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Abstract

This thesis presents the design and implementation of an intelligent cloud-based
infrastructure for smart water distribution monitoring, featuring a conversational
Al interface that simplifies operator interaction with complex systems. It addresses
limitations in current monitoring setups, where traditional interfaces demand tech-
nical expertise and reduce usability.

The solution leverages Google Cloud Platform services to build a monitoring
ecosystem that integrates real-time sensor data processing, hydraulic simulation,
machine learning-based leakage detection, and geospatial mapping. Cloud-native
principles like microservices, serverless computing, and event-driven processing en-
sure scalability, reliability, and cost-efficiency. A key innovation is a conversational
AT system built with Large Language Models and LangChain, enabling natural
language interaction with monitoring dashboards. A Grafana-based graphical in-
terface provides intuitive visualization of real-time and historical data, geospatial
mapping, and interactive controls.

The system includes automated data ingestion via Cloud Functions, BigQuery
for data warehousing, Grafana dashboards, EPANET for hydraulic simulation, and
a React-based frontend. PostgreSQL with PostGIS manages geospatial data, en-
abling efficient spatial queries and integration with mapping features.

Development involved prototyping with QGIS Web Client and Google Looker
Studio, with Grafana ultimately chosen for unified visualization. The AI assis-
tant evolved from a CLI tool to a hybrid architecture where LLMs extract user
intent and Python functions execute actions. Key milestones include minimizing
LLM usage for efficiency, integrating the Grafana API with WebSocket support,
and implementing advanced features like natural language queries and geospatial
navigation.

The system was developed and validated in collaboration with AlpiAcque and
Tesisquare, focusing on the Marene water network in Cuneo, Piedmont, Italy. Dis-
tricts like Ponte, Via Torino, San Bernardo, Salza, and Concentrico are equipped
with sensors providing 15-minute interval data for analysis. Historical sensor and
leakage data were used to validate machine learning models. The IDEA SCADA
system, managed by IDEA Srl, was integrated for data collection, and enhanced
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with anomaly detection, predictive analysis, and district-level geospatial visualiza-
tion.

This research contributes to infrastructure monitoring, cloud architecture, con-
versational Al, and HCI design. Key outcomes include integration models for Al-
driven industrial interfaces, transparent query workflows, resilient cloud patterns,
and evaluation methods for Al-enhanced monitoring. The work shows how conver-
sational AI can improve performance and accessibility in technical environments.
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Chapter 1

Introduction

Smart water distribution monitoring systems face significant challenges in trans-
lating advanced sensor data and analytical capabilities into accessible, actionable
insights for operational personnel. While technologies such as cloud computing, IoT
sensors, and data analytics offer powerful capabilities for infrastructure monitor-
ing, the complexity of existing interfaces often limits their practical effectiveness.
This thesis addresses these challenges through the development of an integrated
cloud-based infrastructure for smart water monitoring, featuring automated data
processing pipelines, comprehensive error detection and recovery mechanisms, and
an innovative conversational A interface that enables natural language interaction
with Grafana dashboards [1] and analytical tools.

The implemented system leverages Google Cloud Platform’s [2] native services
to create a robust, scalable architecture with automated monitoring, intelligent re-
source scaling, and comprehensive system observability. The cloud-native approach
ensures reliable operation through automated error detection, recovery mechanisms,
and sophisticated data validation processes that maintain system integrity while
enabling seamless scalability based on operational demands.

1.1 Problem Statement

Current water monitoring systems typically suffer from fragmented architectures
that require operators to interact with multiple disconnected tools and interfaces.
SCADA systems provide real-time operational control but often lack sophisticated
analytical capabilities. Geographic information systems (GIS) provide spatial con-
text but may not integrate effectively with real-time sensor data. Grafana dash-
boards offer powerful visualization capabilities but require technical expertise to
configure and modify effectively. This fragmentation results in inefficient workflows
and reduced effectiveness of analytical capabilities.

The complexity of existing monitoring interfaces presents significant barriers to
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Introduction

effective utilization. Traditional dashboard platforms require extensive technical
knowledge to add panels, modify visualizations, construct analytical queries, or
access historical data. This complexity limits accessibility to technical specialists
while preventing broader operational personnel from effectively utilizing available
information resources or adapting visualizations to changing operational needs.

The static nature of many monitoring visualizations limits their effectiveness
for dynamic operational scenarios. Dashboard configurations often cannot be easily
modified during emergency response situations or analytical investigations, requir-
ing manual intervention by technical personnel to reconfigure views for different
operational contexts.

1.2 Research Objectives

This research aims to address the identified challenges through the development of
an integrated, cloud-based infrastructure that combines advanced data processing
capabilities with a novel conversational Al interface to create a comprehensive
monitoring solution that makes sophisticated dashboard management accessible
through natural language interaction.

The primary objective is to design, implement, and evaluate a complete con-
versational interface for Grafana dashboard management that enables operators to
perform complex visualization tasks through natural language commands. This sys-
tem provides comprehensive dashboard manipulation capabilities including panel
creation and modification, time range adjustments, variable management, data
querying with transparent SQL display, and geospatial operations with automatic
district zoom functionality while maintaining operational safety through built-in
confirmation workflows and undo capabilities that leverage Grafana’s version his-
tory.

A critical component involves developing innovative natural language processing
capabilities using Google’s Gemini 2.0 Flash LLM [3] integrated with LangChain
[4] and LangGraph [5] frameworks. The research investigates how conversational
interfaces can effectively bridge the gap between complex dashboard management
requirements and operational accessibility, including natural language command in-
terpretation, automated dashboard configuration, intelligent parameter extraction,
and transparent SQL query generation for data analysis.

Technical objectives include developing scalable, cloud-native architectures based
on FastAPI [6] and WebSocket communication [7] that can process natural language
inputs in real-time while maintaining secure integration with Grafana HTTP API,
Google Cloud BigQuery [8] for data analysis, and geospatial services for district-
based operations. The system implements comprehensive state management using
LangGraph workflows that support complex multi-step operations with appropriate
error handling and user confirmation requirements.
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1.3 — Research Approach

1.3 Research Approach

The research methodology follows a systematic engineering design approach com-
bining theoretical investigation with practical implementation and comprehensive
evaluation. The approach is based on design science research principles emphasizing
the creation and evaluation of innovative artifacts addressing practical problems.

This research builds upon extensive preliminary investigation and prototyping
work conducted during a focused internship period. The initial exploration ex-
amined various visualization platforms including GIS integration approaches and
business intelligence tools, which provided valuable insights into user accessibility
challenges and workflow inefficiencies. These early findings motivated the focus
on conversational Al interfaces as a means to bridge the gap between complex
technical capabilities and operational usability.

The evolution from traditional GIS-based interfaces to conversational Al rep-
resents a fundamental shift in approach. Development progressed through iterative
phases starting with backend functionality validation and evolving toward compre-
hensive web-based systems with natural language capabilities. Critical architectural
insights emerged regarding the optimal integration of LLMs for natural language
understanding while utilizing dedicated functions for precise technical operations,
ensuring both reliability and cost-effectiveness.

The final system architecture leverages Google’s Gemini 2.0 Flash model through
LangChain and LangGraph frameworks to create a sophisticated conversational in-
terface that interprets natural language commands, manages complex state tran-
sitions, and coordinates operations across multiple system components including
Grafana dashboards, BigQuery data analysis, and geospatial services.

While this thesis addresses machine learning integration within the monitoring
system, the core machine learning algorithms for anomaly detection were developed
by a research colleague. This thesis focuses primarily on the novel conversational
AT interface implementation, Grafana A PI integration, cloud infrastructure devel-
opment, and the comprehensive workflow orchestration system that makes complex
dashboard operations accessible through natural language interaction.

1.4 Thesis Structure and Contributions

This thesis is organized to provide comprehensive coverage of the research problem,
solution development process, implementation details, and evaluation results.
Chapter 2 provides examination of the technological foundations directly rele-
vant to the conversational Al dashboard interface, including Google Cloud Platform
services, LangChain and LangGraph frameworks for Al application development,
Grafana HTTP API integration approaches, FastAPI and WebSocket technologies
for real-time communication, React [9] based frontend development with Vite build

13



Introduction

system, and BigQuery integration for data analysis capabilities.

Chapter 3 presents a comprehensive exploration of the development journey,
architectural design, and technical implementation of the intelligent water moni-
toring system. The chapter begins with the methodological approach that guided
the research evolution from preliminary QGIS-based implementations to an inte-
grated Grafana-based solution, highlighting critical technology decisions and lessons
learned. It then details the systematic architectural design principles, including the
cloud-native infrastructure, modular component integration, and specialized inter-
faces. The core implementation section covers the complete technical stack includ-
ing data acquisition pipelines, hydraulic simulation integration, machine learning
algorithm incorporation, geospatial data management, advanced visualization sys-
tems, and most significantly, the innovative conversational Al interface.

Chapter 4 presents comprehensive evaluation results, focusing on the system’s
capabilities for real-time monitoring, geospatial visualization, and conversational
Al-driven dashboard management. The chapter begins with a detailed case study
of the Marene water distribution network, highlighting collaboration with Alpi-
Acque and Tesisquare, and the integration of SCADA systems, GIS platforms, and
historical leakage data. It then evaluates the system’s ability to modify dashboard
panels, manage time ranges, and execute natural language queries for data analy-
sis, including districts with highest and lowest leakage probabilities. The chapter
also demonstrates the operational utility of geospatial navigation and safety mecha-
nisms like undo functionality, emphasizing practical applications in municipal water
management.

Chapter 5 synthesizes the research contributions, discussing the methodologi-
cal value of real-world validation and industry collaboration. It provides a critical
analysis of the system’s effectiveness in integrating cloud infrastructure, data pro-
cessing, visualization, and conversational Al components. The chapter concludes
with reflections on the limitations of the current implementation and outlines fu-
ture directions for enhancing Al-driven monitoring systems, including scalability
improvements, expanded geospatial capabilities, and broader industry adoption.

The primary contributions of this thesis include the development and validation
of large language model technology for industrial Grafana dashboard management
through natural language commands. Technical contributions include innovative
LangGraph workflow patterns for complex multi-step operations, comprehensive
parameter extraction and validation mechanisms, transparent SQL query genera-
tion with user visibility, and robust error handling with confirmation workflows.
The system demonstrates significant improvements in dashboard management ac-
cessibility while maintaining operational safety through built-in confirmation mech-
anisms and undo functionality.
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Chapter 2

Technological Foundations and
Related Work

This chapter provides a comprehensive examination of the technological foundations
and related work that underpin the development of the intelligent water distribu-
tion monitoring system presented in this thesis. The review focuses specifically on
the technologies and methodologies that have been integrated to create the pro-
posed solution, progressing from cloud-based data infrastructure through geospa-
tial visualization technologies, conversational artificial intelligence frameworks, and
specialized water distribution monitoring approaches. The analysis establishes the
theoretical and technical foundations for the innovative integration of Google Cloud
Platform services, advanced visualization tools, and natural language processing
capabilities for infrastructure monitoring applications.

2.1 Google Cloud Platform and Data Infrastruc-
ture

The development of large-scale monitoring systems for critical infrastructure re-
quires robust, scalable cloud computing platforms that can handle diverse data
processing requirements, provide reliable storage solutions, and support sophisti-
cated analytical workloads. Google Cloud Platform ( GCP) has emerged as a leading
cloud infrastructure provider, offering a comprehensive suite of services particularly
well-suited for data-intensive applications in infrastructure monitoring [2]. Figure
2.1 illustrates the key GCP services utilized in this infrastructure monitoring im-
plementation.
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Figure 2.1: Overview of Google Cloud Platform Services Utilized in The System

2.1.1 Google Cloud BigQuery for Time Series Data Man-
agement

Google Cloud BigQuery represents a fundamental component of modern data in-
frastructure for monitoring applications, providing a fully-managed, serverless data
warehouse optimized for analytical workloads [8]. BigQuery’s architecture is partic-
ularly well-suited for time series data common in infrastructure monitoring appli-
cations, offering several key advantages for water distribution system monitoring.

The columnar storage format employed by BigQuery provides significant perfor-
mance advantages for analytical queries typical in monitoring applications. Time
series data, characterized by frequent insertions and analytical queries across tem-
poral ranges, benefits from BigQuery’s optimized storage and query execution capa-
bilities [10]. The system’s ability to automatically partition data based on ingestion
time or custom partitioning schemes enables efficient querying of large temporal
datasets while controlling storage costs through automated data lifecycle manage-
ment.

BigQuery’s integration with Google Cloud’s broader ecosystem provides seam-
less connectivity with data processing services, enabling sophisticated data trans-
formation and analysis workflows. The platform’s SQL-based query interface facil-
itates accessibility for operational personnel while supporting advanced analytical
capabilities through user-defined functions and machine learning integration [2].
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2.1 — Google Cloud Platform and Data Infrastructure

The serverless nature of BigQuery eliminates infrastructure management over-
head while providing automatic scaling capabilities that accommodate varying
workloads typical in monitoring applications [11]. This characteristic proves partic-
ularly valuable for water distribution monitoring systems that experience variable
data volumes and analytical demands based on operational requirements and sys-
tem conditions.

2.1.2 Google Cloud Functions for Serverless Data Process-
ing

Google Cloud Functions provides event-driven, serverless computing capabilities
essential for implementing responsive data processing workflows in monitoring sys-
tems [2]. The functions-as-a-service model enables the development of specialized
processing components that execute automatically in response to data availability
or system events, eliminating the need for continuously running infrastructure.

Cloud Functions’ integration with Google Cloud Storage enables automatic pro-
cessing of data files as they arrive in designated storage buckets. This capability
supports automated data ingestion workflows where sensor data files trigger pro-
cessing functions upon upload, ensuring timely data transformation and loading
into analytical systems [11].

The execution environment provided by Cloud Functions supports multiple pro-
gramming languages, with Python being particularly well-suited for data process-
ing applications due to its extensive ecosystem of data manipulation and analysis
libraries. Functions can leverage libraries such as pandas [12] for data transfor-
mation, enabling sophisticated data quality checks, format standardization, and
enrichment processes within the serverless execution context.

Event-driven scaling characteristics of Cloud Functions provide cost-effective
processing for variable workloads while maintaining responsiveness to data arrival
patterns. Functions scale automatically from zero to handle processing demands,
with costs incurred only during actual execution periods, making this approach
particularly suitable for monitoring applications with irregular data patterns.

2.1.3 Google Cloud Compute Engine for Specialized Work-
loads

While serverless computing provides efficient solutions for many data processing
tasks, certain specialized workloads in infrastructure monitoring require dedicated
computing resources. Google Cloud Compute Engine provides virtual machine
instances that can be configured for specific application requirements, offering flex-
ibility for deploying specialized software components.
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Compute Engine’s support for custom machine configurations enables optimiza-
tion for specific workload characteristics. Applications requiring substantial mem-
ory for spatial data processing or specialized software installations benefit from the
ability to configure virtual machines with appropriate resource allocations [13].

The integration of Compute Engine with Google Cloud Scheduler enables cost
optimization through automated instance lifecycle management. Virtual machines
can be programmed to start automatically for scheduled processing tasks and shut
down upon completion, reducing operational costs while maintaining processing
capabilities for resource-intensive operations.

Persistent disk storage options provide reliable data storage for applications
requiring local file systems or specialized database installations. The separation of
compute and storage resources enables flexible scaling approaches while maintaining
data persistence across instance lifecycles.

2.1.4 Google Cloud Storage for Data Backup and Archival

Google Cloud Storage provides scalable object storage services essential for compre-
hensive data management strategies in monitoring systems. The platform’s multi-
ple storage classes enable cost-effective data lifecycle management while ensuring
appropriate availability and access characteristics for different data types.

Standard storage classes provide high-performance access for frequently accessed
data, supporting operational requirements for recent monitoring data and analyt-
ical results. Nearline and Coldline storage classes offer cost-effective solutions for
archival data while maintaining reasonable access times for historical analysis re-
quirements [14].

Cloud Storage’s integration with data processing services enables efficient work-
flow implementations where raw data storage triggers processing functions while
providing reliable backup capabilities for processed results. Object versioning ca-
pabilities support data integrity requirements while lifecycle management policies
automate storage class transitions based on data age and access patterns.

The global distribution capabilities of Cloud Storage support disaster recovery
requirements while enabling efficient data access from multiple geographic loca-
tions. This characteristic proves valuable for monitoring systems requiring high
availability and geographic distribution of data processing capabilities.

2.1.5 Google Cloud Scheduler for Workflow Orchestration

Google Cloud Scheduler provides cron-based job scheduling capabilities essential for
coordinating automated workflows in monitoring systems. The service enables reli-
able execution of periodic tasks including data processing jobs, system maintenance
operations, and resource lifecycle management.
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2.2 — Data Processing and Workflow Orchestration Technologies

Scheduler’s integration with other Google Cloud services enables comprehensive
workflow orchestration through HTTP targets, Cloud Functions invocation, and
Pub/Sub message publication. This flexibility supports complex workflow patterns
while maintaining reliable execution scheduling [15].

The service’s built-in retry mechanisms and error handling capabilities ensure
robust execution of critical monitoring workflows. Configurable retry policies and
dead letter queue support help maintain system reliability even when individual
components experience temporary failures.

Integration with Google Cloud Monitoring provides comprehensive observability
for scheduled jobs, enabling proactive identification of workflow issues and perfor-
mance optimization opportunities. This capability supports operational require-
ments for maintaining reliable monitoring system operations.

2.2 Data Processing and Workflow Orchestration
Technologies

Modern infrastructure monitoring systems require sophisticated data processing
and workflow orchestration capabilities to handle the complexity and scale of real-
time monitoring data. The integration of automated data processing pipelines with
robust orchestration frameworks enables reliable, scalable monitoring solutions that
can adapt to evolving operational requirements and data characteristics.

