between:

e Computational Speed and Efficiency

Cost consciousness

Load Restraint

Topology awareness

Fair distribution of utilized resources

8.4.1 High-level Algorithmic Flow

Our heuristic consists of the following five phases:

1. Community Detection (cluster the CNG)

2. Processors Demand-aware prioritization

3. Scoring of “grouped” processors over a community-level
4. Initial Placement & Routing

5. Tterative exploration based on multi-variable probabilistic attenuation

Figure 8.2 is a flow chart for the sequence of steps done by the algorithm. First,
the algorithm takes the CNG and SG as input, applying a clustering method to the
former and a ranking method to the latter. Then, we compute a score for each processor
across all communities. Finally, we start with an initial placement and routing step, and
iterate for a fixed number of iterations Thsax to get the best possible placement and
routing solution. The algorithm returns as output a mapping with keys that are the set
of commodities of the SG, and the values correspond to the path in the CNG.

In the upcoming sections, we will describe each phase independently and explain
what each phase shares with the successive one.
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Figure 8.2. High-level flowchart for the heuristic algorithm

8.4.2 Community Detection

Real-world graphs (e.g. communication networks) are not random; their nodes (and
links) form naturally into groups or communities. Communities are sets of dense internal
connections, while this density reflects the definition of connection between components.
Detecting these communities has a lot of benefits; these benefits motivate the selection
choice of this approach:

e Simplify the problem space: By dividing the search space into groups, the search
becomes less expensive.

e Preserve structural/topological properties: The grouping is done based on a com-
putation of similarity between components; therefore, elements within the same
cluster tend to share similar features or structures.

e Enhance embedding or partitioning heuristics
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Definition 8. Community detection is the task of partitioning a graph into clusters
(communities) where: Nodes within the same community are densely connected.
Nodes from different communities are sparsely connected, and the concept of den-
sity is relative based on the definition of the scoring function (e.g., number of hops,
weight, distance, costs ...).

A widely adopted way to evaluate how well a partition captures that internal-dense /
external-sparse pattern is modularity, introduced in [19]. For a given graph G = (V, €)
with m = |€] and a partition C' = {C1, Cs, ..., Ci} of the vertices, modularity () is defined
as :

Q= 3"y — T )s(0,05) (5.19)

where:

e A;; counts observed links inside the community.

° % is the expected number of such links in a null model that preserves the degree

sequence but randomizes endpoints.

e The sum therefore measures ”observed minus expected” internal connectivity, nor-
malized to lie in [—1,1]

e High positive values (typically 0.3-0.7 for realistic graphs) imply many more internal
edges than randomness predicts; values near zero indicate no community structure.

Because the space of all partitions grows super-exponentially with |V|, finding the
global maximum of @ is NP-Hard. Practical algorithms, therefore, rely on heuristics
that approximate the maximum while scaling to graphs with millions of nodes. The
most popular is the Louvain method [4]:

e Local moving: Start with each vertex in its own community. Iteratively move a
vertex to the neighbouring community that yields the greatest positive AQ until
no local move can improve Q).

e Aggregation: Collapse each community into a ”supernode”, recompute edge
weights (sum of original weights), and repeat step 1 on the condensed graph.

e Hierarchy: Iterate until AQ becomes negligible; the algorithm outputs a dendro-
gram of communities across scales (level).

Louvain runs in roughly O(|€]) time per pass, making it suitable for the cloud network
graphs (a few hundred to a few thousand nodes) used in our simulator. Louvain offers
the best trade-off between speed and Q-quality for our purposes compared to other
algorithms like Leiden [29] (solves disjoint graphs in Louvain) and CNM [8] (greedy
agglomeration).
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Figure 8.3 provides an example of how Louvain works: First, as mentioned before,

nodes are sorted into communities based on how the modularity of the graph changes
when a node moves communities. Then the graph is reinterpreted so that communities
are seen as individual nodes.
The Louvain method begins by considering each node v in a graph to be its own com-
munity. For each node v, we consider how moving v from its current community C
into a neighboring community C’ will affect the modularity of the graph partition. This
happens in the for-loop. We select the community C’ with the greatest change in mod-
ularity, and if the change is positive, we move v into C’; otherwise, we leave it where it
is. This continues until the modularity stops improving.

AN L N L
e / e [\ o |
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.
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Figure 8.3. Louvain algorithm grouping stage

Now, to compute the clusters (communities), we need to have A;;, the matrix that
represents the weights of any pair of nodes, at each level. We need to compute an
informative and efficient weighting for each link that can be carefully representative
of all the information related to this link. For this reason, we propose our novel weighting
function. Given a link (4, 7).

where:
e a=04,=0.3;,7v=0.3
e w;j & c¢;; are the cost and capacity of the link (4, j) respectively

e We denote by N((i,7)) the set of two endpoints forming the link (4, 7), since our
method is applied over the communication subgraph of the CNG, each endpoint
may have from zero to a finite number of computational nodes. We denote by
Ain = Z(m)egﬂ ¢;; the sum of all RAM resources over the network. Finally,

A= @ is the ratio between the cost of RAM resources related to computation
nodes that are connected to communication nodes forming this link, and the overall
RAM resources of the network.

e V has a similar definition, it is the ratio between the sum of all CPU resources of
the computation nodes that are connected to communication nodes forming this
link, over all CPU resources of the network.

e ( is the betweenness centrality score of the link, and is calculated by counting how
many shortest paths between all possible pairs of nodes in a network pass through
a specific edge.
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By this, we defined all parameters of our equation (except f), and we can see that
the formula takes into consideration several aspects of the link (topology, cost, ability
to host, closeness to computational node). However, as our scenario is related to the
placement of processors given fixed places of users. Our formula contains f factor that
accordingly changes based on the existence of a connection with a user on one of the
endpoints of the link. As shown in Figure 8.4, blue edges represent a communication
node with no user connection, while a read node represents a communication node with a
user connected to that node. In the case of 2 users, we show the three possible outcomes.
In the first, f = fo-1 because of a lack of users, in the second, the factor is multiplied by
1.5, so it becomes higher, and similarly for the third case. This means that the weight
of the edge increases if one of the endpoints hosts a user, which reflects informative
clustering depending on the information provided.

