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Abstract

In recent years there has been a surge in the development and adoption of Retrieval-
Augmented Generation (RAG) pipelines, as they constitute a cost-effective, flexible,
and highly customizable way to leverage the advantages of LLMs on private and
custom data. While modern RAG pipelines can work with almost any type of data,
existing document processing systems focus predominantly on textual content,
often ignoring visual elements. This text-centric approach may suffice when text
constitutes the main information carrier, but it fails to extract all meaningful in-
sights from documents like slide presentations, where content is equally distributed
across text, charts, images, and tables that often interact with each other to convey
complete information. Given the rising popularity and performance of multimodal
models and the lack of substantial integration in RAG pipelines, we chose to bridge
this gap by building an effective RAG pipeline capable of processing slide presenta-
tions in PDF format and accurately responding to queries requesting information
available in different data modalities. The main goal of this research is to identify
the optimal approach for embedding and retrieving multimodal slide content in
order to provide high-quality answer generation capabilities, with a particular focus
on questions that require information from multiple slides, while taking taking into
account hardware constraints in order to explore and develop techniques that reduce
computational cost without significantly compromising performance. To identify
the optimal techniques at each stage of the pipeline we employed a multi-step
approach, comparing, and if necessary developing, various techniques at each phase
from the embedding through the answer generation. Due to the lack of readily
available shared data, we designed two synthetic dataset generation techniques
based on state-of-the-art multimodal LLMs. The first technique focuses on gen-
erating question-answer pairs from the content of multiple slides simultaneously,
addressing a common limitation of existing methods that typically rely on single-
image inputs. The second technique introduces a novel anonymization process that
leverages recent multimodal LLMs to disguise sensitive or identifying information
in slide presentations. This method is capable of anonymizing individual slides and
eventually extending their context to generate coherent and complete synthetic
presentations. This technique is capable of interpreting and reproducing slide
content, including charts and visual layouts using LateX as a markup language,
ultimately producing synthetic slides and presentations that are visually indistin-
guishable from authentic ones. The main contribution of the project is a robust
RAG pipeline capable of embedding multimodal information extracted from slide
presentations and generating accurate answers based on the extracted multimodal
data. To support its implementation we introduce synthetic data generation and



anonymization techniques customized for slide-based documents. This research
aims to support the advancing field of enterprise document intelligence by providing
a comprehensive framework for multimodal content processing. The developed
pipeline also offers practical solutions for organizations seeking to easily extract
information from their slide presentations.
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Chapter 1

Introduction

The rise and rapid evolution of Large Language Models (LLMs) over the past few
years was a major breakthrough in the field of artificial intelligence, especially for
what regards Natural Language Processing (NLP) as a whole branch of research,
from language understanding to generation. These models have demonstrated
remarkable capabilities across a wide range of application fields, including question
answering, text summarization and data extraction.

However, despite their impressive performance on general-purpose tasks, LLMs
suffer from a significant limitation: they often hallucinate, generating false or
misleading content, when queried about data not present in their training corpus.
This limitation becomes critical in enterprise and private environments, where
the data of interest is typically proprietary, constantly evolving, and not publicly
available.

One way to mitigate this problem is to fine-tune the LLM on domain-specific
data. While this can yield strong results, it presents several practical drawbacks:
fine-tuning large models is resource-intensive in terms of time, computational
cost, and data management. Moreover, the process must be repeated whenever
the underlying data changes, making it infeasible for many real-world use cases
involving frequently updated content.

This challenge has led to the development and widespread adoption of Retrieval-
Augmented Generation (RAG) pipelines. These hybrid systems augment the
capabilities of LLMs by integrating external information retrieval mechanisms.
Rather than retraining the model, RAG pipelines retrieve relevant documents
from a knowledge base and feed them to the LLM during inference, enabling it to
generate informed responses grounded in the retrieved context. This approach is
cost-effective, scalable, and well-suited for enterprise applications.

Initially, RAG pipelines were primarily designed for textual corpora. Over
time, however, their scope has broadened to incorporate a wider variety of data
formats, including tables, structured databases, and even images. Despite these
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Introduction

advancements, most RAG systems still operate in a predominantly text-centric
manner, often neglecting the rich, complementary information encoded in non-
textual elements such as diagrams, tables, and visual layouts. This shortcoming is
particularly evident in slide presentations, which are widely used in professional
and academic settings. In slides, meaning is often conveyed through a combination
of text, visual elements, and spatial arrangements. A purely textual approach risks
overlooking or misinterpreting this multimodal information.

With the recent rise in performance and accessibility of multimodal models, there
is a growing opportunity, and necessity, to build RAG systems that can natively
handle multimodal content. However, there is limited research and practical
guidance on how to effectively integrate visual and textual features within a RAG
framework, particularly in the context of slide-based documents.

This thesis aims to address this gap by designing, implementing, and evaluating
a robust RAG pipeline capable of understanding and answering questions based on
multimodal slide presentations in PDF format. The goal is to support accurate and
contextually rich answer generation, especially for queries that require aggregating
information spread across multiple slides and across different modalities (text,
charts, tables, and images).

To tackle this challenge, we take a modular and comparative approach: we
analyze multiple techniques for embedding, retrieval, and answer generation, care-
fully evaluating their performance and trade-offs. Where necessary, we propose
novel techniques to enhance effectiveness or reduce computational cost without
significantly sacrificing accuracy.

Given the scarcity of public multimodal QA datasets tailored to slides, we also
introduce two custom synthetic data generation techniques. The first is designed to
produce multi-slide question-answer pairs using state-of-the-art multimodal LLMs,
while the second enables anonymization and realistic reconstruction of visual slide
content, including diagrams and chart layouts, using LaTeX as a markup language.
These tools allow us to simulate real-world scenarios while preserving data privacy
and control over evaluation.

The main contributions of this work include:

o A complete, modular, and efficient multimodal RAG pipeline tailored to slide
presentations;

o Novel synthetic data generation and anonymization techniques for multimodal
slide documents, including the generation of question-answer pairs that require
reasoning over multiple slides and the anonymization of individual slides using
multimodal LLMs and extension of anonymized slides to produce realistic,
coherent synthetic presentations;

o A comparative evaluation of answering techniques across both synthetic and

2



Introduction

open-source datasets, covering the well-studied single-slide QA setting as well
as the underexplored multi-slide QA scenario, including techniques such as
aggregation, re-ranking via chain-of-thought prompting, and score normaliza-
tion;

In the next chapter 2 we will first explore the key advancements that have enabled
the development of high-precision embedding models and multimodal LLMs, which
together form the foundation of modern RAG pipelines. In chapter 3 we will then
detail the methodology adopted to design, implement and evaluate our custom
pipeline from scratch. Finally, we present the anonymization techniques developed
to transform real-world slide presentations into shareable synthetic datasets while
preserving their structural and informational integrity.



Chapter 2

Related Work

The integration between Large Language Models and Retrieval-Based techniques led
to the emergence of the Retrieval-Augumented Generation (RAG) paradigm, which
has rapidly become a staple of Natural Language Processing (NLP) applications
that require both scalability and precision. These systems combine the capabilities
of LLMs to understand and elaborate texts with external and private knowledge
sources leading to responses that are both user-accessible and grounded in factual
context. At the same time, remarkable progress in the field LLMs have expanded
their reasoning capabilties enabling them to operate over different data modalities
spanning from pictures to multimodal data including text, charts, tables and images.
Recent developments made it possible for LLMs to reason on multiple images at
the same moment. Retrieval Techniques are the other pillar of RAG pipelines.
Their performance has a direct impact on the effectiveness and on the quality
of the generated answer. This field has seen a rapid advancement in the past
years going from traditional methods such as BM25 to more advanced retrieval
methods employing high-dimensional vector spaces capable of representing text,
visual, and multimodal content with greater nuance. The advancement of these
fields went hand-in-hand with the development of supporting datasets that allowed
them to expand their scope. With more capable LLMs and retrieval techniques,
more complex datasets were produced allowing researchers to test their Retrieval
techniques on long texts, pictures, documents and their LLMs on complex tasks
such as reasoning on multiple images.

In this Literature Review we begin by examining the evolution of Retrieval
Techniques and LLMs. We then investigate how their progress led to more complex
and sophisticated RAG pipelines and how the availability of diverse and task
specific datasets supported this progress.
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2.1 Evolution of Retrieval Techniques

Embedding and Retrieval Techniques are one of the two foundational components
of the Retrieval-Augmented Generation (RAG) pipelines. Their performance in fact
determines the relevance, precision, and effectiveness of the information employed
by the LLM to generate the answers. While LLMs such as GPT [1], Gemini[2] and
LLaMA [3] are capable of reasoning and text generation, the overall quality of the
answer depends on how precise and relevant the retrieved context is. This section
will focus on the developments of Retrieval Techniques from their employment
in databases and electronic indexing systems to the most modern and advanced
approaches. In the end, we will delve into the necessity for multimodal retrieval.

2.1.1 Background and Early Methods

Retrieval Techniques before the advent of Al-Powered Search Engines relied on
keyword matching and sparse representations, employing different techniques to
evaluate the relevance of this match. One of the first techniques to assess the
relevance of keywords is inverse document frequency (IDF) [4]. This technique paired
with term frequency (TF) produces a first measure called term frequency—inverse
document frequency (TF-IDF) which offers a first measure of the importance of a
word to a document in a collection or corpus. A high-level definition of tf-idf could
be the following:

TF-IDF(t,d, D) = TF(t,d) x IDF(t, D)
where:

o TF(t,d) is the term frequency of term ¢ in document d.

o IDF(t,D) = log (W) is the inverse document frequency, with N

being the total number of documents in the corpus D.

Bulding on TF-IDF, the Vector Space Model (VSM) [5] represents documents
and queries in a high-dimensional space where each dimension corresponds to
a distinct term in the vocabulary. Retrieval is then performed by calculating
the similarity between the query and the document vectors. A typical similarity
employed in the calculation is the cosine similarity:

sim(q, d) = qu
111 - il

The Vector Space Model offers flexibility in how documents are encoded, support-
ing simple representation such as binary vectors, where each term in the vocabulary
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is represented as 1-present or O-absent in a document, and Bag-of-Words (BoW),
where term frequency is used directly as the weight.

A more recent development of these retrieval models is the BM25 (Best Match 25)
[6] which builds directly on the tf-idf model refining it by introducing mechanisms
for term saturation and document length normalization. A high-level formula for
the BM25 can be provided as follows:

B . flt,d) - (ks +1)
BAZ5(0, 4) = ;IDF@ Ftd) + ke (1=b+b- 29

avgdl

N =y 40,
IDF(#) = log ("“LO5 + 1)

Where:

o f(t,d) is the term frequency of term ¢ in document d,

|d| is the length of document d in words,

avgdl is the average document length in the corpus,

ky is a term frequency scaling parameter, typically set between 1.2 and 2.0,

b is the document length normalization parameter, usually set to 0.75.

For their being simple, easily interpretable and computationally efficient, these
systems are still heavily employed in search engines such as Apache Lucene, Apache
Solr and ElasticSearch. However, their reliance on exact term matching and sparse
representation of the corpus, limits their ability to represent and capture semantic
relationships, and their performance in tasks requiring contextual knowledge, not
to mention that these methods only function with textual data cutting out all other
data modalities.

2.1.2 Dense and Neural Networks Enabled Embeddings

The limitations in capturing the context information have been addressed by
innovative, neural networks based approaches in the past years. These techniques
instead of representing the data as sparse vectors where each entry represents an
exact word model the data as vector in high-dimensional spaces where the similarity
between documents or between query and document can be measured using vector
proximity

The first unsupervised techniques to employ this approach were Word2Vec
[7] and GloVe [8]. These techniques were based on the distributional hypothesis
which states that given a target word we could likely infer its semantic meaning by

6
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its surrounding context. Word2Vec’s key idea relies on training a neural network
to predict the surrounding words of every word in a dictionary or on training
a neural network to predict the target word given its surrounding words in the
dictionary. The first training technique used by Word2Vec is called the Skip-gram
model (Skip-Gram) which aims to predict the context given a word:

P(wc—m7 sy We—1, Wet s - - ’wc—‘rmlwc) = H P<wc+j|wc) (21)

where w, is the center word, m is the window size, and w.,; represents the context
words.

The second architecture is called Continuous Bag Of Words (CBOW) which
aims to predict a word given its surrounding context.

P(we|we—my -+ oy Wer1, Weg1s -+ Werm) (2.2)

The learned weight matrices obtained from these neural networks are then extracted
and used as word embeddings. These embeddings are capable of capturing semantic
relationships in the vector space.

GloVe (Global Vectors), as the name says, implements a more global approach
by first constructing a word co-occurrence matrix that counts how often each
pair of words appears together across the entire corpus. This matrix captures
global statistical information about word relationships, rather than processing local
windows one at a time like Word2Vec. GloVe then trains embeddings by optimizing
the objective function:

Vv
J =" f(Xi)(w] 10 + b; + bj — log Xij)? (2.3)

4,j=1

where X;; represents the co-occurrence count of words ¢ and j and @, are the
word vectors, b; and Z;j are bias terms, and f(X;;) is a weighting function that
prevents very frequent co-occurrences from being over-weighted.

These early approaches, even if capable of representing data in a more efficient
way, suffered from the limitation of representing documents as simple aggregations
of word vectors, failing to fully capture the meaning of the surrounding context.

The big leap forward came with the development of transformer-based models
capable of generating contextual embeddings. BERT (Bidirectional Encoder Rep-
resentations from Transformers) [9] led a revolution in the field by providing word
representations that could have different embeddings depending on its surrounding
context.

The architecture of BERT is built on part of the Transformer [10] architecture,
specifically the encoder. The transformer encoder uses self-attention mechanisms

7
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to capture the relationships between all words and positions in a sentence because
they together convey the semantical meaning. The core of BERT’s contextual
understanding capabilities can be traced back to its multi-head self-attention
mechanism:

Attention(Q, K, V) ft <QKT> V (2.4)

ention(Q, K, V') = softmax [ —— .
Vg,

where ), K, and V are the query, key, and value matrices respectively, and dj, is

the dimension of the key vectors. Multi-head attention allows the model to attend

to different representation subspaces:

MultiHead(Q, K, V) = Concat(head, ..., head,) W (2.5)
where each head is computed as:
head; = Attention(QW=, KWK vivY) (2.6)

BERT introduces bidirectional training through its Masked Language Modeling
(MLM) objective, where random tokens in the input are masked and the model
must predict them based on both left and right context:

Lyim = — Y i € masked log P(w;|wy;) (2.7)

where w\; represents all tokens except the masked token w;. Additionally, BERT
employs a Next Sentence Prediction (NSP) task to understand sentence relation-
ships:

Lnsp = — log P(IsNext|CLS) (2.8)

where the [CLS] token’s representation is used to predict whether two sentences
follow each other in the original text. The final BERT training objective combines
both tasks:

Lperr = Lyvom + Lxsp (2.9)

This pre-training allows BERT to learn different representations for each word
based on the context. The generated representations are dependant on the context
and on the corpus used for the training which means that BERT that can be
fine-tuned for various downstream tasks employing different corpus, such as in
our case, passage retrieval. BERT’s impact on retrieval was very deep because it
provided a way to encode entire passages taking into account the meaning of the
context and not just the words themselves.

One of the first approaches to employ BERT as an embedder and retriever was
DPR (Dense Passage Retrieval) [11]. In this case the model employs two different
BERT encoders: one to encode the passages and another one to encore the user
queries. The system aims to maximize the similarity between the query embeddings
and the relevant passage embeddings while minimizing it for the irrelevant ones:

8
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sim(q, p) = Eq(q)" Ep(p) (2.10)

where Fg and Ep are the query and passage encoders respectively. The training
objective uses a contrastive loss function:

esim(a,p™)
L=—lo (2.11)

esim(ap™) 371 esSim(g:p; )

where p™ is the positive passage and p; are negative passages for query q.