2.2.1 Apache Airflow for Workflow Management

Apache Airflow has emerged as a leading open-source platform for developing,
scheduling, and monitoring data workflows, providing essential capabilities for man-
aging complex data processing pipelines in infrastructure monitoring applications
[16]. Airflow’s directed acyclic graph (DAG) approach to workflow definition en-
ables clear specification of task dependencies while supporting complex orchestra-
tion patterns.

The platform’s Python-based workflow definition approach provides significant
flexibility for developing custom processing logic while leveraging the extensive
Python ecosystem for data manipulation and analysis. Workflows can incorporate
data validation, transformation, machine learning, and system integration tasks
within unified execution frameworks [16].

Airflow’s scheduler component provides reliable execution of workflow tasks
based on specified triggers including time-based schedules, external events, and de-
pendency completion. The scheduler’s support for parallel execution and resource
management enables efficient utilization of available computational resources while
maintaining appropriate execution ordering for dependent tasks.
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The platform’s extensive operator library provides pre-built components for
common data processing tasks including database operations, file transfers, API
interactions, and cloud service integrations. Custom operators can be developed
for specialized requirements, enabling seamless integration with domain-specific
tools and systems.

Airflow’s web-based user interface provides comprehensive monitoring and man-
agement capabilities for operational workflows. The interface enables real-time
monitoring of task execution, historical analysis of workflow performance, and man-
ual intervention capabilities for troubleshooting and maintenance operations.

2.2.2 Python Ecosystem for Data Processing

Python has established itself as the dominant programming language for data
processing applications, offering an extensive ecosystem of libraries and frame-
works specifically designed for data manipulation, analysis, and integration tasks.
The language’s combination of readability, flexibility, and powerful library support
makes it particularly well-suited for infrastructure monitoring applications.

The pandas library provides fundamental data structure and manipulation capa-
bilities essential for processing time series data typical in monitoring applications.
DataFrames and Series objects enable efficient representation and manipulation
of structured data while providing comprehensive functionality for data cleaning,
transformation, and aggregation operations [12].

NumPy’s array processing capabilities provide the foundation for numerical
computing operations required in monitoring data analysis. The library’s opti-
mized array operations enable efficient processing of large datasets while support-
ing mathematical operations essential for statistical analysis and signal processing
applications [17].

The datetime module provides essential temporal data handling capabilities for
time series processing. Infrastructure monitoring applications require sophisticated
time zone handling, temporal arithmetic, and timestamp manipulation capabilities
that Python’s temporal libraries provide comprehensively.

The requests library enables robust HTTP client functionality essential for in-
tegrating with web-based APIs and services. Monitoring systems frequently re-
quire integration with external services, and the requests library provides reliable,
feature-rich HTTP client capabilities with comprehensive error handling and au-
thentication support.

2.2.3 Automated Data Validation and Quality Assurance

Data quality represents a critical concern in infrastructure monitoring systems,
where decision-making depends on accurate, reliable sensor data. Automated data
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validation and quality assurance processes ensure data integrity while identifying
potential issues that could compromise monitoring effectiveness.

Schema validation techniques verify that incoming data conforms to expected
structures and data types, preventing downstream processing errors caused by mal-
formed data. Python’s schema validation libraries provide comprehensive capabili-
ties for defining and enforcing data structure requirements while generating appro-
priate error messages for validation failures.

Statistical outlier detection methods identify unusual data values that may in-
dicate sensor malfunctions or unusual system conditions. Techniques such as in-
terquartile range analysis, z-score calculations, and isolation forest algorithms can
automatically flag suspicious data points for further investigation [18].

Temporal consistency checks verify that time series data maintains appropriate
temporal ordering and identifies gaps or overlaps in data sequences. These checks
ensure that analytical operations depending on temporal continuity can proceed
reliably while highlighting potential data collection issues.

Cross-sensor validation techniques compare readings from related sensors to
identify inconsistencies that may indicate equipment failures or calibration issues.
For example, flow conservation principles can be applied to validate consistency
across multiple flow sensors in a water distribution network.

2.2.4 Error Handling and Recovery Mechanisms

Robust error handling and recovery mechanisms are essential for maintaining reli-
able operation of automated data processing workflows. Infrastructure monitoring
systems must continue operating effectively even when individual components ex-
perience failures or unexpected conditions.

Retry logic with exponential backoff provides resilience against temporary fail-
ures in external services or network connectivity issues. Configurable retry pa-
rameters enable appropriate balance between system responsiveness and resource
utilization while avoiding overwhelming failing services with repeated requests.

Dead letter queue implementations enable systematic handling of processing
failures that cannot be resolved through retry mechanisms. Failed processing tasks
can be diverted to specialized queues for manual investigation while preventing
workflow disruption for successfully processed data.

Circuit breaker patterns provide protection against cascading failures when ex-
ternal dependencies become unavailable. These patterns enable graceful degrada-
tion of system functionality while providing automatic recovery capabilities when
dependencies return to normal operation.

Comprehensive logging and monitoring integration enables rapid identification
and diagnosis of processing issues. Structured logging with appropriate severity
levels and contextual information supports operational troubleshooting while pro-
viding data for system performance analysis and optimization.
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2.2.5 Performance Optimization and Scalability

Performance optimization represents a continuous concern in data processing work-
flows, particularly as monitoring systems scale to handle increasing data volumes
and complexity. Systematic approaches to performance optimization ensure that
processing capabilities can grow with operational requirements.

Parallel processing techniques enable efficient utilization of multi-core process-
ing environments while reducing overall processing times. Python’s multiprocess-
ing and concurrent.futures libraries provide accessible approaches for implementing
parallel processing patterns in data workflows.

Memory optimization strategies become increasingly important as data volumes
grow. Techniques such as chunked processing, memory-mapped files, and streaming
data processing enable handling of datasets that exceed available memory while
maintaining processing performance.

Database query optimization ensures efficient data retrieval and storage oper-
ations. Proper indexing strategies, query optimization techniques, and connection
pooling practices minimize database load while maximizing data access perfor-
mance.

Caching strategies reduce redundant processing and data access operations. In-
memory caching, distributed caching, and application-level caching techniques can
significantly improve system responsiveness while reducing computational resource
utilization.

2.3 Geospatial Technologies and Visualization Sys-
tems

Infrastructure monitoring systems require sophisticated geospatial capabilities to
effectively represent and analyze the spatial relationships inherent in distributed
infrastructure networks. The integration of spatial databases, geographic informa-
tion systems, and advanced visualization platforms enables comprehensive spatial
analysis and intuitive presentation of complex infrastructure data.

2.3.1 PostgreSQL and PostGIS for Spatial Data Manage-
ment

PostgreSQL represents a mature, feature-rich relational database management sys-
tem that has gained widespread adoption for applications requiring robust data
management capabilities [19]. The addition of the PostGIS extension transforms
PostgreSQL into a powerful spatial database capable of storing, indexing, and
querying geographic data with high performance and reliability [20].
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PostGIS provides comprehensive support for geographic objects including points,
lines, polygons, and complex geometric shapes essential for representing water dis-
tribution network components. The extension implements the OpenGIS Simple
Features Specification, ensuring compatibility with standard geographic informa-
tion system applications and data exchange formats [20].

Spatial indexing capabilities provided by PostGIS enable efficient querying of
geographic data even with large datasets typical in infrastructure monitoring ap-
plications. R-tree indexing structures optimize spatial queries including point-in-
polygon tests, proximity searches, and geometric intersection calculations that are
fundamental to infrastructure analysis operations.

The integration of spatial and temporal data within unified database structures
enables sophisticated spatio-temporal analysis capabilities. Water distribution net-
works require analysis of how spatial relationships change over time, and the com-
bination of PostgreSQL’s temporal data handling with PostGIS spatial capabilities
provides comprehensive support for these requirements.

Advanced spatial analysis functions provided by PostGIS include geometric cal-
culations, topology operations, and spatial relationship testing. These functions
enable complex analysis operations such as network connectivity analysis, service
area calculations, and proximity-based queries essential for infrastructure monitor-
ing applications.

2.3.2 QGIS for Geographic Information System Capabili-
ties

QGIS (Quantum Geographic Information System) provides comprehensive open-
source GIS capabilities essential for spatial data management, analysis, and vi-
sualization in infrastructure monitoring applications [21]. The platform’s exten-
sive functionality and plugin ecosystem make it particularly suitable for complex
geospatial analysis requirements.

| QGS_

QGIS Project QGIS Server QGIS Web Client
- Layers

- Styles
- Print templates

Figure 2.2: TIllustration of QGIS Web Client (QWC) displaying QGIS Projects
published by QGIS Server via WMS.
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QGIS Server extends desktop GIS capabilities to web-based environments, en-
abling centralized geospatial data services that can be accessed by multiple client
applications. The server component implements Open Geospatial Consortium
(OGC) web service standards including Web Map Service (IWMS) and Web Fea-
ture Service (WFS), ensuring interoperability with diverse client applications [21].
Figure 2.2 illustrates the core concept of QWC displaying QGIS Projects published
by QGIS Server via WMS.

The platform’s support for diverse data formats enables integration with existing
infrastructure data regardless of original format or source system. QGIS can read
and write numerous vector and raster formats while providing data transformation
capabilities for format conversion and coordinate system transformations.

Advanced cartographic capabilities provided by Q)GIS enable creation of professional-

quality maps and visualizations suitable for operational and presentation purposes.
The platform’s symbol management, labeling capabilities, and layout tools support
creation of comprehensive mapping products that effectively communicate spatial
information.

N
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Figure 2.3: Overview of the QGIS Web Client user interface and architecture.

QGIS Web Client provides browser-based access to GIS capabilities, enabling
users to interact with spatial data without requiring specialized desktop software
installations. The web client supports common GIS operations including map nav-
igation, layer management, and feature identification while maintaining responsive

24



2.3 — Geospatial Technologies and Visualization Systems

performance characteristics. Figure 2.3 provides an overview of the QGIS Web
Client architecture and user interface.

2.3.3 Grafana for Real-time Visualization

Grafana has emerged as a leading platform for creating interactive dashboards and
visualizations, particularly for time series data common in monitoring applications
[1]. The platform’s extensible architecture and comprehensive visualization capa-
bilities make it well-suited for infrastructure monitoring dashboards that require
real-time data display and user interaction.

Grafana’s data source abstraction layer enables integration with diverse data
storage systems including relational databases, time series databases, and cloud-
based analytics platforms. This flexibility supports monitoring applications that
utilize multiple data sources while providing unified visualization interfaces [1].

The platform’s extensive panel library provides specialized visualization types
optimized for different data characteristics and user requirements. Time series
panels excel at displaying temporal data trends, while stat panels provide clear
presentation of current values and status indicators essential for monitoring appli-
cations.

Grafana’s alerting capabilities enable proactive notification of system condi-
tions requiring operator attention. Alert rules can be configured based on data
thresholds, trend analysis, or complex queries, with notifications delivered through
multiple channels including email, SMS, and integration with incident management
systems.

Variable support within Grafana enables creation of dynamic dashboards that
can be customized for different operational contexts. Template variables allow
users to filter data by location, time range, or system component while maintaining
consistent dashboard layouts and functionality.

2.3.4 GeoJSON for Geographic Data Exchange

GeoJSON represents a widely-adopted standard for encoding geographic data struc-
tures using JavaScript Object Notation (JSON) format. The format’s simplicity
and broad support across web-based applications make it particularly suitable for
exchanging geographic data between different systems and platforms.

The GeoJSON specification defines standardized representations for common
geographic features including points, lines, polygons, and feature collections. This
standardization enables reliable data exchange between geographic information sys-
tems while maintaining compatibility with web-based visualization libraries [22].

GeoJSON’s integration with web technologies enables efficient transmission and
processing of geographic data in web-based monitoring applications. The format’s
JSON foundation ensures compatibility with modern web development frameworks
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while maintaining human-readable data structures that facilitate debugging and
data validation.

Feature properties within GeoJSON objects enable association of descriptive
attributes with geographic features, supporting rich data models that combine spa-
tial and non-spatial information. This capability proves essential for infrastructure
monitoring applications where geographic features must be associated with opera-
tional data and metadata.

The format’s support for coordinate reference systems enables proper handling
of geographic data regardless of original projection or coordinate system. This flex-
ibility supports integration of data from diverse sources while maintaining spatial
accuracy and consistency.

2.3.5 Advanced Visualization Techniques for Infrastructure
Data

Infrastructure monitoring applications require specialized visualization techniques
that can effectively communicate complex spatial and temporal relationships while
supporting operational decision-making. Advanced visualization approaches en-
hance user understanding while enabling efficient identification of system conditions
requiring attention.

Heat map visualizations provide effective methods for displaying spatial distri-
bution of scalar values across geographic areas. These techniques prove particularly
valuable for displaying system performance metrics, identifying areas of concern,
and communicating overall system status through intuitive color-coding schemes.

Network visualization techniques enable clear representation of connectivity
relationships within infrastructure systems. Specialized layouts and styling ap-
proaches can highlight critical pathways, display flow directions, and indicate sys-
tem capacity constraints while maintaining visual clarity even with complex net-
work topologies.

Time-lapse visualization capabilities enable effective communication of temporal
changes in system conditions. These techniques prove valuable for analyzing system
evolution, identifying temporal patterns, and communicating system behavior to
stakeholders with varying technical backgrounds.

Interactive visualization elements enhance user engagement while enabling de-
tailed exploration of system data. Techniques such as drill-down capabilities, filter-
ing controls, and dynamic data querying enable users to efficiently access relevant
information while maintaining overview of overall system status.
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2.4 Conversational AI and Natural Language Pro-
cessing Frameworks

The development of natural language interfaces for technical systems represents a
significant advancement in human-computer interaction, enabling intuitive access
to complex system capabilities through conversational interactions. Modern con-
versational Al frameworks provide sophisticated capabilities for natural language
understanding, dialog management, and system integration that enable effective
deployment of conversational interfaces in infrastructure monitoring applications.

2.4.1 Large Language Models and Generative Al

Large Language Models (LLMs) have revolutionized natural language processing
applications by providing sophisticated capabilities for understanding and generat-
ing human-like text [23]. These models, trained on extensive text corpora, demon-
strate remarkable abilities in language understanding, reasoning, and generation
that enable sophisticated conversational Al applications.

Google Gemini 2.0 Flash represents a state-of-the-art large language model that
provides advanced natural language understanding and generation capabilities par-
ticularly suitable for technical applications [3]. The model’s training on diverse text
sources including technical documentation and code repositories enables effective
handling of technical terminology and domain-specific concepts.

The model’s multimodal capabilities enable processing of both text and struc-
tured data formats, supporting applications that require integration of natural lan-
guage processing with data analysis and system operation tasks. This capability
proves essential for infrastructure monitoring applications where conversational in-
terfaces must interpret user requests and translate them into appropriate system
operations.

Prompt engineering techniques enable optimization of large language model per-
formance for specific application domains. Careful construction of system prompts,
few-shot examples, and context management strategies can significantly improve
model accuracy and reliability for domain-specific tasks while reducing hallucina-
tion risks.

The integration of large language models with external tools and systems through
function calling capabilities enables conversational interfaces to perform complex
operations beyond text generation. These capabilities support development of con-
versational agents that can query databases, manipulate system configurations, and
coordinate multiple system operations in response to natural language requests.
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2.4.2 LangChain Framework for AI Application Develop-
ment

LangChain has emerged as a leading framework for developing applications that
integrate large language models with external systems and data sources [4]. The
framework’s modular architecture and extensive integration capabilities make it
particularly suitable for developing sophisticated conversational Al applications in
technical domains.

The framework’s chain abstraction enables composition of complex workflows
that combine multiple processing steps including prompt generation, model invoca-
tion, output parsing, and system integration. This approach supports development
of sophisticated conversational flows that can handle multi-step reasoning and com-
plex system interactions [4].

LangChain’s memory management capabilities enable maintenance of conver-
sation context across multiple interaction turns, supporting natural conversational
flows where previous exchanges inform subsequent responses. Memory implemen-
tations range from simple conversation history to sophisticated semantic memory
systems that maintain relevant context while managing memory limitations.

Tool integration capabilities provided by LangChain enable conversational agents
to interact with external systems including databases, APIs, and specialized soft-
ware components. The framework’s standardized tool interface supports develop-
ment of custom integrations while providing pre-built tools for common integration
requirements.

The framework’s agent architecture enables development of conversational sys-
tems that can plan and execute complex multi-step operations in response to user
requests. Agents can analyze user intentions, determine appropriate action se-
quences, and coordinate multiple tool invocations while maintaining appropriate
user interaction throughout the process.

2.4.3 LangGraph for Workflow and State Management

LangGraph extends LangChain’s capabilities by providing sophisticated workflow
orchestration and state management specifically designed for complex conversa-
tional AI applications [5]. The framework’s graph-based approach to workflow
definition enables clear specification of conversation flows while supporting com-
plex branching logic and error handling.

The framework’s state management capabilities enable maintenance of complex
application state throughout conversational interactions. State objects can include
conversation history, system context, user preferences, and operational data, pro-
viding comprehensive context for conversational agent decision-making [5].

Graph-based workflow definition enables visual specification of conversation
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flows including decision points, parallel processing paths, and error handling pro-
cedures. This approach supports development of sophisticated conversational ex-
periences while maintaining clear documentation of system behavior.

The framework’s conditional routing capabilities enable dynamic conversation
flows that adapt based on user input, system conditions, and conversation context.
Routing logic can implement complex decision trees while maintaining natural con-
versation flows that respond appropriately to user needs and system constraints.

Integration with LangChain’s tool ecosystem enables LangGraph workflows to
coordinate multiple system operations while maintaining appropriate conversation
management. Workflows can include database queries, system modifications, and
external service integrations within unified conversational experiences.

2.4.4 Natural Language Understanding for Technical Do-
mains

Natural language understanding in technical domains presents unique challenges in-
cluding specialized terminology, complex domain concepts, and precise operational
requirements. Effective NLU systems for infrastructure monitoring applications
must accurately interpret user intentions while maintaining appropriate precision
for system operation tasks.