. No user
‘ A user is hosted here

® ~ O

‘ f= 225 ‘

Figure 8.4. Example how f evolves depending on number of users

At the end of this phase we run our modified Louvain algorithm on the sub-graph of
communication nodes. Because Louvain is iterative, we record the partition produced
after every pass; the successive partitions form a dendrogram, shown in Figure 8.5. The
leaves correspond to single-node communities, while higher levels reveal progressively
coarser clusters obtained by merging the denser groups identified below.

8.4.3 Service Graph Ranking

This phase is also known as ”"demand-aware processors prioritization” which consists
of ranking our 6 processors (as mentioned above, our focus is on the scenario of pre-
recorded concerts). We rank our processors according to the demand for their input and
output commodities.

dpeyr = > Rl (8.21)
keysre(k),k=(3,5)
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\

Figure 8.5. Tree-based view of the Louvain Method

This means that the processors having more demand (sum of multi-dimensional require-
ments) as input and output will get a higher rank because by handling heavy-demand
processors first, we reduce the complexity of the search.

8.4.4 Community Scoring and Candidate Selection

Having ranked processors and partitioned the cloud graph into a multilevel community
tree, the heuristic now needs a principled way to decide which set of communities
(level) should host the processors in the queue. This is done with a single scalar
metric denoted as k (community score). The process is described in details in Algo-
rithm 1, where the goal is to find a level where each processor is "feasible” for at least
one community. The reason behind this is to reduce the search space while carefully
selecting a smaller search space that lead to better results.

N\ N
N
O °® : \
X X / Y
Pocl 024 044 032 ‘
A T
‘

Proc 2 0.61 0.19 0.20

/ /
Proc 3 0.33 0.28 0.39 ‘ . . . .

Figure 8.6. An illustrative example of Winter

Finally, Figure 8.6 shows an example of W€ considering 3 different processors.
After selecting a feasible set of communities in a specific level for the processors (here, it
turns out that all communities are feasible to the processors), we normalize the scores.
Thus, we obtain that the sum of scores of a processor over the ”feasible” communities
is equal to 1.
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Algorithm 1 Processors score computation over communities

Input: List of Processors VP, List of levels L, each level is a list of |C M| communities
Output: A matrix W**" where rows correspond to processors and columns correspond to communities

(koM wevr)

begin
for [ in L: do
for p in V*: do
for CM in {CM,,CMa,...,.CMr}: do

/* Extract all computation nodes in the community (i.e. if a
communication node has some computation nodes, add them to the list) x*/

CompNodeList = ExtractCompNodes (C; € CM;Vi € |[CML|)

if CompNodeList is empty then
/* This community doesn’t host any computational node; Unfeasible x/
Skip Community

end

/* Filter the list of computational nodes to keep only nodes having enough
capacity (CPU & RAM) to host the processor x/

filteredCommunityNodes = FilterCompNodes(p, CompNodeList)

if filteredCommunityNodes is empty then
/* The community cannot host this processor */
Skip the community

end

/* Create a list of tuples where each corresponds to a feasible
computation node x/

M, =| (%, %) for each CompNode in filteredCommunityNodes]

/* for each element in the list, extract the maximum value out of the
tuple x/

M, = [ max(a,b) for (a,b) in M1 ]

/* Compute CompScore value as the minimum out of the elements in the
obtained list; Idx corresponds to the index of the computational node
having the best score */

CompScore, Idx = min(M2)

/* Extract costs of the computation node having CompScore */

Win = argming ., (Wij)in Wout = argming ., (Wij)out

/* Compute K, cn;; the score of p on being hosted in C'M; (higher is
better) */

K= CompSeorex(wintwout)

/* Update rows and columns of W®¢" */

end
/* Check whether we found at least a "feasible" community in this level for p
*/
if No feasible communities were found for p then
SkipToNextLevel()
end
end
/* Check whether all processors have at least a feasible community in that level
L */
if At least a feasible community then
/* We have found a level where each processor is feasible to at least one
community */
break
end 81
end
return Winter

end




Placement and Routing Policy Design

8.4.5 [Initial Placement & Routing

We now enter Phase 4: initial placement and routing. Up to this point the heuristic
has produced:

e A hierarchical clustering of the cloud network graph from Phase 1
e A processor ranking from Phase 2

e An inter-community score mapping W™ whose entry kp,cm indicates how
attractive community C'M is for processor p

What Wr lacks is any hint about which individual computation node inside a
chosen community should host the processor. Therefore, this phase proceeds in the
classic two-step fashion familiar from VNE work: node placement first, link routing
second, but introduces an additional data structure for the intra-community choice.

Winter is a dictionary whose keys are processors p € VP. Each value is a rectan-
gular table: the rows correspond to feasible communities for p and the columns to the
computation nodes contained in that community (column count varies with community
size).

We initialize every row with a uniform probability distribution. For example, if pro-
cessor p can be hosted in community C'Ms and C'Ms contains four computation nodes,
the corresponding row starts as [0.25,0.25,0.25,0.25].

These probabilities will be updated iteratively in Phase 5, the uniform start merely
states that before any cost-load evidence is examined, all nodes in a feasible community
are equally likely hosts.

Figure 8.7 extends the high-level schematic of Figure 8.2, detailing where W" and
Wirtre are produced and how they drive the subsequent routing step.

The process of initial placement works as follows: We iterate first over ranked list
of processors (higher score, higher importance), for each processor we select the cluster
with the highest probability P, cas = max(W ™" (p)), then we select a computation node
with the highest probability P, o, = max(W(p, CM)) (initially probabilities are
uniform so selection is random). We perform the placement of each processor following
this approach. Then, we route commodities (from sources - users - to processors, and
from processors to destinations). This step involves searching for the shortest path out
of a set of feasible paths that maximizes a scoring function, as described in Algorithm 2.
Finally, this placement (routing mappings) is returned along with the score. Please note
that during the routing stage, we may encounter that there exists no feasible path from
a source to a destination, which means that the placement is unfeasible and thus, we
repeat the placement. Since any route has either a processor as source, or a processor
as destination, or both. We set the probability of all processors (forming this link) to
zero for this specific placement.

