
Politecnico di Torino

Master’s degree course in Data Science and Engineering
A.a. 2024/2025

Graduation Session July 2025

Depth Estimation from technical
drawings and 3D Mesh

Reconstruction with Deep Learning

Supervisor:
Paolo Garza

candidate:
Emanuele De Leo

Contents

1 Introduction 2
1.1 Context . 3
1.2 Goal . 3
1.3 Structure . 4

2 Related works 6
2.1 Monocular Depth Estimation 6
2.2 Vision Transformer . 10
2.3 3D Mesh reconstruction . 11

2.3.1 NeRF (Neural Radiance Field) 13
2.3.2 Large Reconstruction Model 15

3 Methodology 20
3.1 Description . 20
3.2 Depthy . 25

3.2.1 Network architecture 25
3.2.2 Dataset . 25
3.2.3 Implementation . 26

3.3 Tools and techniques . 29
3.3.1 Loss Functions . 29
3.3.2 Metrics in 3D mesh reconstruction 32

4 Experiments and results 35
4.1 Interpretation of results . 41

4.1.1 Principal results . 41
4.1.2 Secondary results . 44

5 Discussion 46
5.1 Comparison with the literature 46
5.2 Limitations . 48

6 Conclusions 49
6.1 Future Perspectives . 49

Bibliography 51

1

Chapter 1

Introduction

This thesis addresses the challenge of automatically generating 3D models
from images, a fundamental problem in the field of computer vision. The
task of inferring three-dimensional geometry from two-dimensional represen-
tations is particularly relevant in industries such as fashion, where design
workflows frequently involve technical drawings and schematic illustrations.
Brands often supply these files as the primary design assets, which must
then be converted into accurate and detailed 3D models for use in digital
production.

During my internship, I collaborated on a project for a fashion company
that was specialized in transforming technical design files into 3D digital
assets. The core objective was to accelerate the creation of high-quality as-
sets from technical files provided by clients, thus reducing manual modeling
time and enabling a more scalable workflow. To tackle this problem, I ex-
plored a variety of methods for the conversion of 2D to 3D, to 3D, focusing
in particular on deep learning-based predictive models. My work involved
experimenting with both convolutional neural networks (CNNs), known for
their strength in capturing spatial features from images, and vision trans-
formers (ViTs), which offer a global attention approach to visual represen-
tation learning. These architectures were evaluated for their ability to infer
depth and reconstruct 3D geometry from minimal visual features. By com-
bining practical insights from the fashion design domain with state-of-the-art
techniques in machine learning, this thesis investigates scalable solutions for
automating the generation of 3D objects, also referred to as meshes, in digital
production.

2

1.1 Context

The initial work was focused on automating the generation of 3D models
from design files, which typically consist of DWG files that contain simple
drawings of objects from multiple perspectives, along with annotations (text
notes or measures). Automating this process can significantly streamline a
faster workflow for 3D artists who might have to model hundreds of products
in a limited time period. By automating the conversion of 2D drawings into
3D meshes, artists can save valuable time, decreasing the likelihood of man-
ual errors and reducing their work in refining, translating, and combining
these meshes. Additionally, more powerful techniques extend beyond fashion
design and could be applied to other fields where 2D-to-3D conversion is nec-
essary, potentially enabling scalable solutions for 3D mesh construction. The
reconstruction of a complete 3D asset from a single image requires not only
robust depth estimation but also a strong understanding of object geome-
try, prior knowledge of shape structures, and the ability to infer occluded or
non-visible parts of the object in the image. Although current deep learning
methods already allow for the reconstruction of approximate 3D objects from
real-world images, the challenge of reconstructing 3D models from schematic
and line-based representations, such as simple CAD figures, remains an ac-
tive and complex problem. Successfully automating this task would not only
benefit sectors like fashion and, in general, industrial design, but could also
support scalable 3D model generation in fields such as manufacturing, gam-
ing, and virtual reality.

1.2 Goal

The main objective of this work is to integrate predictive deep learning mod-
els into workflows capable of quickly generating useful 3D meshes from 2D
technical drawings and general images. This integration aims to support the
automated reconstruction of three-dimensional assets that can be used in the
digital industry.

Two different tasks are explored: the depth-based 3D mesh reconstruc-
tion from technical drawings, which involves developing a pipeline to predict
depth and generate 3D meshes from an image representing the drawings, and
the end-to-end mesh generation from a single image, which means directly
generating a detailed 3D mesh from a single image.

3

Depth-Based Reconstruction from Technical Drawings

This approach focuses on predicting depth maps from schematic 2D views
(e.g., front, side, top), translating simplified, line-based illustrations into co-
herent 3D geometries, preserving their proportions and design intent. These
depth maps should encode the spatial structure of the final product and are
used to generate 3D meshes through surface reconstruction techniques. This
task is difficult because of the lack of detail in the input figures, which are
essential black and white representations. This method is especially useful
when only technical drawings are available, as often happens in CAD models
or design sketches.

End-to-End Mesh Generation from a Single Image

The secondary approach involves the direct generation of a complete 3D
mesh from a single image that represents the object. This approach can also
be applicable on complex images such as photos, but it does not guarantee
the generation of acceptable objects from poor representations, such as in
the case of technical raw figures. The goal here is to produce complete 3D
assets, including surface geometry and visual texture, using architectures
capable of learning complex features from an image, and using them during
the reconstruction of the volume. This enables the creation of accurate,
visually enriched 3D assets from minimal input, paving the way for scalable
and automated digital content creation. A key advantage is that it produces
nearly finished models that require only minor adjustments, saving time for
designers and 3D artists. Instead of building shapes from scratch, they can
start from a solid base and focus on refining details, materials, or proportions.
This makes the workflow faster and more accessible, especially in fields such
as product visualization, game development, and virtual prototyping.

1.3 Structure

This paper is structured into two main sections: Depth estimation from
Technical Drawings and 3D Mesh Reconstruction.

The first part focuses on the task of depth estimation from a single rep-
resentation of a design technical file, for which a dedicated neural network
has been specifically designed and trained. This section explores the model
architecture, training process, and evaluation metrics in detail, presenting
extensive experiments and results to validate the proposed approach. The
depth estimation work does not end with the prediction of depth maps; as

4

an additional step, these maps are further processed to generate 3D repre-
sentations, demonstrating the practical potential of the estimated depth in
spatial reconstruction tasks.

The second part addresses the problem of reconstructing a 3D mesh from
a single image using existing state-of-the-art methods. These models are
analyzed and compared on the basis of their performance.

Although both tasks involve inferring 3D information from 2D input,
they are treated independently in this work in each chapter, with the depth
estimation technique representing the primary contribution.

5

Chapter 2

Related works

In this chapter, we explore the existing literature that contributed to the
development of methods to achieve the goals of depth estimation and 3D
mesh reconstruction. Covers recent works and how those works are applied
in real-world scenarios.

2.1 Monocular Depth Estimation

Monocular depth estimation is a computer vision task that involves predict-
ing the depth of objects from a single image, that is, predicting the distance
of surfaces from a single camera position.

A depth estimation model takes an RGB image as input and predicts a
depth mask by assigning a depth value for each pixel of the image. This
method involves extracting relevant local and global features from the in-
put to highlight several relationships in the image [figure 2.1 presented an
example of depth estimation].

Local features refer to fine-grained visual features found in small regions
of the image, such as edges, textures, and boundaries. These features are
crucial for understanding depth discontinuities (e.g., the border between a
foreground object and the background) and for preserving spatial details to
construct a coherent 3D shape in a predicted depth map. Global features, on
the other hand, capture broader contextual information throughout the entire
image. These include the overall layout of the scene, object co-occurrence,
perspective features (such as vanishing points), and semantic relationships
(e.g., recognizing that a ceiling is typically farther away than a table). Global
features help the model infer depth even in textureless or ambiguous regions,
where local cues alone are insufficient due to the lack of details and, in some
cases, also the lack of color (e.g., black and white drawings).