Intent classification techniques enable identification of user goals from natural
language input, supporting routing of requests to appropriate system capabilities.
Machine learning approaches including transformer-based models provide sophis-
ticated classification capabilities while supporting adaptation to domain-specific
terminology and usage patterns.

Entity extraction capabilities enable identification of specific parameters, values,
and system components mentioned in user requests. Named entity recognition
techniques adapted for technical domains can identify infrastructure components,
temporal specifications, and operational parameters essential for system operation
tasks.

Context management strategies ensure that conversational systems maintain
appropriate understanding of conversation context while handling domain-specific
references and implicit information. Techniques including coreference resolution
and context window management support natural conversation flows in technical
applications.

Query generation capabilities enable translation of natural language requests
into appropriate database queries, API calls, and system operations. Template-
based approaches combined with semantic understanding can generate accurate
technical operations while maintaining user control and transparency.
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2.4.5 Dialog Management and User Experience Design

Effective dialog management represents a critical component of conversational Al
systems, ensuring natural interaction flows while maintaining appropriate user con-
trol and system reliability. Infrastructure monitoring applications require dialog
management approaches that balance conversational naturalness with operational
precision and safety.

Turn-taking management enables natural conversation flows while ensuring ap-
propriate system response timing. Techniques including response acknowledgment,
processing indicators, and appropriate wait handling support user expectations for
conversational interactions with technical systems.

Confirmation and verification mechanisms ensure user control over potentially
significant system operations while maintaining natural conversation flows. Multi-
level confirmation strategies can provide appropriate safety checks for different op-
eration types while avoiding excessive interaction overhead for routine tasks.

Error handling and recovery strategies enable graceful management of system
failures, user input errors, and unexpected conditions. Recovery mechanisms should
provide clear error communication while offering appropriate paths for users to
achieve their intended goals despite initial failures.

Conversation repair capabilities enable correction of misunderstandings or errors
without requiring conversation restart. Techniques including clarification requests,
suggestion mechanisms, and undo capabilities support natural error recovery while
maintaining conversation context and user confidence.

2.5 EPANET for Water Distribution Network Mod-
eling

2.5.1 Overview of EPANET

EPANET represents the most widely adopted software platform for hydraulic mod-
eling of water distribution networks, providing comprehensive simulation capabil-
ities for pressure, flow, and water quality analysis [24]. Developed by the U.S.
Environmental Protection Agency, EPANET has become the de facto standard for
water distribution system analysis in both research and operational applications.

2.5.2 EPANET Simulation Workflow

EPANET functions as an advanced hydraulic simulation engine that processes real-
world network data to calculate pressure and flow distributions throughout water
distribution systems. Its core functionality centers on processing input data from
flow sensors at key inlet points and boundary conditions to generate comprehensive
hydraulic predictions across the entire network.
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2.5.3 Sensor Data Integration

The simulation workflow begins with the integration of flow measurements from
sensors positioned at network inlets, pumping stations, and other strategic loca-
tions. These measurements provide critical boundary conditions that anchor the
hydraulic model to real-world operating conditions. EPANET can process both
real-time sensor data streams and historical flow records, enabling both operational
monitoring and retrospective analysis capabilities [25].

2.5.4 Hydraulic Simulation Engine

Once sensor data is integrated, EPANET’s hydraulic engine implements fundamen-
tal fluid mechanics principles including conservation of mass and energy equations
to calculate system-wide pressure and flow distributions. The simulation process
applies these principles across the entire network topology, accounting for:

o Pipe characteristics including diameter, length, and roughness coefficients
o Network connectivity and topology relationships
« Elevation differences between network nodes

o Operational status of valves, pumps, and other control elements

2.5.5 Node-Level Output Generation

The primary output of the EPANET simulation process includes comprehensive
pressure and flow predictions for every node and link in the water distribution
network. These outputs provide a complete hydraulic profile of the system that
extends well beyond the limited visibility provided by physical sensors alone. The
node-level outputs include:

e Pressure values at each junction node
o Flow rates and velocities in each pipe segment
o Direction of flow throughout the network

o Hydraulic grade lines across the system

The simulation results enable network operators to visualize conditions through-
out the entire distribution system, including areas without physical monitoring
equipment, providing complete visibility into network behavior based on the avail-
able sensor inputs.
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2.5.6 Applications in Network Monitoring

EPANET’s simulation capabilities enable numerous practical applications in water
distribution network monitoring and management. The software supports both
real-time operational decisions and long-term planning processes through its ability
to transform limited sensor data into comprehensive network visibility.

Real-time Operational Monitoring

When integrated with SCADA systems, EPANET can provide continuous network
state estimation by processing real-time flow measurements from inlet sensors. This
integration enables operators to maintain constant awareness of pressure conditions
throughout the network, including areas without physical sensors. The approach
significantly enhances operational visibility while minimizing physical sensor de-
ployment requirements.

Hydraulic Anomaly Detection

By comparing actual sensor readings with expected values from the hydraulic
model, EPANET enables detection of discrepancies that may indicate leaks, valve
malfunctions, or other operational issues. This model-based anomaly detection ap-
proach extends detection capabilities beyond physically monitored locations to the
entire simulated network.

Operational Scenario Analysis

EPANET supports evaluation of hypothetical operational scenarios including de-
mand variations, pump schedule modifications, or valve configuration changes. Op-
erators can simulate these scenarios to predict system-wide impacts before imple-
menting changes in the physical network, reducing operational risks and optimizing
decision-making processes.

2.5.7 EPANET Integration with Monitoring Systems

Modern water distribution monitoring systems typically implement EPANET as a
core component within a broader monitoring architecture. Integration strategies
enable automated simulation processes that continuously generate network-wide
pressure and flow estimates based on available sensor inputs.

Data Integration Architecture

Effective EPANET integration requires robust data interfaces that connect sen-
sor measurement systems with the hydraulic simulation engine. These interfaces
typically include:
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» Data acquisition modules that collect and pre-process sensor readings
o Validation routines that identify and filter problematic sensor data

o (Calibration mechanisms that adjust model parameters to match observed
conditions

o Output processing components that translate simulation results into action-
able information

Model Calibration Processes

To maintain simulation accuracy, EPANET implementations require regular cal-
ibration processes that align model parameters with physical network character-
istics. Automated calibration approaches use historical sensor data to optimize
parameters including pipe roughness coefficients, minor loss factors, and demand
distribution patterns. Well-calibrated models significantly enhance the reliability
of pressure and flow predictions throughout the network.

2.6 Web Technologies and Real-time Communi-
cation

Modern monitoring systems require sophisticated web technologies and real-time
communication capabilities to support responsive user interfaces, efficient data ex-
change, and seamless integration between diverse system components. The selection
and implementation of appropriate web technologies significantly influence system
usability, performance, and maintainability.

2.6.1 FastAPI for High-Performance Web Services

FastAPI has emerged as a leading Python web framework for developing high-
performance A PI services, combining the simplicity of modern Python development
with the performance characteristics required for production applications [6]. The
framework’s design principles emphasize developer productivity while maintaining
excellent runtime performance and comprehensive feature support.

The framework’s automatic API documentation generation provides significant
advantages for system integration and maintenance. FastAPI automatically gener-
ates interactive API documentation using OpenAPI and JSON Schema standards,
enabling developers and system integrators to understand and test API endpoints
without additional documentation overhead [26].

Type hint integration represents a core feature that enables both improved
code quality and automatic validation. Python type hints provide static analysis
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benefits while enabling FastAPI to automatically validate request and response
data, reducing development time and improving system reliability through early
error detection.

Asynchronous request handling capabilities enable efficient processing of concur-
rent requests while maintaining responsive performance characteristics. The frame-
work’s async/await support enables non-blocking operations for database queries,
external API calls, and file operations that are common in monitoring applications.

WebSocket support provided by FastAPI enables real-time bidirectional com-
munication between client applications and server components. This capability
proves essential for monitoring applications that require real-time data updates
and interactive user experiences that respond immediately to system changes.

The implementation establishes persistent WebSocket connections with compre-
hensive state management for each client session:

2.6.2 WebSocket Protocol for Real-time Communication

WebSocket protocol provides full-duplex communication capabilities over single
TCP connections, enabling efficient real-time data exchange between web appli-
cations and server components. The protocol’s design addresses limitations of
traditional HTTP request-response patterns while maintaining compatibility with
existing web infrastructure.

The persistent connection model eliminates the overhead associated with es-
tablishing new connections for each data exchange, enabling efficient transmission
of frequent updates typical in monitoring applications. This characteristic proves
particularly valuable for dashboards and visualization interfaces that require con-
tinuous data updates [7].

Low-latency communication capabilities enable responsive user interfaces that
can react immediately to system changes or user interactions. The protocol’s
message-based communication model supports both text and binary data trans-
mission while maintaining minimal protocol overhead.

Bidirectional communication enables both server-initiated data pushes and client-
initiated requests within unified communication sessions. This capability supports
monitoring applications where both automatic data updates and user-initiated
queries must be handled efficiently within single connections.

Browser compatibility across modern web browsers ensures broad accessibility
while native browser A PIs provide comprehensive programming interfaces for Web-
Socket integration. This compatibility enables development of monitoring interfaces
that work reliably across diverse client environments without requiring specialized
plugins or applications.
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2.6.3 React for Interactive User Interfaces

React 19 has established itself as a leading JavaScript library for building interactive
user interfaces, providing sophisticated component-based development approaches
that enable creation of complex, maintainable web applications [9]. The library’s
design principles emphasize reusability, predictability, and performance optimiza-
tion essential for sophisticated monitoring interfaces.

Component-based architecture enables development of reusable interface ele-
ments that encapsulate both visual presentation and interactive behavior. This
approach supports creation of comprehensive component libraries that can be con-
sistently applied across different monitoring interfaces while maintaining design
coherence and reducing development overhead [9)].

Virtual DOM implementation provides performance optimization for dynamic
interfaces that frequently update in response to changing data. React’s recon-
ciliation algorithm minimizes actual DOM manipulations while ensuring interface
responsiveness even with complex data visualizations and frequent updates common
in monitoring applications.

State management capabilities enable sophisticated handling of application data
and user interface state while maintaining predictable component behavior. React’s
unidirectional data flow pattern supports development of complex interfaces while
enabling effective debugging and testing practices.

Ecosystem integration with extensive third-party libraries provides access to
specialized components for data visualization, form handling, and user interface
enhancement. This ecosystem enables rapid development of sophisticated monitor-
ing interfaces while leveraging proven solutions for common interface requirements.

2.6.4 Vite for Modern Development Tooling

Vite represents a modern build tool and development server that addresses per-
formance and developer experience limitations of traditional bundling approaches
[27]. The tool’s design leverages modern browser capabilities while providing effi-
cient development workflows essential for complex web application development.

Hot module replacement capabilities enable real-time code updates during de-
velopment without losing application state, significantly improving development
velocity for complex interfaces. This capability proves particularly valuable when
developing monitoring interfaces that require extensive testing with real-time data
flows [27].

Native ES module support eliminates bundling overhead during development
while leveraging browser-native module loading capabilities. This approach pro-
vides immediate feedback for code changes while supporting modern JavaScript
development practices including dynamic imports and code splitting.
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Optimized production builds utilize advanced bundling and optimization tech-
niques including tree shaking, code splitting, and asset optimization. These op-
timizations ensure efficient loading performance for monitoring applications while
maintaining comprehensive feature support.

Plugin architecture enables integration with diverse development tools and frame-
works while supporting customization for specific project requirements. Vite’s plu-
gin ecosystem provides solutions for common development needs including CSS
preprocessing, testing integration, and deployment optimization.

2.6.5 REST API Design and Integration Patterns

Representational State Transfer (REST) architectural principles provide a founda-
tion for designing scalable, maintainable web APIs that support integration be-
tween diverse system components. Effective REST API design enables reliable
system integration while supporting evolution and maintenance of complex moni-
toring systems.

Resource-oriented design approaches enable intuitive API structures that map
naturally to system entities and operations. Well-designed resource hierarchies
support both simple operations and complex queries while maintaining consistent
interaction patterns across different API endpoints [28].

HTTP method semantics provide standardized approaches for different opera-
tion types including data retrieval, creation, modification, and deletion. Proper use
of HTTP methods enables appropriate caching behavior, error handling, and tool
integration while maintaining predictable API behavior.

Status code utilization enables precise communication of operation results while
supporting appropriate client-side error handling and retry logic. Comprehensive
status code usage provides clear feedback for both successful operations and various
error conditions that may occur during system integration.

Authentication and authorization mechanisms ensure appropriate security con-
trols while supporting diverse integration requirements. Token-based authentica-
tion approaches including JWT (JSON Web Tokens) provide secure, scalable so-
lutions for API access control while maintaining compatibility with modern web
development practices.

Content negotiation capabilities enable flexible data format support while ac-
commodating diverse client requirements. Support for multiple content types in-
cluding JSON, XML, and specialized formats enables broad compatibility while
optimizing data exchange efficiency for different use cases.
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2.7 Chapter Summary and Research Direction

This comprehensive literature review establishes the theoretical and technological
foundation for the intelligent water distribution monitoring system presented in this
thesis. The examination of each technology domain reveals that while significant
advances have been made in individual areas including cloud computing platforms,
data processing frameworks, conversational Al, and visualization technologies, sub-
stantial opportunities exist for innovative integration of these capabilities to address
persistent challenges in infrastructure monitoring.

The Google Cloud Platform provides the foundational infrastructure for scalable
data storage, processing, and machine learning capabilities that enable the compre-
hensive monitoring system developed in this thesis. The integration of BigQuery
for large-scale data analytics, Cloud Functions for serverless processing, and Cloud
Storage for reliable data persistence creates a robust foundation for infrastructure
monitoring applications.

Apache Airflow’s [16] workflow orchestration capabilities, combined with Python’s
extensive data processing libraries [12], provide the framework for automated data
collection, processing, and quality assurance that ensures reliable system opera-
tion. The combination of these technologies enables sophisticated data pipeline
management while maintaining operational simplicity and reliability.

The integration of PostgreSQL [19] with PostGIS extensions [20] and QGIS Web
Client [29], and modern web mapping technologies creates comprehensive geospatial
capabilities that are essential for infrastructure monitoring applications. The abil-
ity to visualize and analyze spatially distributed monitoring data provides critical
insights for operational decision-making and system optimization.

LangChain and LangGraph frameworks, combined with Google’s Gemini 2.0
Flash language model, provide the foundation for conversational Al capabilities
that make complex technical systems accessible through natural language interac-
tion. The integration of these technologies with function calling capabilities enables
sophisticated system interaction while maintaining appropriate safety and valida-
tion mechanisms.

The specialized water distribution monitoring technologies, including hydraulic
modeling software [24], provide domain-specific capabilities that are essential for
effective infrastructure monitoring. The integration of these specialized tools with
modern cloud platforms and A/ technologies creates new possibilities for compre-
hensive monitoring and management.

Modern web technologies, including React 19, FastAPI, and WebSocket commu-
nication, enable the development of responsive, real-time user interfaces that can
effectively present complex monitoring data while supporting sophisticated user
interaction patterns. The combination of these technologies with cloud-native de-
ployment approaches ensures scalable and reliable system operation.

The identified research gaps, particularly in the areas of conversational AI for
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technical applications, intelligent dashboard management, and cloud-native mon-
itoring architectures, provide clear justification for the research direction and in-
novations presented in subsequent chapters. The integration challenges and op-
portunities identified through this review inform the architectural decisions and
implementation approaches used throughout the system development process.

The foundation established through this literature review demonstrates that the
convergence of cloud computing, artificial intelligence, and modern web technolo-
gies creates unprecedented opportunities for developing intelligent infrastructure
monitoring systems. The specific combination of technologies examined in this
chapter provides the technical foundation necessary to address the complex re-
quirements of modern water distribution monitoring while enabling new paradigms
for human-computer interaction in technical domains.

The research direction established through this analysis emphasizes the im-
portance of comprehensive technology integration, user-centered design principles,
and practical operational considerations in developing effective monitoring systems.
The subsequent chapters build upon this foundation to demonstrate how these di-
verse technologies can be integrated to create innovative solutions that address
real-world infrastructure monitoring challenges while advancing the state of the art
in intelligent system design.
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Chapter 3

Materials and Methods

This chapter presents the comprehensive approach taken for designing and develop-
ing the intelligent water distribution monitoring system. The chapter is structured
to first provide insight into the development methodology and evolutionary process
that guided the research, followed by the systematic architectural design principles
and system design decisions, and finally the detailed technical implementation of
the developed system components. This organization enables readers to understand
both the methodological foundation and the practical realization of the intelligent
monitoring system.

3.1 Development Journey and Methodology

The development of the intelligent water distribution monitoring system repre-
sented a comprehensive journey through multiple technological domains, integra-
tion challenges, and iterative refinement processes. This section provides detailed
insight into the methodological approach, decision-making processes, and evolution-
ary development that led to the final system architecture and implementation. The
methodology demonstrates how systematic investigation and iterative development
enabled the creation of innovative solutions for complex infrastructure monitoring
challenges, with particular emphasis on system integration, cloud infrastructure
development, and conversational Al interface innovation.

Collaborative Research Context: This thesis represents part of a collabora-
tive research effort where machine learning algorithm development was conducted
by a research colleague, while this work focused on comprehensive system inte-
gration, cloud infrastructure implementation, visualization development, and the
innovative conversational Al interface that makes complex analytical results acces-
sible through natural language interaction.
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3.1.1 Research and Development Methodology

The research approach employed for this work follows a systematic design science
research framework that combines theoretical investigation with practical imple-
mentation and comprehensive evaluation. This methodology ensures that research
outcomes are both technically sound and practically applicable to real-world oper-
ational environments.