8.4.6 Probabilistic Iterative Refinement

In the final phase of our heuristic, we perform a short, guided search that nudges the
solution toward the cost-load spot without incurring the MILPs heavy runtimes. The
algorithm maintains two probability tables:
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Algorithm 2 Initial Placement & Routing

Input: List of Ranked Processors VP, Winter jyintra

Output: Mapping M of each service graph commodity over a path in the cloud network graph

begin

// Stage 1: Placement

for p in RankedProcessors do

/* Select a community based on probability distribution W"**"(p) */
CM = SelectCommunity(p, W@")

/* Select a computation node based on probability distribution in W™™(p) */
CompNode = SelectCompNode (p, wintre M)
while CompNode is NOT feasible do
/* Capacity constraints are violated, set the probability of this node to
zero, re-normalize probabilities, and select another compNode */
wntra(p CM, compNode) = 0
Normalize (W™ (p, C'M))
CompNode = SelectCompNode(p, W  CM)

end
end
// Stage 2: Routing
for k € K do
/* for each commodity in the service graph, we extract source and destination
endpoints */
src , dest = ExtractEndPoints (k)
/* Generate 3 shortest paths from src to dest based on the cost W(src,dest) */

paths = GetSP(src,dest, weighting="cost")

/* Now we have 3 possible paths, we try to embed the commodity on one of them, if
at least one is feasible we continue, otherwise we return a failure signal */

for path € paths do

isEmbedded = Embed(k, path) if isEmbedded then

/* Found a feasible routing; save it and move to the next commodity x/
Routes[k] = path continue
end
end
/* We check whether a path is found for k */

if Routes[k] is None then

/* No feasible path found; failed routing; we stop the routing loop and
select a new placement; the function will take care of setting the
probability of the selected computation nodes to zero x/

ReinitializePlacement (src, dest)

end

end

/* We iterated over all commodities and routed them, we return the mapping and the
score */

M = Routes

/* Scoring of this P&R is equal to the a constant times the standard variation of
loads (over edges) times the maximum loaded link ratio x/

score = % X 0(Li) X Lmas
return M, score

end
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Figure 8.7. A detailed flowchart of the P&R Heuristic algorithm
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o WWinter Jikelihood of moving a processor p to another community.
o Wintra likelihood of choosing a different compute node inside that community.

Both tables are updated multiplicatively, probabilities associated with improvements
are scaled up by a factor 8 > 1, while those linked to degradations are scaled down by
v < 1. After each update, the affected row is re-normalized so that it remains a valid
distribution. The full approach is explained in Figure 8.7. The process works as follows:
We have the mapping obtained by the initial P&R from phase 4, based on this, we select
randomly a processor to move it, the new position of this node will be based on the prob-
ability distributions in W€ and W™¢ This means that the higher the probability,
the more likely to select the same node; thus, these probabilities are adjusted based on
the performance of the new placement. If the placement improves the solution (reduces
the score), the probabilities are increased (both for the cluster and the compute node),
and decreased otherwise.

This process is repeated for a specific number of iterations Ts 4x, while at the end of
each iteration, we check whether some probabilities are close to 1 (within some tolerance
€) so that we no longer explore other placements for that specific processor. The detailed
pseudocode of this phase is provided in Algorithm 3.

8.5 Chapter Summary

This chapter moved the thesis from simulator mechanics to concrete orchestration pol-
icy design. First, we cast the processor-placement problem as a generic MILP that
faithfully preserves the multicast, multi-resource and end-to-end-latency constraints of
Musical-Metaverse workloads. We then specialised that template into two objective-
driven models:

e Min-Cost MILP: an economic baseline that yields the cheapest feasible embedding

e Load-Balancing MILP: a congestion-aware variant that flattens worst-link utiliza-
tion via an epigraph linearization.

Although optimal, both models scale poorly when the audience size and network
reach grow. To bridge this gap, we introduced a heuristic topology-cost-load aware algo-
rithm whose five phases are: Community detection, demand-aware ranking, community
scoring, initial placement and routing, and probabilistic iterative refinement. It provides
sub-second decision while keeping cost, and load, clost to the MILP frontiers (more de-
tails in the next chapter).

The next chapter leverages SiMusMet to benchmark all three approaches on real-
istic cloud topologies and audience traces, quantifying the trade-offs in monetary cost,
latency, computational overhead, and thereby validating the practical value of the heuris-
tic against its optimal counterparts.
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Algorithm 3 Iterative Refinement

Input: Initial mapping M, initial score scorey Winter pintra

Output: Mapping M of each service graph commodity over a path in the cloud network graph
begin

bestScore = scoreg best M apping = M

for iteration in Tyyax do

/* Select a random processor

p = SelectProcessor() /* Select a community

CM = SelectCommunity(p) /* Select a compNode

compNode = SelectCompNode (p, C'M)

/* Perform new placement and routing - like in Algorithm 2

Myew, SCOT€newy = PlaceAndRoute(p, compNode, bestMapping)

/* We evaluate the result obtained from the new embedding attempt
if scorenew < bestScore then

// *IMPROVEMENT*

not

if Same community then

/* small increase in cluster probability, large increase in node
probability

P,,cm,n += DeductFromOthersAndAdd(p,CM ,0.15, Wintray

P, cm += DeductFromOthersAndAdd (p, C M ,0.05, TWinter)

end

else

in comp node prob
Py,cm,n += DeductFromOthersAndAdd(p,CM ,0.05, Wmtm)
P, cm += DeductFromOthersAndAdd (p,CM ,0.15, Witer)

end

/* Set current mapping as best

best Mapping = Mpew; bestScore = scorenew
end

else

// *DEGRADATION*

not

if Same community then

/* small decrease in cluster probability, large decrease in node
probability

Pp.cm,n -= AddFromOthersAndDeduct (p,C'M ,0.15, Wintray

P,,cm -= AddFromOthersAndDeduct (p,C M ,0.05, Wwintery

CheckProbabilities (Wmtre | jyinter)
end
return best Mapping, bestScore

end

/* We check whether the new computation node belongs to the same cluster or

/* Different communities; Large increase in cluster prob, small increase

/* We check whether the new computation node belongs to the same cluster or

*/
*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

end
else
/* Different communities; Large decrease in cluster prob, small decrease
in comp node prob x/
Pp.cm,n -= AddFromOthersAndDeduct (p,C'M ,0.05, Wintray
P,,cm -= AddFromOthersAndDeduct (p,CM ,0.15, wintery
end
end
/* Normalize probabilities */
Normalize (Wt p, CM)
Normalize (W™ p, CM)
/* End of current iteration; check if some probabilities in W™ or Winter
are close to 1 within a tolerance ¢ = 0.001 so that this selection becomes
deterministic: The corresponding8ﬁocessor is not explored anymore */