6

Feature extraction can be performed using an encoder that integrates con-
volutional or transformer neural networks; at the end, a decoder constructs
a depth mask using the extracted features as a guideline. In the case of
CNN, the encoder progressively downsamples the input image by applying
convolutions to extract features at multiple scales. In the encoding stage,
downsampling enables a progressive increase of the receptive field, but the
feature resolution obtained with this process can be low for RGB images with
fine-grained textures or intricate details. Many high-level features, including
local features, are lost in this process and can thus be hard to recover. This
fact is not particularly important in some tasks (it depends on the quality
needs), but in the field of 3D modeling, especially in the context of fash-
ion design, it is critical. In this case, the process of 3D modeling requires
a very detailed depth mask to efficiently construct a coherent and regular
three-dimensional object that meets the standards of 3D fashion design.

Figure 2.1: An example of a depth mask generated by the Depth Anything
model starting from a complex input image

Partial solutions to this problem have been implemented that require dif-

ferent exploitation of resources. In this work, I designed Depthy, a CNN
architecture with a Resnet-50 as encoder. This architecture was studied not
only to predict depth in images, but to generate it, because the input con-
sists of technical not colored drawings with lack of tridimensional details. On
the other hand, there exist the so-called foundation models. These models
integrate a vision transformer as the backbone, enabling the network to out-
perform predictions on different tasks. In this case, a type of these models
was chosen to perform the depth estimation task. The drawback in imple-
menting these architectures is better feature extraction without the need to
down-sample the input image. This fact determines a high feature resolution
(both local and global features), leading to a more detailed and precise depth
mask. Both techniques exposed above include a step consisting of training

7

the models on popular datasets accurately designed for depth estimation and
image segmentation. These datasets typically consist of RGB images paired
with corresponding ground-truth depth maps, either densely annotated or
sparsely sampled, and are acquired using RGB-D sensors, stereo rigs, or
other sensors. In the case of CNN, the training is feasible, while in the other
case the training can be huge due to both the amount of data and resources
required. In any case, vision transformer-based architectures pretrained on
datasets with millions of images are inherently efficient and exhibit strong
generalization capabilities.

CNN-Based Monocular Depth Estimation

Various depth estimation techniques are mostly based on convolutional neu-
ral networks due to the strong performance of the learned representations.
CNN-based models typically formulate depth estimation as a per-pixel re-
gression, that is then solved using fully convolutional networks. In this case,
monocular depth estimation aims to map an input image I with dimension
H×W×C to an output pixel-wise depth map Yˆ with dimension H×Wx1,
with H, W being the height and width of the image and C the number of RGB
channels. CNN-based methods typically establish this mapping by learning
a neural network F such that Y = F(I). To learn the parameters of such
networks, direct supervision losses L(Y) are applied to the output Y to ap-
proximate the depth map of the ground truth Y. Self-supervision losses are
applied to the reconstructed image that is synthesized to approximate the
target image I [In Figure 2.2 a typical CNN architecture is presented.]

Figure 2.2: A classical representation of a CNN architecture designed for
monocular depth estimation

8

VIT-Based Monocular Depth Estimation

Recent architectures to do monocular depth estimation rely on Vision Trans-
formers (ViTs), often referred to as foundation models. These models lever-
age self-attention mechanisms to capture useful dependencies and extract
rich contextual features from input images.

Figure 2.3: A representation of a vision transformer architecture

By processing images as sequences of patches, ViTs are able to learn
global representations that are particularly beneficial for tasks like depth es-
timation, where understanding the spatial structure of the entire scene is
crucial. The resulting embeddings typically lead to more accurate and de-
tailed depth maps compared to traditional CNN-based encoders. An example
of a foundation model is the Depth Anything model, one of the most popu-
lar models to perform depth estimation on a wide range of different images.
Depth Anything is very powerful, especially for the particular technique used
to train it, which consists in augmenting the dataset with self-made synthe-
sized labels. Specifically, during training, a pretrained teacher model is used
to generate depth annotations for a wide range of images (around 62M dif-
ferent images from eight public datasets); the resulting labeled images are
then jointly learned with other labeled images from a student model. This
procedure was proven to increase the ability of the model to predict depth
values. The model has a typical encoder-decoder structure that integrates
a Vision Transformer as encoder and a Dense Prediction Transformer as

9

decoder (DPT). Practically, tokens from various stages of the vision trans-
former are assembled into image-like representations at various resolutions,
and progressively they are combined into full-resolution predictions using a
convolutional decoder. The use of the Depth Anything model in this work
should be intended as a guide to compare its outputs with the results from
another more compact and efficient network [In Figure 2.3 the vision trans-
former architecture is presented].

2.2 Vision Transformer

A Vision Transformer is a neural network architecture that was inspired by
the success of transformers in natural language processing. It allows encoding
relevant information from images in order to improve the performance and
the quality of extracted features in the predictions. In the case of a vision
transformer, an image is split into fixed-size patches, each of them is then
linearly embedded, positional encoding is added, and the result is fed to a
standard transformer encoder. The encoder processes the patch embeddings
into multiple layers, each containing a multihead self-attention module. The
multi-head self-attention layer is able to capture relationships between the
different patches. The goal is to take an average over the features of the
patches, weighting them depending on their values. In other words, we want
to automatically decide which part we want to look at more than others.
This mechanism reflects the same logic used in natural language processing
(NLP) models, where self-attention is applied to the sequence of words in a
sentence to construct a contextual response. Just as a language model re-
ceives a sentence as a prompt and computes attention scores to understand
the contextual relationships between words, so that it can generate coher-
ent and meaningful responses, a vision transformer applies attention across
different areas of the images to find relationships between them.

After the self-attention block, the output is passed through a feedfor-
ward neural network, typically consisting of two fully connected layers with
a nonlinear activation function in between (such as ReLU).

The final step is crucial since it introduces non-linearity, allowing the
model to learn complex relationships in the parts of the image. These compo-
nents are surrounded by residual connections and layer normalization, which
improve gradient flow and training stability. The self-attention mechanism
plays a central role in ViT. It enables the model to dynamically weight patch
features based on their contextual relevance, effectively allowing it to ”at-
tend” to different parts of the image depending on the task. This global

10

Figure 2.4: How a vision transformer works

attention mechanism gives to ViT a strong advantage in tasks that require
capturing long-range dependencies and global context, such as semantic seg-
mentation, depth estimation and 3D shape reconstruction. Compared to
convolutional networks, which inductively bias the model toward local pat-
terns through weight sharing and locality, Vision Transformers are more data
hungry, more efficient and effective. With sufficient data, they often learn
more expressive and generalized features, leading to better predictions that
can be important in sensitive scenarios [In figure 2.4 the processing of a vision
transformer architecture is presented].

2.3 3D Mesh reconstruction

A mesh is a three-dimensional entity composed of polygonal units, usually
triangles or quadrilaterals, organized in a data structure that contains the
coordinates of the vertices and the faces that connect these vertices in the
3D plane. Each face defines a small part of the surface and, when combined,
they form the complete shape of the object [In figure 2.5 an example of a
mesh is presented].

Meshes are a fundamental part of 3D generation and are widely used in
digital fields such as gaming, cinematography, augmented reality, and virtual
prototyping. In computer vision and graphics, 3D reconstruction refers to
the process of recovering the shape and appearance of an object starting from
2D inputs, such as RGB images.

Traditional 3D mesh reconstruction methods rely on multi-view geometry,
where multiple images taken from different perspectives of an object are used
to estimate its depth and structure based on geometric constraints. However,
these approaches often require a large number of views and highly controlled

11

Figure 2.5: Example of a mesh with triangular faces

acquisition setups to produce accurate results. Recent learning-based meth-
ods are capable of reconstructing complex 3D scenes from a discrete set of
views, even from a single image, using deep neural networks trained on large-
scale datasets to infer depth and structure. Among these, neural radiance
fields (NeRF) have emerged as a particularly effective utility technique in this
field. NeRF can support the inference of a 3D scene by learning a continuous
volumetric representation from multiple views, approximating how color and
density vary along light rays passing through the scene. Given a sparse set
of input images, NeRF can synthesize novel views with fine-grained detail.
Its strength lies in its ability to generalize across viewpoints and to capture
subtle variations in geometry and lighting, making it a cornerstone in recent
research on view synthesis and neural rendering. However, NeRF models
are often computationally intensive to train and render, which limits their
applicability in real-time or resource-constrained environments. To address
these limitations, several lightweight versions, such as Tiny NeRF, have been
introduced, but they typically offer reduced quality compared to the original
models [In figure 2.6 a schema of 3D mesh reconstruction from an image is
presented].