The design science approach includes several key phases: problem identification
and motivation based on analysis of existing system limitations and operational re-
quirements, solution objective definition that establishes clear criteria for successful
outcomes, design and development activities that create innovative technical arti-
facts, demonstration of solution capabilities through prototype implementation,
and comprehensive evaluation that assesses solution effectiveness across multiple
dimensions.

The iterative development process enabled continuous refinement of solution
approaches based on evaluation results and emerging insights. This approach was
particularly important for the conversational Al interface development, where user
feedback and practical testing revealed important requirements that were not ap-
parent during initial conceptualization.

Systems engineering principles guided the technical development activities, em-
phasizing systematic analysis of requirements, structured design processes, and
comprehensive testing and validation procedures. This approach was essential for
managing the complexity of integrated systems that must satisfy multiple stake-
holder requirements while maintaining reliability and performance characteristics.

3.1.2 Initial Exploration and Technology Foundation

The project commenced during an internship period that provided the foundation
for the comprehensive system described in this thesis. The initial project scope cen-
tered on integrating water distribution system data into a GIS platform with user
visualization capabilities. Through systematic evaluation of available technologies
and practical implementation experience, the project evolved to incorporate ad-
vanced conversational Al capabilities that became the central innovation of this
thesis.

Preliminary QGIS-Based Implementation

The development journey began with a comprehensive exploration of existing geospa-
tial and business intelligence tools during the preliminary implementation phase.

This initial phase established the technical foundation while revealing critical limi-

tations that informed subsequent development decisions toward the final integrated

system architecture.

40



3.1 — Development Journey and Methodology

| Integrated With

Already Implemented Using QGIS Web Client e T
Do Some Fixes: Convert to )
EPANET T QIS Web Ciient
BEF;/JI\NIE_T . Coordinattes & CRS (.GPKG)
attleDim . efc.
Export QGIS/Cther GIS D ErE
— QGIS/Other GIS Tools Tools ngine
Python Script for
Create a QGIS COl%reCSiagge of
Map Project p
(aGser aen) Runs on

Compute Engine

Figure 3.1: Schema for Geodata Pipeline Designed for the Preliminary Implemen-
tation

The preliminary implementation utilized QGIS Web Client and QGIS Server
deployed on Google Compute Engine, providing comprehensive GIS capabilities for
water distribution network visualization and basic editing functions. The pipeline
for geodata, originating from Battledim and Epanet, involved fixes such as cor-
recting CRS and coordinates manually in QGIS software, exporting the data as a
GeoPackage, storing it in the PostgreSQL database, and visualizing it on QGIS Web
Client hosted on a Compute Engine with integration of Google Looker Studio for
time-series visualization, as shown in Figure 3.1. This initial approach leveraged
the mature GIS ecosystem while exploring integration possibilities with modern
cloud-based analytics platforms.

Core System Components:

The initial architecture integrated several specialized components:

o PostgreSQL with PostGIS extensions for spatial data storage, providing
robust geospatial data management capabilities with support for complex
geometric operations and spatial indexing

e QGIS Server for web mapping services, enabling publication of GIS projects
as web services with support for standard OGC protocols including WMS and
WEFS

o QGIS Web Client for browser-based GIS interaction, providing full-featured
GIS functionality accessible through web browsers without requiring desktop
software installation

o Google Looker Studio for time-series data visualization, offering sophis-
ticated business intelligence capabilities with integration to BigQuery data
sources
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o Manual Python script execution for data processing and analysis, provid-
ing flexibility for custom analytical workflows while requiring direct technical
intervention

Database Schema Architecture:

The preliminary database architecture, illustrated in Figure 3.2, established
design patterns that influenced the final system implementation:
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Figure 3.2: Entity-Relationship Diagram Designed as the Database Schema

GIS Data Schema (PostgreSQL/PostGIS):

o Network topology tables storing pipe segments, junctions, and system com-
ponents with full geometric representation

« Sensor location tables with precise geographic coordinates and metadata
o District boundary definitions with polygon geometries for spatial analysis

o User authentication and authorization tables supporting role-based access
control

Time-Series Data (BigQuery):

e Sensor measurement tables with timestamp partitioning for query perfor-
mance optimization

o (Calculated metrics tables storing derived values and analytical results

o Event logging tables capturing system activities and user interactions
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Integration Challenges and Limitations Discovery

The preliminary implementation phase revealed several critical challenges that ne-
cessitated the evolution toward the final integrated system architecture:

URL Parameter Coordination: Initial attempts to coordinate between QGIS
Web Client and Looker Studio through URL parameters proved complex and lim-
ited in functionality. The graphical representation of the water network in QGIS
Web Client, as shown in Figure 3.3, includes components such as pipes, nodes,
and sensors, along with the feature info panel and layers and legend panel. The
approach required manual construction of complex URL strings and provided frag-
ile integration that frequently broke due to parameter encoding issues or service
updates.
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Figure 3.3: Graphical Representation of the Network in QGIS Web Client

Manual Script Execution: The preliminary system required manual execu-
tion of Python scripts for data processing and visualization updates. One such
script was responsible for dynamically changing the pipe colors based on predicted
leakage values, as illustrated in Figure 3.5. This approach created workflow inter-
ruptions, required technical expertise from users, and prevented automated pro-
cessing workflows that could respond to data updates in real-time.

Multi-Interface Navigation: Users needed to navigate between multiple spe-
cialized interfaces to complete operational tasks, creating cognitive overhead and
reducing operational efficiency. The switching between GIS tools, business intelli-
gence dashboards, and command-line interfaces created barriers to effective system
utilization.

Limited Interactivity: Traditional GIS and BI tools provided limited support
for dynamic interactions that could adapt to user queries or operational contexts.
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Users were constrained to predefined views and analysis approaches that could
not accommodate the diverse operational requirements encountered in real-world
monitoring scenarios.

These limitations provided valuable insights that informed the design require-
ments for the final integrated system, leading to the identification of needs for
unified visualization platforms and intelligent conversational interfaces that could
address these fundamental operational challenges.

3.1.3 Technology Selection and Strategic Evolution

The preliminary investigation phase involved comprehensive analysis of cloud com-
puting platforms, database technologies, and visualization approaches. This phase
established the technical foundation while revealing important limitations in user
accessibility and system integration that motivated the development of intelligent
conversational interfaces.

Technology selection decisions significantly influenced both development veloc-
ity and long-term system characteristics. The evaluation process required careful
consideration of factors including technical capabilities, cost implications, learning
curve requirements, and long-term maintenance considerations.

Critical Technology Decisions

Key technology decisions that shaped the system evolution included:

« Google Cloud Platform (GCP): Chosen as the primary infrastructure
foundation for its comprehensive capabilities in data processing, machine
learning integration, and scalable deployment.

e PostgreSQL with PostGIS: Selected for geospatial data management, re-
flecting the importance of spatial analysis for water distribution monitoring.

o BigQuery: Adopted for large-scale analytics, enabling sophisticated time-
series analysis and historical trend evaluation.

o Transition from QGIS to Grafana: The transition from QGIS Web Client
to Grafana represented a significant architectural decision. The initial im-
plementation integrated QGIS Web Client for geospatial visualization and
Looker Studio for analytics, which led to deployment complexity and an in-
consistent user experience. After evaluating alternatives, including Google
Looker which had cost and complexity limitations, Grafana was chosen for
its ability to integrate mapping and analytics within a unified platform.
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Visualization Platform Evolution

The evolution of visualization platforms reflects the systematic progression from
fragmented tools toward integrated solutions:

Initial Multi-Tool Approach: The preliminary system utilized separate plat-
forms for different visualization needs, creating operational complexity and user
experience challenges. QGIS Web Client provided sophisticated geospatial capa-
bilities but required specialized GIS expertise, while Looker Studio (Figure 3.4)
offered powerful analytics but limited geospatial integration.
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Figure 3.4: Looker Studio Dashboard

Integration Challenges: The multi-platform approach revealed several fun-
damental limitations including fragmented user experience requiring navigation be-
tween multiple specialized interfaces, inconsistent data refresh behaviors requiring
manual intervention, limited customization capabilities preventing workflow adap-
tation, and absence of unified authentication mechanisms.

Strategic Evolution: The identification of these limitations motivated the
strategic evolution toward Grafana as a unified visualization platform that could ad-
dress both time-series analytics and geospatial visualization requirements through
a single, integrated interface.

3.1.4 Iterative Development and Continuous Learning

The development process emphasized iterative refinement based on practical imple-
mentation experience and continuous learning from system behavior under realistic
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operational conditions. This approach enabled the identification and resolution of
issues that would not have been apparent through theoretical analysis alone.

Early prototyping work demonstrated the technical feasibility of integrating
diverse data sources within cloud-native architectures while highlighting critical
challenges in user experience design. Traditional monitoring interfaces required
extensive domain expertise and complex navigation workflows that created barriers
to effective system utilization.

User Experience Insights

User-centered design principles emerged as fundamental to creating systems that
provide genuine operational value rather than merely technical sophistication. The
emphasis on understanding user needs, operational workflows, and practical con-
straints proved essential for creating systems that achieve meaningful adoption and
operational impact.

The preliminary system evaluation revealed that sophisticated technical capabil-
ities become ineffective when they cannot be readily utilized by operational person-
nel in realistic working environments. This insight drove the development toward
more intuitive, accessible interfaces that could accommodate diverse user back-
grounds and expertise levels.
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Evolution Toward Conversational AI

The evolution from basic integration to intelligent conversational Al represents a
strategic advancement focused on creating cutting-edge user interaction paradigms
using the latest developments in Large Language Models and conversational Al
technologies. With the foundation of understanding established through the pre-
liminary implementation, the development shifted toward creating an innovative
conversational assistant that could serve as a reliable, intelligent interface for end
users.

This evolution demonstrates the opportunity to transform user experience through
natural language interaction, making sophisticated monitoring capabilities acces-
sible through intuitive conversational commands while providing comprehensive
functionality including dashboard management, data analysis, geospatial opera-
tions, and system control.

3.1.5 Conversational AI Development Journey

The development of conversational Al capabilities represented the most innovative
aspect of the system evolution. Beginning with fundamental feasibility questions
about LLM integration with Grafana systems, the methodology progressed through
iterative phases that established the technical foundation for the final intelligent
interface.

Initial Feasibility Exploration

The conversational Al development began with command-line interface experimen-
tation that established the programmatic dashboard manipulation feasibility. This
initial phase revealed both opportunities and limitations of direct LLM-based ap-
proaches while providing insights into optimal integration strategies.

Early testing revealed reliability issues including hallucinations and token con-
sumption concerns with direct JSON manipulation approaches. These discoveries
led to the development of a hybrid architecture where LLMs focus on natural lan-
guage understanding while dedicated Python functions handle precise operations.

Architectural Insights and Refinements

Critical architectural insights emerged regarding optimal LLM utilization patterns.
The development process revealed the importance of separating natural language
understanding from precise technical operations, leading to more reliable and main-
tainable system architectures.

The progression to web-based systems required WebSocket implementation for
real-time communication and conversation state persistence. This evolution en-
abled the integration of comprehensive capabilities including natural language data
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querying, dashboard management, and geospatial operations through a unified con-
versational interface.

3.1.6 Lessons Learned and Development Insights

The comprehensive development journey provided numerous insights into effective
approaches for creating sophisticated infrastructure monitoring systems that in-
tegrate artificial intelligence capabilities with traditional monitoring technologies.
These lessons informed both the final system implementation and provide guidance
for future development efforts.

Technical Architecture Insights

Incremental development approaches proved essential for managing the complexity
inherent in sophisticated infrastructure monitoring systems. The ability to validate
architectural decisions through practical implementation experience enabled course
corrections and optimizations that significantly improved final system effectiveness.
Technology integration complexity required sophisticated architectural approaches
that balanced flexibility with maintainability. The development experience demon-
strated the importance of well-defined interfaces, comprehensive testing, and con-
tinuous monitoring for creating reliable integrated systems.

User Interface Evolution Insights

The conversational Al interface development revealed the transformative potential
of natural language interaction for technical systems while highlighting the im-
portance of appropriate user education, transparent operation, and robust error
handling for successful adoption.

Performance optimization represented a continuous concern throughout the de-
velopment process rather than a final implementation phase. The development
experience demonstrated the importance of performance considerations in archi-
tectural design decisions and the value of continuous monitoring and optimization.

3.1.7 Methodology Contributions and Future Applications

This comprehensive development methodology illustrates the iterative, evolutionary
nature of creating sophisticated infrastructure monitoring systems while highlight-
ing the importance of user-centered design, robust architectural foundations, and
continuous refinement based on practical implementation experience.

The methodological insights gained through this development process provide
valuable guidance for future efforts to create intelligent, accessible infrastructure
monitoring systems. The combination of systematic technology evaluation, iterative
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development, and user-centered design principles creates a framework that can be
applied to similar infrastructure monitoring challenges in diverse domains.

The development journey demonstrates that sophisticated technical capabilities
can be made accessible to diverse operational personnel through appropriate inter-
face design and conversational Al integration, providing a foundation for broader
adoption of intelligent monitoring systems in infrastructure management applica-
tions.

3.2 System Architecture and Design Methodol-
ogy

This section presents the comprehensive architectural design of the intelligent water
distribution monitoring system, emphasizing the integration of cloud-native infras-
tructure, advanced data processing capabilities, and innovative conversational Al
interfaces. The design methodology addresses the complex requirements of modern
infrastructure monitoring while establishing a foundation for scalable, maintainable,
and user-accessible monitoring solutions. The architectural approach balances tech-
nical sophistication with operational practicality, ensuring that advanced capabili-
ties remain accessible to diverse operational personnel through intuitive interaction
paradigms.

3.2.1 Architectural Design Philosophy and Principles

The system architecture embodies a comprehensive design philosophy that priori-
tizes user accessibility, technical robustness, and operational effectiveness. The ar-
chitectural approach recognizes that sophisticated monitoring capabilities are only
valuable when they can be effectively utilized by operational personnel with diverse
technical backgrounds and varying levels of system expertise.

The modular design principle ensures that individual system components can
be developed, tested, and maintained independently while contributing to coherent
overall system functionality. This modularity enables selective enhancement of spe-
cific capabilities without requiring comprehensive system modifications, supporting
both incremental improvement and strategic evolution of system capabilities.

Cloud-native architecture principles guide the infrastructure design, emphasiz-
ing scalability, reliability, and cost-effectiveness through intelligent utilization of
managed cloud services [2]. The cloud-native approach enables automatic scaling
based on demand patterns while reducing operational overhead through managed
service utilization.

User-centered design principles inform interface development, ensuring that sys-
tem complexity remains hidden behind intuitive interaction mechanisms. The em-
phasis on conversational Al interfaces reflects recognition that natural language
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interaction can significantly reduce barriers to effective system utilization while
enabling access to sophisticated analytical capabilities.

Data-driven decision making principles ensure that architectural choices are
validated through practical implementation experience and performance measure-
ment. The iterative refinement approach enables continuous optimization based on
operational feedback and performance analysis.

3.2.2 High-Level System Architecture

The system architecture implements a distributed, event-driven design that coordi-
nates multiple specialized subsystems through well-defined interfaces and communi-
cation protocols. The architecture addresses the complex requirements of real-time
data processing, sophisticated analytical computation, and interactive visualization
while maintaining appropriate separation of concerns and system reliability.

The data acquisition and processing subsystem provides the foundation for col-
lecting, validating, and transforming sensor measurements from diverse monitoring
networks. This subsystem implements comprehensive quality assurance mecha-
nisms that ensure data integrity while supporting diverse sensor types and commu-
nication protocols.
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The computational analysis subsystem coordinates hydraulic simulation and
machine learning algorithm integration workflows that transform sensor measure-
ments into operational insights. This subsystem leverages distributed computing
resources to execute complex simulations and integrate analytical algorithms devel-
oped by research colleagues while maintaining appropriate performance character-
istics for operational monitoring requirements. Figure 3.6 illustrates the compre-
hensive system architecture and the integration of all major components including
cloud infrastructure, data processing, analytical computation, and intelligent user
interface elements.

The data management subsystem provides scalable, high-performance storage
and retrieval capabilities for diverse data types including time-series sensor mea-
surements, simulation results, geospatial network topology, and analytical outputs.
The storage architecture utilizes specialized database technologies optimized for
different data characteristics while maintaining unified access interfaces.

The visualization and interaction subsystem presents complex monitoring in-
formation through intuitive, interactive interfaces that support both routine op-
erational tasks and sophisticated analytical workflows. This subsystem integrates
traditional dashboard visualizations with innovative conversational Al capabilities
that enable natural language interaction with complex technical systems.

The orchestration and automation subsystem coordinates workflow execution
across distributed system components while providing comprehensive monitoring,
error handling, and recovery capabilities. This subsystem ensures reliable opera-
tion under diverse conditions while enabling efficient resource utilization and cost
optimization.

The architectural integration emphasizes loose coupling between subsystems
while maintaining appropriate coordination and communication mechanisms. This
approach enables independent evolution of individual components while preserving
overall system coherence and reliability.

3.2.3 Intelligent Interface Architecture and Design

The conversational A interface represents a fundamental architectural innovation
that transforms traditional monitoring system interaction paradigms through nat-
ural language processing capabilities. The interface architecture addresses the crit-
ical challenge of making sophisticated technical systems accessible to operational
personnel with diverse backgrounds and expertise levels.

The natural language processing layer implements sophisticated understand-
ing capabilities that can interpret user intentions, extract relevant parameters, and
translate conversational requests into appropriate system operations. This layer uti-
lizes advanced large language models [23] combined with domain-specific knowledge
to achieve reliable understanding of technical queries and operational commands.
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The workflow orchestration layer coordinates complex multi-step operations in-
volving multiple system components while maintaining appropriate user control and
transparency. This layer implements sophisticated state management capabilities
that track conversation context, user preferences, and ongoing operational tasks
while providing appropriate confirmation and feedback mechanisms.