Chapter 9
Simulation Results and Analysis

This chapter puts the theoretical work of Chapters 6-8 to the test. Using SiMusMet
we run a broad campaign of simulations that compares the two optimal MILP formu-
lations: Min-Cost and Load-Balancing (LB) against the proposed Topology-Aware
Cost—Load heuristic. Our objectives are the following:

e Quantify performance in terms of monetary cost, worst-link utilization, and
Quality-of-Experience (QoE) for musical streams.

e Measure computational effort (solver runtime, memory footprint) across small,
medium, and large CNGs, thereby exposing the scalability limits of exact optimiza-
tion.

e Identify trade-offs between cost efficiency and load fairness, and assess how
closely the heuristic approaches the MILP frontiers while meeting real-time de-
cision budgets.

9.1 Experimental Setup

9.1.1 Datasets: Cloud network graphs and service graphs

The evaluation uses seven synthetic cloud-network graphs (CNGs) and nineteen service
graphs (SGs).Table 9.1 summarises the CNG parameters. Each graph is an Erdés-Rényi
topology G(n, p) with edge-existence probability p = 0.7.
We generate one instance for every node count n € {4,6,8,10,12,14,16}, so the dataset
spans small to moderately large footprints. Link capacities and costs are drawn from a
uniform distribution U(a,b), whose bounds are reported in the table.
The computation-node percentage is the per-communication-node probability of hosting
at least one computation node; this value is set to 0.7 to reflect heterogeneous edge—core
deployments.

Similarly, Table 9.2 reports the parameters used to generate the twenty service graphs.
Each SG follows the template of Figure 6.2; the only variable is the audience size.
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Parameter Range of values
Communication Links capacity U4 (1000,3000)
Communication Links cost 4(10,30)
Computation IN capacity (RAM) U (1000,3000)
Computation IN cost U(10,25)
Computation OUT capacity (CPU) U (1000,2000)
Computation OUT cost 4(10,25)
Computation Percentage 0.7

Number pf computation nodes Uu1,3)

Density 0.7

Table 9.1. Configuration Setup for Cloud Network Topologies

Whereas the figure depicts the case (|[U| = 2), we instantiate the template for every
u € {2,3,...,20} thus covering small to densely populated concerts.!

Edge type Pattern (src — dst) ‘ Ry0d ‘ Reomm ‘ Reons
Source
_ — VEControls U(3,10) U(10,50) | U(10,50)
_ — AvatarSynch U(50,70) U(10,50) U4(10,50)
_ — AudienceMix 1(80,120) U(10,50) U(10,50)
MMPredges; — AvatarSynch U(50,70) U(10,50) U(10,50)
MMPredsoung — AudienceMix 1(80,120) 4(10,50) U4(10,50)
Destination
VEControls — _ U(10,50) | U(10,50) U(3,10)
AvatarSynch — _ U(10,50) | U(10,50) | U(50,70)
AudienceMix — _ U(10,50) | U(10,50) | 44(120,200)
Streaming — _ U(10,50) U(10,50) U4 (120,200)
proc-proc
MMPred — AvatarSynch UG0,70) | u30,70) | u(50,70)
MMPred — AudienceMix 1(80,120) | ©(30,40) | (80,120)
LatComp — Streaming U(3,10) U(3,10) U(3,10)
LatComp — MMPred U(3,10) U(3,10) U(3,10)

Table 9.2. Range of production, communication and consumption rates assigned to
each synthetic service-graph edge.

!Flows having same information ID, carry the same amount of data and therefore, have the same
amount of requirements
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9.1.2 Hardware and Solver Configuration

All simulations were executed on the same workstation to keep runtime measurements
comparable. The key specifications are:

e CPU: Intel Core i7-13620H (13th Gen, 10 cores, 2.4 GHz base).

e Memory: 16 GB DDR4 @3200 MHz.

Operating system: Windows 11 Home 24H2.

Python environment: Python 3.11.8, NetworkX 3.4.2, NumPy 2.2.6

MILP solver: Gurobi 12.0.2, with academic license.

e Random seed fixed to 42 for all operations (python RNG, Numpy, GurobiPy)

9.1.3 Metrics

In this section, we will introduce the set of metrics that will be presented in the upcoming
experiments.

Cost

The cost (or monetary cost) is the sum of cost per edge times the amount of resources
used as described in Equation 8.13.

Load

More precisely, maximum load is the amount of maximally loaded edges over the network.
The load of an edge is computed as L;; = —*

U

Cij :

Load Degree (Standard Deviation of Load)

This metric measures the variation in load across all edges in the network. The standard
deviation gives insight into how unevenly the traffic or resource demand is distributed.

e A high standard deviation indicates that some edges are heavily loaded while others
are lightly used a sign of imbalance.

e A low standard deviation means that the load is evenly spread across the network,
which is typically desirable in distributed systems.
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Fairness (Jain’s Fairness Index of Load)

Jain’s Index is used to quantify how fairly the load is distributed among the edges. It is
defined as:

JI = T%;Ll; 9.1)

where L; is the load on edge i, and n is the number of edges.

e A value close to 1 indicates perfect fairness (equal load across edges).

e A value close to 0 means that the load is highly skewed toward a few edges.

This metric complements the standard deviation by offering a normalized view of
fairness.