Deep learning models based on convolutional neural networks (CNNs)
or transformers have shown the ability to reconstruct 3D objects quickly
and accurately. CNNs are often trained on large datasets and use specific
loss functions to learn internal patterns used to make predictions on data
coming from the real-world. On the other hand, transformer-based models

12

can generalize better to real-world input and are able to capture long-range
dependencies between image parts.

Figure 2.6: Schema of 3D reconstruction from a 2D sketch.

Today, there are large datasets with millions of 3D meshes, such as
ShapeNet, which are used to train models capable of generating 3D objects.
These datasets often contain not only the mesh structure (vertices and faces),
but also extra information such as surface normals, textures, materials, and
metadata like object categories or tags. This allows the models to learn rich
and varied features and generate more realistic and detailed 3D output.

2.3.1 NeRF (Neural Radiance Field)

Neural Radiance Field (NeRF) is a technique that enables the synthesis of
novel views of complex 3D scenes by learning the geometry and appearance of
the scene from a discrete set of posed images, allowing interpolation between
views and novel view synthesis to fill in unobserved regions. It represents
a 3D scene using a continuous function parameterized by the weights of a
multilayer perceptron. The input consists of 5D coordinates composed of 3D
positions (x, y, z) and a viewing directions (azimuthal and polar angles) with
respect to the scene. This allows the network to encode how the appearance
of the scene changes with respect to different camera positions.

The output is a volume density and an RGB color. To enable the multi-
layer perceptron to represent high-frequency details, NeRF maps the input

13

Figure 2.7: In this image is represented the method used by NeRF to syn-
thesize novel views from a 3D scene

5D coordinates to a higher-dimensional space by applying a complex sinu-
soidal function. This allows the network to map the coordinates from 3D to a
high-dimensional space, allowing to capture high-frequency details. Volume
rendering is done following these steps: for each pixel in the image, a ray is
sent r(t) = o + td from the origin o, along the viewing direction d [in figure
2.7 the NeRF methodology is presented]. N sample points are then generated
along the ray and, for each of them, the multilayer perceptron predicts the
density and the color. The MLP is typically composed of eight fully con-
nected layers with 256 neurons each, with skip connections and a separation
between density prediction and color prediction [in figure 2.8 a multilayer
perceptron is presented]. The final color C(r) for the pixel is computed by
summing the contributions from all the samples as follows:

C(r) =
N∑
i=1

Ti · αi · ci (2.1)

where:

• ci is the RGB color predicted by the MLP at the i-th sample point,

• αi = 1− exp(−σiδi) is the opacity at sample i,

• σi is the predicted volume density at that point,

• δi is the distance between consecutive sample points along the ray,

• Ti = exp
(
−
∑i−1

j=1 σjδj

)
is the accumulated transmittance, represent-

ing the probability that the ray has not been occluded before reaching
point i.

14

The multilayer perceptron is trained to minimize the difference between
the rendered pixel colors C(r) and the ground truth pixel colors Cgt(r) from
the training image.

In some 3D reconstruction architectures, NeRF is integrated with tri-
plane representations to efficiently sample features in space. The continuous
density field predicted by NeRF can then be converted into an explicit mesh
representation using methods like Marching Cubes.

Figure 2.8: A standard multilayer perceptron

2.3.2 Large Reconstruction Model

A Large Reconstruction Model (LRM) predicts a 3D mesh from an object in
an image, including its texture. LRMs combine scalable transformer encoders
with specialized 3D decoders and neural radiance fields to infer high-fidelity
meshes and textures from a single scene. A LRM has hundreds of millions
of learnable parameters to predict a neural radiance field (NeRF) from the
input image in order to construct a detailed 3D model of the scene.

A classical LRM integrates a pretrained Vision Transformer (ViT) that
ingests the input image and outputs multiscale feature maps. By attending
across global and local contexts, the encoder captures both coarse shape cues
and fine details (e.g., surface patterns), providing a rich latent representation
for 3D mesh reconstruction. The encoded features are projected into three
orthogonal 2D feature planes, commonly referred to as the XY, YZ, and
ZX. Each plane encodes volumetric information along one axis, enabling an
efficient intermediate representation that bridges 2D image features and 3D
volumetric fields without the full memory footprint of a voxel grid. The
result of this concatenation is a useful triplane that can be treated as a

15

starting scene to make a prediction of the volume. NeRF module samples
points in 3D space by querying the triplane features. The model predicts per-
point density and RGB color vectors, which are then volume-rendered into
surface geometry and texture. This neural rendering stage produces high-
resolution details, including subtle shading and illumination effects. From the
continuous radiance field, a mesh is extracted often via marching cubes on the
inferred density field. UV coordinates for texture mapping are derived either
directly from the radiance field or via a learned texture decoder, resulting in
a fully textured 3D mesh ready for downstream use.

Figure 2.9: The tripoSR architecture and how it works

TripoSR

TripoSR is an example of a large reconstruction model. It has a vision
transformer-based architecture, and it can create a high-quality 3D mesh
from a single 2D image [in figure 2.11 an example of model outcome is pre-
sented]. TripoSR addresses the task of 3D mesh reconstruction by using an
image-to-triplane decoder and a triplane-based neural radiance field (NeRF)
[in figure 2.9 the full architecture is reported]. TripoSR can efficiently gen-
erate 3D shape, texture, and lighting information of an object in an image.
The encoder is a pretrained vision transformer model (DINO) that converts
an image into vectors encoding global and local features of the processed

16

image. The information is fed into the two decoders to predict the 3D mesh
with texture. The image-to-triplane decoder transforms the vectors into a
triplane-NeRF representation, which is a compact 3D representation. This
decoder integrates self-attention layers and cross-attention layers. The self-
attention layer allows to learn relationships between different regions of the
triplane, while the cross-attention layer allows for attending to the vectors
from the encoder, incorporating these features into the triplane representa-
tion. Finally, the NeRF model consists of a stack of multilayer perceptrons,
which predict the color and density of a 3D point of the triplane. The result
is a 3D textured mesh that respects the details of the object in the input
image. The training of this architecture was done by applying particular loss
functions that reflect the perceptual similarity between the rendered views
and the input images. Among them, LLPIPS is the perceptual loss based
on LPIPS (Learned Perceptual Image Patch Similarity), and it was used to
ensure that the reconstructed object preserves fine-grained visual details that
are meaningful to human perception.

Figure 2.10: All the details of the tripoSR with pretrained encoder and NeRF
models

17

The total loss function used during training is:

Lrecon =
1

V

V∑
v=1

(
LMSE(Îv, I

GT
v) + λLPIPS LLPIPS(Îv, I

GT
v) + λmask Lmask(M̂v,M

GT
v)

)
(2.2)

where:

• V is the number of views

• Îv is the rendered image of the v-th view

• IGT
v is the corresponding ground-truth image

• LMSE is the Mean Squared Error loss

• LLPIPS is the perceptual loss based on LPIPS

• λLPIPS e λmask are weights which balance the loss components

Figure 2.11: An example of the conversion from 2D image to 3D objects
using the tripoSR model

The MSE loss minimizes the root mean square difference between ren-
dered images Îv and the ground-truth images IGT

v :

LMSE(Îv, I
GT
v) =

1

N

N∑
i=1

(
Î(i)v − IGT,(i)

v

)2

(2.3)

where N is the number of pixels in the image.
The perceptual loss (LPIPS) compares high-level features between im-

ages, improving the visual fidelity of the reconstruction:

18

LLPIPS(Îv, I
GT
v) =

∑
l

1

HlWl

Hl∑
h=1

Wl∑
w=1

∥∥∥ϕl(Îv)h,w − ϕl(I
GT
v)h,w

∥∥∥2

2
(2.4)

where:

• ϕl(·) represents the features extracted from the l-th layer of a pretrained
neural network

• Hl e Wl are the height and width of the feature map to the layer l.

• (·)h,w indicates the value at the position (h,w).