2.1.3 Advanced Neural Retrieval Architectures

Building upon the success of DPR, several advanced neural retrieval architectures
have been developed to address specific limitations and improve performance.
ColBERT (Contextualized Late Interaction over BERT) [12] introduced a novel
approach that combines the efficiency of sparse retrieval with the effectiveness
of dense representations. Instead of computing a single vector representation for
each document, ColBERT generates token-level embeddings and performs late
interaction through efficient vector operations:

sim(q, d) = ngleajc E.- E; (2.12)

1€q

where E; and Eg represent the embeddings of the i-th query token and j-th
document token respectively.

Another significant advancement is the development of learned sparse retrieval
methods such as SPLADE (SParse Lexical AnD Expansion) [13], which combines the
interpretability of sparse methods with the semantic understanding of dense models.
SPLADE uses transformer models to predict importance weights for vocabulary
terms, creating sparse representations that can capture semantic relationships
through term expansion:

SPLADE(d) = ReLU(MLP(BERT(d))) ®log(1 + ReLU(MLP(BERT(d)))) (2.13)

where ® denotes element-wise multiplication and the final representation is sparse
due to the ReLU activation.

2.1.4 Multimodal Embeddings

Alongside the development of textual transformers and embedders, multimodal
embedders quickly emerged to produce vector representations of data coming from
different representations, enabling for similarity search across modalities. Among
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the pioneering Vision-Language models CLIP (Contrastive Language-Image Pre-
training) [14] demonstrated how it was feasible to represent joint embeddings for
text and images in the same vector space. CLIP was originally trained on a large
dataset of image-text pairs using contrastive learning, a technique still widely
employed and influential.

sim(I;,T;) /7 sim(1;,T3)/7

€ (&
. +1o .
E:é\le esim(13,15) /7 8 Zj\[:l esim(l;, ;) /7

1
LCLIP = ¥ > i=1"|log (2.14)

where I; and T; are image and text embeddings, 7 is a learnable temperature
parameter, and N is the batch size.

CLIP paved the way for multimodal embedding models and extended and
improved versions did not take long to arrive. Such as ALIGN [Jia2021] which
made the training of such models more extensive and less human dependant by
scaling the training data to over one billion of noisy image-text pairs.

Florence [15] afterwards produced a model that is capable of operating effectively
on different types of tasks such as such as retrieval and VQA with minimal to no
fine-tuning.

Recent developments proposed in BLIP (Bootstrapping Language-Image Pre-
training) [16] improved the training even further balancing corpus size and captions
precision. To retain only relevant text-image pairs for the training a holistic
approach was adoped leveraging the image-captioning and image-caption quality
evaluation capabilities of LLMs. BLIP-2 [17] afterwards improves the architecture
by employing a frozen image encoder and a frozen large language model and
allowing them to communicate efficiently via a lightweight Transformer module
called Q-Former. The Q-Former takes a set of learnable query embeddings q and
visual features v from the image encoder, producing output embeddings h such as:

h = Q-Former(q, v) (2.15)

2.1.5 Specialized Embedding Models for Documents

Documents, such as slides presentations, reports and forms present their unique
challenges. This need led to the development of specialized embedding models.
LayoutLM [18], with its following versions LayoutLMv2 [19] and LayoutLMv3
[20] develop and refine a framework to embed text, visual information and layout
together. The overall embedding phase requires multiple steps where the document
pages are parsed using OCR and the text as well as the images with their relative
position in the page are all embedded together. In the paper these embeddings are
referred to as 2-D position embeddings and image embeddings:

h; = LayerNorm(w; + p;” + p??) (2.16)
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where w; is the word embedding, p;? is the 1D position embedding, and p?”
represents the 2D spatial position embedding for token 1.

2.1.6 Latest Developments

The main challenge with the proposed multimodal embeddings is their lack of
native encoding across modalities and the complexity of the processing techniques
that employ intermediate steps such as OCR for text and images extraction

A recent model: Document Screenshot Embedding (DSE) [21] addresses these
limitations by proposing a novel embedding methodology that unifies the different
formats and modalities of documents into a single input format: screenshots. Unlike
methods that require various tools to extract text and images, DSE directly encodes
document screenshots using large vision-language models, this allows the embedding
to natively preserve all the document including text, images, and their relative
layout, without the need for any content extraction pre-preprocessing steps. DSE
internally employs a bi-encoder architecture, where a document screenshot and a
user text query are encoded into dense vectors in the same vectorial space using
both vision and text encoders. The similarity between query and document can be
afterwards computed as:

. Etext ((D : Evision (dscreenshot)
sum{q, dscreens ot) = 2.17
<q " t) |Etext (Q) | : |Evisi0n (dscreenshot> | ( )

where Elio and Fyigon are the text and vision encoders respectively. A key enabler
that allowed DSE to be so powerful and yet exceptionally small is the recent
developoment of a new generation of lightweight large vision-language models
(VLMs), such as Phi-3-vision [22], which employ novel techniques capable of
representing images with more patches by cropping them into sub-images. This
allows for the capture of more fine-grained textual and visual information compared
to models like CLIP, which might only support fixed patch sequences.

Experimental results on the DSE paper show how the model outperforms
traditional OCR-based text retrieval methods by more than 15 points in nDCG@10
in slide retrieval tasks. This specific result highlights how suitable this model is in
scenarios where visual and textual elements are both equally relevant. Even for
documents more focused on text such as academic papers, DSE still demonstrates
satisfying performances, indicating its ability to effectively encode text directly
from the image. We can see how DSE provides a model very much suitable to
represent slide presentations while being careful about resource usage.

Another paper that adopts a similar approach with very promising results
proposes the ColPali [23] embedder and retriever. The approach is similar to DSE
where the final goal is to generate embeddings over the whole page as an image
rather then separating its components with OCR and process them singularly.
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As also mentioned in the paper, ColPali significantly outperforms traditional
textual retrieval pipelines and contrastive VLMs on ViDoRe, a document based
dataset proposed in the same paper, demonstrating the potential benefits of directly
indexing visual features for efficient and effective document retrieval.

In addition to these screenshot-based approaches, our work also incorporates
E5-V [24], a recently proposed universal embedding framework. E5-V leverages
only text-pair data (so without using text-image pairs) to train a multimodal
embedding model using MLLMs, relying on prompting strategies that enable it
to jointly embed images and text into a shared space, without requiring explicit
multimodal training data. This method enables significant reductions in training
complexity (up to 95% less compute) while producing highly aligned text—-image
representations.

Another model we integrated in our pipeline is Stella [25], a distilled embedding
model designed to match state-of-the-art performance at a fraction of the computa-
tional cost. Developed via multi-stage knowledge distillation from top-performing
models on the MTEB [26] benchmark, Stella stands out for its high performance
in text and multimodal retrieval while maintaining low latency and memory usage.
This model is particularly useful in low-resource environments.

2.2 Evolution of LLMs

The development of Large Language Models (LLMs) represents one of the most
crucial steps in artificial intelligence. Their introduction allowed Natural Language
Processing to move from rigid statistical or rule-based models to models capable
of nuanced reasoning and contextual understanding. In the latest years we have
seen outstanding advancements in the field with models capable of operating and
reasoning on multiple data modalities seamlessly and with exceptional performance.
This retrieval was another key enhancer for the Retrieval-Augumented Generation
task, as the improved capabilities of the LLM allowed the retrieved context to be
translated to a meaningful answer in a more effective way.

2.2.1 Early Foundations and Transformer Architecture

The starting point for modern LLMs can be traced back to the introduction of
the Transformer architecture [10] which led a revolution in the natural language
processing through the introduction of the attention mechanism. Its architecture
allowed the corpora to be processed in parallel and to handle long-range depen-
dencies. Specifically, the self-attention mechanism allows the model to weigh the
importance of different tokens within the sequence when encoding each one of them,
resulting in representations that are contextually rich and more accurate.
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Building on the Transformer architecture, GPT [27] introduced the autoregressive
generation approach which became the foundation for modern large language
models. This architecture, even if groundbreaking focused focused only on text
comprehension and generation and operated with relatively limited parameter sizes
and shorter context windows compared to current standards.

2.2.2 Scaling Laws and the Emergence of Large-Scale Mod-
els

During the following years model parameters and training data grew almost ex-
ponentially. This growth was driven by empirical observations of scaling laws
(28], which demonstrated consistent performance improvements with increasing
model size. GPT-3 [29], with its 175 billion parameters, showcased the impressive
capabilities of LLMs that could now be used as general LLMs with complex rea-
soning capabilities, that were not tied to single domains anymore. The fine-tuning
phase in most cases might have been replaced by a simple few-shot learning. This
growth in the size of models continued over the years culminating in models such
as PaLM [30] and even larger architectures that pushed the boundaries of what
was computationally feasible.

2.2.3 The Multimodal Revolution

The transition from text-only to multimodal represents one of the most crucial
steps for LLM develoment and for their integration with RAG pipelines.

The transition from text-only to multimodal capabilities represents perhaps the
most significant recent advancement in LLM development. Early vision-language
models like CLIP [14] demonstrated the feasibility of joint text-image understanding
through contrastive learning, establishing foundational techniques for multimodal
representation learning.

DocFormer [31] represents one of the first examples of multi-modal LLMs
specifically fine-tuned for document understanding, specifically for the Visual
Document Understanding task (VDU). This LLM is capable of processing text,
vision and spatial features simultaneously. Among its key innovations, the model
uses a novel attention mechanism that incorporates relative spatial relationships
between document elements.

GPT-4V [1] marked a very significant moment in the advancement of multimodal
AI, mainly due to its remarkable performance that enabled advanced reasoning
in text and images seamlessly. This model demonstrated remarkable capabilities
in visual question answering (VQA), document analysis, and complex multimodal
reasoning tasks. The following release of GPT-40 further enhanced these capabilities
with improved context handling and more efficient multimodal processing.
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Google Gemini [2] adopted a different approach, natively training the models to
be multimodal. They were in fact trained from scratch on multimodal data rather
than adapting textual models. The latest series of Google Gemini models (2.5) is
designed for multimodal tasks and is capable of processing text, images, audio and
code in a unified multimodal manner.

Latest Anthropic’s Claude models are also natively multimodal and very capable
with mixed modalities.

2.2.4 Open-Source Multimodal Developments

On the Open-Source side many powerful models have been deveveloped and refined
over the years. Starting with LLaVA [32] and LLaVA-NeXT [33]. These models
were capable of working with images and texts in the same prompt in an effective
way even if they were not natively designed to handle multiple images per prompt.
These models were also relatively lightweight and executable even in resource
constrained environments.

Alibaba recently presented a series of powerful open-source multimodal models:
Qwen-VL [34]. These models are capable of reasoning across multiple input images
and giving meaningful outputs even working with lower resolution source images.
The recent Qwen2.5-VL [35] further improved the 2.0 version capabilities with better
reasoning and understanding capabilities. The bigger versions of these models have
achieved performance comparable with the leading commercial alternatives such
as OpenAl GPT, Google Gemini and Anthropic Claude while maintaining open
accessibility.

Another particularly relevant and recent open-source alternative is the InternVL
series [36][37]. The largest version of the family, InternVL2_5-78B, is the first open-
source MLLMs to achieve over 70% on the MMMU benchmark [38], matching the
performance of leading closed-source commercial models. The recent InternVL3 [39]
further enhances multimodal capabilities through native multimodal pre-training,
by improving its ability to handle longer and more complex inputs, and optimizing
performance at inference time, while also extending its practical capabilities to
include tool use, graphical user interfaces use, and industrial applications.

Another model particularly relevant for resources constrained environments is
Mini-InternVL [40] which was capable of achieving 90% of the performance of
the full size model with only 5% of the parameters, making it an ideal model to
deploy on consumer-grade hardware. This work highlighted the importance and
most importantly the potential of model compression and efficient architectures for
practical applications.

14



Related Work

2.2.5 Current State and Future Directions

Only in the past two years we have seen the rise of many highly capable multimodal
models and we see how native multimodal pre-training is becoming a norm in the
development of new models. New models maintain their old textual abilities while
expanding their reasoning and understanding on complex document modalities
such as documents, audio, video and even 3D data [41]. We start seeing even LLMs
capable of tool use interactions [42].

In our specific case, for RAG applications, modern multimodal LLMs offer
unprecedented opportunities for developing powerful pipelines capable of processing
and understanding complex documents and distillate information for the final user
queries. The ability of new LLMs to simultaneously reason about textual content,
visual elements, and their relationships enables more comprehensive information
extraction and retrieval than was previously possible with text-only systems.

The parallel development of powerful commercial and open-source models ensures
a competitive landscape capable of producing a wide variety of models with all
kinds of new architectures and improvements. We see also how efficiency and
hardware constraints are becoming relevant research topics which will drive the
industry to produce new options for different deployment scenaraios.

These new open-source multimodal and efficient models are clearly the ideal
components for processing complex documents like slide presentations, where
information is distributed across multiple modalities and requires integrated under-
standing for a holistic approach.

2.3 Evolution of RAG pipelines

The development of Retrieval-Augmented Generation (RAG) systems radically
changed the way in how language models access and use external knowledge.
Throughout the years its architecture evolved and expanded from its foundational
introduction as a text-only pipeline to the sophistical architectures of today capable
of retrieval and generation across diverse data modalities.

2.3.1 Foundational RAG Architecture

The first RAG architecture and founding model was proposed in the paper "Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks" [43]. In this paper a
hybrid approach that combines the static LLM capabilities with dynamic knowledge
retrieved from external corpora. The original architecture was composed of two
main components: a retrieval system based on DPR (Dense Passage Retrieval) and
a sequence-to-sequence generator that generated the final answer based on the user
query and on the retrieved context.
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This original approach already targeted some key issues with LLMs such as
always accessing up-to-date information and domain-specific knowledge not available
natively in the chosen LLM. This was especially relevant on knowledge-intensive
tasks or in tasks leveraging non-public data. This work laid the bases for modern
RAG system: separation of knowledge storage and knowledge utilization, the
importance of dense retrieval over sparse methods and the integration of retrieved
context with the generation mechanism.

2.3.2 Early Extensions and Database Integration

After the first proposal of the RAG framework, researches recognized the potential
and flexibility of the design. Throughout the years many extensions came that
included different types of data sources. Among the first extensions some leveraged
LLM capabilities also during the retrieval phase translating user natural language
questions into SQL queries either through few-shot learning or through zero-shot
learning, this enabled RAG systems to access structured informations stored in
relational databases [40] [44] These approaches laid the groundwork for multi-modal
data integration and demonstrated the flexibility of the RAG paradigm.

The subsequent development of more sophisticated retrieval mechanisms, in-
cluding hybrid sparse-dense approaches and improved indexing end embedding
strategies, further improved and fine-tuned the accuracy of the retrieval basedon
the domain. These early improvements focused primarily on textual content, even
if of different nature, but established architectural patterns that would later be
foundational for multimodal extensions.

2.3.3 RAG on Tabular Data

Some specific tasks are worth of a mention due to their unique nature. One of
these is the RAG task on tabular data which was first addressed using Dense
Table Retrieval [45]. This research lays the foundation for open-domain Question
Answering (QA) over tables. At its core it employs a two-step framework: a
retriever that selects a small subset of candidate tables, followed by a machine
reader that extracts the correct answer. Unlike approaches for free text, DTR
modifies dense retrieval methods to better handle semi-structured tabular contexts.
A key design choice was the inclusion of two distinct TAPAS Retriever [46] instances,
one for the query and one for the table. Another key contribution of this paper is
the production of a specific QA Dataset based on tabular data: Table QA dataset
(NQ-TABLES), consisting of 11K examples where answers reside in tables.

A subsequent paper [47] though casted doubts about the effective necessity
of using an ad-hoc architecture to process tabular data and showed how DPR
performs well without any table-specific design or training, and even achieves
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superior results compared to DTR when fine-tuned on properly linearized tables.
The study explored three modules to explicitly encode table structures—auxiliary
row/column embeddings, hard attention masks, and soft relation-based attention
biases—but none yielded significant improvements. The conclusion is that table
retrieval emphasizes content rather than table structure, suggesting that future
developments can build upon successful text retrievers, and table-specific model
designs should be carefully examined to avoid unnecessary complexity.