Resource Utilization

This metric reflects the percentage of total network resources actually used during execu-
tion. It can be calculated separately for different resource types (e.g., CPU, bandwidth,
memory), and is generally defined as:

UsedResources
til = 2
FResUti Total Available Resources (9:2)

CPU Time

CPU Time measures the computational effort or processing time required to complete
the embedding or allocation process. This is an indicator of algorithmic efficiency and
scalability. A lower CPU time is desirable for real-time or large-scale systems, as it
enables faster decision-making and deployment.

9.2 Results and Discussion

This section presents and analyzes the results obtained from the experimental testbed
conducted on seven different cloud network graphs (CNGs). In the first part, we examine
the results for each CNG individually?. In the second part, we analyze the overall
outcomes to draw general conclusions regarding the performance and effectiveness of
our proposed heuristic.

The results shown in the figures for each experiment represent the average outcomes
obtained by repeating the experiment 100 times with randomly varying configurations
(including user locations, resources, and requirements).
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Figure 9.1. Cost-load trade-off for the 4-node Cloud Network Graph (CNG). Left: total
monetary cost incurred by each placement strategy as the number of users per service
graph increases. Right: corresponding maximum link-utilisation (Max Load).
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Figure 9.2. Cost-load log scale trade-off for the 4-node Cloud Network Graph (CNG)

9.2.1 Experiment 1: Performance Evaluation on CNG with 4 Nodes

Figure 9.1 summarizes the behavior of the three placement strategies MinCost MILP,
LB MILP, and the proposed Heuristic, as the number of users per service graph grows
from 2 to 20.

The left-hand panel reports the total monetary cost, while the right-hand panel shows
the maximum link-utilization (Maxz Load) observed in the network.

2Results for 4 experiments out of 7 will be discussed in detail. For the remaining experiments, results
and figures are reported in the Annex
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MinCost MILP is, as expected, the least-cost solution across the entire demand range.
Its advantage is most pronounced for small user populations (15k monetary units at 2
users versus vs 20k for LB MILP), but the gap narrows as the workload intensifies (above
16 users). The LB MILP, which is optimized for load balancing rather than cost, is con-
sistently the most expensive, roughly 10-15 % higher than MinCost for most loads. The
Heuristic closely tracks MinCost at low and medium loads and remains within 5 to 8 %
of MinCost even at the highest demand levels, indicating that it preserves most of the
cost efficiency of the exact optimization.

A complementary picture emerges for Max Load. The LB MILP keeps the peak link
utilization well below 0.6 (maximum utilized link has around 40% free space) over the
full demand range, demonstrating its effectiveness in spreading traffic. Min Cost MILP,
by contrast, drives one or more links to saturation: utilization rises steeply beyond ten
users and approaches 0.83 at 20 users. The Heuristic again occupies the middle ground.
It begins close to LB at light load, but from 14 users onward, its utilization jumps to
around 0.75-0.80, substantially lower than MinCost, yet higher than the LB target.

# MinCost | LB | Heuristic | MinCost/Hr | LB/Hr
2 0.042 0.125 0.098 - x1.28
3 0.060 0.083 0.128 - x0.65
4 0.125 0.274 0.177 - x1.85
5 0.092 0.094 0.139 - -

6 0.119 0.171 0.168 - x1.02
7 0.146 0.280 0.119 x1.22 x2.35
8 0.183 0.330 0.161 x1.14 x2.05
9 0.206 0.236 0.159 x1.30 x1.49
10 0.295 0.413 0.214 x1.38 x1.93
11 0.312 0.373 0.276 x1.13 x1.35
12 0.333 0.463 0.255 x1.31 x1.82
13 0.488 0.498 0.348 x1.40 x1.43
14 0.470 0.631 0.321 x1.46 x1.97
15 0.611 0.570 0.207 x2.95 x2.75
16 0.476 0.775 0.314 x1.52 x2.47
17 0.624 0.817 0.328 x1.90 x2.49
18 0.752 1.006 0.335 x2.25 x3.01
19 0.877 1.015 0.649 x1.35 x1.56
20 0.954 1.226 0.671 x1.42 x1.83
Average 0.377 0.494 0.267 x1.42 x1.79

Table 9.3. CPU runtime comparison for the 4-node CNG. (in ms)

The execution times reported in Table 9.3 highlight how the three placement methods
scale on the 4-node CNG.
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For the smallest workloads (service graphs with 2 — 6 users) the MinCost MILP
is the quickest, requiring roughly 40 — 70 % of the heuristic’s time (see MinCost/Hr
< 1). As the user population grows, however, its branch-and-bound tree explodes:
beginning with the 7-user instance, its relative cost crosses the unity line, and by 15
users it is almost three times slower than the heuristic. Beyond that point, the gap
never closes again.

The proposed heuristic therefore becomes the fastest option from 7 users onward,
while still remaining competitive in the small-case regime (no instance shows more than
a 2.4x slowdown w.r.t. MinCost). Averaged over all 19 instances it delivers a 29 %
speed-up over MinCost and a 46 % speed-up over the load-balancing MILP (LB).

The LB MILP is consistently the most time-consuming approach. Even for the light-
est load it is three times slower than MinCost, and at moderate-to-high loads it trails
the heuristic by factors between 1.3 and 3.0. This confirms that the richer constraint set
required for explicit load balancing incurs a non-negligible computational penalty.

In summary, the heuristic offers the best runtime once the traffic reaches realistic
levels, while MinCost remains a viable choice only for minimal demand scenarios where
its optimality can be enjoyed at negligible extra cost.
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Figure 9.3. Resource Utilization comparison for the 4-node CNG

The bar graph in Figure 9.3 shows the aggregate utilization of resources defined as
the total capacity activated across all links with respect to increasing user populations
in the 4-node CNG. Two main patterns emerge:

e Light to Medium loads (2 — 10 users): The MinCost-MILP consumes the most
capacity, between 10 % and 25 % more than LB-MILP, because its objective spreads
service components over a smaller set of resources. The Heuristic, records the
smallest footprint (around 15 % below both MILPs).

e Heavy load (> 14 users): From 14 to 20 users the three curves climb almost linearly,
yet their ordering fluctuates: LB-MILP is the most resource-intensive in 6 of the
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final 10 instances. LB remains in the middle, about 5%-10% below MinCost, than
becomes the most-efficient at the final experiments (18,19 and 20). The Heuristic
retains the lowest or second-lowest footprint in every case except the final three,
and is on average 7%—12% less expensive than LB-MILP over the range.
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Figure 9.4. Fairness and Standard Deviation of load comparison for the 4-node CNG

The last pair of plots in Figure 9.4 assesses how evenly traffic is distributed in the
4-node CNG, using two complementary metrics:

e Load-fairness score (left): the closer to 1, the more equal the link loads (Jain index).

e Standard deviation of link loads (right): the lower, the more uniform the utilization.