The loss function of the mask is defined as:

Lmask(M̂v,M
GT
v) = BCE(M̂v,M

GT
v) (2.5)

where M̂v e MGT
v are the rendered and ground-truth masks respectively of

the v-th view
An important parameter of the model is the foreground ratio, which refers

to the threshold used to distinguish the foreground from the background in
the image during the 3D reconstruction process. Basically, this parameter
determines which part of the image will be considered to generate the 3D
model. A value of 0.85 indicates that 85 percent of the image information,
based on a certain criterion (such as depth, intensity, or other attributes), will
be classified as foreground and used for reconstruction, while the remaining
15 percent will be considered as background and ignored in the process [in
figure 2.10 the values of the parameters for the default model are reported
from the original paper.].

19

Chapter 3

Methodology

3.1 Description

The primary objective was not to create fully detailed 3D models directly
from the design files, since the required level of detail for the final prod-
ucts was particularly high, but rather to streamline and accelerate the initial
stages of the modeling process [in figure 3.1 an example of design file is re-
ported]. To achieve this, I experimented various depth estimation techniques
and I designed a convolutional neural network tailored to predict depth maps
from black and white technical drawings with lack of details.

Figure 3.1: an example of sketches in a DWG file

20

The first step of the pipeline involved extracting the relevant figures from
the DWG files. These files were preprocessed and converted to the DXF for-
mat, which is more manageable and structured for automated analysis. This
type of file is organized into multiple layers, each containing different types
of geometric entities. Standard entities such as text, lines, and circles were
filtered out, while curves and polylines, more specific to the geometry of the
object, were retained. Once cleaned, the files were converted to images, al-
lowing figure-level manipulation [in figure 3.2 an example of a cleaned DWG
file is reported]. Each figure typically represented a different view of the final
3D object. Initially, during the tests, these views were segmented and pre-
pared for depth estimation. In the end, the chosen methodology integrated
both segmentation and depth estimation, making this crucial step automatic.
It is important to note that the process of predicting depth from these images
should not be interpreted as a conventional depth estimation task. Unlike
natural images, these technical drawings lack inherent perspective or shading
cues. Therefore, the task can be seen as an agnostic generation of plausible
depth values for simple and schematic representations. Alternatively, once
the individual figures were extracted, they could be manually colored by a
designer to suggest specific viewpoints and lighting. This preprocessing step
can enable a more accurate reconstruction, though it introduced additional
manual effort.

As mentioned above, the central component of the pipeline was a convolu-
tional neural network architecture, that I called Depthy, specifically designed
to generate depth maps from particular technical drawings, extended also on
other black and white representations.

Figure 3.2: an example of a cleaned DWG file converted to image

21

CNNs are specifically designed to learn spatial patterns and visual rep-
resentations, such as edges, textures, shapes, and complex object structures,
enabling robust predictions on real-world images. ResNet-50 is a 50-layers
convolutional neural network that excels at capturing multiscale features
across different levels of abstraction. Its key innovation lies in its residual
connections, which create direct pathways that allow information to flow from
earlier layers to later layers in the network. ResNet-50 enables the training
of significantly deeper networks while maintaining gradient flow throughout
the entire architecture. This design allows the network to learn both low-
level features (such as edges and textures) in the initial layers and high-level
semantic features (such as areas of the object) in the deeper layers, resulting
in a comprehensive hierarchical feature representation suitable for complex
computer vision tasks [in figure 3.3 an outcome from the network is reported].

Figure 3.3: Depth map predicted by the Depthy model for the DWG pre-
sented above

The decoder consists of a Pixel Shuffle Decoder (PSD) block for upsam-
pling and a Squeeze-and-Excitation (SE) block for channel-wise attention.
Residual connections further enhance feature refinement, and a final convo-
lutional layer generates the single-channel depth map. This map encodes
per-pixel relative depth, where the value at each pixel denotes the estimated
distance from the virtual camera.

To effectively train this architecture, a combination of complementary loss

22

functions was used, each contributing to a different aspect of depth map qual-
ity. Rather than relying solely on traditional pixel-wise metrics, the training
objective was designed to balance visual accuracy, robustness, and percep-
tual coherence. For instance, while basic regression losses like MSE provided
a strong baseline for minimizing the overall discrepancy between predictions
and ground truth, they tended to over-penalize outliers and lacked sensitivity
to structural details. Greater emphasis was placed on the visual quality of
the outputs, as a lower loss does not necessarily guarantee that the generated
outputs are visually acceptable or meaningful. To address these limitations,
more adaptive losses, such as the BerHu, were introduced, which dynam-
ically adjust the penalty applied to large residuals. This helped maintain
stable gradients even in the presence of depth discontinuities or noise, a
common challenge in real-world scenes. Additionally, a gradient-based loss
term was added to encourage consistency in local depth variations, which
is particularly beneficial for preserving edges and fine structures that are
often smoothed out during naive regression. The perceptual performance
of the model was further refined using SSIM-based supervision, which pri-
oritizes structural similarity over absolute numerical correctness. This was
especially useful in ensuring that the predicted depth maps retained coherent
geometric patterns and spatial layouts, which are critical when these maps
are later used for tasks such as 3D mesh reconstruction or novel view syn-
thesis. The combined effect of these loss terms was to guide the network
not only towards accurate depth estimation but also towards representations
that are robust and visually plausible.

The conversion from 2D depth maps to 3D meshes involved projecting
each pixel of the image into a 3D space, effectively reconstructing the corre-
sponding surface geometry based on the depth value (intensity) of the pixel
in the mask [in figure 3.4 this methodology is reported]. This was achieved
by directly assigning the coordinates (x, y) of the pixel and using the corre-
sponding depth value as the z coordinate to create the triangular faces of the
mesh. To refine this process, a depth-to-width ratio was applied to control
the scale of the 3D reconstruction. The grayscale depth map was interpreted
as a 2D matrix, rotated to align with the 3D coordinate system, and normal-
ized to the range [0, 1]. The normalized values were then scaled using the
depth-to-width ratio and image dimensions to define the final depth range.
A Gaussian filter was subsequently applied to the depth map to smooth the
surface, reducing noise, and enhancing realism. The mesh was constructed
by dividing the depth grid into triangular cells, each defined by two trian-
gles, where the vertex coordinates were derived from the spatial positions
and depth values of the pixels.

23

Figure 3.4: depth map to 3D mesh conversion

As mentioned above, many design files in the company already include
real 2D representations of the final product. This motivated an exploration
of advanced mesh reconstruction techniques capable of producing complete
3D models, including surface textures, from a single colored image. One of
the most effective architectures in the domain of 3D mesh reconstruction
is TripoSR, a state-of-the-art model that integrates a transformer-based en-
coder and neural radiance fields (NeRF). TripoSR is capable of extracting
high-level features from 2D images and generating textured 3D models by
having extraordinary performance in reconstructing hidden areas of the final
object [in figure 3.5 an outcome from the model is reported].

To evaluate TripoSR’s performance, I conducted a series of experiments
using images from the company catalog and compared the reconstructed
models with ground-truth 3D objects. The assessment was based on widely
adopted 3D reconstruction metrics, including the Chamfer distance and the
F-score, along with recall and precision scores. The results demonstrated
excellent performance across a variety of object types and geometries.

Figure 3.5: Example of a final rendered object from TripoSR

24

3.2 Depthy

Depth estimation from black-and-white technical drawings is a challenging
task due to the absence of texture, color, light information and the reliance
on structural cues. The proposed architecture was designed to extract and
process high-level structural features while leveraging multiscale information
and attention mechanisms to produce accurate depth predictions.

3.2.1 Network architecture

Depthy is a fully convolutional network that combines an encoder-decoder
architecture with attention mechanisms and multiscale feature fusion. This
architecture was built to preserve as many details as possible in the decod-
ing stage, using a well-established neural network (Resnet-50) as encoder.
The model integrates different modules in the decoding stage. Enhanced
pixel shuffle decoder (PSD) is utilized for efficient upsampling, incorporating
a pixel shuffle operation to enhance spatial resolution and a Squeeze-and-
Excitation (SE) block to selectively emphasize important channels. Addi-
tionally, the features from the encoder are refined through the Atrous Spa-
tial Pyramid Pooling (ASPP) module, which leverage dilated convolutions
to extract multi-scale contextual information.