The system integration layer provides secure, efficient connectivity to all under-
lying system components including databases, visualization platforms, simulation
tools, and analytical services. This layer abstracts the complexity of diverse system
interfaces while providing unified access through conversational interactions.

3.2.4 Data Architecture and Information Flow Design

The data architecture implements a comprehensive approach to managing diverse
information types while ensuring data quality, accessibility, and performance across
various analytical and operational requirements. The architecture addresses the
complex challenges of integrating time-series sensor data, geospatial network infor-
mation, simulation results, and user interaction history within unified data man-
agement frameworks.

The ingestion architecture provides robust mechanisms for collecting sensor
measurements from diverse sources while implementing comprehensive validation
and quality assurance procedures. The processing architecture implements sophis-
ticated transformation and enrichment capabilities that prepare raw sensor data
for analytical and visualization requirements.

The storage architecture utilizes specialized database technologies optimized for
different data characteristics and access patterns. Time-series data utilizes colum-
nar storage optimized for analytical queries, geospatial data leverages spatial index-
ing for efficient geographic operations, and metadata utilizes normalized schemas
for consistency and integrity.

The access architecture provides unified interfaces for data retrieval while imple-
menting appropriate security, caching, and optimization mechanisms. The archival
architecture implements comprehensive data lifecycle management that balances
accessibility requirements with storage cost optimization.

3.2.5 Cloud Infrastructure Design and Scalability Architec-
ture

The cloud infrastructure design implements comprehensive utilization of Google
Cloud Platform services [2] while optimizing for performance, reliability, and cost-
effectiveness. The infrastructure architecture addresses the variable workload char-
acteristics inherent in infrastructure monitoring applications while providing ap-
propriate scalability and fault tolerance capabilities.
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The compute architecture utilizes a hybrid approach combining serverless func-
tions for event-driven processing with managed container services for complex an-
alytical workloads. The storage architecture leverages managed database services
optimized for different data characteristics and access patterns.

The networking architecture implements secure, high-performance connectivity
between distributed system components while providing appropriate access control
and monitoring capabilities. The security architecture implements comprehensive
protection mechanisms including identity and access management, data encryption,
network security, and audit logging.

3.2.6 Integration Architecture and Interoperability Design

The integration architecture addresses the complex requirements of connecting di-
verse system components while maintaining appropriate security, performance, and
reliability characteristics. The architecture emphasizes standardized interfaces and
communication protocols that enable flexible system evolution while preserving op-
erational stability.

The API architecture implements comprehensive service interfaces that pro-
vide secure, efficient access to system capabilities while abstracting implementation
complexity. The messaging architecture provides reliable, scalable communication
mechanisms for coordinating distributed system operations.

The security integration architecture ensures that authentication, authorization,
and audit capabilities are consistently applied across all system components. The
external system integration architecture provides flexible mechanisms for connect-
ing with existing monitoring infrastructure while supporting various data formats,
communication protocols, and operational procedures.

3.2.7 Design Goals and Quality Attributes

The architectural design addresses comprehensive quality attributes that ensure
system effectiveness across diverse operational scenarios and usage patterns. These
quality attributes guide design decisions throughout system development while pro-
viding measurable criteria for evaluating system success.

Scalability requirements ensure that the system can accommodate growing data
volumes, increasing user populations, and expanding analytical capabilities without
requiring fundamental architectural modifications. Reliability requirements ensure
consistent system operation under diverse conditions including component failures,
network disruptions, and unusual load patterns.

Usability requirements ensure that sophisticated system capabilities remain ac-
cessible to operational personnel with diverse technical backgrounds and expertise
levels. Maintainability requirements ensure that system evolution and enhancement
can proceed efficiently while preserving operational stability.
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Security requirements ensure appropriate protection of sensitive operational
data while maintaining necessary accessibility for authorized personnel. Perfor-
mance requirements ensure that system responsiveness meets operational expecta-
tions across diverse usage patterns and system loads.

Cost-effectiveness requirements ensure that system operation remains economi-
cally sustainable while providing necessary capabilities and performance character-
istics. The architectural design provides a robust foundation for intelligent water
distribution monitoring while establishing clear pathways for continued enhance-
ment and evolution.

3.3 Technical Implementation

This section describes the technical implementation of the intelligent water distri-
bution monitoring system, representing the culmination of the development journey
detailed in Section 3.1. The implementation encompasses the complete end-to-end
data pipeline, visualization framework, hydraulic simulation integration, machine
learning algorithm integration, and the innovative conversational Al interface that
transforms how operators interact with complex monitoring infrastructure. Each
subsystem is presented with sufficient technical detail to enable replication while
highlighting the innovative approaches developed for this research.

The implementation builds upon the lessons learned from the preliminary QGIS-
based system (Section 3.1.2) and addresses the limitations identified during the
development evolution (Section 3.1.2). The final system architecture represents a
unified, cloud-native solution that provides sophisticated monitoring capabilities
through an intuitive conversational interface. Figure 3.9 shows an example of an
Apache Airflow DAG named sensor_workflow, which orchestrates the tasks for
sensor data automation and integrating machine learning algorithms developed by
a research colleague for leakage detection.

Note on Machine Learning Contributions: The core machine learning
algorithms for anomaly detection and localization were developed by a research
colleague. This thesis focuses on the novel integration of these algorithms within
the comprehensive monitoring system, including data pipeline development, cloud
infrastructure implementation, visualization integration, and the innovative conver-
sational Al interface that makes the analytical results accessible through natural
language interaction.

3.3.1 Data Acquisition and Processing Infrastructure

The data acquisition subsystem forms the foundation of the intelligent monitoring
system, implementing robust mechanisms for collecting, validating, and prepro-
cessing sensor data from distributed monitoring networks. The implementation
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addresses the complex challenges of working with heterogeneous sensor networks
while maintaining reliability and data quality essential for effective infrastructure
monitoring.

The sensor data processing pipeline utilizes CSV file formats provided by an ex-
ternal company as the primary data interchange mechanism, providing standardized
sensor data transmission that balances simplicity with comprehensive information
content. These CSV files contain sensor measurements along with metadata about
measurement conditions, sensor status, and data quality indicators that enable
sophisticated validation and analysis processes using Python’s pandas library.

The current implementation utilizes manual upload procedures for transferring
sensor data files to Google Cloud Storage buckets, providing reliable data ingestion
with appropriate quality control and validation procedures. The manual approach
enables operators to review data quality and resolve issues before data enters the
processing pipeline, ensuring downstream analysis is based on validated measure-
ments.

Figure 3.7 illustrates the complete data acquisition pipeline for incoming CSV
files, including transformation and loading processes to BigQuery.

IDEA Data Pipeline

BigQuery |
sdw-raw-sensor-data sdw-sensor-data + Flow
Raw CSV Files E— A
Cloud Storage Bucket Cloud Storage Bucket . Level

Triggers on Triggers on
a new file arrival |} a new file arrival

Data Processing{Python Script):

Data Loading{Python Script):
Clean the Data

.
sdw-config-files Python Script + Change File names + Checks the type of the
« Lookup Table Loads the Lookup Table « Assign ID to Sensors sensor .
e « Check for Qverlapping or Gaps = Loads each data into
- in Timestamps their respeciive table in
Cloud Storage Bucket « Check for Errors BigQuery
* Other Fixes...
Cloud Run Functions
Cloud Run Functions
transform_raw_data move_to_bg

Figure 3.7: Data Acquisition Pipeline, Including Cloud Functions for Data Trans-
formation and Loading

The automated ingestion pipeline implements two specialized Cloud Functions
that coordinate data transformation and loading while maintaining appropriate er-
ror handling and monitoring capabilities. The transform_raw_data function per-
forms comprehensive data validation and transformation operations including file
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structure verification against expected schemas, timestamp detection and correc-
tion procedures, column header normalization, data type validation and conversion
operations, and quality score calculation for downstream filtering.

The move_to_bq function implements sophisticated monitoring and loading pro-
cedures ensuring reliable data ingestion into BigQuery. This function continuously
monitors designated storage locations for new datasets, performs schema valida-
tion, executes batch loading operations with appropriate error handling, maintains
loading statistics and audit trails, and coordinates with other system components
to signal data availability.

3.3.2 Hydraulic Simulation Implementation

The hydraulic simulation subsystem integrates EPANET software with the cloud-
based data processing infrastructure to provide comprehensive hydraulic modeling
capabilities. The implementation addresses the complex requirements of preparing
sensor data for hydraulic simulation while ensuring reliable execution and result
processing.

Python scripts running on Google Compute Engine instances perform compre-
hensive data preparation for EPANET input including correction and extrapolation
of missing or anomalous sensor values, sampling interval adjustments to achieve
consistent 15-minute intervals, district-level aggregate computations for areas such
as Salza and Concentrico districts, and automated simulation execution with result
upload to BigQuery. Figure 3.8 illustrates the complete data processing pipeline
for hydraulic simulation using EPANET, managed by Apache Airflow.
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Apache Airflow
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district flow data is for a full day,
every 15 minutes

Static

Mode! DY EPANET Binary output
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For hydraulic
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Calculate concentrico
and salza

— The date of the results is the
I date of the sensor data (day
before), not the date of epanet,
Transform data to X minutes which is just the date in which

- undersample you run the simulation
- oversample

Fix missing San

Bernardo input tank flow
values

CSV file with
pressures

(BigQuery)

Flow

CSV file with flow|

(BigQuery)

Sensor Data
(BigQuery)

Figure 3.8: Data processing pipeline for hydraulic simulation using EPANET, man-
aged by Apache Airflow

The hydraulic simulation pipeline implements a systematic five-step process.
Data preparation includes fixing missing input tank flow values, transforming data
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to specified intervals, and calculating district aggregates. Static and dynamic mod-
els provide initial district data and generate district patterns respectively. EPANET
simulation processes the dynamic model data to produce binary output files. Data
extraction uses EpanetFileUtility to convert binary output into CSV files containing
pressure and flow data. Finally, data storage saves resulting CSV files to BigQuery
with timestamps corresponding to sensor data dates rather than simulation run
dates.

3.3.3 Machine Learning-Based Anomaly Detection

The machine learning subsystem integrates anomaly detection algorithms developed
by a research colleague within the cloud-based monitoring infrastructure. The con-
tribution of this thesis lies in the comprehensive system integration, including data
preprocessing pipelines, automated workflow orchestration, result storage systems,
and visualization interfaces that make algorithm outputs accessible to operators.

Integration Infrastructure Implementation: The integration addresses the
complex challenges of operationalizing research algorithms within production sys-
tems:

o Data Preprocessing Pipeline: Automated data preparation workflows
that transform raw sensor measurements into formats required by the algo-
rithms, including data cleaning, validation, and feature preparation processes.

e Cloud Execution Environment: Scalable compute infrastructure using
Google Cloud Platform that ensures reliable algorithm execution under vary-
ing operational conditions and data loads.

e Result Storage and Management: Comprehensive storage systems using
BigQuery that capture algorithm outputs with appropriate schema design for
analytical queries and historical analysis.

o Workflow Orchestration: Apache Airflow DAGs that coordinate algorithm
execution with data processing pipelines, ensuring timely analysis and result
availability.

The integration infrastructure includes comprehensive data processing work-
flows and system integration components:

« BigQuery Integration: Scalable storage and analysis of algorithm results
using BigQuery, including automated result storage with appropriate schema
design, historical trend analysis capabilities, and integration with visualiza-
tion platforms.
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o PostGIS Spatial Integration: Integration with PostGIS for spatial analy-
sis workflows that combine algorithm results with network topology informa-
tion, enabling geographic visualization of detection results and spatial corre-

lation analysis.

« Workflow Automation: Apache Airflow orchestration ensures reliable al-
gorithm execution through automated scheduling, comprehensive error han-

dling, and systematic result validation processes.

Future system enhancements include improved cloud infrastructure scaling, en-
hanced data preprocessing capabilities, and deeper integration with the conversa-
tional Al interface for natural language querying of algorithm results.

Workflow Orchestration and Automation

To automate the execution of the pipeline, I used Apache Airflow, an open-source
platform for programmatically authoring, scheduling, and monitoring workflows.
Basically, every task in the Compute Engine instance is orchestrated by Airflow,
which ensures that the tasks are executed in the correct order and with the correct

dependencies.
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Figure 3.9: Apache Airflow DAG for Pipeline Automation

Core tasks in the Directed Acyclic Graph (DAG) include:

1. Data ingestion from the database.

2. Data cleaning & transformation (CSV reformat, interpolation, etc.).
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3. Generating hydraulic input files and running EPANET.
4. Storing simulation outputs in BigQuery with timestamps.

5. Running ML detection/localization algorithms (developed by research col-
league), plus updating BigQuery or Postgres with results.

Airflow’s user-friendly Ul and logging make it simpler to control these interde-
pendent steps. Figure 3.9 shows an Apache Airflow DAG named sensor_workflow,
which orchestrates the tasks for sensor data automation and integrating machine
learning algorithms for leakage detection.

This DAG orchestrates a series of tasks for sensor data automation and inte-
grating machine learning algorithms developed by a research colleague for leakage
detection. The tasks are represented as nodes in the graph, and their successful
execution is indicated by the green status. The tasks include:

e download_sensor_ data: Downloads sensor data.

o process__data: Processes the downloaded data.

o run__epanet: Runs the EPANET hydraulic simulation.

o run__epanet__utility: Processes the EPANET output files.

« upload_ results: Uploads the processed results to the database.

« download__data_ leak: Downloads additional data required for leakage de-
tection.

o run_ leak_ detection: Executes the leakage detection algorithm (developed
by research colleague).

« upload_ data_ leakage: Uploads the leakage detection results to the database.

This workflow ensures that sensor data is processed, simulated, and analyzed
efficiently, enabling near real-time hydraulic assessments and leak detection in water
distribution networks.

Since the cost of running the Compute Engine instance can be high, the instance

is automatically started and stopped based on a schedule to optimize costs.
This is achieved by using the Google Cloud Scheduler to trigger the start and stop
of the Compute Engine instance at specific times. The codes are written in Python
and are executed as Cloud Functions with and HTTP trigger, which is called by
the Google Cloud Scheduler.

Figure 3.10 shows the Cloud Scheduler configuration for automatically starting
the Compute Engine VM with an HTTP trigger every day at 7:00 AM.
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Figure 3.10: Cloud Scheduler Job for automatically starting the Compute Engine
VM

3.3.4 Geospatial Data Management and API Infrastruc-
ture

The geospatial data management subsystem provides comprehensive storage, pro-
cessing, and delivery capabilities for complex geographic information. The imple-
mentation addresses sophisticated challenges of managing multi-layered geospatial
datasets while providing high-performance access to diverse client applications.

The system is validated through deployment in the Marene municipal water
distribution network, managing comprehensive sensor networks distributed across
operational districts. The deployment demonstrates practical effectiveness with
flow, pressure, and tank level sensors strategically positioned throughout the net-
work.

The storage infrastructure leverages PostgreSQL with the PostGIS extension to
provide advanced geospatial data management capabilities that support sophisti-
cated spatial queries, indexing, and analysis operations. PostGIS provides compre-
hensive support for geographic data types, spatial indexing algorithms, geometric
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operations, coordinate system transformations, and advanced analytical functions
that enable complex spatial analysis workflows.

The database design implements normalized schemas that separate geometric
data from attribute information while maintaining referential integrity and opti-
mizing query performance. The implementation includes specialized tables for net-
work components with associated geometric representations, sensor installations
with precise location data and deployment metadata, district boundaries with hi-
erarchical organizational structures, and historical data with temporal and spatial
indexing for efficient time-series analysis.

Spatial indexing strategies optimize query performance for the diverse access
patterns required by the monitoring system. The implementation utilizes R-tree
indexes for geometric data, compound indexes for temporal-spatial queries, par-
tial indexes for frequently accessed subsets, and clustering strategies that co-locate
related geographic features to minimize disk access overhead during complex ana-
lytical operations.

The Express.js API server provides a high-performance, scalable interface for
accessing geospatial data while abstracting the complexity of database interactions
from client applications. The server implements comprehensive REST endpoints
that support diverse query patterns including spatial range queries for map viewport
updates, attribute-based filtering for specific network components, temporal queries
for historical analysis, and complex analytical operations that combine multiple
data sources.

The API architecture implements sophisticated data processing pipelines that
merge geospatial network topology information with real-time analytical results
from BigQuery datasources. This integration enables the dynamic presentation of
current system status overlaid on geographic network representations, providing
operators with intuitive visual interfaces for understanding complex operational
conditions.

The data merging process implements several critical operations including spa-
tial joins that associate analytical results with geographic network components,
temporal alignment that ensures consistency between sensor measurements and
network topology, attribute enrichment that combines static infrastructure data
with dynamic operational metrics, and formatting operations that transform com-
plex datasets into standardized GeoJSON representations suitable for web-based
visualization clients.

The GeoJSON generation process addresses the specific requirements of Grafana’s
GeoMap panel, which requires precisely formatted geographic data for effective vi-
sualization. The implementation ensures compliance with GeoJSON specifications
while optimizing data structure for performance and visualization effectiveness.
This includes coordinate precision optimization for map display scales, attribute
organization for effective tooltip and popup displays, geometric simplification for
appropriate zoom levels, and metadata inclusion for interactive functionality.
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Performance optimization strategies address the challenging requirements of
real-time geospatial data delivery while managing the computational overhead of
complex spatial operations. The implementation includes comprehensive caching
mechanisms for frequently accessed geographic data, query result caching with ap-
propriate invalidation strategies, precomputed aggregations for common analytical
operations, and optimized data transfer protocols that minimize bandwidth require-
ments.

async function getNodes () {
const client = new pg.Client(connectionParams);
await client.connect ();

try {
const res = await client.query (¢
SELECT jsonb_build_object (
’type’, ’FeatureCollection’,
’features’, jsonb_agg(
jsonb_build_object (
’type’, ’Feature’,
’geometry’, ST_AsGeoJSON(geom):: jsonb,
’properties’, to_jsonb(row) - ’geom’
)
)
) AS geojson
FROM (SELECT * FROM public.model_junctions) row;
3

const geoJSON = res.rows[0].geojson;
return geoJSON;
} catch (err) {
console.error (’Error executing query’, err.stack);
} finally {
await client.end();

1

Listing 3.1: A Function in the Express.js Server to Retrieve the Nodes as GeoJson

The caching system implements multiple layers including in-memory caches for
extremely high-frequency access patterns, distributed caches for shared data across
multiple server instances, persistent caches for expensive analytical results, and
intelligent cache invalidation based on data freshness requirements and update fre-
quencies.