Among the most recent papers on the matter THoRR (TableHeader for Retrieval
and Refinement) [48] seems to cast a new light on the topic by proposing a new
methodology. At its core THoRR operates in two sequential phases: the retrieval
phase, in which only the table headers are considered and retrieved and the
refinement phase where the selected headers and information are filtered and used
to create another table that will form the context to be fed to the LLM. This two
phase method helps to reduce hallucinations in the final results.

2.3.4 RAG on Graphs

Another type of data that might be challenging to process with traditional method-
ology is represented by Graphs that given their intrinsic nature often provide
information based on their structure and on the arrangement of nodes and relation-
ships in addition of its content. When dealing with textual graphs these challenges
cannot be natively addressed leveraging Graph Neural Networks (GNNs) or Graph
Databases and that is the challenge that G-Retriever [49] aims to tackle. A key
contribution is the introduction of a novel Graph Question Answering (GraphQA)
benchmark, which targets complex reasoning across diverse applications, including
common sense reasoning, scene understanding, and knowledge graph reasoning.
Furthermore, it develops a methodology to directly tackle challenges like scalability
and hallucination by selectively retrieving relevant subgraphs via a novel Prize-
Collecting Steiner Tree optimization, thereby enabling complex question answering
over real-world graphs. The framework integrates the strengths of Graph Neural
Networks (GNNs), Large Language Models (LLMs), and RAG components.

2.3.5 RAG Improvement Techniques

Over the years many specific improvement techniques have been proposed to
improve specific parts of the RAG pipelines. These techniques can have a different
nature such as including new data in the context such as web data and relying on
Knowledge Graphs [50] during the retrieval phase instead of relying only on dense
embeddings. The mentioned paper also integrates a self-assessment mechanism
for LLMs to evaluate the trustworthiness of generated answers, aiming to reduce
hallucinations.
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Another line of research instead focuses on a blend of searching techniques in
the Retrieval phase [51] to extend the usual dense embeddings search with other
strategies: keyword-based (BM25), dense vector-based (KNN), and semantic-based
sparse encoders (Elastic Learned Sparse Encoder - ELSER) The main innovation
of the paper is the proposal of hybrid queries (e.g., Cross Fields, Most Fields, Best
Fields, Phrase Prefix) that leverage the strengths of each index.

Complementary approaches focus on optimizing the user query [52] using query
expansion techniques. The main goal is to address the problem of hallucinations in
RAG systems which are often induced by vague or ambiguous queries which fail to
accurately capture user intent. The core idea is to refine queries using LLMs to
achieve better precision in document retrieval.

Other researches [53| investigate the impacts of noise in the retrieval phase. A
key finding of the research is that the retriever’s highest-scoring documents that
are not directly relevant to the query (distracting documents) negatively impact
the LLM'’s effectiveness, leading to accuracy degradation, even with just one such
document. The research hints the necessity to revisit common assumptions in
Information Retrieval systems for RAG, inferring a trade-off between relevant and
irrelevant documents. The optimal strategy appears to be retrieving a minimal set
of relevant documents and then supplying random documents until the context
limit is reached. The paper suggests that adding random documents might improve
the LLM’s precision by increasing attention entropy, potentially preventing "entropy
collapse" and inducing enhanced accuracy.

2.3.6 Complete Multimodal Approaches

The necessity to develop multimodal RAG pipelines pushed researchers to find
ingenious solutions and adopt different strategies for data retrieval and answer
production.

MuRAR (Multimodal Retrieval and Answer Refinement) [54] is a good example
of these innovative strategies. Its pipeline involves three main steps:

o First, text answer generation, where relevant text documents are retrieved
and an LLM creates an initial text response.

e Second, source-based multimodal retrieval identifies and retrieves relevant
multimodal data from the original documents, using contextual and LLM-
generated text features for these elements.

o Finally, multimodal answer refinement uses an LLM to integrate the retrieved
multimodal data into the initial text answer, producing a coherent and inter-
active multimodal output that goes beyond plain text responses.
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MuRAR leverages the precision and efficiency of textual LLMs in a fully multi-
modal context, this strategy though presents a noted limitation that while source
attribution ensures precision, it can result in low recall if relevant multimodal data
is not in the same section or web document as the initially retrieved text snippet.

2.3.7 RAG Limitations

Traditional RAG systems though have their limitations and often find it challenging
to handle complex real-world queries. They excel at retrieval punctual information
but they may struggle with global knowledge. To overcome these limitations,
GraphRAG [55] proposes a new approach that enables the user to query over
large text corpora. GraphRAG first constructs a knowledge graph from source
documents using an LLM, where nodes correspond to key entities in the corpus
and edges represent relationships between those entities. It then partitions this
graph into a hierarchy of communities of closely related entities, and an LLM
generates community summaries in a bottom-up manner, recursively incorporating
lower-level summaries. Finally, GraphRAG answers queries through a map-reduce
process on these community summaries, generating partial answers that are then
combined into a final global answer.

Along the same lines of the previously mentioned paper, the "Summary of
a Haystack" (SummHay) task [56] a query-focused summarization benchmark
designed to assess systems’ ability to precisely summarize large sets of documents.

Another very common vulnerability in real-world documents is the presence
of typos in the corpora which can lead to lower precision in the retrieval phase
[57]. To consistently test their hypothesis the authors built a black-box adversarial
attack method called GARAG (Genetic Attack on RAG) which employs different
techniques to progressively introduce realistic typos in documents and see how much
these typos can impact the performance of the RAG pipeline. The results show
how GARAG consistently achieves high attack success rates (approximately 70%)
across various QA datasets and significantly depletes the end-to-end performance
of RAG systems, with an average reduction of 30% in Exact Match (EM). The
findings highlight that lower perturbation rates pose a greater threat.

2.3.8 New Approaches for PDF files and documents

The Retrieval and Generation task on pdf documents and files with all its pecu-
liarities is at the same time challenging a big opportunity for research given its
immediate real-world impact. This field presents its own challenges such as data
coming in different modalities and each modality can convey different information
that needs to be also merged with the overall context.
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To address the task of generating results from documents that contain relation-
ships between images and texts MuRAG [58] is a solid proposal that that addresses
this challenge by first extracting text from documents, and for images, it converts
each page of the document into a single image. This step is designed to maintain
the intrinsic relationship between images and text present on the same page. These
"page-images" are then encoded with an attached detailed summary to provide rich,
relevant context for LLMs. Embeddings of both text chunks and these processed
"image-docs" are generated and stored in a vector store. At retrieval time textual
and images can then be queried together.

VisRAGI[59] also introduces a novel RAG paradigm specifically designed for
multi-modality documents. Its core innovation is its VLM-based RAG pipeline,
where the document is directly embedded using a VLM as an image, effectively
bypassing the parsing stage and eliminating potential information loss or distortion.
The VisRAG pipeline consists of a VLM-based retriever (VisRAG-Ret) and a VLM-
based generator (VisSRAG-Gen). VisRAG-Ret maps text queries and document
images into the same embedding space and it can handle multiple retrieved pages
using techniques like page concatenation or weighted selection for single-image
VLMs, and direct multi-image input for capable VLMs. In the paper interesting
and refined weighting techniques are employed to optimize the input that is passed
to the VLM-based generator. The developed embedder proposed in VisRAG
stored data more efficiently compared to the aforementioned ColPali embedder by
employing a higher dimensional embedding space.

2.4 Datasets for Multimodal LLMs

The development of multimodal LLMs and multimodal RAG pipelines has been
intrinsically linked to the evolution of training and evaluation datasets. Early
datasets focused only on the link between text and image but rapid progress in the
field, have created the necessity for more sophisticated benchmarks that require
complex reasoning across multiple modalities.

2.4.1 Early Foundations and Simple Multimodal Tasks

The initial wave of multimodal datasets established fundamental benchmarks for
image-text understanding. Datasets such as MS-COCO [60] and Flickr30K [61]
provided basic image captioning tasks, where models were required to generate
descriptive text for single images. Visual Question Answering (VQA) datasets like
VQA v1.0 and v2.0 [62, 63] introduced question-answering capabilities for both
images and videos but remained limited to straightforward visual recognition tasks.
These early datasets typically required minimal reasoning and focused on object
recognition, scene or video description, and basic attribute identification.
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2.4.2 Transition to Complex Visual Reasoning

As multimodal models grew more powerful, the research community recognized
the need for datasets that provided challenges beyond simple ones in a new way,
forcing them to reason and. This transition marked the emergence of datasets that
required deeper visual understanding and logical reasoning.

Datasets like PlotQA [64] and FigureQA [65] were among the first to propose
new challenges such as complex visual reasoning over mixed data sources. These
datasets in fact require the model to reason over charts and plots and extract
information that requires multi-step reasoning and legend interpretation based on
a mix of visual and textual data.

Further developments like TextVQA [66] and ST-VQA [67] proposed new chal-
lenges that required the model to read and understand text within an image and
reason on the correlation between the two.

ChartQA [68] represents a significant milestone in this evolution, specifically
targeting the comprehension and reasoning over charts. This dataset requires
models to interpret various chart types and extract numerical information, perform
calculations, and answer questions that demand understanding of relationships
between data points. ChartQA requires the model to reason beyond simple visual
recognition with tasks that involve mathematical reasoning and data interpretation,
making it particularly relevant for slide presentations where charts often convey a
big part of the message.

2.4.3 Documental Datasets and Layout Understanding

Documents in multimodal reasoning provided a unique challenge as textual data is
very abundant and often easily parsable but images are still very much present and
often convey key parts of the message. In more elaborated documents the layout
and the relationship between text and images is often relevant and should be taken
into account for effective reasoning.

DocVQA [69] was proposed as a benchmark for document scans visual question
answering. This dataset was pretty challenging as it required models to understand
document layouts, read printed text and handwritten text, extract information
from tables, forms, and figures, and answer questions based on this multimodal
information.

InfographicVQA [70] extended document understanding to infographics. In this
case the challenge was slighly different as in infographics visual design elements and
in general visual data convey almost the same amount of information as textual
data. This dataset requires models to navigate complex layouts and integrate data
from multiple visual and textual elements.

The DocVQA [71] dataset specifically addresses multi-page document under-
standing. In the paper the focus though is on single page and whole document
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questions lacking examples referring to a specific subset of the pages. In any case
the capabilities require to perform well on this dataset are particularly crucial for
slide presentatio processing, where information is distributed across multiple slides
and often the overall meaning of the presentation is crucial to obtain the right
context.

2.4.4 Multi-Document Datasets and Cross-Modal Reason-
ing

With models becoming more powerful and natively capable of reasoning across
different data modalities we see how benchmarks cross-modal reasoning are crucial
in this development

Datasets like MultiModalQA [72] offer a unique challenge where in the dataset
it is possible to find images containing various types of data including images,
tables, and text passages. The information in this diversified dataset must then be
processed to answer complex questions that cannot be resolved using any single
modality or document.

The WebQA dataset [73] reiterates the challenge by presenting real-world web-
based question answering scenarios where models must navigate multiple web pages,
understand diverse content types and layout formatting and integrate information
across all these different modalities to produce the final answer.

SEED-Bench [74] presents a comprehensive evaluation framework that spans
multiple dimensions of multimodal understanding, including spatial reasoning,
instance reasoning, visual reasoning, and text recognition. This approach provides
a holistic assessment of model capabilities across diverse multimodal tasks.

2.4.5 Specialized Reasoning and Domain-Specific Challenges

With time the diversification and specialization of datasets gave birth to specific
challenges pertaining to a single domain or focused on a very specific sub-part of
multimodal reasoning.

MMBench [75] provides a comprehensive suite that helps to evaluate the single
various aspects of multimodal understanding, including spatial reasoning, temporal
understanding, and complex visual-linguistic comprehension.

ColPali [23], particularly relevant to document retrieval applications, introduces
the Vidore dataset which contains only QA pairs on scientific pages papers. These
pairs rely heavily on the combination of textual and visual data in the page.
Similarly to Vidore also SPIQA (Scientific Paper Image Question Answering) [76],
as the name says, proposes a dataset on scientifical papers multimodal reasoning.
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2.4.6 Multi-Image Reasoning

The evolution toward more sophisticated multimodal reasoning has recently pro-
duced datasets that specifically target multi-image understanding. This represents
a significant advancement from single-image analysis to scenarios where models
must maintain coherent understanding across multiple visual inputs, a capability
particularly crucial for document intelligence applications where information spans
across multiple pages or slides. The evolution of these datasets was also empowered
by the advancements in the multimodals LLMs that are now capable of processing
multiple images simultaneously in an effective way.

A recent dataset that proposes a tough and innovative challenge is ReMI
(Reasoning with Multiple Images) [77] which not only requires the model to
understand and reason over the multimodal content presented in multiple images but
forces the model to elaborate complex operations and comparisons between the two
proposed images. These operations often involve a multi-step non trivial reasoning.
The nature of the proposed images and problems is very diverse spanning from
topics such as math, physics, logic, code, table/chart understanding, to spatial and
temporal reasoning. The dataset contains 13 specific tasks including EmojiAlgebra,
FuncRead, GeomShape, GeomCost, Collisions, Clocks, Schedule, Charts, CodeEdit,
Isomorphism, Maps, RefCOCO, and IQ, providing a comprehensive evaluation
framework for multi-image reasoning capabilities.

Another interesting yet very specific task is addressed by the ImageChain [78§]
dataset whcich proposes a unique multimodal challenge, the "next-scene description”.
The task consists of predicting the content of the next scene given a sequence of
frames from a video.

These datasets really push the boundaries of what LLMs are capable of at the
moment. These capabilities are central in the development of new LLMs capable of
operating in increasingly complex tasks where the information is not only spread
across multiple slides but it requires multi-step non trivial reasoning to get the
right answer.

2.4.7 Challenges in Dataset Evaluation

The evolution of datasets towards more complex tasks where the answer is not
trivial and short revelead the limitation of traditional evaluation metrics such as
exact match, Fl-score, BLEU [79] as ROUGE [80] as these metrics are not semantic
but rely on n-gram overlaps. The creation of reliable evaluation metrics for complex
tasks where semantic evaluation becomes more and more relevant is still an open
research challenge.
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2.4.8 Implications for Document Intelligence and RAG
Systems

The evolution of the multi-modal datasets mentioned above has a direct impact on
the development of sophisticated multi-modal Retrieval Systems, LLMs and as a
result RAG pipelines. The evolution from simple datasets containing image-text
associations to complex datasets where multi-image reasoning is the main task
reflects the growing demands for datasets containing real-world applications where
information is spread across different modalities and cannot be sourced only from
one place.

Slides presentations represent a specific case where many different data modalities
can contribute as the type of information in them is very varied, from text and
images to charts and tables. Unlike documents, their primary purpose is not to
store information but to present it to an audience, which often leads to each slide
containing only a small amount of content. As a result, information about the
same topic is often spread across multiple slides.
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Methodology

In this section we will cover the design choiches and their implementation in the
developed multimodal RAG pipeline tailored for slide presentations. The system is
built to support complex queries that require integrating information from both
textual and visual elements and where also the layout plays a pivotal role. Given
the absence of suitable open-source datasets for multi-slide multimodal QA, we
constructed a custom dataset composed of business presentations and synthetic QA
pairs to train and evaluate our system. Given the absence of suitable open-source
datasets for multi-slides qa where retrieval and reasoning are equally relevant, we
also propose a novel synthetic data generation approach to train and evaluate our
system. The methodology focuses first on finding the best technique to embed the
slides information for retrieval and then on seeking the best approach to generate
the correct answer given the retrieved context, working in a resource-constrained
environment.