3.2.2 Dataset

The most popular datasets for depth estimation are KITTI and NYUv2.
The KITTI dataset consists of outdoor driving scenes captured using

stereo cameras and a LiDAR sensor, making it ideal for evaluating depth esti-
mation methods in autonomous driving scenarios. It provides high-resolution
images along with accurate depth ground truth generated from LiDAR, and
includes various environmental conditions such as different lighting, motion,
and weather scenarios.

On the other hand, the NYUv2 dataset focuses on indoor scenes and was
collected using sensors. It includes over 400,000 RGB images from 464 in-
door scenes across 26 different scene types, such as bedrooms, living rooms,
and offices. The dataset provides dense depth maps aligned with RGB im-
ages and is widely used for benchmarking depth estimation models in indoor
environments [in figure 3.6 a subset of the dataset is reported].

These datasets offer complementary challenges: KITTI emphasizes sparse,
long-range depth, while NYUv2 offers dense, short-range depth. For train-

25

Figure 3.6: examples of images taken from the NyU 2 dataset, along with
the corresponding depth mask

ing purposes, the NYUv2 dataset was selected as the most appropriate for
the current task. Its densely annotated depth maps include a wide variety
of everyday indoor objects with diverse shapes, sizes, and spatial configura-
tions. This richness provides a strong foundation for training the network to
efficiently segment objects and accurately predict depth values, particularly
in technical images where high precision is required for depth reconstruction
and scene understanding starting from raw black and white figures which
lack particular details.

3.2.3 Implementation

The Depthy model was implemented with a pretrained Resnet-50 to predict
depths in input technical images. To improve performance, multiple tests
were carried out. These tests involved training the architecture with the
NYU2 dataset, that contains detailed depth masks along with ground truth
RGB images. As simplicity, the initial tests involved the use of Mean Squares
Error (MSE) as loss function to test the network capabilities; then, a complex
combination of losses was used. These losses were Berhu loss, gradient loss
and SSIM.

First, a pretrained encoder is used to capture base features from the input
drawings. The encoder processes the input drawing and it produces feature
maps at decreasing spatial resolutions. This process involves an initial convo-

26

lution, batch normalization, and ReLU activation to process the input. Then
other four layers progressively reduce the spatial resolution while increasing
the semantic richness of the features [in figure 3.7 the Resnet-50 architecture
is reported].

Figure 3.7: the resent-50 architecture

After that, the ASPP module is used to capture additional contextual
information. The ASPP module enhances the global context by capturing
features at multiple scales. It uses dilated convolutions with different dila-
tion rates (1, 6, 12, 18) to extract features at varying receptive fields. A
global average pooling branch is included to encode global contextual infor-
mation. The outputs from all branches are concatenated and passed through
a 1×1 convolution to produce a unified feature map. The ASPP module
plays a crucial role in enhancing the skip connections from the encoder. By
applying dilated convolutions, this module is used to extract multi-scale con-
textual information, enriching the features passed to the decoder. The use of
batch normalization and ReLU activation further ensures that the processed
features remain well-structured and contribute effectively to the depth re-
construction [in figure 3.8 the ASPP module is reported].

The resulting features are then fed to a decoder that progressively upsam-
ples them to reconstruct a depth map. To achieve this, it relies on a Pixel
Shuffle Decoder (PSD) module, which integrates two key components. The
first is the Pixel Shuffle, a sub-pixel convolution technique that enables effi-
cient upsampling by redistributing low-resolution feature maps into a higher-
resolution output [in figure 3.9 the pixel shuffle operation is reported]. The
second is the Squeeze-and-Excitation (SE) Block, which introduces channel-
wise attention, enhancing the most relevant features while suppressing those
that are less significant by looking at the values in each channel [in figure
3.10 the functionality of the SE block is explained].

27

Figure 3.8: Atrous Spatial Pyramid Pooling (ASPP) module

Figure 3.9: Pixel Shuffle decoding

Embedding this process of refinement on the decoding stage, feature fu-
sion is enhanced, and more details of the object are preserved.

Once the feature maps have been upsampled, they are further refined
through a series of convolutional layers followed by ReLU activation. This
step ensures that the reconstructed depth information maintains clarity and
precision. Additionally, to preserve fine-grained details from the original
image, the architecture incorporates residual connections. These connections
are not directly fused but first processed through EESP modules, which refine
the features before merging them into the decoder.

Finally, the depth map is generated through a series of well-defined steps.
The output from the fourth stage of the decoder is combined with the resid-
ual connections, ensuring that essential details are retained. This merged
feature map is then passed through a 3×3 convolution, which reduces it to a
single-channel representation suitable for depth estimation. As a final step,
the depth map is upsampled using bilinear interpolation, restoring it to the
original input resolution and ensuring a smooth, high-quality output.

28

Figure 3.10: Squeeze-and-Excitation (SE) Block

3.3 Tools and techniques

I used a Python library designed to manipulate STL objects (3D meshes) that
is NumpySTL. Thanks to this library, I wrote custom methods to translate,
rotate, re-scale and combine meshes. Moreover, I used this library and the
Scipy library for the mesh creation from depth images. In the first test case,
the 2D to 3D conversion was done by mapping the 2D coordinates of the
grey-scaled input image to 3D adding z-values to some faces with respect
to the intensity of the pixels in the grey-scaled image; then, these new 3D
coordinates were used to generate the vertices and the faces that composed
the final mesh. I obviously used Blender as guideline during the full project.

The CNN was designed using the python library Pytorch and it was
deployed on a virtual environment due to the requested resources.

3.3.1 Loss Functions

The training of the Depthy model was carried out with different combinations
of popular loss functions used in fields like segmentation, depth estimation
and 3D mesh reconstruction. Moreover, various weights for these loss func-
tions were added, since they were tailored for different aspects of the depth
map generation.

MSE

The Mean Squared Error (MSE) loss measures the difference between the pre-
dicted depth map D̂ and the ground truth depth map D. This loss function
penalizes large errors by averaging the squared differences over all pixels:

MSE =
1

N

N∑
i=1

(Di − D̂i)
2

29

where N is the total number of pixels in the depth map. By minimizing this
loss, the model learns to generate depth estimates that closely align with the
actual depth values.

Berhu loss

The BerHu loss is a robust alternative to the Mean Squared Error (MSE)
loss, effectively balancing small and large errors. Compared to MSE, the
BerHu loss offers significant advantages, particularly in handling large errors
and maintaining stable gradients during training. One of its key strengths is
its robustness to outliers.

L(D, D̂) =

{
|Di − D̂i|, if |Di − D̂i| ≤ c
(Di−D̂i)

2+c2

2c
, if |Di − D̂i| > c

where c is a threshold, typically set as a fraction of the maximum absolute
error in a batch.

Figure 3.11: Comparison between Berhu and MSE functions

While MSE penalizes large errors quadratically, making the optimization
process highly sensitive to extreme values, the BerHu loss adopts a more
adaptive approach. For small errors, it applies a linear penalty, whereas for
larger errors, it transitions to an L2-like formulation. This dynamic adjust-
ment mitigates the excessive influence of outliers on the training process [in

30

figure 3.11 the comparison between Berhu and MSE is plotted]. Another
important advantage of BerHu loss is its ability to maintain stable gradients.
When dealing with small errors, it functions like the L1 loss, ensuring that
the gradients remain meaningful and do not go down excessively. This helps
prevent the vanishing gradient problem.

Gradient loss

The Gradient Loss is designed to preserve spatial details by enforcing con-
sistency in the depth gradients between the predicted depth map D̂ and the
ground truth D. It is defined as:

Lgrad =
∑
i,j

(
|∇xDi,j −∇xD̂i,j|+ |∇yDi,j −∇yD̂i,j|

)
where ∇x and ∇y represent the finite difference gradients along the hori-

zontal and vertical directions, respectively:

∇xDi,j = Di+1,j −Di,j, ∇yDi,j = Di,j+1 −Di,j

By minimizing this loss, the model learns to generate depth maps with
smooth yet sharp transitions, improving the preservation of fine details and
edges in the reconstructed scene.