Error handling and reliability mechanisms ensure robust operation under di-
verse conditions including database connectivity issues, data inconsistency detec-
tion and resolution, query timeout handling with appropriate fallback strategies,
and graceful degradation capabilities that maintain essential functionality during
partial system outages.

The API server deployment strategy evaluates multiple hosting options to op-
timize performance, scalability, and cost considerations. The analysis compares
deployment on dedicated Compute Engine instances with serverless platforms like
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Cloud Run, considering factors including latency requirements for real-time vi-
sualization, scaling characteristics for variable load patterns, cost implications of
different usage patterns, and integration capabilities with existing cloud infrastruc-
ture.

The serverless deployment approach offers advantages including automatic scal-
ing based on demand, reduced infrastructure management overhead, built-in load
balancing and fault tolerance, and cost optimization for variable usage patterns.
However, this approach also presents challenges including cold start latency for
infrequent requests, resource limitations for computationally intensive operations,
and potential vendor lock-in considerations.

The dedicated instance approach provides advantages including predictable per-
formance characteristics, complete control over the runtime environment, optimiza-
tion capabilities for specific workload patterns, and independence from serverless
platform limitations. The trade-offs include increased infrastructure management
requirements, manual scaling and load balancing implementation, and fixed cost
structures regardless of usage patterns.

The final implementation adopts a hybrid approach that utilizes serverless de-
ployment for development and testing environments while maintaining dedicated
instances for production workloads. This strategy optimizes development velocity
while ensuring predictable performance for operational requirements.

The real-time visualization integration represents one of the most significant ad-
vantages of the geospatial API architecture. The system provides dynamic updates
to map visualizations that reflect current network conditions, enabling operators to
monitor leak probabilities, pressure distributions, flow patterns, and sensor status
through intuitive geographic interfaces. This capability addresses previous limita-
tions in static visualization approaches while providing the foundation for advanced
analytical workflows and automated alerting systems.

3.3.5 Advanced Visualization System Implementation

The visualization subsystem represents a fundamental component of the intelligent
water monitoring infrastructure, providing operators with intuitive, interactive in-
terfaces for exploring complex datasets, monitoring system performance, and identi-
fying potential anomalies or operational issues. The implementation addresses the
critical challenges of presenting multi-dimensional temporal and geospatial data
in accessible formats while maintaining the analytical depth required for effective
infrastructure management.

Building upon the preliminary implementation experiences described in Section
3.1.2, the final visualization system reflects the systematic evolution from the multi-
tool approach to unified platform integration. The transition from QGIS Web Client
Services and Looker Studio to the current Grafana-based architecture addressed
the fundamental limitations identified during the preliminary development phase,
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as detailed in Section 3.1.2.

The comprehensive evaluation of limitations identified during the development
journey necessitated architectural evolution toward integrated platforms. The tran-
sition to Grafana as the primary visualization platform addressed the fragmented
user experience, inconsistent data refresh behaviors, limited customization capa-
bilities, and authentication challenges that characterized the preliminary imple-
mentation phase. Figure 3.11 shows an example of the Grafana Geomap panel,
where network components are colored based on leakage and flow data, providing
an intuitive visualization of the system’s status.

Panel Title

Figure 3.11: Grafana Geomap Panel Showing the Network Components with Rule-
Based Coloring Based on Leakage and Flow

To address these limitations systematically, the implementation transitioned to
Grafana as the primary visualization platform, leveraging its comprehensive ca-
pabilities for both time-series and geospatial data presentation. Grafana’s plugin
architecture and extensive API support enabled the development of sophisticated
visualization solutions that could integrate seamlessly with the existing data in-
frastructure while providing the flexibility required for diverse operational require-
ments.

The Grafana deployment strategy required careful evaluation of hosting op-
tions to balance performance, scalability, and cost considerations. The analysis
compared self-hosted deployment on Google Compute Engine instances with man-
aged Grafana Cloud services, evaluating factors including computational resource
requirements, maintenance overhead, data transfer costs, security and compliance
considerations, and integration capabilities with existing Google Cloud Platform
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services.

The self-hosted Compute Engine approach offered advantages in terms of com-
plete control over the deployment environment, customization capabilities for spe-
cialized plugins and configurations, direct integration with internal networks and
services, and predictable cost structures for high-usage scenarios. However, this
approach also required significant administrative overhead, ongoing maintenance
responsibilities, and expertise in system administration and security management.

The Grafana Cloud alternative provided advantages including managed infras-
tructure with automatic updates and security patches, built-in scalability and per-
formance optimization, integrated backup and disaster recovery capabilities, and
professional support services. The trade-offs included reduced customization flexi-
bility, potential data transfer costs for large datasets, and dependency on external
service availability.

The final implementation adopted a hybrid approach that leverages Grafana
Cloud for production deployments while maintaining self-hosted development en-
vironments for customization and testing activities. This strategy optimizes the
balance between operational efficiency and development flexibility while ensuring
appropriate disaster recovery and business continuity capabilities.

The visualization system implements two primary categories of analytical in-
terfaces: time-series visualization panels for temporal data analysis and geospatial
visualization dashboards for network topology and spatial analysis. The time-series
panels provide comprehensive capabilities for monitoring sensor measurements, sim-
ulation results, and anomaly detection outputs across configurable time ranges and
aggregation levels.

The time-series implementation includes specialized panels for flow rate mon-
itoring with support for multiple measurement points and comparative analysis,
pressure monitoring with configurable alert thresholds and trend analysis capabil-
ities, tank level visualization with capacity indicators and refill scheduling infor-
mation, and leak detection results presentation with confidence intervals and his-
torical comparison features. These panels incorporate advanced features including
dynamic time range selection, automated refresh capabilities, interactive zooming
and panning, statistical overlay functions, and export capabilities for reporting and
documentation purposes.

The geospatial visualization system leverages Grafana’s GeoMap plugin to pro-
vide interactive mapping capabilities that integrate network topology data with
real-time operational information. The implementation addresses the complex chal-
lenges of visualizing multi-layered geospatial information while maintaining perfor-
mance and usability across diverse datasets and user scenarios.

The GeoMap implementation includes comprehensive support for network in-
frastructure visualization through node representation with dynamic coloring based
on operational parameters, pipe visualization with flow direction indicators and
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capacity information, sensor location mapping with status indicators and measure-
ment overlays, district boundary delineation with aggregated statistics and com-
parative analysis, and leak probability visualization with confidence intervals and
historical trend information. The color coding system implements standardized
schemes that enable rapid visual assessment of system status while providing de-
tailed information through interactive tooltips and popup displays.

The integration with the Express.js API server enables dynamic data loading
and real-time updates for geospatial visualizations. This integration addresses the
critical challenge of maintaining current information display while managing the
performance implications of frequent data updates. The solution implements in-
telligent caching mechanisms, differential update procedures, and optimized data
transfer protocols that minimize bandwidth requirements while ensuring timely
information presentation.

Figure 3.12 demonstrates the final integrated dashboard that combines all visu-
alization components including time-series monitoring panels, geospatial mapping
interfaces, and statistical analysis displays in a unified operational interface.
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Figure 3.12: Final Grafana Dashboard Including Various Panels for Time Series
and Geospatial Data

Future enhancements to the visualization system include integration of advanced
alerting capabilities that can automatically notify operators through email, text
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messaging, or mobile application notifications based on configurable threshold con-
ditions and anomaly detection results. These alert systems will incorporate sophis-
ticated logic for preventing false positives while ensuring rapid response to genuine
operational issues.

Possible advanced visualization features include user-controlled temporal nav-
igation through integrated date picker widgets that enable historical data explo-
ration, JavaScript-based plugins that provide enhanced interactivity and customiza-
tion capabilities, automated alert integration that provides visual notifications for
anomaly detection events, and export functionality that supports report generation
and documentation requirements. These enhancements aim to further improve the
operational efficiency and user experience of the visualization system, ensuring that
operators can access critical information quickly and intuitively while maintaining
the analytical depth required for effective infrastructure management.

3.3.6 Future Improvements and Cost Optimizations

Building on the lessons learned from the intelligent interface implementation, sev-
eral areas for continued development and optimization have been identified:

o Advanced AI Integration: Incorporate predictive maintenance models and
anomaly detection algorithms that can be accessed through natural language
queries, enabling operators to ask questions about future system behavior and
potential issues.

o Mobile Integration: Develop field-ready applications for maintenance crews
that leverage the conversational interface for accessing system data and up-
dating maintenance records while on-site.

o« Expanded Connectivity: Integrate with IoT sensors and real-time data
streams to enable more comprehensive monitoring capabilities accessible through
natural language commands.

o Multi-Network Support: Scale the architecture to support multiple water
distribution networks simultaneously, with the chatbot providing intelligent
routing and context management for multi-network operations.

« Tightening Permissions: Reduce service account privileges and unify ac-
cess controls in GCP while maintaining the seamless user experience provided
by the intelligent interface.

o Compute Engine Auto-scaling: Enhance the existing scheduling with
intelligent workload prediction based on chatbot usage patterns and data
query complexity.
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e Continuous Deployment for Cloud Functions: Link GitHub repos to
rapidly deploy function updates without manual overhead, including auto-
mated testing of chatbot functionality.

o Machine Learning Integration Enhancements: Improve system integra-
tion capabilities for incorporating enhanced leak-detection algorithms through
more sophisticated data preprocessing pipelines, with results accessible through
natural language queries about system anomalies and localization results.

« Enhanced Alert Systems: Implement intelligent alerting that can be con-
figured and managed through natural language commands, allowing operators
to set custom alert conditions using conversational interfaces.

3.3.7 Summary of Contributions and Reflections

By integrating data acquisition, processing, orchestration, simulation, and visual-
ization, our pipeline addresses near real-time monitoring of hydraulic conditions in
water networks. Practical tasks accomplished include:

o Automated Ingestion: Validating, cleaning, and loading raw CSVs into
BigQuery.

« EPANET Simulation Pipelines: Generating .inp files on the fly and
storing simulation results in BigQuery.

e ML-Driven Leak Detection: Capturing anomalies or suspected leaks for
further investigation.

o Geospatial Integration: Storing nodes and pipes in PostGIS, serving them
over an Express.js API for dashboards.

« Enhanced Visualization: Leveraging Grafana’s Geomap plugin or custom
map clients.

Combined, these developments translate real-world sensor data into actionable
insights for operators, while ongoing improvements—such as Leaflet.js integration,
expanded alerting, or refined compute workflows—promise an even more robust
solution in the coming iterations.

3.3.8 Intelligent Dashboard Interface Development

With robust Grafana-based visualization successfully established, development fo-
cused on creating an innovative conversational assistant using cutting-edge A[ tech-
nologies. The iterative development approach progressed through multiple phases,
evolving from basic feasibility demonstration to comprehensive web-based intelli-
gent interface capabilities.
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Problem Identification and Requirements Analysis

The initial implementation of the Grafana-based visualization system, while func-
tional, revealed several operational bottlenecks that warranted investigation. Through
systematic observation of user interactions and analysis of system logs, I identified
recurring patterns of inefficiency. Operators frequently struggled with the manual
process of navigating through Grafana’s interface hierarchy to access specific dash-
boards or modify visualization parameters. The GeoJSON layer updates, which
were central to displaying real-time network status, exhibited inconsistent refresh
behavior, often requiring manual browser refreshes to display updated data. Ad-
ditionally, accessing historical data for comparative analysis required operators to
manually construct time ranges and filter parameters, a process that was both
time-consuming and error-prone.

These observations led me to formulate a comprehensive set of requirements for
an enhanced interface system. The system needed to provide natural language pro-
cessing capabilities to interpret operator commands in conversational form, main-
tain direct integration with the existing Grafana API to ensure compatibility with
the established visualization infrastructure, offer transparent data access to the
underlying BigQuery datasources while presenting results in an accessible format,
provide real-time feedback and confirmation mechanisms to ensure data integrity,
and support extensible functionality to accommodate future operational needs.

The intelligent chatbot interface was designed to address these requirements
through conversational interaction capabilities, as demonstrated in Figure 3.13
which shows the system’s ability to explain its current functionalities when queried
by operators.

To validate these requirements, I conducted a preliminary feasibility study ex-
amining the technical constraints and opportunities within the existing architecture.
This investigation revealed that Grafana’s REST API provided comprehensive pro-
grammatic access to dashboard management functions, BigQuery’s SQL interface
could be abstracted through natural language processing techniques, and modern
large language models offered sufficient context understanding for domain-specific
applications.

Technology Selection and Architecture Design

Technology selection decisions required careful evaluation of capabilities, integra-
tion complexity, and long-term maintenance considerations. The command-line
interface provided initial validation while revealing critical LLM limitations for
precise operations. This informed the hybrid architecture where LLMs handle nat-
ural language understanding while Python functions manage precise dashboard
operations.
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Figure 3.13: Asking the Chatbot About Its Current Functionalities

For the backend service architecture, I chose Fast API as the primary web frame-
work due to its native support for asynchronous operations, automatic API doc-
umentation generation, and robust type validation capabilities. The transition
from command-line to web-based system required the implementation of WebSocket
connectivity, chosen over traditional HTTP connections to enable real-time bidi-
rectional communication and maintain persistent conversation state essential for
complex multi-turn conversations.

The natural language processing capabilities were implemented using LangChain,
a framework specifically designed for building applications with large language
models. LangChain’s modular architecture allowed for the creation of specialized
chains for different types of operations, including dashboard management, data
querying, and system administration tasks. The framework’s built-in support for
prompt templating and response parsing significantly accelerated the development
of domain-specific language understanding capabilities.

For workflow orchestration and state management, I integrated LangGraph,
which extends LangChain’s capabilities to support complex, stateful conversations
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with multiple decision points and confirmation requirements. This was essential
for implementing the confirmation workflows that ensure operators explicitly ap-
prove dashboard modifications before they are applied to the production Grafana
instance.

The choice of Google’s Gemini 2.0 Flash as the primary large language model
was based on several technical and practical considerations. Gemini 2.0 Flash
demonstrated superior performance in understanding technical terminology related
to water distribution systems and infrastructure monitoring. Its function calling
capabilities enabled precise parameter extraction from natural language commands,
while its context window size was sufficient to maintain conversation history and
system state information across extended interaction sessions.

For the frontend implementation, I selected React as the primary framework
due to its component-based architecture and extensive ecosystem of supporting
libraries. The real-time communication requirements were addressed through Web-
Socket integration, enabling instant feedback and streaming responses for long-
running operations such as complex data queries or dashboard modifications.

System Architecture and Component Integration

The intelligent dashboard interface follows a distributed architecture pattern that
maintains clear separation of concerns while enabling seamless integration with the
existing infrastructure components. The system consists of four primary architec-
tural layers: the presentation layer implemented as a React based web application
built with Vite, the API gateway layer built on FastAPI providing REST and
WebSocket endpoints, the intelligence layer incorporating LangChain and Lang-
Graph for natural language processing and workflow management, and the inte-
gration layer providing secure connections to external services including Grafana,
BigQuery, and geospatial data services.

The presentation layer was designed with a focus on conversational user experi-
ence, featuring a chat-like interface that presents system responses in a structured
format while maintaining the familiar paradigms of messaging applications. The
interface incorporates specialized components for displaying tabular data from Big-
Query queries, rendering dashboard thumbnails and previews, presenting confirma-
tion dialogs for destructive operations, and providing visual indicators for system
status and operation progress.

The API gateway layer serves as the primary orchestration point for all system
operations, implemented in api_server.py using Fast API with WebSocket support
for real-time bidirectional communication. The core chatbot logic is centralized in
chatbot_core.py which contains the main Chatbot class responsible for Lang-
Graph workflow compilation and natural language processing orchestration. The
system maintains persistent WebSocket connections for each user session, managing
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individual DashboardState instances per connection to enable concurrent multi-
user access. The gateway implements comprehensive session management including
automatic connection state initialization with default dashboard loading, real-time
message processing and response delivery, connection health monitoring with au-
tomatic cleanup, and error propagation with graceful degradation. The FastAPI
framework’s dependency injection system enabled the implementation of modular
service components that could be easily tested and maintained.

The intelligence layer represents the core innovation of the system, implement-
ing sophisticated natural language understanding capabilities specifically tailored
to the domain of infrastructure monitoring and dashboard management. This layer
incorporates multiple specialized components including intent recognition modules
that classify user commands into operational categories, parameter extraction ser-
vices that identify specific values and constraints from natural language input,
validation engines that verify the feasibility and safety of requested operations, and
execution orchestrators that coordinate the sequence of API calls required to fulfill
complex requests.

The integration layer provides secure and efficient connectivity to external ser-
vices while implementing appropriate retry logic, error handling, and circuit breaker
patterns to ensure system resilience. Each external service integration is encapsu-
lated in specialized adapter classes that abstract the complexity of API interactions
and provide consistent interfaces for the higher-level system components.

The system’s dashboard modification capabilities demonstrate the practical ef-
fectiveness of the natural language interface, as shown in Figure 3.14 which illus-
trates the successful addition of a panel to the Grafana dashboard through conver-
sational commands.

Natural Language Processing Implementation

The development of natural language processing capabilities required extensive in-
vestigation into the specific linguistic patterns and terminology used by operators
in the water distribution monitoring domain. I began this process by analyzing
historical support requests, operator feedback, and common dashboard usage pat-
terns to identify the most frequent types of commands and queries that the system
would need to handle.