3.1 Overview of the Proposed Pipeline
The final proposed RAG architecture consists of mainly 4 components:
o A presentation preprocessing module

A multimodal embedder for each single slide

A retrieval mechanism based on the embedder employed before to obtain
the slides given a query in natural language

An optional pre-generation layer employed to apply optimization tech-
niques over the extracted slides

A generative model to answer the query
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Figure 3.1: Visual Representation of the complete RAG pipeline.

A visual representation of the pipeline can be seen in Figure 3.1.

To select the best approach for each part of the pipeline we employed a modular
approach by evaluating multiple candidate techniques at each major stage of the
pipeline. For each stage we implemented and benchmarked several alternatives
selecting the configuration that offered the best precision.

The final system then reflects a data-driven, performance-informed assembly of
best-in-class techniques tailored to the multimodal slide domain. The following
subsections detail each stage of the pipeline and the process that led us to the
election of a specific component, from slide embedding to answer generation, along
with the construction of synthetic datasets used for evaluation.

3.2 Synthetic QA Generation

To evaluate the pipeline, we used a custom dataset consisting of 1148 slides sourced
from corporate presentations provided by a private company. These slides were rich
in multimodal content such as bullet points, annotated charts, and interconnected
tables. From this dataset, we generated 976 high-quality question-answer pairs by
prompting a vision-language model (Claude 3.5 Sonnet) to create QA examples
with explanations for individual slides. These were further validated using GPT-4o,
which filtered out invalid or ambiguous questions. Each QA pair was linked to
a specific slide, allowing us to assess retrieval precision by checking whether the
pipeline returned the correct slide as the top result

System:
You are a question-answer pair generator.

User:

5/ Your task is to write a factoid question and an answer given a

context.
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Your factoid question should be answerable with a specific,
concise piece of information extracted directly from the
context, preferably from charts and tables.

Your factoid question should be formulated in the same style as
questions users.

This means that your factoid question MUST NOT mention something
like "according to the given chart", "By the information in the

text", etc.

Provide your answer as follows:
Output:::

Factoid question: (your factoid question)
Answer: (your answer to the factoid question)

s| Explanation: (explanation of the answer to the factoid question)

Now here is the context.

Context: Attached image
Output:::

Listing 3.1: Prompt used to generate the synthetic QA pairs on a single slide

3.3 Slide Preprocessing

To preprocess slides presentations efficiently we built a little Python library capable
of reading either a folder full of presentations or a single presentation and from it
extract text, images and pages as images and store this information in chromadb
alongside with custom metadata. It also offered helpers to produce the embeddings
and store them in chromadb.

3.4 Embedding Strategies for Multimodal Con-
tent

Slides pose unique challenges for retrieval pipelines due to their inherently mul-
timodal structure. Unlike plain-text documents or even academic pdfs, slide
presentations often contain interdependent elements such as titles, bullet points,
images, tables, and charts, each contributing partial information. Moreover, the
layout, visual hierarchy, and spatial relationships between these elements are often
essential for interpreting the intended meaning.

To address this complexity, we adopted a comparative methodology: instead
of committing to a single preprocessing and embedding strategy, we evaluated
three distinct approaches, each reflecting a different level of multimodal integration
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and computational cost. This allowed us to systematically assess how well each
method preserved semantic relationships across modalities and supported accurate
downstream retrieval and generation.
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Figure 3.2: Text-Only Embeddings Strategy.
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Figure 3.3: Separate Text and Image Embeddings Strategy.
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Figure 3.4: Whole Slide Visual Embedding Strategy.

The candidate strategies included:

o Text-Only Embeddings Figure 3.2: A simple extraction of textual content
from each page followed by an extraction of all images and charts and an
additional step where we asked an LLM to precisely describe the content
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of the images. Then a text embedding using a pre-trained transformer was
performed.

o Separate Text and Image Embeddings Figure 3.3: Leveraging a vision-
language model individual elements (text boxes, tables, images) were parsed
and embedded separately but using specific metadata in the vector database
we were capable of extracting them both together.

« Whole Slide Visual Embedding Figure 3.4: The entire slide is embedded
as a visual patch, capturing spatial and visual features alongside text.

3.4.1 Text-Only Embedding Technique

In the Text-Only Embedding Technique the process to embed documents follows
multiple steps:

1. Extract text, images and whole pages as images from the pdf using pymupdf

2. Once all the images are obtained generate a description for each image given
the page context. The prompt used to generate the descriptions is available
at 3.2

3. Once all the image descriptions have been generated create the page text by
concatenating the extracted text with the image descriptions

4. The last step is to embed page text, image descriptions and page text separately
using the NovaSearch/stella_en_ 1.5B_v5 embedding model

System:
You are a multimodal assistant tasked with generating precise and
detailed descriptions of images.
You will describe images by leveraging contextual visual
information provided from a related image.
Always focus on the details of the target image while ensuring the
description is relevant to the context.

User:

The first image shows the entire page containing the second image.

Analyze the second image in the context of the first one.

Describe in detail the content of the second image.

Make your description specific and avoid generalizations.

Begin your description with phrases like ’The image contains...’
or ’The image shows...’.

Listing 3.2: Prompt used to generate image descriptions given the image and the
page
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3.4.2 Separate Text and Image Embeddings Technique

The procedure for embedding text and images separately is much simpler compared
to the text-only technique:

1. Extract text and images from the pdf using pymupdf

2. Embed page text, and images with the page text for context separately using
the royokong/e5-v embedding model

3.4.3 Whole Slide Visual Embedding Technique

This technique is also quite simple and involves a few steps:

1. Extract text and whole pages as images from the pdf using pymupdf

2. Embed page text, and page images separately using the MrLight/dse-qwen2-2b-mr1-vl|
embedding model

Also in this case we decided to keep the textual embeddings to see how they
would have influenced the retrieval process. Later in the processing they were not
used anymore as their usage did not improve the quality of the retrieval.

3.4.4 Each Technique’s Pros and Cons

Each technique presented different challenges and trade-offs:

o Text-Only Embeddings: This method enables fast retrieval and is compat-
ible with lightweight, well-established language models. Moreover, since all
the information is stored as text it could enable the architecture to employ
text-only models also for the generation phase; this would make the pipeline
capable of running on resource constrained environments. The trade-off comes
with the embedding phase which requires powerful machines and generating
the images description is a vary lengthy operation which may still miss some
specific information useful for particular questions.

o Separate Text and Image Embeddings: In this setup, text and images are
processed independently. It benefits from specialized models for each modality
and allows higher-resolution image embeddings since text, layout and other
boilerplate data isn’t embedded as part of the image itself. However, in this
method we lose track of the original visual layout of the slide which can be
crucial for interpreting content correctly.
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« Whole Slide Visual Embedding: This last approach is the most naive
and the simplest. It leverages the latest developments in the VLM world with
powerful embedding models. It allows us to keep all the information in the
image but on the other side the text is stored as part of the image and not
as a string and the overall image can contain a lot of unrelevant data which
still takes space and pixels that make the computations more cumbersome.
The primary strength of this approach lies in retention of all the information
related to the layout and spatial structure of the slide content.

The evaluation for the retrieval mechanism was very straightforward: for each
query the top 1 retrieved page was compared against the ground truth, defined as
the original slide used to generate the corresponding QA pair. The technique that
achieved the highest top-1 precision was elected as the preferred technique. The
expected result for each query was the slide originally used to generate its QA pair.

The overall dataset was composed of 976 pages and in the end we obtained 976
questions.

Among the tested approaches, the "Whole Slide Visual Embedding" strategy
achieved the highest Top-1 precision and was ultimately selected for the final
pipeline. A summary of these results is shown in Table 4.1.

3.5 Answer Generation Module

After assessing the best embedding and retrieval technique, we focused on identifying
the best technique to generate answers given the extracted context. Given the
established retrieval setup, we explored and compared several optimization strategies
aimed at producing more coherent answers, especially in resource-constrained
environments. As a baseline, we used the direct answer generated from the top-1
retrieved slide without further processing.

All optimization techniques were evaluated on the generated synthetic dataset
containing QA pairs that referred to a single slide only, as this subset provided a
sufficiently large and consistent set of examples for reliable experimentation.

System: You are an advanced answer generation assistant in a
Retrieval -Augmented Generation (RAG) pipeline.

Your task is to provide accurate, concise, and contextually
relevant answers to user queries.

You will receive retrieved images and a specific question to
answer.

Use only the provided context to formulate your response, and do
not make assumptions beyond the given information.

5/ If the context is insufficient to answer the query, clearly state

that more information is needed.
User:
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7| <Query >
¢| <Context images>

N

Listing 3.3: Prompt used to generate the single answers in the baseline

3.5.1 Answer Generation Optimizations

The key differences among the evaluated techniques lie in how the retrieved context
is pre-processed before being passed to the answer generation module. Some of
these techniques employ ad-hoc selection mechanisms to elect a single, most relevant
image from the top retrieved set, aiming to replace the top-1 baseline with a better
suiting slide. Other techniques instead generate multiple answers from several
candidate slides and then apply an aggregation strategy to produce the final answer.

3.5.2 Each technique in detail

The following sections provide a detailed breakdown of each answering technique,
outlining the prompts used for response generation and the aggregation mechanisms
employed to construct the final answer.

Technique 1: Slide Image + Text Context

In this technique for each of the top-n retrieved pages, only the image from one
page is used while the accompanying text comes from all the n pages. This process
is repeated for each of the n retrieved pages, generating n candidate answers, each
leveraging a different visual context but enriched by the same textual surroundings.
In the final step, all intermediate generated answers are aggregated into one single
final answer. Below you can see the prompt to generate the single intermediate
answers 3.4 and to generate the final aggregated answer 3.5.

System: <Same prompt as in the baseline>
User:

3lThis is the textual content of the top_k retrieved pages, if

useful use it to generate the answer:

top_1 page text: Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incidunt ut labore et
dolore magna aliqua

top_2 page text:

top_k page text:

Here the user query: <user query>

Listing 3.4: Prompt used to generate the single answers in technique 1
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System: You are an advanced AI tasked with synthesizing a final
response from multiple retrieved and generated responses.

These responses were produced using a Retrieval -Augmented
Generation (RAG) pipeline, where the first responses are based
on images that matched more strongly with the user’s initial

query .

**xInstructions : *x*

- Analyze the **<n> responses**x provided below.

- *xPrioritize information from the first responses**, as they are
derived from more relevant image matches.

- Resolve contradictions by emphasizing the most reliable or
widely agreed-upon details.

- Remove redundancy while ensuring no key information is lost.

- Maintain **clarity, coherence, and factual accuracy** in the
final response.

- If there are **xuncertainties or conflicting claimsx**, highlight
the most probable

User:

Responses from RAG (First responses are image-prioritized):
<response 1>

<response 2>

<response n>

Here the user query: <user query>

Generate a well-structured, synthesized response that integrates
the best elements of the retrieved responses, giving priority

to early responses based on image relevance while incorporating
useful details from later responses.

Listing 3.5: Prompt used to generate the aggregated answer in technique 1

Technique 2: Progressive Accumulation

All top-k retrieved slides are resized to fit input constraints, and progressively
grouped to generate k answers. Specifically, the i-th answer is generated using the
top-1 pages (1 < i < k), so that the model sees increasing context in each step.
The reason is that higher-ranked slides are likely more relevant, and their influence
is weighted more heavily by appearing in more generated answers. Final answer
aggregation is then performed across these k outputs. k is a hyperparameter but
in this case we used a k=5.

The prompt used to generate the intermediate answers is the same one used to
generate the answer for the top-1 baseline: Listing 3.3 while the prompt used to
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generate the final aggregated answer is the same as in technique 1: Listing 3.5.

Technique 3: Confidence-Based Selection via VLM-Evaluation (raw and
Chain Of Thought variants)

In this technique each of the top-n retrieved slides is processed independently. For
each one, the model is asked to assess its own confidence in whether that single
image can comprehensively answer the question. It does so by generating a JSON
object containing a confidence score and an explanation (reasoning). Empirical
tests showed that requiring an explanation significantly improves the consistency
of the confidence scores. The image with the highest confidence score is selected,
and its corresponding answer becomes the final output. In the event of a tie, the
highest-ranked image is chosen. To show the difference between the version with
and without reasoning we tested both.

Below the prompt used to obtain the confidence with 3.7 and without 3.6
leveraging the Chain Of Thought:

System: <Same prompt as in the baseline>

User:

Please evaluate the confidence (0-100) that the following question
can be answered using the provided image in the context:

Query: <query>

Answer only with a number.

Listing 3.6: Prompt used to generate the confidence metric in technique 3

System: <Same prompt as in the baseline>

User:

Think step by step before answering.

1. Identify the key elements needed to answer the query. What kind

of information does the query require?

2. Examine the given image and determine whether it contains the
necessary details.

3. Compare the query requirements with the image content. Does the

image fully, partially, or not at all provide the needed
information?

4. Based on this reasoning, assign a confidence score from 0% to
100%.

Now, as your answer provide your reasoning followed by a
confidence score as a single number, in the following json
format: {"reasoning": <reasoning>, "confidence": <confidence>}

Query: <query>

Listing 3.7: Prompt used to generate the confidence metric in technique 3
leveraging the Chain Of Though
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Technique 4: Distance + Perplexity-Based Scoring (Raw and Normalized
Variants)

In both of the last two techniques, the model generates an answer for each of the
top-n retrieved pages individually. For each answer, two scores are extracted:

e The retrieval distance from the retriever.

e The LLM perplexity score, measuring how confidently the model produced
that answer. To calculate the perplexity score a relatively small textual model
has been employed: Qwen/Qwen2.5-1.5B-Instruct

In the first variant, the raw (unnormalized) product of retrieval distance and
perplexity is used to select the answer with the lowest combined score. In the
second variant, both scores are normalized before multiplication to account for
scale differences. The answer with the lowest normalized combined score is selected
as final. (This technique is inspired by the VisRAG approach.)

The prompt used to produce the candidate answers is exactly the same as the
one used in the baseline 3.3.

Compound Metric Calculation Given the retrieval distances d; and the model
perplexities p; for each of the top-n retrieved slides, we compute two compound
metrics: one unnormalized and one normalized.

To compute the normalized compound metric, we first normalize both the dis-
tances and the perplexities across the top-n candidates. The normalized distance d,
and perplexity p; are defined as follows: d; = % and p; = —~ ];I]n_lr;ffj ve

After normalization, we compute the compound scores by taking the elementwise
product of distances and perplexities. For the unnormalized case: s; = d; ® p;
and for the normalized case: 5, = Jz ® P;.

To select the best candidate, we find the index corresponding to the minimum
compound score in each case: ¢, = argmin;s; and 4}, = arg min, 3;

The final selected answers are determined by the indices that minimize the
respective compound scores. Specifically:

o The answer selected using the unnormalized metric is given by Answer;-

unnorm °

+ The answer selected using the normalized metric is given by Answer;. .

3.5.3 Answers Evaluation

To evaluate the answers produced by the topl baseline and by the optimization
techniques we first attempted using some traditional techniques leveraging the
RAGAS [81] Python framework. To filter out the techniques that were clearly not
suitable we manually selected two examples:
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e One pair where the answer produced by the RAG pipeline using the top-1
retrieved slide was factually correct, closely aligned with the original dataset-
generated answer (produced by Claude 3.5 Opus).

o One pair where the top-1 RAG answer was factually incorrect.
First we tested traditional text-based techniques:

o String Presence

BLEU Score
ROUGE Score

Exact Match

However, they all produced sub-optimal results often not recognizing a correct
answer when there were variations in wording, sentence structure, or phrasing,
despite the semantic meaning being preserved.

Afterwards, we evaluated different metrics available in the RAGAS framework
that offered LLM supported metrics:

o LLMContextRecall
o FactualCorrectness
e SemanticSimilarity
o Faithfulness

The LLM model we used to evaluate the correctness was GPT-40 But also in
this case, when the RAG-generated answer conveyed the same meaning as the
reference, it was occasionally marked as incorrect, indicating limitations in these
LLM-based metrics.