SSIM

The Structural Similarity Index Measure (SSIM) is widely used in deep learn-
ing for image-based tasks, including mesh reconstruction, as it prioritizes
perceptual quality over pixel wise differences. Unlike MSE, which treats all
pixel errors equally, SSIM captures structural information by considering lu-
minance, contrast, and texture similarities between the predicted depth map
D̂ and the ground truth D.

The SSIM index is computed in this way:

SSIM(D, D̂) =
(2µDµD̂ + C1)(2σDD̂ + C2)

(µ2
D + µ2

D̂
+ C1)(σ2

D + σ2
D̂
+ C2)

where µD and µD̂ are the mean values, σ2
D and σ2

D̂
are the variances, and

σDD̂ is the covariance. C1 and C2 are small constants for numerical stability.
The SSIM loss is then defined in this way:

LSSIM = 1− SSIM(D, D̂)

31

By maximizing structural similarity, SSIM loss is particularly effective in
deep learning techniques such as NeRF and depth estimation, where preserv-
ing geometric details and perceptual quality is crucial.

3.3.2 Metrics in 3D mesh reconstruction

The metrics used for the evaluation of the outcomes from the 3D mesh re-
construction model are the Chamfer distance and the F-score.

The Chamfer distance

The Chamfer distance quantifies the similarity between two sets of points.
This distance is often used as a loss function in point cloud generation tasks
to minimize the distance between ground-truth and outcome point sets. In
this case, the Chamfer distance was computed between the output mesh
and the ground-truth mesh, corresponding to the real object in the input
image. To compute the Chamfer distance between two meshes effectively, we
should take only subsets of points for each mesh, since the real number of
points is huge. So, N points were uniformly sampled for each mesh and the
distance was calculated [in figure 3.12 the representation of a calculation of
the distance is reported].

Figure 3.12: Calculation of the Chamfer distance

Considering the two sets of vertices P and Q, the calculation involves
finding the nearest neighbors in Q for each point p in P (and vice versa)
using the Euclidean Distance, then summing the two terms.

Chamfer(P,Q) =
∑
p∈P

min
q∈Q

∥p− q∥2 +
∑
q∈Q

min
p∈P

∥q − p∥2

32

Values between 0.01 and 0.1 are optimal, between 0.1 and 0.5 may indicate
an acceptable level of similarity, while values greater than 1 may indicate a
large discrepancy between the meshes.

The F-score

The F-score is a metric used to evaluate the similarity between two 3D sur-
faces by combining precision and recall, providing a more balanced view of
how well the predicted mesh aligns with the ground truth. It is particularly
useful when the comparison between point clouds needs to penalize both
missing points and outliers [in figure 3.13 a visual representation of these
metrics is reported].

Figure 3.13: Calculation of the F-score value

To compute the F-score, two point clouds are obtained by uniformly sam-
pling points from the predicted mesh and the ground truth mesh. A threshold
distance τ is defined to determine whether a predicted point is considered
close enough to a ground truth point (and vice versa). Precision measures
the proportion of predicted points that lie within τ of any ground truth
point, while recall measures the proportion of ground truth points that are
matched by any predicted point within the same distance. The F-score is
then calculated as the harmonic mean of precision and recall:

33

F-score =
2 · Precision · Recall
Precision + Recall

Typically, the threshold τ is set to a fixed value such as 0.01 (depending
on the scale of the object). Higher F-score values indicate better overlap
between the reconstructed and ground truth shapes. While the Chamfer
distance penalizes positional deviation, the F-score emphasizes point-wise
correspondence and completeness, making it a complementary metric for
evaluating reconstruction quality.

34

Chapter 4

Experiments and results

The experiments involved predicting an acceptable depth map from differ-
ent views of an object using the CNN cited and reconstructing a 3D mesh,
implementing a foundation model. Although the initial goal of this work
was to operate on technical images featuring various types of eyewear, the
experiments for both tasks were extended to a broader set of design files
and images from different domains. This shift was motivated by the need to
test the proposed methodology on more complex objects, which pose greater
challenges in terms of volumetric reconstruction, given, for example, the sig-
nificant differences in structure and geometric complexity between a car and
a pair of sunglasses. Moreover, other tests were conducted on general tech-
nical images from different web sources. In the first task, the experiments

Figure 4.1: output depth masks from the Depth Anything model for multiple
colored views of a car

were conducted on some drawings of objects’ views in technical DWG files.
The initial experiments required the prediction of depth masks from the col-
ored views by using the Depth Anything model, that is a state-of-art model
to make depth estimation. I passed different images of cars’ drawings to the

35

Depth Anything model [in figure 4.1 the drawings along with masks are re-
ported], then I converted the resulting masks to meshes [in figure 4.2 the the
resulting meshes are reported]. This model allowed to obtain very detailed
masks that could be used as input for the 3D mesh generation algorithm in a
sort of best case scenario, but the limitation remained to be the manage of not
colored figures and the process involving doing depth estimation on images
with multiple objects; in fact the model required an additional automatic
segmentation step to capture the single figures, that in the case of technical
drawings is a challenging task. The resulting depth images of the single views
where then converted to 3D objects as explained in the methodology section.

Figure 4.2: the result of the 2D to 3D conversion for the outcome depth
masks from the Depth Anything model

After completing these initial experiments, I moved on to the development
of a custom CNN architecture, with the goal of replicating and potentially
improving the performance observed before. The motivation for designing a
custom model arose from several limitations observed in the previous tests.
In particular, the Depth Anything model demonstrated excellent results on
well-colored images, but its performance significantly degraded when applied
to uncolored technical drawings or images containing multiple figures due to
the complete absence of information. The need for additional steps, such as
segmentation and depth generation, highlighted the necessity of a specialized,
flexible, resource-constrained and fast solution.

The results of the exploration of the literature in the field of depth esti-
mation and of the development of possible CNN solutions led to the design of

36

Depthy, a neural network architecture tailored for technical drawings. The
main focus in designing the network was on the decoding stage, since the
Resnet-50 achieved good results on encoding features for performing both
image segmentation and depth estimation.

Figure 4.3: Greyscaled depth map predicted by the Depthy model for the
DWG presented above ready to be converted to meshes

The initial experiments involved training the architecture on the NYU
v2 dataset using the MSE loss. The goal was to perform a relatively simple
and general training procedure, without over-optimizing the network for that
specific dataset, since the model was later intended to be applied to a different
domain, that is the domain of technical images, which differ significantly
in terms of visual structure and distribution. Before training, the dataset
undergoes a series of transformations to improve model generalization and
performance.

These preprocessing steps are applied to each image using a composi-
tion of transformations. The images are first rescaled to standardize their
input size. Then, some specific data augmentation techniques are applied.
First, random horizontal flipping and random rotations, helping the model
learn features that are invariant to minor spatial changes. After the trans-
formations, the images are converted into tensors. Finally, the images are
normalized using the mean and the standard deviation values computed from

37

Figure 4.4: a test image reporting different drawings that are views of a car
with lack of details and color

the ImageNet dataset. This normalization ensures that the input values are
on a similar scale.

The network was trained with a batch size equal to 10 to balance mem-
ory usage and training stability. After few epochs, the network seemed to
have not acceptable performance in segmenting the figures and the quality
of the depth values was not acceptable, because some essential details were
lost, resulting in simple clouds of depth values. This was normal, since struc-
tural information was not preserved in the decoding stage. So, the network
needed to be upgraded with additional layers and trained by minimizing more
complex loss functions. So, I integrated enhanced modules and trained the
network with a more complex loss function that was a combination of Berhu,
gradient and SSIM losses [in figure 4.4 an input image in the cars’ domain is
presented, while the outcome for this image is reported in figure 4.5].

These losses were properly weighted during the different training epochs.
In this way, I was able to enforce the attention on the edges to make the model
able to construct a more detailed depth mask. To improve convergence and
generalization during training, I employed a learning rate scheduling strategy
(ReduceLROnPlateau).

The scheduler used is a conservative yet effective mechanism, as it adjusts
the learning rate only when the monitored metric stalls, rather than at fixed
intervals. In our case, the validation loss is monitored. If no improvement
is observed over two consecutive epochs (patience=2), the learning rate is
halved (factor=0.5). This approach allows the optimizer to explore the loss
landscape with a sufficiently high learning rate in the early phases, and only
slows down when the model approaches a plateau, encouraging fine-tuning

38

Figure 4.5: output depth mask from Depthy model with pretrained encoder

rather than premature convergence.