The initial implementation focused on a rule-based approach using regular ex-
pressions and keyword matching to identify basic command patterns. However, this
approach quickly proved insufficient for handling the natural variation in human
language and the complex parameter relationships inherent in dashboard manage-
ment operations.

To address these limitations, I transitioned to a large language model-based
approach that could understand context, resolve ambiguities, and extract multiple
parameters from complex natural language inputs. The implementation leveraged
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Figure 3.14: Successfully Adding a Panel to the Grafana Dashboard by using the
Chatbot

LangChain’s prompt engineering capabilities to create specialized templates for
different types of operations.

For dashboard management operations, I developed prompt templates that
could interpret commands related to loading existing dashboards, creating new
dashboard configurations, modifying panel arrangements, adjusting time ranges,
and managing dashboard variables. The prompts were carefully crafted to include
sufficient context about the available dashboards, panel types, and configuration
options while maintaining clarity about the expected response format.

The system’s contextual understanding capabilities enable operators to ask so-
phisticated questions about sensor information and measurement data available on
the dashboard, as demonstrated in Figure 3.15 which shows an example of querying
the chatbot about water-related sensor measurements including sensor locations,
measurement types, and associated metadata.

Data querying capabilities required a different approach, as the system needed
to translate natural language questions about sensor data, simulation results, and
system performance into valid SQL queries against the BigQuery datasources. I
implemented a multi-stage process that first identifies the data entities and relation-
ships mentioned in the user’s query, then maps these entities to the appropriate
database tables and columns, constructs a preliminary SQL query based on the
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@ Grafana Chatbot connected

whats the data of this dashboard
about?

Based on the available data, this
dashboard provides information
about water-related sensor
measurements in the city of
Marene. Specifically, it includes
details about the sensor's
location (District), what it
measures (Variable like Flow,
Level, or Pressure), whether it's
associated with a tank, and the
sensor's unique ID. The data also
includes the last timestamp when
the sensor information was
updated.

Type your message...

Figure 3.15: Example of Asking the Chatbot about Sensor Information and Mea-
surements Available on the Dashboard

identified relationships, validates the query structure and applies necessary secu-
rity constraints, and finally executes the query while providing transparency about
the generated SQL code.

The parameter extraction process was implemented using LangChain’s function
calling capabilities, which allow the large language model to identify structured
data within natural language input and format it according to predefined schemas.
This approach enabled the system to handle complex commands with multiple
parameters while maintaining type safety and validation.

Workflow Management and State Handling

One of the most critical aspects of the intelligent interface implementation was the
development of robust workflow management capabilities that could handle com-
plex, multi-step operations while maintaining system consistency and providing
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appropriate safeguards against unintended modifications. The LangGraph frame-
work provided the foundation for implementing stateful conversation flows with
explicit decision points and confirmation requirements.

The workflow management system implements a specialized node-based archi-
tecture where each node represents a specific type of operation or decision point in
the conversation flow. The system organizes workflow nodes into functionally dis-
tinct modules: dashboard_nodes.py handles all dashboard loading and panel man-
agement operations, data_query_nodes.py manages the complete data querying
workflow including context loading and SQ)L generation, interpretation_nodes.py
processes natural language input and extracts user intent and parameters, variable
nodes. py provides dashboard variable management capabilities, geomap_nodes.py
handles geospatial operations including district zooming with precise centroid cal-
culations, and utility_nodes.py contains support functions for error handling,
help messages, save confirmation workflows, and undo functionality. Each node
receives and modifies a shared DashboardState TypedDict that maintains conver-
sation context, current dashboard state, user parameters, and operational metadata
throughout the workflow execution.

The state management implementation maintains conversation context across
multiple interaction rounds, enabling the system to handle follow-up questions, clar-
ification requests, and incremental modifications to complex operations. The state
includes the current conversation history, extracted parameters and their validation
status, pending operations awaiting confirmation, system status and availability in-
formation, and user preferences and authorization levels.

Error handling and recovery mechanisms were implemented at multiple levels
within the workflow system. At the individual node level, each operation includes
comprehensive error detection and reporting capabilities. At the workflow level, the
system can gracefully handle partial failures and provide users with clear informa-
tion about what operations succeeded and what requires attention. At the system
level, circuit breaker patterns prevent cascading failures and ensure that temporary
external service outages do not compromise the overall system functionality. The
system also implements undo functionality that leverages Grafana’s version history
to restore dashboards to their state before the most recent chatbot-applied changes,
providing an additional safety mechanism for operators.

Integration with Existing Infrastructure

The integration of the intelligent interface with the existing monitoring infrastruc-
ture required careful consideration of API compatibility, security requirements, and
performance implications. Each external service integration was implemented as a
separate module with comprehensive error handling and retry logic.

The Grafana integration leverages the platform’s comprehensive REST API to
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provide programmatic access to all dashboard management functions. I imple-
mented specialized adapter classes for different types of Grafana operations in-
cluding dashboard CRUD operations with proper JSON schema validation, panel
management with support for all visualization types used in the monitoring system,
user and permission management to ensure appropriate access controls, datasource
configuration management, and variable and template management for dynamic
dashboard behavior.

Integration with the external geospatial data service enables the chatbot to
access district boundary information and coordinate mapping operations. This
integration supports district boundary queries for map zoom operations through a
configurable GeoJSON webserver, sensor location data for spatial analysis, network
topology information for hydraulic calculations, and real-time status updates for
system monitoring.

User Interface Development and Experience Design

The development of the conversational user interface required extensive research
into best practices for chat-based applications while addressing the specific needs
of technical operators working with complex monitoring systems. The interface
design process began with the creation of user personas and usage scenarios based
on observed operator behavior and feedback from the existing system.

The React based frontend implementation incorporates several specialized com-
ponents designed to handle the unique requirements of technical conversations. The
message display system supports rich content including formatted tables for query
results, embedded dashboard previews, syntax-highlighted SQL code, interactive
confirmation dialogs, and progress indicators for long-running operations.

The system’s analytical capabilities enable sophisticated queries about oper-
ational data and anomaly detection results, as exemplified in Figure 3.16 which
demonstrates querying the chatbot about the highest registered leakage probabil-
ity in the Marconi district.

The real-time communication implementation uses WebSocket connections to
provide immediate feedback and streaming responses. This enables the system
to show typing indicators during LLM processing, stream partial results for long-
running queries, provide real-time status updates during dashboard modifications,
and maintain connection health monitoring with automatic reconnection.

Iterative Development and Feature Enhancement

The development of the intelligent interface followed a systematic iterative ap-
proach that progressed through distinct phases, each building upon the previous
implementation while adding increasingly sophisticated capabilities. The develop-
ment journey began with a command-line interface proof of concept and evolved
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Figure 3.16: Asking the Chatbot about the Highest Registered Leakage Probability
on Marconi District

into a comprehensive web-based conversational system.

The initial implementation started with a CLI version (cli-version branch)
that provided basic functionality for adding and removing panels on a local Grafana
dashboard JSON file. This foundational phase established the core concept of
programmatic dashboard manipulation through natural language commands and
validated the feasibility of using large language models for dashboard management
tasks. The CLI implementation served as a testbed for developing prompt templates
and understanding the complexity of translating natural language instructions into
precise dashboard operations.

The first major enhancement (cli-version continued development) expanded
the CLI capabilities to include panel modification and time frame changes. This
phase required developing more sophisticated understanding of Grafana’s panel
configuration schemas and implementing logic to handle temporal parameter ex-
traction from natural language inputs. The enhanced CLI version demonstrated
the potential for complex dashboard operations while revealing the limitations of
file-based dashboard management.

The second major enhancement (feat/api-server branch) marked the tran-
sition from CLI to web-based architecture with the implementation of the API
server and comprehensive backend development. This phase involved integrating
LangChain for natural language processing, implementing Fast API for WebSocket
communication, and establishing connections to the Grafana API for real-time
dashboard management. The backend architecture provided the foundation for
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stateful conversations and real-time dashboard operations while maintaining ro-
bust error handling and session management.

The third major enhancement (feat/front-end branch) focused on developing
the React-based frontend and integrating it with the backend system. This phase
involved creating the conversational user interface, implementing WebSocket com-
munication for real-time interactions, and developing specialized components for
displaying technical data in chat contexts. The frontend integration transformed
the system from a command-line tool into an accessible web application suitable
for operational use.
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Figure 3.17: Github Branches Representing the Iterative Development of the Chat-
bot

The fourth major enhancement (feat/query branch) introduced sophisticated
data querying capabilities that could translate natural language questions into valid
SQL queries against BigQuery datasources. This phase required developing multi-
stage query processing, implementing parameter extraction for complex analytical
requirements, and providing transparency through syntax-highlighted SQL display.
The data querying functionality significantly expanded the system’s analytical ca-
pabilities beyond dashboard management.

The most recent and advanced enhancements (feat/confirmation branch) im-
plemented critical safety and user experience features including confirmation work-
flows for dashboard modifications and undo functionality leveraging Grafana’s ver-
sioning system. These features emerged from user feedback indicating the need
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for safeguards against accidental changes to production dashboards. The confirma-
tion system requires explicit user approval for all destructive operations, while the
undo functionality provides an additional safety mechanism by utilizing Grafana’s
version history to restore dashboards to their previous state.

The systematic approach to feature development is reflected in the project’s ver-
sion control history, as shown in Figure 3.17 which illustrates the GitHub branches
representing the iterative development phases.

The iterative development approach has proven essential for managing the com-
plexity of the system while ensuring that new features integrate seamlessly with
existing functionality. The modular architecture enabled rapid prototyping and
testing of new capabilities while maintaining system stability and reliability.

This comprehensive development process resulted in a sophisticated intelligent
interface that significantly enhances the usability and accessibility of the water
distribution monitoring system. The system demonstrates the potential for con-
versational Al to bridge the gap between complex technical infrastructure and op-
erational efficiency, providing a foundation for future enhancements and similar
applications in other infrastructure monitoring domains.
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Chapter 4

Implementation Results and
System Validation

This chapter presents the implementation and validation results of the intelligent
cloud-based water distribution monitoring system with conversational Al capabili-
ties, evaluated through the Marene water distribution network case study.

4.1 Case Study: Marene Water Distribution Net-
work

The Marene water distribution network case study provides a comprehensive vali-
dation environment for the intelligent monitoring system, demonstrating practical
applicability in real-world municipal water infrastructure management. The case
study involves multiple stakeholders and existing systems that required careful in-
tegration and validation.

4.1.1 Network Management and Operational Context

The Marene water distribution network is managed by AlpiAcque [30], a water
utility company responsible for water supply and distribution across multiple mu-
nicipalities in the region. AlpiAcque’s operational requirements include efficient
network monitoring, leak detection, pressure management, and ensuring reliable
water supply to all districts within their service area. The collaboration with Alpi-
Acque provided essential domain expertise and realistic operational constraints that
shaped the system development and validation process.

The conversational Al interface was developed as an enhancement to the core
monitoring system requirements, providing an innovative approach to improve op-
erational efficiency and user interaction with the monitoring platform. While not
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part of the original specifications, this component demonstrated significant poten-
tial for enhancing operational workflows and reducing the technical barriers for
system interaction.

4.1.2 Geographic and Infrastructure Organization

The Marene municipal water distribution network is strategically organized into
distinct operational districts that facilitate management and monitoring activities.
The primary districts include:

e Ponte District

e Via Torino District

o San Bernardo District
o Salza District

e Concentrico District
o« Rame District

e Marconi District

e Sperina District

¢ Pellaverne District

This district-based organization enables targeted monitoring, maintenance plan-
ning, and operational decision-making while providing a natural framework for the
conversational Al interface to understand and respond to location-specific queries.

4.1.3 Existing Information Systems Integration

The system validation required integration with multiple existing platforms that
provide essential operational data and functionality for the Marene network.

GIS Platform Integration

The network topology and geographic information is managed through the GIS-
Master platform, developed by Technical Design, which serves as the authorita-
tive source for network component locations, pipe specifications, and infrastructure
metadata. The GISMaster platform provides comprehensive mapping capabilities
and maintains detailed records of network topology, pipe materials and dimensions,
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valve and fitting locations, service connection details, and historical infrastructure
modifications.

For the intelligent monitoring system implementation, the GISMaster platform
data was exported and transformed into standardized GeoJSON formats to enable
integration with the web-based visualization components. This export process pre-
served essential topology information while optimizing data structure for real-time
visualization and conversational interface operations.

(@ GisMaster - Client
File Temi Mod

emi Moduli Finestra ?
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Figure 4.1: GIS Platform GISMaster provided by Technical Design [31].

Figure 4.1 shows the GISMaster platform interface displaying the Marene net-
work topology and infrastructure details. The platform provides a topographical
view of the Marene Water Distribution System, organizing the data into several
groups and layers including the elements of the WDS itself (pipes, valves, pumps,
tanks, etc.), information about the town such as buildings and streets, as well as
the WDS districts. The comprehensive GIS visualization provides a detailed topo-
graphical representation of the water distribution system, with organized data lay-
ers that include network components, municipal infrastructure, and district bound-
aries. This multi-layered approach enables comprehensive spatial analysis and sup-
ports the intelligent monitoring system’s geospatial capabilities.

SCADA System Integration

Operational sensor data for the Marene network is collected and managed through a
SCADA (Supervisory Control and Data Acquisition) system operated by IDEA[32].
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This SCADA system provides essential real-time and historical data collection ca-
pabilities including automated daily data collection from distributed sensors, basic
visualization and trending capabilities, alarm management for out-of-range condi-
tions, and data archival for regulatory compliance and operational analysis.

The SCADA system collects data from flow sensors, pressure monitoring points,
tank level indicators, and valve position sensors distributed throughout the net-
work. Data collection occurs at 15-minute intervals, providing sufficient temporal
resolution for both operational monitoring and analytical applications.

While the SCADA system provides basic data visualization capabilities, it lacks
advanced analytical features such as automated anomaly detection, predictive anal-
ysis capabilities, integration with GIS mapping systems, and sophisticated data
querying interfaces. These limitations provided the motivation for developing the
intelligent monitoring system that could leverage the existing SCADA data while
providing enhanced analytical and visualization capabilities.
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Figure 4.2: SCADA platform provided by IDEA [32].

Figure 4.2 demonstrates the SCADA system interface showing a schematic view
of the Via Torino district in the Marene Water Distribution System. The interface
displays the main tank in Marene, two well pumps, connections to the Via Torino
district, and their respective flow sensors, providing essential operational monitor-
ing capabilities. The visualization provides operators with a comprehensive view of
the system topology, including the main storage tank, well pump locations, district
connections, and flow sensor positions throughout the network.
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4.1.4 Historical Data and Algorithm Validation

The Marene network has comprehensive historical records of leak incidents, re-
pairs, and maintenance activities that provided valuable validation data for the
machine learning algorithms integrated within the monitoring system. This his-
torical dataset includes documented leak locations and times, repair records with
cost and duration information, pressure anomaly reports, and customer complaint
records related to service interruptions.

While the detailed analysis of leak detection algorithm performance falls outside
the scope of this thesis, the availability of this historical validation dataset enabled
the research colleague developing the machine learning algorithms to verify detec-
tion accuracy and calibrate algorithmic parameters for the specific characteristics
of the Marene network.

4.1.5 Stakeholder Collaboration and System Validation

The development and validation of the intelligent monitoring system involved ex-
tensive collaboration with industry partners and operational stakeholders to en-
sure practical utility and operational relevance. During the internship period and
throughout the thesis development, regular collaboration meetings were conducted
with Tesisquare [33], the technology partner responsible for system integration and
deployment support, and with AlpiAcque technical staff for operational validation.

The collaboration with Tesisquare provided essential feedback on technical ar-
chitecture decisions, user interface design choices, operational workflow integra-
tion, and system scalability requirements. Tesisquare’s expertise in water utility
technology implementations provided valuable insights into practical deployment
challenges and helped guide architectural decisions that would facilitate real-world
adoption and maintenance.

4.1.6 Network Infrastructure and Data Integration

The comprehensive sensor coverage across the Marene districts provides the data
foundation for the intelligent monitoring system. Flow, pressure, and tank level
sensors positioned throughout Ponte, Via Torino, San Bernardo, Salza, and Con-
centrico districts deliver measurements at 15-minute intervals, ensuring adequate
temporal resolution for both real-time monitoring and historical analysis.
District-specific GeoJSON files, derived from the GISMaster platform, provide
precise geographic boundaries that enable sophisticated spatial analysis and in-
tuitive visualization within the Grafana-based dashboard system. The conversa-
tional Al interface successfully demonstrates natural language interaction capabili-
ties through district-specific queries and geospatial navigation commands, enabling
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operators to quickly focus on specific geographic areas through simple conversa-
tional requests.

The integration of sensor data, geographic information, and conversational Al
capabilities creates a comprehensive monitoring environment that significantly en-
hances operational efficiency compared to traditional SCADA-based approaches.

4.2 Visual Dashboard System Results

The implemented system provides comprehensive visualization capabilities through
Grafana dashboards that effectively display real-time and historical water distri-
bution data. The visual interface demonstrates practical utility for operational
monitoring and decision-making.

4.2.1 Geographic Visualization and District Mapping

The system successfully integrates geospatial data visualization through interactive
maps that display real-time network status across different districts. The geomap
panels provide comprehensive geographic context for monitoring operations.

ome > Dashboards > GrafanaCloud > Emad Dashboard > Vi

Flow MARMRCFLW v  Tank Pressure - ¢ @ 2024-07-0008:47:47 10 2024-07-3119:32:48 ~ >

Figure 4.3: Geomap panel of the Marene water distribution network with district
boundaries.