After observing the limitations of both traditional and RAGAS LLM-based
evaluation methods, we adopted an alternative approach using LangChain’s LLM-
based QA evaluator, which yielded more reliable results aligned with human
judgment. Specifically, we used the qa evaluator module provided by LangChain
[82], backed by GPT-4o.

3.5.4 Impacts on Latency

It is clear to see how the optimization techniques have a deep impact on the latency
of the answers. Each technique has to produce a variable number of answers before
being able to output the final answer. Each technique is then quite slower compared
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to the simple topl answer. A summary table containg a comparison of the passes
requred for each methodology is available in Table 3.1.

The adoption of optimization techniques in the answer generation pipeline
introduces significant variations in response latency. Unlike the baseline approach,
which generates a single answer based on the top-1 retrieved slide, the proposed
techniques often involve generating multiple candidate answers or performing
additional reasoning steps before obtaining the a final response.

Each method differs in the number of required model invocations:

 Some techniques (e.g., confidence-based selection or perplexity-weighted aggre-
gation) generate answers independently for each of the top-n retrieved slides
and then apply a selection or aggregation mechanism.

o Others require sequential evaluations, such as estimating confidence scores for
each possible input.

o Techniques that aggregate intermediate answers using LLM-based aggregation
introduce additional passages through the model, adding even more latency.

As a consequence, the latency overhead of these techniques can be substantial
when compared to the baseline.

Before adopting them in a real-life scenario it is critical to determine the trade-off
between precision increment and latency.

3.5.5 Best Techniques Selection

Following the evaluation of all proposed optimization strategies, we selected a
subset of techniques that consistently demonstrated the highest answer accuracy.
The techniques that showed promising results were:

Technique 1: Slide Image + Text Context

Technique 2: Progressive Accumulation

Technique 3: Confidence-Based Selection via VLM-Evaluation with
Chain Of Thought

Technique 4: Distance 4+ Perplexity-Based Normalized Scoring

Technique 3 without Chain Of Thought and Technique 4 with the un-normalized
scoring yielded sub-optimal results and were not kept for the other tests
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Table 3.1: LLM Passes per Answer Generation Technique

Technique LLM Passes | Description of Passes

Baseline (Top-1 Only) 1 Single pass using the top-1 retrieved
slide to generate the answer.

Technique 1: Slide Im- n+1 One LLM pass per top-n page, fol-

age + Text Context lowed by one aggregation pass over
all answers.

Technique 2: Progres- kE+1 One LLM pass per subset using top-

sive Accumulation 1 to top-i slides (7 = 1..k), plus one
aggregation step.

Technique 3: n+1 One LLM pass per image to generate

Confidence-Based confidence and reasoning, followed

Selection via VLM- by one final answer generation using

Evaluation the best candidate. Here we are not
counting the passes to calculate the
perplexity

Technique 4: Dis- n One LLM pass per top-n image to

tance + Perplexity- generate the answer, one additional

Based Scoring computation step (not LLM) to rank
and select.

3.6 Multi-slide Questions Generation

After building a solid RAG pipeline for single slide answering we decided to focus
on building a really innovative dataset focusing on questions that were possible to
answer only with information coming from multiple slides simultaneously.

This part involved many preparatory steps as it was not possible to simply pick
two random slides in the corpus and ask a multimodal LLM to generate a QA pair
based on both slides as the content of the slides would have probably been totally
disconnected.

To overcome this problem we employed a series of refinement techniques to
obtain only meaningful couples.

3.6.1 Automatic Section Extraction

The first step to make the multi-slide questions generation more efficient consisted
of automatically dividing the document in different sections. As the structure of
the documents was somehow similar since produced by the same company and
they were reports focusing on different years and geographical areas. The first step
to do so was to parse all the text contained in the document using pymupdf (in
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this phase we exclude the images since the section scope can be inferred by the
text only and working with the images would have made the process incredibly
slow and resource intensive.

Then we passed the whole text of a slides presentation to the LLM (in this case
Claude Sonnet 4) with the following prompt 3.8:

User:
You are an expert document analyzer.

Please divide the document below into logical sections.

For each section, return:

- Section title: if the title is already available in the document
, DO NOT change it

- Start page index

- End page index

- A short summary of the section

Output must be a JSON array 1like:

[

{
"section_title": "...",
"start_page_index": O,
"end_page_index": 3,
"summary": "..."

Ve

]

Document content:
Page 1: Lorem ipsum dolor sit amet
Page 2:

27| Page n:

Listing 3.8: Prompt used to extract the sections from the documents

What was obtained from this step was a json for each document with the
following structure 3.9:

{

"section_title": "1. Statistical note",

"start_page_index": 2,

"end_page_index": 3,

"summary": "Contains methodology details, glossary of
statistical terms (confidence level, confidence interval), and
sample distribution across European countries (France, Germany,

Italy, Spain, UK) with 1,018 total interviews conducted March-
April 2023."

b
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Listing 3.9: Sectioning result example

For each document we also manually appointed some additional metadata:
report year, report country/geographical area.

3.6.2 Section Pairing

The initial step in generating QA pairs from two distinct input slides involved
identifying semantically similar sections across different documents. Once the
JSON structure containing all document sections was prepared, we proceeded to
pair sections based on semantic similarity. The following pre-processing steps were
applied to each section:

1. The section title and summary were concatenated to form a single textual
representation.

2. This concatenated string was encoded using a Sentence Transformer to obtain
dense vector embeddings.

3. We computed pairwise similarity scores between all section embeddings from
different documents.

4. Section pairs with a cosine similarity score above 0.9 were retained. This
threshold was chosen empirically, as it yielded a satisfactory number of high-
quality pairs. In future iterations, this threshold can be exposed as a tunable
hyperparameter to further optimize results.

3.6.3 Pages Pairing

After identifying semantically similar sections, the next step involved pairing
individual pages from those sections. The goal was to find pages that convey
related but not identical content, ensuring contextual alignment while avoiding
redundancy.

The following technique was used:

1. For each section pair, we retrieved all page embeddings belonging to the two
sections.

2. We performed a Cartesian product comparison, evaluating the cosine similarity
between every possible pair of pages, one from each section.

3. We retained only the page pairs whose similarity score fell between 0.7 and
0.9. The upper bound of 0.9 was intentionally set to filter out pages that are
likely near-duplicates or exact matches.
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This method allowed us to identify page pairs that are contextually aligned
yet distinct, increasing the likelihood that their combined content would support
meaningful question-answer generation without repetition.

3.6.4 Pair Questions Generation

Once page pairs were identified, the next step involved generating question-answer
(QA) pairs based on these slide combinations. Given the increased relevance of the
contenxt in this task, we also included relevant metadata specifically, the report
year and country which are critical in market research and highly informative for
end users.

We used Claude 4 Sonnet as the language model for this generation task. To
ensure high-quality QA pairs grounded in both slides, we employed the following
structured prompt 3.10:

User:Your task is to write a factoid question and an answer given
a context.

You are provided with two slide images from market research
reports with some metadata about the reports.

Your factoid question should be answerable with a specific,
concise piece of information extracted directly from the
context, preferably from charts and tables.

The question must relies equally on information from both slides.

Your factoid question should be formulated in the same style as
questions users.

This means that your factoid question MUST NOT mention something
like "according to the given chart", "By the information in the

text", etc.

In the question formulation you can use the provided metadata.

Provide your answer in json format as follows:

Output:::

{Factoid question: (your factoid question)

Answer: (your answer to the factoid question)

Explanation: (explanation of the answer to the factoid question)

+
Now here is the context.

Context: Attached images

*xSlide 1%*x

Document name: <slide_1 document name>
Country: <slide_1 document country>
Year: <slide_1 document year>

**kSlide 2%
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26| Document name: <slide_2 document name>

¥
1

7| Country: <slide_2 document country>

Year: <slide_2 document year>

Output:::

Listing 3.10: Prompt employed for Slides Pairs Questions Generation

The inclusion of an explanation in the output leverages the model’s chain-of-
thought (COT) capabilities. This not only improves the factual grounding of the
generated QA pairs but also serves as a valuable debugging and validation tool
during dataset inspection.

3.7 Multi-slide Questions Answering

To evaluate multi-slide question answering, we adopted a simple baseline using the
top-2 retrieved slides to serve as a naive reference point. We then adapted a subset
of the optimization techniques previously introduced, tailoring them specifically
for scenarios in which relevant information may be spread across multiple pages.

These selected techniques were chosen for their capacity to leverage broader
context while maintaining reasonable complexity. In the following subsection, we
describe each of them in detail, highlighting the specific adaptations made for the
multi-slide case.

3.7.1 Each Technique in Detail

In this section, we describe the 3 optimization techniques adapted for the multi-slide
question answering scenario. Each technique is designed to incorporate multiple
slides in the context when possible.

Technique 2: Progressive Accumulation

This technique did not change from the description provided in section 3.5.2.

Technique 3: Confidence-Based Selection via VLM-Evaluation with
Chain Of Thought

The evaluation phase in this technique happens in the same exact way as ex-
plained in section 3.5.2. To adapt it to the multi-slide context, we introduce a
tunable hyperparameter called confidence_range, which allows the inclusion of
all slides whose confidence scores fall within the interval [highest_confidence -
confidence_range, highest_confidence].
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This enables the model to consider multiple high-confidence slides—not just the
single top one while still prioritizing those deemed most relevant. If more than one
slide is selected, they are resized as necessary and jointly passed to the VLM for
the final answer generation.

Given the negligible computational overhead, we retain both the normalized
and unnormalized versions of this technique for this comparison.

Technique 4: Distance 4+ Perplexity-Based Scoring

Also in this case the initial steps are exactly the same as explained in sec-
tion 3.5.2. To allow for selection flexibility, we introduce a tunable hyperparameter
confidence_range (expressed as a percentage). All candidates whose M; falls
within
[min(M), min(M) + confidence_range% - min(M)]

are retained.

If more than one candidate satisfies this criterion, their corresponding answers
are aggregated using the same aggregation prompt used in 3.5.2.

3.8 Presentations anonymization

The last step we followed was the presentations anonymization. Since we were
using private data not suitable for sharing and given that available data online
for this type of operations (multimodal slides presentation answering on multiple
pages) was not available we decided to create a technique that allowed the creation
of anonymized data starting from multiple slides together.

This approach was followed because we found that anonymizing a single page
often led to a harsh domain shift or the context tended to change too much.
Changing the pair allowed us to have a good starting point to generate new qa
pairs and allowed us to expand each one of them to generate a presentation. This
approach also inserted more variance in the generation as the VLM perceived the
couples as different from the single pages giving us more variability in the context
shift.

To perform the anonymization a small pipeline with the following steps was
built:

1. Given the slide couples as images and their metadata

2. Feed an LLM (in this case gemini-2.5-pro as it combined cheap prices with
native multimodal capabilties. We also tested smaller models such as gemini
2.5 flash but the results were suboptimal) with the couple and a custom
prompt to generate two slides in LateX beamer
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3. After the generation some python postprocessing was applied to ensure that
the generated images would fit into a page

We performed this anonymization operation with all our slide couples.

Afterwards the obtained LateX code was compiled in pdfs and each single pdf
page was then parsed as images and evaluated by an external VLM (Gemini 2.5
pro in this case) which checked if all the data was visible, if any sections overlapped
with each other and if the layout was consistent.

The final step in our process involved the anonymization of slide presentations.
Since the employed dataset contained proprietary or confidential information
unsuitable for public release and considering that no publicly available datasets
support multi-slide multimodal retrieval and answering tasks we developed a custom
anonymization method to produce, given real-world presentations, realistic but
shareable content.

In our approach we focus on anonymizing slide pairs instead of single slides as
we found that altering only a single slide often results in a strong domain shift
or in a complete change of the content. On the contrary, transforming slide pairs
enabled the resulting slides to better retain structural and topical relationships,
offering a more reliable foundation to eventually generating high-quality QA pairs.
Moreover, treating slide pairs together resulted in a greater variability, as the VLM
perceived the couple as new even if the single components were already anonymized
in different combinations.

3.8.1 Anonymization Pipeline

To anonymize the slides, we built a lightweight pipeline composed of the following
steps:

1. Input: A pair of slide images along with their associated metadata (e.g.,
document name, country, year).

2. Generation: The pair was passed to a VLM specifically Gemini 2.5 Pro,
selected for its native multimodal support and low inference cost. A custom
prompt instructed the model to generate two LaTeX Beamer slides representing
anonymized data with a similar structure but with changed domain and
entities.

3. Post-processing: After generation, a Python post-processing script ensured
layout consistency and adjusted formatting to ensure that the rendered slides
would fit cleanly within standard page boundaries. This process is not error
proof and can for sure be enhanced in future.

The prompt employed for the slides anonymization was the following:
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User:
You are an expert LaTeX Beamer presentation designer and
anonymization specialist.

Your task is to analyze the two provided slide images and generate
a single, complete LaTeX Beamer document. This document MUST
contain exactly two slides (‘\frame‘ environments), where each
slide is an anonymized version of one of the input images.

Follow these rules for anonymization:
- Replace all real-world country names with fictional, plausible

ones (e.g., "Country A", "Region B").
- Modify all numbers, percentages, and statistics plausibly and
randomly, ensuring they still make sense in context (e.g., if a

chart shows growth, the new numbers should still show growth).
- Substitute all specific labels, headings, company names, product
names, and organization names with fictiomal but coherent
alternatives.
Remove or replace any other direct real-world references.

For each of the two slides in the generated Beamer document:

- It must be a complete ‘\frame‘ environment.

- It must accurately reflect the key visual and textual
information present in its corresponding original image.

- Use ‘\frametitle{}‘ for a clear, anonymized title.

- Include appropriate LaTeX elements such as bullet points (°\
itemize ‘), numbered lists (‘\enumerate ‘), blocks (‘\begin{block
}¢), tables (‘\begin{tabular}‘), or simple text, to best
represent the content.

- Ensure the content fits professionally within a single page,
adapting the original layout as necessary.

- Use LaTeX techniques like ‘\scriptsize‘, ‘\tiny‘, ‘\vspace‘, ‘\

hspace ¢, ‘\resizebox ‘, or ‘minipage‘ to prevent content
overflow.

- Prioritize content readability and visual fit over absolute
pixel-perfect replication if the original slide is too dense.
Summarize or truncate content if strictly necessary to maintain

a clean LaTeX representation that fits the frame.

The overall LaTeX Beamer document structure should be complete,
including:

- ‘\ documentclass{beamer}"

- ‘\begin{document}

Exactly two ‘\frame‘ environments (one for each image).

‘\end{document}*

Metadata hints for contextualization (do not include directly in
the slides unless relevant to generated content):
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Slide 1 context: <metadata hint 1>
Slide 2 context: <metadata hint 2>

Output ONLY the complete LaTeX Beamer code. Do not include any
explanations, comments outside the LaTeX code, or additional
text.

Listing 3.11: Prompt used to generate the anonymized slides starting from an
initial couple.

NOTE: to allow the document compilation "\" and "documentclass{beamer}" had
to be separated using a space while it was not necessary in the original prompt.

3.8.2 Python Post-Processing

After the LaTeX Beamer code was generated by the VLM, we applied a Python
post-processing step to ensure that the resulting lides would compile cleanly and
render within the spatial constraints of a standard presentation page. While the
model produced LaTeX code that was generally syntactically correct, it frequently
exhibited layout issues such as overflowing content, oversized diagrams, or overly
long bullet lists that disrupted readability and visual balance.

To address these issues, we implemented a set of rule-based transformations
aimed at improving layout compactness and preventing visual artifacts. These
included: reducing the default font size at the beginning of each slide, wrap-
ping large environments (like tables or bullet lists) in containers that constrained
their width, and scaling down diagrams generated with TikZ to avoid clipping.
Additionally, redundant preamble declarations—such as multiple occurrences of
\texttt\documentclass, were automatically removed to prevent compilation errors.

These adjustments, although heuristic in nature, substantially improved the
consistency and reliability of the anonymized slides, enabling large-scale LaTeX
generation with minimal manual intervention.