Such a strategy reduces the risk of overfitting early on, since it avoids
lowering the learning rate too soon and helps the model escape shallow local
minima. Moreover, the reduction factor of 0.5 strikes a good balance, and it is
used to adjust the learning dynamics without being overly aggressive, which
could otherwise hinder further improvements. To complement this adaptive
scheduling, an early stopping mechanism is used with a maximum patience of
five epochs (max patience=5). This setup allows natural fluctuations in the
validation loss without halting the training prematurely, ensuring that short-
term noise does not interfere with long-term learning trends. Additionally,
the optimizer used in this setup is Adam, which incorporates weight decay
for effective regularization.

The network was trained on both the pretrained and non-pretrained con-
figurations for the encoder, trying different types of losses, by also weighting
them [in figure 4.3 an outcome of the network is presented]. The pretrained
configuration offered a good quality in the results for simple car drawings.
The main lack observed was in the consistency of the depth across empty
areas of the object (e.g., the difference in depth between the roof and the
bonnet of a car in the upside-down prediction). The pretrained network was
additionally trained with different values of SSIM and Berhu losses. For any
loss configuration, after a few epochs, the network was overfitted. This be-
havior was also observed when training the network from scratch (without
pretrained encoder). The most acceptable outcomes were obtained in the
first 3 epochs for both scenarios [in figure 4.6 an outcome of the network af-

39

Figure 4.6: output depth mask from Depthy model after training on NyU 2
dataset with 2 epochs using SSIM=1, Berhu=0.6 and gradient=0.2

ter training it for 2 epochs is presented, while in figure 4.7 a training history
is reported for a specific configuration of loss functions].

In this step, the problem of predicting the depth values for these draw-
ings by learning from a depth estimation dataset arose. In this scenario, the
training was supposed not to be strong to obtain useful results. After a few
epochs, a vanishing of structural details was observed by testing the network
step by step, which was reasonable. This fact justifies the need for more con-
trollable training with the scheduling techniques explained above. Moreover,
to improve the preservation of fine geometric structures and enhance the
sharpness of object boundaries in the predicted depth maps, an additional
loss term was introduced. Specifically, a gradient loss was incorporated to
penalize discrepancies in the spatial gradients between the predicted and
ground-truth depth maps. This encourages the network to better capture
depth discontinuities and retain structural details, which are often smoothed
out or lost when relying solely on photometric losses such as BerHu and
SSIM.

In the case of the end-to-end 3D mesh reconstruction task, some available
3D assets with their single 2D representation have been collected from the
company catalog (these models were used as ground-truth images for testing).

A pretrained TripoSR was used to predict the volume of objects from
single input images (with the configuration shown in the image). I tuned the

40

Figure 4.7: training history with SSIM=1 and Berhu=0.6

model with a foreground ratio equal to 0.75 and a marching cubes resolution
equal to 320, then I passed 2D images of assets from the company catalog.
The model could efficiently reconstruct the ”hidden” part of the represen-
tation, returning a 3D object with an acceptable texture. The fidelity of
the reconstruction was quantified by calculating the Chamfer distance and
the F-score between the output and the ground-truth object [in figure 4.8
a comparison between the outcome and the ground-truth is plotted]. These
metrics are approximate, as they were computed on a subset of points sam-
pled from the meshes. In this case, 10000 points were randomly sampled in
both meshes, then the chamfer distance and the F-score value were computed
for these two subsets.

4.1 Interpretation of results

4.1.1 Principal results

The primary outcome of the experiments is related to the effectiveness of
the proposed architecture in predicting depth values from single images,
even under particularly challenging scenarios such as technical line drawings
and multi-object figures. Unlike pretrained models such as Depth Anything,

41

Figure 4.8: Comparison of sampled points between ground truth mesh and
the output from tripoSR

which demonstrated notable limitations when applied to uncolored or non-
photorealistic images, the proposed CNN showed an increased robustness in
these non-traditional domains [examples of outcomes in different domains
are reported in figures 4.9 and 4.10].

One of the most significant findings is that the CNN does not require ex-
tensive training to generalize well across various input types. Interestingly,
the model does not exhibit typical signs of overfitting, even when trained for
a relatively low number of epochs. This suggests that the network quickly
learns the key features necessary for depth prediction, although the output
initially lacks finer structural details, such as sharp object boundaries or com-
plex surface contours. These missing details are not due to overfitting, but
rather to the inherent difficulty of the task. In technical drawings and sparse
sketches, crucial spatial cues are often absent or minimal. This observation
justifies the integration of edge-aware loss components, such as gradient and
SSIM terms, which significantly improved the reconstruction quality. More-
over, there were some benefits in training the pretrained networks for few

42

Figure 4.9: results on images with vehicles

epochs to refine the outcomes, both for structural preservation and coherent
depth reconstruction (as much as possible).

Another key result is the validation of the architectural choices made in
the decoder section of the network. While standard ResNet-based encoders
are sufficient to capture semantic features, the decoder plays a pivotal role in
reassembling a spatially coherent depth map. Enhanced decoding strategies
and a properly tuned loss function proved essential in preserving structural
elements and avoiding depth value dispersion, which would otherwise re-
sult in noisy or overly smoothed depth maps. Taken together, these results
demonstrate the feasibility of CNN-based methods in handling difficult input
modalities, such as technical or synthetic drawings, for depth estimation.

Figure 4.10: results on general images

43

4.1.2 Secondary results

The secondary findings are centered on the evaluation of transformer-based
architectures for the task of 3D mesh reconstruction from single-view 2D
images. In particular, the use of TripoSR showed state-of-the-art perfor-
mance in reconstructing full volumetric representations from a single image
input. The model proved effective across a wide range of categories, includ-
ing vehicles, architectural elements, and stylized objects, even in cases where
significant occlusion or missing parts were present [in figure 4.11 an example
of an input image along with outcome and ground-truth meshes is presented].
Quantitative evaluation using Chamfer Distance and F-score confirmed the
high fidelity of the reconstructions compared to the available ground truth
meshes. The chosen configuration parameters, such as a foreground ratio
of 0.75 and marching cubes resolution of 320 were effective in producing
detailed and consistent 3D surfaces, indicating a good balance between com-
putational efficiency and geometric precision. These results underscore the
ability of transformer-based models to implicitly learn complex spatial priors
and geometrical relationships from training data, enabling plausible inference
of invisible object parts in the 3D domain. Notably, the results support the
hypothesis that transformer-based architectures, unlike classical CNNs, are
more adept at learning global context and symmetry patterns—features that
are crucial for high-quality volumetric reconstruction.

44

Figure 4.11: Example of an input image representing a car drawing along
with the outcome from TripoSR and the corresponding ground-truth mesh

45

Chapter 5

Discussion

The aim of this work is to deploy 3D rendering techniques in different sce-
narios; among them there are the cases of 3D reconstruction from 2D images
and design files. With minimum resources everyone can be able to generate
acceptable 3D objects from 2D images.

5.1 Comparison with the literature

Different methods exist that allow the generation of 3D meshes by input fea-
tures. Among these, two are mentioned: the voxel-based and the point-cloud-
based. These models often have an architecture that integrates convolutional
layers.

Voxel-based methods represent 3D objects as a grid of small cubes (or
”voxels”) in space, similar to 3D pixels. Each voxel contains information
about whether it is part of the object (occupied) or empty space. The 3D
object is reconstructed by filling in or removing voxels within this grid, often
using volumetric data derived from images. This approach can approximate
both shape and surface details.