86



4.2 — Visual Dashboard System Results

Figure 4.3 demonstrates the geomap visualization capabilities, showing the com-
plete network topology with district boundaries clearly delineated. The interactive
map displays sensor locations, pipe networks, and enables operators to visualize
network topology and quickly identify geographic areas of interest. This inter-
active exploration functionality supports comprehensive geographic monitoring of
different areas within the Marene municipality.

4.2.2 Time-Series Monitoring and Leak Detection

The system provides sophisticated time-series visualization for monitoring key pa-
rameters including flow rates, pressure levels, and leak probability indicators. These

visualizations enable operators to identify trends, anomalies, and potential issues
across different time periods.
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Figure 4.4: Time-series panel showing leak probability indicators across districts.
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Figure 4.4 illustrates the time-series monitoring capabilities, specifically showing
leak probability indicators across different districts over time. The visualization in-
cludes threshold lines and automated anomaly detection indicators that enable op-
erators to identify potential issues and make informed operational decisions. These
trend analysis tools support continuous performance tracking and early detection
of developing problems within the water distribution network.

4.2.3 Time Range Selection and Navigation

The dashboard system provides flexible time range selection capabilities that enable
operators to analyze data across different temporal scales, from real-time monitor-
ing to historical analysis spanning weeks or months.
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Figure 4.5: Time range selection interface for monitoring data navigation.

Figure 4.5 demonstrates the time navigation capabilities, showing the intu-
itive interface for selecting different time ranges. The system supports both pre-
configured time periods (last hour, last day, last week) and custom date/time selec-
tion options. This flexibility enables operators to quickly navigate between different
temporal views of the monitoring data, supporting both real-time monitoring and
historical analysis spanning weeks or months.

In addition to the graphical interface, the conversational Al system also pro-
vides time selection functionality through natural language commands. Operators
can use phrases like "show me data from yesterday," "set time range to last 6 hours,"
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or "display data from March 10th to March 15th" to dynamically adjust the dash-
board’s time range. This integration of time selection capabilities within the con-
versational interface further enhances operational efficiency by allowing temporal
navigation through the same unified interaction model.

4.3 Conversational AI Interface Results

The conversational Al interface demonstrates sophisticated natural language pro-
cessing capabilities for water distribution monitoring operations, providing an in-
tuitive and efficient method for operators to interact with the monitoring system.

4.3.1 Supported Conversational Functions

The chatbot supports a comprehensive set of operations that enable complete dash-
board management and data analysis through natural language commands. The
core capabilities include:

o Dashboard Management: Load specific dashboards by UID, load default
dashboards, and navigate between different monitoring views

« Panel Operations: Add new panels (timeseries, table, heatmap, gauge),
remove existing panels, and modify panel properties (size, position, title,
datasource) with user confirmation

o Data Querying: Execute natural language queries about network data, with
automatic SQL generation and transparent query display

» Geospatial Navigation: Zoom geomap panels to specific districts, enabling
focused geographic analysis

« Time Range Management: Modify dashboard time ranges using natural

non

language (e.g., "last 6 hours", "yesterday", specific date ranges)

e Variable Management: Add or remove dashboard variables with user con-
firmation

o System Safety: Undo functionality to revert changes, save confirmation
workflows, and version control through Grafana’s history

4.3.2 Natural Language Processing Capabilities

The system uses Google’s Gemini 2.0 Flash model through LangChain and Lang-
Graph frameworks, implementing a hybrid architecture where natural language un-
derstanding is combined with precise technical operations. This approach addresses
reliability concerns while maintaining natural language accessibility.
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The interface provides real-time communication and transparent query execu-
tion, offering immediate feedback and confirmations to user requests. This natural
language interaction capability significantly reduces the learning curve for new sys-
tem users and provides efficient access to complex monitoring functionality.

4.3.3 Use Case Demonstration: Modifying Panel Proper-
ties

The system demonstrates practical utility through realistic operational scenarios.
One important use case involves modifying existing panel properties to optimize
dashboard layouts and improve visualization effectiveness.

GrafanaCloud > Ema .
Chatbot

C A @ localhost5173

District  Marconi Flow MAR_MRC_FLW Pressure leakage < HiAeps BR | @ Get

Geo Map Tank Level

@ Grafana Chatbot  comnected v

change. Dashboard reverted to
version 113.

change the width of 7 to half
2m3/n

2024-07-10  2024-07-15 - i
Successfully modified panel with

ID 7: changed grid position/size
(width from 12 t0 6).

M Would you like me to save
these changes to your Grafana
dashboard? (Type 'yes' to save or
'no’ to discard)

Predicted Leakage Events [ Perfect! Your changes have
. been successfully saved to
(Bt o ‘Emad Dashboard' in Grafana.

Sperina

Pellaverne

’ . Type your message...
Marconi 2 C" Y 9

Sperina

Figure 4.6: Panel modification workflow showing width adjustment of panel on the
dashboard.

Figure 4.6 illustrates the complete workflow for modifying panel properties
through the conversational Al interface. The interaction shows an operator re-
questing to change the width of panel ID 7 (a geomap panel) to half of its current
size, with the system interpreting the natural language request, extracting the rel-
evant parameters (panel ID, desired width), and providing a confirmation dialogue
before implementing the changes. After confirmation, the system displays the up-
dated dashboard with the resized geomap panel, demonstrating how spatial visual-
izations can be dynamically adjusted to fit specific layout requirements. This panel
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modification capability enables operators to adjust various visualization proper-
ties including size, position, title, and datasource through simple natural language
commands without requiring knowledge of the underlying Grafana configuration
syntax. The structured workflow with explicit user confirmation ensures that op-
erators maintain complete control over dashboard modifications while benefiting
from the simplicity and efficiency of conversational interactions.

4.3.4 Use Case Demonstration: Data Analysis Queries

The system enables sophisticated data analysis through natural language queries
that are automatically translated into SQL operations against the BigQuery data
warehouse.

@ Grafana Chatbot connected

dana 1joweslt iIieakayge

Based on the available data, the
district with the lowest average
leakage score is Marconi (0.463),
and the district with the highest
average leakage score is
Pellaverne (0.515).

Executed SQL .
Query

(SELECT district, AVG(score)
UNION ALL
(SELECT district, AVG(score)

o

Type your message...

Figure 4.7: Natural language data query for districts with highest and lowest leak-
age, with transparent SQL generation.
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Figure 4.7 demonstrates the data querying capabilities, showing how opera-
tors can ask complex questions about network performance using natural language.
The example shows a query requesting districts with both the highest and lowest
leakage probability, with the system displaying both the natural language inter-
pretation and the generated SQL query for transparency. This approach provides
technical visibility while maintaining the accessibility of natural language interac-
tion, enabling operators to verify the system’s understanding of their requests.

4.3.5 Use Case Demonstration: Geospatial Navigation

The system supports intuitive geospatial navigation through conversational com-
mands that enable operators to focus on specific geographic areas of interest.

VEOIdies | X 43 Emad Dashboard - Graf

ar-district=.. ¥ (K @ & a

District Marconi Flow  MAR_MRC_FLW a leakage (@I®

Geo Map i TankLevel e Grafana Chatbot  Connected -
22m3m 200m to pellaverne district in
panel 7

21m3fh
Successfully zoomed geomap
panel 7 to district ‘pellaverne'.
The view i now centered at
coordinates lat: 44.665121, lon:
7.715175 with zoom leve! 14.

i ] M Would you like me to save
8ma/n i i these changes to your Grafana
6main dashboard? (Type 'yes' to save or

N 'no’ to discard)

4majh

Districts

id 2 [ Perfect! Your changes have

name pellaverne Predicted Leakage Events been successfully saved to
‘Emad Dashboard' in Grafana.

GisLink 1 District

Acad_Text  null
Sperina

Acad_Angle 0

Pellaverne

Marconi

Sperina

Figure 4.8: Geospatial navigation to Pellaverne district using natural language
commands.

Figure 4.8 shows the geospatial navigation capabilities, demonstrating how op-
erators can use natural language to request specific geographic views. The con-
versational command to zoom a geomap to the Pellaverne district showcases the
system’s ability to understand geographic references and automatically adjust map
views with user confirmation, providing immediate visual feedback to the operator’s
request.
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4.3.6 System Safety and Version Control

The conversational Al includes comprehensive safety mechanisms to prevent acci-
dental modifications and enable easy recovery from unwanted changes.

o Grafana Chatbot  connectea

add a geomap panel called
TestOl

Successfully added a 'geomap'
panel titled *Test01" using
datasource UID
*${DS_YOUR_DEFAULT_DATASOU
RCE} (Type: 'prometheus’) at
grid position X=0, Y=22 with size
Wicth=12, Helght=8.

M Would you like me to save
these changes to your Grafana
dashboard? (Type 'yes' to save o
‘no’ to discard)

Perfect! Your changes have
been successfully saved to
o *Emad Dashboard" in Grafana

o Grafana Chatbot  comocted

grid position X=0, =22 with size
Width=12, Height=8.

M Would you like me to save
these changes to your Gratana
dashboard? (Type 'yes' to save or
‘no’ to discard)

Perfect! Your changes have
been successfully saved to
*Emad Dashboard' in Gratana.

undo the last change

Successfully undone the last

District

change. Dashboard reverted to
version 113,

Figure 4.9: Add-then-undo workflow showing panel addition and subsequent change
reversal.

Figure 4.9 illustrates the complete workflow of the safety mechanisms within the
system. The first image shows the successful addition of a geomap panel named
"Test01" through the chatbot interface, demonstrating how operators can add new
panels through conversational commands. The second image shows the user revert-
ing these changes using the "undo the latest changes" command, with the system
successfully removing the previously added panel and loading the previous version
of the dashboard. This safety feature leverages Grafana’s version history for reliable
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state restoration, ensuring that operators can experiment with dashboard modifi-
cations while maintaining the ability to quickly return to previous configurations if
needed.

4.4 'Technical Implementation Validation

4.4.1 WebSocket Communication and Real-Time Perfor-
mance

The implementation demonstrates real-time bidirectional communication through
WebSocket connections, enabling persistent conversation state and immediate re-
sponse. The system maintains conversation context across multiple interactions,
providing a seamless user experience for complex operational tasks.

4.4.2 Cloud Infrastructure Performance

The Google Cloud Platform implementation provides effective serverless scaling
and BigQuery time-series optimization for both real-time monitoring and histori-
cal analysis. Automated error detection and recovery mechanisms ensure system
reliability, while the cloud-native architecture enables efficient resource utilization
and cost management.

4.4.3 System Validation Summary

The implemented system successfully demonstrates comprehensive monitoring ca-
pabilities through visual dashboards and conversational Al interface. The valida-
tion confirms effective integration of cloud infrastructure, data processing, visual-
ization, and natural language processing components.

4.4.4 Visual Dashboard Validation

The Grafana-based dashboard system provides intuitive visualization of water dis-
tribution network data through interactive maps, time-series charts, and flexible
time navigation controls. The visual interface enables operators to quickly identify
network status, trends, and potential issues across different geographic districts and
time periods.

4.4.5 Operational Utility Validation

The system processes time-series monitoring data efficiently, integrates geospatial
data for spatial analysis, and provides comprehensive dashboard management ca-
pabilities. The hybrid architecture approach effectively balances natural language
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understanding with technical precision, while the Marene case study validates prac-
tical operational utility for municipal water system management.

The iterative development approach successfully progressed from CLI proto-
types to the final web-based system, with each phase providing insights that guided
architectural decisions. The comprehensive safety mechanisms, including save con-
firmation workflows and undo functionality, ensure operational reliability while
maintaining ease of use.
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Chapter 5

Conclusion and Future Directions

This thesis presents the development and implementation of an integrated cloud-
based infrastructure for smart water distribution monitoring with conversational
Al capabilities. The work demonstrates significant advancement in creating com-
prehensive monitoring solutions that integrate cloud technologies, real-time data
processing, interactive visualization, and intelligent user interfaces for infrastruc-
ture monitoring applications.

5.1 Research Contributions and Achievements

5.1.1 Primary Technical Contributions

The primary contribution is the successful development of an integrated cloud-based
monitoring system that combines multiple technologies to create a comprehensive
solution for water distribution network management. The system integrates cloud
infrastructure, real-time data processing, interactive visualization, and conversa-
tional Al capabilities to provide a complete monitoring solution.

Key technical achievements include:

o Cloud-native architecture leveraging Google Cloud Platform services for scal-
able data processing and storage

o Real-time data integration from multiple sources including SCADA systems
and IoT sensors

» Interactive dashboard system using Grafana for comprehensive visualization
and monitoring

o Geospatial data integration enabling geographic analysis and district-based
monitoring
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o Conversational Al interface with domain-specific prompt engineering for tech-
nical terminology

The comprehensive system demonstrates effective integration of multiple tech-
nologies while maintaining system coherence and reliability, providing a reusable
pattern for similar infrastructure monitoring applications.

5.1.2 Methodological and Domain-Specific Contributions

The iterative development methodology established effective practices for develop-
ing comprehensive infrastructure monitoring systems, progressing through incre-
mental validation phases from cloud infrastructure setup to data integration, visu-
alization development, and finally Al interface implementation. This methodology
provides a reusable framework for similar multi-component system development.

Within water distribution monitoring, this work demonstrates comprehensive
system integration that combines:

o Cloud-based data processing and storage for scalable monitoring operations
» Real-time sensor data integration with historical analysis capabilities
o Interactive visualization systems enabling intuitive data exploration

» Geospatial analysis capabilities for district-based monitoring and manage-
ment

» Conversational interfaces that democratize access to complex technical sys-
tems

The integration of hydraulic simulation results with real-time sensor data through
both visual and conversational interfaces enables new analyses previously imprac-
tical due to system complexity, with applications for predictive maintenance, emer-
gency response, and operational optimization.

5.2 Technical Innovation and Broader Implica-
tions

This work represents a comprehensive approach to modernizing infrastructure mon-
itoring through the integration of cloud technologies, interactive visualization, and
artificial intelligence. The technical innovations have implications extending beyond
water distribution monitoring to other critical infrastructure domains.

The cloud-native architecture demonstrates effective patterns for scalable in-
frastructure monitoring, while the interactive visualization capabilities provide in-
tuitive interfaces for complex data analysis. The integration of geospatial data
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enables sophisticated spatial analysis capabilities, and the conversational Al inter-
face represents the first documented successful deployment of large language models
for industrial dashboard management.

The prompt engineering techniques for translating natural language commands
into technical operations while maintaining safety demonstrate effective approaches
for applying general-purpose language models to domain-specific applications. The
transparent query generation and confirmation workflow patterns address funda-
mental concerns about Al reliability in operational contexts, while the modular
architecture enables selective adoption without requiring complete system replace-
ment.

The comprehensive system architecture provides a blueprint for developing mod-
ern infrastructure monitoring solutions that balance technical sophistication with
operational usability.

5.3 Limitations and Future Research Directions

5.3.1 Current Limitations

The system has several limitations that present opportunities for future enhance-
ment. The cloud infrastructure, while scalable, is currently optimized for Google
Cloud Platform services and would require adaptation for other cloud providers.
The visualization system demonstrates effective integration with Grafana but would
need additional development for other monitoring platforms.

The conversational Al capabilities have limitations with highly specialized tech-
nical queries and ambiguous temporal references. Mobile device optimization was
not prioritized, affecting utility for field operations. The current data integration
focuses on SCADA and sensor data but could be expanded to include additional
data sources such as customer service systems and maintenance records.

5.3.2 Future Research Opportunities

Future research directions include:

o Advanced data integration capabilities including IoT sensor networks and
smart meter data

o Multi-agent Al systems for comprehensive automated analysis and decision
support

o Mobile application development for field operations and emergency response

» Integration with additional monitoring platforms beyond Grafana
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o Continuous learning capabilities adapting to operational contexts and user
preferences

e Smart city applications for comprehensive urban infrastructure management

5.4 Real-World Validation and Industry Collab-
oration

A critical aspect of this research was the emphasis on real-world validation through
direct collaboration with industry stakeholders rather than purely theoretical devel-
opment. This approach provided invaluable insights that shaped both the technical
implementation and practical applicability of the solution.

5.4.1 Value of Industry Partnership

The collaboration with AlpiAcque and Tesisquare provided essential domain exper-
tise and operational context that fundamentally influenced the system development.
Regular feedback sessions revealed user interface requirements, workflow integration
needs, and practical constraints that would not have been apparent from technical
specifications alone.

This industry partnership enabled:

» Validation of technical approaches against real operational requirements

o Understanding of user interface preferences and workflow integration needs
o Identification of practical deployment challenges and scalability concerns

o Access to authentic data and operational scenarios for testing

The iterative collaboration process ensured that the final system addresses gen-
uine operational needs while maintaining the technical innovation goals of the re-
search, resulting in a system that demonstrates both academic research contribu-
tions and practical utility for real-world applications.

5.5 Concluding Remarks

This thesis demonstrates that integrating cloud technologies, interactive visualiza-
tion, and conversational AI creates comprehensive infrastructure monitoring so-
lutions that provide significant operational improvements while establishing new
paradigms for system design and human-computer interaction in technical contexts.
The successful implementation validates the potential for multi-component systems
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to make complex technical capabilities accessible while maintaining accuracy and
reliability.

The emphasis on real-world validation through industry collaboration proved es-
sential for developing a system that addresses genuine operational needs rather than
theoretical possibilities. This collaboration model demonstrates the critical impor-
tance of industry partnership in developing comprehensive infrastructure monitor-
ing systems.

The work provides a foundation for continued advancement in intelligent in-
frastructure monitoring, demonstrating that modern cloud technologies combined
with interactive visualization and Al can enhance human expertise while improving
accessibility and operational effectiveness. The comprehensive system architecture
provides a blueprint for future infrastructure monitoring projects, emphasizing the
value of integrated approaches and continuous stakeholder engagement throughout
the development process. As infrastructure systems become increasingly complex,
the approaches developed provide valuable tools for organizations seeking to mod-
ernize monitoring capabilities while maintaining reliability and safety requirements
essential for critical systems.
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