3.8.3 Validation of Anonymized Slides

All generated slides were compiled into PDF documents and then converted into
individual slide images. These images were then evaluated using Gemini 2.5 Pro
to validate key quality criteria:

o All content must be clearly visible and legible.
e No graphical or textual elements should overlap.

o Layout should be consistent and presentation-like.
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The prompt used for the validation is the following:

You are an expert presentation reviewer. I will provide you with
two images that represent a two-slide presentation. Your task
is to evaluate the quality of this entire two-slide
presentation based *solely* on content visibility.

Here are the criteria for a ’correctly formatted’ and ’all
information visible’ presentation:

1. *xContent Visibility (for EACH slide) :x*
* Is all text, images, and other graphical elements completely
visible on *both* slides?
* Are there any parts of the content cut off by the slide
boundaries (top, bottom, left, right) on *either* slide?
* Are there any elements overlapping in a way that makes
information unreadable on *either* slide?

Based on these detailed criteria, please respond with ’GO0D’ if
the entire two-slide presentation meets all requirements. If it
has ANY issues, respond with ’BAD’ and clearly explain the
specific problems found, indicating which slide(s) are affected
Be precise.

**Examples of BAD responses:*x*
* BAD - Slide 1: Text cut off at the bottom right corner.
* BAD - Slide 2: The figures overlap hiding each other.

Listing 3.12: Prompt used to validate the anonymized slides.

3.9 Anonymized Slide Extension

Given the anonymized slides, the next step consisted in extending the content of each
single slide by prompting a VLM to generate additional slides while maintaining
contextual coherence:

1. We first gathered all slide couples that passed the anonymization quality check.

2. Each anonymized slide pair was compiled into a PDF and split into individual
slide images.

3. For each singe slide image, a request was built for Gemini 2.5 Pro using a
detailed multimodal prompt. This prompt included:

o The original section title and summary where the anonymized slide comes
from

o A list of all sections in the original report, each with its title and summary
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o The anonymized slide as an image

o The desired number of additional slides to generate (typically 10 but can
be tuned as a hyperparameter)

4. The LLM generated a complete LaTeX Beamer document extending the input
content.

5. The generated code was passed through a post-processing script to ensure
formatting and layout correctness

6. The finalized LaTeX documents were then compiled into PDFs.

This procedure allowed us to use the anonymized slides as the seeds for the

generation and then extend their context to obtain a more complete presentation.

Here the prompt used to extend the single slide to a presentation:

Expand the following anonymized slide into a full LaTeX Beamer

presentation.

Requirements:
- Maintain consistency of anonymized names throughout (e.g.,

countries, companies, products).

- Do not invent new anonymized entities; reuse the provided ones.
- Follow this detailed presentation structure for content

generation:

<formatted_presentation_structure>

{
"section_title": "Title",
"start_page_index": O,
"end_page_index": 1,
"summary": "Summary goes here."
1,

Generate about <slide_count> slides, with 1-2 slides dedicated
to each of the sections provided.

Output only the complete LaTeX Beamer code for the slides,
including the \ documentclass{beamer}, \begin{documentl}, \end{
document} and \frame environments. Do not include any
explanations, comments outside the LaTeX code, or additional
text.

Anonymized Initial Slide section:
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25 "section_title": "Source Title",

26 "start_page_index": 10,

27 "end_page_index": 14,

28 "summary": "Source Summary goes here."

29 }:

Listing 3.13: Prompt used to extend a single anonymized slide to an anonimyzed
presentation.

3.10 Experimental Setup

3.10.1 Datasets

The main employed dataset is a private and provided by a private company and it
consisted of 13 presentations for a total of 1148 pages. Of these pages only 976 have
been used for the questions production as the other presentations were supplied
later in the thesis development. The additional slides were still embedded and
provided a more challenging task to the RAG pipeline. To test the basic RAG
pipeline on single slides, parts of the Vidore dataset were used, specifically:

e vidore/syntheticDocQA_artificial intelligence_test
e vidore/syntheticDocQA_energy_test
e vidore/syntheticDocQA_government reports_test

e vidore/syntheticDocQA_healthcare_industry_test

3.10.2 Preprocessing

In the preprocessing all the pdf documents were parsed using pymupdf and all the
images and single pages were processed and saved as images with a resolution of
200dpi. The embeddings were saved in chromadb and all the embedding distances
were calculated using cosine similarity.

3.10.3 Open-Source LLMs Employed

In the pipeline various Open-Source models, all available in Hugging Face, have
been employed in different steps:

e dunzhang/stella_en_1.5B_vb5 was employed as the embedder-retriever in
the text-only pipeline.
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o royokong/e5-v was employed as the embedder-retriever in the separated
text-image pipeline.

o MrLight/dse-qwen2-2b-mrl-v1 was employed as the embedder-retriever in
the whole-slide pipeline.

e Qwen/Qwen2-VL-7B-Instruct was employed as the images description gen-
erator in the text-only pipeline, as the answer, meta-answer and aggregated
answer generator in all the answer generation techniques.

3.10.4 Proprietary LLMs Employed

In the development various external proprietary models have been employed in
different steps:

Anthropic Claude 3.5 Sonnet was used in the QA pairs generation for the
single-slide case

Anthropic Claude 4 Sonnet was instead used in the QA pairs generation for
the multi-slide case

Google Gemini 2.5 was exmployed in the slides anonymization and extension
procedures. It was also employed in the anonymized slides evaluation.

OpenAl GPT-40 was exmployed as the evaluator to compare the generated
answers with the ground-truth.

3.10.5 Evaluation Metrics

After preliminary tests with classic metrics such as String Presence, BLEU score,
ROUGE score, Exact Match and LLM or embeddings based metrics such as
LLMContextRecall, FactualCorrectness, SemanticSimilarity and Faithfulness all
powered by the RAGAS framework. In the end we adopted the langchain qa
evaluator component and relied on OpenAl GPT-40 to express a judgement over
the generated answers.

3.10.6 Environment

All the tests where models were locally deployed were executed in Colab using the
A100 GPU environment. The other parts where no models were deployed such as
the answers evaluation phase or the slides anonymization and extension have been
executed either locally or on the High RAM CPU Colab environment.

The python packages requirements are available at the beginning of each
employed Jupyter notebook in the GitHub repository: https://github.com/
danielemansillo/multimodal-rag-helper.
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Chapter 4
Results and Discussion

In this chapter, we present and analyze the results of experimental pipeline. We
discuss the effectiveness of the proposed methods, and, when applicable, compare
them with some related literature works.

4.1 Synthetic QA Dataset for Single-Slides Pro-
duction

To build a synthetic QA dataset, a total of 976 slides were extracted from the
original presentations. For each slide, a factoid-style QA pair was generated using
Claude 3.5 Sonnet. Each QA pair includes:

o A factoid-style question grounded in the slide’s content, when applicable it
focus on charts, tables and in general multimodal information.

e A concise, fact-based answer.
e An explanation grounded in the slide’s visual and textual content

A real example of a generated QA pair based on one of the slides is shown in
Figure 4.1.

4.2 Embedding and Retrieval techniques compar-
ison

To identify the most effective embedding and retrieval strategy for the QA task,
we evaluated three distinct approaches:

51



Results and Discussion

. Scenario: Required features from digital technology providers
What should your digital technology provider offer you, to improve and enhance the way you perform_
L

ts interesting to evaluate the different perception
among digital technologies users / non users, when
considering the most required features from a digital
technology provider.

The digital technologies users mostly quoted a more
convenient price and the need for Training and
information.

On another hand, the non users are rather split between
those being not interested and those asking for more
Training and information, much more than a convenient
price.

_ Base: 262 cases (whole sample) n _

Query: What is the highest-priority feature requested from digital technology
providers by both users and non-users?

Answer: Training and Information — 43% for _ providers and

38% for non-users of digital technologies.

Explanation: The bar chart shows that “Training and Information” ranks highest
for both groups: 43% of _ users and 38% of non-users selected it as
their top need. Other features such as price convenience (22% and 18%) and free
trials/demos (6% and 4%) trail behind significantly, making Training and Information
the clearly dominant priority across user types.

Figure 4.1: Synthetic QA example with associated document image, generated
question and answer, and supporting explanation. All sensitive private information
has been covered.

o Text-only embedding: Visual content was first described using a Vision-
Language Model (VLM), and the resulting text was embedded using a text-only
embedder.

o Mixed embedding: Text and image embeddings were generated separately
and concatenated or fused before similarity computation.

e Whole-slide embedding: The slides were embedded directly as images
without considering textual transcriptions.

Each method was evaluated on the previously generated synthetic QA dataset
using Top-1 as the retrieval metric. The retrieval step aimed to determine how
accurately each method could return the relevant slide for a given query.
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4.2.1 Modality-Specific Retrieval Experiments

To isolate the contribution of different data modalities to retrieval performance,
we conducted additional experiments where the input to the retrieval system was
deliberately restricted:

o Image-only: Queries were matched exclusively against image embeddings
extracted from the non-textual visual elements of the slides (excluding full-

page).

o Text-only: Only the extracted textual content from the slides was used for
embedding and retrieval. Visual features or full-slide image embeddings were
excluded entirely.

o Full-page: The entire slide was treated as a unit of information. Depending
on the retrieval technique, this either referred to: a concatenation of slide text
and image captions (in the text-only method), or a holistic visual embedding
of the full page (in the whole-slide method).

This controlled setup allowed us to have a clearer understanding of how each
modality contributed to retrieval effectiveness. Interestingly, as shown in Table 4.1,
restricting the input modality sometimes improved performance suggesting that
less noisy, more structured representations can outperform dense or overly rich
inputs.

Table 4.1: Comparison of Retrieval Techniques by Retrieval Configuration

Embedding | Retrieval Top-1 Top-3 MRR
Technique Type Accuracy | Accuracy

Text 0.243 0.559 0.467

Mixed Image 0.079 0.131 0.121

All 0.2410 0.518 0.439

Text 0.384 0.620 0.515

Whole slide Page 0.502 0.737 0.645

All 0.427 0.660 0.561

Text 0.367 0.573 0.485

Image 0.262 0.397 0.352

Textual Page 0.347 0.585 0.352

All 0.366 0.549 0.476
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4.2.2 Embedding Time

We also considered the computational cost of each embedding approach. While the
time required to embed the slides was comparable across the Mixed and Whole
Slide methods (approximately 1.3 seconds per slide for a total of 25 minutes for all
slides), the Text-only method required significantly more time primarily due to the
need to generate image captions using the VLM.

The image description generation step took approximately 25 seconds per slide for
a total of 8 hours for the full dataset. However, once generated, the actual embedding
of those captions was fast. This trade-off reflects a fundamental difference between
preprocessing overhead and runtime latency: text-based approaches can be more
interpretable, but require more initial computation.

4.2.3 Retrieval Results Comparison

The comparative analysis across the three embedding strategies, Text-only, Mixed,
and Whole-slide, highlights notable differences in retrieval effectiveness, with the
Whole-slide embedding consistently outperforming the other approaches across all
evaluation metrics.

As shown in Table 4.1, the Whole-slide approach achieved the highest Top-1
accuracy (0.502), Top-3 accuracy (0.737), and Mean Reciprocal Rank (MRR) of
0.645 when using full-page embeddings. This suggests that treating the entire
slide holistically, as a unified visual artifact, results in more semantically aligned
representations for the retrieval task in the multimodal QA setting.

Interestingly, even when only the textual content of the slide was used, the
Whole-slide embedder still outperformed the Text-only method (Top-1: 0.384 vs.
0.367). This may be attributed to the fact that the Whole-slide model was trained
specifically on slide presentations, resulting in embeddings that are more aligned
with the structure and semantics of the target task, even when operating solely on
text. In contrast, the Text-only embedder lacks this domain-specific alignment.

Another critical observation is that using all modalities together (text, image,
and page-level representations) did not consistently yield the best results. In fact, for
all embedding techniques, the “All” configuration underperformed compared to the
best single-modality configuration. This suggests that the fusion of heterogeneous
modalities without careful weighting or alignment may just increase the amount
of data to filter and create noise diluting rather than enriching the embeddings
database.
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4.3 Complete RAG pipeline on synthetic QA
dataset

Having identified the optimal embedding and retrieval strategy in the earlier
stages, we proceeded to analyze the performance of several answer generation
techniques. These techniques were designed to improve the final response quality
in a multimodal Retrieval-Augmented Generation (RAG) pipeline, using different
strategies for selecting or aggregating retrieved slide content.

4.3.1 Answer Accuracy Comparison

Table 4.2 reports the evaluation results on the synthetic QA dataset, which contains
question—answer pairs referencing a single relevant slide. Each technique was
assessed on its ability to produce correct answers compared to the ground truth.
To have a deeper view on the process we distinguished between cases where the
answer was correlated by a correct top-1 match from the retriever and those where
it was not.

The Top-1 baseline achieved strong performance with 443 correct answers out
of 976 total questions, including 344 cases where the top-1 retrieved slide matched
with the one used to produce the ga pair and the answer was correct. This simple
method, unsurprisingly achieved the highest number of correct answers correlated
by correct top-1 matches, making it an efficient and competitive baseline.

However, several optimization techniques outperformed, even if marginally, the
baseline in overall accuracy:

 Technique 3 with Chain of Thought (CoT) achieved the highest number of
correct answers (472), outperforming the baseline by a relative 6.55%. By
prompting the model to explicitly reason about image relevance before selecting
the best candidate slide, it improved both judgment and final output quality.
This technique maintained high performance even when the top-1 retrieved
slide was not correctly matched, demonstrating effective self-evaluation and
reranking. Interestingly the same technique without Chain of Thought prompt
achieved the second worst result showing how relevant this simple change can
be.

o Technique 4 with normalized distance—perplexity scoring also surpassed the
baseline even if just for a total of 5 correct answers, yielding 448 correct
answers. We can see how in contrast with other techniques the increment in
the correct answers given the wrong top-1 match was very modest hinting
that the re-ranking mechanism might be still too cautious.
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o Technique 1 (Slide Image + Text Context) and Technique 2 (Progressive
Accumulation) performed slightly below the baseline (344 and 426 correct
answers, respectively), but were effective in recovering correct answers from
lower-ranked slides. Notably, Technique 1 almost doubled the number of cases
with a wrong top-1 match but a correct produced answer compared to the
baseline (172 vs. 99), showing that its aggregation strategy can compensate
for suboptimal retrieval in many cases.

e Technique 4 without normalization performed the worst, highlighting that
naive application of perplexity-based re-ranking is insufficient. Its low accuracy
suggests that score calibration is essential for such a technique to be effective.

Table 4.2: Comparison of Answering Techniques on internal dataset and synthetic

QA

Mot ric Techmqu(;s .
Top 1 1 2 3 (CoT) 4 (norm.)

Top-1 Match & Correct 344 172 258 152 322 68 342

Wrong Match & Correct 99 172 168 131 150 80 106

Total Correct Answer 443 344 426 283 472 148 448

Top-1 Match & Wrong 146 318 232 338 168 422 148

Wrong Match & Wrong 387 314 318 355 336 406 380

Total Incorrect Answer 533 632 550 693 504 828 528

Total Top-1 Match 490

Total not Top-1 Match 486

4.3.2 Latency—Accuracy Trade-Off

Despite their improved performance, optimization techniques come at a cost. As
detailed in Table 3.1, they require multiple LLM invocations per answer.

Thus, a clear trade-off emerges: accuracy might improve with more advanced
techniques such as Technique 3 with Chain Of Thought, but latency increases
accordingly. For latency-sensitive applications, the Top-1 baseline offers the best
compromise, while applications demanding high precision may benefit from the
usage of Technique 3 with Chain Of Thought.
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Comparison of RAG Optimization Techniques
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Figure 4.2: Comparison of Answering Techniques on our internal dataset with
synthetic QA pairs.