In point-cloud-based reconstruction, points are positioned in 3D space to
capture the shape and contours of an object without needing a grid struc-
ture. These points are later processed to form a surface or mesh. However,
both voxel-based and point-cloud-based methods present notable limitations.
Voxel-based approaches, despite their ability to model volume, suffer from a
high memory and computational cost, especially as the resolution of the voxel
grid increases. This trade-off between resolution and efficiency often leads
to coarse reconstructions or heavy computational demands. Moreover, the
discretization of space into voxels can result in a loss of fine surface details.
Point-cloud-based methods, on the other hand, are more memory-efficient

46

and flexible, but they struggle with the lack of inherent structure. Since
point clouds do not define explicit surface connectivity, additional process-
ing is required to infer topology and build consistent meshes. This makes it
challenging to recover complex geometries or fine-grained surface features, es-
pecially when the point distribution is sparse or noisy. Furthermore, learning
meaningful features from unordered point sets can be difficult, which affects
the accuracy and robustness of the reconstruction.

Recent advancements in 3D mesh reconstruction have aimed to address
the limitations of voxel-based and point-cloud-based methods, which strug-
gle with computational inefficiency, resolution constraints, or sparsity issues.
Notably, implicit surface representation techniques have gained traction for
their ability to generate high-fidelity, continuous surfaces. Among these,
transformer-based models like TripoSR have achieved state-of-the-art results
by leveraging global contextual information with local geometric details. Tri-
poSR leverages implicit surface representations combined with transformer-
based architectures to directly predict high-fidelity 3D surfaces from 2D in-
puts. This allows for the generation of detailed, continuous surfaces without
the resolution constraints of voxels or the sparsity issues of point clouds. This
model excels particularly in capturing fine geometric details and complex
topologies, producing watertight and visually coherent meshes that require
minimal post-processing. Its ability to fuse global contextual information
from the input image(s) with local surface geometry makes it more robust
to variations in pose, lighting, and occlusions. Furthermore, thanks to its
transformer backbone and signed distance function representation, it gener-
alizes better across diverse object categories and real-world scenarios. These
advantages make TripoSR and similar models state-of-the-art solutions for
accurate and efficient 3D mesh reconstruction.

Building upon these advancements, MeshFormer introduces a novel paradigm
by integrating explicit 3D-native priors into the architecture. Unlike tradi-
tional triplane-based or voxel-centric methods, MeshFormer represents fea-
tures using 3D sparse voxels and combines transformers with 3D convolutions
to better encode projective correspondences between 2D and 3D structures.
This design allows for efficient training and high-quality textured meshes with
fine-grained geometric details. A key innovation of MeshFormer is its use of
normal maps as additional input guidance, predicted via 2D diffusion mod-
els or acquired through photometric techniques. These maps provide critical
clues for surface refinement, enabling the generation of detailed geometry.
Furthermore, MeshFormer adopts a unified, single-stage training process by
combining Signed Distance Function (SDF) supervision with differentiable
surface rendering, bypassing the need for complex multi-stage pipelines. This
approach not only enhances training efficiency but also produces meshes with

47

superior texture and geometric fidelity compared to existing methods.
By incorporating explicit 3D biases and normal guidance, MeshFormer

demonstrates significant improvement in mesh quality and reconstruction
speed, positioning itself as a promising alternative for open-world sparse-
view tasks. Its integration with 2D diffusion models further paves the way for
applications like single-image-to-3D and text-to-3D generation, highlighting
its versatility and practical relevance.

5.2 Limitations

First, the main limitation of this work concerns the infeasibility of directly
generating a complete 3D mesh from the technical drawings with high fidelity,
because there are few sides (basically 4-5). The chosen strategy was to bring
these views as 3D meshes, maintaining the lines and details of the original
figure as much as possible. The main limitation lies in the training of the
proposed architecture, as the chosen dataset (NYU-v2) consists of RGB-D
images of indoor environments, which significantly differ from the techni-
cal black-and-white line drawings used in this work. This domain gap may
limit the generalization capabilities of the model when applied to schematic
representations lacking texture, color, and perspective cues. Although trans-
fer learning from real-world RGB images can provide a strong initialization,
the absence of domain-specific features in the training data might affect the
precision and consistency of the predicted depth maps when dealing with
simplified and abstract figures. Future improvements could involve the use
of synthetic datasets specifically designed for technical drawing interpreta-
tion or the creation of a custom dataset that better reflects the target input
domain.

Relating to the secondary objective, the main limitation in using a model
like TripoSR can be the quality of the representation and the type of object
(although it adapts to many objects), as well as the fact that the training
of these models is not accessible to everyone. The requested details level is
high in this field, but in real-world applications, it could not be a problem.
In both cases the main limitation is the need for post-production techniques
of a 3D artist.

48

Chapter 6

Conclusions

Recent advancements in computer vision have significantly enhanced the
capabilities of both monocular depth estimation and 3D mesh reconstruc-
tion. These developments have broadened the applicability of 3D modeling
across various domains, including industrial design, gaming, robotics, and
augmented reality. This thesis has independently explored these two tasks,
examining state-of-the-art methodologies and proposing tailored implemen-
tations to address specific challenges inherent to each domain.

6.1 Future Perspectives

The fields of monocular depth estimation and 3D mesh reconstruction are
rapidly evolving, with several notable advancements shaping their trajecto-
ries.

In monocular depth estimation, the introduction of Depth Anything v2
represents a significant evolution. This model leverages synthetic data for
training and employs large-scale pseudo-labeled real images to enhance its
predictive capabilities. Compared to its predecessor, Depth Anything v2 of-
fers finer and more robust depth predictions, demonstrating improved gener-
alization across diverse scenes and conditions. Future research may focus on
integrating other transformer-based modules and incorporating uncertainty
estimation techniques to produce confidence-aware depth maps, particularly
valuable in safety-critical applications.

Regarding 3D mesh reconstruction, recent innovations have addressed the
challenges of extracting accurate geometric representations from neural im-
plicit models. NeRFMeshing introduces a compact and flexible architecture
like TripoSR that distills volumetric 3D representations into geometrically ac-
curate meshes, enabling real-time rendering. Additionally, methods like Deli-

49

cate Textured Mesh Recovery employ adaptive surface refinement techniques
to generate high-quality textured meshes from images. Another notable de-
velopment is SuGaR (Surface-Aligned Gaussian Splatting), which optimizes
millions of tiny particles to align with surfaces, facilitating efficient 3D mesh
reconstruction and high-quality rendering. Another architecture designed to
extend the capability of TripoSR is the SF3D (Stable Fast 3D Mesh Recon-
struction with UV-unwrapping and Illumination Disentanglement), that is
a powerful and efficient model for fast feedforward 3D mesh reconstruction
from a single image.

Looking ahead, the integration of these advanced techniques promises to
further enhance the fidelity and efficiency of 3D modeling processes. Con-
tinued research into hybrid models and real-time rendering capabilities will
be pivotal in expanding the accessibility and applicability of 3D modeling
technologies across various workflows in digital production.

50

Bibliography

[1] Attention is all you need. https://arxiv.org/abs/1706.03762. [2
Aug 2023].

[2] Deep Learning-based Depth Estimation Methods from Monocular Image
and Videos: A Comprehensive Survey. https://arxiv.org/abs/
2406.19675. [28 Jun 2024].

[3] Depth Anything V2. https://arxiv.org/abs/2406.09414. [13 Jun
2024].

[4] Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data.
https://arxiv.org/abs/2401.10891. [19 Jan 2024].

[5] LRM: Large Reconstruction Model for Single Image to 3D. https :
//arxiv.org/abs/2311.04400. [9 Mar 2024].

[6] MeshXL: Neural Coordinate Field for Generative 3D Foundation Mod-
els. https://arxiv.org/abs/2405.20853. [31 May 2024].

[7] NeRF: Representing Scenes as Neural Radiance Fields for View Syn-
thesis. https://arxiv.org/abs/2003.08934. [19 Mar 2020].

[8] Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network. https://arxiv.org/abs/
1609.05158v2. [16 Sep 2016].

[9] Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumi-
nation Disentanglement. https://arxiv.org/abs/2408.00653. [1
Aug 2024].

[10] TripoSR: Fast 3D Object Reconstruction from a Single Image. https:
//arxiv.org/abs/2403.02151. [4 Mar 2024].

[11] Visualization of Convolutional Neural Networks for Monocular Depth
Estimation. https://arxiv.org/abs/1904.03380. [6 Apr 2019].

[12] Voxel Structure-based Mesh Reconstruction from a 3D Point Cloud.
https://arxiv.org/abs/2104.10622. [21 Apr 2021].

51