Load-fairness (left panel)

e LB MILP achieves the highest fairness across the entire demand range, rarely falling
below 0.70 and peaking around 0.90. This is consistent with its objective of explicit
load balancing.

e MinCost MILP exhibits the poorest fairness. In the 2-to-12-user regime, its score
ranges steadily up to 0.50, indicating that one or two links carry a disproportionate
share of the traffic. Fairness improves slightly beyond 12 users as the model is forced
to activate additional paths, but it never approaches the LB curve.

e The heuristic starts close to LB for 2 users (= 0.80) but declines steadily as demand
increases, falling around 0.77 for 11-13 users before recovering to = 0.60 for 20 users.
In other words, it sacrifices some equity compared with LB yet remains markedly
more fair than MinCost for most loads.
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Standard deviation of link loads (right panel)

e Heuristic is the clear winner here. Up to 15 users its o values remain below 0.12,
roughly one-third of the LB values and one-half of the MinCost values; only at the
very largest load (20 users) it approaches 0.20.

e LB MILP keeps the variability moderate (< 0.24) but cannot match the Heuristic
because the MILP still allows some links to become noticeably busier than others
when it must respect capacity constraints.

e MinCost MILP shows the largest dispersion, climbing from = 0.07 at 2 users to >
0.26 at 20 users. Its cost-driven path selection repeatedly pushes traffic onto the
cheapest links, amplifying imbalance as the system fills.

9.2.2 Experiment 2: Performance Evaluation on CNG with 8 Nodes
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Figure 9.5. Cost-load trade-off for the 8-node Cloud Network Graph (CNG).

The monetary-cost panel shows the same qualitative trend as in CNG-4, but the
numerical gaps are wider:

e Linear Growth MinCost MILP and Heuristic remain within 5% of each other,
while LB-MILP is consistently 10 to 15% more expensive because it sacrifices cheap
links to favor load spread.

The Max-Load panel reveals why: MinCost again saturates a single link (> 0.67 from
12 users on, up to 0.82 for 20 users), whereas LB caps the peak utilisation at ~ 0.55.
The Heuristic limits its worst-case load to ~ 0.63 at the highest demand, providing a
balanced compromise between cost and congestion.

On average, the Heuristic is 1.65 X faster than MinCost and 7Xx faster than LB.
MinCost overtakes the heuristic only in the smallest two instances; from 4 users onward,
the MILP runtimes grow super-linearly, while the heuristic remains nearly linear. The
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Figure 9.6. Cost-load log scale trade-off for the 8-node Cloud Network Graph (CNG)

7# MinCost | LB | Heuristic | MinCost/Hr | LB/Hr
2 0.055 0.458 0.043 x1.28 x10.56
3 0.079 0.606 0.079 x1.00 -

4 0.111 0.897 0.033 x3.40 x27.47
5 0.167 0.503 0.089 x1.87 x5.63
6 0.269 0.634 0.134 x2.01 x4.72
7 0.363 1.356 0.300 x1.21 x4.52
8 0.327 0.765 0.264 x1.24 x2.90
9 0.616 3.024 0.227 x2.72 x13.34
10 0.535 2.745 0.298 x1.80 x9.21
11 0.706 1.289 0.366 x1.93 x3.52
12 0.753 4.875 0.378 x1.99 x12.91
13 0.747 1.690 0.350 x2.14 x4.84
14 0.817 1.793 0.358 x2.28 x5.01
15 1.181 3.896 1.162 x1.02 x3.35
16 1.130 2.406 1.019 x1.11 x2.36
17 1.378 3.047 1.289 x1.07 x2.36
18 1.498 4.856 1.327 x1.13 x3.66
19 1.381 5.074 1.306 x1.06 x3.88
20 1.767 7.954 1.593 x1.11 x4.99
Average 0.731 2.519 0.559 x1.65 x6.99

Table 9.4. CPU-runtime comparison for the 6-node CNG.

LB-MILP is an order of magnitude slower for many instances due to its larger constraint
set.
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Figure 9.7. Resource Utilization comparison for the 8-node CNG

LB again activates the most capacity (=~ 20% above MinCost), with the heuristic

sitting in between. From 16 users on, MinCost becomes the largest second consumer as
its cheapest links fill up, and by 20 users it reaches 5900 units versus 6100 units for LB
and 5700 units for the heuristic. Overall, the heuristic conserves 8-15% more capacity
than MinCost in the high-load regime while never exceeding LB.
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Figure 9.8. Fairness and Standard Deviation of load comparison for the 8-node CNG

e Fairness: The heuristic starts highest (0.72) but gradually declines to ~ 0.46; LB is
more erratic but overtakes the heuristic at 16 users and ends around 0.52; MinCost
never exceeds 0.32.

e Dispersion: The heuristic keeps the standard deviation below 0.125 for all users,
whereas MinCost rises to 0.225 and LB to 0.175.
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Thus, even though LB scores slightly better on the fairness metric beyond midload,

the heuristic still produces the most tightly clustered link loads, reflecting its modest
but consistent balancing ability.