4.4 Complete RAG pipeline on Vidore

To evaluate the proposed RAG pipeline, we extended testing to multiple open-source
datasets from the Vidore collection, covering diverse domains such as healthcare,
government reports, artificial intelligence, and energy. The format of these datasets
does not align perfectly with the scope of the synthetic dataset as they represent
multi-page documents more than slide presentations. Each dataset was composed of
1000 pages. The goal was to compare the performance of the four best performing
answer generation strategies:

1. Top-1 (baseline)

2. Progressive Accumulation

3. Confidence-Based Selection via VLM-Evaluation with Chain Of Thought

4. Distance + Perplexity-Based Scoring

The results for each dataset are visible in Tables

e vidore/syntheticDocQA_healthcare_industry_test_results: Table 4.3
e vidore/syntheticDocQA_government_reports_test_results: Table 4.4

e vidore/syntheticDocQA_artificial_intelligence_test_results: Table
4.5
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e vidore/syntheticDocQA_energy_test_results: Table 4.6 aggregated: Ta-
ble 4.7.

Table 4.3: Comparison of Answering Techniques on
vidore/syntheticDocQA_healthcare_industry_test

Metric Techniques
Top 1 2 3 4

(CoT) (norm.)
Top-1 Match & Correct 81 79 82 82
Wrong Match & Correct 0o 7 4 0
Total Correct Answer 81 86 86 82
Top-1 Match & Wrong 10 12 9 9
Wrong Match & Wrong 9 2 5 9
Total Incorrect Answer 19 14 14 18
Total Top-1 Match 91
Total not Top-1 Match 9

Table 4.4: Comparison of Answering Techniques on

vidore/syntheticDocQA_government reports_test

Metric Techniques
Top 1 2 3 4

(CoT) (norm.)
Top-1 Match & Correct 84 84 83 86
Wrong Match & Correct 2 5 4 3
Total Correct Answer 86 89 87 89
Top-1 Match & Wrong 10 10 11 8
Wrong Match & Wrong 4 1 2 3
Total Incorrect Answer 14 11 13 11
Total Top-1 Match 94
Total not Top-1 Match 6

4.4.1 Aggregated Analysis

Unlike in the synthetic QA setting, Technique 2 achieves the best performance
on this dataset. It is also the only method among those tested that includes
an aggregation step. Its superior results may be attributed to the already high
precision of the retriever, which reduces the marginal benefits of Techniques 3 and
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Table 4.5: Comparison of Answering Techniques on
vidore/syntheticDocQA_artificial intelligence_test

Mot ric Techniques
Top 1 2 3 4

(CoT) (norm.)
Top-1 Match & Correct 83 82 77 83
Wrong Match & Correct 0o 3 3 0
Total Correct Answer 83 85 80 83
Top-1 Match & Wrong 11 12 17 11
Wrong Match & Wrong 6 3 3 6
Total Incorrect Answer 17 15 20 17
Total Top-1 Match 94
Total not Top-1 Match 6

Table 4.6: Comparison of Answering Techniques on

vidore/syntheticDocQA_energy test_results

Metric Techniques
Top 1 2 3 4

(CoT) (norm.)
Top-1 Match & Correct T 73 71 75
Wrong Match & Correct 1 6 5 2
Total Correct Answer 78 79 76 7
Top-1 Match & Wrong 10 14 16 12
Wrong Match & Wrong 12 7 8 11
Total Incorrect Answer 22 21 24 23
Total Top-1 Match 87
Total not Top-1 Match 13

4, both of which focus primarily on re-ranking. As a result, their contributions
may not be substantial enough to outperform the advantages of aggregation.

4.5 Synthetic QA dataset for slide pairs produc-
tion
To enable cross-document reasoning and support comparative QA tasks, we ex-

tended our synthetic dataset by generating factoid questions grounded in pairs
of semantically related slides. This process involved a multi-stage pipeline that
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Table 4.7: Aggregated Comparison of Answering Techniques on all the vidore
Datasets

Metric Techniques
Top 1 2 3 4

(CoT) (norm.)
Top-1 Match & Correct 325 318 313 326
Wrong Match & Correct 3 21 16 5
Total Correct Answer 328 339 329 331
Top-1 Match & Wrong 41 48 53 40
Wrong Match & Wrong 31 13 18 29
Total Incorrect Answer 72 61 71 69
Total Top-1 Match 366
Total not Top-1 Match 34
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Figure 4.3: Comparison of  Answering Techniques on

vidore/syntheticDocQA_artificial_intelligence_test.

included document sectioning, cross-section similarity analysis, slide-level match-
ing, and final question generation. Below, we describe each step along with its
quantitative outcomes and insights.

4.5.1 Presentations Sectioning

The first stage involved dividing each presentation into semantically coherent
sections to ensure that slide comparisons would be made between conceptually
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Figure 4.4: Comparison of  Answering Techniques on
vidore/syntheticDocQA_energy_test.
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Figure 4.5: Comparison of  Answering Techniques on
vidore/syntheticDocQA_government_reports_test.

aligned sections rather than arbitrary pages. This segmentation was based on the
full textual content of each document and performed using Claude 3.5 Sonnet, a
large language model capable of high-level document understanding.

This produced a total of 99 sections across 11 presentations, with an average

61



Results and Discussion

Comparison of RAG Optimization Techniques on vidore/syntheticDocQA_healthcare_industry_test
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Figure 4.7: Comparison of Answering Techniques on all vidore datasets.

of 9 sections per presentation. The structure of the documents were very similar

usually consisting of 3 introduction sections followed by a variable number of core
sections and one or two for the conclusion.

Here an example of sectioned presentation:

{’path’: ’/path/to/presentation.pdf’,

62



Results and Discussion

’name’: ’presentation.pdf’,
>country’: ’France, Italy, Spain’,
’year’: 2025,
’sections_text’: [{’section_title’: ’Methodology’,
’start_page_index’: 1,
’end_page_index’: 3,
’summary ’: ’Outlines the research methodology for the
quantitative study ... purchasers.’},
{’section_title’: ’Executive Summary’,
’start_page_index’: 4,
’end_page_index’: 6,
’summary ’: ’Provides key findings on sample segmentation
selection.’},
{’section_title’: ’>SEGMENTATION,
’start_page_index’: 7,
’end_page_index’: 11,
’summary ’: ’Details segmentation parameters including
demographics, ... with varying levels of specialization
across countries.’},
{’section_title’: ’I0S Penetration’,
’start_page_index’: 12,
’end_page_index’: 15,

’summary ’: ’Analyzes the penetration of ... preferences
across countries and age groups.’},
{’section_title’: ’Factors supporting IOS choice’,
’start_page_index’: 16,
’end_page_index’: 21,
’summary ’: ’Identifies key decision factors when choosing
effectiveness.’},
{’>section_title’: ’I0S: limits and barriers for non owners
only’,

’start_page_index’: 22,
’end_page_index’: 26,

’summary ’: ’Examines barriers preventing non-owners from
adopting ... compatibility issues, and full arch concerns
.31}

Listing 4.1: Example of extracted sections

This sectioning step was crucial to structure the documents into thematic units.
These units then enabled more targeted similarity computations. It allowed the
alignment of slides not only based on superficial visual resemblance, but also on the
treated topic and on their role inside the presentation, improving the relevance of
paired slides across presentations. Manual inspection confirmed that the generated
summaries were generally accurate and coherent with the actual content of the

63




Results and Discussion

sections.

4.5.2 Sections Pairing

To identify semantically related content across documents, each section was em-
bedded using the all-MiniLM-L6-v2 sentence transformer. The embedding was
computed by concatenating each section’s title and summary. We then calculated
cosine similarity between all section pairs from different presentations.

A similarity threshold of 0.9 was selected to retain only highly relevant section
pairs. This yielded a total of 7 high-confidence section pairs. The threshold
was chosen to balance precision and recall; while lowering it to 0.8 increased the
number of pairs to 39, it also introduced semantically weaker matches. For our
purpose of generating meaningful comparative questions, a stricter threshold proved
more effective.

4.5.3 Slides Similarity search

Using the 7 section pairs identified in the previous step, we conducted a fine-grained
similarity search at the slide level. Specifically, all slide combinations within each
section pair were compared using visual embeddings. A similarity band of [0.7,
0.9] was applied to filter out both dissimilar pairs (noise) and near-identical slides
(e.g., repeated intros or disclaimers).

From 1018 candidate slide pairs, this filtering process resulted in 192 slide
pairs, which were deemed visually similar yet semantically distinct enough to
support interesting comparative questions.

This step confirmed that high-level section similarity is a useful proxy for
identifying informative slide pairings, and that visual embeddings can effectively
filter out redundant visual content.

4.5.4 Questions Generation

Each of the 192 slide pairs was then passed to Claude 3.5 Sonnet to generate a
factoid question and answer with an accompanying explanation. The questions
were designed to highlight differences or extract insights and relationships from
both slides.

Due to occasional errors in generation such as malformed output a total of 175
valid questions were successfully produced. This represents a generation success
rate of approximately 91.1%.

Here an example of a question produced from a pair of similar slides:
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. I hnefits — spontaneous statements . Advantages in the use of | N I

What oe the most important benefits n using the [,

oo Quickness

ctors related with the increase
y and Performance.
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- -

RANDOM SAMPLE [ owners sawris |
« L
Slide 1 (Italy 2017) Slide 2 (Brazil 2022)
{
’Factoid question’: ’What is the difference in percentage

points between the top-ranked XXXXXXXXXXXXXXXX benefit in
Italy 2017 and Brazil 202277,
’Answer ’: ’15 percentage points’,
>Explanation’: "In Italy 2017, the top benefit was °’
Reduction of working time’ at 64%, while in Brazil 2022,
the top benefit was ’Quickness’ at 49%. The difference is
64% - 49% = 15 percentage points."
X

Listing 4.2: Example of produced question for slide pairs (private information
has been hidden).

4.5.5 Discussion

This pipeline demonstrated that combining semantic sectioning with multimodal
similarity search enables scalable generation of comparative QA data. A key insight
is that filtering slide pairs based on both section similarity and visual difference
helps produce questions that are neither too obvious nor too vague.

Moreover, our choice of thresholds at each step proved effective in balancing
dataset quality and size. However, future iterations could improve generation
robustness by:

o Implementing fallbacks or retries for failed generations;

o Fine-tune the similarity thresholds hyperparameters for optimal balance be-
tween size and quality;

o Human-evaluating a subset to assess factual correctness.
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These findings suggest that semi-automated pipelines for cross-document QA
generation are not only feasible but can yield high-quality examples for downstream
retrieval or reasoning tasks.

4.6 End-to-end RAG pipeline Evaluation on Syn-
thetic Multi-Slide QA Dataset

After generating the synthetic QA pairs for slide pairs, we evaluated the performance
of the complete retrieval-augmented generation (RAG) pipeline in a multi-slide
context. This evaluation is based on the 175 QA pairs described in the previous
section. The pipeline was adapted to accommodate multi-slide reasoning, as
outlined in Section 3.

4.6.1 Evaluation Methodology

To assess performance, we applied the following procedure for each QA pair:
1. The question was submitted to the retriever.
2. The top-n most relevant slides (n=10) were retrieved.

3. Depending on the employed generation strategy, a subset of retrieved slides
was selected and processed.

4. A final answer was generated based on the selected context.

5. The generated answer was compared to the reference answer using the langchain
QA LLM evaluator component powered by GPT-4o.

Table 4.8 summarizes the retrieval performance, capturing how often the original
slides from the QA pair appeared in the top-n retrieved results.

Table 4.8: Top-k Retrieval Accuracy for Slide Pair QA Dataset

‘Metric \Top—l Top-2 Top-3 Top-5 Top—lO\

Match Image 1 | 25.71% 36.00% 41.14% 50.86%  59.43%
Match Image 2 | 12.00% 18.86% 25.71% 33.14% 45.71%
Any Match 37.711% 51.43% 61.71% 73.71% 83.43%
Both Match - 3.43%  5.14% 10.29% 21.71%
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4.6.2 Answer Generation Results

The results of each of these techniques are available in the chart 4.8 below:

Comparison of RAG Answer Generation Techniques for Multi-Slide Contexts

Categories
B correct answer
Bl incorrect answer
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Figure 4.8: Comparison of Answering Techniques on our internal dataset with
synthetic multi-slide QA pairs.

and in the following table 4.9:

Table 4.9: Answer Accuracy for Different Techniques for Slide Pair QA Dataset

| Technique | Correct Incorrect Accuracy |
Top 2 (baseline) 19 156 10.85%
Technique 2 13 162 7.42%
Technique 3 with COT 14 161 8.00%
Technique 4 12 163 6.85%
Technique 4 normalized 14 161 8.00%

4.6.3 Discussion

The results highlight several key challenges specific to the multi-slide QA scenario:
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Retrieval Performance as a Bottleneck The primary limitation lies in the
difficulty of retrieving both target slides from the original QA pair. For instance,
while at least one relevant slide appears in the top-2 results for over 51% of
questions, both slides are retrieved in only 3.43% of cases. Even at top-10, this
number remains relatively low at 21.71%. This significantly constrains the context
available for generation, resulting in reduced answer quality across all evaluated
techniques.

Answering Performance and Strategy Comparison Among all tested tech-
niques, the simple Top-2 baseline achieved the highest accuracy (10.85%), although
still remarkably lower than in the single-slide scenario. Notably, none of the opti-
mization strategies designed for multi-slide reasoning surpassed this baseline. This
suggests that in the absence of reliable retrieval, improvements in generation logic
yield limited benefits.

Redundancy and Latent Knowledge in the Corpus Interestingly, the gap
between low retrieval accuracy for both target slides (3.43%) and relatively higher
answer correctness (10.85%) suggests the presence of redundant or overlapping
content across presentations. This indicates that some questions can still be
answered correctly even when the original slide pair is not retrieved, highlighting
the possibility of semantic redundancy within slide decks, an expected characteristic
in slide presentations as their main goal is not only to carry information but to
present it to a audience and often presenting the same information in different
ways can enhance the message comprehension.

First Slide Retrieval Bias It is interesting to notice a consistent gap in retrieval
performance between Slide 1 and Slide 2 (around 15%) across all top-k values
suggests a possible bias introduced during question generation. The generative
model may have implicitly prioritized content from the first slide in the pair, leading
to easier retrievability or higher textual alignment with the query.

Need for Improved Retrieval Strategies Overall, the multi-slide QA setting
reveals the limits of naive embedding-based retrieval when dealing with compound
queries requiring multiple discrete evidence sources. Many questions are based
on slide pairs that are apparently disconnected, belonging to different documents
and referring to different countries and years. In these cases, retrieving both slides
requires not only a surface-level similarity but also a deep comprehension of the
query intents and of its single requested components. This underlines the need for
advanced retrieval architectures such as:

o Multi-hop retrieval
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o Query Decomposition;

« Entity-aware re-ranking.

4.7 Slides anonymization

The anonymization pipeline proved effective in generating realistic, shareable slide
content from confidential or proprietary presentations. Transforming the pairs
instead of the single slides allowed to preserve the thematic coherence between
the slides which will facilitate the eventual downstream task of question-answer
pairs generation on multiple slides. In Figure 4.9 it is possible to see an example of
successful anonymization where the original layout was maintained but the content,
the context and the entities were shifted.

Benefits of the In-Office Fabrication Unit

What are the primary benefits of using your in-office fabrication unit?
(Open-ended responses)

[l 2cventoce in the use of the I

ko atntge mentone  nrasedproducty et Main Advantages

. Increase productivity and Performance.

The primary benefit mentioned is
“Enhanced productivity” related to
overall Efficiency and Performance.

o second acentage mentionad s ‘Btte acuracyof the esu
factor related to the quality of the final result.

Other I 3%

The secondary benefit is “Improved
precision of outcomes”, a factor tied
to the quality of the final product.

Base: 70 respondents.
Unit Owners

|
[ owners saweic | USER GROUP SAMPLE

Left: Original slide Right: Anonymized slide

Figure 4.9: Example of the source and output slides for the anonymization process.
All the sensitive information in the original slide has been covered

4.7.1 Impact of Pair-Based Anonymization

We observed that anonymizing slide pairs led to more contextually rich and coherent
outputs. Unlike single-slide anonymization, which often caused a strong semantic
drift or generated content detached from the original presentation’s flow, operating
on slide pairs helped maintain inter-slide relationships. This was reflected in
higher consistency between slides and more natural transitions in topics, which are
essential for use in retrieval and generation tasks.

Additionally, slide pair processing enhanced variability: the visual language
model (VLM) treated slide pairs as a more complex input signal, yielding greater
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diversity in the anonymized content as visible in Figure 4.10 where a single source
slide was transformed into 7 different anonymized slides all with different layouts
and contents.

4.7.2 Generation and Post-Processing

The LaTeX Beamer code generated by the VLM was generally well-formed but
not without issues. A small but consistent fraction of the slides initially suffered
from formatting problems such as text or tables overflowing the slide boundaries
or TikZ figures being too large. These issues were effectively mitigated by the
Python-based post-processing step, which automatically adjusted font sizes, resized
complex elements, and removed redundant LaTeX preamble declarations.

While the post-processing was not flawless, it was fundamental to allow the
LaTeX code to compile since none of the produced code for the LaTeX Beamer
slides was suitable for compilation right out of the LLM. With this post-processing
in place we were able to successfully compile 104 slide pairs out of 175 with a
conversion rate of 59.4%. This conversion rate can for sure be improved by fine-
tuning the Python post-processing to be more robust and identify and solve even
more common issues.

4.7.3 Validation Outcomes

We applied the validation prompt 3.13 to all generated slide images using Gemini
2.5 Pro. This allowed us to simulate an external assessment of slide quality and
ensure that the anonymized output met usability standards. The validation focused
strictly on content visibility and layout integrity.

Out of the 104 compiled slide pairs 39 out of 104 were rated as "GOOD" by the
model, meaning they contained no visual defects, no overlapping content, and no
cutoff sections. The remaining 65 typically involved edge cases where charts or
text were cut off because they were too big or too long. Some examples of pairs
labeled as "BAD" with relative explanation are visible in figure 4.11. This likely
happens because the default font employed in LaTeX is bigger than the font used
in the original slides resulting in an overflow.

4.7.4 Limitations and Future Improvements

While the anonymization pipeline was effective for our purposes, several limitations
remain. The reliance on heuristic post-processing rules means that edge-case layout
bugs are not always caught.

In future work, incorporating a few-shot prompting approach for the anonymized
slides generation could drastically improve the conversion ratio and reduce the
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Brand positioning: Overall Brands
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Figure 4.10: Example of how the same source slide can change in different

anonymized pairs.

necessity for ad-hoc post-processing procedures. Additionally, fine-tuning a VLM
with specific anonymization examples may further increase quality and also reduce
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Digital Systems: Unaided Brand Awareness

When considering equipment for digital production workflows, which brands are
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Figure 4.11: Examples of anonymized slides evaluated as "BAD" with provided
reason

reliance on post-generation fixes. On the other side improving the Python post-
processing by incorporating more fixes for common edge-cases while maintaining
the current setup could also improve the general evaluation of the generated slides
by avoiding content overlap and overflow.

4.8 Anonymized slides extension

Out of 39 slide pairs that were evaluated as good by a VLM corresponding to a
total of 78 single slides, 45 anonymized presentations were successfully generated.
The remaining 33 slides could not be compiled into valid presentations. With
improvements to the post-processing functions in Python, it is likely that an even
greater number of presentations could be successfully obtained.

4.8.1 Presentation Quality and Variability

Empirical evaluation of the generated presentations revealed a noticeable variation
in output quality. As illustrated in Figures 4.13 and 4.12, some presentations were
visually coherent, well-structured, and maintained a professional layout. Others,
however, exhibited several defect such as empty slides, placeholders used instead of
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images, or quite empty content.

Despite these inconsistencies, the overall quality tended to be satisfactory. The
majority of successful presentations adhered to the desired structural flow, preserved
the anonymized context, and maintained the visual conventions expected in formal
slide decks. Unfortunately though, the constraint of reusing anonymized entities
(e.g., fictional country names) was respected but sometimes labels and entities
changed across slides from the same presentation, limiting consistency throughout
the generated decks.

4.8.2 Observations on VLM Behavior

A noteworthy observation emerged regarding the model’s ability to infer high-level
structure from limited input. Given just a single anonymized slide and contextual
metadata, the VLM was able to extrapolate a plausible section-level narrative and
distribute it across a new presentation. This behavior supports the viability of using
VLMs for complex content generation, especially when grounded in structured
prompts.

That said, the model sometimes struggled with consistency across the presenta-
tion, highlighting the need for an explicit prompt with entities mappings or prompt
tuning to maintain consistency and information richness over longer sequences.

4.8.3 Limitations and Opportunities

One of the main limitations of the current approach lies in the fragility of LaTeX-
based rendering. Even minor syntax or formatting inconsistencies can lead to
compilation failures, and although our post-processing mitigated many of these,
a non-negligible number of cases still failed. Future iterations could explore the
possibility of a multi-iteration process where for each failed compilation the error
with the source code is passed to the LLM for correction or, as already proposed for
the Slides Anonymization process, adopt a few-shot prompting approach to supply
the VLM with successful examples on which to build the new representations.
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Client Segmentation: Demographics and Practice
Structure

Geographic Zone Age of Practice Practice Founding Number of Clinical Number of
Owner Year Units Practitioners
S S MEAN: 47 years old MEAN: 2002 MEAN: 2.6 units MEAN: 3.2
Zone 3 (Southern)  20% Uptods  42% Before 2000 45% 1 16% practitioners
ot el 46055 30% 20000 2020 55% 2 48% 1 22%
Zone i (Nathen) 8% Over 55 28% 3or more  35% 2 27%
N/A o 3or more  51%

DataSelutions Inc.

Project Beta
Base: 290 cases (total sample)

Source anonymized slide.

l

Table of Contents 1. Statistical note 2. Sample segmentation - Practice Structure

J— Samle isttion

fitichnnir oy i N

Fiekdwork: March April 2023 Germany 210 tructural Metrics (vs. 2018

© Total Sample: 11013 dentits. ““‘!m EH @ Average patients per weck: 100 (vs. 95 in 2018)
Gy o =0 o Avrage el s 23 s 20 1 2018
Ouasauiens b B — nregs oo deniss: 19 (o 13 n 2018)
o Piacices it detal s 457 (. 0% i 2016)
P et Condnc ot The ey Gopcty
prichebadigio _

2. Sample segmentation - Owner Demographics

4. Brand positioning - Image and Correlation.

Brand tvage Scao (ot of 100) Factor Aot

ey Shons "o by Tactors e ovr 80% of
Ags of Surgory Oumor -bouse Tecicins

Cormspondence Aty Rovess 3 Poitioning Drivrs

© Promium Authoity: Brands percivd s bigh-end. eperivldted. (e lr) 2 o2 ol
ch-foar Leaderhig: Brands lsding in sigtal invotio and inegrted scutons. i Innovation & Technolo

Brand A e ke © i By o gem @ Trust & Relsbiliy

o 15t e s b an rand Awarenes Metsics ey Product Asociations CotSiod Anatyss

nhous dentel thnician 310 sy, o prduct @ Sustainsble Volue and Convenience: Erands st s rlsbl,sccssible, nd il piced.

. " k) @ A strong it corlation (r=0.75)

s Diga denir,implnts e bt Brand g Seor o1

T ——— Uit hond 1o Recommend
Convertions! matrss, v

D claly segmant brands by price tr
" i N, Danehy Srons.
Hustrtive chirt ofcwner sge ditriution DUl

o Vale: Ge

8. Expectations about the future - Planned Changes (Next

2 Years)

Ouerl Satstacion (. /10) Suinch Aty Suoplior Avlysis Top Plannod Iavestments nd Developments
Shat 58 "o 0% pian 1o et e e it worko (e, 105, 0 pinters)
o Dursply Sons 85 pl: 3%  45% ntend s canry out 3l renovation or expansion.
. m_ © Online (Mararpisce) 15%  309% s to develp their mansgeria and business s,
NeS it Scare (NPS) o Qe 1%,

e oo

© Duniol Sions 140
o 43

f i ety us pric

focus on digital imestments

cinic sestaticsand paten comfor.

Target anonymized presentation.

Figure 4.12: Example of an unsatisfactory outcome from the slides anonymization
extension process.
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Results and Discussion

Market Analysis: Number of Active Specialists
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Figure 4.13: Example of a good outcome from the slides anonymization extension
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75



Chapter 5
Conclusion

This work presented a comprehensive development and evaluation of a complete
Retrieval-Augmented Generation (RAG) pipeline for question answering on multi-
modal slides presentation, first on the single-slide use-case and then extended to the
more realistic multi-slide use-case. The study included both controlled experiments
on internally developed synthetic QA datasets and external validation on several
open-source benchmarks from the vidore collection. In the end, to facilitate the
expansion of this domain we proposed an anonymization technique that leverages
powerful VLMs to mask entities and values while maintaining the layout and overall
coherence.

5.1 Summary of Contributions

This work introduces several key contributions toward advancing retrieval-augmented|
question answering over multimodal slide presentations. First, we developed a
synthetic QA dataset specifically designed for the single-slide use-case, enabling
controlled evaluation of retrieval and answering strategies. We then conducted
an extensive analysis of multiple embedding techniques for retrieval, ultimately
identifying whole-slide visual embeddings as the most effective in terms of perfor-
mance and efficiency. Building on these findings, we designed and implemented a
complete Retrieval-Augmented Generation (RAG) pipeline tailored to multimodal
slide inputs. Within this pipeline, we explored and compared various advanced an-
swering strategies, such as re-ranking, aggregation, and hybrid scoring mechanisms
combining text perplexity and retrieval similarity, to determine their effectiveness.
The pipeline’s robustness was further validated using external open-source bench-
marks from the vidore collection. To extend the QA capabilities to more realistic,
multi-slide scenarios, we developed a novel approach for generating multi-slide QA
data by synthesizing questions based on slide pairs. Additionally, we proposed an
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anonymization framework leveraging Vision-Language Models (VLMs) to mask
entities while maintaining layout and semantic coherence. This was complemented
by a context-aware pipeline to expand anonymized slide pairs into coherent full pre-
sentations, enabling scalable production and sharing of privacy-preserving training
data for future QA applications.

5.2 Embedding and Retrieval Insights

The initial step in the pipeline construction was the selection of the embedding
and retrieval strategy. Three embedding approaches were compared: text-only
embeddings derived from Vision-Language Model (VLM) captions, mixed modality
embeddings, and whole-slide visual embeddings. Extensive experiments across
these configurations revealed that the whole-slide approach, particularly with only
page-level embeddings, offered the best retrieval performance, achieving the highest
Top-1 accuracy (0.502), Top-3 accuracy (0.737), and MRR (0.645). Surprisingly,
simply combining all modalities did not improve performance, suggesting that
indiscriminate fusion of heterogeneous signals can introduce noise rather than
improve retrieval.

The evaluation also considered computational cost. The text-only embedding
strategy incurred a significant preprocessing overhead due to the time-intensive
image captioning step. In contrast, both mixed and whole-slide strategies provided
a much faster overall pipeline with generally comparable or superior retrieval
accuracy.

5.3 Findings from the Evaluation of Answering
Techniques

In total 6 answering techniques, excluding the baseline, were compared on the
internal synthetic QA dataset and successively the 3 best performing ones were
compared on the vidore datasets. These answering techniques ranged from simple
answering based on the top-1 retrieval (baseline) to methods involving intermediate
answers and retrieved data aggregation, re-ranking using chain-of-thought (CoT)
prompting and composed metrics based on text perplexity and retrieval similarity
score. Results demonstrate that performance is dependent on dataset characteristics.
On the internal synthetic dataset, where the top-1 retrieval accuracy was around
50%, re-ranking approaches delivered better accuracy. Conversely, on Vidore
datasets where the top-1 retrieval accuracy was around 90%, the aggregation-
based technique consistently outperformed others. This indicates that aggregation
is particularly effective when initial retrieval accuracy is already high, whereas
re-ranking proves more beneficial in scenarios with noisier retrievals.
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5.3.1 Multi-image Dataset Production and Real-World im-
plications

The shift from single-slide to multi-slide QA introduced additional challenges. As
no suitable datasets was available, a novel multi-image QA dataset was constructed
using synthetic generation techniques. Adapting the pipeline to this setting revealed
significant limitations, particularly in the retrieval performance. While retrieving
one relevant slide from a pair was common, identifying both consistently proved
more challenging, severely impacting downstream QA performance.

These findings underscore that multi-slide QA cannot rely on naive extensions
of single-slide methods. Instead, it demands new approaches mostly to overcome
the bottleneck in the retrieval phase.

5.3.2 Anonymization Process Outcomes

To facilitate dataset sharing and privacy preservation, an automated pipeline was
built to anonymize and expand anomyized slides. This system successfully masks
sensitive content while retaining the layout and thematic structure. Furthermore,
anonymized slide pairs were extended into coherent multi-slide presentations using
context-aware generation.

Despite encouraging results, the pipeline is not flawless. Some generated LaTeX
files failed to compile due to errors in the LaTeX code while others presented
formatting errors such as overlapping or cut text and context. However, the Python
post-processing module significantly mitigated these issues.

5.3.3 Limitations and Challenges

Several limitations were identified throughout this work:

o Multi-slide Retrieval Bottleneck: While retrieval of individual slides is
reasonably effective, jointly retrieving both relevant slides remains challenging.
This limitation critically affects the overall performance of the RAG pipeline
in the multi-slide setting.

o Retrieval-Generalization Trade-offs: Strategies optimized for single-slide
performance do not generalize well to multi-slide retrieval, indicating a need
for specialized designs tailored to inter-slide reasoning.

» Pipeline Sensitivity to Retrieval Accuracy: Answering performance
remains tightly bound to retrieval quality. Low recall in the first stage
constrains the upper bound of achievable QA performance.
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o Fragility of LaTeX-based Anonymization: The anonymization and ex-
pansion pipeline, while innovative, occasionally produces .tex files that cannot
be compiled or malformed LaTeX documents. Though current post-processing
fixes many issues, more robust generation methods are required for production-
scale deployment.

5.3.4 Future Work

This project opens up several promising directions for future research:

o Improved Multi-Slide Retrieval: Explore entity-aware query decomposi-
tion to improve the retrieval of related slide pairs. Another proposal might
involve innovative techniques of query expansion. Other proposals might
involve enriching the single embeddings with contextual metadata that now
is missing or using the extracted entities in the query to query in the vector
database metadata to reduce the corpus to query.

o Improved Answering Module tailored for Multi-Source Input: De-
velop answering techniques that natively and efficiently work with multiple
slides.

o Answering Module Evaluation Decoupled from Retrieval: Benchmark
answering techniques using oracle-retrieved slides to isolate the contribution
of generation methods alone and better guide design choices.

« Extend Answering Module Evaluation on Open Datasets: Test an-
swering techniques using open multi-image datasets.

e Scalable Anonymized Dataset Production: Expand the anonymized
presentation corpus using more data and more robust generation and validation
techniques, facilitating the creation of the first large-scale multi-slide QA
benchmark.

o Explore Optimization techniques for Slides Anonymization: Employ
few-shot prompting or model fine-tuning for slides anonymization. Fine-tuning
might yield better results but requires a specialized dataset and potentially
expensive training.

o Automated Post-Processing and Repair: Extend the current Python
post-processing pipeline using common detected errors to automatically fix
additional LaTeX errors.
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Final Remarks

Overall, this work delivers a complete and extensible framework for RAG pipelines
over multimodal slide presentations, alongside tools for scalable dataset creation
through anonymization and expansion. It not only addresses a largely underexplored
domain but also lays the foundation for future advances in privacy-preserving,
multimodal document understanding.
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