9.2.3 Experiment 3: Performance Evaluation on CNG with 12 Nodes
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Figure 9.9. Cost-load trade-off for the 12-node Cloud Network Graph (CNG).
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Figure 9.10. Cost-load log scale trade-off for the 12-node Cloud Network Graph (CNG)

From 2 to 10 users the heuristic never exceeds 10% of the optimal solution. Starting
12 users the LB-MILP becomes markedly costlier, ending more than 40-50% above

MinCost at 20 users. The heuristic tracks MinCost closely (within £6 % for every in-
stance) while staying well below LB for high loads.
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As in earlier experiments, MinCost rapidly saturates one link (=~ 0.8 by 14 users).
LB constrains the peak utilization below 0.45. The heuristic follows LB up to 11 users,
then rises to &~ 0.65 at 20 users, again striking a middle ground between cost efficiency
and congestion control.

# MinCost LB Heuristic | MinCost/Hr | LB/Hr
2 0.082 4.236 0.093 - x45.38
3 0.136 2.237 0.064 x2.11 x34.80
4 0.163 5.260 0.037 x4.46 x144.07
) 0.279 21.683 0.014 x19.42 x1503.23
6 0.406 11.647 0.090 x4.50 x129.33
7 0.462 29.668 0.091 x5.07 x325.29
8 0.956 14.740 0.070 x13.70 x210.99
9 1.313 24.237 0.056 x23.49 x431.16
10 1.520 12.444 0.082 x18.44 x152.02
11 1.573 24.765 0.078 x20.14 x318.43
12 1.585 31.520 0.912 x1.74 x34.57
13 1.261 53.958 0.719 x1.75 x75.07
14 1.853 48.025 0.088 x21.06 x547.23
15 1.795 105.009 0.894 x2.01 x117.52
16 1.798 32.007 0.875 x2.06 x36.57
17 2.534 23.182 0.935 x2.71 x24.78
18 2.716 45.610 1.002 x2.71 x45.46
19 4.745 50.449 1.042 x4.56 x48.45
20 4.457 115.188 1.039 x4.29 x110.86
Average 1.560 34.519 0.431 x8.14 x227.87

Table 9.5. CPU-runtime comparison for the 8-node CNG.

The heuristic is on average eight times faster than MinCost and more than two
hundred times faster than LB. MinCost only beats the heuristic at the smallest in-
stance; starting with 3 users the MILP search tree explodes, and LLB becomes prohibitive
(4 s at 20 users vs. = 1 s for the heuristic).

LB consistently activates the most capacity. MinCost remains the algorithm that
provides lowest resource utilization. The heuristic ends at 6600 units, a saving of ~ 22%
overall against MILP-LB.

e Fairness: The heuristic starts at 0.63 and degrades slowly to 0.46; LB fluctuates
between 0.35 — 0.45; MinCost never exceeds 0.25.

e Standard deviation: The heuristic keeps o < 0.07 up to 11 users, then increases
but stays below LB and well below MinCost (which peaks near 0.20).
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Figure 9.11. Resource Utilization comparison for the 12-node CNG
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Figure 9.12. Fairness and Standard Deviation of load comparison for the 12-node CNG

9.2.4 Experiment 4: Performance Evaluation on CNG with 16 Nodes

e Cost: The Heuristic stays within &~ 7% of the MinCost curve for the entire demand

range while remaining 10 — 15% cheaper than LB in every high-load instance (> 12
users). Hence, the marginal monetary premium of the Heuristic over MinCost is
minor, yet it already yields appreciable savings against the load-balancing MILP.

Load: Relative to the Heuristic, MinCost drives peak utilization up by a factor 1.4-
to-1.8 once the traffic exceeds 12 users, hitting 0.75-0.80 on several occasions. LB
keeps the peak 35 — 45 % below the Heuristic, but, as shown above, at a noticeable
cost surplus. In other words, the Heuristic achieves roughly two-thirds of LB’s
congestion relief while preserving near-optimal cost.
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Figure 9.14. Cost-load log scale trade-off for the 16-node Cloud Network Graph (CNG)

Even at only two users the Heuristic runs twice as fast as MinCost and 36 x faster than
LB. By 15-20 users the speed-up jumps to ~ 12 — 29x over MinCost and above 250 x over
LB. Therefore, for a 16-node topology the MILP solvers become prohibitive
for on-line use, whereas the Heuristic still completes every instance within ~ 1 s.

Across the entire range from 2 to 20 users, the heuristic consistently drives the lowest
overall substrate consumption of all three methods. At very light loads (2-5 users),
it cuts total capacity usage by around 15-20% compared with the Min-Cost MILP and
by 5-10 percent compared with the Load-Balanced (LB) MILP. As the number of users
grows and the network fills up, the gap naturally shrinks. However, even at 20 users,
the heuristic still uses about 1-2 percent less capacity than the LB-oriented MILP and
3 percent less than the Min-Cost MILP.

Although the Min-Cost MILP is tuned to minimize a cost metric, those cost weights
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# MinCost LB Heuristic | MinCost/Hr | LB/Hr
2 0.403 7.795 0.219 x1.8 x35.6
3 0.479 1.674 0.205 x2.3 x 8.2
4 0.964 9.224 0.369 x2.6 x25.0
5 1.332 16.414 0.218 x6.1 x75.2
6 1.652 71.173 0.232 x7.1 x306.9
7 1.734 40.344 0.305 x5.7 x132.4
8 1.470 30.605 0.324 x4.5 x 94.3
9 3.108 41.316 0.428 x7.3 x 96.7
10 3.296 48.943 0.453 x7.3 x108.1
11 3.408 56.050 0.571 x6.0 x 98.0
12 4.037 28.151 0.638 x6.3 x 44.1
13 9.003 62.135 0.645 x14.0 x 96.3
14 11.221 127.846 0.679 x16.5 x188.4
15 8.785 554.794 0.736 x11.9 X753.7
16 9.967 212.429 0.763 x13.1 x278.4
17 11.672 93.140 0.881 x13.2 x105.7
18 24.738 159.234 0.960 x25.8 x165.9
19 26.265 119.060 0.922 x28.5 x129.2
20 29.250 294.627 1.015 x28.8 x290.2
Average 8.041 103.945 0.556 x11.0 x159.6
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don’t perfectly align with raw capacity consumption. In practice it over-allocates re-
sources by up to 20 percent under light demand, and by roughly 3 percent under heavy

Table 9.6. CPU-runtime comparison for the 16-node CNG.
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demand, compared to our heuristic.

The LB-MILP was never designed to minimize resource usage (it focuses purely on
fairness), yet the heuristic outperforms it on both fronts, achieving equal or better load
balance and reducing total capacity consumption by up to 8 percent when the network
is under-utilized, and still by a couple of percent at peak loads.

As user demand ramps from 2 to 20 concurrent service graphs, the absolute differ-
ences between methods narrow simply because there’s less “slack” left in the substrate.
However, the heuristic never relinquishes its lead: it scales smoothly, always making the
most of available capacity.
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Figure 9.16. Fairness and Standard Deviation of load comparison for the 16-node CNG

e Fairness: MinCost MILP stalls near 0.18-0.15. LB MILP steadily climbs from 0.35
to 0.45. Our heuristic starts at 0.72 and, despite a gradual decline, remains above
0.50 at 20 users outperforming LB MILP by 0.10-0.18 up to 15 users and then
nearing parity.

e Standard deviation: The heuristic yields the lowest deviation throughout (0.02-
0.12), compared to LB MILP’s 0.04-0.17 and MinCost s 0.06-0.22.

9.3 Owutcomes Analysis

This chapter benchmarked the proposed HEURISTIC algorithm, against two exact MILP
baselines on cloud—network graphs of 4-16 nodes and for 2-20 concurrent service graphs.
The evaluation covered monetary cost, peak link load, total activated capacity, fairness,
and run-time.

e Cost: The heuristic remained within 5 % of the global optimum (MinCost MILP)
for every instance.
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e Run-time: Median speed-ups over MinCost grew with graph size: x1.5 (4 nodes),
x8 (8 nodes), and x11 (16 nodes). Against the load-balancing MILP the gain was
always at least two orders of magnitude.

e Congestion: Peak link utilization was ~ 40 % lower than MinCost and within
15-20 percent of the LB MILP, but without its cost and run-time penalties.

e Capacity: Under heavy load the heuristic activated 8-15 % less total capacity
than MinCost, and close to LB.

e Fairness: Load-fairness scores were consistently higher than MinCost and close to
LB, while the standard deviation of link loads stayed below 0.15 in all scenarios.

Conclusion: The proposed algorithm offers a practical trade-off: near-optimal cost,
substantial reductions in computation time, and acceptable (often superior) network
utilization metrics. It is therefore the preferred option for real-time service-graph em-
bedding on medium to large cloud—network topologies.
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Chapter 10

Conclusion and Future Work

Conclusion

This thesis thoroughly investigated the complex challenges and innovative solutions re-
quired to meet stringent communication demands of emerging applications, within the
forthcoming the ”Musical Metaverse.” By critically analyzing traditional Virtual Net-
work Embedding (VNE), we identified that conventional models, treating virtual links
as independent point-to-point demands without awareness of content or flow interde-
pendencies, are insufficient for supporting real-time interactive musical collaboration
requiring stringent Quality of Service (QoS), ultra-low latency, and optimal Quality of
Experience (QoE).

In response, we introduced the MusMOPT framework, a novel optimization ap-
proach representing services as directed acyclic graphs (DAGs) within an augmented
cloud-network graph. This method significantly enhances traditional VNE by unifying
service placement, routing, and resource allocation into an integrated, information-
centric optimization problem, effectively addressing the unique network orchestra-
tion challenges in the Musical Metaverse.

Furthermore, this research proposed a two-layer abstraction model for Musical
Metaverse service design: a dynamic graph-layer that accommodates evolving partic-
ipation and collaboration demands, and a data-layer that precisely captures real-time
information flow behaviors, explicitly addressing network impairments such as conges-
tion, jitter, and packet loss.

To concretely demonstrate our theoretical advancements, we implemented a repre-
sentative virtual concert service graph, showcasing MusMOPT’s practical applicability
and efficacy in modeling real-world interaction scenarios. Additionally, the SiMusMet
simulator, a modular Python-based tool specifically developed in this thesis, provides
a robust environment for dynamic service embedding, real-time traffic simulation, and
comprehensive evaluation of QoS and QoE across diverse network conditions, thereby
significantly aiding future research endeavors.

Finally, this thesis introduced two Mixed-Integer Linear Programming (MILP)-based
optimization methods Min-Cost and Load-Balancing, and a novel Topology-Aware
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Cost—Load heuristic, tailored to overcome scalability constraints associated with real-
time, interactive performances. Simulation results confirmed the heuristic’s practical
value, achieving computational efficiency improvements of 70-80% in small to medium-
scale networks, and approximately 65% in larger networks, while closely approximating
optimal solutions at varied load levels.

Collectively, these contributions: the MusMOPT framework, two-layer modeling,
SiMusMet simulator, and efficient heuristic algorithm, mark substantial progress to-
wards realizing next-generation immersive, interactive digital experiences, significantly
advancing the field of communication networks.

Future Work

The research presented in this thesis opens promising avenues for future exploration to
enhance the robustness, scalability, and applicability of solutions in the Musical Meta-
verse.

Firstly, extending the MusMOPT framework to handle more dynamic and complex
service graphs is crucial. Adaptive algorithms leveraging reinforcement learning for
predictive and real-time resource allocation are particularly promising.

Incorporating security and privacy mechanisms, including blockchain-based solutions
and secure embedding strategies, is another critical direction to address user data and
intellectual property protection.

Enhancing SiMusMet by supporting diverse network topologies (e.g., 5G/6G, satellite
networks), realistic user-behavior traffic models, and an intuitive graphical user interface
would greatly increase its usability and accuracy.

Future work should optimize the Topology-Aware Cost—Load heuristic using ad-
vanced metaheuristics such as genetic algorithms or particle swarm optimization, along-
side hybrid techniques, to further improve efficiency and performance. Incorporating
explainability methods will also provide essential insights into model behaviors.

Beyond the Musical Metaverse, the MusMOPT approach can be adapted for broader
latency-sensitive applications, including remote surgery, autonomous vehicles, and in-
dustrial automation.

Finally, empirical validation through real-world testbeds, possibly in collaboration
with telecommunications providers, is essential to demonstrate practical feasibility and
effectiveness.
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